
PART H: Cardinals, Ordinals, Trans finite Induction

Chapter 6

Cardinal Numbers

6.1 INTRODUCTION

It is natural to ask whether or not two sets have the same number of elements. For finite sets the
answer can be found by simply counting the number of elements. For example, each of the sets

{a,b,c,d},	 {2,3,5,7},	 {x,p,z,l}	 -

has four elements. Thus these sets have the same number of elements. However, it is not always
necessary to know the number of elements in two finite sets before we know that they have the same
number of elements. For example, if each chair in a room is occupied by exactly one person and there is
no one standing, then clearly there are "just as many" people as there are chairs in the room.

The above simple notion, that two sets have "the same number of elements" if their elements can be
"paired-of", can also apply to infinite sets. in fact, it has the following startling results:

(a) Infinite sets need not have the "same number of elements"; some are "more infinite" than others.

(b) There are "just as many" even integers as there are integers, and "just as many" rational numbers Q
as positive integers P.

(c) There are "more" points on the real line R than there are positive integers P; and there are "more"
curves in the plane R 2 than there are points in the plane.

This chapter will investigate and prove the above results. First we will formally define when two
sets, finite or infinite, have the same number of elements or, in other words, the same cardinality. Lastly,
we define addition and multiplication for these "cardinal numbers", and show that many of their
properties reflect corresponding properties of sets.

We remark that, at one time, all infinite sets were considered to have the same number of elements.
The German mathematician Georg Cantor (1845-1918) gave the above alternative definition which
revolutionized the entire theory of sets.

6.2 ONE-TO-ONE CORRESPONDENCE, EQUIPMENT SETS

Recall that a one-to-one correspondence between sets A and ii is a function f: A -* B which is

bijective, that is, which is one-to-one and onto. In such a case, each element a E A is paired with a

unique element b E B given by b =f (a). We sometimes write

to denote such a pairing.

- Remark: Frequently, a child counts the objects of a set by forming a one-to-one correspondence
between the objects and his fingers. An adult counts the objects of a set by forming a one-to-one
correspondence between the objects and the set

{1,23,...,n}

In fact, if one is asked the question:

"How many days are there until next Saturday?"

the response is often to actually pair the remaining days with one's fingers.
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The following definition applies.

Definition 6.1: Sets A and B are said to have the same cardinality or the same number of elements, or to
be equipolent, written

AB
if there is a function f: A - B which is bijective, that is, both one-to-one and onto.

Recall that such a function  is said to define a one-to-one correspondence between A and B.
Since the identity function is bijective, and the composition and inverse of bijective functions are

bijective, we immediately obtain the following theorem:

Theorem 6.1: The relation	 of being equipotent is an equivalence relation in any collection of sets.
That is:

(1) A	 .4 for any set A.

-	 (ii) If A -	 "-' B	 A.

(iii) if A .- .	 d I	 C, then A	 C.

EXAMPLE 6.1

(a) Let A and B be sets with exactly ti.. e eleme its, say,

	

A = (2,3, 5),	 and B = (Marc, Erik, Audrey)

Then clearly we can find a one-to-one correspondence between A and B. For example, we can label the
elements of A as the first element, the second clement, and the third element, and label B similarly. Then
the rule which pairs the first elements of .4 and B, pairs the second elements of A and B, and pairs the third
elements of A and B, that is, the function]: A - B defined by

	

f(2) = Marc,	 f(3) = Erik,	 f(5) = Audrey

is one-to-one and onto. Thus A and B are equipotent.
The same idea may be used to show that any two finite sets with the same number of elements are

equipotent.

(h) Let A = {a, h, c, d} and 8 = {l, 2, 3). Then A and B are not equipotent. For suppose there were a rule for
pairing the elements of A and B. If there were four or more pairs, then an element of B would be used twice,
and if there were three or fewer pairs then some element of .4 would not be used. In other words, since A has
more elements than B, any function f: A - B must assign at least two elements of A to the same element of B.
and hencef would not be one-to-one,

In a similar way, we can see that any two finite sets with different numbers of elements are not equipotent.

(c) Let I	 10, I], the closed unit intetval, and let S be any other closed interval, say S [ab) where a < b. The
function f: I -. S defined by

f (x) = (b — a)x + a

is one-to-one and Onto. Thus I and S have the same cardinality. Therefore, by Theorem 6. 1, any two closed
intervals have the same cardinahity.

(d) Consider the set P = (1,2,3,...) of positive integers and the set E = (2,4,6,. . .) of even positive integers. The
following defines a One-to-One correspondence between P and E:

	P={l,	 2,	 3,	 4,	 5,	 . .

	J. 	 1.	 1	 1	 1	 111

	

E = 12,	 4,	 6,	 8,	 hO, . .

In other words, the function f: P -. E defined byf(n) = 2n is one-to-one and onto. Thus P and E have the
same cardinality.

More generally, if K = {O, k, 2k, 3/c,.. .} is the set of multiples of a positive integer k, then f: P - K
defined by f(n) kn is a one-to-one correspondence between P and K. Therefore P and K have the same
cardinahity.
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Parts (a) and (h) of the above Example 6.1 show that finite Sets are equipotent if and only if they
contain the same number of elements. Thus, for finite sets, Definition 6.1 corresponds to the usual
meaning of two sets containing the same number of elements.

On the other hand, Example 6.1(d) shows that the infinite set P has the same cardinality as a proper
subset of itself. This property is characteristic of infinite sets. In fact, we state this observation formally.

Definition 6.2: A set S is infinite if it has the same cardinality as a proper subset of itself. Otherwise S is
finite.

Familiar examples of infinite sets are the counting numbers (positive integers) P. the natural num-
bers (nonnegative integers) N, .the integers Z, the rational numbers Q. and the real numbers R.

There might be a temptation to think that all infinite sets have the same cardinality: but we will show
later that this is definitely not true.

We conclude this section with the following example, which tells us that any two sets have the same
cardi.nality, respectively, to two disjoint sets.

EXAMPLE 6.2 Consider any two sets A and B. Let A' = A x {l} and B' B x {2}. Then

	

AA'	 and	 BB'

For example, the functions

1(a)	 (al), a  A	 and	 g(h) = (b,2), liE B

are each bijective. Although A and B need not he disjoint, the sets A' and B' are disjoint. i.e..

A'flB' =0

Specifically, each ordered pair in A' has I as a second component, whereas each ordered pair in B' has 2 as a second
component.

6.3 DENUMERABLE AND COUNTABLE SETS

The reader is familiar with the set P = 11, 2,3,... } of counting numbers or positive integers. The
following definitions apply.

Definition 6.3: A set D is said to he denumerable or countahli' infinite if D has the same cardinality as P.

Definition 6.4: A set is countable if it is finite or denumerable, and a set is nondenunu'rahle if it is not
countable.

Thus a set S is nondenumerable if S is infinite and S does not have the same cardinality as P.

EXAMPLE 6.3

(a) Any infinite sequence

a1. a,, a3,.

of distinct elements is countably infinite, for a sequence is essentially a function 1(n) = a whose domain is P.
So if the a are distinct, the function is one-to-one and onto. Thus each of the following sets is countably
infinite:

(1,1/2,1/3,...,

{(l. I), (4,8), (9.27)..... (23) .
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(b) Consider the product set P x P as exhibited in Fig. 6-I. The set P x P can be written as an infinite sequence as
follows:

{(I, I), (2,1), (1, 2), (1, 3), (2,2),...)

This sequence is determined by "following the arrows" in Fig. 6 . 1. Thus P x P is countably infinite for the
reasons stated in (a).

(1,1)	 (I,2)—o.(1,3)	 (1,4) -.-*../V 7,(2,1)	 (2,2)	 (2,3)	 (2,4)V 7V7(3,1)	 (3,2)	 (3,3)	 (3,4)
(4.I)	 (4,2)	 (4,3)	 (4.4)
.V.7./.

Fig. 6-1

(c) Recall that N = (O, 1, 2,...) = P  {O} is the set of natural numbers or nonnegative integers. Now each
positive integer a E P can be written uniquely in the form

a 2'(21 + I)

where r,s E N. Consider the function!: P- N x N defined by

f(a) = (r, s)

where rand s are as above. Thenf is one-to-one and onto. Thus N x N is denumerable (countably infinite) or,
in other words, N x N has the same cardinality as P. Note that P x P is a subset of N x N.

The following theorems apply.

Theorem 6.2: Every infinite set contains a subset which is denumerable-

Theorem 6.3: A subset of a denumerable set is finite or denumerable.

Corollary 6.4: A subset of a countable set is countable.

Theorem 63: Let A 1 , A 2 , A 3 ,... be a sequence of pairwise disjoint denumerable sets. Then the union

A 1 UA 2 UA 3 U ... =u(A 1 :iE P}

is denumerable.

Corollary 6.6: A countable union of countable sets is countable.

Observe that Corollary 6.6 tells us that if each of the sets A, A 2 , A 3 ,... is countable then the union

A U A 2 U A 3 U . .

is also countable.
The next theorem gives a very important, and not entirely obvious, example of a denumerable

(countably infinite) set.
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Theorem 6.7: The set Q of rational numbers is denumerable.

Proof. Note that Q Q U {0} U Q where Q and Q denote, respectively, the sets of positive
and negative rational numbers. Let f: Qf 	 P x P be defined by

- f(p/q) - (p, q)

wherep/q is any element of Q+ expressed as the ratio of two relatively prime positive integers. Thenf is
one-to-one and so Qf has the same cardinality as a subset of P x P. By Example 6.3(b), P x P is
denumerable; hence, by Theorem 6.3, the infinite set Q is denumerable. Similarly Q is denumerable.
Thus the set Q of rational numbers, the union of Q', 	 and Q, is also denumerable.

Remark: Theorem 6.7 tells us that there are just as many rational numbers as there are positive
integers, that is, that Q has the same cardinality as P.

6.4 REAL NUMBERS R'AND THE POWER OF THE CONTINUUM

Not every infinite set is countable. The next theorem (proved in Problem 6.15) gives a specific and
extremely important example of such a set.

Theorem 6.8: The unit interval I = (0, 1] is nondenumerable.

Observe that this theorem also tells us that infinite sets need not have the same cardinality.

The following definition applies.

De$Lnitlon 6.5: A set A is said to have the power of the continuum if A has the same cardinality as the
Unit interval I = 10, 11.

Besides the unit interval I, all the other intervals also have the power of the continuum. There are
several such kinds of intervals. Specifically, if a and b are real numbers with a < b, then we define:

closed interval:	 [a, b) = {x E R : a x < b}

open interval:	 (a,b) = {x E R : a <x < b}

half-open intervals:	 [a,b) = {x € R : a < x < b}

(a,b(={xER:a<x<_b}

Example 6.1(c) showsthat any closed interval la, b] has the power of the continuum. Problem 6.3 shows
that any open or half-open interval also has the power of the continuum.

Rea1 Numbers R

Lastly, we note that the set R of real numbers also has the power of the continuum. Specifically,
consider the function f: R --+ D where D = (— I, 1) and f is defined by

f(x)= 
l±kI

Figure 6-2 is the graph of this function. Clearly the values off belong to (-1, 1) since lx( < I -i- JxJ. It is
not difficult to show that  is both one-to-one and onto. Thus the set R of real numbers has the same
cardinality as the open interval D = (-1, 1), and hence R has the power of the continuum.

Remark: Some texts define a set A to have the power of the continuum if it has the same cardinality
as R rather than the unit interval I. By the above remark, both definitions are equivalent. The use here
of I rather than R is motivated by Theorem 6.8.
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Fig. 6-2	 •. -

6.5 CARDINAL NUMBERS

Frequently, we want to' ki	 te"iz&of a given set without necessarily comparing it to an ter.
set. For finite sets, there is-no difficult. For example, the set A = {a, h. c} has 3 elements. Any other set
with 3 elements is equipotent td A. On the other hand, for infinite sets it is not sufficient to just say that
the set has infinitely many elements since not all infinite sets are equipotent. To solve this problem, we
introduce the concept of a cardinal number.

Each set A is assigned a symbol in such it way that two sets A and B are assigned the same symbol if
and only if they are equipotent. This symbol is called the cardina/ity or cardinal nunther of A, and it is
denoted by

Al,	 n(A),	 or	 card(A)

We will use JAI. Thus:

/	 I

LA = 81	 if and only if	 A B

One may also view a cardinal number as the equivalence class of all sets which are equipotent.

Finite Cardinal Numbers

The obvious symbols are used for the cardinal numbers of finite sets. That is, 0 is assigned to the
empty set 0, and n is assigned to the set {1,2, . . . , n}. Thus:

F JAI == n	 if and only if	 A	 j I, 2,...,nl 1
Alternatively, the symbols 0, 1, 2, 3,... are assigned, respectively, to the sets

0, {0}, E0 {0111[01 ioll [0 ' { ø}1]
Although the natural number n and the cardinal number n are technically different things, there is no
conflict using the same symbol in these two roles. 4 h cardinal numbers of finite sets are called finite
cardinal numbers.
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Transfimle Cardinal Numbers, No and c

Cardinal numbers of infinite sets are called u !/mite or tranctinite cardinal pzuothers.
The cardinal number of the infinite set P of positive integers is

which is read aleph-nought. This flotation was introduced by Cantor. (The symbol N is the first letter
aleph of the Hebrew alphabet.) Thus:

	

if and only if	 AP

In particular, we have IZI = No and J QJ = 1 o . (The significance of 0 inNo is discussed in Chapter 8.)
The cardinal number of the unit interval I = [0. 1] is denoted by:

C

and it is called the power of the cotztintiwn. Thus:

	

IAI = c	 if and only if	 A

In particular, we have IRI	 c, and the cardinal number of any interval is c.

The following statements follow directly from the above definitions:
(a) A is denumerable or countably infinite means 1 ,41 =
(b) A is countable means J AJ is finite or J AI =
(c) A has the power of the continuum means JAI c.

6.6 ORDERING OF CARDINAL NUMBERS

One frequently wants to compare the size of two sets. This is done by means of an inequality
relation which is defined for cardinal numbers as follows.

Definition 6.6: Let A and B he sets. We say that

A l < IBJ

if A has the same cardinality as a subset of B or, equivalently, if there exists a one-b-
one (injective) function /: A	 B.

As expected, 1 ,41 :5 IBI is read:
"The cardinal number of A is less than or equal to the cardinal number of B.'

As usual with the symbol <, we have the following addition notation:

Al < IBI	 means	 JAI	 81	 but 1.41 ^4 181

1.41 2! 1 B 	 means	 IB I 	 IAI

Al > IBI	 means	 (RI < J AI

Again, as usual, the symbols <, >, > are read "less than". "greater than or equal to''. and "greater
than", respectively.

We emphasize that the above relations between cardinal numbers are well defined, that is, the
relations are idependeiit of the particular sets involved. Namely, if A zz .4' and B	 B'. then

	

Al < J BI if and onl y if l A 'l	 B 'I	 and - IA I	 I Bj if and ouR if .4 'I < I'l
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EXAMPLE 6.4

(a) Let A be a proper subset of a finite set B. Clearly. [Al < I III. since A is a proper subset of B. where A and Bare
finite, we know ihat J

AI B[. Thus [Al < I BI . In other words, for finite cardinals m and a, we have i n < n as

cardinal numbers if and only if in < n as nonnegative integers. Accordingly, the inequality relation < for
cardinal numbers is an extension of the inequality relation 	 for nonnegative integers.

(h) Let it 	 a finite cardinal. Then it	 since any finite set A is equipotent to a subset of P and JAI ^6 I PI. Thus

we may write

(c) Consider the set P of positive integers and the unit interval I, that is, consider the sets

P={l,2,3 .... )	 and	 I={xR:O<x<l}

The function 1: P -. I defined by f(n) = I/n is one - to-one. Therefore. P1 < 1 11. On the other hand, by
Theorem 6.7, I PI j6 1 11. Therefore, t o = IPI < I II = c. Accordingly, we may now write

(d) Let .4 be any infinite set. By Theorem 6.2, A contains a subset which is denumerable. Accordingly, for any

infinite set A, we always have	 A.

Cantor's Theorem

The only transfinite cardinal numbers we have seen are No and c. it is natural to ask if there are any

others. The answer is yes. In fact, Cantor's theorem, which follows, tells us that the cardinal number of
the power set 9(A) of any set A is larger than the cardinal number of the set A itself; namely:

Theorem 6.9 (Cantor): For any set A. we have IAI < l(A)l.

This important theorem is proved in Problem 6,18.

Notation: If  = [Al. then we let 2" =	 (4)j. This no doubt comes from the fact that if  finite set

.4 has it elements then :9(A) has 2" elements.

Accordingly, Cantor's theorem ma y be restated as follows.

Theorem 6.9 (Cantor): For any cardinal number a, we have Cs < 20.

Schroeder—Bernstein Theorem, Law of Trichotomy

Note first that the relation < for cardinal numbers is reflexive and transitive. That is:

(i) For any set A, we have IAI = 41.
(ii) If JAI < J BI and IS!	 ICI, then J AI <[Cl.

The second property (transitivity) comes from the fact that if f: A - B and g: 8 -. C are both one-to-
one, then the composition g of A	 C is also one-to-one.

Since we have used the familiar ' notation, we would hope that the relation < for cardinal numbers
possesses other commonly used properties of the relation < for the real numbers R and the integers Z.

One such property follows:

If , and h are real numbers such

that a < b and b <a, then a = h.
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This property certainly holds for finite cardinal numbers. If A is it proper subset of it 	 set B. then

Al < J B I. Therefore, for finite sets .4 and B, the only way that we can hare IA I	 B! and /3	 IA I is that

A and B have the same number of elements, that is. that 1 .4 1 = ill.
On the other hand, it is possible for -it proper subset of an infinite set to have as many elements as the

entire set. For example, consider the infinite sets

	

E= {2,4,6,...}	 and	 P= 1.2,3,... }

As illustrated in Example 6. 1(d). the subset E does have the same cardinality as P. Accordingly, the
above property for infinite cardinal numbers is not obvious. But it is still indeed true in view of the
celebrated Schroeder-Bernstein theorem which follows.

Theorem 6.10 (Schroeder—Bernstein): If 141	 181 and IBI < 4 !. then JAJ	 II

In other words, if a and fl are cardal numbers such that a < il and 13 < n. then = 0. This
impoftant theorem, proved in Problem 6.19, can he stated in the following equivalent form.

Theorem 6.11: Let K, Y, X he sets such that X D I' K 1 and X X i . Then K	 Y.

Another familiar property of the relation < for the real numbers K, called the law of trichoomy, is
the following:

If a and hare real numbers, then exactly one of the following is true:

	

a</.	 a=h.	 a>h

It is clear that the above property holds for finite cardinal numbers. Again, it is not obvious that it holds
for infinite cardinal numbers. The fact that it does is the content of the next theorem.

Theorem 6.12 (Law of Trichotomy): For any two sets A aud B. exactly one of he following is true:

141<181,	 J A I = I Bl.	 141>181

In other words, if o and ;3 are cardinal numbers, then either a < 0. o /3. or a > 3. The proof of
this theorem uses translinite induction which is discussed in Chapter 9: hence the proof will be postponed
until then.

Continuum Hypothesis

By Cantor's theorem. N < 2' and, as noted previously, N < c. The next theorem (proved in
Problem 6.20) tells us the relationship between 2 and c.

Theorem 6.13: 2' = c.

It is natural to ask if there exists a cardinal number i3 which lies "between" RO and c. Originally.
Cantor supported the conjecture, which is known as the continuum hypothesis, that the answer to the
above question is in the negative. Specifically:

Continuum Hypothesis: There exists no cardinal number 0 such that

N <(3 < C

In 1963 it was shown by Paul Cohen that the continuum hypothesis is independent of our axioms of
set theory in somewhat the same sense that Euclid's fifth postulate on parallel lines is independent of the
other axioms of geometry.
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6.7 CARDINAL ARITHMETIC

The collection of all cardinal numbers can he considered to be a superset of the finite cardinal
numbers (nonnegative integers)

0.1,2.3,...

This section shows how certain arithmetic operations on the finite cardinals can be extended to all the
cardinal numbers.

Cardinal Addition and Multiplication

Addition and multiplication of the counting numbers N are sometimes treated from the point of
view of set theory. The interpretation of 2--1 3 = 5, for example, is given by the picture in Fig. 6-3.
Namely, the Union of two disjoint sets, one having two elements and the other having three elements, is a
set with five elements. This idea leads to a cometely general definition of addition of cardinal numbers.

ExIi) -E±) =

Fig. 6-3

Definition 6.7: Let o and /3 be cardinal numbers and let .4 and B be disjoint sets with o = Aj and
13 = 8 1 . Then the sum of t- and 3 IS denoted and defined by

o -I- 3 = I(A U B)

Two comments are appropriate with this definition. First of all, the addition of cardinal numbers is
well-defined. That is, if A' and B' are also disjoint sets with cardinality o and (3 respectively, then

l(A'UB')I = j(AUB)I

Second, if A and B are any two sets, then A x (I) and B x {2} are disjoint. Accordingly, there is no
difficulty in finding disjoint sets with given cardinalities.

EXAMPLE 6.5
(u) Let in and ii he finite cardinal numbers. Then in - n corresponds to the usual addition in N.
(/,) Let a he a finite cardinal number. Then a + 	 = K, since

...............

(e) },, +	 = ,, since

(d) c + c c since

c+c = [O, u (, 'II =c

The definition of cardinal multiplication follows.
Definition 6.8: Let (5 and 0 be cardinal numbers and let A and B besets with s	 Al and /3 = R I . Then

the produL'f of o and /3 is denoted and defined by

= IA x

As with addition, multiplication of cardinal numbers is well-defined. (Observe (hat, in the definition
of cardinal multiplication, A and B need not he disjoint.)
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EXAMPLE 6.6

(a) Let in and it 	 tintic cardinal numbers. Then ow corresponds to the usual multiplication in N.

(b) Since N x N is countably infinite, KO K, =

(c) Theorem 6.15 below tells us that the cartesian plane R has the same cardiiiality as R. Thai is. cc = c.

Table 6-I lists properties of the addition and multiplication of cardinal numbers and gives the
corresponding properties of sets under union and cartesian product. We state this result formally.

Theorem 6.14: The addition and multiplication of cardinal numbers satisfy the properties in Table 6-I.

Table 6-1

Cardinal numbers

(I) (ft +t1)+ I =s+(/3+)

(2) 0+J313+a

(3) (o3) =

(4) (5/3 =

(5) (/3-i-)=o/3+ry

(6) lfcs</3, then s+-<u1+y

(7) If s < /3. !hen Sy s

Sets

(I) (AUB)uC=AU(BC)

(2) AUB=BuA

(3) (AB)xAx(BxC)

(4) Ax I3	 B  .4

(5) A x (Ru C) = (A x B) U (A x C)

(6) 11.4 C B. then (AuC) C (BuC)

(7) 11.4 C B. then (.4 x C) C (B x (1

We emphasize that not every property of addition and multiplication of finite cardinals holds fot
cardinal numbers in general. For example, cancellation holds for finite cardinal numbers, that is.

(i) 1fa+hu4-c, then h=i-.
(ii) If ab = ae and a 34 0, then b e

On the other hand. using Example 6.5 and [ xample 6.6, we have

(i) I.

(ii)

Accordingly, the cancellation law is not true for the operations of addition and multiplication of infinite
caritial numbers.

On the other hand, the addition and multiplication of infinite cardinal numbers turn out to be very
simple. We state the following theorem whose proof lies beyond the scope of this text.

Theorem 6.15: Let is and 0 be nonzero cardinal numbers such that 0 is infinite and (5 < 3. Then

a + 0 = cs/i = /3

That is, given two nonzero cardinal numbers, at least one of which is infinite, their sum or product is
simply the larger of the two. Examples 6.5 and 6.6 verify some instances of the theorem.

Exponents and Cardinal Numbers

First we note that if A and /3 are sd ' . lhen

A8

denotes the set of all functions from B (the exponent) into A. This notation comes Irons the fact that if .4
and B are finite sets, say. IAI = in and IBI = ,,, then there are n/ functions front into A. This is
illustrated in the next example, where 1 .4 1 = 2 and JBI = 3
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EXAMPLE 6.7 Let A = (1, 21 and /1 = { v,y,:). T'cn A" consists of exactly eight functions, which follow:

{(x..l),(i', !),(:,I)},	 (.v,.l)(1,I),(:,2)},	 (x. l),(r,2) (:. t)},	 {(.v,l),(p,2),(:,2)}
(x.2)(i',l)(:, I)),	 {(x,2)(',l)(:,2)},	 {(.v.2).(r,2).(:, l)}.	 {(x,2),(r,2).(:,2)}

That is. there are 2 choices for .v, 2 choices for y, and 2 choices for:. and hence there are 2' 8 functions altogether.

Exponents are introduced into the arithmetic of cardinal numbers in the next definition and, as
illustrated above, this definition agrees with the case when A and /3 are finite sets.

Definition 6.9: Let (Sand/i be cardinal numbers and let A and B besets with (S = Ii and = I B I . Then
(1 io thr power j3 is denoted and defined by

'	 1l
'I	 I

Remark: Previously, if fk = A l, 1k n we used the exponent notation 2" =	 (A)( where :9(4) is the
power set (collection of all subsets) of a set A. We note that there is a one-to-one correspondence
between the subsets A of A and functions 1: A	 {O. 11 as follows:

1
Ii ifaEX= 
o if a x

Thus there is no contradiction between the two notations.
1-he following familiar rules for workine with exponents continue to hold.

Iheorem 6.16: Let o,,i. -y he cardinal numbers. Then:

(I) (o/i) = o . .	 (3)	 ) =
(2)	 =	 ''.	 (4)	 II (5</i, then o' < ff.

EXAMPLE 6.8 Using the odes for exponentiall 	 we can make the following calculations:

(a) c1' = (2l)	 2'	 2 K = c.

(h) c' = (2i)c = 2'	 2c.

Solved Problems

EQUIPOTENT SETS, DENUMERABLE SETS, CONTINUUM
6.1.	 Consider the following concentric circles:

C 1 = (X, y)	 =,2}	 C2 	 (x,t') :x2 ,,2 =02)

where, say. 0 <ii < b. Establish, geometrically, a one-to-one correspondence between C 1 and C2

Let .v E C. Consider the function!: (' 	 C, where 1(r) is the point of intersection ni the radius from
the center of C2 . (and C 1 ) to .r and C l , as shown iii Fig. 6-4. Note that I is both one-to-one and 01110. Thus
J defines it one-to-one correspondence between C l and (
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Fig. 6-4

	

6.2.	 Prove:	 (a) 10, 1)	 (0, 1);	 (b) 10, 11	 10, I);	 (c) [0, 1]	 (0, I).

(a) Note that

[0, 11= (0, I, 1/2, 1/3,. . .) uA
(0,1) = (112,1/3,l/4 .... }UA

where

A = 10,1) \ (0,1,1/2,1/3,.. .} = (0,1) \ (1/2, 1/3,...)

Consider the functionf: [0, I] -. (0,1) defined by the diagram in Fig. 6-5. That is,

(1/2	 ilx=0
f(x) = 11(n + 2) if x = I/n,n E P

if x760,I/n,nEP

The function! is one-to-one and onto. Consequently. 10, 11	 (0, 1).
(b) The function!: [0,11 -. [0,1) defined by

II/(n+I) ifx=1/ii,nEP
f(x) 

=	 if x I In, n € P

is one-to-One and onto. [It is similar to the function in part (a)] Hence [0,!] 	 [0, 1).

(c) Let f: [0,1) -. (0,1] be the function defined by J(x) = I - x. Then! is one-to-one and onto and,
therefore, [0,1)	 (0, 11. By part (b) and Theorem 6. 1, we have (0, I) 	 (0, I].

	

6.3.	 Prove that each of the following intervals (where a < b) has the power of the continuum, i.e., has
cardinality C:

(1) (a, b],	 (2) (a, b),	 (3) la, b),	 (4) (a, b]

The formula 1(x) = a + (h - a)x defines a bijective mapping between each pair of sets:

(I)	 (0,1) and [a, b]	 (3) (0,1) and [a, b)
(2) (0,1) and (a, b)	 (4) (0,1] and (a, b]

Thus, by Theorem 6.1 and Problem 6.2, every interval has the same cardinality as the unit interval 1 10, 11.
that is, has the power of the continuum.

153

{O, 1. 1/2, 1/3, ...} Li A

1,

(1/2, 1/3. 1/4, I/S. ...) LI A

Fig. 6-5
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6.4.	 Prove Theorem 6.1: The relation A	 B in sets is an equivalence relation. Specifically:

(I) AA for any set A.
(2) If A	 B, then B A.

(3) If A B and B C, then A C.

(I) The identity function 1A : A	 A is bijectiv (one-to-one and onto) hence A	 A.
(2) Suppose A	 IL Then there exists a hijecive function f: A — B. Hence  has an inverse functionf: B -. A which is also bijective. Hence B A. Therefore, if A B then B A.
(3) Suppose.A B and B C. Then there exist hijeclive functionsf: A -. B and g: B -..C. Then the

composition function go f: 4 -. C is also bijective. Hence A B. Therefore, if A B and B C.
then A C.

6.5.	 Prove Theorem 6.2: Every infinite set A contains a subset D which is denumerable.

Let f: .(A) — A be a choice function. Consider the following sequence:

0i f(A)
a =f(A\{a})
03 =f(A\{a1,a2})

a,, =f(A\{a1,a2.... . a,,_1})

Since A is infinite, A\fa l , t12,	 a... } is not empty for every it E P. Furthermore, since / is a choice
function,

for	 1<0

Thus the a,, are distinct and, therefore, I) = {a 1 .0?,. . . is a denumerable subset of A.
Essentially, the choice function f "chooses" an element u E A. then chooses an element 03 from the

elements which "remain" in A, and so on. Since A is infinite, the set of elements which "remain" in A is
nonempty.

6.6. Prove: (a) For any sets A and B, Ax BBx A.

(h) For any sets A,B,C,

(A x B) x C A x B x C A x (B x C)

(c) If A C and B B, then A x B C x B.

(a) Let f: A x B -. B x A be defined by

[((a,h))	 (ha)

Clearly  is bijective. Hence A x B B x A.
(b) Let f:(AxB)xC-.AxBxCbc defined by

f((a,h),c) = (a,h,c)

Then f.  hijective..Herice (Ax B)x C'.4 x Ax C. Similarfy,A X(BXC)A x BxC. Thus

(A x B) x CAx B  C A x (B x C)
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(c) Let f: A - C and g: B --s D be one-to-one correspondences. Define h: A x B -s C x D by

h(a,b) = (J(a),g(b))

One can easily check that .lt is one-to-one and onto. Hence A x B C x D.

6.7. Prove: Let X be any set and let C(X) be the family of characteristic functions of X, that is, the
family of functionsf: X —. 10, l}. Then.-Y(X) C(X) where .(X) is the power set of X, i.e., the
collection of subsets of X.

Let A be any subset of X, i.e., let A E :9(X). Let f: 9(X) -. C(X) be defined by

f(A) X4

that is, f maps each subset A of X into the characteristic function	 of A (relative to X). [Recall
X -. {0, I} is defined by f(x) = I if and only if x E A.] Then J is both one-to-one and onto. Hence

C(X).

6.8.	 Suppose A is an infinite set and F is a finite subset of A. Show that A\F A. In other words,
removing a finite number of elements from an infinite set does not change its cardinality.

Suppose F = (01,02,.... a,,}. Choose a denumerable subset I) = 4a t ' a 2 ,..., a,,, a,, 1 ,. - .} of A so that
the first n elements of D are the elements of F. Let g: A —. A\F be defined by

g(a)=aifaD	 and	 g(a5)=a,,ifa€D

Then g is one-to-one correspondence between A and A\F. Thus A A\F.

6.9.	 Prove Theorem 63: A subset of a denumerable set is either finite or denumerable.

Consider any denumerable set, say,

	

A = {a1,a,a1,...}	 (1)

Let B be a subset of A. If B = 0, then B is finite. Suppose B 56 0. Let h 1 be the first element in the sequence
in (1) such that b 1 EB; let b2 be the first element which follows h 1 in the sequence in (1) such that h2 E B; and
soon. Then B = (b1,h2,...). if the sequence b 1 ,b2 ,...ends, then B is finite. Otherwise B is denumerable.

6.10. Prove: A countable union of finite sets is countable.

Let le = (S1 : I E P} be a countable collection of finite sets, and let C U,S,. If C is empty, then C is
countable: Suppose C ^6 0. Define A 1 = S 1 . A 1 = S2 \S 1 , A 1 = S 1 \S2 , and so on. Then the sets A, are
finite and pairwise disjoint. Say,

A 1 = ja i 1,a,2.....at,,],	 A2 - (021,022,..

Then the union B = U,A i can be written as a sequence as follows:

B = (u1,a12..... a1,,,a21,a22.....02,,.....

That is, first we write down the elements of A 1 , then the elements of A 2 , and so on. FonnlIy, define
f: D -. P as follows:

f(a,1) = a 1 + n2 +	 + n,

Then  is bijective. Hence B is countable. However, B is also the union of the sets in ; that is, B = C.

Therefore, C is countable, as claimed.
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6.11. Prove Theorem 6.5: Let A1,A2,A3,... be a sequence of pairwise disjoint denumcrable sets.
Then the union S = u,A 1 is denumerable.

Suppose

A1 = { a 11 ,a 12 ,a 13 .... },	 A2 = {o21,a72,a21....1....

Define D. = (a : i+j = n,n> I). For example.

D2 = ( a 11 ),	 D3 = {a 12 , a21 },	 D4 = { a13,a22,a31},

Note that each D is finite, in fact, D,, has n - I elements. By Problem 6.10. T = U(D1 j > I) is countable.
On the other hand, the union of the finite V's is the same as the union of the A's, that is, T = S. Thus S is
countable.

6.12. Show that R R. (The sets of positive and negative real numbers are denoted, respectively, by
- R* and 1)

The funoion f(x) = x/(l + xl) is a one-to-one correspondence between R and the open interval
(-1,0). Hence the function h defined by

I
X 

+1 if X<0
h(x)	 I + 1 XI

	Ix+l	 ifx>0

is a one-to-one correspondence between R and R 4 . Hence R

6.13. Suppose A is any uncountable set and B is a denumerable subset of A. Show that A\B Pt A. In
other words, removing a denumerable set from an uncountable set does not change its cardin-
ality.

Suppose B	 { b 1 , 6 2 , h,.. .}. The set A\B is infinite (indeed uncountable) and contains a denumerable
subset, say, D = { d1 d2 , d3, }. Let A' = A\(B U D). Then A and A\B are the following disjoint unions,

A =A'uDuB=A'u{d1,d2,d3,...}U{h1,b2,b3,...}
A\B=A'uD=A'U{d1,d2d3,...}

Define!: A - A\B as in Fig. 6-6, that is,

f(a) = a	 ifaEA'
f(d)=d2,,—I	 n E P

n E P

Thenf is one-to-one and onto; hence A\B A.

A\B -

Fig. 6-6

6,14. Prove: The 'plane R2 is not the union of a'countable number of lines.

Let .9' be any countable collection of lines. Since there are c vertical lines and 2' is countable, there is a
vertical line T such that T 2'. Now each line in 2' can intersect T in at most one point. Thus there arc
only a countable number of points in T which lie on lines in Y. Hence there is a point p E T C R 2 which
does not line on any line in Y.
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6.15. Prove Theorem 6.8: The unit interval I = [0, I] is not denumerable.

Method 1	 Assume I is denumerable. Then
I =

that is, the elements of I can be written in a sequence.

Now each element in I can be written in the form of an infinite decimal as follows:

x 1 = O.aa 12 a 13 - .01,,•••

= 0.a, i a, 2 a23 -

= 0.a,,1a,2a,,5'	 a

where a 1 E {0, I.....9} and where each decimal contains an infinite number of nonzero elements. Thus we
write I as 0.999... and, for those numbers which can be written in the form of a decimal in two ways, for
example,

1/2 = 0.5000... = 0.4999...

(in one of them there is an infinite number of nines and in the other all except a finite set of digits are zeros),
we write the infinite decimal in which an infinite number of nines appear.

Now construct the real number
y=0.b1h2b3 ... h•

which will belong to 1, in the following way:

Choose h so b 1 f4 au i and b i ^ 0. Choose b 2 so b2 a22 and b 2 $ 0. And so on.

Note v	 x since b 1 	 au (and h i /- 0): y ^6 I2 since h 2 -/- a (and b 2 54 0), and soon. That is.,i'	 .v,, for all
n E P. Thus v V I, which contradicts the fact that r E I. Thus the assumption that Its denumerable has led
to a contradiction. Consequently, I is nondenumerable.

Method 2:	 [This second proof of Theorem 6.8 uses Problem 6.17(h).]
Assume I is denumerable. Then, as above,

= {x1,x2,x3....

that is, the elements of I can be written in a sequence.
Now construct a sequence of closed intervals 'I,	 as follows. Consider the following three closed

subintervals of [0, I]:
0,1/31.	 1/3,2/31,	 [2/3,1]	 (1)

where each has length 1/3. Now Xi cannot belong to all three intervals. (If ic, is one of the endpoints, then it

could belong to two of the intervals, but not all three.) Let I = [a i ,bu[, be one of the intervals in (I) such
that x 1	 I. Now consider the following three closed subintervals of 1 1 =

[a,a 1 + 1/91,	 [a + 1/9, a 1 +2/9].	 [a1	 b1]	 (2)

where each has length 1/9. Similarly, let 12 be one of the intervals in (2) with the property that x 2 does not
belong to 12 . Continue in this manner. Thus we obtain a sequence of closed intervals,

	

1l212J3...	 (3)

such that x V 1, for all n E P.
By the above property of real numbers, there exists a real number y  I = ]0, I] such that v belongs to

every interval in (3). But since

yE I = {x 1 ,x2 ,x.. .

we must have y = x, for some pa E P. By our construction y = x,,, V I., which contradicts the fact that v
belongs to every interval in (3). Thus our assumption that I is denumerable has led to a contradiction.
Accordingly, I is nondenumerable.
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6.16. Prove that R'	 R and, more generally, that R" R.

Since K S = (0, 1), it suffices to show that the open unit square

S2	{(x,y):0 < x < 1, 0 <r< 1)-(0,l) X (0,1)

has the same cardinality as S = (0, 1). Any point (x, v) E S can he written in the decimal form

(x, y) = (0.d1 d2 d,	 ,0.ce2c1

where each decimal expansion contains an infinite number of nonzero digits (e.g., for 1/2 write 0.4999...
instead of 0.5000... 0. The function

f(x,y) = 0.d1e1d2e2d;e

is one-to-one by the uniqueness of decimal expansions. Furthermore, the function g: S - S 2 defined by
-g(x) = (x, 1/2) is one-to-one. Accordingly, by the Schroeder-Bernstein Theorem 6.10, S2 	 Thus
R 2 U

Therefore, R3	R2 x R U x R U. Similarly, by induction. R" R.

6.17. A sequence I, 12 .... of intervals is said to he "nested" if I

(a) Give an example of a nested sequence of open intervals 'A whose intersection is empty.

(b) Prove the Nested Interval Property of the real numbers R: A nested sequence I = k' ,
12 = [a2 , b2l, - . . of closed intervals is not empty.

(a) Let 4	 (0, Ilk). Then fl(I : k E P) = 0 . [This follows front the fact that, for any c > 0 there exists
a k such that Ilk <c.]

(b) Let A = {a 1 ,a 7 ,. a 2 _.). Since the intervals are nested, A is bounded and every b is an upper hound of A.
By the completion property of R, y = sup(4) exists, thus, for every k, 0k < r < b. Thus v belongs to
every interval, and hence fl5 I -A 0.

CARDINAL NUMBERS AND THE INEQUALITY OF CARDINAL NUMBERS

6.18. Prove Cantor's Theorem 6.9: For any set A, we have J AI < l(A)l
The function g: A — 3o(A) which sends each element a E A into the set consisting of a alone, i.e.. which

is defined by g(a) = {a}, is one-to-one. Thus J AI	 lf(A)I.
If we now show that JAI ^4 l,(A)i, then the theorem will follow. Suppose the contrary, that is. supposeII =	 ( A )l and thatf: A — A(A) is one-to-one and onto. Let a C A be called a "had" element if  is

member of the set which is its image, i.e., if a Vf(a). Now let B be the set of "bad" elements. That is,

B= {x.x EA,xJ(x)}

Now B is a subset of A, that is, BE (A). Since f: A --' :(A) is onto, there exists an element h  A
such that j(b) = B. Is b a "bad" element or a "good" element? If 6 E B then, by definition of B.
b f(b) = B, which is impossible. Likewise, if 6 V B. then 6 Ef(h) = B. which is also impossible. Thus
the original assumption, that JAI = l(A)l, has led to a contradiction. Hence the assumption is false, and so
the theorem is true.
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6.19. Prove Theorem 6.11 (which is an equivalent formulation of the Schroeder-Bernstein theorem

6.10): Let X, Y, X be sets such that X D Y D .\' and X X 1 . Then X	 Y.

Since X	 X,, there exists a one-to-one correspondence (hijection) J: X	 X 1 . Since .V D Y, the

restriction off to Y, which we also denote by f, is also one-to-one. Let f( Y) = Y 1 . Then Y and Y 1 are

equipotent.

XD Y DX, 2

andf: Y	 Y 1 is hijective. But now Y J X 1 3 Y 1 and Y
	

For similar reasons, X 1 andf(X 1 ) = X2 are

equipotent.
X 2 Y 2 X 1 3 Y J 3

and f: X 1	X2 is bijective. Accordingly, there exist equlpotent sets X, X i . X2 ,. . . and equipotent sets

Y, Y 1 Y,, . . . such that

and f: .15 -. XA. , I and j: Y -. Yk , 1 are bijective.
Let

B=XflYflX1flY1flX2fl)2fl...

Then
X= MY) u(Y\X1)U(k'1\Yi)UUB

Y=(Y\X1)u(X1\Y1)U(Y1\X2)UUB

Furthermore, X\ Y, .V 1 \ Y 1 , X2 \ 1'2, . . . are equipotent. In fact, the function

f: (X5\Yk)	 (X541\Y)

is one-to-one and onto.
Consider the function g: X — Y  defined b y the diagram in Fig. 6-7. That LS,

f1(v) if .v € Xk.  YA or x E X\ I

lX	 ifxE Y5\X5orxEB

Then g is one-to-one and onto. Therefore .1	 Y.

X T Y U(7Y\x, U cx'\__Y^ U Y1\X' ... U B

=	
u	 u (y) u	 ... u

Fig. 6-7

6.20. Prove Theorem 6.13: 'c = 2°

Let R he the set of real numbers and let ?(Q) be the power set of the set Q of rational numbers, i.e., the

family of subsets of Q. Furthermore, let the function f: R -, (Q) he defined by

[(a)	 {	 E Q, .v < a)

That is,J maps each real number a into the set of rational numbers less than a. We shall show that I is one-

to-one. Let a, h E R, a ^6 band, say, a < h. By a property of the real numbers, there exists a rational number
r such that

a < r < /,

Then r Ef(h) and r f(a); henccf(h) j(a). Thcreforc,f is one-to-one. Thus J R1 < .(Q)I . Since 11111 = c

and IQI = NO, we have

c 2

Now let C(P) be the family of characteristic functions ./': P - (0, 1) which, as proven in Problem 6.8. is
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equivalent to	 (P). Here P = {I,2, . . .}. Let I = [0, 1], the closed unit interval, and let the function
F C(P) -. I be defined by

F(f) = Of (I )f(2)J(3)

an infinite decimal consisting of zeros or ones. Supposcf,g E C(P) andf A g. Then the decimals would be
different, and so F(f)	 F(g). Accordingly, F is one-to-one. Therefore.

= C(P)I	 II

Since IQ] =	 and III = c, we have

2° c

Both inequalities give us

c = 2°

6.21. Let S = (0, 1), the open unit interval, and let T be the set of real numbers in S which have an
infinite number of threes in their decimal expansion. Show that ITI = S].

Let x E S and suppose x = 0.d1d2d3... d,,..., Let the function f: S -. T be defined by

f(x) = 0.d 1 3d2 3d1 3 .. 3d,3 ...

Then  is one-to-one and hence I S ]	 IT]. Since T is a subset of S. we have IT] < ISI. By the Schroeder-
Bernstein theorem, IT]	 IS].

6.22. Let S denote the open unit interval (0, I), and let S' denote the set of all denumerable sequences
(x1,x2,x3,...) where x, E S. (a) Prove ]S"J Sf. (b) Prove the set k' of all denumerable
sequences of real numbers has cardinality c.

(a) Let (x1,x2,x,...) E S'. Consider the decimal expansions:

- = 0.d11d12d11d14

= 0.1121d22(123(124

= O.(41d2d3d...

And so on

Associate the sequence (x1,x2,x,...) with the decimal number

0.d11 : d21 d12 : d 11dd11 :

where the subscripts in the successive blocks of digits d i1 ,d,,d11 , d 11 d22d 1 .... are obtained by "follow-
ing the arrows" in Fig. 6-I. (This procedure was used to show that P x P is countable.) This
association defines a one-to-one function from S" into S. The function g: S - 5" defined by
f(x)	 (x, x, x .... ) is also one-to-one. By the Schroeder-Bernstein theorem IS"] 	 S(.

(b) Since R S. it follows that R"I = 5"'1 = IS] = c.

CARDINAL ARITHMETIC

6.23. Let A 1 , A 2 , A 3 , A 4 be any sets. Define sets B1, 2, B , 84 such that

A 1 ] -I- I A 21 + ] A 1I + J A41 = JB I U B2 U 93 LI B41

Let B 1 = A 1 x (I), B2 = A 2 x (2), B = A 1 [3), 84 = A4 x {4}. Then B5 A k for k = 1, 2,3,4.
Also, the B5 are disjoint, that is. B, fl B = 0 if I /. Consequently. the above will be true.
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6.24. Let (A, : I € I) be any family of sets. Define a family of sets {B, : I E I} such that B,	 A,, for
I El, and B, fl B = 0 for i i4j.

Let B, = A, x {i}. Then the family (B, i € 11 has the required properties.

6.25. Prove Theorem 6.14: The addition and multiplication of cardinal numbers satisfy the properties
in Table 6-1. That is, for cardinal numbers

(I) (cs+I3)+y=Q+(3+'y)	 (5) c+)=/3+ry

(2) a+[3=/3+a	 (6) lfo<[3, then a+-y:5[3+y

(3) (a3 ) y =	 (7) If ck < 0. then iy < fry

(4)
ad 

Oa

	Let A, B, C be pairwise disjoint sets such that 	 Al. [ = RI. v = Cl.

(I) We have:

(c ± 3) + y = IA U B + Id = (A u B) U Cl	 '.
a+ ( 13 + y ) = Al ± I BUC I = IA u(BuC)l

However, the union of sets is associative, i.e.. (A U B) U C = A U (B U C). Hence

(2) Since AUB= BUA, we have

a + j3 = IA U B = IBU Al = [3 + a

(3) We have:

(a,3)= IA xB II C I = l( A xB)x C

a(/h)=IAIIBXCI=IAx(BxC)I

However, by Problem 6.6(b), (A x B) x C A x (B x Q. Hence

(a(3)y =

(4) By Problem 6.6(a), A x B B x A; hence

cs/i=IAx Bl=lBxAl=Øa

(5) Note first that B  C = 0 implies (A x B) fl (A x C) = 0 . Then:

o([3+() = J AJIBU CI = IA x (BUC)l

o13+cry=IA x Bl+IA x Cl = 1( 4 x B)U(4 x C)l

However, A x (BU C) = (A x B) U (A x C). Therefore,

a((3 + y) = 0 + cry

(6) Suppose a 0. Then there exists a one-to-one mappingf: A -. B. Let g : A U C -. B U C be defined

by

g(x) = 11(x) if x E A
X	 ifxcC

	

Then g is one-to-one. Accordingly, IA U Cl	 B U Cl and so

a+y<13+

(7) Suppose a 0. Then there exists a one-to-one mappingf: A -. B. Let g: A x C -. B x C be defined
by

g(a, c) = (f(a), c)

Then g is one-to-one. Accordingly, IA x Cl < lB x Cl and so

cry [3y
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6.26. Prove: Rc = c.

Consider the integers Z = {. .. , —2,-1,0,1,2 .... ) and the hall-open interval A	 10, I). Furthermore,
let!: Z x ,4 — R be defined by

f(n, a) = n + a
In other words, f({n} x 10,l)) is mapped onto [n,n+ I). Then! is a one-to-one correspondence between
Z x A and R. Since IZI = N and J AI = IRI =c. we have

c=lZxAI=jRl=c

6.27. Prove: Let a he any infinite cardinal number. Then N + a = a.
We have shown that N + No =Ro. Suppose a is uncountable, and a = Al. By Problem 6.13, A\B A

where B is a denumerable subset of A. Recall A = (A\B) U B and the union is disjoint. Hence

a = IAI = I(A\B)UBI = I A \BI+I BI = + K) 	 =	 +0

MISCELLANEOUS PROBLEMS

6.28. Prove: The set Y of all polynomials

p(x) = a0 + (I1X + a2 x2 + ax'	 (I)

with integral coefficients, that is, where a0 , at,. - ,am are integers, is denumerable.

For each pair of nonnegative integers (a, in), let P(n, m) be the set of polynomials in (I) of degree rn in
which

aol+lal+.-.+la,l=n
Note that P(n,in) is finite. Therefore

= U(P(n,rn) : (n,rn) c  x N)

is countable since it is a countable family of countable sets. But Y is not finite: hence 9 is denumerable.

6.29. A real number r is called an algebraic number if r is a solution to a polynomial equation

p(x) = a0 + a 1 x + a2 x2 -1- amx" = 0

with integral coefficients. Prove the set A of algebraic numbers is denumerable.

By the preceding Problem 6,28, that the set E of polynomial equations is denumerable:

E={pj(x)=0,p2(x)=0,p3(x)r=0,...)

Define

= (x : x is a solution of p(x) = 01

Since a polynomial of degree a can have at most ii roots, each Ak is finite. Therefore

4U{Ak;kEP}

is a countable family of countable sets. Accordingly, A is countable and, since A is not finite, A is
denumerable.

6.30. Explicitly exhibit N pairwie-disjoint denumerable subsets of P = {l,2, 3,...).

Let p and q be distinct prime numbers. The sets

S,, - (p,p2 ,p 3 .... )	 and	 Sq = { q.q2 , q3 ,. .

are pairwise disjoint. One can show that the set {Pi , p2 ,p, . . .} of prime numbers is an infinite subset of P
and hence has cardinality N. Thus the family (S,, S,,7 . 5,,,, . . .} has the desired properties.
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Supplementary Problems

EQUIPOTENT SETS, COUNTABLE SETS, CONTINUUM

6.31.	 The set Z of integers can be put into a one-to-one correspondence with P = {l,2......} as follows:

1	 2	 3	 4	 5	 6	 7...
Ii!	 Ill	 i.
0	 I -I	 2 -2	 3 -3

Find a formula for the Iunctionf: P - 1. which gives the above correspondence between P and Z.

6.32.	 P x P was written as a sequence by considering the diagram in Fig. 6-I. This is not the only way to write
P x P as a sequence. Write P x P as a sequence in two other ways by drawing appropriate diagrams.

633.. Prove that the set  of rational points in the plane R is denumerable. [A point p = (x, .v) in R 2 is rational if
x and y are rational.]

6.34. Let S be the set of rational points in the plane R 2 . Show that Scan be partitioned into two sets V and H
such that the intersection of V with any vertical line is finite and the intersection of H with any horizontal
line is finite.

6.35.	 Let .cl = {A, : i c 1) be a set of pairwise disjoint intervals in the line R. Show that d is countable.

6.36.	 Let	 = {B1 : i E 1) be a set of pairwise disjoint circles in the plane R. Show that 	 is countable.

6.37. A function]: P	 P is said to have finite support iff(n) = 0 for all but a finite number of n. Show that the
set of all such functions is denumerable. 	 /

6.38.	 A real number x is called transcendental if x is not algebraic. i.e., if x is not a solution to a polynomial
equation

p(x) = Q +a 1 x+a2 x 2 + ... + ax = 0

with integral coefficients. (See Problem 6.29.) For example, ir and e are transcendental numbers. Prove that
the seLT of transcendental numbers has the power of the continuum.

6.39.	 Recall that a permutation of P = { 1.2,3,. . . } is a bijective function o : P —. P. Show that the set PERM(P)
of all permutations of P has the power of the continuum.

CARDINAL NUMBERS, CARDINAL ARITHMETIC

6.40. Suppose o and [5 are cardinal numbers such that cs [5. Show that there exists a set S with a subset A such
that o = IAI and 13 = SI.

6.41. Show that Theorems 6.10 and 6.11 are equivalent. (Hence each proves the Schroed"r- Berri stein theorem.)

6.42. ProvecN = C.

6.43. Show that there are only c continuous functions from R into R. (Assume that if I and gare such continuous
functions and j(q) = g(q) for all rational numbersq in K. then f = g, that is, J(x)	 g(x) for all .s iv R.)

6.44. Prove Theorem 6.16(2): Let a, 3,7 be cardinal numbers. Then cii =

6,45.	 Let (k, I, - be cardinal numbers such that n < 8. Prove:	 a) s < B. (6) y( < 'ye.
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6.46. Show that the cardinal inequality relations are well defined; that is, if .4	 4' and B B', show that:

(a) 1 4 1 5 JBI if and only if ( A 'l 15 B'J. (b) JAI < IBI if and only if IA'I < B'J.

6.47. Show that cardinal addition and multiplication are well defined, that is:

(a) Cardinal Addition: If A A' and B B', where A and B are disjoint and A' and B' are disjoint, show
that IAuBI= LA'uB'L.

(b) Cardinal Multiplication: If A A' and B B', show that JA x BI = IA' x B'!.

6.48. Let '' be the collection of all circles in the plane R 2 . Show that ' has cardinality c.

MISCELLANEOUS PROBLEMS

6.49. (Heine-Bore] Property of the real numbers R.) Let '€ = k E K} be a collection of open intervals which
covers a closed interval A = a, hi . Show that c' contains a finite subcover of A, that is, a finite subcollcction
of ' is a cover of A. [A collection { Jk : k E X} of intervals is called a "cover" of a set A if A C Uk 'ki

Answers to Supplementary Problems

6.31. The following functionf: P -. P has the required property:

-n/2 + 1/2 if a is odd
n12	 if n is even

6.32. Each diagram in Fig. 6-8 shows that P x P can be written as an infinite sequence of distinct elements as
follows:

(a) P x P = ((1, 1), (2, 1), (2, 2), (1, 2), (1, 3), (2,3),..
(b) P 	 P= {(l, I), (1,2), (2, 1), (1, 3), (2, 2), (3, 1), (l,4),..}

(1,1)	 (l,2)-...(l,3)	 (1,4)

t	 t
(2, I)-*. (2,2)	 (2,3)	 (2,4)

t
(3,1) ...-(3,2) ..u---(3.3)	 (3.4)

t

(0)

(1,I)-.-(l,2)	 ,.(I,3)	 ,,.(l,4)

(2,l)-	 (2,2)_	 (2,3)	 (2.4)

(3,1 	 (3,2)	 (3,3)	 (3,4)

v//v
(4,1)	 (4,2)	 (4,3)	 (4,4)

(6)

Fig. 6-8

6.33. lQxQflPxPkrIPI=

6.35. Hint: Each interval contains a distinct rational number.

6.36. Hint: Each circle contains a distinct rational point in R2.



CHAP. 61	
CARDINAL NUMBERS

	 165

6.38. Hint: R is the union of the algebraic and transcendental numbers.

6.42. Hint: Use Problem 6.22

6.43. Hint: Use Problem 6.22 or 6.42.

6.44. Hint: Leto = IAI,, = lBl, = Cl where Band Care disjoint. Let D = BU C. Then 13+ 1 = IBU C	 IDI.

Associate with each functionf: D	 A the pairf1 : B -• A and]2 : C -, A wheref i =f[ and]2 = f[ . Show

that the map F(f) = (.h) is bijective.

6.45. Hint: Let o = A [, / = B[,-y = Cl where we can assume A ç B since n	 3.

(a) For each functionf: C	 A associate the function .(': C	 B defined hyf'(x) = .f( -x). Show that the

map F(f) = g is one-to-one.

(b) For each function f: A -' C associate a function J': B -. C which extends f, i.e.. for each a E A,

f'(a) =f(a). Show that the map F(f) =1' is one-to-one.

6.48. Since each circle in W is determined by its center (xv) and radius r.	 R x R x R 4	R

6.49. Suppose no finite subcollection of is a cover of A. Let Pt be the midpoint of the interval A	 A 1 = [a, hi].

At least one of [a,,p 1 ] and [p,, h 1 ] cannot be covered by a finite subcollectiOn of '6' or else the whole interval

A 1 will be, and let A 2 = 0 2 ,h2 ] be that subinterval. Similarly, let p, be the midpoint of the interval

A 2 = [a2 ,h2 1, and let A 3 = [a 3 b 3 [ be one of the two intervals [a 2 , p2 [ and 2 , b 2 [ which cannot he covered

by a finite subcollection of', and soon. Thus we have a sequence A, A 2 ,... of nested closed intervals, and

each cannot be covered by a finite subcollection of W. Furthermore, urn d,, = 0 where d,, = - a,, is the

length of A,,. By Problem 6.17(h), there exists a real number v in every 1 Since 1C is a cover of A. i belongs

to some element of', say v e tj where I = (c, d). Let e be the distance from v to the closest endpoint of 1,.

Then there exists d1 such that d1 < c. This means A1 c i. This contradicts the fact that A1 cannot be covered

by a finite subcollection of's'. Thus the original assumption that no finite subcoflectiOn of il' covers 
A leads

to a contradiction, and so a finite subcollection of ,tf covers A.



Chapter 7

Ordered Sets and Lattices
7.1 INTRODUCTION

Order and precedence relationships appear in many different places in mathematics and computer
science. This chapter makes these notions precise. We also define a lattice, which is a special kind of anordered set.

7.2 ORDERED SETS

Suppose R is a relation on a set S satisfying the following three properties:

[Oj (Reflexive): For any a E S. we have aRa.
1021 (Anhis),mme(rjc) If a Rh and h Ru, then a h.
1031 (Transitive): If a Rh and h Re, then a Re.

Then R is called a partial order or, simply an order relation, and R is said to define a par! jul ordering of S.The set S with the partial ordering R is called a partial/i ordcred.wt or. simply, an ordered,ce, (Some-times the term posei is used for partially ordered set.)

The most familiar order relation, called the usual or(I('r, is the relation < (read "less than or equal")
on the positive integers P or, more generally, on any subset of the real numbers R. For this reason, a
partial ordering relation is frequently denoted by

With this notation, the above three properties of a partial order appear in the following usual form:
(O} (Reflexive): For any a € S. we have a	 a.
[02) (Ant jsym,netrjc): If a	 h and h	 a, then a = h.
1031 (Transitive): If a	 hand h	 e, then a

Although an ordered set consists of two things, a set S and the partial ordering 	 , one usually simply
writes S to denote the ordered sets as long as the partial ordering is fixed in the context of the discussion;
Qtherwise the ordered set is denoted by the pair (5, 	 ).

Suppose S is an ordered set. Then the statement

a b	 is read "a precedes b -
In this context we also write:

a -< b means a Ia and a Ia;	 read "a strictly precedes Ia".
Ia a means a Ia;	 read "Ia succeeds a".
Ia a means a Ia;	 read "Ia strictly succeeds a".

,	 and 4 are self-explanatory.

When there is no ambiguity, the symbols, <. >, > are
respectively.	 frequently used instead of 	 ,	 ,	 , and

EXAMPLE 7.1

(a) Le t .V be any collection of sets. The relation C of set inclusion is a partial ordering of.V. Specifically, A C Afor any set A; if A ç B and B C A then A = B; and if A C B and B c C then AC C.
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(h) Consider the set P of positive integers. We say "a divides h", written (Jib, if there exists an integer c such that
ac = h. For example, 214, 3112, 7 1 21 , and so on. This relation of divisibility is a partial ordering of P.

(c) The relation " I " of divisibility is not an ordering of the set Z of integers. Specifically, the relation is not
antisymmetric. For instance, 21-2 and —22, but 2	 —2.

(d) Consider the set Z of integers Define a Rh if there is a positive integer r such that h	 a'. For instance, 2 R 8
since 8 = 2. One can show (Problem 7.8) that R is a partial ordering of Z.

Dual Order

Let	 be any partial ordering of a set S. The relation	 . that is, a succeeds h, is also a partial
ordering of S; it is called the dual order. Observe that a h if and only if h a; hence the dual order
is the inverse of the relation 	 , that is	 =

Ordered Subsets

Let A be a subset of an ordered set 5, and suppose a, h E A. Then the order in S induces an order in
A in the following natural way:

a h as elements of A whenever a b as elements of S

More precisely, if R is it partial ordering of S. then the relation

R 4 = Rn(A x A)

is a partial ordering of A called the induced order on .4 or the restriction of R to A. The subset A with the
induced order is called an ordered subset of S. Unless oerwise stated or implied, any subset of an
ordered set S will be treated as an ordered subset of S.

Quasi-order

Suppose '< is a relation on a set S satisfying the following two properties:

[QiJ (irreflexive): For any (1 € A, we have a a.
[Q2] (Transithe): if a <h, and b -< c, then a c.

Then -< is called a quasi-order on S.

There is a close relationship between partial orders and quasi-orders. Specifically, if 	 is a partial
order on a set Sand we define a -< b to mean a h but a h, then -< is a quasi-order on S. Conversely.
if -< is a quasi-order on a set Sand we define a h to mean a -< Ii or a b, then is a partial order on
S. This allows us to switch back and forth between a partial order and its corresponding quasi-order
using whichever is more convenient.

Comparability

Suppose a and h are distinct elements in it 	 ordered set S. We say a and h are comparable if
or	 b -<a

that is, if one of them precedes the other. Thus a and h are noncoinparable, written

aIIh
if a h and h a.
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Linearly Ordered Sets

The word "partial" is used in defining a partially ordered set S since some of the elements of S need
not be comparable. Suppose, on the other hand, every pair of elements of S are comparable. Then S is
said to be linearly or totally ordered. Although an ordered set S may not be linearly ordered, it is still
possible for a subset A of S to be linearly ordered. Such a linearly ordered subset A of an ordered set  is
called a chain in S. Clearly, every subset of a linearly ordered set S must also be linearly ordered.

EXAMPLE 7.2

(a) Consider the set P of positive integers ordered by divisibility. Then 21 and 7 are comparable since 7121. On the
other hand, 3 and 5 are noncomparable since neither 3 1 5 nor 53. Thus P is not linearly ordered by divisibility.
Observe that A	 (2, 6, 12,36} is a chain (linearly ordered subset) in P since 216, 6112, and 12136.

(b) The set P of positive integers with the usual order < (less than or equal) is linearly ordered and hence every
ofdered subset of P is also linearly ordered.

(c) The power set ?'(A) of a set A with 2 or more elements is not linearly ordered by set inclusion. For instance,
suppose a and h belong to A. Then {a} and {b} are noncomparable. Observe that the empty set 0. (a), and A
do form a chain in Y(A) since 0 c (a) c A. Similarly, 0. {b}, and A form a chain in (A).

7.3 SET CONSTRUCTIONS AND ORDER

This section discusses different ways of defining an order on a set which is constrUcted from ordered
sets.

Product Sets and Order

There are a number of ways to define an order relation on the cartesian product of given ordered
sets. Two of these ways follow:

(a) Product Order: Suppose S and T are ordered sets. Then the following, is an order relation on the
product set S x T, called the product order:

(a, b)	 (a', b')	 if a <a' and 
h < bi

Problem 7.15 shows that this relationship does satisfy the necessary axioms of an order.

(b) Lexicographical Order: Suppose S and T are linearly ordered sets. Then the following is an order
relation on the product set S x T, called the lexicographical or dictionar y order:

I if a < a',I (a,

	

orb)(a'b')	 if	
' and h

This order can be extended to S x S2 >< ... x S, as follows:

(a 1 ,a2 , . . . ,a,) -<	 .

ifa 1 =a,a2=a,...,ak_I =a,.. 1 , buta <a,

Note that the lexicographical order is also linear.
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Concatenation or Sum Order

Suppose {A, : i E !} is a linearly ordered collection of disjoint linearly ordered sets: that is, the index
set I is linearly ordered, each set A i is linearly ordered, and A, fl A 3 = 0 when i j4 j . Then we assume,
unless otherwise specified, the following linear order on the union S = U which we call the con-

-catenation order or usual order or sum order:

[

., IifxGA 1 ,YEA 1 . andi<j

' '-	 or if x.y G A i and x < y as elements of A,

This order can sometimes be pictured by listing the elements of A i before the elements A3 when I <j and
separating the sets by semicolons. For example, consider the sets

A={l,3,5.7,...},	 B={a,h,c}.	 C={2,4,6,...}

where position in each set determines the linear order. Then the concatenation order- on S = A U B U C
(where we assume the sets are ordered by the position in the union, i.e., A <. B < C) may be pictured by
writing

S= {1,3,5,...; abc: 2,4,6,.. .}

Note that the order bA S. Eu A U C may be pictured by

S' = {a,h,c; l,3,5,...:2,4,6,..

and this is not the same as the order on S.

K,leene Closure and Order

Let A be a nonempty linearly ordered set (sometimes called an alphabet). A word w over A is a finite
sequence

it =	 .,a.

of elements of A. We will let IwI denote the length n of w. (The empty sequence, denoted by A, is also a
word and J AI = 0.) The Kleene closure of A, denoted by A', is defined to be the collection of all such
words over A. The following are two order relations on A.

(a) Alphabetical (Lexicographical) Order: The reader is no doubt familiar with the usual alphbetical
ordering of A. That is:

(i) A < w, where A is the empt y word and it is any nonempty word.

(ii) Suppose u au' and v = b y ' 'e distinct nonempty words where a. h E A and u', v' e A.

Then:

L< oia<h	 I
rifa=hhutu'-<v'	 I

(b) Short-lex Order: Here A' is ordered first by length, and then alphabetically. That is, for any
distinct

jif Jul <Ii'I
or if J ul = ii but is precedes v alphabetically
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For example. "to" precedes "and" since "to"I = 2 but "and"l = 3. However, "an" precedes "to"
since they have the same length, but "an" precedes "to" alphabetically. This order is also called the
free senigroup order.

7.4 PARTIALLY ORDERED SETS AND HASSE DIAGRAMS

Let S be a partially ordered set, and suppose a, h E S. We say that a is an immediate predecessor of
or that b is an immediate successor of a, or that b is a cover of a, written

a

if a < / but no element in S lies between a and h, that is, there exists no element c in S such that
a < c < h.

Suppose S is a finite partially ordered set. Then the order on S is completely known once we know
all pairs a,h in S such that a << h, that is, once we know the relation << on S. This follows from the
fact that x < y if and only if x << y or there exist elements a 1 , a2 .... . am in S such that

x	 a 1 << a2	 .•.<< a,<< v

Hasse Diagrams

The Hasse diagram of a finite partially ordered set S is a graphical representation of S as follows.
The elements of S are represented by points in the plane (called vertices), and there is a directed line
segment (arrow) drawn from a to h (called an edge) whenever a << bin S. Instead of drawing an arrow
from a to h, we sometimes place b higher than a and draw a line between them. It is then understood that
movement upwards indicates succession. In the diagram thus created, x <y if and only if there is a
directed path (sequence of edges) from vertex .v to vertex y. Also, there can be no (directed) cycles in the
diagram of S since the order relation is antisymmetric.

The Hasse diagram of an ordered set S is a picture of 5; hence it is very useful in describing types of
elements in S. Sometimes we define a partially ordered Set by simply presenting its Hasse diagram.

EXAMPLE 7.3

(a) Let A = { 1,2,3,4,6,8,9. 12, 18, 241 be ordered by the relation "x divides ,y". The Hasse diagram of A appears
in Fig. 7-l(a).

(b) Let B	 The diagram in Fig. 7-1(h) defines a partial ordering on B in a natural way. That is,
I < h, 1 < a, c < c, and so on. Note that h and c are noncomparable.

(c) The diagram of a finite linearly ordered set consists of simply one path. For example, Fig. 7-1(c) is the diagram
of such a set with five elements.

24

/\	 ..
1/ 12/

18

a

be

(a)	 (b)	 (c)

Fig. 7-I
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EXAMPLE 7.4 A partition of a positive integer in is a set of positive integers whose sum is m. For instance, there

are 7 partitions of in = 5 as follows:

5,	 3-2,	 2-2-I,	 1-I-I-I-I,	 4-1,	 3-1-I,

We order the partitions of an integer in as follows. A partition P i precedes a partition P2 if the integers in P 1 can be

added to obtain the integers in P 2 or, equivalently, if the integers in P 2 can be further subdivided to obtain the

integers in P 1 . For example,
2-2-I precedes 3-2 and 4-I

since 2 + I	 3 and 2 + 2 = 4. On the other hand, 34-1 and 2-2-1 are noncomparable.

Figure 7-2 gives the Hasse diagram of the partitions of in	 5.

3-2

2-2-I3-I-I

I-I-I-I-I

Fig. 7-2

7.5 MINIMAL AND MAXIMAL ELEMENTS, FIRST AND LAST ELEMENTS

Let S be a partially ordered set. An element a E S is called a mrni"ial element of S if no element of S

strictly precedes (is less than) a that is, if

x a implies x = a

Similarly, an element h E S is called a maximal element of S if no clement of S strictly succeeds (is

greater than) b; that is, if
x > b implies x = b

Geometrically speaking, a is a minimal element of S if no edge enters a (from below), and b is a maximal

element of S if no edge' leaves b (in an upward direction). We note that S can have more than one

minimal and more than one maximal element.
If S is infinite, then S may have no minimal and no maximal element. For instance, the set Z of

	

integers with the usual order	
has no minimal and no maximal element. On the othçr hand, if S is

finite, then S has at least one minimal element and one maximal element.

An element a E S is called afirst element of S if

a < x

for every x E S. that is, if a precedes every other element in S. Similarly, an element h E S is called a last

element of S if
y<b

for every y E S, that is, if b succeeds every other element in S. We note that S can have at most one first
element which must be a minimal element of S. and S can have at most one last element which must be a
maximal clement of S. Generally speaking, S may have neither a first nor a last element, even when S is

finite.
Now suppose that S is a linearly ordered set. If S has a minimal element, then it must also be a first

element; and if S has a maximal element, then it must also be a last element. In particular. if S is a finite

linearly ordered set, then S has both a first element and a last element.
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EXAMPLE 7.5 Consider the three partially ordered sets in Example 7.3 whose Hasse diagrams appear in Fig. 7-I.
(a) A has two maximal elements, 18 and 24, and neither is a last element. A has only one minimal element. I,which is also a first element.
(h) B has two minimal elements, d and c, and neither is a first element. B has only one maximal element a, which isalso a last element.

(c) The linearly ordered set {x.v, z, u, v} has one minimal element, x, which is a first element, and one maximal
element, v, which is a last element.

EXAMPLE 7.6

(a) Consider the set P = { 1,2,3,... with the usual order . Then I is a first and only minimal element. P has no
last and no maxima! clement.

(b) Lei A be any nonempty set and let i#(A) he the power set of A ordered by set inclusion. Then the empty set 0is a first element of [9(.4) since 0 C X for any set X. Moreover, A is a last element of (A) since every set Yinis a subset of A, that is, Y C A.

(c) Let S = {a , 02,..., °m} be a finite linearly ordered set. Then S contains precisely one minimal element and
precisely one maximal element, denoted respectively by

min(a i ,a2 ,...,am )	 and	 max(a1,a2.....am)

7.6 CONSISTENT ENUMERATION

Suppose S is a finite partially ordered set. Frequently we want to assign a positive integer to each
clement of S in such a way that the order is preserved. That is, we seek a function f: S - P so that ifa <b thenf(a) <f(b). Such a functionf is called a consistent enumeration of S. The fact that this can
be done is the content of the following theorem.

Theorem 7.1: There exists a consistent enumeration for any finite partially ordered set S.

We prove this theorem in Problem 7.17. In fact, we prove that if S has n elements then there exists aconsistent enumeration[: S -. (1,2.... . n}.
We emphasize that such an enumeration need not be unique. For example, the following are two

such enumerations for the ordered set in Fig. 7-1(b):

(I) f(d) = I, f(e) = 2, f(h) = 3, f(c) = 4, f(a) = 5
(ii) g(e) = I, g(d) = 2, g(c) = 1 g(h) = 4, g(a) = 5

On the other hand, the linearly ordered set in Fig. 7-1(c) admits only one consistent enumeration if we
map the set into {1,2,3,4,5}. Specifically, we must assign:

h(x) = I	 /z(j')	 2,	 h(z) = 3,	 h(u) = 4,	 h(v) = 5

7.7 SUPREMUM AND INFIMUM
Let S he a partially ordered set, and let A be a subset of S. An element M in S is called an upperbound of A if M succeeds every element of A, that is, for every x E A, we have

M
If an upper bound of A precedes every other upper bound of A, then it is called the supremum of A and itis denoted by

sup(A)
We also write sup(a 1 .....a) instead of sup(A) when A consists of the elements a ] ,..., a. We empha-size that there can be at most one sup(.4); however, sup(A) may not exist.
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Analogously, an element m in S is called it 	 hound of a subset A if in precedes every element of

A, that is, for every y E A. we have
rn <

If a lower bound of A succeeds every other lower bound of A, then it is called the in/i maui of 4 and it is
denoted by

inf(A)

We also write inf(o, ...., a,,) instead of inf(A) when A consists of the elements a 1 ...., a,,. Similarly,
there can be at most one inf(A) although inf(A) may not exist.

Some texts use the term least upper bound instead of supremum and then write Iuh(A) instead of
sup(A), and use the term greatest loner hound instead of infimum and then write glb(A) instead of

inf(A).

If A has an upper bound we say A is bounded above, and if A has a lower bound we say A IS hounded
be/on'. In particular. A is hounded if .4 has an upper and lower hound.

EXAMPLE 7.7

Let S = (a, h,c. d, e,f} he ordered as pictured in Fig. 7 . 3(a), and let .4 = (b.(, l}. The tipper hounds of .4 are c
and f since only e and f succeed every element in A. The lower bounds of A are it /i since only it and h
precede every element of A. Note e and] are noncomparable; hence sup(A) does not exist. However. h also
succeeds a, hence inf(A) = h. Observe that irif(A) = h does belong to .4.

Let S = (1,2,3,..., S) he ordered as pictured in Fig. 7-3(b), and let A = (4.5,7). The upper hounds of A are
1, 2, and 3, and the only lower hound is 8. Note that 7 is not a lower hound since 7 does not precede 4. Here
sup(A) 3 since 3 precedes the other upper hounds I and 2. and inf(A) = 8 since 8 is the only lower hound.
Observe that neither inf(A) = 8 nor sup(A) = 3 belongs to A.

a

(a)

	

	 (h)

Fig. 7-3

(c) Consider the set Q of rational numbers, and its subset

B=(xEQ.. >O and 2<x2<3}

that is. B consists of those rational numbers which lie between	 and	 on the real line R. Then B has an
infinite number of upper and lower bounds. but inf(B) and sup(B) do not exist. In other words. B has no least
upper hound and no greatest lower bound. Note that /2 and 	 do not belong to Q and cannot he considered
as upper or lower bounds of B.

(a)

(b)
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The above Example 7.7(c) points out one of the main differences between the real numbers R and
the rational numbers Q. That is;

Completeness Axiom of the Real Numbers R:
Let A be a nonempty subset of R and suppose A has an upper
bound. Then A has it 	 upper bound, that is, sup(A) exists.

Existence of sup(a, b) and inf(a, b)

Let S be an ordered set and let a, b E S. If  is linearly ordered, then sup(a, h) and inf(a, h) clearly
exist. Specifically, if a 	 h, then sup(a, b) = h and inl(a, h) = a. On the other hand, if  is an arbitrary
ordered set, then sup(a, h) and inf(a, h) need not exist. However, there are important examples of
nonlinearly ordered sets where sup(a, b) and inf(a, h) do exist for every a, /, in the set.

EXAMPLE 7.8

(a) Consider the set P = { 1,2,3,... }. The greatest cifiwnon ths'Lror of a and h in F, denoted by
gcd(a, h)

is the largest Integer which divides a and b. The least common multiple of a and h. denoted by
lcm(a,h)

is the smallest Integer divisible by both a and h.
An important theorem in number theory says that every common divisor of a and 6 divides gcd(a,h).

Also, one can prove that lcns(a.b) divides every multiple of a and 6.
Suppose P is ordered by divisibilit y . Then

gcd(a. 6)	 uif(a, 6)	 and	 lcm(a, 6) = sup(a, 6)
In other words, inf(a, h) arid sup(a, 6) do exist for any pair a, 6 of elements of 1' ordered by divisibility.

(6) For any positive integer in. we"ill let I),,, denote the set of divisors of or ordered by divisibility. The Hasse
diagram of

= j 1,2,3,4,6,9,12.18,36)

appears in Fig. 74. Again, inf(a,h) = gcd(a,h) and sup(a,h) = Icm(a,h) exist for any pair a,b C Dr,.

//'\
ZN Z'8N
N/N37

N17
Fig. 7-4

(c) Let S he a nonenspty set with at least two elements, and let .9(S) be the power set of S ordered by set inclusion.
Let A and B be any two elements of (A), that is, let A and B be subsets of S. Then sup(A, B) and inf(A, B) do
exist. Specifically, sup(A, B) = A U B and inf(A, B) = A fl B.
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7.8 ISOMORPHIC (SIMILAR) ORDERED SETS

Suppose X and Y are partially ordered sets. A one-to-one (injective) function J'; X -. Y is called a

similarit y mapping from X into Y 1ff preserves the order relation, that is, if the following condition holds

for any pair a,h c X:

b in X if and only if f(a)	 f(h) in

The above condition is equivalent to the following two conditions:

(1) If a < h then [(a) <f(b).

(2) If aIlb (noncomparable), then J(a) ftf(h).

Accordingly, if the underlying sets X and Y are both linearly ordered, then only (1) is needed forf to be

a similarity mapping.

Two ordered sets X and Y are said to be order-isomorphic or isomorphic or similar, written

X Y

if there exists a one-to-one correspondence (hijective mapping) f: X ---. Y which preserves the order

relations, i.e., which is a similarity mapping. Such a function .1 is then called an order-isomorphism or

isomorphism from X onto Y or an order-isomorphism between X and Y.

EXAMPLE 7.9

(a) Suppose S = {a,h,c,d} is ordered by the diagram in Fig. 7-5(a) and suppose T = (1,2,6.8} is ordered by

	

divisibility. Figure 7-5(b) is the Hasse diagram of the ordered set T. Then S	 T. In particular, the following

function f: S	 T is an isomorphism between S and T:

	

f(a) = 6,	 f(h) = 8,	 f(e) = 2,	 f(d) = I

We note that the following function g: S -. T is another isomorphism between S and 1:

	

g(a) = 8,	 g(h) = 6,	 g(c) = 2,	 g(d) =

6/8

C	 2

d	 I

(a)	 (b)

Fig. 7-5

(b) The set of positive integers P = { 1, 2, 3,. . . } is order-isomorphic to the set of even positive integers
£ = {2,4,6,...j since the function f: P -. E defined by f(x) = 2x is an isomorphism between P and E.

(c) Consider the usual ordering < of the positive integers P = { 1,2,3,... } and the negative integers

A = {—I, —2, —3,...). Then P is not order-isomorphic to A. For if f; P -. A is an isomorphism then, for

every n € P,

	

I	 n	 should imply	 f(l) <f(n)

for every f(n) e A. Since 4 has no first element, f cannot exist.
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The following theorems follow directly from the definition of order-isomorphic sets.

Theorem 7.2: Suppose S is linearly ordered and T S. Then T is linearly ordered.

Theorem 7.3: Supposef: S -. T is an order-isomorphism between ordered sets S and T. Then a E S is
a first, last, minimal, or maximal element of S if and only iff(a) is, respectively, a first,
last, minimal, or maximal element of T.

Theorem 7.4: If  is order-isomorphic to T, then S is equipotent to T, that is, if 	 Tthen 1SI = TI.

Example 7.9(c) shows that the converse of the above theorem is not true. That is, equipotent
ordered sets need not be order-isomorphic.

Theorem 7.5: The relation of order-isomorphism between ordered sets is an equivalence relation.
That is:

(i) S S. for any ordered set S.
(ii) If 	 T, then TS.

(iii) If S Tand T U, then S U.

7.9 ORDER TYPES OF LINEARLY ORDERED SETS

Consider a collection .9' of linearly ordered sets. Each set A n .9' is assigned a symbol in such a waythat two linearly ordered sets A and B in .9' are assigned the same symbol if and only if the sets are order-
isomorphic. This symbol is called the order t ype of the sets. (One may view the order type as the
equivalence class of all order-isomorphic sets in 9'.) We emphasize that order type is only defined for
linearly ordered sets, not ordered sets in general.

The order types of the following familiar sets (with the usual order) follow:

= order type of the set P of positive integers

= order type of the set Z of integers

= order type of the set Q of rational numbers

Moreover, if ( is the order type of a linearly ordered set 5, then ( will denote the order type of S with
the inverse order.

EXAMPLE 7•10

(a) Consider the following sets:

P = {l, 2,3,...) of positive integers,
E	 12A6 .... ) of even positive integers,
A = {..., —3, —2,—I) of negative integers.

The order type of set E is uj since E is order-isomorphic to P. but the order type of the set A is not u, since A isnot order-isomorphic to P. However, the order type of 4 is ' since A is order-isomorphic to P with the inverseorder.

(h) P = f 1,2,3,. . .} with the usual order is not order-isomorphic to P with the inverse order; hence w 34 w'. On theother hand,

Z=

with the usual order is order-isomorphic to Z with the inverse order; hence ir = ir'.
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7.10 LA11 ICES

Let L be a nonempty set closed under two binary operations called ?;leet and join, denoted respec-
tively by A and V. Then L is called a lattice if the following axioms hold where a, b, c are any elements
in L:

[L i ] Commutative law:
(I a) a A b = b A a 	 (lb) aVh=bVa

[L21 Associative law:
(2a) (aAb)Ac=aA(bAc)	 (2b) (aVh)Vc=aV(hVc)

[L3] Absorption law:	 -
(3a) a A (a V b) = a	 (3b)aV(aAh)=a

We will sometimes denote the lattice by (L, A, v) when we want to show which operations are involved.

Duality and the Idempotent Law

The dual of any statement in a lattice (L, A, V) is defined to be the statement that is obtained by
interchanging A and V. For example, the dual of

aA(bVa)=aVa	 is	 aV(bAa)=aAa

Notice that the dual of each axiom of a lattice is also an axiom. Accordingly, the principle of duality
holds; that is:

Theorem 7.6 (Principle of Duality): The dual of any theorem in a lattice is also a theorem.
This follows from the fact that the dual theorem can be proven by using the dual of each step of the

proof of the original theorem.

An important property of lattices follows directly from the absorption laws.

Theorem 7.7 (Idempotent Law): (i) a A a = a, (ii) a V a = a.
The proof of (i) requires only two lines:

a A a = a A (a V (a A b)) 	 (using (3b))

= a	 (using (3a))

The proof of (ii) follows from the above principle of duality (or can be proved in a similar manner).

Lattices and Order

Given a lattice L, we can define a partial order on L as follows:

a < b	 if	 aAh=a

Analogously, we could define

a < b	 if	 aVh=h

We state these results in a theorem. 	 -

Theorem 7.8: Let L be a lattice. Then:

(I) a A h = a if and only if a V h = b.

(ii) The relation a b (defined by a A h = a or a V h = b) is a partial order on L.
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Now that we hava partial order on any lattice L, we can picture L by a diagram as was done for
partially ordered sets in general.

EXAMPLE 7.11 Let C be a collection of sets closed under intersection and union. Then (C,fl,U) is a lattice. In
this lattice, the partial order relation is the same as the set inclusion relation. Figure 7-6 shows the diagram of the
lattice L of all subsets of {a, b, c}.

(a,b,c)

(a, b)	 (a, c)	 {h, cI>z:: >< i
(a)	 (b)	 (c)

0

Fig. 7-6

We have shown how to define a partial order on a lattice L. The next theorem tells us when we can
define a lattice on a partially ordered set P such that the lattice will give back the original order on P.

Theorem 7.9: Let P be a partially ordered set such that the inf(a, h) and sup(a, b) exist for any a, h in P.
Letting

	

nAb = inf(a,b)	 and	 avb = sup(a,h)

we have that (P,A,v) is a lattice. Furthermore, the partial order on P induced by the
lattice is the same as the original partial order on P.

The converse of the above theorem is also true. That is, let L be a lattice and let < be the induced
partial order on L. Then inf(a, b) and sup(a, b) exist for any pair a, b in L and the lattice obtained from
the ordered set (L, <) is the original lattice. Accordingly, we have the following:

Alternate Definition: A lattice is a partially ordered set in which

	

aAb=inf(a,b)	 and	 aVb=sup(a,b)

exist for any pair of elements.a and b.

We note first that any linearly ordered set is a lattice since inf(a,b) = a and sup(a,b) = b whenever
a < b. By Example 7.8, the positive integers P and the set Dm of divisors of in are lattices under the
relation of divisibility.

Sublattices, Isomorphic Lattices
Suppose M is a nonempty subset of a lattice L. We say M is a suhiattice of L if M itself is a lattice

(with respect to the operations of L). We note that M is a sublattice of L if and only if M is closed under
the operations of A and v of L. For example, the set Dm of divisors of tu is a suhiattice of the positive
integers N under divisibility.

Two lattices L and L' are said to be isomorphic if there is a one-to-one correspondence]: L —+ L'
such that

	

[(a A h) =f (a) Af(b)	 and	 f(a V b) =J(a) Vf(b)

for any elements a, b in L.

7.11 BOUNDED, DISTRIBUTIVE, COMPLEMENTED LATTICES
This section discusses a number of different kinds of lattices. bounded, distributive, and comple-

mented lattices. We also discuss a number of special kinds of elements in a lattice, join irreducible
elements, atoms, and complements.
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Bounded Lattices

A lattice L is said to have a lower bound 0 if for any element x in L we have 0 x. Analogously, L is

said to have an upper hound / if for any x in L we have x I. We say L is hounded if L has both a lower

bound 0 and an upper bound I. In such a lattice we have the identities

aVJ=1,	 aA!=a,	 aVO=a,	 aAO=0

for any element a in L.
The nonnegative integers with the usual ordering,

-	 0<1<2<3<4<...

have 0 as a lower bound but have no upper bound. On the other hand, the lattice P(U) of all subsets of
any universal set U is a bounded lattice with U as an upper bound and the empty set 0 as a lower bound.

Suppose L = { a j ,a2 ,.. .,a} is a finite lattice. Then

a 1 Va 2 V ... Va,	 and	 a1Aa2AAa

are upper and lower bounds for L, respectively. Thus we have

Theorem 7.10: Every finite lattice L is bounded.

Distributive Lattices

A lattice L is said to be distributive if for any elements a, b, c in L we have the following:

[L4) Distributive law:

(4a)aA(bVc)=(aAb)V(aAc) 	 .(4h)aV(Ac)=(aV,b)A(aVc)

Otherwise, L is said to be nondistribulive. We note That by the principle of duality the condition (4a)

holds if and only if (4h) holds	 .	 .

Figure 7-7(a) is a nondistributive lattice since 	 . ..'

aV(bAc)=OVO=a	 J

but	 (aVb)A(aVc)_—lAc=c	 -

Figure 7-7(b) is also - a noadistributive lattice In fact we have the following characterization of such
lattices.

Theorem 7.11: A lattice L is nondistributive if and only if it contains a sublattice isomorphic to
Fig. 7-7(a) or (b) ......: ........	 . .

The proof of this theorem lies beyond the scope of this text.	 .

/I\ ., c ;o
b

V', aN / \/ \ i t1

0	 0	 .' !.

()	 .	 (b)

Fig. 77

Join-Irreducible Elements, Atoms

Let L be a lattice with a lower bound 0. An element a in L is said to be join irreducible if a = iVy

implies a = x or a = y. (Prime numbers under multiplication have this property, i.e., if p = ah then p a
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or  = h where p is prime.) Clearly 0 is join irreducible. If a has at least two immediate predecessors, say
b 1 and h2 as in Fig. 7-8(a), then a v b2 , and so a is not join irreducible. On the other hand, if a has a
unique immediate predecessor c, then a 54 sup(b 1 ,b 2 ) = b 1 V b2 for any other elements b 1 and b2 because

c would lie between the b's and a as in Fig. 7-8(h). In other words, a 0 is join irreducible if and only if
a has a unique immediate predecessor. Those elements which immediately succeed 0, called atoms, are
join irreducible. However, lattices can have other join-irreducible elements. For example, the element c
in Fig. 7-8(a) is not an atom but is join irreducible since a is its only immediate predecessor.

/a\	

Ib 1	 b2

b1	 b2

(a)	 (b)

Fig. 7-8

If an element a in a flnitelattice L is not join irreducible, then we can writ a = b 1 V b2 . Then we can

write b 1 and b2 as the join of other elements if they are not join irreducible; and soon. Since L is finite we

finally have

a = d 1 V d2 V V d,,

—where the d's are join irreducible. If d, precedes 4 then di V 4. = 4; so we can delete the d1 from the

expression. In other words, we can assume that the d's are irredundani, i.e., no d precedes any other d.
We emphasize that such an expression need not be unique, e.g., 1 = a V b and I = b V c in both lattices in

Fig. 7-7(b). We now state the main theorem of this section (proved in Problem 7.39).

Theorem 7.12: Let L be a finite distributive lattice. Then every a in L can be written uniquely (except

for order) as the join of irredundant join-irreducible elements.

Actually this theorem can be generalized to lattices with finite length, i.e., where all linearly ordered
subsets are finite. (Problem 7.34 gives an infinite lattice with finite length.)

Complements

Let L be a bounded lattice with lower bound 0 and upper bound I. Let a be an element of L. An

element x in L is called a complement of a if

aVx=1	 and	 a A x = 0

Complements need not exist and need not be unique. For example, the elements a and c are both

complements of b in Fig. 7-7(a). Also, the elements y,z, and u in the chain in Fig. 7-I have no

complements. We have the following result.

Theorem 7.13: Let L be a bounded distributive lattice. Then complements are unique if they exist.

Proof. Suppose x and y are complements of any element a in L. Then

Vx=!,	 aVy=I,	 aAx=O,	 aAy=0

Using distributivity,

x=xV0=V(aAy)=(xVa)A(xVy)=IA(xVY)xVY -

Similarly,

y rrryVO =yV(aAx) = (yVa)A(yVx) IA (yVx)=yVx

Thus x = x V y = p V x = y and the theorem is proved.
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Complemented Lattices

A lattice L is said to be complemented if L is bounded and every element in L has a complement.

Figure 7-7(b) shows a complemented lattice where complements are not unique. On the other hand, the
lattice P(U) of all subsets of a universal set U is complemented, and each subset A of U has the unique

complement A c = U\A.

Theorem 7.14: Let L be a complemented lattice with unique complements. Then the join-irreducible

elements of L, other than 0, are its atoms.

Combining this theorem and Theorems 7.12 and 7.13 we get an important result.

Theorem 7.15: Let L be a finite complemented distributive lattice. Then every element a in L is the join

of a unique set of atoms.	 -

Remark: Some texts define a lattice L to be complemented if each a in L has a unique complement.

Theorem 7.14 is then stated differently.

Solved Problems

ORDERED SETS AND SUBSETS

	7.1.	 Suppose the set P = 11. 2, 3,. . .} of positive integers is ordered by divisibility. Insert the correct

symbol, <, >, or 11 (not comparable), between each pair of numbers:

(a) 2_ 8, (b) 18 - 24, (c) 9	 3, (d) 5	 15.

(a) Since 2 divides 8, 2 precedes 8, hence 2 < 8

(b) 18 does not divide 24, and 24 does not divide 18; hence I8124.

(c) Since 9 is divisible by 3. 9 > 3.

(d) Since 5 divides IS, 5 < 15.

	

7.2.	 Let P = (1,2,3 .. . .} be ordered by divisibility. State whether each of the following is a chaiir

(linearly ordered subset) in P.

(a) A = {24,2,6}	 (c) C= 12, 8, 32,4}	 (e) E= {15, 5, 30)

(b) B= {3,15,5}	 (d) D= {7}	 (1) P= {l,2,3,...}

(a) Since 2 divides 6 which divides 24, A is a chain in P.

(h) Since 3 and 5 are noncomparable. B is not a chain in P.

(c) C is a chain in P since 2 <4 < 8 < 32, that is, 21418132 where I means divides.

(d) Any set consisting of one element is linearly ordered; hence D is a chain in P.

(e) Here 5< 15 .cz 30; hence Eisa chain in P.

(.1) P is not linearly ordered, e.g., 2 and 3 are noncomparable; hence P itself is not a chain in P.
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7.3.	 Let A = {1,2,3,4,5} be ordered by the Hasse diagram in Fig. 7-9. Insert the correct symbol,
< > or j (pot comparable) between each pair of elements

(a)r-'5	 b)2, ()41 , (d)3_4

(a) Since there is a "path" (edges slanting upward) from 5 to 3 to I. 5 precedes 1; hence I > 5.
(b) There is no path from 2 to 3, or vice versa, hence 2113.
(c) There isapath from 4 to2to 1;hence4< L.
(d) Neither 3 < 4 nor 4 < 3; hence	 .'

	

.0 EL	 Jrii'io,.H

7.4. Consider the ordered get ! A in Fig 7.9.	 :.

(a) Find all minimal and maximal elements of A.

;() Does A 	 o!alast element?

(a) No element strictly precedes 4 or 5, so 4 and 5 are minimal elements of A. No element strictly succeeds
I. so I is a maximal clement of A.

(h) A has no first element. Although 4 and S are minimal elements of A, neither precedes the other.
However, I is a last element of A since I succeeds every element of A.

4/\5/
I'	 Fig. 7-9

7.5.	 Consider the ordered set A in Fig. 7-9. For each a € A, let p(a) denote the set of predecessors of
a, that is,

p(a) = {x: x < a}

Let p(A) denote the collection of all predecessor sets of A, and let p(A) be ordered by set inclusion.
Draw the Hasse diagram of p(A).

The elements of p(A) follow:

P( l )	 {1,2,3,4,5},	 p(2) = {2,4,5},	 p(3) = {3,5},	 p(4) = (4),	 p(5) = {5}

Figure 7-10 gives the Hasse diagram of p(A) ordered by set inclusion. [Observe that the diagrams of A and
p(A) are identical except for the labeling of the vertices.]

(I, 2,3, 4,5)

(2,4,5)	 (3,5)

(4)	 15)

Fig. 7-to
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7.6. Consider the ordered set A in Fig. 7-9. Let A) denote the collection of all chains (linearly
ordered subsets) in .4 with 2 or more elements, and let L(A) he ordered by set inclusion. Draw the

Hasse diagram of L(A).

The elements of L(A) are as follows:

1,2,4), { 1,2, 5), { 1,3, 5), (1,2), (1.4), (I, 31, { I, 51. {2, 41, (2,5) (3,5}

(Note (2, 51 and {3,4} are not linearly ordered, and there are no chains with four or more elements.) The
diagram of L(A) appears in Fig. 7-11.

(1,2,4,)	 (1,2.5.1	 (1,3,5,1

/\ /\ /\
11,41	 (2,4)	 (1,2)	 (2,5)	 (1,5)	 (1,3)	 (3,5)

Fig. 7-11

77.

	

	 Prerequisites in college is a familiar partial ordering of available classes. Define ,l < B if class A is

a prerequisite for class B. Let C he the set of mathematics classes and their prerequisites given in
Fig. 7-12(a).

(a) Draw the Hasse diagram for the partial ordering of these classes.

(b) Find all minimal and maximal elements of C.

(c) Does C have a first element or a last element?

(a) Math 101 must be on the bottom of the diagram since it is the only course with no prerequisites. Since
Math 201 and Math 250 only require Math 101, we have Math 101 << Math 201 and we have
Math 101 << Math 250: hence draw a line slanting upward from Math lOt to Math 201 and one
from Math 101 to Math 250. Continuing this process, we obtain the Hasse diagram in Fig. 7-12(h).

Cuss
Math 101
Math 201
Math 250
Math 251
Math 340
Math 341
Math 450
Math 500

Prerequisites
None
Math 101
Math 101
Math 250
Math 201
Math 340
Math 201, Math 250
Math 450, Math 251

(a)

341	 500

340	 450	 251

201	 250

101

(b)

Fig. 7-12

(b) No element strictly precedes Math 101 so Math 101 is a minimal element of C No element strictly
succeeds Math 341 or Math 500. so each is a maximal element of C.

(c) Math 101 is a first element of C since it precedes every other element of C. However. C has no last
element. Although Math 341 and Math 500 are maximal elements, neither is it last element since
neither precedes the other.
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7.8. Consider the set Z of integers. Define a R  by b = ar for some positive integer r. Show that R is a
partial order on Z, that is, show that R is (a) reflexive, (h) antisymmetric, and (c) transitive.

(a) R is reflexive since a a.
(h) Suppose aRh and bRa, say h r and a = h', Then a = (a')' = a". There are three possihilities:(i)

rs=l,(ij)a=l, and (iii)a=—l.lfrszrl, then r=lands=l and sOah. lfa=l,then
b = I' = I = a, and, similarly, if  = I, then a= 1. Lastly, if a= —I. then h= —1 (since h 36 1) and
so a = b. In all three cases, a = h. Thus R is antisymmetric.

(c) Suppose aRh and hRc, say h = a' and c = h'. Then c = (a')' = a" and hence aRc. Hence R is
transitive.

7.9. Consider the set P {l, 2,3,.. .} of positive integers. Every number in P can be written uniquely
as a product of a nonnegative power of 2 times an odd number. Suppose a and a' are positive
integers such that

a = 2'(2.s + I)	 and	 a' = 2°(2s' + I)

where r and s are nonnegative integers. We define:

a < a' if r< r
{ or if r = r' but s <

Insert the correct symbol, < or >, between each of the following pairs of numbers:

(a)514. (h)69, (c)26	 12, (d)2030

The elements of P can be listed as in Fig. 7-13. The first row consists of the odd numbers, the second
row of 2 times the odd numbers, the third row of 2 2 = 4 times the odd numbers, and so on. Then a < a' if 
is in a higher row than a', or if a and a' are in the same row but a comes before a' in the row. Thus:

(a)5<14, (h)&>9, (t')26<I2, (d)20>30.

El
0	 2	 3	 4	 5	 6	 7

El

Fig. 7-13

7.10. Suppose < is a quasi-order on a set S. Define:

ab	 if	 a < b	 or	 a=h

Show that a h is a partial order on S.
We want to show that < is (a) reflexive, (h) antisymmetric, and (c) transitive.

(a) Since a = a, we have a < a. Hence < is reflexive.
(h) Suppose ah and h<a. Then either a=hor else a<h and h<a. Suppose a<h and h<a. By

transitivity of <, we have a <a. This contradicts the fact that < is irreflexive. Thus a = h and < is
antisymmetric.
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(c) Suppose a b and b c. There are four cases.

(I) Suppose a=h and h'c. Then a=c and ac.
(2) Suppose a = b and b < c. Then a<c and soac.
(3) Suppose a< band h= c. Then a <cand sou c.

(4) Suppose a < b and b < c. Sinci < is transitive, a <C. Hence a c.

In each case, a < i; hence 	 is transitive.

SET CONSTRUCTIONS AND ORDER

7.11. Suppose P has the usual order K. Consider the following pairs of elements of P2 = P x P:

(a)(5, 7)_(7, I)	 (c)(5, 5)_(4,8)	 (e)(7,9)_(4, I)

(b)(4, 6)	 (4, 2)	 (d) (1, 3)	 (1.7)	 (1) (7, 9)_(8, 2)

Insert the correct symbol, <, >, or 11 (not comparable), between each of the above pairs of
elements of P x P when P 2 is given (I) product order, (2) lexicographical order.

(I) Here (a, b) :5 (a', b') provided a <a' and b < b'. Hence ah) < (a', b') if a < a' and h h' or if
a<a' and b<h'. Thus:
(a) 11 since 5<7 but 7> 1	 (c) 11 since 5>4 and 5<8	 (e) > since 7>4 and 9>1

(h) > since 4 > 4 and 6 > 2	 (d) < since I < I and 3 < 7	 (1) 11 since 7 < 8 and 9 > 2

(2) Here (a, b) < (a'b') if a <a' or if a = a' but  < h'. Thus:

(a) < since 5 < 7. 	 (c) > since 5 > 4	 (e) > since 7 > 4

(b) > since 4 = 4 and 6 > 2 	 (d) < since I = I but 3 < 7	 (f) < since 7 < 8

7.12. Suppose the English alphabet A = {a, b, c.....y, z} is given the usual (alphabetical) order.
Consider the following two-letter words (viewed as elements of A x A):

(a) cx	 at	 (c) cx	 cz	 (e) cx	 dx

(b)cx_by	 (d)cx.............rs	 (f)cx_...........cs

Insert the correct symbol, <, >, or 11 (not comparable), between each of the above two-letter
words when A2 = A x A is given (1) the product order, (2) the lexicographical order.

(I) (a) > since c > a and x > t	 (c) < since c < c and x < z 	 (e) < since c < d and x x

(b) 11 since c> b but x < y	 (d) II since c < r but x > s	 > since c c and x > s

(2) (a) > since c > a	 (c) < since c = c and x < z	 (e) < since c < d

(h) < since c > b	 (d) < since c < r	 (f) > since c = c and x > s

7.13. Consider the set P = {l, 2, 3 .... } with the usual order, and the English alphabet
A = {a, b, c.....y, z} with the usual alphabetical order. Suppose S = P  A and T = AU P
are each given the concatenation dider:

S={l.2,3,..;a,b.... . z},	 T={a,h.......

(Here P < A in S but A < P in T.) (a) Insert the correct symbol, < or >. between the pair
"7 y" (b) Which subsets of S and of T are chains? (c) Which elements in S and which
elements in Thave no immediate predecessors?

(a) Wehave7<ywhen7,yES,bUt7>yWhefl7,YET.
(b) Since S and T are linearly ordered, every subset of S and of T are chains.

(c) In S. both I and a have no immediate predecessor. However, in T only a has no immediate pre-
decessor.
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7.14. Consider the English alphabet A = fa, b,c,. . . ,y,z} with the usual (alphabetical) order. Recall
that the Kleene closure A' of A consists of all words in A. Let L be the following subset of A':

L = {went, forget, to, medicine, me, toast, melt, for, we, arm}

Sort (arrange in order) L where A' is given (a) the short-lex (free semigroup) order, (b) the
lexicographical order.

(a) First order the elements by length and then order them alphabetically to obtain:

me, to, we, arm, for, melt, went, toast, forget, medicine

(h) Use the usual alphabetical ordering to obtain:

arm, for, forget, me, medicine, melt, to, toast, we, went

7.15. Suppose A and B are ordered sets. Show that the product order on A x B, defined by

	

(a, h)	 (c, d)	 if a c and h <d
is a partial ordering of A x B.

We want to show that	 is (a) reflexive, (b) antisymmetric, and (c) transitive.

(a) Since a = a and h = b, we have a < a and b < b. Hence (a, b) (a, b) and	 is reflexive.
(b) Suppose (a,h)(c,d) and (c,d	 (a, b). Then

a<c and b<d	 and	 c<a and a<b
Thus a = c and h = d. Hence (a, b) = (r, d) and is antisymmetric.

(c) Suppose (a, b)	 (c, d) and (e, d)	 (e,f). Then

a<c and h<d	 and	 c<e and d<J
By transitivity of <, we have a < e and b (f. Thus (a, b)	 (e,J'), and	 is transitive.

CONSISTENT ENUMERATIONS

7.16. Let S = {a, b, c, d, e} be ordered as in Fig. 7- 14. Find all possible consistent enumerations
f:S—.{l,2,3,4,5}.

Since a is the only minimal element f(a) = I, and since e is the only maximal elementf(e) = 5. Also
f(b) 2 since h is the only successor )Ia. The choices fore and d aref(c) = 3 and f(d) = 4 or y jee versa.
Thus there are two possible enumerations which follow:

f(a)= 1,	 f(b)=2,	 f(c)=3,	 f(d)=4,	 f(e)=5
f(a) = I	 f(b) = 2,	 f(c) = 4,	 f(d) = 3,	 f(e) 5	 --

We emphasize that we usually cannot recreate the original partial order from a given cQistent.eu-
meration.	 - ..,

e

d	 C

r l: 'I

	 /	 ç	 . '1 iizH
,/........Jdu? f1)IdW	 .'

Jtbttiri on	 in zIri,b

.,
V lo hr.	 -	 b&o 'linil Yia	 hIia

.	 at ni ,i ,iwoil	 .-.	 -^,ef;d ti	 fli	 ,	 nI
Fig 7-14
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7.17. Prove Theorem 7.1: Suppose S is a finite partially ordered set with n elements. Then there exists
a consistent enumeration f: S - {I,2.... . n}.

The proof is by induction on the number n of elements in S. Suppose n = I. say  = {s}. Thenf(.r) I
is a consistent enumeration of S. Now suppose n > I and the theorem holds for ordered sets with less than n
elements. Let a in Shea minimal element. [Such an clement exists since S is finite.] Let T = S\ (a). [hen T
is a finite posct with n - I elements and hence, by induction, T admits a consistent enumeration; say
g: T —. (l,2, . . , n - I). Define f: S -i {l,2..., n} by

I1

	 ifx=a
g(x)+1 ifxa

Thenf is the required consistent enumeration.

7.18. Suppose a student Ann wants to take all eight mathematics courses in Problem 77, but only one
per semester.

(a) Which choice or choices does she have for her first and for her last (eighth) semester?
(b) Suppose she wants to take Math 250 in her first year (first or second semester) and Math 340

in her senior year (seventh or eighth semester). Find all possible ways that she can take the
eight Courses.

(a) By Fig. 7 . 12, Math lOt is the only minimal element and hence must be taken in the first semester, and
Math 341 and 500 are the maximal elements and hence one of them must be taken in the last semester.

(h) Math 250 is not a minimal element and hence must be taken in the second semester, and Math 340 is
not a maximal element so it must be taken in the seventh semester and Math 341 in the eighth semester.
Also Math 500 must be taken in the sixth semester. The following give the three possible ways to take
the eight courses:

101,250,251,201,450, 500, 340, 3411

101, 250 201, 251, 450, 50Q, 340, 34 I
[101,250,201,450,251,500, 340,3411

7.19. Suppoe P = { 1, 2, 3 .... } is ordered by divisibility ")". Find a Consistent enumeration of (P, I)
into (P, ).

The functionf: P —. P defined byf(x) = x is a consistent enumeration since alb	 a < b.

7.20. Find a consistent enumeration of the real numbers R into P.

Since IRI > JPJ, there exists no one-to-one function from R into P. Thus n4  	 nsisterst enumeration
exists.

UPPER AND LOWER BOUNDS, SUPREMUM AND INFIMUM

7.21. Let S = fa, b,c,d,e,f,g} be ordered as in Fig. 7-I5, and let X = {c.d,e}.

(a) Find the upper and lower bounds of K.

(b) Identify sup(X), the supremum of X, and inf(X), the infimum of X, if either exists.

(a) The elements e, f and g succeed every element of .V; hence e,f. and g are the upper hounds of X. The
element a pr&edes every element of X; hence it is the lower bound of X. Note that b is not a lower
bound since b does not precede C; in fact, h and c are net comparable.
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le
X

Fig. 7-15

(b) Since e precedes both! and g, we have e = sup(X). Likewise, since a precedes (trivially) every lower
hound of X, we have a = inf(X). Note that sup(X) belongs to X but inf(X) does not belong to X.

7.22. Let 	 (l,2,3,._8) be ordered as in Fig. 7-16, and let A = (2,3,6).

A

4 '1	 5

Fig. 7-16

(a) Find the upper and lower bounds of A.

(b) Identify sup(A) and inf(A) if either exists.

(a) The upper bound is 2, and the lower bounds are 6 and 8.

(b) Here sup(A) = 2 and inf(A) = 6.

7.23. Repeat Problem 7.22 for the subset B = 11, 2,5) of S.

(a) There is no upper bound for B since no element succeeds both I and 2. The lower bounds are 6, 7, 8.

(b) Trivially, sup(A) does not exist since there are no upper bounds. Although A has three lower bounds,
inf(A) does not exist since no lower bound succeeds both 6 and 7.

7.24. Consider the set Q of rational numbers with the usual order 5, and consider the subset D of Q

defined by	 -

D = {x C  :8 <x3 < 15)

(a) Is D bounded áove or below? (b) Do sup(D) and inf(D) exist?

(a) The subset D is bounded both above and below. For example. I is a lower bound and 100 an upper
bound.

(b) sup(D) does nqt exist. Suppose, on the contrary, sup(D) -.Y Since YIS is irrational, x> 4-5.
However, there j exists a rational number y such that '[5 <y < x. Thus y is also an upper bound
for D. This contradicts the assumption that x = sup(D) On the other hand, inf(D) does exist.
Specifically, inf(D) = 2.
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7.25. Let 9' be a collection of sets ordered by set inclusion. Let .W = {A : i E I) be a subcollection
of Y. Let B = U, A,. (a) Suppose D is an upper bound of of. Show that B c D. (b) Is B an
upper hound of d?

(a) Let x E B. Then there existsj E / such that x c A1 . Since D is an upper bound for of, A, c D. Hence
X E D. We have shown that x K B implies x K D; hence B c D.

(b) Although of = ( A, : I K 11 is a subcollcction of .9', it need not be true that B = U A, belongs to
Therefore, B is an upper bound if and only if B belongs to .9'.

7,26. Given an example of a collection .9" of sets ordered by set inclusion, and a subcollection
= {A 1 : I E I) of .9' such that B = u1 A, is not an upper bound of V.

Let 90 be the collection of all finite subsets of P = (1,2,3, . . .} and let .Q/ = {Aj be the subcollection of
.9' consisting of sets with exactly two elements. Let B = - A,. Then B has an infinite number of elements
and hence B does not belong to Y. Thus B is not an upper bound of cl (in .9').

ORDER-ISOMORPHIC SETS, SIMILARITY MAPPINGS

7.27. Suppose an ordered set A is order-isomorphic to an ordered set B and f: A -. B is a similarity
mapping. Are the following statements true or false?

(a) An element a K A immediately precedes an element a' K A. that is, a .< a', if and only ii
f(a) <<f(a) in B.

(b) An element a K A has r immediate successors in .4 if and only if f(a) has r immediate
successors in B.

(c) An element a E A has r immediate predecessors in A if and only if f(a) has r immediate
predecessors in B.

All the statements are true; the order structure of A is the same as the order structure of B.

7.28. Let  be the ordered set in Fig. 7-14. Suppose A = {l,2,3,4,5} is order-isomorphic to Sand
suppose the following is a similarity mapping from S onto A:

I = { (a, 1), (b, 3), (c, 5), (d, 2), (e, 4))

Draw the Hasse diagram of A.

The similarity mapping f preserves the order structure of S and hence f may be viewed simply as a
relabeling of the vertices in the diagram of S. Thus Fig. 7-17 shows the Hasse diagram of A.

25

Fig. 7-17



f(l) f(2) I f(3) I f(4) f(5) I f(6)

1	 2	 3	 4	 5	 6
2	 1	 3	 4	 5	 6

2	 3	 4	 6	 5
2	 3	 4	 5	 6

(h)

I\/2

/6

(c)

6

/2

(a)
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7.29. Let S = { 1,2,3,4,5, 61 be ordered as in Fig. 7-18(a).

(a) Find the number n of similarity mappings f: S - S.

(h) Is S order-isomorphic to S with the inverse ordering?

Since 1 and 2 are the minimal elements, there are only two possibilities for f( I) and ((2); that is.
f(l) = I and 1(2) = 2, orf(1) = 2 and J(2) = I. Similarly, we must have f(5) = 5 and J'(6) = 6, or
f(5) = 6 and f(6) = 5. Furthermore, 3 precedes 4 and they both must succeed I and 2 and they both
must precede 5 and (. Thus we must havef(3) = 3 andf(4) = 4. In other words, a = 4. The four
similarity mappings are listed in Fig. 7-18(h).
S with the inverse order is pictured in Fig. 7-18(c), which may be obtained by inverting the original
diagram which reverses the direction of the arrows. Clearly the diagrams are order-isomorphic. One
such order-isomorphism between the sets follows:

f(1)=5,	 f(2)=6.	 f(3)=4,	 f(4)=3,	 f(5)=l,	 f(6)=2

(a)

(b)

Fig. 7-18

7.30. Consider P = {l,2,3,...} and A = {a,b,c,... ,x, .y} with the usual orders, and suppose
S = P U A and T = A U P are each given the concatenation order

S= {1,2,3,...;a,b.....z}
	

and	 T= la, b.....z;1,2,3 .... }

Show that S and T are not order-isomorphic.

There are two elements. I and a, which have no predecessors in S. but there is only one element, a.
which has no predecessor in T. Any order-isomorphism between sets must preserve the number of such
elements. Thus S is not order-isomorphic to T.

7.31. Let A be an ordered set and, for each a E A, let p(u) denote the set of predecessors of a:

p(a) = {x :v	 a}

(called the predecessor set of a). Let p(A) denote the collection of all predecessor sets of the

elements in A ordered by set inclusion. Show that A and p(A) are isomorphic by showing that the
map f: A -+ p(A), defined byf(a) = p ( a), is a similarity mapping of A onto p(A).

First we show thatf preserves the order relation of A. Suppose a < h. Let .v E p(a). Then .v < a, and
hence x < h; SO x E p(h). Thus p(u) C p(h). Suppose a li t" (noncomparable). Then a e p(a) but a
hence p(a) p(b). Similarly, h c 1i(h) but h V p(a); hence p(b) S4 p(a). Therefore, p (a )Ilp ( h ) . Thus f
preserves order.

We now need only chow that f is a one-to-one and onto. First we show that  is an onto function.
Suppose yE p(A). Then Y = p(a) for some a c A. Thus f(a) = p(a) = i' so  is a function from A onto
p(A).
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Next we showj is one-to-one. Suppose a 34 b. Thenv < b. b > a or a li b. in the first and third cases,
b E p(h) but h V p(a), and in the second case a E p(a) but a V p(h). Accordingly, in all three cases, we have
p(a) 54 p(h). Therefore  is one-to-one.

Consequently,f is a similarity mapping of A onto p(A) and so A p(A).

7.32. Consider the ordered set A = {a,b,c,d,e} in Fig. 7-19(a). Find the Hasse diagram of the
collection p(A) of predecessor sets of the elements of A ordered by set inclusion.

The elements of p(A) follow:

p(a) = {a,c.d,e},	 p(h) = {h,c,d,e},	 p(c) = {c,d,e'},	 p(d) = {d},	 p(e) = {e}

Figure 7-19(h) gives the diagram of p(A) ordered by set inclusion. Observe that the two diagrams in
Fig, 7-19 are identical except for the labeling of the vertices.

a \ / 6

{a,c,d,e}	 {b,c,d,e}

c,d,e)

(d)	 frI

(b)

Fig. 7-19

LATTICES

733. Write the dual of each statement:

(a) (aAb)Vc= (bvc)A(cVa); (b) (aAh)Va=aA(bVa)

Replace V by A and A by V in each statemet to obtain the dual statement:

(a) (aVh)Ac=(hAc)V(cAa)
(h) (aVh)Aa=aV(hAa)

7.34. Give an example of an infinite lattice L with finite length.

Let L = (O, l,a 1 ,a2 ,a. ... ) and let L be ordered as in Fig. 7-20; that is, for each n e P we have

0 < a,, < I

Then L has finite length since L has no infinite linearly ordered subset.

Fig. 7-20



/
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(b)
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\ 0 /

(c)

dIe
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7.35. Prove Theorem 7.8: Let L be a lattice. Then: (I) a A b = a if and only if a V b = b.
(ii) The relation a < h (defined by a A b = a or a V b = b) is a partial order on L.

(a) Suppose a A b = a. Using the absorption law in the first step we have:

h=hV(bAa)—_hV(aAb)rrbva=aVb

Now suppose a V b = b. Again using the absorption law in the first step we have:

a = a A (a V b) = a A b
Thus a A b = a if and only if a V b = h.

(e	 For any a in L, we have a A a = a by idempotency. Hence a 	 a, and so < is reflexive.
Supposea band  <a. Then aAb =aand bAa= b. Therefore, a=aAb=bAab,and

so	 is antisymmetric.

Lastly. suppose  < band b c. Then aAb=aand bAc=b. Thus

aAc=(aAb)Ac=aA(bAc)aAb=a

Therefore a < c, and so	 is transitive. Accordingly, 	 is a partial order on L.

7.36. Which of the partially ordered sets in Fig. 7-21 are lattices?

A partially ordered set is a lattice if and only if sup(x,y) and inl(x,y) exist for each pair x,y in the set.
Only (c) is not a lattice since {ah} has three upper bounds, c, d, and I. and no one of them precedes the
other two, i.e., sup(ah) does not exist.

Fig. 7-21

7.37. Consider the lattice L in Fig. 7-21(a).

(a) Which nonzero elements are join irreducible?

(b) Which elements are atoms?

(c) Which of the following are sublattices of L:

	= {O,a,b,)'}	 L3 = (a,c,d,JJ

	

L2 = { O, a, e, !}	 L4-= {O, c, d, I)

(d) Is L distributive?

(e) Find complements, if they exist, for the elements a, b, and c.

(f) Is L a complemented lattice?

(a) Those nonzero elements with a unique immediate predecessor are join irreducible. l-lencea,b,d, and e
are join irreducible.

(h) Those elements which immediately succeed 0 are atrms, hence a and b are the atoms.
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(c) A subset L' is a sublattice if it is closed under A and V. L 1 is not a sublattice since a V b = c, which does
not belong to L 1 . The set L4 is not a sublattice since C A d = a does not belong to L4 . The other two
sets, L2 and L3 , are sublattices.

(d) L is not distributive since M = {O,a,d,e, 11 is a sublattice which is isomorphic to the nondistributive
lattice in Fig. 7-7(a).

(e) We have a A e = 0 and a V e = 1, so a and e are complements. Also b and d are complements.
However, C has no complement.

(1) L is not a complemented lattice since c has no complement.

7.38. Consider the lattice M in Fig. 7-21(b).

(a) Find the nonzero join-irreducible elements and atoms of M.

(b) Is M distributive?
- (C) Is M complemented?

(a) The nonzero elements with a unique predecessor are a, b, and d, and of these three only a and b are
atoms since their unique predecessor is 0.

(b) M is distributive since M does not have a sublattice which is isomorphic to one of the lattices in.
Fig. 7-7.

(C) M is not complemented since b has no complement. Note a is the only solution to b A x = 0 but
b V a = c 36 1.

7.39. Prove Theorem 7.12: Let L be a finite distributive lattice. Then every a in L can be written
uniquely (except for order) as the join of irredundant join-irreducible elements.

Since I.. is infinite we can write a as the join of irredundant join-irreducible elements as discussed in
Section 7.11. Thus we need only prove uniqueness. Suppose

a = b 1 V b2 V ... Vb, = C1 V C2 V	 V

where the b's are irredundant and join irreducible and the C's are irredundant and irreducible. For any given
I we have

b1<(bVb2V ... Vb,)=(CvC2v.vCI)

Hence
b,bA(CIVC2V ... v CI)	 (b l AC l )V(b t A)v ... v(bH,)

Since b- is join irreducible, there exists a  such that b, = b, A Cj , and so b 1 c. By a similar argument, for Cj

there exists a bA such that c < b. Therefore
b, :5 c1 < bk

which gives b, = cj = hk since the b's are irredundant. Accordingly, the b's and c's may be paired off. Thus
the representation for a is unique except for order.

7.40. Prove Theorem 7.14: Let Lbe a complemented lattice with unique complements. Then the join-
irreducible elements of L, other than 0, are its atoms.

Suppose a is join irreducible and is not an atom. Then a has a unique immediate predecessor b 0 0. Let
be the complement of b. Since b 96 0 we have b' I. If a precedes b', then b	 a	 b', and so

b A b' = h', which is impossible since b A b' = I. Thus a does not precede b', and so a A b' must strictly
precede a. Since b is the unique immediate predecessor of a, we also have that a A b' precedes b as in
Fig. 7-22. But a A b' precedes b'. Hence

aAb' < inf(b,b') = bAb' = 0

Thus aAb' =0. Since avh=. we also have that

aVh' =(aVb) Vb' = av(bvb') = a V I = I
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Therefore h' is a complement of a. Since complements are unique, a = h. This contradicts the assumption
that b is an immediate predecessor of a. Thus the only join-irreducible elements of L are its atoms.

EA

aflb'

Fig. 7-22

Supplementary Problems

ORDERED SETS AND SUBSETS

	

7.41.	 Let A = (1,2, 3, 4, 5, 6) be ordered as in Fig. 7-23(a).

(a) Find all minimal and maximal elements of A.
(b) Does A have a first or last element?
(c) Find all linearly ordered subsets of A, each of which contains at least three elements.

t2

4/ I	 3

/

(a)	 (b)	 (c)

Fig. 7-23

	

7.42.	 Let &= la, b,c,d,e,f} be ordered as in Fig. 7-23(b).

(a) Find all minimal and maximal elements of B.
(b) Does B have a first or last element?
(c) List two and find the number of consistent enumerations of B into the set {l,2,3,4, J,61.

7.43. Let C = {I, 2, 3,4) be ordered as in Fig. 7-23(c). Let L(C) denote the collection of all nonempty chains in C
ordered by set inclusion. Draw a diagram of L(C).

7.44. Draw the diagrams of the partitions of in (see Example 7.4) where: (a) in = 4: (b) in 6.

	

7.45.	 Let Dm denote the positive divisors of in ordered by divisibility. Draw the Hasse diagrams of:
(a) D 1 1; (b) D 15 : (c)	 (d) D17.
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7.46. Let S = (a,h,c,d,e,f} be an ordered set. Suppose, under the relation <<(immediately precedes), there are

exactly six pairs of elements as follows:

f<<a,	 f<<d	 e<<b.	 c<<f,	 c<<c,	 h<<J

(a) Find all minimal and maximal elements of S.

(b) Does S have any first or last element?

(c) Find all pairs of elements, if any, which are noncomparable.

	

7.47.	 State whether each of the following is true or false and, if it is false, give a counterexample.

(a) If an ordered set S has only one maximal element a, then a is a last element.

(h) If a finite ordered set S has only one maximal element a, then a is a last element.

(c) If a linearly ordered set S has only one maximal element a, then a is a last clement.

7.48. Let S = (a,h,c,d,e) be ordered as in Fig. 7-24(a).

(a) Find all minimal and maximal elements of S.

(b) Does S have any first or last element?

(c) Find all subsets of S in which c is a minimal element.

(d) Find all subsets of S in which c is a first element.

(e) List all linearly ordered subsets with three or more elements.

/ \/
(a)	 (6)

Fig. 7-24

	

7.49.	 Let S = {a.h,c.,d,e,f} be ordered as in Fig. 7-24(h)

(a) Find all minimal and maximal elements of S.

(6) Does S have any first or last element?

(c) List all chains (linearly ordered subsets) with three or more elements.

7.50. Let S = (a,b,cd,c,f,g) be ordered as in Fig. 7-15. Find the number a of chains in S with:

(a) four elements: (h) five elements.

	

7.51.	 Let S = (1,2,..., 7,81 be ordered as in Fig. 7-16. Find the number a of chains in S with:

(a) five elements; (h) six elements.

7.52. Give an example of an ordered set with one minimal clement but no first element.

CONSISTENT ENUMERAT&ONS

	

7.53.	 Let S = { a, 6, c, d,'} be ordered as in Fig. 7.24(a). List all consistent enumerations of S into (1,2,3,4, 51

	7.54.	 Let S = {a, 6, c, d, e,f} be ordered as in Fig. 7-24(6). Find the number a of consistent enumerations of

into {l2,3,4.5,6}.
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7.55. Suppose the Following are three consistent enumerations of an ordered set A = {a,b,e.d}:

	

[(a, I), (b, 2), (c, 3), (d, 4)],	 [(a, I), (b, 3), (c, 2), (d, 4)],	 [(a, I), (1.', 4), (c, 2), (d, 3)]

Assuming the Hasse diagram D of A is connected (any two points are connected by a path), draw D.

SET CONSTRUCTIONS AND ORDER

736. Let M = (2,3,4,...) and let M 2 = M x M be ordered as follows:

	

(a, b) < (c, d)	 if alc and  < d

Find all minimal and maximal elements of M x M.

7.57. Consider the English alphabet A = {a,b,c,... ,y,z} with the usual (alphabetical) order. Recall that the
Kleene closure A consists of all words in A. Let L consist of the following elements in A:

gone, or, arm, go, an, about, gate, one, at, occur

(a) Sort L according to the short-lex order, i.e., first by length and then alphabetically.
(b) Sort L alphabetically.

7.58. Consider the ordered sets A and B appearing in Fig. 7-23(a) and (h). respectively. Suppose S = A x B is
given the product order, i.e.,

	

(a/i) < (a', b')	 if a <a' and b < b'

Insert the correct symbol. <, >. or 11, between each pair of elements of S:
(a) (4,/i)	 (2,e)	 (c) (5,d)	 (La)
(b) (3, a) - (6,f)	 (d) (6, e)	 (2,/i)

7.59. Suppose P = (1,2,3,...) and A = {a,b,c.....y,z} are given the usual orders, and S = P x A is ordered
lexicographically. Sort the following elements of 5:

(2, z), (1, c), (2, c), (I, y), (4, b), (4, :), (3, b), (2, a)

7.60. Consider the set P of positive integers, the English alphabet A, and the set B of negative Integers with the
usual orders:

	

P = (1,2,3,...),	 A = {a,b,c.....y,z},	 B =

Suppose S= Pu A U B, T = PUB U A, U = B U A U P.	 V = B U P  A are each given the concatena-
tion order. (Here the sets P, A, B in S. T, U, V are ordered as shown in the union.)
(a) Which of the sets S. T, U, V has a minimal element?
(h) Which of the sets S, T, U, V has a maximal element?
(c) Which element or elements in the sets S. T, U, V have no immediate predecessor?
(d) Which element or elements in the sets S, T, U, V have no immediate successor?

UPPER AND LOWER BOUNDS, SUPREMUM AND INFIMUM

7.61.	 Let S	 (a,b,c,d,ef,g} be ordered as in Fig. 7-15. Consider the subset A = {a,c,d} of S.

(a) Find the set of upper bounds of A.	 (c) Does sup(A) exist?
(h) Find the set of lower bounds of A.	 (d) Does inf(A) exist?

7.62. Repeat Problem 7.61 for subset B = {h,c,e} of S.
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7.63.	 Let S = {l.2.....78) be ordered as in Fig. 7-16. Consider the subset A = {3,6,7} of S.

(a) Find the set of upper bounds of A.	 (c) Does sup(A) exist?

(h) Find the set of lower bounds of A.	 (d) Does inf(A) exist?

7.64. Repeat Problem 7.63 for the subset B = {l,2,4,7} of S.

7.65. Consider the set Q of rational numbers with the usual order <. Let A = {x E Q : 5 < X < 271.

(a) Is A bounded above or below? (h) Do sup(A) and inf(A) exist?

7.66. Consider the set R of real numbers with the usual order <. Let B = {x E R : x E Q and 5 <	 < 27}.

(a) Is B bounded above or below? (h) Do sup(B) and inf(B) exist?

ORDER-ISOMORPHIC SETS, SIMILARITY MAPPINGS

7.67. Let S be the ordered set in Fig. 7-24(a), Suppose A = (1,2,3,4.5) is order-isomorphic to S and the

following is a similarity mapping from S onto A:

1= {(o,l),(b,4),(c,S).(d,2).(C.3)}

Draw the Hasse diagram of A.

7.68. Find the number of nonisomorphic ordered sets with three elements a.b.c. and draw their diagrams.

7.69. Find the number of connected nonisomorphic ordered sets with fo'ur elements a,h, c, d. and draw their

diagrams.

7.70. Find the number of similarity mappingsf: S - S if S is the ordered set in.

(a) Fig. 7-23(a); (b) Fig. 7-23(b); (c) Fig. 7-23(c).

7.71. Suppose P = {I, 2,3....) and A = (a, b.c.....z} are given the usual orders, and each of S = P  A and

T = AU P is given the concatenation order. Which of the sets P. A. S. T are order-isomorphic?

7.72. Which of the sets S, T, U. V in Problem 7.60 are order-isomorphic?

7.73. Determine whether or not ( = (' where ( is the order type of each of the following sets (with the usual

order):

(a) R; (b) A = {...,_3,_2,l}	 (c) fl=

7.74. Determine which of the sets in Problem 7.73 have the same order type as: (a) P. (h) Z. (c) Q.

7.75. Let C be the ordered set in Fig. 7 . 23(c). (a) Draw the Hasse diagram of the collection p(C) of predecessor

sets ordered by set inclusion. (b) Is C order isomorphic to p(C)?
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LATTICES

7.76. Consider the lattice L in Fig. 7-25(a). (a) Find all sublattices with five elements. (h) Find all join-
irreducible elements, and atoms. (c) Find complements of a and b, if they exist. (d) Is L distributive?
Complemented?

(b)

Fig. 7-25

7.77. Consider the lattice Al in Fig. 7-25(6). (a) Find join-irreducible elements. (6) Find the atoms. (c) Find
complements of a and 6, if they exist. (d) Express each x in M as the join of irredundant join-irreducible
elements. (e) Is Al distributive? Complemented?

	

7.78.	 Consider the bounded lattice L in Fig. 1-26(a).

(a) Find the complements, if they exist, of  and I.
(b) Express I in an irredundant join-irreducible decomposition in as many ways as possible.

(c) Is L distributive?

(d) Describe the isomorphisms of L with itself.

7.79. Consider the bounded lattice L in Fig. 7-26(b).

(a) Find the complements, if they exist, of a and c.
(6) Express I in an irredundant join-irreducible decomposition in as many ways as possible.
(c) Is L distributive?

(d) Describe the isomorphisms of L with itself,

7.80. Redo Problem 7.79 for the bounded lattice L in Fig. 7.26(c).

/1\ /fbcd\1/
(a)

/
o\I/c

(b)

c/I\e
a	 &

0
(c)

Fig. 7-26
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7.81.	 Let D = (1,2,3.4, 5,6, 10, 12. 15, 20, 30. 60}. the divisors of 60, be ordered by divisibility.
(a) Draw the Hasse diagram of D.
(1,) Which elements are join-irreducible? Atoms?
(c) Find the complements of 2 and 10. if they exist.
(d) Express each number x as the join of a minimum number of irredundant join-irreducible elements.

7.82.	 Consider the lattice P of positive integers ordered by divisibility. (a) Which elements are join-irreduci-
ble? (b) Which elements are atoms?

7.83. Show that the following "weak" distributive laws hold for any lattice:
(a) aV(hAc)<(avh)A(aAc)
(h) aA(hVc)<(aAh)V(aAc)

7.84.	 Let S = (1,2,3,4). Three partitions of S follow:

P 1 = [ 12,3,4],	 P = [12,34].	 P3 = [ 13,2,4]
(Here (12, 3.4] is short for [11,21, {3}, {4, fl)
(a) Find the other nine partitions of S.
(b) Let L be the collection of the twelve partitions olS ordered by refinement, that is. P, < P1 ifeach cell of

F, is a subset of a cell of P1 . For example. P < P,. but P7 and P3 are noncomparable. Show that L is
a bounded lattice and draw its Hasse diagram.

7.85. An element a in a lattice L is said to be meet -irreducible if a x A y implies a = x or a	 v. Find all meet-
irreducible elements in: (a) Fig. 7 .25(a); (b) Fig. 7-25(6); (c) D (see Problem 7.81).

7.86. A lattice M is said to be modular if whenever a c we have the law
aV(hAc) = (aVh)Ac

(a) Prove that every distributive lattice is modular.
(b) Verify that the nondistributive lattice in Fig. 7 .7(6) is modular; hence the converse of (a) is not true.
(c) Show that the nondistributive lattice in Fig. 7-7(a) is nonmodular. [In fact, one can prove that every

nonmodular lattice contains a sublattice isomorphic to Fig. 7-7(a).]

Answers to Supplementary Problems

7.41.	 (a) Minimal: 4 and 6; Maximal: I and 2. (b) First: none: Last: none. (c) (1,3, 41, 11,3, 61, {2, 3, 4}.
{2, 3, 6}, (2,5,6).

7.42. (a) Minimal: d and f; Maximal: a. (6) First: none: Last: a. (c) There are eleven: (IJebca, dfecba, dfceba.
fdebea, fdecba, fdceba, fedhea, fedeha, fcdeba. fecdba, Jcedha.
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7.43.	 See Fig. 7-27.	
(1,3,4)	 (2. 3,4)

vflvfl(1,3) 	 (1,4) 	 (3,4) 	 (2,3) 	(2,4)
(i)	 (3)	 (4)	 (2)

Fig. 7-27

7.44.	 see Fig. 7-28.

3-2

2-I-I

(a)

51

4-I - I	

2-2- I-I

2-I-I-I-I

I-I-I-I-I-I

(b)

Fig. 7-28

7.45. See Fig. 7-29.

/\
23

(a)

Fig. 7-29

	

7.46.	 Hint: Draw diagram of S. (a) Minimal: e; Maximal: a, d. (h) First: e; Last: n, ne. (c) (a /). (b,c).

7.47. (a) False. Example: P  {a} where I <<a, and P ordered by <. (h) True. (c)True.

7.48. (a) Minimal: a; Maximal: d and e. (b) First: a; Last: none. (c) Any subset which contains c and omits a;
that is. c, cb, cd, ce, thd, the, cdt', chde. (d) c. cd. cc. cdt'. (e) and, act!, ace.

7.49. (a) Minimal: a and b; Maximal: e and f. (h) First: none; Last: none. (C) ace, acf,bce,hç(,bc4f.

7.50. (a) Four; (b) none

	

731.	 (a) Six; (b) none

16

8

4
	 Li

2

(b)
	 (c)
	 (d)
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7.52. S = { a) U A where A = {.- , - 3,-2,—1,0} has the usual order and where a<< 0.

7.53. abcde, abced , achde, acbed, acebd

7.54. Eleven

7.55. a<<b, a<<c, c<<d

7.56. Minimal: (p,2) where pis a prime. Maximal: none.

7.57. (a) an, at, go, or, arm, one, gate, gone, about, occur
(b) an, about, arm, at, gate, go, gone, occur, one, or

	

7.58.	 (a) II; (b) >; (c) II; (d) <

	

7.59.	 Ic, ly,2a,2c,2:3b,4b,4z

7.60. (a) Sand T; (b) T and V; (c) l,a E S, I E T, a E V; (d) —I,: E S. z E T, z E V

	7.61.	 (a) e,f,g; (b) a; (c) sup(A)= e; (d) inf(A) = a

7.62. (a) e,f,g; (b) none; (c)sup(B)=e; (d) none

	

7.63.	 (a) I, 2, 3; (b) 8; (c) sup (A) = 3; (d) inf(A) = 8

7.64. (a) None; (b) 8; (c) none; (d) inf(B) = 8

7.65. (a) Both; (b) sup(A) = 3, inf(A) does not exist.

7.66. (a) Both; (b) sup(A) = 3, inf(A) =

7.67. See Fig. 7-30.

/23

45

Fig. 7-30

7.68. Four: (I) a,b,c; (2)., b <<,; (3).< < b, a<< c; (4) a << b <<c.
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7.69.	 Four: See Fig. 7-31.
d

bcd

	(I)	 (2)	 (3)

d

be

(4)

Fig. 7-31

7.70. (a) One: identity mapping; (b) one; (c) two

7.71. P and T

7.72. None

	

7.73,	 (a) Yes; (b) no; (c) yes

	

7.74.	 (a) None; (h) B; (C) none

	

7.75.	 (a) Sec Fig. 7-32; (b) yes (always)

11,3,41	 (2,3,4}

{3,4}

(4)

Fig. 7-32

7.76. (a) Six: Oabdl, Oacdl , Oadel , Obce!, Oacel , Ocdel
(b) (i) a, b, e, 0; (iii) a, b, c
(c) c and c arc complements of a; b has no complement.
¶d) No; no

	

7.77.	 (a) a,b,c,g,0; (h) a,b,c; (c) g is the complement of a; b has no complement.

(d) I = avg,'f = avb = ave. e = b y e, d = a y e; other elements are join irreducible. (e) No; no

7.78. (a) e has none;! has b and c.

(b) I=cVdVf=bVcVJ=bVdVf
(c) No, since decompositions are not unique.
(d) Two: 0, d, e, f, I must be mapped into themselves. Then F = I ,, identity map on L, or

F= {(b,c),(c,b)}.

7.79. (a)a has c;c has a and h. (h) I =ave=hVc.
(c) No. (d) Two: 0, c, d, / must be mapped into themselves. Then f= 'L or f= ((a,h),(b,a)}.
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7.80. (a) a has e, c has b and e. (b) I = a V e = b V c c V e. (c) No.

(d) Two: 0. d. I are mapped into themselves. Then  = 'L or  = {(a,b),(b,a),(c,d),(d,c)}.

	

7.81.	 (a) See Fig. 7-33. (b) I, 2, 3, 4, 5; the atoms are 2, 3, and 5. (c) 2 has none, 10 has 3.

(d)	 60=4v3V5	 30=2v3v5	 20-4v5

15=3v5 . 12=3v4	 10=2v5	 6=2v3

12	 20
	 30

4lflf

Fig. 7-33

7.82. (a) Powers of primes and I; (b) primes

	

7.84.	 (a)	 ]I,2,3,4],[14,2,31,113,241,114,231,[123,4].1124,31,113 4 , 2 ],[234 , 11,11234]
(b) See Fig. 7-34.

(1234)

(123,4]	 [124,3]	 [134,2]	 [234, I]

(12,3,4)	 [13,2,4]	 [14,2,3)	 [23, 1,4]	 [24. 1,3]	 (34. 1.2]

[I, 2, 3, 41

Fig. 7-34

7.85. Geometrically, an element a 96 I is meet-irreducible if and only if a has only one immediate successor:

(a) a,c,d.e,I; (h) a,b,d,f,g,I: (c) 4, 6, 10, 12, 15, 60.

7.86. (a) lfa <C then eVc =c. Hence

aV(hA(-) = (aVb)A(aVc) = (aVb)Ac

(c) Here a <c. But a V (b Ac) = aVG = a and (a V b) Ac = I Ac = c; hence

a V (b A c) 96 (a V b) Ac



Chapter 8

Ordinal Numbers
8.1 INTRODUCTION

Numbers are usually used for two different things. One is to measure quantity, such as the number
of students in a class, and the other is to indicate order, such as the first student, the second student, and
so on. Cardinal numbers, covered in Chapter 6, essentially measure quantity, whereas ordinal numbers,
covered in this chapter, indicate order. First, however, it is necessary to discuss a special kind of an
ordered set, called a well-ordered set.

8.2 WELL-ORDERED SETS

Not every ordered set, even if it is linearly ordered, need have a first element. For example, L is
linearly ordered but it does not have a first element. On the other hand, one of the fundamental
properties of the set

P={l,2,3 .... }

of counting numbers (positive integers) is that P and every subset of P has a first element. Such an
ordered set is said to be well-ordered. Namely:

Ieftnition 8.1: Let A be an ordered set. Then A is said to be well-ordered if every subset of A contains a
first element.

Note that any well-ordered set A is linearly ordered. For ifa,b E A, then the subset {u b} of A has a
first element which, therefore, must precede the other; hence any two elements of A are comparable.

The following theorem follows directly from the above definition.

Theorem 8.1: Let A be a well-ordered set. Then:

(i) Every subset of A is well-ordered.
(ii) If B is similar to A, then B is well-ordered.

EXAMPLE 8.1 Consider the following two subsets of the well-ordered set P:

A,	 {l,3,5,. ..}	 and	 A2 = {24,6,.

Then .4, and A2 are also well-ordered. Suppose the union

S=A,UA2{l,3,5,...;2,4,6,...}

is ordered from left to right, as shown. Then S is also well-ordered. This shows that a set, such as P =	 U A 2 , can
be well-ordered in more than one way.

Suppose (A : i E !) is a linearly ordered collection of disjoint linearly ordered sets, that is, I is
linearly ordered and each A i is linearly ordered. Then the union S = Ui A i will be linearly ordered as
follows:

I

(a EA, hEA1 , 1<]a<b	
'a,bEA,,a<binA,

This ordering will be called the usual ordering on the union S. (It is also called the concatenation or sum
ordering on S.) The ordering is somewhat analogous to a lexicographical ordering in the sense that the
index ordering has the first prority. This ordering is sometimes pictured by listing the elements of A,
before the elements of A when i <j. Example 8.1 is an instance of such an ordering and its picture.

204
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The following the(;rem applies.

Theorem 8.2: Suppose {A, i E J} is a well-ordered family of disjoint well-ordered sets, that is, I is well-

ordered and each A, is well-ordered. Then the union S = u, A, with the usual ordering,

is well-ordered.

EXAMPLE 8.2 Let V = { Q1,a2.....a} be any finite linearly ordered set. Then V may be written in the form

V = { a,,,a,,.....a,,)

where the elements are ordered as shown. Notice that V is well-ordered. Furthermore, notice that any other linearly

ordered set W with a elements, say
W={b,,h,...... b,}

is similar to V.

We formally state the comment in Example 8.3.

Theorem 8.3: All finite linearly ordered sets with the same number n of elements are well-ordered and

are similar to each other.

8.3 TRANSFINITE INDUCTION

The reader is familiar with the principle of mathematical induction. Namely:

Principle of Mathematical Induction: Let S he a subset of the set P of counting numbers with the

following two properties:

(1) IES.
(2) If,: ES, then n+ 1 ES.

Then S is the set of all counting numbers, that is, S = P.

The above principle is one of Peano's axioms for the counting numbers P. The principle can be
shown to be a consequence of the fact that P is well-ordered. In fact, there is a somewhat similar
statement which is true for any well-ordered set (proved in Problem 8J).

Theorem 8.4 (Principle of Transfinite Induction): Let S be a subset of a well-ordered set A with the

following two properties:

(1) a0ES.
(2) lfs(a)ç S, then aES.

Then S is the entire set A, that is, S = A.

Here a0 is the first element of A and s(a), called the initial segment of a, is defined to be the set of all

elements in A which strictly precedes a.

Initial segments will be discussed below, and Chapter 9 will discuss transfinite induction in much

more detail.

8.4 LIMIT ELEMENTS

Let A be an ordered set, and let a, h belong to A. Recall that a is called an immediate predecessor of

b, and that h is called an immediate successor of a, written

a << h

if a < b but no element in A lies between a and h, that is, there does not exist an element c in A such that

a < c < b.
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EXAMPLE 8.3

(a) Let A = {a,h,,d,e} be ordered as in Fig. 8-I. Then e is an immediate predecessor of b and c, and 6 is animmediate successor of d and c.

(6) Consider the set Q of rational numbers with the usual order. Even though Q is linearly ordered, no element in
Q has an immediate predecessor or an immediate successor. For if a, b € Q. say a < 6. then (a + 6 )1 2 belongsto Q and

a < (a + 6)/2 <6

/Q\

de

Fig. 8-1

Example 8.3 shows that linearly ordered sets need not have any immediate predecessors or any
immediate successors. This is not true in the case of well-ordered Sets. That is:

Theorem 8.5: Every element in a well-ordered set A has a unique immediate successor except the last
clement.

Proof: Let (1 F A. and let M(i) denote the set of elements of A which strictly succeeds a. If a is notthe last element, then M(a) j 0. Since A is well-ordered M(n) has a first element, say 6. We claim 6 isan immediate successor of a. Otherwise, there is an element r E A such that a < c < 6. Then c € M(a)and this contradicts the fact that Ii is the first element of M(a). We claim 6 is the only immediate
successor of a. Otherwise, there is another immediate successor of a, say d. Then d € M(a) and, since 6is a first element of M(a). we have a < b < d. This contradicts the assumption that d is an immediatesuccessor of a. Thus the first element 6 of M(a) is the unique immediate successor of a.

There is no analogous statement to Theorem 8.4 about immediate predecessors, that is, there do
exist elements in well-ordered sets, besides the first element, which do not have immediate predecessors.
For example, the set

SA1uA2{l,3,5....;2.46}

in Example 8.1 is well-ordered and both I and 2 do not have immediate predecessors.

In view of the above comment and example, we introduce the following definition.

Definition 8.2: An element a in a well-ordered set .4 is called a limit element if it does not have an
immediate predecessor and if it is not the first element.

According to this definition, the element 2 in the above set S = 	 U A 2 is a limit element.

8.5 INITIAL SEGMENTS

Let A be a well-ordered set. The initial segment s(a) of an element a E A consists of all elements in Awhich strictly precede a. In other words,

s(a) = {x:x € A,x < a}
Notice that .s(a) is a subset of A.
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EXAMPLE 8.4 Consider again the well-ordered S in Example 8.1. that is.

S=41u42={l,3,5,...;2,4,6 .... }

Then s(l) = 0, s(5) = ( 1,3}. s(2) = {l.3,5 .... }. and s(8)	 l,3,5...;2.4.6}.

One basic property of initial segments is contained in the next theorem (proved in Problem 8.2).

Theorem 8.6: Let S(A) denote the collection of all initial segments of elements in a well-ordered set A,
and let S(A) be ordered by set inclusion. Then A is similar (order-isomorphic) to S(A)
and, in particular, the function J': A S(A) defined by[(x) = s(x) is a similarity map-
ping between A and S(A).

8.6 SIMILARITY BETWEEN A WELL-ORDERED SET AND ITS SUBSETS

Consider the set P of counting numbers, and the subset E = {2,4,o .... } of P. The function
f: P - E defined by f(x) = 2x is a similarity mapping of P onto its subset E. Notice that, for every
x E P,

X <Jo

This property, which is true in general, is the content of the next theorem (proved in Problem 8.3).
Namely:

Theorem 8.7: Let A he a well-ordered set, let B be a subset of A, and let the function . /: A	 B be a
similarity mapping of .4 onto B. Then, for every a E A,

a < .f (a)

The following important properties of well-ordered sets (proved in Problems 8.4 and 8.5) are con-
sequences of the preceding theorem.

Theorem 8.8: Let A and B be similar well-ordered sets. Then there exists only one similarity mapping
of A onto B.

Theorem 8.9: A well-ordered set cannot be similar to one of its initial segments.

8.7 COMPARISON OF WELL-ORDERED SETS

The next theorem (proved in Problem 8.12) gives an important relationship between any two well-
ordered sets.

Theorem 8.10: Let A and B be welt-ordered sets. Then A and B are similar, or one of them is similar to
an initial segment of the other.

Suppose A and B are well-ordered sets, and suppose .4 is similar to an initial segment of B. Then A is
said to be shorter than B. and B is said to be longer than A. With these definitions, Theorem 8.10 can be
restated as follows:

Theorem 8.10': Let A and B be well-ordered sets. Then A is shorter than B, A is similar to B. or A is
longer than B.

The preceding theorem can be strengthened as follows:

Theorem 8.11: Let .cl be a collection of pairwise nonsimilar well-ordered sets. Then there exists a set A
in d such that A is shorter than every other set in .al.
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EXAMPLE 8.5

(a) Consider two finite welt-ordered sets

am)	 and	 B={b1,h2,...,h)

Suppose in 	 Then A is similar to the initial segment {h1,b2.....b,} of B. and hence A would be shorter
than B. Similarly, if in > n then A would be longer than B.

(b) The set P	 1 2,3 .... } is shorter than the well-ordered set

S={l,3,5.....2,4,6,...)

since P is similar to the initial segment 11, 3, 5_.J. } of S.

8.8 ORDINAL NUMBERS

Consider a collection .9' of well-ordered sets. Each well-ordered set A in .9' is assigned a symbol in
such a way that any two well-ordered sets A and B are assigned the same symbol if and only if A and B
are similar (order-isomorphic). This symbol is called 'he ordinal number of A. We will write

A = ord(A)

to indicate that A is the ordinal number of A.

Recall (Theorem 7.5) that the relation of similarity (order-isomorphism), denoted by

A B
is an equivalence relation in any collection of ordered sets. Thus by the fundamental theorem on
equivalence relations, all ordered sets, and in particular all well-ordered sets, are partitioned into disjoint
classes of similar sets. One may view an ordinal number as the equivalence class of all similar well-
ordered sets.

Recall (Section 7.9) that every linearly ordered set S is assigned an order type. Thus an ordinal
number may also be viewed as the order type of a well-ordered set.

Definition 8.3: The ordinal number of each of the well-ordered sets

0, {l},{l,2}, {l,2,3},...

is denoted by 0, 1, 2, 3,... respectively, and is called a finite ordinal number. All other
ordinals are called transfinite numbers.

Definition 8.4: The ordinal number of the set P of counting numbers is denoted by

= ord(P)

Although the symbols 0,1,2,3,... are used to denote natural numbers (nonnegative integers),
cardinal numbers and, now, ordinal numbers, the context in which the symbols appear determines
their particular meaning. Furthermore, since any two finite well-ordered sets with the same number
of elements are similar, 0, 1, 2, 3,... are the only finite ordinal numbers.

8.9 INEQUALITIES AND ORDINAL NUMBERS

An inequality relation is defined for the ordinal numbers as follows:

Definition 8.5: Let A and It be ordinal numbers and let A and B be two well-ordered sets such that
A = ord(A) and It = ord(B). Then

A

if A is similar to an initial segment of B.
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Accordingly, for A = ord(A) and It = ord(B), we have the following:

A < p	 if A is shorter than /1,

A=/L	 if A is similar to B,

A > It 	 A is longer than B,
A<p	 ifA<porA=it,

A > p	 ifA>porA=It.

EXAMPLE 8.6

(a) Consider two finite well-ordered sets A and B, say

A	 {aj,a2.....am}	 and	 B	 {b1,b2.....b,,}

Say m <it. Then A is similar to the initial segment {b1,b2.....h,,,} of B. Hence ord(A) < ord(B).
In other words, in < n as ordinal numbers if and only if in < n as nonnegative integers. Thus the ineqital-

ity relation for ordinal numbers is an extension of the inequality relation in the set N of natural numbers.

(b) Let A	 ord(S) = ord(( 1,3,5,. . . 2,4,6, . . )). Since the set P = (1,23,... is similar to thE initial segment
(1, 3,5 . . . .} of S, we have

Properties of the Inequality Relation on Ordinal Numbers

Theorem 8.10 tells us that any two well-ordered sets A and B are similar or one of them is similar to
an initial segment of the other. Accordingly, the next theorem is a direct consequence of Theorem 8.10
and the above definition.

Theorem 8.12: Any set of ordinal numbers is linearly ordered by the relation A

In view of Theorem 8.10, the preceding theorem can be strengthened as follows:

Theorem 8.13: Any set of ordinal numbers is well-ordered by the relation A p.

Now let A be any ordinal number and let s(A) denote the set of ordinal numbers less than A. By the
preceding theorem, s(A) is a well-ordered set and, therefore, ord(s(A)) qxists.

Question: What is the relationship between A and ord(s(A))?

The answer is given in the next theorem (proved in Problem 8.16).

Theorem 8.14: Let s(A) be the set of ordinals less than the ordinal A. Then A = ord(s(A)).

Since the ordinal numbers are themselves well-ordered, every ordinal has an immediate successor.
Some nonzero ordinals, for example w, do not have immediate predecessors; these are called limit ordinal
numbers or, simply, limit numbers.

8.10 ORDINAL ADDITION

An operation of addition is defined for ordinal numbers as follows:

Definition 8.6: Let A and p be ordinal numbers, and let A and B be disjoint sets such that A = ord(A)
and p=ord(B). Then

A	 = ord((A; B))
Recall that {A; B} is given the usual order where every element of A precedes every element of B.
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EXAMPLE 8.7 Recall w = ord(P) = ord({l, 2,.. .}) and n = ord({a 1 ,2.....a,,}). Then

n+i=ord({a1,a2.....a;l,2 .... })=ui

But
i+nord({l2,...; a l, a2

since P is similar to s(a 1 ), the initial segment of a1.

Example 8.7 tells us that the operation of addition of ordinal numbers is not commutative. How-
ever, the following conditions do hold.

Theorem 8.15: (1) Addition of ordinal numbers satisfies the associative law, i.e.,

(A +,u) + r, = A+( +')

(2) The ordinal 0 is an additive identity element, i.e.,

0+A=.A+0=A

EXAMPLE 8.8 (Addition of Finite Ordinals) Here we will denote the finite ordinals by

	

0	 1,2',...

Consider, now, two finite well-ordered disjoint sets

A={ai,a2,...,a,,,}	 and	 B={b,,b .... . b,}

Then n = ord(A) and n = ord(B). Therefore,

m' +n' = ord(A) +ord(B) = ord({A;BI) (m -' n)'

Thus the operation of addition for finite ordinal numbers corresponds to the operation of addition for the set N of
natural numbers (nonnegative integers).

Note once again that the set of ordinal numbers is itself a well-ordered set; hence every ordinal has
an immediate successor. For the finite ordinals, i.e., the natural numbers, it is easily seen that n + I is the
immediate successor ton. The next theorem (proved in Problem 8.17) states that this property is true in
general.

Theorem 8.16: Let A be any ordinal number. Then A + I is the immediate successor of A.

General Addition of Ordinal Numbers

Addition of real numbers, which include the natural numbers, is a binary operation and cn be
extended by induction to any finite sum

a1 + a2 + ... + a,,

The sum of an infinite number of real numbers, such as

	

1+2+3+4+"	 or

has no meaning (unless one introduces the concepts of limits). On the other hand, it is possible to define
the sum of an infinite number of ordinal numbers as follows.	

1
Let {A, : i E I} be any well-ordered collection, finite or infinite, of ordinal numbers. In other words,

I is a well-ordered set and to each j € I there corresponds an ordinal number A 1 . For each I E 1, let A 1 be
a set such that

= ord(41)

Then the collection of sets (A 1 x {i} ' 1 E !}is a well-ordered collection of pairwise disjoint well-ordered
sets. By Theorem 8.2,

S U{ A 1 x {i} : I € I}

is a well-ordered set. Thus the following definition is meaningful.
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Definition 8.7: Let {A, : I E I} be a well-ordered collection of ordinal numbers such that A, = ord(Aj).

Then

A, = ord(IJ{A1 x (i) : i E I})

EEl

According to the above definition, we have

In fact, if each Aj is finite (and not 0), then

1\ 1 +A2 +A3 + = A=
IEP

8.11 ORDINAL MULTIPLICATION

An operation of multiplication is defined for ordinal numbers as follows:

- Definition 8.8: Let A and j.& be ordinal numbers and let A and B be well-ordered sets such that

A = ord(A) and p = ord(B). Then

At, = ord(A xB)

where A x B is ordered reverse lexicographicallY.

The product set A x B is ordered reverse lexicographically means that

(a, a') < (b, b')	 if { d
or a' =b but a<b

Unless otherwise stated, the product set A x B of two well-ordered sets A and B is to be ordered reverse

lexicographically.

EXAMPLE 8.9 Noe first that 2 = ord({a,b}) and = ord({l,2, 3,.. fl. Then

But >w

since P= {l,2,3,...} is similar to the initial segment

The above Example 8.9 tells us that the operation of multiplication of ordinal numbers js not
commutative. However, the following conditions do hold.

Theorem 8.17:. ô) The associative law for multiplication holds, i.e.,

A(pr)

(2) The left distributive law of multiplication over addition holds; i.e.,

(3) The ordinal 1 is a multiplicative identity element, i.e.,

IA = Al = A
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8.12 STRUCTURE OF ORDINAL NUMBERS

We now write down many of the ordinal numbers according to their order. First come the finite
ordinals

0, I, 2, 3,

and then comes the first limit ordinal w and its successors:

W, w+l, w+2

By Example 8.9, ord({0, 1,2,...; w,'
nal w2 and its successors: 	

+ I, w+2,. ..}) =i..q2. Hence next comes the second limit ordi-

w2,w2+1, w2+2, w2+3,

The next limit number is 0. We proceed as follows:

0, w3+1, ..., u)4, ..., ... .... ....

Here	 = ,2
 is the limit number following the limit numbers .'n where n E P. We continue:

--	 2 2+ 1, ..., w2 +w, w2 +w+ I	 2+w3
- Then

w22.... . w23 ..., w24, ..., w2w =

Then we have the powers of w:

3 +11-121    . . . , ...........

Here	 is the limit number after the limit numbers w where n E P. We proceed:

..., (.fy, ..., ((L"''' ) )

After all these ordinals we have the ordinal EQ. We can continue:

We note that each of the ordinal numbers we have enumerated is still the ordinal number of a
countable set.

8.13 AUXILIARY CONSTRUCTION OF ORDINAL NUMBERS

Recall again the following theorem. -

Theorem 8.14: Let s(A) be the set of ordinal numbers which precede A. Then

A=ord(s(A))

Some authors use fhe above property of ordinal numbersto actually define the ordinal /numbers.Roughly. speaking, an ordinal number is defined to be the set of ordinal numbers which, precede it.
Specifically:
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Definition

OØ	 u.'+2{O,I,2.....w,w+l}

I{O}

2{O,I}

3{O,l,2}

2+ I	 O,l.....u.,u.'+ I,...u2}

w{O,l2,...}

w+ I	 {O, 1,2....

One main reason the ordinal numbers are developed as above is in order to avoid certain inherent
contradictions which appear in the preceding development of the ordinal numbers (which are discussed
in Chapter 9).

Solved Problems

WELL-ORDERED SETS

	

8.1.	 Prove Theorem 8.4 (Principle ofTransfinite Induction): Let S be a subset ofa well-ordered set A
with the following properties: (1) a0 E S. (2) s(a) c S implies a e S. Then S = A.

Suppose S A, i.e., suppose A\S = T is not empty. Since A is well-ordered, T has a first element ,.
Each element x c s(10 ) precedes to and, therefore, cannot belong to T. i.e.. belongs to S: hence s(to) c S.
By (2), to E S. This contradicts the fact that to c A\S. Hence the original assumption that S ?6 A is not true;
in other words, S = A. (Note that (I) is in fact a consequence of (2) since 0 = s(ao) is a subset of Sand,
therefore, implies a0 E S.)

8.2. Prove Theorem 8.6: Let S(A) denote the collection of all initial segments of elements in a well-
ordered set A, and let S(A) be ordered by set inclusion. Then A is similar to S(A) and, in
particular, the function f: A -- S(A) defined by f(x) = s(x) is a similarity mapping between A
and S(A).

By deflnitionf is onto. We show thatf is one-to-one. Suppose x '. Then one of them, say x, strictly
precedes the other; hence x E s(y). But, by definition of initial segment. x V .s(x). Thus .s(x) 4 s(y), and
hence f is one-to-one.

We show that / preserves order, that is,

x y	 if and only if	 s(x) C sty)

Let x <y. Suppose a E sox). Then a < x and hence a y; thus a E sCy). Since a E .r(x) implies a E .c(y),
s(x) is a subset of s(y). Now suppose x y, that is, x > y. Then y e sox). But, by definition of initial
segment, y s(y); hence s(x) q so). In other words, x <y if and only if s(x) 9 s(y).
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8.3. Prove Theorem 8.7: Let A be a well-ordered set, let B be a subset of A, and let f: A -+ B be a
similarity mapping of A onto B. Then, for every a E A, a <f(a).

Let D = {x : 1(x) < x}.. If D is empty the theorem is true. Suppose D 54 0. Then, since A is well-
ordered, D has-a first element d0. Note d0 € D meansf(do) < d0 . Sincef is a similarity mapping.

f(d0) < d0	 implies	 f(f(d0 )) <f(d0)

Consequently, f(do) also belongs to D. But f(d0 ) < do and f(d0 ) E D contradicts the fact that d.3 is the first
element of D. Hence the original assumption that D 34 0 leads to a contradiction. Therefore D is empty
and the theorem is true.

	

8.4.	 Prove Theorem 8.8: Let A and B be similar well-ordered sets. Then there exists only one
similarity mapping of A into B.

Letf: A -. B and g: A -. B be similarity mappings. Suppose! g. Then there exists an element x E A
such thatf(x) 96g(x). Consequently, eitherf(x) <g(x) or g(x) <f (x). Sayf(x) <g(x). Since g: A - B is
a similarity mapping, g: B -. A is also a similarity mapping. Furthermore, g-1 of: A - A. the composi-
tion of two similarity mappings, is also a similarity mapping. But

f(x) 'z g(x)	 implies	 (g I of)(x) < (g og)(x) = x

We have g 1 of is a similarity mapping and (g -1 of)(x) < x. This contradicts Theorem 8.7. Hence the
assumption thatf 36 g leads to a contradiction. Accordingly, there can be only one similarity mapping of A
into B.

	

8.5.	 Prove Theorem 8.9: A well-ordered set cannot be similar to one of its initial segments.

Let A be a well-ordered set and let f: A - s(a) be a similarity mapping of A onto one of its initial
segments. Then f(a) E .c(a). Therefore

f(a).<a

This last fact contradicts Theorem 8.7. Therefore A cannot be similar to one of its initial segments.

	

8.6.	 Prove: Let Abe a well-ordered set and let S be a subset of A with the following property:

lfa<b and bES, then a€S.

Then S = A or S is an initial segment of A.

Suppose S 54 A. Then A\S has a first element a0 where a0 V S. We show that S = s(ao). Suppose
XE s(a). Then x < a0 and hence x V A\S. Therefre x E S. Thus .c(a) C S.

Now suppose y V s(a0 ), that is, suppose a0 <y. But y E Sand a0 <y implies a0 E S. which contradicts
the fact that a0 g S. Hence y V S. We havhown that y g s(a0 ) implies y S. which means that •S c S(ao).

Both inclusions imply S = s(a0).

	8.7.	 Prove: Two different initial segments of a well-ordered set cannot be similar,

Let s(a) and s(b) be two different initial segments, that is, a h. Either a < h orb < a; say a < li Then
s(a) is an initial segment of the well-ordered set s(b>. Hence, by Theorem 8.9, .c(b) is not similar to .c(a).

8.8. 
1
Prove: Let A and B be well-ordered sets, and let an initial segment s(a) of A be similar to an
initial segment of B. Then .s(a) is similar to a unique initial segment s(b) of B.

Let .c(a) .c(b) and s(a) s(b') where b, b' E B. Then s(h) s(b'). By Problem 8.7, s(b) = .c(b').
Therefore, b =W.



CHAP. 81	 ORDINAL NUMBERS	 -	 215

8.9. Prove: Let A and B be well-ordered sets such that an initial segment s(a) of A is similar to all

initial segment s(h) of B. Then each initial segment of -. (4) is similar to an initial segment of.(h),

that is,

a' < a	 implies	 s(a')	 s(b)	 where	 h

Furthermore, iff: s(a)	 s(h) is the similarity mapping of s(a) onto s(b). then f restricted to s(a)

is the similarity mapping of s(a') onto s(h') = f(s(a')).

Lctf(a') = p5'. Note that f restricted to s(a') is one-to-one and preserves order: hence .r(u')
Furthermore, since f is a similarity rnapping

a < a'	 if and only if	 J(a) <

Then f(s(a')) = s(b 1 ), and therefore s(a') 	 s(h').

8.10. Prove: Let A and B be well-ordered sets and let

S = (x:x E A, s(x) s(y) where y E 81

(In other words, each element x E S has the property that its initial segments(v) is similar to an

initial segment s(y) of B.) Then S = A or S is an initial segment of A.

Let x E S and y < x. By Problem 8.9, s(v) is similar to an initial segment of B; hence .1 , E S. In other

words,

y < x and x E S	 implies	 C S

By Problem 8.6, S = A or S is an initial segment of A.

8.11. Prove: Let A and B be well-ordered sets and let

S = {x:x E A, s(x) s(i) where v e B)

T = {y : y  B, s(y) s(x) where x E A)

Then S is similar to T.

Let x e S. Then, by Problem 8.8. .c(x) is similar to a unique segment s(r) of B. Thus to each .v e S there

corresponds a unique y C Y such that s(x) =.c(y), and vice versa. Hence the function f: S -. T defined by

f(x) = v	 if	 .s(x)	 s(v)

is one-to-One and onto.
Now let x',x E S,f(x) y , f( ' ) = r' and x' < x. The theorem is proven if we can show that .r ' < i.

that is, that! preserves order.
Let g: s(x) -. s(y) be the similarity mapping ofs(x) into s([(x)) = .c(v). By Problem 8.9, g restricted to

s(x') is  similarity mapping of s(x') into the initial segment s(g(x')) of B. But, by Problem 8.8. there exists
only one similarity mapping of s(x') into B. Consequently, g(x') = .f (x') = y'. Since g(x 1 ) C

g(x') = y' <v

Since we have shown that y' < v, f preserves order. Therefore, S is similar to T.
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8.12. Prove Theorem 8.10: Let A and B be well-ordered sets. Then A is shorter than B, A is similar to
B, or A is longer than B.

Let S and T be defined as in the preceding problem. Note S T. By Problem 8. 10, there are four
possibilities:

case!:	 S 	 and T=B. Then A is similar toB,
Case II:	 S = A and T = s(h), an initial segment of B. Then A is shorter than B.
Case 111:	 T = B and S = s(a), an initial segment of A. Then A is longer than B.
Case IV:	 S=s(a) and T = .c(h). Then a E S since its initial segment s(a) is similar to an initial segment

s(b) of B. But a cannot belong to its own initial segment; hence this case is impossible.

Thus the theorem is true.

8.13. Prove: Let .& be a collection of initial segments of a well-ordered set A. Then there is an initial
segment s(a) E d such that s(a) c s(x) for any other initial segment s(x) in .'; that is, there is an
initial segment s(a) E d which is shorter than every other initial segment in ,nf.

By Theorem 8.6, A is similar to S(A), the family of all initial segments of eleimnts in A, ordered by set
inclusion. Since .4 is well-ordered, S(4) is also well-ordered. Since d is a subset of S(A), it has a first
element s(a). Therefore .r(a) C s(x) for any other initial segment s(x) E .cl.	 -

8.14. Prove Theorem 8.11: Let .& be a collection of pairwise nonsimilar well-ordered sets. Then there
exists a set A0 in .c/ such that A 0 is shorter than every other set in .c/.

Let B be any set in ci. Define

= {X X c ci, K is shorter than B}
If .4 is empty, then B satisfies the requirements of the theorem. Suppose 	 0. If we show that .4 has a
Shortest set A 0 then, considering the way .1 was defined, A 0 wtI also be the shortest set in ci.

Now, by Theorem 8.10, every set A c .4 is similar to an initial segment s(a) of B. Let .1 , be the
collection of those initial segments of Reach of which is similar to a set in .4. By Problem 8.13, .4' contains
an initial segment s(a0) which is shorter than every other initial segment in ia ' . Consequently, the set
A 0 E R, which is similar to s(a0 ), is shorter than every other set in R.

Therefore, A 0 satisfies the requirements of the theorem.

ORDINAL NUMBERS

8.15. Prove: Let A = ord(A) and let it A. Then there is a unique initial segment s(a) of A such that
p = ord(s(a)).

Let p = ord(B). Since it < A, B is shorter than A, that is, B is similar to an initial segment s(a) of A.
Therefore, it = ord(s(a)). Furthermore, .c(a) is the only initial segment whose ordinal number is p since, by
Problem 8.7, two different initial segments of A cannot be similar.

8.16. Prove Theorem 8.14: Let s(A) be the set of ordinals less than the ordinal A. Then A = ord(s(A)).

Let A = ord(A), and let S(A) denote the collection of all initial segments of A ordered by set inclusion.
By Theorem 8.5, A S(A); hence A ord(S(A)). If we sh' w that s(A) is similar to S(A),jhe theorem will
follow.

Let it E s(A); then p < A. By Problem 8.15, there is a unique initial segment s(a) of A such that
p .r ord(s(a)). Hence the function f: s(A)	 S(A) defined by

J(p) = s(a)	 if	 , = ord(s(a))

is one-to-one. Furthermore, we show thatf is onto. Suppose .c(h) E S(A). Then s(b) is shorter than A and
therefore ord(s(b)) = v < ord(A) = A. This means v E s(A). Hencef(u) = s(b), and so  is onto.
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To complete the proof of the theorem, it is only necessary to show that f preserves order, then f is asimilarity mapping and s(A) S(A). Let A< z', where i, u E s(A). Then z = ord(s(a)) and &' = ord(s(b)),that is, f(ji) = s(a) and f(L/) = s(b). Since jj < u, s(a) is an initial segment of s(b); hence s(a) is a proper
subset of s(b). In other words, under the ordering of S(A), s(a) <s(b). Thusf preserves order.

8.17. Prove Theorem 8.16: Let A be any ordinal number. Then A + I is the immediate successor of A.

Let jz be the immediate successor of A. Then, by definition of s(p),

= s(A) U (A)
Hence

ord(s()) = ord(.c(A)) +ord((A))
That is, 1A = A+ 1.

8.18. Prove, by giving a counterexample, that the right distributive law of multiplication over addition
(for the ordinal numbers) is not true in general. In other words, exhibit three ordinal numbers A,

ii such that

(A + p)u j4 Av + w

By Example 8.9, (1 + l)w = 2w w. On the other hand, using the left distributive law,
Iw+ IL) =w+w=wl +wI w(l + J)=&2 >w

Therefore, (I + I)w 36 lw+ 1w.

8.19. Let {A, i E 1) be a well-ordered collection of pairwise disjoint well-ordered sets. Suppose
ord(I) = w and ord(A,) = w for every I E I. Find ord((J1 A).

8.20. Prove: w + w = w2.

Method 1:	 Using the left distributive law we get

w+w=wl +wt =w(l + I) =w2

Method 2:	 Consider the w'l-ordered sets

A	 {a1,a2 .... ),	 B= {b1,b2 .... },	 C= (c1,c2,...),	 D= r, s)
Note that

w =ord(A) = ord(B) = ord(C)	 and	 2 = ord(D)
Then

w+w=ord({A;B})ord({aj,02 .... ;bjb2})
w2 = ord(C x D) = ord({(c1,r), (c2 ,r).... ; (q, s),  (cs),..

But the function f: {A;B} -. (C x D) defined by

J (q, r) if x= a1
:	 '' (X)	

(q,
	 if x = b i

	

is a simila rity mapping of (A; B} onto C x D. Hence	 -

w +w = ord({A; B)) = ord({C x D)) w2
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Supplementary Problems

8.21. Prove Theorem 8.1: Let A be a well-ordered set. Then: (I) Every subset of A is well-ordered. (ii) if B is

similar to A, then B is well-ordered

8.22. Prove Theorem 8.2: Let {A, I E 11 be a well-ordered family of pairwise disjoint well-ordered sets. Then

the union S = Uj A, (with the usual ordering) is well-ordered.

8.23. Assume that the set P of counting numbers with the usual order is well-ordered. Prove the Principle of
Mathematical induction: Let S be a subset of P with the properties:

(1) I e Sand (2) n € S implies n+ I Es;

then S = P.

8.24. Prove that 0 is the identity element for addition of ordinal numbers, that is, for any ordinal A, we have
0+A = A+0 = A.

8.25, Prove that 1 is the identity element for multiplication of ordinal numbers, that is, for any ordinal A, we have
IA = Al = A.

8.26. Prove: If each A, I e P, is a finite ordinal, then 1\ 1 + A 2 +	 = F j A, = w.

8.27. Prove: Let A be any infinite ordinal number. Then A = 
it n, where it is a limit number and n is a finite

ordinal.

8.28. State whether each of the following statements about ordinals is true or false; if it is true prove it, and if it is

false give a counterexample: (a) if A 0 0, then it A + p. (b) If A 0, then p < p + A.

8.29. State whether each of the following statements concerning ordinals is true or false; if it is true prove it, and if

it is false give a counterexample:

(a) IfA0 and p<, then A+U<A+v

(b) ifA0 and p<i1, then P+A<E+)

8.30	 Prove: The left distributive law of multiplication over addition holds for ordinal numbers, that is,

A(p + u) = Ap + At'

Answers to Supplementary Problems

8.27. Flint: Note that a well-ordered set cannot contain an ordered subset A	 <a3 <a2 <a 1 }, since A is not

well-ordered.

8.28.	 (a) False. (b) True

8.29. (a) True. (b) False



Chapter 9

Axiom of Choice, Zorn's Lemma, Well-Ordering
Theorem

9.1 INTRODUCTION

Many properties of well-ordered sets were jpvestigated in the preceding Chapter 8. We have notsaid
much about the existence of such sets. Central to the theory of set theory is the fact that any set can be
well-ordered! This was proved by E. Zermelo in 1904. Specifically, this "well-ordering theorem" can be
shown to be equivalent to the axiom of choice and Zorn's lemma. This equivalence and some of its
consequences will be treated in this chapter. We will end the chapter with some paradoxes in set theory.

9.2 CARTESIAN PRODUCTS AND CHOICE FUNCTIONS

The following theorem applies.

Definition 9.1: Let {A 1 : i E f} be a nonempty family of nonempty sets. Then the cartesian product of
{A 1 : i E 11, denoted by

fl{A:iEI}or fJA

is the set of all choice functions defined on {A, : i E !}.

Recall that a function f: {A 1 : i € I} - X, where each A, is a subset of X, is called a choice function
iff(A,) = a, belongs to A, for every i E I. In other words,f "chooses" a point a, E A, for each set A.

EXAMPLE9.1 Let{A1,A2.....A} bea finite family ofsets. Recall (Chapter 2) that the cartesian product of then
sets,

A1 x A2 x x A, flA,

is defined to be the set of n-tu pies

(a1,a2,...,a)

where a, E A, for I = 1,2,..., n. On the other hand, each choice functionf defined on {A 1 , A 2 ,..., A} corresponds
to the unique n-topic

(f(A1),f(A2).....f(A))

and vice versa. Acordingly, in the finite case, Definition 9.1 agrees with the previous definition of the cartesian
product.

The main reason for introducing Definition 9.1 is that it applies to any family of sets: finite,
denumerable, or even nondenumerable. The previous definition, which used the concept of n-tuples,
applied only to a' finite family of sets.	 .-	 -

Remark: Although a choice function is defined for a family of subsets, any family 	 sets
{A : i E !} can be considered to be a family of subsets of their union U1 A,.

11(1 -
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9.3 AXIOM OF CHOICE

The axiom f choice lies at the foundations of mathematics and, in particular, the theory of sets,
This "innocent looking" axiom, which follows, has as a consequence some of the most powerful and
important results in mathematics.

Axiom of Choice: The cartesian product of a nonempty family of nonempty sets is nonempty.

Using Definition 9. 1, the axiom of choice can be stated as follows:

Axiom of Choice: There exists a choice function for any nonempty family of nonempty sets.

The axiom of choice is equivalent to the following postulate:

Zermelo's Postulate: Let {A, : I E I} be any nonempty family of disjoint nonempty sets. Then there
exists a subset B of the union Uj A, such that the intersection of B and each set A, consists of exactly
one element.

Observe that in Zermelo's postulate the sets are disjoint whereas in the axiom of choice they may not
be disjoint.

9.4 WELL-ORDERING THEOREM, ZORN'S LEMMA

The following theorem is attributed to Zermelo, who proved the theoem directly from the axiom of
choice.

Well-Ordering Theorem: Every set can be well-ordered.

Zorn's lemma, which follows, is one of the most important tools in mathematics; it establishes the
existence of certain types of elements although no constructive process is given to find these elements.

Zorn's Lemma: Let X be a nonempty partially ordered set in which every chain (linearly ordered
subset) has an upper bound in X. Then X contains at least one maximal element.

We formally state and prove (Problem 9.4) the following basic result of set theory:

Theorem 9.1: The following are equivalent:

(i) Axiom of choice;
(ii) Well-ordering theorem;

(iii) Zorn's lemma.

93 CARDINAL AND ORDINAL NUMBERS

Let A = ord(A) be an ordinal number. Then we can associate with A the unique cardinal number
= IAI. We call a the cardinal number of A and denote it by

This function from the ordinal numbers to the cardinal numbers is not one-to-one, that is, there are
different ordinal numbers with the same cardinal number. For example-,-

w=prd({l,2,3,...})	 and	 w2 = ord({a),a2,...;b,b2,..})

are both ordinal numlers of denumerable sets with the same cardinal number N. In other words,

-.

The well-orderingkheorern implies that the above function. from the ordinal numbers to the cardinal
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numbers is onto. For, suppose a = Al is any cardinal number. By the well-ordering theorem, A can be

well-ordered; say A = ord(A). Then a = A. Hence a is the cardinal number of at least one ordinal

number A. (Here, A is used both as the original set and then as the well-ordered set.)

Correspondence between Ordinal and Cardinal Numbers

The following correspondence between the ordinal and cardinal numbers is easily established.

Theorem 9.2: Let a = A and 3 = Ti be cardinal numbers. Then:

(I) lfa</3, then A<it.

(2) if ,\ <ji, then a

The next result, mentioned previously, is a direct consequence of the well-ordering theorem.

Theorem 6.12 (Law of Trichotomy): Let a and /3 be any cardinal numbers. Then one of the following

-	 holds:

a </3,	 a = /3,	 a > /3

That is, the cardinal numbers are linearly ordered by the inequality relation defined for the cardinal
numbers. Since the ordinal numbers are themselves well-ordered, we can make an even stronger state-
ment.

Theorem 9.3: Any set of cardinal numbers is well-ordered by the relation a 0.

9.6 ALEPHS

Recall that the cardinal number of denumerable sets is denoted by

(Herealeph, t, is the first letter of the Hebrew alphabet.) Since the cardinal numbers are well-ordered,
the following system of notation is used to denote cardinal numbers. The immediate successor of No is
denoted by R 1 , and its immediate successor by N 2 , and so on. The cardinal number which succeeds all
the N, is denoted by l. in fact every infinite cardinal can be uniquely denoted by an R with an ordinal
number as a subscript as follows:

Notation: Let a be any infinite cardinal number. Let s(a) be the set of infinite cardinal numbers
less than a. Note that .s(a) is well-ordered; say A = ord(s(a)). Then

NA

denotes the cardinal number a.

The continuum hypothesis call 	 be reformulated as follows:

Continuum Hypothesis: R, = c.

9.7 PARADOXES IN SET THEORY

The theory of sets was first studied as a mathematical discipline by Cantor (1845 1918) in the latter
part of the nineteenth century. Today, the theory of sets lies at the foundations of mathematics and has
revolutionized almost every branch of mathematics. At about the same time that set theory began to
influence other branches of mathematics, various contradictions, called paradoxes, were discovered, the
first by Buraii-Forti in 1897. In this section, some of these paradoxes are presented. Although it is
possible to eliminate these known contradictions by a strict axiomatic development of set theory, there
are still many questions which are unanswered.
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Set of All Sets (Cantor's Paradox)

Let rg be the set of all sets. Then every subset 0f' is also a member of'; hence the power set (')
of W is a subset of W, that is,

But () ç W implies that

IYMI < I(i
However, according to Cantor's theorem,

V1 <I)!

Thus the concept of the set of all sets leads to a contradiction.

Russell's Paradox

Let Z be the collection of all sets which do not contain themselves as members, that is,

Z={X:XX}

Question: Does Z belong to itself or not?

If Z does not belong to Z then, by definition of Z, the set Z does belong to itself. On the other hand, if Z
does belong to Z then, by definition of 7, the set 7 does not belong to itself. In either case we are led to a
contradiction.

The above paradox is somewhat analogous to the following popular paradox: In a certain town,
there is a barber who shaves only and all those men who do not shave themselves. Question: Who shaves
the barber?

Set of All Ordinal Numbers (Burali-Forti Paradox)

Let A be the set of all ordinal numbers. By a previous theorem A is a well-ordered set, say
a = ord(). Now consider s(a), the set of all ordinal numbers less than a. Note:

(I) ..Since s(a) consists of all elements in A which precede a, s(a) is an initial segment of A.
(2) By a previous theorem a ord(s(a)); Ilnce ord(s(a)) = a = ord().

Therefore A is similar to one of its initial segments, which is not possible. . Thus the concept of the set of.
all ordinal numbers les to a contradiction of Theorem 8.9.

Set of All Cardinal Numbers

Let d be the set of all cardinal numbers. Then for each cardinal a E d there is a set A. such that
a=j4l. Let

A=U(A,:aE..af)
Consider the power set 9(A) of A. Note 9(A) 41,9(A)I' which is a subset of A. Hence

But by Cantor's theorem,

Al < 10(A)l

Thus the concept of the set of all cardinal numbers leads to a contradiction.
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Class of All Sets Equipotent to a Set

Let A = (a, b.... } be any set (not necessarily countable) and let .' = {i,j,.. . } be any other set.

Consider the sets

A, = {(a,i),(b,i) .... }

that is, the class of sets (A, : i € .cl). Note that

-

and A	 A for every i E d.

Now let a be the class of all sets equipotent to A. Consider the power set (a) of a, and define the

class of sets {A 1 i E ø()} as above. Since each A, A, we have

{A, : i C ,9(a)} C a

Hence

= l{A, I E (a)}l <

But by Cantor's theorem, j ai < I(a)l, Thus the concept of the class of all sets eqiiipotent to a set leads

to a contradiction.

Class of All Sets Similar to a Well-Ordered Set

Let A be any well-ordered set. Then the set A,, defined as above and ordered by

(a,i)(b,i)	 if	 a < b

is well-ordered and is similar to A, that is, A,	 A.

Now let A be the class of all sets similar to the well-ordered set A. Consider the power set 3(.A) of A

and define the class of sets (A, I e	 as above. Since each set A, is similar to A, we have

{A,:iE(A)}cA

Hence

l(A)l = l{Ai: IC Y(A)II < IA!

But by Cantor's theorem, IA! < I(A)I. Thus the concept of the class of all sets similar to a well-ordered

set leads to a contradiction.



224	 AXIOM OF CHOICE, ZORN'S LEMMA, WELL-ORDERING THEOREM 	 ICHAP. 9

Solved Problems

AXIOM OF CHOICE

	

9.1.	 Show that the axiom of choice is equivalent to Zermelo's postulate.

Let {A 1 i E I} be a nonempty family of disjoint nonempty sets and let I be a choice function on
1,4,: i E !}. Set B = Lf(A,) fE I). Then

A,nB= {f(A,)}

consists of exactly one element since the A, are disjoint andf is a choice function. Accordingly, the axiom of
choice implies Zermelo's postulate.

Now let {A, : i E J} be any nonempty family of nonempty sets which may or may not be disjoint. Set

= (A,) x {i}	 for every i E I

- Then certainly JAi } is a disjoint family of sets since £ j implies A, x {i)	 A X j}, even if A, = A,. By
Zermelo's postulate, there exists a subset B of U(A i E I) such that

BnA; =

consists of exactly one element. Then a, e A, and so the functionf on {A 1 £ E I} defined by! (A 1) a, is 
choice function. Accordingly, Zermelo's postulate implies the axiom of choice.

	

9.2.	 Prove the well-ordering theorem (Zermelo): Every noncrnpty set X can be well-ordered.

Let J. be a choice function on the collection 	 X) of all subsets of X. that is.

1: 3(X) - X	 with	 f(A) E A,	 for	 every A c X
A subset A of X will be called normal if it has a weil-ordering with the additional property that, for every
a E A.

J(X - SA (a)) = a	 where	 s 1 (a) = (XE A x <a}

i.e., SA (a) is the initial segment of a in the ordering of A, We show that normal sets exist. Set

X 
1 

0 =f(X),	 xi f(X\{xo}),	 X2 =f(X\{x0,x1))

Then A = (x5 , x 1 , x2 1 is normal. We claim that if A and B are normal subsets of X, then either A = B or
one is an initial segment of the other. Since A and Bare well-ordered, one of them, say A, is similar to Bor
to an initial segment of B (Theorem 8.10). Thus there exists a similarity mapping CS : A -. B. Set

A' = (x E A rs(x) 54 x)

If A' is empty, then A = B or A is an initial segment of B. Suppose A' i4 0, and let a0 be the first element of
A'. Then SA(aO) = s8 (o(a0)). But A and B are normal, and so

ao =f(X)\SA(aO)) _—f(X\sB(cs(aO))) =

But this contradicts the definition of A', and so A = B or A is an initial segment of B. In articular, if a € A
and h E B then either a,b E A or a,b E B. Furthermore, ifa,b E A and a,b E B then a <has elements of 
if and only if a b as elements of B.

Now let Y consist of all those elements in X which belong to at least one normal set. If a,h E Y, then
a E A and b  B where A and B are normal and so, as noted above, a. b e A or a,h € B. We define an order
in Y as follows: a <b as elements of Y it!' a < h as elements of A or as elements of B. This order is well-
defined. i.e., independent of the particular choice of A and B, and, furthermore, it is a linear order. Now let
Z be any nonempty subset of Y and let a be any arbitrary element in Z. Then a belongs to a normal set A.
Hence A it Z is a nonempty subset of the well-ordered set A and so contains a first element 00. Furthermore,
00 is a first element of 7 (Problem 9.13); thus Y is, i n fact, well-ordered,
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We next show that Y is normal. If a t Y, then a belongs to a normal set A. Furthermore.

SA(a) = s(a) (Problem 9.13), and so

f(X\s,(a)) =f(X\s4(a)) = a

that is, Y is normal. Lastly, we claim that Y = X. Suppose not, i.e., suppose X\ Y 96 0 and, say,

a =f(X\Y). Set Y' = Y U (a) and let Y' be ordered by the order in Y together with a dominating

every element in Y. Then f(X\sy(a)) =f(X\Y) = a and so Y' is normal. Thus a c Y. But this contra-

dicts the fact that  is a choice function, i.c.,f(X\Y) = a c X\Y which is disjoint from Y. Hence Y X.

and so K is well-ordered.

	

9,3.	 Prove (using the well-ordering theorem): Let X bc a partially ordered set. Then X contains a
maximal chain (linearly ordered subset), i.e., a chain which is not a proper subset of any other

chain.

The result clearly holds if K is empty (or even finite); hence we can assume that X is not empty and that

- K can be well-ordered with, say, first element x 0 . (Observe that K now has both a partial ordering and a
well-ordering; the terms initial segment of X and first element of a subset of X will only be used with respect
to the well-ordering, and the term comparable will only be used with respect to the partial ordering.)

Let A be an initial segment of K (where we allow A = X). A function!: A -. .4 will be called special if

- x, if x is comparable to every element olf[s(x)1
- x0 , otherwise.

Here .c(x) denotes the initial segment of x. We claim that if a special function exists then it is unique. If not,
then there exist special functionsf andf' on A and a first element a0 for whichf(ao) 96f'(ao); hencef and

.1' agree on s(a0), which implies f(a0 ) = f'(a0 ), a contradiction.

Remark: if A and A' are initial segments with special functions  and f' respectively and if A ç A'.

then the uniqueness off on A implies that!' restricted to A equalsf, i.e.,f'(a) =f(a) for every a € A.

Now let B be the union of those A, which admit a special function!,. Since the A, are initial segments,

so is B. Furthermore, B admits the special function g: B - B defined by g(b) =f,(b) where h e 4,. By the
above remark, g is well-defined. We next show that B = K. Let y E X be the first element for which y V B.

Then C = B U (y) is an initial segment. Moreover, C admits the special function h : C - C defined as

follows: h(c) = g(c) if c E B. and h(y) = y or x0 according as y is or is not comparable to every element in
hIBl. It now follows that r E B, a contradiction. Thus no such y exists and so B = K.

Lastly, we claim that g[B], i.e.. g[X, is a maximal chain (linearly ordered subset) ofX. If not, then there
exists an element z E K such that z V gX) but z is comparable td every element of gJXJ. Thus, in particular,

is comparable to every element of gs(;). By definition of a special function. g(z) = z which implies

z E g(X], a contradiction. Thus gX] is a maximal chain of K. and the theorem is proved.

	

9.4.	 Prove Theorem 9.1: The following are equivalent: (i) axiom of choice, (ii) well-ordering theo-

rem, (iii) Zorn's lemma.

By Problem 9.2. (i) implies (ii). We use Problem 9.3 to prove that (ii) implies (iii). Let X be a partially
ordered set in which every chain (linearly ordered subset) has an upper bound. We need to show that K has
a maximal element. By Problem 9.3, K has a maximal chain, say Y. By hypothesis, Y has an upper bound m

in K. We claim that tn is a maximal element of K. If not, then there exists z E K such that z dominates M. it

follows that z V Y since rn i& an upper bound for Y. and that Y U {z} is linearly ordered. This contradicts
the maximality of Y. Thus m is a maximal element of X and, consequently, (ii) implies (iii).

It remains to show that (iii) implies (i). By Problem 9.1. it suffices to prove that (iii) implies Zermelo's
postulate. Let {A,} be a nonempty family of disjoint nonempty sets. Let Ie the class of all subsets of

U1 A, which intersect each A, in at most one element. We partially order by set inclusion. Let ' = {B} be

a chain of . We claim that B = U1 B1 belongs to 91. If not, then B intersects some A, in more than one

element; say a, b E B fl A,Q where a 96 b. Since a, b E B. there exist B1, and B, such that a E B, and b E

But le = {B1 } is linearly ordered by set inclusion; hence a and h belong to either B1, or By,. This implies that

B,. or B,, intersects A,, in more than one element, a contradiction. Accordingly. B belongs to . and so B is

an upper bound foc the chain '.
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We have shown that every chain in .S has an upper bound. By Zorn's lemma, has a maximal element
M. If M does not intersect each A, in exactly one point, then M and some A 1, are disjoint. Say CE A,.
Then M U (c) belongs to ., which contradicts the maximality of M. Thus M intersects each A, in exactly
one point, and therefore (iii) implies Zermelo's postulate.

Thus the theorem is proved.

APPLICATIONS OF ZORN'S LEMMA

	

9.5.	 Let R be a relation from A to B, that is, let R be a subset of A x B. Suppose the domain of R is A.
Prove that there exists a subset f' of R such that f' is a function from A into B.

Let d be the family of subsets of R in which each f e .cl is a function from a subset of A into B.
Partially order .c( by set inclusion. Note that if f: A 1 - B is a subset of g: A 2 -, B then A 1 c A2.

Now suppose W = {f: A, -, B} is a chain (linearly ordered subset) of . 4. Then (Problem 9.14)f = U,!1
is a function from U, A i into B and, therelore,f is an upper bound of''. By Zorri's lemma, cl has a maximal
element!': A' - B. If we show that A' = A, then the theorem is proved.

Suppose A' A. Then there exists an element a E A such that a V X. Furthermore, since the domain
of R is A, there exists an ordered pair (a, b) E R. Then!' U ((a, b)) is a function from A' U {a} into B. But
this contradicts the fact thatf', which would be a proper subset off' U {(a, h}, is a maximal element of.W.
Therefore A' = A, and the theorem is proved.

	

9.6,	 (Application to Linear Algebra.) Prove that every vector space V has a basis.

If V consists of the zero vector alone then, by definition, the empty set is a basis for V; hence we assume
V contains a nonzero vector a. Let be the family of independent sets of vectors in V. In other words, each
element B E is an independent set of vectors. Note that R is nonempty since, e.g., (a} belongs to R.
Partial order 1 by set inclusion.

Now suppose '1 {B,) is a chain of .. If we show that A = Ui B1 belongs to , i.e., A is an
independent set of vectors, then A would be an upper bound of W. Assume that A is dependent. Then
there exist vectors a1.a2.....a,, in A and scalars c1,c2.....c,,, not all zero, such that

c1a,+c2a2+..+c,,a,,=O	 (I)

Since each a1 E A, there exists B1 in cit' such that a1 E B1 . Since 1 = {B1 } is linearly ordered, one of the sets
B , B2 ,. . . B,,, say B 1 , is a superset of the others, hence a 1 , a2 ,.. . , a,, all belong to 8 1 .. In view of (I). B1
would be dependent, which is a contradiction. Thus A is independent, A belongs to R, and A is an upper
bound of W.

By Zorn's lemma, M has an upper bound B'. 8 can then be shown to be a basis for

Remark: The main part of the proof consists in showing that A = U j Bi does belong to £. This is a
typical example of how Zorn's lemma is used.

	

9.7.	 (Application to Algebra.) Let R be a ring with unity I. Prove that every proper ideal J of R is
contained in a maximal ideal.

Recall that an ideal J is proper if J 96 R. and an ideal M is maximal if no ideal K properly lies between
M and R, that is, if M c K C R, then M = K or K = R. Als.o, when B has a unity element I, an ideal J is
proper if and only if I V J.

Let J be any proper ideal of B. Let d be the collection of all proper ideals of R which contain J. cl is
not empty since J d. Partiall)T order si by set inclusion, Suppose IC is a chain in .d. Let M be the union
of the ideals in W. Now M is an ideal since the union of an ascending chain of ideals is an ideal. Since I is
not in any ideal of'', I V M and hence M is a proper ideal. Thus M € si. Clearly, M is an upper bound for
W. By Zorn's lemma, cl has a maximal element .P. Then J' is a maximal ideal containing I.
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Supplementary Problems

	9.8.	 State whether each of the following statements about cardinal numbers is true or false and give reasons for

your answer:

(a)) 0 4	 (h)5+,,=A4..

	9.9.	 Prove Theorem 9.2: Let o = and /i = Ti be cardinal numbers. Then:

(I) o	 /1 implies A < ji; (ii) A < i implies is < i.

9.10. Prove Theorem 6.12 (Law ofTrichotorny). For an y cardinal numbers u and 3, exactly one of the following

holds:
r<3, o,	 >/*

	

9.11.	 Prove Theorem 9.3: Any set of cardinal numbers is well-ordered by the relation c

	9.12.	 Consider the proof of the following statement:

There exists a finite set of natural numbers which is not a proper subset of another finite set of natural

numbers.

Proof: Let be the family of all finite sets of natural numbers. Partially order . b y set inclusion.

Now let i = (B1 ) be a chain of.'. Let .4 U, II. Note that each B, C A. Hence A is an upper hound of

'6 = p).  Thus every chain of . has an upper hound. By Zorn's lemma. :0 has a maximal element, a finite
set which is not a proper subset of another finite set.

Qra'stion: Since the statement is obviously false, which step in the proof is incorrect?

9.13. Prove the following two statements which were assumed in the proof in Problem 9.2:

(I) The first element ao of the set A fl Z is a first element of the set Z.

(ii) s4 (a) = Sy(Q).

9.14. Prove the following statement which was assumed in the proof in Problem 9.5: Let f: A -. B} be a

collection of functions which is linearly ordered by set inclusion. Then U,f is a function from U. A i into B.

Answers to Supplementary Problems

9.8.	 (a) True. For K, is the cardinal number of a denumerable set and, as proven prevousi, the union of a
denumerable set and an infinite set does not change the cardinality of the iniin ; te set.

(h) False. If not, since the addition of cardinals is commutative, we wouid have

= .s +	 = +

This would imply that the addition of ordinal numbers is comniutatise, which is not true.

9.12. A does not belong to	 = {B}




