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Preface

From livestock production to biological science: from systems biology
to livestock production

Biological processes underlie livestock production, many of them only broadly inves-
tigated or even unknown. Understanding regulation of livestock production capacity
and related traits requires an understanding of life itself. It has been a long waited
goal of the biological science to understand life in all its complexity. However, it is
also recognized for long that life is too complex for the research with the aim to get an
understanding of life to be performed in situ. For this reason, biology has broken up
research into increasingly smaller parts and specializations. Each organ, tissue, and
cell-type was investigated separately, from the morphology of the entire organ down
to the molecular level in specific cell types. Simply, the summing up of all these scien-
tific efforts still does not explain life in all its facets and organizational complexity. In
fact, the complete system is more than the sum of its parts. Insight into the numerous
interactions between molecules, within and between cells, within and between tissues,
within and between organs, within and between organisms, and perhaps also levels
of interactions not yet discovered, has to merge with research on the smaller parts
to approximate life. It should be taken into account that the isolated study of the
different parts may even have resulted in erroneous conclusions due to omission of
signals related to these interactions.

The genomics revolution provided the sequence of whole genomes. The analyses of
the sequence led to the discovery of (almost) all genes, although the function of most
genes is still not understood, or partly understood at best. Fortunately, the genomics
revolution supplied biology with amazing new tools enabling the investigation of the
expression levels of all genes, proteins, and metabolites in a cell, tissue, or organ at the
same time. Thus, interactions between genes and their environment were taken into
account for the expression levels. These techniques allowed defining and describing
the cellular components in large detail and completeness, but again life was more
complex than the summing up of all “omics” data.

Parallel to the genomics revolution, a computer technology revolution enabled the
analysis of increasingly large datasets. This enables integration of the datasets resulting
from all different levels of research. Such an analysis can produce a more complete
description of life that includes the knowledge obtained at separate levels of biological
organization and the interactions within and between these diverse levels. This picture
is still far too complex to understand at this moment. Therefore, to help understand
life and to make testable predictions of complex parts of life, quantitative modeling
approaches are necessary. While mathematical equations are based upon the results
of investigations, their combination in more complex models can predict new complex
patterns of life, and interactions between various elements of life, that were outside the
scope of previous research. By doing so, they make these areas accessible to research
thereby verifying and extending the possibilities for a mathematical representation
of life.

xi
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xii Preface

These developments together initiated this whole new phase in biology together
called “systems biology.” Systems biology provides the opportunity to obtain a wider
and deeper understanding of life because of the incorporation of the knowledge at
all separate levels of investigation, including the mathematical representation of the
complex interactions between these levels. In this way, the accuracy and completeness
of that understanding may be advanced further in an iterative process, as the modeling
produces testable predictions, which can be tested empirically, followed by refinement
of the modeling, leading to closer understanding of the organization of life.

As said, biological processes underlie livestock production, most of them only
broadly investigated and mostly from a practical viewpoint. Research has already
shown that most quantitative (production) traits depend on both the genotype and
on interactions of the genotype with the environment. The genetic background for
a number of traits has been partly uncovered. There are interactions between the
genetic background and food (components), animal handling (stress), or temperature
and housing that (partly) have been quantified. Also, complex interactions between
traits have been shown and a main goal in livestock production science is to improve
wanted traits without compromising the basic animal needs and requirements, without
deterioration of essential physiological traits negatively affecting other important
traits (e.g., fertility), and without inducing problems such as leg weakness, stress,
and other (acute as well as long-term) health and welfare problems. Such an aim
requires full understanding of the essence of life, including the physiological processes
of traits and the interactions at various levels of organization of this physiology.
Mathematical modeling of the known processes and of the known interactions between
them will increase our understanding of the regulation and mutual dependence of both
production (efficiency, product quality) and other traits (robustness, fertility, health
well-being) of livestock animals. The testable predictions of the mathematical models
enable real progress toward better foods for healthier consumers in a healthy animal
with a high well-being, and with less impact on the environment. Systems biology
has the potential to make a large contribution to the long-range goals of livestock
production science.

At the moment, systems biology is still in its infancy in livestock science research in
particular. However, it has high potential in stimulating new directions of research and
development of new concepts and new ways of thinking about familiar problems. This
book describes several aspects of system biology and gives research examples from
other biological disciplines, including simple model organisms and human medicine.
The authors draw lines from their own research toward livestock science. We, the edi-
tors, hope and expect that this book will introduce systems biology to a wide audience
involved with livestock science. We thank especially the publisher, Wiley-Blackwell,
and the Executive Editor Mr. Justin Jeffryes, who initiated and stimulated the work
on this book. We also thank all contributors to this book. The editors acknowledge
the financial contribution of the Ministry of Agriculture and Nature Management
through the IP/OP grant KB-04-004-049. We also thank the head of our department
Dr. Ir. Roel F. Veerkamp for enabling and stimulating the work on this book.

The Editors
Dr. Marinus F.W. te Pas

Dr. Henri Woelders
Dr. André Bannink
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Figure 1.3 Seed network reconstructed from multiple gene expression datasets. Blue lines
indicate positive correlations and red lines indicate negative correlations (Hecker et al., 2008).

Figure 1.4 Expanded network. Original seed network nodes are shown in gray, and added
network nodes are shown in blue. Blue arrows correspond to excitatory interactions, and red
arrows correspond to negative interactions. Direct influences are shown using solid lines and
indirect ones (through possible intermediaries) using dotted lines (Hecker et al., 2008).
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Figure 1.5 Some representative clusters within the mouse protein–protein interaction net-
work obtained by spectral clustering. Seed network genes are shown in red.

Figure 1.6 A fragment of the mouse protein–protein interaction network expanded on the
basis of the human counterpart. Seed network mouse proteins and the links in the mouse
protein–protein interaction network are shown in red. Nodes and links added based on orthologs
in the human network are shown in green and blue, respectively. Note that two proteins that
were not initially linked in the mouse Otx2 and CDK6 are now connected through ATXN1.



P1: SFK/UKS P2: SFK

BLBS088-CP te Pas September 10, 2011 4:28 Trim: 244mm×172mm

(A
)

M
ea

su
re

 s
ta

te
s

G
en

om
e-

w
id

e 
m

R
N

A
 e

xp
re

ss
io

n

S
1

S
2

Ctrl.

S
3

S
4

S
5

T
F

s,
 C

F
s,

 R
N

A
 b

p

S
el

ec
t o

ut
pu

t g
en

es

S
el

ec
t o

f m
in

im
al

 s
et

 o
f

re
gu

la
te

d 
ge

ne
s

M
ea

su
re

 m
R

N
A

 le
ve

ls
 u

si
ng

 a
m

ul
tip

le
x 

m
ea

su
re

m
en

t m
et

ho
d

S
el

ec
t r

eg
ul

at
or

s

S
tim

ul
at

io
n

S
tim

ul
at

io
n

G
en

e 
se

le
ct

io
n

R
N

A
i p

er
tu

rb
at

io
n

N
et

w
or

k 
pe

rt
ur

ba
tio

n
D

ev
el

op
 n

et
w

or
k 

m
od

el
ba

se
d 

on
 d

at
a

A
nt

i-v
ira

l p
ro

gr
am

In
fla

m
m

at
or

y 
pr

og
ra

m

C
on

st
ru

ct
 n

et
w

or
k

(B
)

(C
)

(D
)

F
ig

ur
e

1.
7

A
n

ex
am

pl
e

of
an

un
bi

as
ed

an
d

sy
st

em
at

ic
st

ra
te

gy
fo

r
re

gu
la

to
ry

ne
tw

or
k

re
co

ns
tr

uc
tio

n.
A

m
it

et
al

.(
20

09
)

st
ra

te
gy

co
ns

is
ts

of
fo

ur
st

ep
s.

(A
)

St
at

e
m

ea
su

re
m

en
t.

T
he

y
us

ed
ge

no
m

e-
w

id
e

ex
pr

es
si

on
pr

ofi
le

s
un

de
r

di
ff

er
en

t
st

im
ul

i(
S1

–S
5)

,a
t

di
ff

er
en

t
tim

e
po

in
ts

(t
ic

k
m

ar
ks

).
R

ow
s—

ge
ne

s;
co

lu
m

ns
—

ex
pe

ri
m

en
ts

;
re

d—
in

du
ce

d;
bl

ue
—

re
pr

es
se

d;
w

hi
te

—
un

ch
an

ge
d.

(B
)

G
en

e
se

le
ct

io
n.

A
m

it
et

al
.

(2
00

9)
th

en
id

en
tif

y
ca

nd
id

at
e

re
gu

la
to

rs
th

at
ar

e
tr

an
sc

ri
pt

io
na

lly
re

gu
la

te
d

an
d

pr
ed

ic
tiv

e
of

th
e

ex
pr

es
si

on
of

ge
ne

m
od

ul
es

(t
op

)
an

d
se

le
ct

a
si

gn
at

ur
e

of
ta

rg
et

ge
ne

st
ha

tm
ax

im
al

ly
re

pr
es

en
ts

th
e

fu
ll

ex
pr

es
si

on
pr

ofi
le

(b
ot

to
m

).
(C

)N
et

w
or

k
pe

rt
ur

ba
tio

n.
T

he
y

th
en

ge
ne

ra
te

d
a

fu
nc

tio
na

lly
va

lid
at

ed
sh

R
N

A
lib

ra
ry

fo
r

al
lp

ot
en

tia
lr

eg
ul

at
or

s
an

d
us

ed
it

to
kn

oc
kd

ow
n

ea
ch

re
gu

la
to

r
(t

op
).

F
ol

lo
w

in
g

st
im

ul
at

io
n

of
ge

ne
tic

al
ly

pe
rt

ur
be

d
ce

lls
(r

ed
ar

ro
w

),
A

m
it

et
al

.(
20

09
)

m
ea

su
re

d
th

e
ex

pr
es

si
on

of
th

e
si

gn
at

ur
e

ge
ne

s
us

in
g

th
e

nC
ou

nt
er

m
ul

tip
le

x
m

R
N

A
de

te
ct

io
n

sy
st

em
(b

ot
to

m
).

(D
)

N
et

w
or

k
re

co
ns

tr
uc

tio
n.

C
om

bi
ni

ng
ge

no
m

e-
w

id
e

ex
pr

es
si

on
pr

ofi
le

s
an

d
pe

rt
ur

be
d

m
ul

tip
le

x
m

ea
su

re
m

en
ts

w
as

pe
rf

or
m

ed
to

re
co

ns
tr

uc
t

a
re

gu
la

to
ry

ne
tw

or
k

as
so

ci
at

in
g

re
gu

la
to

rs
w

ith
in

di
vi

du
al

ta
rg

et
s

an
d

ov
er

al
lr

es
po

ns
es

.(
A

da
pt

ed
fr

om
A

m
it

et
al

.,
(2

00
9)

Sc
ie

nc
e

32
6,

25
7–

26
3.

R
ep

ri
nt

ed
w

ith
pe

rm
is

si
on

fr
om

A
A

A
S.

)



P1: SFK/UKS P2: SFK

BLBS088-CP te Pas September 10, 2011 4:28 Trim: 244mm×172mm

F
ig

ur
e

6.
3

E
xa

m
pl

es
vi

su
al

iz
in

g
ex

pe
ri

m
en

ta
lr

es
ul

ts
in

ve
st

ig
at

in
g

co
m

pl
ex

tr
ai

ts
on

bi
ol

og
ic

al
pa

th
w

ay
s.

(A
,B

).
U

si
ng

a
pa

th
w

ay
do

w
nl

oa
de

d
fr

om
th

e
K

E
G

G
da

ta
ba

se
fir

st
th

e
ge

ne
s

un
de

r
in

ve
st

ig
at

io
n

ar
e

en
ci

rc
le

d
(A

)
an

d
th

e
ex

pr
es

si
on

pa
tt

er
n

of
ea

ch
ge

ne
in

th
e

tim
e

is
in

di
ca

te
d

(B
).

M
os

tg
en

es
of

th
e

pa
th

w
ay

ha
ve

si
m

ila
r

re
gu

la
te

d
ex

pr
es

si
on

pa
tt

er
ns

in
th

e
tim

e.
(C

)
A

lte
rn

at
iv

el
y,

th
e

ge
ne

s
in

th
e

pa
th

w
ay

ca
n

be
co

lo
r

co
de

d:
gr

ee
n

co
lo

r
de

no
te

s
up

re
gu

la
tio

n,
re

d
co

lo
r

de
no

te
s

do
w

n
re

gu
la

tio
n

of
th

e
ge

ne
ex

pr
es

si
on

in
th

e
pr

es
en

ts
ta

te
of

th
e

co
m

pl
ex

tr
ai

ta
s

co
m

pa
re

d
to

an
ot

he
r

st
at

e.
(D

)
Si

m
ila

r
as

(C
),

bu
te

ac
h

in
ve

st
ig

at
ed

an
im

al
is

sh
ow

n
as

a
ci

rc
le

ar
ou

nd
th

e
ge

ne
an

d
ea

ch
an

im
al

un
de

rn
ea

th
th

e
ci

rc
le

of
th

e
pr

ev
io

us
an

im
al

.



P1: SFK/UKS P2: SFK

BLBS088-CP te Pas September 10, 2011 4:28 Trim: 244mm×172mm

Figure 7.2 Linking data from gene expression and genome-wide association studies.
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Figure 9.3 k-means clustering analysis using Genesis software (Sturn et al., 2002) of ∼4790
DEG (false discovery rate ≤ 0.05) due to treatment × time in liver of cows underfed energy
(ca. 80% of energy requirements), overfed energy (ca. 150% of energy requirements), or fed
energy to meet requirements (control) prepartum (from dry-off to parturition). The X-axis
depicts the dietary treatments imposed by time point (−30, −14, 1, 14, 28, and 49 days relative
to parturition). The Y-axis depicts fold change in expression compared with −65 days relative to
parturition (i.e., the first sample before cows were assigned to treatments). The average trend in
expression pattern for all the genes composing each cluster is shown in pink. Genes composing
each cluster have correlated expression profiles and may take part in the same or similar
biological processes. Reported also are the GO biological process, GO cellular component, and
KEGG pathways in DAVID that were enriched significantly (Benjamini–Hochberg multiple
comparison correction <0.05). To help in data interpretation, the color of the table matches
the color of the cluster. Microarray data are from a reanalysis of Loor et al. (2005, 2006).
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Figure 9.4 Overall calculated dynamic impact (DIA) in KEGG pathways of DEG in bovine
mammary tissue from midlactation cows fed a control diet (CTR), the control diet supplemented
with saturated lipid (EB), or the control diet supplemented with a blend of fish oil and soybean
oil (FSO) for 3 weeks. Shown are the main pathway classification groups (left column) and
corresponding subgroups. The heat map denotes potential increase (red shade) or decrease
(green shade) of metabolic flux or signaling through the pathway for each treatment comparison.
The overall impact is denoted by the size of the blue bar (the larger the bar, the greater the
impact of DEG on the category of pathways). The most impacted pathways with the overall
flux (red shade denotes increases and green shade denotes decreases) for the comparison EB
versus CTR and FSO versus CTR are shown in the right column. The transcription factor (TF)
networks produced by DEG in EB versus CTR and FSO versus CTR are reported in the bottom
panel. The TF in each network are highlighted by larger font. Details of the animal experiment
and portions of the microarray analysis have been reported previously (Invernizzi et al., 2009,
2010).
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Chapter 1
Introduction to Systems Biology
for Animal Scientists

Christopher K. Tuggle, Fadi Towfic, and
Vasant G. Honavar

Why Should Animal Scientists Be Interested in Learning About
Systems Biology?

This section describes three arguments to justify why animal scientists should explore
the field of Systems Biology.

The Goals of Systems Biology Are Directly Aligned
with Those of Animal Science

Systems Biology aims to produce information to make biology predictive, and (at
least as a final outcome) to do so at the organism level. Such prediction at the animal
level would be very useful for practical goals in animal agriculture such as improving
phenotypic traits, especially those with low heritability, that are otherwise recalci-
trant to such improvement and for which genomic approaches have been highlighted
(Green et al., 2007; Sellner et al., 2007). These include traits that are difficult or
expensive to measure such as female reproduction, efficiency of feed utilization, and
resistance to disease. However, such predictive power would be extremely useful in
studies in animal nutrition, physiology, immunology, and reproductive biology, where
the goal is to understand the effect of altered feeds and feeding regimens, feed ad-
ditives, hormones or other drugs, as well as effects of changes in management, on
the whole animal. Of course, more intermediate goals of Systems Biology, such as
a deeper understanding of specific important pathways and pathway interactions in
relevant cells, tissues and organ systems, will more immediately show the value of the
Systems Biology approach in the livestock field as well as in biomedicine.

Systems Biology and Livestock Science, First Edition. Edited by Marinus F.W. te Pas,
Henri Woelders, and André Bannink.
C© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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2 Systems Biology and Livestock Science

Translation of Systems Biology Understanding of Human and Model
Vertebrates to livestock Species Will Be Highly Instructive

Significant funding is being devoted toward developing the required substantial data
and analytical resources for Systems Biology studies of several species, including
humans, mice, zebrafish, and a number of invertebrates and microorganisms. Much of
these data, and the models and hypotheses generated, will be applicable to modeling
the biology of livestock species of interest to animal scientists, especially for data
collected on the vertebrate species where the majority of this effort is focused. While
the methods necessary to globally compare biological networks need to be developed
and refined continually in order to best perform such comparisons, animal scientists
have used comparative biology for many years to take advantage of biological data
and insights from the biomedical and fundamental biology fields. As discussed in the
next section, comparative efforts and value can also work in the reverse, improving
the modeling of human and model species biology as well.

Systems Biology Will Best Utilize New Genome Information for All Species

The first two points taken together point to the promise of Systems Biology for making
optimal use of the new genomic information from species of interest to address specific
questions in animal science. According to some authors, biology has seen a paradigm
shift in the past 10–15 years, since the initial fruits of the Human Genome Project
(HGP) began to be harvested (Schena et al., 1995; Lander et al., 2001; IHGSC, 2004).
The age in which biological molecules are studied using a reductionist approach—in
isolation—is fast drawing to a close. This is especially true in very well-funded areas of
biology such as human medicine. Funding agencies, journals, and public stakeholders
are increasingly interested in how molecular studies and their conclusions are inte-
grated within larger systems, e.g., organs, organisms, species, and ecosystems. This
shift is partly due to the expectation that research, even research whose goal is to de-
scribe fundamental biological processes, must have a realizable and practical benefit.
A “selling point” in the 1980s put forth to encourage funding of the HGP was that a
global understanding of the human and model organism genomes would result in prac-
tical benefits as yet unknown. However, the shift was greatly accelerated by the very
success of the HGP in creating methods for global measurements of the “parts list” of
the genome, the variation of parts structure (the genes), and the interactions between
these parts. Happily, the animal science community has always had an integrative and
practical view of research, developing new knowledge with a focus on applying such in-
formation as quickly as possible. Now that most species of interest to animal scientists
have substantial genome tools, the concurrent and future development of bioinfor-
matics tools to explore, interpret and integrate molecular-level data across interaction
networks, tissues, and organs to predict biological states (read: phenotypes) will be
highly beneficial to livestock interests. Conversely, the development of a predictive
biology across multiple vertebrate species, including the livestock species, will deepen
the understanding of the human species as well. The value of comparative models for
human biology will be greatly increased if multilevel, detailed modeling of the same
processes can be manipulated, and if perturbation effects can be iteratively predicted,
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tested, and new predictions be made and retested. Many such perturbations cannot be
ethically performed in humans, but may be justified in animals. Thus, improvement in
the systems-level modeling of several livestock species, already validated as excellent
models for human physiology such as the pig (Dehoux and Gianello, 2007; Lunney,
2007) and sheep (Scheerlinck et al., 2008), will improve biomedical understanding
as well.

Thus, for the above reasons, it is important for animal scientists to understand
the current state and future promise of Systems Biology. In the following pages,
we first provide a general description of Systems Biology. Then, we describe some
current applications of systems approaches in livestock biology. Finally, we speculate
on aspects of Systems Biology that are likely to find use in the near future by scientists
interested in livestock and other areas of animal sciences.

What Is Systems Biology?

Over the past several decades, biologists have been accumulating detailed knowledge
of the building blocks of biological systems, e.g., DNA, RNA, proteins, cells, tissues,
organs, organisms, and ecologies. Anatomical, physiological, molecular, cellular, and
structural approaches to biology have revolutionized our understanding of how living
organisms function. However, biological systems are more than simply a collection
of molecules, cells, or organs. We need to understand how the parts work together
to form dynamic functional units, e.g., how genetic and regulatory interactions and
environmental factors orchestrate development, aging, and response to disease. The
emergence of high-throughput techniques has made possible system-wide measure-
ments of biological variables, e.g., the expression of thousands of genes under different
conditions or perturbations, the interactions between proteins, and between proteins,
genes, regulatory RNAs, small ligands, and other signaling agents.

The term “Systems Biology” refers to a collection of methods and tools that attempt
to understand complex biological systems by leveraging diverse datasets generated us-
ing disparate instruments of observation, and by modeling the interactions among the
large numbers of constituent components (Jeong et al., 2000; Kitano, 2002; de Jong,
2002; Auffray et al., 2003; Ge et al., 2003; Ideker, 2004; Klipp et al., 2005; Liu, 2005;
Baitaluk et al., 2006; Bruggeman and Westerhoff, 2007). Examples of Systems Biol-
ogy research include studies of genetic interaction and regulatory networks (de Jong,
2002), metabolic networks (Jeong et al., 2000), and their combinations (Auffray et al.,
2003; Baitaluk et al., 2006). Recent advances in Systems Biology have led to substan-
tial progress on problems such as uncovering the essential macromolecular sequence
and structural features of molecular interactions (Walhout, 2006); extracting signaling
pathways from gene and protein interaction networks (Scott et al., 2006; Hecker et al.,
2008); discovering topological and other characteristics of these networks (Ravasz
et al., 2002; Farkas et al., 2003; Yook et al., 2004; Basso et al., 2005; Khanin and
Wit, 2006); integration of disparate types of data (microarray, proteomics, physical
interaction, subcellular localization, etc. (Bernard and Hartemink, 2005; Sharan and
Ideker, 2006; Hecker et al., 2008)); prediction of the most important nodes in large ge-
netic and protein networks (Jeong et al., 2001); finding gene modules that orchestrate
metabolic or cellular functions (Milo et al., 2002; Segal et al., 2003; Sen et al., 2006).
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4 Systems Biology and Livestock Science

Because a major effort in animal genomics has recently created large datasets
(primarily RNA based but also some proteomic analyses have been reported
(Bendixen et al., 2010; Picard et al., 2010)) to uncover systematic interactions and
outcomes in animal systems, the rest of this section focuses on such network modeling.
Progress in modeling higher level systems that control immunological or physiological
systems will depend on not only the identification of the molecular building blocks
of those systems, but also data on the interactions among the parts, the behaviors
of such systems under different conditions. Hence, significant efforts have focused
on developing several broad classes of network models in Systems Biology, as models
need to describe the underlying gene and protein networks at the appropriate levels of
abstraction for exploring different types of questions (see Figure 1.1A for an example
of a network model describing biological events). Further, methods are needed to
construct such models using data that is variable in quantity, quality, and granularity.
In what follows we discuss several forms of the suggested models (Figures 1.1A–D):

� Undirected graphs in which nodes represent genes or proteins and links between
nodes represent interactions, e.g., protein–protein interaction networks (Uetz et al.,
2000; Ito et al., 2001; Stelzl et al., 2005) or weighted graphs in which the weights on
links model the strength of interaction (e.g., gene expression correlation networks;
see Stuart et al., 2003); see Figure 1.1B. Such networks provide a global picture of
gene–gene or protein–protein interactions that can further be analyzed to identify
putative functional modules (Uetz et al., 2000; Ito et al., 2001; Stelzl et al., 2005)
or nodes that play important roles (e.g., hubs; Jeong et al., 2001); or to determine
topological features (degree distribution, hierarchical structure, modularity, etc.
(Ravasz et al., 2002; Farkas et al., 2003; Yook et al., 2004; Khanin and Wit, 2006)).
Comparative analysis of two or more networks of the same type from different
species can help identify conserved functional modules (Ogata et al., 2000; Matthews
et al., 2001; Stuart et al., 2003; Yu et al., 2004a; Sharan and Ideker, 2006).

� Directed graphs that model influences between genes where nodes represent genes
and unlabeled or labeled edges denote regulatory interactions. Pathway databases
such as TRANSPATH (Krull et al., 2006), KEGG (Kanehisa et al., 2008) are exam-
ples of richly annotated directed graphs. Tracing of directed paths in such graphs
can uncover sequences of regulatory events, and for example redundant regula-
tory mechanisms; directed cycles indicate feedback regulation (see Figure 1.1C).
Comparison of pathways can reveal common subgraphs and putative evolutionary
relationships. Topological analysis can reveal the distributions and average numbers
of regulators per gene.

� Boolean networks (Thomas, 1973; Kauffman, 1993; Silvescu and Honavar, 2001;
Lähdesmäki et al., 2003; Kim et al., 2007) that model influences between genes or
proteins using Boolean functions. Nodes represent genes or proteins whose states
are modeled by binary variables (0, 1); see Figure 1.1D. States of genes are updated
in discrete time steps; the state of a node at time t + 1 is a Boolean function of the
states at time t (or more generally, the states of the nodes/genes at t, t − 1, t − 2, t −
3 . . . t − T time steps, where T is a parameter representing the maximum number
of previous time steps being considered) of the genes that influence it. An N gene
Boolean network can in principle be in one of 2N states. Boolean functions can
model complex nonlinear regulatory influences between genes; Boolean networks
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Figure 1.1 (A) A regulatory network schematic. This figure shows the transcription, followed
by translation events of Protein 1 (P1) and Protein 2 (P2) from genes 1 (G1) and 2 (G2),
respectively. P1 and P2 then form a protein complex (P1–P2) by binding to each other. The
P1–P2 complex then acts as a repressor of Gene 4 (G4), which codes for Protein 4 (P4). G4
is activated by Protein 3 (P3), which also acts as the activator for its own gene (G3). (B) An
example of an undirected graph representing interactions between nodes in a network. Here,
edges do not have directions (i.e., the elements in the edge set are unordered) and self-edges
indicate self-interactions (e.g., formation of a protein dimer in a protein–protein interaction
network). (C) An example of a directed graph representing interactions between nodes in a
network. Here, edges have one-way interactions (i.e., the elements in the edge set are ordered).
Feedback is indicated by self-loop in case of self-regulation (e.g., V4) or cycles (e.g., between V1
and V2). (D) An example of a Boolean network representing qualitative interactions between
nodes. Here, edges can indicate more than one type of relationship (e.g., activation in case
of arrows and inhibition indicated by the perpendicular terminator edge). The relationships
between the nodes can be qualitatively described using Boolean notation as indicated in the
figure. (E) An example of a Bayesian network representing quantitative interactions between
nodes. Here, edges can represent probabilistic relationships between nodes as indicated in
the figure.
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can only model simplified (discrete time, discrete state) dynamics. Simulation can
be used to examine the effect of specific perturbations (e.g., gene knockouts).
Reachability analysis over the state space of the network can be used to answer the
question whether a network can get from one state s (e.g., healthy) to a different
state g (e.g., diseased).

� Probabilistic models, e.g., Bayesian networks (Ghahramani, 1998; Friedman
et al., 2000; Hartemink et al., 2002; Pe’er, 2005; Myers and Troyanskaya, 2007;
Lähdesmäki and Shmulevich, 2008) and related probabilistic approaches (Datta
et al., 2004; Lähdesmäki et al., 2006) that capture stochastic aspects of interactions.
A Bayesian network is a directed acyclic graph (DAG) wherein each node corre-
sponds to a random variable (RV) that models the state of a node (Boolean, discrete,
or continuous). Directed links represent direct dependencies (not to be confused
with causal influences). Each node Xi has associated with it, a probability distribu-
tion for that RV conditioned on its parents in the graph G. A Bayesian network
(BN) specifies a factorization of the joint probability distribution as a product of the
probability distributions of each node conditioned on its parents in the BN. That
is, Bayesian networks can summarize observed dependencies in gene expression
measurements and predict effects of interventions on the conditional distributions;
see Figure 1.1E.

� Dynamic models (not shown) based on differential equations or partial differential
equations (Conrad and Tyson, 2006; Del Vecchio and Sontag, 2007) or stochastic
differential equations (Chen et al., 2005) that capture detailed information about
quantities and rates of specific biochemical reactions.

Increasing the Reliability of Gene and Protein Networks

The lack of complete experimental data on the interaction networks presents an
important challenge for construction and analysis of such networks (Bader, 2003;
Bader et al., 2004). Vidal’s group (Han et al., 2004), for example, observed that the
incompleteness of protein–protein interaction networks can lead to misleading con-
clusions from topological analysis of the networks. The presence of false positives in
protein–protein interaction datasets poses serious challenges in utilizing such data in
generating or validating specific hypotheses. The false positives are due to two reasons:
(i) The biochemical methods such as yeast two-hybrid analyses test only if the proteins
can bind sufficiently well so that a reporter system read-out is positive and do not take
account of physiological concentrations of the tested molecules; (ii) Two proteins
may never be present in the same cell at the same time, and thus never interact, even
though they may physically be able to do so. It has been shown that some reported
protein interactions could not be reconciled with known protein complexes (Edwards
et al., 2002). Likewise, there are similar problems with the gene networks (de Jong,
2002). It is well known that gene expression measurements obtained using microarray
experiments are susceptible to many potential sources of variation/error (Churchill,
2002; Novak et al., 2002). Posttranslational modifications (e.g., phosphorylation, gly-
cosylation) can result in multiple variants of proteins being produced from a mRNA.
The task of modeling the underlying networks is greatly complicated by the fact that
the “function” of a gene, RNA, or protein in particular pathways depends on many
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variables, including alternative splicing, miRNA modulation, posttranslational modi-
fication, and subcellular localization. Combining data from multiple sources presents
several computational and statistical challenges. Such efforts are further complicated
by the fact that the data typically come from different studies that are driven by differ-
ent objectives. Despite these challenges, graph representations of networks provide
an attractive framework for combining data from multiple sources (e.g., networks
generated from data gathered from different organisms; (Sharan and Ideker, 2006)).
The knowledge of functional orthologs of proteins in networks based on data from
different species (e.g., human, mouse) is often incomplete. Moreover, the problem of
aligning multiple networks in general requires solution of the subgraph isomorphism
problem. This problem is known to be computationally intractable (NP-hard) (Garey
and Johnson, 1990) and hence requires either the use of heuristic methods (Berg et al.,
2004) or forcing consistent one-to-one mappings between nodes in different networks
(Stuart et al., 2003), which is unrealistic when dealing with data from different species
(e.g., due to gene duplication events or incomplete knowledge of orthologs). Towfic
et al. (2010) have developed novel, efficient, and modular approaches to aligning
multiple protein–protein interaction networks or gene coexpression networks. The
resulting algorithms have been successfully applied for distinguishing orthologs (gene
sequences predicted to have a direct evolutionary descendant relationship) from par-
alogs (gene sequences predicted to arise from a duplication within a species yet often
compared across species), and grouping tissues, species, etc. on the basis of similarity
of networks being aligned.

Leveraging High-Throughput Data to Refine Network Models
and to Prioritize Experiments

Many current approaches to infer relationships and build gene network models rely
directly on gene expression data. Genes that show correlated expression patterns
are further examined for evidence that they might be coregulated. Such analysis
involves the identification of genes or proteins that are differentially expressed under
different conditions (Rockman and Kruglyak, 2006), then the clustering and grouping
of genes based on similarity of expression profiles measured at different times or
under diverse conditions (Eisen et al., 1998; Alon et al., 1999; Bar-Joseph, 2004;
Jiang et al., 2004; Lonosky et al., 2004). A recognition of coexpression of such gene
clusters can identify common aspects such as functions through Gene Ontology (GO)
annotation classification (Abba et al., 2004; Fraser et al., 2005; Sievertzon et al.,
2005), shared transcription factor binding sites (Cole et al., 2005; Liu and Agarwal,
2005; Ho Sui et al., 2007) and association to known phenotypes (Brown et al., 2000;
Carter et al., 2004). Typically, gene expression studies measure the level of expression
of hundreds or thousands of genes under a small number of perturbations or at a
few time points. Clustering of gene expression profiles and analyses of the resulting
clusters in terms of functional annotations or phenotypes provides an insufficient
basis for asserting functional dependencies with certainty. Data from experimental
interventions (e.g., gene knockouts) designed to uncover how the activity of a specific
gene is influenced by the activities of other genes, are, at present, quite expensive to
gather in complex organisms. Such data are also typically rather sparse, due, in part,
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to the expense of creating such new genetic mutants. Hence, the building, from the
bottom up, of detailed models of interactions between genes that include directed
links denoting functional dependencies, or Boolean functions that describe how the
expression of specific genes of interest are influenced by other genes, is beyond the
reach of current experimental and computational methods. However, experimental
biologists often have detailed knowledge of the role of a small number of genes within
specific pathways (e.g., a pathway that is responsible for the differentiation of retinal
stem cells into rods and cones, or a pathway that governs the response of yeast cells
to different types of stress) based on detailed molecular, biochemical, and genetic
manipulations; see, for example, the integrated NCBI databases on specific genes
(http://www.ncbi.nlm.nih.gov/gene). A more practical approach is to leverage high-
throughput data to expand detailed models of specific fragments on a pathway of
interest. Hence, there has been significant interest in methods for iterative refinement
of gene networks. In the foreseeable future, we anticipate such iterative approaches,
coupled with techniques for prioritizing experiments, to find use in building predictive
models of complex traits, e.g., disease resistance, in animals. In the next sections, we
describe the details of examples of work in this area, which is exemplified by recent
progress in one of our groups (VH).

Expanding a Seed Network of Genes Involved in Retinal Development
by Querying Multiple Gene Expression Datasets

A number of published studies (Blackshaw et al., 2004; Dorrell et al., 2004; Akimoto
et al., 2006; Liu et al., 2006) have profiled changes in gene expression during nor-
mal retinal development. However, successful extraction of gene networks controlling
retinal development remains elusive. Incompleteness of the datasets and differences
in observed correlations in gene expression across different experiments, along with
low (or incomplete) temporal coverage (hundreds or thousands of genes measured at
only a handful of time points), present significant challenges in reliable reconstruction
of the underlying network. We explored an approach to query data from five previ-
ously published high-throughput gene expression datasets for the developing retina
(Blackshaw et al., 2004; Dorrell et al., 2004; Akimoto et al., 2006; Liu et al., 2006),
using a directed graph “seed network” (Figure 1.2) of genes that have been shown

Figure 1.2 Initial Seed Network of gene interactions involved in rod cell differentiation in
the eye (Hecker et al., 2008).
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to govern rod development, constructed manually based on data from a large num-
ber of detailed molecular and genetic experiments (Chen et al., 1997; Ahmad et al.,
1998; Mears et al., 2001; Green et al., 2003; Nishida et al., 2003; Pennesi et al., 2003;
Cheng et al., 2004; Rutherford et al., 2004; Zhang et al., 2004). Despite the low level
of concordance across the different datasets, we showed that by integrating multiple
datasets, we could reconstruct the links between the seed-network genes simply on
the basis of observed correlations between genes in multiple (at least two out of five)
gene expression datasets. The results are illustrated in Figure 1.2, where red lines
indicate negative correlations and blue lines indicate positive correlations.

In this network, there are positive correlations between several genes known to
be expressed by dividing cells and positive correlations between genes known to
be expressed by mature photoreceptors, with negative correlations between the two
groups. Based on the premise that genes that are likely to play important roles in
rod photoreceptor development are likely to be correlated with more than one seed-
network gene, we queried the composite dataset to identify genes that were cor-
related with multiple seed-network members. Cell signaling pathway data (KEGG;
www.genome.jp/kegg/pathway.html; Kanehisa et al., 2008) were then retrieved for
each gene that was correlated with multiple members of the seed network. Using
this procedure, ten such genes were identified as part of the BMP/SMAD signaling
pathway. The BMP/SMAD signaling has been implicated in rod photoreceptor devel-
opment (Murali et al., 2005); 22 proteins were identified as members of WNT/Frizzled
signaling, which has been implicated in rod photoreceptor differentiation (Yu et al.,
2004b); and finally, 24 genes were identified as members of the insulin/IGF-1 sig-
naling (which are not distinguished from one another in KEGG). From the list of
genes correlated with multiple seed-network members, we identified eight additional
hypothesized candidates for addition to the seed network; (Figure 1.3; Hecker et al.,
2008). For example, Figure 1.4 shows several genes involved in heparin sulfate biosyn-
thesis and cystatin C, which are predicted to be linked with “rod-specific genes”
(enclosed in the box). Solid arrows indicate links that are consistent with published
experimental results (not used to establish the connections). Dashed arrows indicate
links for which no experimental evidence is currently available. These results demon-
strate that while extraction of gene networks de novo from gene expression studies
has been difficult, our approach of using multiple datasets, and a seed network to
query a combined dataset has successfully identified candidate genes and pathways

Figure 1.3 Seed network reconstructed from multiple gene expression datasets. Blue lines
indicate positive correlations and red lines indicate negative correlations (Hecker et al., 2008).
(See insert for color representation of this figure.)
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Figure 1.4 Expanded network. Original seed network nodes are shown in gray, and added
network nodes are shown in blue. Blue arrows correspond to excitatory interactions, and red
arrows correspond to negative interactions. Direct influences are shown using solid lines and in-
direct ones (through possible intermediaries) using dotted lines (Hecker et al., 2008). (See insert
for color representation of this figure.)

important for photoreceptor development. Importantly, two pathways identified
through this seed-network analysis have previously been shown to be involved in
rod development (Hecker et al., 2008 and references therein). To facilitate analysis
of the sort described above, we have implemented a prototype of an open source tool,
the Retina Workbench (Kohutyuk, 2007) [www.cs.iastate.edu/∼retinaworkbench/], for
constructing, querying, and analyzing multiple gene expression datasets using a seed
network. We have made it available as a plug-in for Cytoscape, [www.cytoscape.org/]
(Shannon et al., 2003), a widely used suite of software for visualization and analysis
of networks. The Retina workbench allows sharing of datasets, networks, and analy-
sis results among members of a research group or across research groups. Although
initially aimed at a community of biologists interested in the retina, the tool can be
adapted to work with other datasets simply by populating the associated database
with the relevant datasets. This example shows how integration of data in a Systems
Biology way can yield new biological insights.

Topological Analysis of Interaction Networks

Several groups have suggested, based on topological analysis of networks, that gene,
protein, and metabolic networks display special topological characteristics, e.g., they
are approximately scale-free, i.e., the degree distribution P(k) ∼ k(−γ ). In other words,
the number of nodes that have k links approximately follows a power law with decay
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constant, gamma, describing the decrease of the frequency of nodes with k links as k
increases (Ravasz et al., 2002; Farkas et al., 2003; Yook et al., 2004; Khanin and Wit,
2006). Scale-free networks are dominated by a few highly connected nodes or hubs
that have been shown to be critical to the overall functioning of the network (Jeong
et al., 2000). Therefore, these networks are likely to be conserved through evolution.
Gene and protein networks have also been reported to be modular, i.e., they have a
high average clustering coefficient with the clustering coefficient Ci of a node i being
the ratio of links between the nodes within its neighborhood (the direct neighbors
of node i) relative to the maximum number of links that could exist between them.
Protein and metabolic networks have been shown to display hierarchical modularity
arising from a scale-free topology combined with a modular structure (Ihmels et al.,
2002; Ravasz et al., 2002; Ravasz and Barabasi, 2003; Yook et al., 2004).

Spectral Analysis of Protein–Protein Interaction Networks

Spectral clustering (Shi and Malik, 2000; Ding et al., 2005; Dhillon et al., 2007; von
Luxburg, 2007) of protein–protein interaction networks has been used with success to
identify connected components and putative functional modules in protein networks.
Sen et al. (2006) have recently published an analysis of the General Repository for In-
teraction Datasets (GRID) (Breitkreutz et al., 2003) database, a curated compilation
of data from several yeast protein–protein interaction datasets (Ito et al., 2000, 2001;
Uetz et al., 2000; Tong et al., 2001; Gavin et al., 2002; Ho et al., 2002; Breitkreutz
et al., 2003). This analysis used singular value decomposition (SVD) of a matrix repre-
sentation of a yeast protein–protein interaction network consisting of 4906 proteins,
and 19,037 pair-wise interactions from the GRID database to identify clusters. The
resulting clusters were shown to have related functions (as suggested by their GO
functional annotations). This allowed them to use the GO annotations to predict
cluster membership of novel proteins (and hence their interacting partners) and to
correctly predict several new protein–protein interactions. These have since been
confirmed experimentally by Krogan and colleagues (Krogan et al., 2004). Honavar’s
group used spectral analysis to identify modules from the mouse protein–protein
interaction network constructed from BIND, DIP, and MINT protein–protein in-
teraction databases (Bader et al., 2003; Salwinski et al., 2004; Mishra et al., 2006;
Chatr-aryamontri et al., 2007). The results (Figure 1.5) show that several of the seed-
network genes are associated with clusters of proteins within the protein–protein
interaction network.

Identifying Novel Interactions

As noted earlier, incompleteness of protein–protein interaction networks can lead to
misleading conclusions based on analysis of the networks. The mouse protein–protein
interaction dataset (2736 pair-wise interactions involving 2134 proteins) is significantly
less complete compared to its human counterpart (35,021 pair-wise interactions in-
volving 9305 human proteins). However, many of the mouse proteins have human
orthologs (a gene g1 in species A is said to be an ortholog of gene g2 in a species B if
g1 and g2 share a common ancestral gene g in a species C that is a shared evolutionary
ancestor of the species A and B. The strongest evidence that two similar genes are
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Figure 1.5 Some representative clusters within the mouse protein–protein interaction net-
work obtained by spectral clustering. Seed network genes are shown in red. (See insert for color
representation of this figure.)

orthologous is the result of a phylogenetic analysis of the gene lineage). This suggests
the possibility of using mouse orthologs of human proteins be used to infer missing
interactions in the mouse protein–protein interaction network.

Beginning with a fragment of the mouse protein–protein interaction network based
on the seed network described in section A (Figure 1.2), the Honavar group identi-
fied the human orthologs of mouse proteins in this network using the Jackson Labs’
mammalian orthology resource: www.informatics.jax.org/orthology.shtml. Additional
links in the mouse–protein interaction network were then inferred based on links be-
tween the corresponding orthologs in the human protein–protein interaction network
(Figure 1.6).

A Systems Biology Paradigm: The Progress in Analysis
of the Mammalian Immune Response Network

Excellent examples of Systems Biology analyses that are immediately approachable
for animal scientists can be taken from the field of systems analysis of immunology,
which has begun to generate the datasets required for detailed systems biological
modeling (Hyatt et al., 2006; Heng and Painter, 2008; Kleinstein et al., 2008; Amit
et al., 2009; Gardy et al., 2009; Zak and Aderem, 2009). A superb early example in
this field is that published by Gilchrist et al. (2006). The purpose of this research
was identification of regulatory factors controlling expression of genes responding to
lipopolysaccharide (LPS), a component of gram-negative bacteria such as Escherichia
and Salmonella spp. This group collected high-dimensional gene expression profiles
of murine macrophages in culture after LPS stimulation, and through expression
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Figure 1.6 A fragment of the mouse protein-protein interaction network expanded on the
basis of the human counterpart. Seed network mouse proteins and the links in the mouse
protein–protein interaction network are shown in red. Nodes and links added based on orthologs
in the human network are shown in green and blue, respectively. Note that two proteins that
were not initially linked in the mouse Otx2 and CDK6 are now connected through ATXN1.
(See insert for color representation of this figure.)

clustering they noticed that some clusters of genes (cluster 1) had peak levels of
expression at about 4 hours post-LPS, which was after the 1-hour peak of other
gene clusters (cluster 2). These peaks were transitory, with expression levels dropping
rapidly after the peak was reached. Their hypothesis was that transcription factors
(TF) in cluster 2 might be regulating the set of genes in cluster 1, and thus would be
coregulated themselves to be induced early in the process. Examining the proximal
promoter sequences of the genes in both groups, and combining that information with
known TF protein–protein interaction data, they found that ATF3 TF motifs were
common in these promoters, and that ATF3 was part of a complex of factors including
the well-described NF-κB inflammatory master regulatory TF. To determine the role
of ATF3 in regulating gene expression during early LPS response, they collected
additional data on the occupancy of Rel (an activator subunit of the NF-κB TF)
and ATF3 on the predicted regulatory motifs at two genes in cluster 1, Il6, and Il12,
during the response to LPS. At all time points, they also determined the nuclear and
cytoplasmic levels of these two TF. Using all these data, they were able to relate the
levels and location of each TFs on the promoter of each gene with the activation
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state of the gene and develop a kinetic model to predict the expression of a gene
like Il6/Il12 given the estimates of the two TF. They found a negative correlation of
expression with ATF3 promoter occupancy, indicating ATF3 was a negative regulatory
factor, causing the anti-inflammatory response that brings the gene back to baseline
soon after stimulation. With such modeling, they could also predict the expression
response of the target genes given previously untested levels of ATF3, such as the
complete absence of ATF3 function, which would be seen in an ATF3 genetic mutant.
They then tested their gene expression model in macrophages from wild-type and
ATF3 mutant mice, and showed that the model correctly predicted that the IL6 gene
expression would rise but not return to baseline, staying maximally expressed to 6
hours post-LPS. In summary, this group’s work is a paradigm for a Systems Biology
approach, as they created and integrated several orthogonal but interacting datasets,
they developed a model to explain the behavior of the parts of the system, and,
most importantly, they tested the predictions of their model. Since 2006, this group
has refined the model through similar analysis of other TF, including CEBP TFs, to
further define this regulatory control (Litvak et al., 2009).

A real tour de force in systems immunology was published more recently, and
exemplifies the progress in predictive regulatory control models that has been made
in this field by using a systems approach (Amit et al., 2009). This group focused on
the response of mouse dendritic cells to five different microbial pattern molecules.
Dendritic cells are among the most important cells in the early immune response, due
to their role in instructing the adaptive immune system on the identity of invading
pathogens through antigen presentation. The main purposes were to collect system-
wide data on a variety of responses in a model cell, to model these interactions, to
perturb the defined system in a unbiased and comprehensive manner, to model the
system responses to perturbation, and to integrate these data to define the interac-
tions of genes in specific network-based responses to different pathogens. The overall
scheme of the project is shown in Figure 1.7. Amit and coworkers measured RNA
expression levels genome-wide over 24 hours at nine different time points after expo-
sure to LPS, poly(I-C), and other molecules mimicking microbial molecular patterns.
Cluster analysis of these gene expression patterns indicated that the response to LPS
significantly represented the response to the other molecules, for which 80 different
clusters of gene with similar expression patterns were identified. Thus, LPS was used
in the rest of the study where selected candidate regulators were perturbed to explore
the regulatory network. They made two important choices at this step. First, they
used their expression data to identify 117 candidate important regulators, through
assuming that regulators controlling the expression clusters would have correlated
expression patterns with these clusters. Second, to simplify the evaluation of perturb-
ing the system by knocking down expression of these regulators, they identified a
set of 118 genes that would best model the entire dataset. They used an approach
from information theory and minimized the conditional entropy accounted for by
the expression data in sets of tester genes, incrementally adding genes and retesting
the new set until the expression responses best represented the available global data.
They then used shRNA technology to shut off at least 75% of each regulator’s RNA
level in independent experiments, and measured the effect on expression for each
of the testers. A model was developed using the changes in these “signature” genes
after each perturbation that connected regulators and specific targets that showed
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evidence of significant response to that regulator. Cumulative analysis then produced
a global network with 2322 significant interactions that were approximately 75%
activation and 25% repression. This network contained many known interactions,
which therefore provided corroborative evidence in support of the network, but also
helped uncover many novel regulatory connections, showing the value of this unbiased
perturbation approach. Within the global network they recognized two large subnet-
works (inflammatory and antiviral) as well as several smaller networks that controlled
more specific aspects of the response. Exploring the interactions within these net-
works, they described coherent and incoherent interactions within small networks.
The former describes multiple interactions between three or more genes in which reg-
ulatory actions are reinforcing, i.e., regulator A activates B, and both A and B activate
C, creating in this example a feed-forward regulatory loop. Such coherence was found
in the majority of the feed-forward regulatory loops. Importantly, through subnetwork
analysis they discovered that the inflammatory network is controlled through domi-
nant activators (defined as genes that activate more genes in inflammatory networks
than in antiviral), cross-inhibitory regulators (genes that activate inflammatory tar-
get but suppress antiviral genes), and specific activators, which stimulate expression
of only inflammatory network genes. In the antiviral network, they found Stat1 and
Stat2 regulate many network members, which are also in turn regulated by a second
tier of “middle-manager” regulators. Importantly, these analyses culminated in the
development of a core network of 24 regulators, which is proposed by the authors
to be coordinating responses to various pathogenic stimuli through both dominantly
activating genes and cross-repression of regulatory factors not needed for a specific
response. Of importance is the clear demonstration that many unknown regulatory
factors were implicated in these analyses; for even the 24 core regulators, which one
would expect to have been studied in innate immune response previously, nearly half
(11 of the 24) were novel in such regulatory roles. Many of the downstream effectors
were also newly implicated in the immune response. Amit et al. (2009) explicitly com-
pared their perturbation approach with traditional observational approaches that rely
only on correlation of regulatory expression with predicted target gene expression. In
the latter, many false positives are found due to the fact that with a finite number of
conditions (often partially confounded), many regulators and targets simply have an
expression patterns that are too similar to be sufficiently differentiated. One caveat
important to note is that the responses to the shRNA perturbations may be indirect
responses and, thus, the assumption that expression changes due to treatment with a
specific shRNA are due to direct effects on the target gene with altered expression
is probably inaccurate for some specific regulatory–target interactions. However, it is
also likely that the systems approach also provided robustness with respect to any one
specific interaction proposed.

A major value of the broad-scale perturbation approach to developing interac-
tion networks is the expectation that such approaches can be generalized to other
systems. This can be done using a training dataset obtained using expression pro-
filing and then testing the predicted relationships through large-scale perturbation
experiments. While the authors indicate the costs are modest, this state-of-the-art
biomedical project is an example of the goal to be aspired to by animal scientists
but would be quite difficult to develop in the current agricultural research funding
environment.
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What Parts of Systems Biology Are in Use in Animal Science Today?

Systems Biology is a young field, especially for those interested in application to
livestock biological systems. A prerequisite for molecular Systems Biology clearly is
a completed genome sequence for the organism of choice. Many reports have been
published over the past decade (reviewed in Dekkers and Hospital, 2002; Pomp et al.,
2004; Georges, 2007; Hu et al., 2009) using whole-genome genotyping methods to
find genome regions and quantitative trait nucleotides in livestock through statistical
analysis of genotype and phenotype through QTL mapping, and, more recently, SNP
association mapping (e.g., see Kolbehdari et al., 2009). However, in this review, we
will not discuss papers analyzing structural genomics and phenotype that do not also
integrate additional data such as gene expression. A search of the PubMed-indexed
literature identified a number of publications describing approaches that, in the future,
aspire to develop into systems biological analyses. Several do incorporate elements
of integrative data modeling and analyses. In the sections below, we briefly describe
those papers that report such analyses, as well as those genomics papers that have
elements of integrative genomic analyses. Clearly, the availability of a draft genome
sequence provides the opportunity to apply comprehensive tools and analyses. Thus,
the chicken and bovine scientific communities have made progress in applying Systems
Biology approaches. As well, possibly due to the closer association to genomics, animal
breeding was one of the first research areas to begin to use Systems Biology methods
and to discuss the value of such global approaches to animal agriculture (Green,
2009). Other disciplines of importance to animal scientists, such as physiology (Dow,
2007) and nutrition (Panagiotou and Nielsen, 2009), are also adopting the methods
and tools of Systems Biology to answer questions of interest to those communities.

Chicken and Turkey

The publication of the chicken genome sequence (ICGSC, 2004) and a companion
paper describing millions of genetic variants (Wong et al., 2004) ushered in the be-
ginnings of System Biology in this species (Burt, 2005, 2007; Lamont, 2006; Cogburn
et al., 2007). Associated with the chicken’s status as the first livestock species to
have its genome sequenced, the datasets and bioinformatics tools available for this
species are advanced compared to other livestock species. For example, the chicken
genome sequence was utilized at multiple levels in creating a draft sequence as-
sembly of the turkey genome reported in 2010 (Dalloul et al., 2010). Because the
chicken has been studied both as an agriculturally important species as well as a
model organism for developmental biology studies, multiple communities have de-
veloped tools for analyzing and integrating genomic data that often can be applied
to the chicken genome (McCarthy et al., 2007; Jupiter et al., 2009; Konieczka et al.,
2009; van den Berg et al., 2009). For example, Starnet is a bioinformatics tools de-
signed to create gene regulatory networks using user-defined gene sets. In addition to
generating Pearson correlation-based networks of specific chicken datasets, Starnet
has data stored for a total of ten species and can also produce interaction networks
(Jupiter et al., 2009). Furthermore, a molecular interaction prediction and analysis tool
named BioNetBuilder is available for analyzing data from chicken and other species
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(Konieczka et al., 2009). Konieczka and colleagues have used a microarray dataset
from chicken embryos as well as interaction data from other data sources (including
KEGG, MINT, Biogrid, and others) to create a chicken interactome, which contains
72,000 predicted interactions among 8140 genes. Further, interactome mining and sub-
network extraction can be accomplished by the user via a Web interface (Konieczka
et al., 2009).

Identification and analysis of the genetic lesion responsible for the chicken pheno-
type talpid3 exemplifies the integration of biological and computational approaches in
chicken genomics and developmental biology (Davey et al., 2006; Bangs et al., 2010).
Using classical mapping of this recessive trait, five candidate genes in the critical region
were found using the annotated chicken genome sequence, and a frameshift mutation
was identified in a gene without biological function, KIAA0586. Electroporation of
a wildtype KIAA0585 cDNA, along with a construct expressing Shh, rescued gene
expression patterns for markers of correct dorsoventral limb patterning affected in
the talpid3 mutant. In a recent expansion of this investigation, this group has clustered
gene expression data from spatial regions of wildtype and talpid3 limb tissue to find
genes dependent on talpid3 function. Correlation clustering of these data identified a
Hoxd13-containing cluster, which was of interest because of the known role of HoxD
genes in limb patterning. Because overlapping spatial patterns of expression control
combinatorial specification of limb structure, the authors more precisely determine
three-dimensional expression patterns for many of the HoxD13 cluster genes. Us-
ing computational analysis to quantitatively compare and cluster these expression
patterns, they could identify seven such spatial clusters. Six genes clustered with
HoxD13, and these new relationships were used to develop a precise (time and space-
specific) gene regulatory network that acts downstream of Shh in the chicken limb
(Bangs et al., 2010).

Cattle

Several authors have described current efforts to develop datasets and tools so that
their field of interest can take advantage of the promise of Systems Biology, including
bovine genomics in lactation (Loor and Cohick, 2009), reproduction (Adjaye, 2005;
Fazeli and Pewsey, 2008), and in animal breeding and genetics (Green, 2009). As an
example of recent bioinformatics work using the cattle genome sequence for com-
parative analysis, Seo and Lewin (2009) have used Pathway Tools and MetaCyc to
create a cattle-specific metabolic pathway database. Comparison to other mammalian
metabolic pathways showed that genes for 22 metabolic enzymes with evidence for
activity in mammalian systems were not present in the cattle genome sequence.

The groups of Reverter and Dalrymple have used methods and analyses that ap-
proach Systems Biology in recent publications on understanding gene regulatory net-
works in beef cattle (Hudson et al., 2009; Reverter et al., 2010). Indeed, their method
could be viewed as a “holistic” analysis of global “differential wiring” of gene expres-
sion networks between two phenotypic states to find causative mutations that account
for those differing phenotypes. The first publication using this differential wiring
(DW) method compared muscle RNA expression at several fetal and postnatal stages
of development, and contrasted the Piedmontese and Wagyu phenotypic differences.
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These phenotypes are known to be caused by a mutation in the myostatin gene in
the Piedmontese breed (Kambadur et al., 1997). The key insight here was to develop
a question that would provide “myostatin” as the answer, as this gene—node in the
expression correlation network—was clearly controlling the phenotypic differences in
muscle seen in the these breeds. To develop a metric that would ask such a question,
they first calculated a gene expression correlation network and identified all nodes
whose links with other nodes changed significantly between breeds (i.e., significant
DW). To find the most influential factors with DW, they then identified all nodes with
annotation as a regulatory factor and connected these regulators with high DW to
these genes with high phenotypic impact, measured by a so-called phenotypic impact
factor (PIF). The PIF is based on both the differential expression and the absolute
expression level of the gene. A highly expressed gene that is also differentially ex-
pressed is predicted to have a high phenotypic impact. Those genes calculated to have
DW to high PIF genes are given a high regulatory impact factor (RIF). The gene with
highest RIF in their dataset was myostatin. This work is interesting for developing the
idea to ask the right question, which was “what relationship measure gives the answer
‘myostatin’?” As important was the fact that this analysis of microarray data, along
with known regulatory annotation of the network nodes, was performed using data
on only 27 animals and a similar number of arrays. This indicates that, given the right
analysis, microarray data from a very reasonably sized project can give relevant and
precise answers to complex questions. Recently, Reverter et al. (2010) tested their RIF
approach on several additional datasets. They showed that the RIF analysis appears
universally applicable, and identified likely or known regulators controlling phenotypic
differences ranging from breast cancer survival to adipocyte differentiation.

Pig

There are limited reports describing the integration of large-scale data types that uti-
lize pig-specific data. As stated above, this is primarily due to the lack of a completed
genome sequence. Many examples of transcriptional profiling have been published
(reviewed in Tuggle et al., 2007), although nearly all primarily report on functional
genomics level analyses rather than on significant integration of data to develop predic-
tions of larger systems. Our group has shown that clustering of porcine gene expression
data can provide information for the prediction of common regulatory control, as well
as common function, through GO (Wang et al., 2008). A basic assumption for such
work is that genes with correlated responses to stimulus (“coexpressed”) may be func-
tioning together to provide a cellular function important for appropriate response to
a specific stimulus. The mechanisms causing such coexpression can be hypothesized
to be a common regulatory factor or factors. We have used lymph node response to
infection by Salmonella over time to identify a set of genes with the common response
of activation within the first 8–48 hours post infection (Wang et al., 2008). The upreg-
ulated genes within 8–24 hours post infection were richly annotated (about 25% of
the total gene list) as NF-κB target genes. We hypothesized that the remainder of the
genes with this response behavior might be regulated as well by NF-κB. Analyzing for
overrepresentation of NF-κB motif sequences in the promoter region of the human
orthologues of these set of genes, we found many of the 75% unknown target genes



P1: SFK/UKS P2: SFK

BLBS088-01 te Pas September 10, 2011 4:15 Trim: 244mm×172mm

20 Systems Biology and Livestock Science

in the coexpressed list were overrepresented for NF-κB motifs. We are testing these
predictions using a number of biochemical techniques, and have shown that these
motifs are bound by NF-κB protein in vitro (O. Couture, C. Tuggle et al., unpublished
observations).

Some papers report on some initial dual measurement and comparison of multiple
high-dimension datasets. Hornshoj et al. (2009) showed transcriptomic data (cDNA
microarrays and 454-based sequencing) and proteomics data of muscle and heart
tissue. While only 148 RNAs and proteins could be identified in both technologies,
this was nearly half of the proteins measured (354), and a global analysis indicated the
measured levels were positively correlated (Pearson’s correlation coefficient was 0.49
and 0.53 for protein level compared to microarray and 454 sequencing, respectively).
Other papers have used porcine tissue in projects to understand the systems that
control tissue remodeling (Popovic et al., 2009). Another report reviewed how a
mathematical modeling approach (indicial response function, IRF) analysis could be
used to measure the ratio of change in a specific system feature due to a specified
amount of stimulus, and that IRF can be used to integrate observed complexity using
convolution (Kassab, 2009).

Few reports have appeared describing the integration of porcine expression data
with genetic segregation data in a population, the eQTL or “genetical genomics” ap-
proach (de Koning et al., 2005; de Koning and Haley, 2005). One report has described
a “comparative systems genetics” approach to compare such data across species.
Kadarmideen and Janss (2007) used a QTL mapping approach in mice to find eQTLs
for cortisol levels, and a population genetic analysis of the cortisol levels in a popu-
lation of pigs selected for stress that showed cortisol levels are highly heritable and
that a major segregating gene is present. They then suggest using the mouse eQTL
localizations to narrow the search for the equivalent controlling genes in pigs. Steibel
et al. (2010) reported a preliminary analysis from an eQTL study of carcass pheno-
types and muscle gene expression in F2 animals from a Duroc x Pietrain cross. Using
microarray data on loin muscle tissue for more than 400 F2 animals, they identified 263
putative eQTLs associated with an oligonucleotide with a known genome map posi-
tion. Three pathways (with some overlapping GO terms) associated with these eQTLs
were highlighted; these included terms for lipid metabolism, posttranslational protein
modification, cell cycle, DNA replication/repair/recombination, and cell death. A joint
analysis found 12 genomic regions coincident for pQTL and eQTLs, which indicates a
high probability that a cis-acting eQTL is present in these regions. A cis-acting eQTL is
predicted when a QTL that controls expression of a specific gene maps to the physical
location of that gene. A number of candidate genes for these eQTLs were identified,
based on both their correlated expression levels and pQTL mapping results.

Aquaculture

While a number of papers on fish species have discussed Systems Biology approaches,
such work is primarily performed in the context of ecotoxicogenomics, as fathead
minnows (FHM) are an established model for measuring whole-animal effects of en-
vironmental toxins (Miracle and Ankley, 2005). Shoemaker et al. (2010) developed
an in silico metabolic model of toxicology using FHM steroidogenesis as a paradigm,
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which may be useful in reproductive physiology in land vertebrates. Interestingly, they
found that not only the interactions identified as most sensitive were important in
modeling network response to stimuli (which is often assumed to be the most infor-
mative interactions), but that also the robustness of the signal receiver to system noise
is important. In other modeling work, Rajasingh et al. (2006) have modeled whole-
animal metabolism of a specific, economically important carotenoid, astaxanthine, in
Atlantic salmon using ordinary differential equations. In integrative genomics work,
Nilsson et al. (2009) used correlation of expression of all genes in microarray data
with known heme biosynthesis pathway genes. They found five additional genes re-
sponding specifically in the mitochondria. Using specific knockdowns of these genes
in Zebrafish to test this prediction resulted in all modified fish having severe anemia
(Nilsson et al., 2009).

Further Reading

Partial Listing of Online Resources for Systems Biology

Systems Biology Resources (all URLs checked October 2, 2010)

Books

1. Klipp, E., Liebermeister, W., Wierling, C., Kowald, A., Lehrach, H., & R. Herwig
(2009) Systems Biology: A Textbook, 1st Edition. Wiley-VCH, Weinheim, Germany.

2. Alon, U. (2006) An Introduction to Systems Biology: Design Principles of Biological
Circuits. Chapman & Hall/CRC, Boca Raton, Florida, USA.

3. Kaneko, K. (2006) Life: An Introduction to Complex Systems Biology. Springer,
Berlin, Germany.

4. Palsson, B. (2006) Systems Biology: Properties of Reconstructed Networks. Cambridge
University Press, Cambridge, UK.

Books 2–4 were reviewed at:

http://www.nature.com/nature/journal/v446/n7135/full/446493a.html
See other similar books at http://systems-biology.org/resources/books/.
See also Journal Special Issues devoted to Systems Biology or network analyses:
Science July 24, 2009, 325: 405–432. Articles by Kim and Barabasi are most relevant.
Science March 1, 2002, 295: 1661–1682.

Journals

Molecular Systems Biology (http://www.nature.com/msb/index.html)
BMC Systems Biology (http://www.biomedcentral.com/bmcsystbiol/)
BMC Bioinformatics (http://www.biomedcentral.com/bmcbioinformatics/)
Bioinformatics (http://bioinformatics.oxfordjournals.org/); see also Briefings in

Bioinformatics (http://bib.oxfordjournals.org/).
PLOS Computational Biology (http://www.ploscompbiol.org/home.action)
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Web sites

� General/Software Collections
1. http://www.systems-biology.org/. A comprehensive portal for resources, software

conferences and jobs in the Systems Biology field.
2. http://www.bioinformatics.org/. A portal for the Bioinformatics.org user group

which has the following purpose: “We develop and maintain computational re-
sources to facilitate world-wide communications and collaborations between people
of all educational and professional levels.”

3. http://www.bioconductor.org/. A collection of R-based software for analyzing
high-dimension biological data.

4. http://sbml.org/Main_Page. The portal for the group that developed and uses
the Systems Biology Mark-up Language, which is a machine-readable language
that can be used by different software tools to represent and visualize biological
models.

� Pathways and Data Analyses Resources
The Kyoto Encyclopedia of Genes and Genomes is a comprehensive database

collecting pathways information for many organisms (http://www.genome.jp/
kegg/)

The Reactome project curates a large number of biological pathways, emphasiz-
ing human systems (http://www.reactome.org/)

The GO database assigns and stores functional terms using a defined vocabulary
to gene or protein entities in genomes; often using cross-species information
based on structural similarity (http://www.geneontology.org/)

Pathguide contains information about 325 biological pathway related resources
and molecular interaction related resources (http://www.pathguide.org/)

� Courses and Educational Resources/Societies/Meetings
1. http://www.bioinformatics.org/wiki/Educational_services
2. http://www.systemsbiology.org/Intro_to_ISB_and_Systems_Biology. An intro-

duction to Systems Biology from the Institute’s biomedicine perspective.
3. The International Society for Computational Biology (http://www.iscb.org/) is a

professional society of scientists interested in Computational Biology. The Soci-
ety organizes several bioinformatics/computational biology meetings relevant to
Systems Biology, the largest is called Intelligent Systems for Molecular Biology
(ISMB).
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Chapter 2
Modeling Approaches in Systems Biology,
Including Silicon Cell Models

Alexey N. Kolodkin, Fred C. Boogerd,
Frank J. Bruggeman, and Hans V. Westerhoff

What Is Systems Biology

Sometimes it is understood as holism and opposed to reductionism. However, we
would like to present here another point of view and show that it is reductionism and
holism at the same time.

Raising the Question

Biology, by definition, is the science that focuses on the study of life and living or-
ganisms. There are many, sometimes contradictory, definitions of life. Now, at the
time when artificial intelligence is no longer just a subject of fantasy literature, when
artificial systems can imitate many properties of living systems, including the ability
to grow and to adapt to changes in the environment, to reproduce themselves, to
metabolize external substrates, the question of what is life is especially burning. As an
example, vast debates around this topic can be found in a special issue of the journal
Origins of Life and Evolution of Biospheres (Gayon et al., 2010). Although there is still
no consensus and strict definition of what is life, we can say that life is something
that is not present in the particles of inorganic matter (biomolecules) when they are
in isolation, but something that appears when these biomolecules interact with each
other in a whole cell. We would call this property systemic, because it is not present in
the parts, but appears only in an entire system (Alberghina and Westerhoff, 2005).

In fact, what is considered as a system and is studied by biology is not necessarily
limited to an entire organism. The main object of a particular study can be a small
part of a living organism, e.g., a particular metabolic network. On the other hand,
it can also be the biosphere as a whole, as a bigger system with many interacting
organisms. In more general terms, biology studies semiopen or “metabolic systems”
that selectively interact with their environment by way of mass and energy exchange,
where the decrease of free energy in the environment is coupled with the increase of
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the order of the biosystem itself (decreasing its own entropy) (Westerhoff and Dam,
1987). An important feature of a living system is its modular structure. For example,
livestock consists of separate animals, the body of an animal consists of organs, organs
consist of tissues, tissues consist of cells, and so on, down to metabolites, enzymes,
proteins, lipids, DNA, RNA, and other biomolecules. Biology halts at the level of
biomolecules; we can indeed stop at the level of the molecular world, where properties
stemming from quantum mechanics are understood as such, or have been established
empirically.

In the cascade of biological levels, one encounters several areas where systemic
properties appear. For example, some systemic properties characterizing life (e.g.,
homeostasis, response to stimuli) appear already on the level of a single intracellular
network. From there, several intracellular networks form a next level of complexity,
e.g., the cell, with new systemic properties (e.g., metabolism, growth, adaptation,
reproduction). Then, combination of living cells and their interactions can lead to
emergence of organisms and so on.

To summarize, biology has to deal with systems and systemic properties; conse-
quently, biology has to use a systemic approach. Then, why is Systems Biology a new
science? How could biology be something different from Systems Biology (Boogerd,
2007)?

One could say that Systems Biology is a kind of biology, where experiments are
accompanied by modeling. However, it is not fully true. First of all, because building
and analyzing models is a fundamental component of any science. Moreover, in a very
broad definition, model simply means a “representation of a limited part of reality
with related elements,” a projection of one system, e.g., the real world, to another
system. Following that definition, the formation of a conditional reflex to a stimulus
could also be considered as a kind of “modeling” of reality; Pavlov’s dog began to
salivate in response to a neutral stimulus preceding the feeding, because the real
world was reflected in its nervous system. In this broader understanding of what is
modeling, unconditional reflexes could also be seen as models, but models written
by evolution on a “hard memory” of species. If we now narrow down the definition
of modeling with respect to science only, then a model can be defined as “a way by
which the real object is connected to the rationale of a scientist” and modeling as
“the construction of physical, conceptual, or mathematical simulations of the real
world.”The essence here is that what we call scientific reality, i.e., the way we see
the real object (world), is anyway just a model of it; it is the interpretation based on
our theories. Consequently, either biology or Systems Biology or any other science
always has to deal with modeling. If we narrow down the term modeling further to
just mathematical modeling or even to exclusively computer modeling, then there is
still a problem to define Systems Biology as modeling plus experimentation. There are
other areas in biology, e.g., mathematical biology, that aim to use both experiments and
mathematical models. However, Systems Biology means more. It is not just something
plus something. Systems Biology is a conceptual approach, a new scientific paradigm.
We will try to show this in the following sections. Later, after clarifying what Systems
Biology is, we will be back to modeling and discuss how mathematical modeling serves
Systems Biology, what the top-down, bottom-up, and middle-out approaches mean,
what the silicon cell model is, and what the perspectives and the practical applications
of Systems Biology are.
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Emergence

Concept of Emergence

In the previous section, we have used the term systemic properties to describe the
properties shown by the system as a whole, properties that elements lack in isolation.
Now, we want to be stricter and specify the relation between the properties of a
system and those of its elements. So we should introduce the term emergent property.
In colloquial language, emergent simply means the act or process of rising or appearing.
However, in a scientific setting, an emergent property means a property of a system
that satisfies three criteria: not only (i) the thesis of systemic (organizational) property
(property that should not be exhibited by elements in isolation) that restricts the
type of property that may be considered emergent, but also (ii) the thesis of physical
monism, and (iii) the thesis of synchronous determinism. The thesis of physical monism
restricts the nature of the system’s elements. It states that the system consists of only
physical entities and denies any supernatural influences. The thesis of synchronous
determinism restricts the way systemic properties and the system’s microstructure are
related to each other; it states that there can be no difference in systemic properties
without changes in the structure of the system or in the properties of the components
(Stephan, 2006). If all of the three theses are satisfied at the same time, then the
property may be called an emergent property. In other words, together they constitute
the minimal criteria for (weak) emergence. All other, more sophisticated, notions of
emergence have their base in weak emergence.

However, if we use the definition of emergence presented above, almost all proper-
ties of a system could be considered emergent. For example, the hardness of diamond
emerges from the interactions between its carbon atoms. The human mind and self-
consciousness emerge from the interactions between neurons. However, we can al-
ready intuitively note the difference between the emergence of self-consciousness and
the emergence of hardness in diamonds. This problem has been amply discussed in the
philosophy of mind, where it has been suggested to make a distinction between strong
emergence (self-consciousness) and weak emergence (hardness of diamond) by the cri-
terion of irreducibility (Stephan, 2006). Weak emergence then satisfies the three theses
stated above. Strong emergence would satisfy all criteria of weak emergence plus an
additional one—irreducibility. In the words of the British emergentist philosopher
C.D. Broad, irreducibility means that “the characteristic behavior of the whole could
not, even in theory, be deduced from the most complete knowledge of the behavior of
its components, taken separately or in other combinations, and of their proportions
and arrangements in this whole” (Broad, 1925). This irreducibility would then mean
that there is (strong) emergence, although Broad did not distinguish between strong
and weak emergence.

Three Varieties of Irreducibility

According to the contemporary philosopher A. Stephan, a systemic property is ir-
reducible “if (i) it is not functionally construable or reconstruable; if (ii) it cannot
be shown that the interactions between the system’s parts fill the systemic property’s
specified functional role; or if (iii) the specific behavior of the system’s components,
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Figure 2.1 A graphic illustration of two conditions for emergence. A, B, and C are the
parts making up the system. S1(A,B), S2(A,C), and S3(B,C) are simpler subsystems. R(A,B,C)
represents the behavior of A, B, and C within the system and PR is a systemic property. The
diagonal arrow represents Broad’s idea of emergence. The horizontal and vertical arrows
capture the two conditions implicit in Broad. (Adapted from Boogerd et al., 2005.)

over which the systemic property supervenes, does not follow from the component’s
behavior in isolation or in simpler configurations” (Stephan, 2006). Importantly, these
varieties of irreducibility are independent of each other.

So each of these three conditions would lead to irreducibility. If condition (i) ap-
plies, properties are strongly emergent, but nothing useful can be done with this
statement. Such properties are not functionally construable, because there is a lack of
knowledge about the underlying mechanism. From a biological point of view, this is
not an interesting case of strong (epistemological) emergence.

The other two conditions give rise to strong ontological forms of emergence. We
will explain this using Figure 2.1. The triangle connects three kinds of properties. PR
represents a systemic property, which might be strongly emergent or not. A, B, and C
denote parts of the system and the properties they have in isolation. S1(A,B), S2(A,C),
and S3(B,C) are subsystems and their properties. R(A,B,C) stands for the behavior and
interactions of the parts within the system. The way Broad (1925) defined emergence
can now be visualized by following the diagonal arrow: if PR cannot be deduced from
the properties of isolated elements/subsystems, it is an emergent property.

The direct relation between a systemic property and the properties of isolated
elements/subsystems (the diagonal arrow) can be subdivided in two separate relation-
ships (the horizontal and the vertical arrows). The vertical arrow describes whether or
not the systemic property (PR) can be deduced from the behavior and interactions of
the parts within the system, R(A,B,C) (i.e., irreducibility (ii)). The horizontal arrow
describes whether the behavior and interactions of components when in the system
(R(A,B,C)) can be predicted from the behavior of components (or subsystems) in iso-
lation (A,B,C,S1,S2,S3) (i.e., irreducibility (iii)). In our opinion, the concept of strong
emergence as it can be found in the philosophy of mind is related to the vertical arrow.
This would imply that the specified functional role cannot be reductively explained
even when there is full knowledge about the behavior of the parts within the sys-
tem, represented by R(A,B,C). In other words, the property PR is not reducible, even
though in this case the underlying mechanism is completely clear in a systemic context.
For metaphysicians, this then represents a case of strong emergence. However, we
think that such a notion of strong emergence would introduce some vitalistic force,
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and therefore, we cannot agree with this concept. In contrast, we propose that strong
emergence arises along the line of the horizontal arrow (irreducibility (iii)), i.e., when
R(A,B,C) cannot be deduced from the full knowledge of the behavior of the parts and
their subsystems in isolation. Because complete knowledge of the subsystems—of the
modularity of complexity—is allowed in the prediction base for R(A,B,C), a systemic
property PR does not become strongly emergent easily. It forms a heavy constraint on
which systemic properties may be called strongly emergent. In this way, trivialization
of the concept, as in the case of weak emergence, is avoided and only the biologically
interesting cases of emergence remain.

Reconstruction of Emergent Properties

At this point, it is worthwhile to pay attention to the distinction between a systemic
property being strongly emergent and whether or not that property can be recon-
structed. If a systemic property PR turns out to be a strongly emergent property, it
does not imply that PR cannot be reconstructed in a mechanistic model. Our claim
(see the section above) is that if R(A,B,C) is known, then PR is explainable from
R(A,B,C). Consequently, if we are able to reconstruct R(A,B,C) in a mechanistic
model, in which not only the complete knowledge of the parts and the subsystems is
employed but also knowledge pertaining to R(A,B,C), a full mechanistic explanation
of a strongly emergent PR can be given. Thus, for reconstructing PR, we do not limit
ourselves in choosing the resources we have available. Here, all kinds of knowledge
are allowed to be used. The behavior of part A within the system is dependent on its
own relational properties, which can be determined in isolation, and also on the state
of the system, i.e., the concentration of B and C. We define this (state-dependent)
behavior of component A within the system as a component property of A. The same
applies to parts B and C. These (state-dependent) component properties and the
state-independent relational properties together constitute R(A,B,C).

We will now explain the difference in more detail in the following example. Let
us consider a network of reactions as presented in Figure 2.2A. We can predict
from knowledge of enzymes 1–6 in isolation that the entire system will establish a
stationary state for the flux through the pathway and for the individual metabolite
concentrations. For a wide range of parameter values, a steady state will indeed be
established. However, for some sets of parameter values, an oscillatory state will
show up instead (Figure 2.2B). This oscillatory behavior would count as a strongly
emergent property of the system. Nevertheless, the occurrence of oscillations could
be easily reconstructed by a simple mechanism in mathematical models, provided that
at least some systemic knowledge is also available, that is, knowledge of the component
properties, i.e., the actual synthesis and degradation rates of X, Y, and Z that would
determine actual X, Y, and Z concentrations in the system.

Toward a Hierarchy of Strong Emergence

After having made the distinction between weak and strong emergence and having
applied a strict criterion for strong emergence, we would like to elaborate on the ques-
tion of how to discriminate among strongly emergent properties. How to implement
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Figure 2.2 A network of enzymes and metabolites featuring oscillatory behavior. (A) The
numbers 1–6 denote different enzymes that operate at a certain rate v. Metabolite X is produced
in reaction 1 and degraded in reaction 2; metabolite Y is produced in reaction 3 and degraded
in reaction 4; metabolite Z is produced in reaction 5 and degraded in reaction 6. Metabolite X
activates the synthesis of Y; Y activates the synthesis of Z and Z inhibits the synthesis of X. (B)
For certain parameter ranges the concentrations of X, Y, and Z will oscillate.

a hierarchy of strong emergence? In the following, we suggest three possible answers
to this question.

As stated before, strong emergence can be reconstructed, e.g., in a mechanistic,
kinetic model, if we know all relevant components and relational properties of the sys-
tem’s parts; the former properties are determined in part by the relational properties
of the parts and in part by the state of the entire system. The state dependency of some
properties provides a possible criterion for the strength of emergence. If a cellular
system shows a strongly emergent property that depends on a number of discernable
state-dependent properties of the system, then, in principle, the strength of emergence
might be perceived as being proportional to the number of state-dependent properties
needed to reconstruct the emergent property.

For the simple oscillatory behavior of the enzyme network of Figure 2.1 only a
few state-dependent properties are required, and therefore, it would be positioned
at the low end of a strength scale of emergent properties. We could identify four
different criteria for evaluating how strong the emergence is. Each of these criteria
would contain its own strength scale of emergent properties.

The thermodynamic criterion connected with the flux of energy through a cell
could be one important factor contributing to the strength of emergence. When a
cell grows, it requires free energy and consequently it requires a high flux through
the pathway converting glucose to pyruvate; we cannot reconstruct the ability of a
cell to grow without qualitative information regarding this flux. The knowledge of
steady-state concentrations of intermediates is just not enough, because steady-state
concentrations could be the same for different values of the flux.

A second criterion for determining the “strongness” of emergence may be the
number of interactions leading to the emergence. For example, the proliferation of
a tumor cell could be considered less strongly emergent than the proliferation of a
normal cell, because proliferation of normal cells is determined by more regulatory
processes than tumor cells.
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A third criterion may be connected with the occurrence of hysteresis in a system,
which makes it impossible to predict the system’s state without looking at the history
of that system.

The subsystemic level that functions as the prediction base for the emergent prop-
erty might be a fourth criterion. If the system featuring PR has a complex and diverse
organization, often the modularity of complexity allows the discrimination of several
operational levels of organization, each with their own set of characteristic subsystems.
The strength of emergence might then be considered highest when knowledge of the
behavior of the subsystems in the layer just below the system itself is not sufficient
to deduce PR. If for another PR, not the first but the second level of organization
harbors subsystems of which the available full knowledge is not sufficient to deduce
this PR, it constitutes a less strong form of strong emergence. Yet another PR might
be considered only weakly emergent if the prediction base is positioned at the lowest
level, i.e., at the level of the isolated parts.

For the time being, the above criteria for the evaluation of the strength of emer-
gence are just suggestions for further thinking. We do not have a firm theory on
how to estimate quantitatively that to what extent strong emergence is strong. The
ultimate goal would be to arrive at an overarching theory on how to integrate the
above-mentioned, and most probably other, criteria into a measure for the overall
strength of emergence.

Deeming the Emergence To Be Less Strong

In the case of strong emergence, we need to know much about a high number of inter-
actions, and we need a lot of information concerning state-dependent properties of
system’s elements. However, in some cases, to some extent, this task can be simplified.
We can consider the emergence to be less strong than it is in reality. Let us consider a
hypothetical biochemical network in which a certain emergent property, e.g., home-
ostasis, appears from the interactions between a certain number of proteins. If one of
these proteins is absent, this may result in the complete disappearance of the emer-
gent property that we are interested in. On the level of the organism, this would imply
different functioning and may result in a disease. In the simplest case, the absence of
one functional protein could be caused by the mutation of a single gene. We can then
immediately make the link: defect in gene—defect in protein—difference in emergent
property—defect in functioning. This is what biology has been trying to do for a long
time, to reduce the strength of emergence. However, we know that reality is more
complicated. The majority of diseases are caused by multiple factors; they cannot be
explained on the basis of a single gene—one disease paradigm. In another example,
if we aim to increase milk production in a cow, we are unlikely to find a single gene
completely responsible for the whole process of lactation. Again, it would be better to
consider that many genes work together in the same network, many proteins interact
with each other, and the phenotype emerges from all these interactions (Westerhoff
et al., 2009).

So, we need to consider the higher level of emergence, we need a systemic view. In
fact, the systemic view of biology has been present all the time and in fact dominant
initially, as physiology. However, due to the lack of predictive power of physiology for
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phenomena that we now know depend on molecular changes (e.g., mutations, cancer,
AIDS), it has become an intentional and successful drive in the ages of biochemistry,
molecular biology, and biophysics to get rid of the complexity of considering a system
as a whole and to proceed to simpler systems completely definable in terms of one
or just a few molecules. Later, thanks to the tremendous progress in genomics and
molecular biology enabling the identification of all the individual macromolecules
and their inherent activities, there seemed no limit to the information that could be
obtained about the parts of the system. All that information could then well be added,
and might in some way contribute to understanding of the whole. Indeed, cell biology
has drawn schemes of macromolecular networks allowing us to bring everything into
the context of a system. However, this is only a first step beyond adding the interactions;
it does not reflect the dynamics and nonlinearities of the interactions, which matter
much if not most.

The genome-wide dynamic network analyses have remained mostly qualitative and
thereby speculative. This is due not only to the difficulty of measuring and quan-
titatively characterizing interactions but also to the difficulty of operating with the
enormous amount of information in the genome and its expressions, amounts that
cannot fit in any, even the biggest, head.

Empowered by Mathematics and Computers—the Right Moment for
Systems Biology to Take Strong Emergence as Strong as It Is

Interactions between biomolecules are mostly physical and chemical reactions; they
are measurable processes and it should, therefore, be possible to describe them
through mathematical equations. These equations can be integrated into a mathe-
matical model and simulated on a computer (Westerhoff et al., 2009). This can greatly
empower the capacity to use genomic and molecular biological data, break through
the limitations of any single human mind to operate with the large number of inter-
actions and parameters, and in fact serve to integrate nonlinearly the activities of a
great many such human brains. However, the route taken by mathematical biology
has been a bit different. Mathematical biology has had the tendency to abstract away
from the detail and the actual, because it aimed mostly for generic principles (Peter
and Davidson, 2009).

The integration between mathematics and biology deserves higher expectations
than this: on the one hand, to consider biological organism as a complex, mathemat-
ically describable system, and, on the other hand, to explain the functioning of that
system in terms of specific quantitative data of interaction between its molecules; to
understand how biological function, absent from macromolecules in isolation, arises
when they interact in the system; to consider the emergence as strong as it is. The sci-
ence aiming to fit these expectations was born about 10 years ago and named Systems
Biology (Westerhoff et al., 2009). Systems Biology has managed to integrate historical
paradigms of mathematical biology and molecular genetics (Westerhoff and Palsson,
2004). It is in this integration that Systems Biology differs from both mathematical
biology and molecular genetics. Systems Biology also differs from physiology, which
describes the functioning of biological systems in their entirety, without complete
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reference to the components. For example, cell physiology helps describe qualitatively
how ATP levels change when muscle is innervated and why this leads to contraction.
It does not explain this in a mode that predicts on the basis of changes in molecular
processes.

Systems Biology aims to take this step. It aims to put the interactions together
into a total picture, and thereby mediate between molecular biology and physiology.
Systems Biology thereby is neither holism nor reductionism, or it is perhaps both at
the same time; it connects the two.

We would also like to emphasize that Systems Biology is not just computation plus
experimentation and not mathematics plus biology either. Systems Biology is a con-
ceptual approach for understanding biological complexity as such in terms of interac-
tions between macromolecules. Mathematical descriptions and computer simulations
are tools for that approach. Systems Biology is a new science with new paradigms
(Westerhoff et al., 2009) not identical to any of, but arising from the integration of,
physics, chemistry, and the life sciences, with the help of mathematics in order to
consider the emergence as strong as it is.

Various Systems Biological Models

There are various approaches to the mathematical description of interactions in the
biological systems; the simplest one may be based on graph theory. A graph is a set
of objects called nodes or vertices connected by links called lines or edges. Nodes
are usually attributed to different species of biomolecules and edges to interactions
between these biomolecules. In an undirected graph, a line from node A to node B is
considered to be equal to a line from B to A. In a directed graph, the two directions
are counted as being distinct arcs or directed edges (Kestler et al., 2008).

In contrast to above qualitative models, in quantitative mechanistic models one
would need to describe interactions between species of biomolecules, e.g., in terms of
mass action or Michaelis–Menten kinetics. The advantage of such an approach is that
the model describes the kinetics of the system, e.g., changes in the concentrations of
the variable intermediates as functions of time. If reaction rates in a kinetic model
are based on the real thermodynamics, this kinetic model could also be called a
(nonequilibrium) thermodynamic model (Bruggeman and Westerhoff, 2006).

A model can be either simple (network of subsystems such as organs) or detailed
(network of molecules). If detailed on the level of molecules, we can further distinguish
macro-, meso-, and microscopic modeling. If we can neglect the limitations in the
diffusion of molecules on the reaction rate and consider each species of biomolecules
as a single pool, then the model would be called macroscopic and could be described
as a system of ordinary differential equations in terms of ensemble averages. In
fact, this is the most popular approach in modeling. However, models can also be
mesoscopic (stochastic simulations of the behavior of populations of molecules) or
even microscopic (tracing every molecule individually).

Hence, the classification in terms of macro-, meso-, and microscopic models is dif-
ferent from the classification of models as detailed versus simplified. The classification
of models as detailed and simplified is based not on the way we treat the interactions
between elements in a system, but on what we consider as a single element. For



P1: SFK/UKS P2: SFK

BLBS088-02 te Pas September 10, 2011 4:7 Trim: 244mm×172mm

40 Systems Biology and Livestock Science

example, if the organism is described as a network of molecules, the model would be
called detailed. However, the same organism could also be described as a network
of subsystems such as organs. Let us consider an abstract example. To make a de-
tailed model of a house, we have to measure the properties of every brick and the
interactions of each brick with all other elements. However, we could also consider a
house as a structurally simplified model with just five elements: four walls and a roof.
The latter model would allow manipulating the location and properties of each wall
as a whole subunit and would give us an insightful understanding of how the house
is built in general and what is the function of each. At the same time, we can make
another model, which would describe how properties of a certain wall appear from the
interactions between bricks. This gives an example of the modularity of complexity,
which was discussed earlier in the context of emergence. Indeed, functional properties
of a whole system emerge from interactions between subsystems and each of these
subsystems is also a complex system emerging from subsystems of lower complexity.

There are many biological examples concerning this type of modularity. For exam-
ple, the transport of cargo proteins between nucleus and cytoplasm is provided by a
large network (about 100 reactions) involving different types of importins, exportins,
and other components of the transport machinery (Macara, 2001). The effectiveness
of nucleocytoplasmic transport would depend on a number of different thermokinetic
aspects, including affinity of cargo for its transport protein, the quality and the state of
the nuclear localization signal and the nuclear export signal of the cargo proteins, the
saturation of the transport machinery with other cargoes, and the energetic efficiency
of the entire process. However, a whole transport network could also be considered
as a single module. The transport, being in fact the most relevant emergent property
of the whole network, could be described as a single reaction with measurable rate
characteristics.

Now, let us look at different cargoes transported by the same nucleocytoplasmic
transport systems. Transport of each cargo can be considered as a separate module.
However, these modules will be connected through the competition of binding of
different cargoes to several common proteins. To find out how they control each
other, we can calculate control (flux control and concentration control) and elasticity
coefficients (Burns et al., 1985). The model addressing the control of fluxes and
concentrations, not their magnitudes, in the relation to metabolic networks would be
called a metabolic control analysis model (Westerhoff and Kell, 1987; van der Gugten
and Westerhoff, 1997; Westerhoff et al., 2009).

Three Strategies to Build a Model: Top-Down, Middle-Out,
and Bottom-Up

We have discussed that systems biological models link the layer of interacting
biomolecules with the systemic functioning of the organism emerging from these
interactions. There are three different strategies to build this link (Figure 2.3).

One way is the bottom-up, mechanisms-based strategy: first, one describes the
actual mechanism in terms of mathematical equations, then one assigns model pa-
rameters with experimentally determined values and verifies the model by comparing



P1: SFK/UKS P2: SFK

BLBS088-02 te Pas September 10, 2011 4:7 Trim: 244mm×172mm

Modeling Approaches in Systems Biology, Including Silicon Cell Models 41

Figure 2.3 Three approaches to link the layer of interacting biomolecules to the systemic
functioning: the bottom-up approach starts with experimentally characterized interactions be-
tween biomolecules; the top-down approach, in contrast, starts with the systemic functioning;
the middle-out approach starts with an entity of an intermediate complexity, e.g., the cell, and
goes up to the functioning of an organism and down to the interacting biomolecules.

its systemic behavior with the behavior of a real system (Bakker et al., 1997, 2000a;
Rohwer et al., 2000; Westerhoff, 2001).

The term bottom-up refers to the direction chosen: from known or assumed prop-
erties of the components one deduces system functions. When bottom-up approach
is applied to cell (organelle) metabolism, then the model is often called a silicon cell
model (Westerhoff, 2001; Reijenga et al., 2005).

In the ideal silicon cell model, all parameter values are obtained from exper-
imental measurements. In fact, there are only few examples of pure silicon cell
models. They are still rather small and are devoted to only separate metabolic mod-
ules, e.g., glycolysis (Bakker et al., 1997, 2000a; Teusink et al., 1998; Olivier and
Snoep, 2004).

Another way is to start with the systemic behavior (top-down modeling): first, one
determines how the often complicated systemic function of interest varies with condi-
tions, or in time, and from the observations one induces hypothetical structures that
can be responsible for this function. This is a data-driven, “digital” approach (Lauf-
fenburger, 2000). The system behavior is influenced (perturbed) and one then takes
a top-down, bird’s eye view, looking down toward system components, on a genome-
wide, proteome-wide, or metabolome-wide scale. For example, when an organism is
exposed to different environments, different metabolic pathways will be active; the
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activity of a metabolic pathway is reflected in the phenotypic data, such as the flux
through this pathway. The activity of the metabolic pathway is connected with the
concentration level of enzymes that is reflected in proteomic data. Furthermore, the
change of enzyme concentrations takes place due to regulation of gene expression.
The latter process may be estimated from the relative mRNA levels measured with
the use of microarray assays. Then, phenotypic, proteomic, and genomic date could be
integrated in a model, called constraint-based reconstruction and analysis (COBRA)
(Raghunathan et al., 2009). This type of model is not mechanism based, because
the particular parameters of the processes (e.g., transcription or translation rates of
enzymes or catalytic activities of enzymes) are not measured. On the contrary, the
parameterization is obtained through fitting of the behavior of the entire model to the
behavior of the real system.

A complex small system, say, a metabolic network consisting of biomolecules and
exhibiting its own emergent properties, can be considered at the same time as a
subsystem that is part of a larger system, like the cell. In their turn, cells interact
with each other and form an even more complex system, like an organ, and so on.
Consequently, the fragmentary knowledge can also be integrated in a middle-out
strategy that allows modeling the behavior of a single organ or a single functional
system in terms of interactions between entities of the lower, but not necessarily
molecular levels of organization. For example, the emergence of electromechanical
activity of the heart can be modeled in terms of interactions between complete cells
as electrochemical entities, an approach that has been used in the “Physiome” project
(Kohl and Noble, 2009).

The availability of data concerning single interactions and the knowledge of hypo-
thetical mechanisms would drive the bottom-up strategy. The development of bioin-
formatics and the availability of large sets of measured variables drive the top-down
strategy. At least one final goal of these three approaches is the same: to link phys-
iological behavior with the underlying layer of interacting molecules. For example,
when the underlying level of interacting elements in the middle-out approach reaches
the level of physicochemical interactions between biomolecules and when the sys-
temic function is extended to the whole organism, the model should be equivalent
to one obtained by use of the bottom-up or top-down strategy. Analogously, the
perfect top-down parameterization would make a model with the same functional-
ity as a model built using the bottom-up approach. In the unreachable limit, it does
not matter what approach is used; the final aim is a unique computer replica of
the living organism for computing life on the basis of the complete biochemical, ge-
nomic, transcriptomic, proteomic, metabolomic, and cell-physiomic information (see
http://www.bio.vu.nl/hwconf/Silicon/).

Perspectives of Silicon Cell Models: Advantages and Concerns

However, while we are still far from this ultimate and precise model that we may or
may not achieve in our lifetime, the three types of approaches are quite different.
Which would deliver most spin-offs early on, en route to that ideal model? Models
built with top-down approaches are phenomenological; consequently, for every new
experiment the entire model should be refitted to all existing experiments, allowing all
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parameter values to be adjusted so as to make the fit optimal. For large models, this can
become increasingly bothersome. The model based on the bottom-up approach, e.g.,
silicon cell model, is free from this drawback. Its parameters are “hard” in the sense
that they correspond to known properties of system components (e.g., molecules).
Once known, the parameter values should not change anymore unless the model is
wrong. For example, once the glycolysis in human erythrocytes has been modeled
correctly and if “hard” parameters have been measured adequately, we could then
expect that this model could be always incorporated as one brick in a bigger, e.g.,
silicon human model. It is not a theoretically unsolvable problem that some kinetic
properties of enzymes may be regulated or otherwise be influenced by conditions in
the cell and expression levels of other enzymes (what we have called earlier state-
dependent properties). At least theoretically, the “hard” parameters in the model can
be expressed as a function of concentrations of other elements and of environmental
factors, such as pH and temperature. Practice is not yet quite the same. Often, we do
not know the values of all “hard” parameters, but we may try to run a mechanistic
bottom-up model using “assumed” parameter values, because it may lead to new
insights and hypotheses that can be tested empirically.

Another possible advantage of the silicon cell models is that if adjacent parts of
cell function are modeled in the same terms, or in terms that can be readily translated
into one another, their models can be integrated into the larger model. Building of the
final model would merely mean the adequate interconnection of many existing silicon
cell models, many of which may then be already available and, even more importantly,
will have been validated independently. The final, “ideal” model will be just a bigger
and more complex silicon cell model.

We would like to stress that, when we talk about a silicon cell model, it implies
that (i) the model of the cell functioning is built with the bottom-up approach, (ii)
the interacting elements of that model are placed at the level of biomolecules, and
(iii) the “hard” properties of those biomolecules are based on experimentally mea-
sured parameters. However, it does not imply that the system we model is always an
entire cell. We can talk as well about the silicon cell model of a particular metabolic
pathway, such as glycolysis. On the other hand, the modeled system can be bigger than
one cell. For example, it can be a silicon organism model.

Concerns with the building of a silicon model of an entire organism (e.g., a silicon
human or silicon animal) usually refer to the “astronomical” number of interactions
involved in the complete body (Noble, 2006). However, because of the modular or-
ganization of the organism, the number of interactions may be large, but not quite
“astronomical.” Let us show what difference modularity makes for the numbers. If
we talk about a human being, and think about the interactions between the 25,000
genes in each of the 1014 cells of the whole body (2.5 × 1018 genes per body), then the
number is pretty high, i.e., 2.5 × 1018 !/2 ≈ 102 × 10ˆ19, i.e., 1 with 2 × 1019 zeros, much
more than the number of atoms in the universe (≈1080). If we only envisage binary
interactions, the number is smaller (2.5 × 1018 × (2.5 × 1018 − 1))/2 ≈ 3 × 1036)
but still enormous. However, taking into account the modular organization of the
body and the fact that not everything may interact with everything else, the number
of interactions becomes much smaller. Let us start with a single cell. If a cell contains
about 1000 metabolic enzymes (“enzyme types” really but we assume that all enzymes
defined by the same gene(s) behave as a single ensemble) and about 500 metabolites
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(“metabolite types” really but we again assume ensemble behavior), maximally 5 × 105

binary enzyme–metabolite interactions are possible. These are the current numbers
for yeast (Herrgard et al., 2008), but although the yeast genome is approximately five
times smaller than, e.g., the human genome, we do not expect high difference between
organisms in terms of the number of catalyzed reactions in a single cell. Besides, 5 ×
105 interactions are an overestimation since in reality not every enzyme can interact
with every metabolite. It is much more likely that an enzyme interacts on average with
at most five metabolites, bringing down the number of metabolic interactions to only
5000. Continuing this line of thought, there are about 3000 human transcription factor
genes. If every transcription factor binds to 100 different genes, then there are about
3000 × 100 = 3 × 105 interactions. If the average factor is much more specific, then
this number could be only 10,000. Together with metabolic interactions, we approach
the order of 104. The addition of tens of thousands of interactions on the level of
transporters, receptors, and so on would not change this order of magnitude of the
number of interactions in a cell substantially. Now, let us go to the intercellular level
where 1014 cells are organized in tissues and organs, five cell types per organ. Let
us say that each cell type interacts with 100 neighbors via maximally 50 metabolites
(25,000 interactions), and that one organ interacts with all other 71 organs via an-
other 50 metabolites (a little more than 3500 interactions). If we sum all interactions
mentioned above, we would be still in the order of 105. This is indeed not a small
number, but taking into account the increasing computational power, we do not see
that it should cause any principle limitations. The essence of these calculations is that,
if one foregoes the natural organization of living systems, the numbers of interactions
appears astronomical, but with a bit of realism, these numbers turn out to become
manageable within a few decades

Secondly, various strategies, such as “blueprint modeling” and the “domino ap-
proach,” could serve to make the silicon cell approach more affordable. In fact, both
of these tricks are two sides of the same coin—the modularity. “Blueprint” modeling
is based on the fact that many modules are organized in a similar way. For example,
many biochemical networks are so similar that they may be considered instantiations
of the same master scheme. Consequently, only one “blueprint” master model should
be built. Later, this master model could be “adjusted” for each particular system, e.g.,
by merely adjusting the expression levels of the enzymes. Let us discuss this by taking
the example of nuclear receptor signaling. Nuclear receptors (NRs) are widely in-
volved in the regulation of development, inflammation, and metabolism (El-Sankary
et al., 2002; Carlberg and Dunlop, 2006; Ebert et al., 2006). NRs are transcription
factors, shuttling between the nucleus and cytoplasm. When an NR has its ligand
(e.g., a steroid hormone) bound (activated NR), it can bind to its so-called response
element (a specific nucleotide sequence on the DNA) and participate in transcription
initiation. To a considerable extent, the amplitude of the transcriptional response
depends on the concentration of activated receptor near its response elements in
the nucleus. In this way, the activation of the receptor is often connected with the
increase of the concentration of NR in the nucleus resulting from ligand-dependent
regulation of its nuclear import and export. For example, a glucocorticoid receptor
(GR), in the absence of ligand has an almost exclusively cytoplasmic localization and
almost completely shifts to the nucleus after the addition of ligand. Although to a
smaller extent, the ligand-dependent shift of the intracellular NR localization is also
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relevant for the vitamin D receptor (VDR), only 10% of which is located in the nu-
cleus in the absence of ligand, and 50% in the presence of ligand. In contrast, the
intracellular localization of the pregnane X receptor (PXR) hardly depends on the
presence of ligand; the largest fraction of PXR is always present in the nucleus, both
in the absence and in the presence of ligand. Indeed, both the fraction of NR that
resides in the nucleus and the ligand-dependent regulation of that fraction are highly
variable among the 48 members of the NR family. However, this does not implicate
that 48 entirely different NR nucleocytoplasmic transport silicon cell models would
be required. We have already stated above that nucleocytoplasmic transport involves
about 100 reactions between proteins involved in the transport machinery (Macara,
2001; Pemberton and Paschal, 2005). However, most of these reactions would be
the same for all cargoes (including liganded and unliganded NR). For example, the
transport of importin-cargo complex through the nuclear membrane is based on the
interactions of importin with the filaments of the nuclear pore complex; it does not
matter which cargo is attached at that moment to the importin. All the difference
between nucleocytoplasmic transport of different cargoes, including all NRs, resides
in the difference in the affinity of cargo to importins and exportins. Consequently, if
the nucleocytoplasmic transport model is built only for one cargo (a particular NR),
changing only two parameters (the affinities of the cargo for importins and exportins)
may tune the model to a different nuclear receptor.

Another strategy capable of simplifying silicon cell modeling is also connected with
the view of the organism as a complex system consisting of many interacting mod-
ules. It is a “domino approach.” We have already discussed that not every element
of each biological module should necessarily interact with all elements of other mod-
ules. There are usually only “key” metabolites or proteins that interconnect different
modules. For example, the most exchangeable metabolite is ATP (Fell and Wagner,
2000). First, we can distinguish between processes involved in ATP synthesis and ATP
consumption. Then, using in vitro enzyme kinetic assays or modular kinetic analysis
(Ciapaite et al., 2005) we can identify how these processes depend on ATP concentra-
tion and formulate a first model with the intermediate in the middle and the several
processes around it. This model would predict how activation of the processes affects
the concentration of the intermediates and the fluxes at steady state. We can com-
pare our model predictions with corresponding experiments. Failure of the model to
predict the observations is used to invoke either an additional process or additional
metabolic intermediates. By incorporating a next additional process or metabolite one
adds the next domino stone. The aim is to keep the model as simple as possible and
add additional elements if the model does not yet describe the system adequately. This
domino approach is currently used by the MOSES project (Micro Organism Systems
Biology: Energy and Saccharomyces cerevisiae) (www.moses.sys-bio.net).

Both the “blueprint modeling” and the “domino approach” could be used not only
as strategies to make modeling easier in the terms of the system of mathematical equa-
tions but also being very useful in organizing the logistics of building large silicon cell
models. In this way, a “domino approach,” is also a strategy how the results from differ-
ent research groups can be integrated into the same model. “Blueprint modeling” can
be highly useful in the development of online silicon cell projects. For example, it has
already been successfully implemented in the JWS site. The JWS site contains several
silicon cell models collected by Jacky Snoep and Brett Olivier and devoted to separate
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metabolic modules. Users can run these models in a Web browser via an easy-to-use
interface (http://www.jjj.bio.vu.nl/ and http://jjj.biochem.sun.ac.za/info.html) (Snoep
and Olivier, 2002). The rate laws of every model are fixed, but kinetic parameters
can be changed locally by the user without affecting the default values stored in the
curated database on the server. What is stored is a “blueprint model.” Upon obtaining
either better kinetic values or values for different physiological conditions, any ex-
perimentalist can easily reparameterize the model and run simulations online. In the
case of improving the model to a version to be published in any of a selected number
of journals, the investigator can send results to the model curating team, so that the
default “blueprint model” could be improved.

As we have already noticed, the JWS site contains separate silicon cell models; often
one model corresponds to a single module of intracellular networks. For example,
one model is built for yeast glycolysis, another for EGF-induced signal transduction,
another one for histone-gene expression in early development, and so on. The next step
is to join all these modules together into a bigger model capable of reconstructing in
silico hierarchically higher level of strong emergence—the emergence of a whole cell,
and, ideally, even further, the emergence of a whole body, an organism. However, the
integration of different models, at least for the time when the authors are writing these
lines, is associated with several additional challenges. We have already discussed one of
them, concerning experimental measuring of high (but not astronomical), number of
parameters required to determine all component properties. Another challenge is how
to deal with multiple space and time scales in the same model and, finally, how to build
an infrastructure most suitable for creating uniform, easily (ideally automatically)
integrable models. One potential solution is related to further development of the
JWS site.

Another initiative is WikiPathways (www.wikipathways.org) that is focused on in-
tegrating models (for the type being, mostly graphical representation of biochemical
silicon cell networks) form different pathways into one “Google map”-looking like
frame, with possibility for user-made Wiki-type changes. Another well-known initia-
tive is E-Cell (http://www.e-cell.org/) that hosts databases for various (including silicon
cell) models and provides modeling environment for simulations. The principle dif-
ference between JWS and E-Cell is that E-Cell requires downloading model to one’s
own computer that may become more problematic with the increase of the model’s
size. Another project is called Virtual Cell (www.nrcam.uchc.edu). It is focused on
building Web-based modeling environment for cell biology that can be used to calcu-
late what happens in cells (and is more powerful for spatial aspects). Virtual Cell has
also some actual models, but mainly for the purpose of demonstrating the procedure.
The main focus of Virtual Cell is not the model, but software packages, such as Virtual
FRAP (fluorescent recovery after photobleaching), where biologist can upload their
own experimental data and run virtual experiments, calculate statistics or play in silico
with different values of experimental parameters.

Apart from public (JWS, WikiPathways, E-Cell, and Virtual Cell), there are also
various commercial initiatives, for example, Symphony of Genomatica (http://www.
genomatica.com/technology/platform/), which has organism- and pathway-specific in-
formation) and may also be used for kinetics simulations. Why there is so high interest
in biological modeling, in spite of the fact that there is still a long way to a complete
silicon cell model? We will try to answer this in the next chapter.
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Figure 2.4 The usefulness of modeling. Modeling starts with the integration of different
experimental data into one system. In this way, modeling helps to organize and store data.
Mathematical descriptions of the interaction between model elements allows simulating the
emergent behavior of a system as a whole; comparing the systems behavior simulated in the
model with reality as observed experimentally may provoke to search for new theories and new
data (especially if the model does not fit reality). If the model fits reality, it may be used in drug
design, (e.g., network-based drug design), biotechnology, bioengineering, or other applications
discussed in the current chapter. Studying the role of particular design features in the model
may lead to understanding of system functioning and to the discovery of design principles.

Use of Systems Biological Models, Including Silicon Cell Models

An important question is the usefulness of systems biological models, or more pre-
cisely, the usefulness of modeling, because not only the final model may be useful but
also the process of its construction (Figure 2.4). We will discuss this using the building
of silicon cell models as an example.

The building of the model starts with the collection of experimental data and with
organizing these data according to existing theories (Figure 2.4). In fact, it helps to
collect and store kinetic and other information about the biological system. A good
example here is the BioModels database constructed in the framework of BioModels
project (Le Novere et al., 2006). BioModels database provides an access to quantitative
models of biochemical and cellular systems in the SBML format (Systems Biology
markup language). Each model has a link to the reference publication and gives the
proper numerical results.

When the data are integrated into a single model, the model should be validated.
To validate the model, the simulated systemic behavior should be compared with the
behavior of a real system; this comparison is especially powerful if both the real object
and its model are challenged with a series of perturbations that were not considered
while the model was under construction and that were not used for parameter fitting.
In many cases the predicted behavior does not fit the reality. This may then lead to
the discovery of parts or mechanisms missing in the model. For example, when the
detailed model of yeast glycolysis failed to bring about a steady state, an interesting
discovery was made, with the concomitant identification of regulatory mechanisms to
prevent the turbo explosion (Teusink et al., 1998).
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Let us discuss this example in more detail. Glycolysis produces net ATP. Nonethe-
less, it starts with two ATP-consuming reactions, resembling a turbo charger-engine,
in which exhaust gases are fed back to enhance the air-input step. One feasible reason
for these activation steps is that they help to make these and the subsequent steps in
the pathway thermodynamically downhill. In that sense it is a useful process, but it
entails a risk of investing too much of ATP in the first reactions, so much that yeast can
overaccelerate the phosphorylation of the input hexoses and die from accumulation
of these compounds or from a lack of phosphate. This happened in a detailed yeast
model made by Teusink and coauthors (Teusink et al., 1998). However, real yeast
was found to be more robust. It led to rethinking of the model and to discovering
that in reality, this turbo explosion is prevented because the first phosphorylation step
(catalyzed by hexokinase) is regulated by the negative feedback loop via trehalose-
6-phosphate, which is produced from glucose-phosphate by trehalose-6-phosphate
synthase. Experiments on trehalose-6-phosphate synthase mutants confirmed the role
of this negative feedback regulation. A variation on this theme is the discovery of
possible functions of structures that are already known, for example, the role of the
glycosome in preventing the glycolytic turbo explosion in the parasite Trypanosoma
brucei (Bakker et al., 2000a).

Finally, once a model has been improved and fits the reality, it can be used for
various applications. For example, using a silicon model of a metabolic network one
can design how to change the metabolism of the organism in the desired direction.
A fine example is the design of an Escherichia coli strain producing polylactic acid, a
biopolymer analogous to petroleum-based polymers (Jung et al., 2010). Analogously,
systems biological models could be used to change the metabolism of other organisms
that could be applied in the area of livestock production, e.g., changing the metabolism
of insects could make them more suitable to meet the challenge of providing protein
for more than 9 billion people in the nearest future (Vogel, 2010).

Models may also become increasingly useful in drug design and especially in dif-
ferential network-based drug design. For example, a silicon cell model of the known
metabolic network may be used to find proper target enzymes for drugs correcting
some malfunctioning of human cells. The aim could also be to kill a cancer cell
(Hornberg et al., 2006) or the cell of a parasite (Bakker et al., 2000b). Vis-à-vis the de-
velopment of a drug for the treatment of African trypanosomiasis (the disease caused
by T. brucei), a silicon cell model has been developed for the glycolysis of the parasite
and was compared with a model of the glycolysis of human erythrocytes. On the basis
of metabolic control analysis, network targets were found where the glycolysis of the
parasite was more sensitive to the inhibition than human erythrocyte glycolysis. This
information remains to be used for developing drugs killing T. brucei with reduced
side effects.

Finally, a model may help understanding the role the organization of the system
plays in bringing about global functional properties. Because, apart from giving a
functional explanation of how a systemic property is accomplished through the working
of an underlying mechanism, one might also want to understand why the mechanism
is organized the way it is, and not differently (Wouters, 2007). In other words, we are
referring to the design of the system. Design can be defined as “the constellation of
system components, their specific properties, and their pattern of interactions that
together determine the integrated behavior of the system” (Wall et al., 2004). We
can study in the model the role of certain design features in obtaining the function



P1: SFK/UKS P2: SFK

BLBS088-02 te Pas September 10, 2011 4:7 Trim: 244mm×172mm

Modeling Approaches in Systems Biology, Including Silicon Cell Models 49

of interest. In this way, design principles of the system may be revealed—general
concepts that summarize our understanding of how the design of a system is related
to its function.

If we review the examples listed above, it is clear that they deal with only a small
metabolic part of an organism modeled in terms of interactions between biomolecules.
However, as we have also discussed above, there are no principle limitations to build
the model of a whole organism in terms of interacting biomolecules. In order to
consolidate efforts in that direction, the Tokyo Declaration has been signed by leading
systems biologists in February 2008 (News in Brief, 2008). The declaration aims for
a computer replica of a whole human body (silicon human) to be complete for 90%
by 2038. This whole-body mechanistic model of the human is highly welcome; it is
difficult to overestimate its potential use for the comprehensive understanding of
body functioning, for intensification of drug discovery, and for the development of
patient-specific treatments.

One may expect that the development of a silicon human will be preceded by the
development of silicon animals, including objects of relevance for livestock science.
Indeed, due to biomolecular and functional similarity, the “silicon pig,” for exam-
ple, should be a most welcome “blueprint model” for a silicon human or vice versa.
Most processes and qualitative descriptions of biomolecular interactions should be
similar. They would differ in kinetic parameter values and expression levels. Repa-
rameterization would allow us to switch the model from one organism to another,
e.g., reparameterization of just a few genes could “turn a cow into a pig,” in the sense
that it would ovulate a multitude of oocytes per cycle (pig) or a limited number (one
or two in cattle). On the one hand, this means that already early phases of a silicon
human project could revolutionize livestock science, allowing for better understand-
ing of animal functioning and opening new approaches to the intervention in animal
organisms, adjusting it to human needs. On the other hand, progress in the Systems
Biology of livestock animals could contribute greatly to the progress of the silicon
human. Due to the virtual impossibility of experimenting on the human, at some stage
the silicon human project would need to pass through a silicon animal. And here we
may make an analogy with the turbo effect in glycolysis discussed earlier. At some
stage, human Systems Biology should invest its “ATP” (theories, techniques, funds)
into livestock animal Systems Biology, in order to receive later more “ATP” to drive
the silicon human. Evolution has designed yeast. Can we design the road map for the
silicon livestock?
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Chapter 3
The IUPS Physiome Project: A Worldwide
Systems Biology Initiative

Gregory O’Grady, Peng Du, and Leo K. Cheng

Introduction

The modern biological era has yielded a rapid expansion of scientific knowledge. With
new technologies and research techniques constantly being developed, information
is continuing to amass at an ever-increasing rate. A landmark event in this era of
progress was the announcement of the initial sequencing of the human genome,
which was the subject of dedicated issues of Nature and Science in 2001 (Nature, 2001;
Science, 2001). The Human Genome Project was an international effort of impressive
scope, ultimately culminating in the collation and distribution of complete human
DNA sequence databases that are freely available via the Internet (Lander et al.,
2001; Venter et al., 2001). The outcomes of the Human Genome Project are widely
anticipated to underpin major advances in clinical medicine during the twenty-first
century, and its success has been a testimony to the power of broad interdisciplinary
and international collaboration and “think-big” science.

Following the completion of the Human Genome Project in 2003, much focus
has shifted to the substantially more challenging task of integrating and interpret-
ing the functions of the many thousands of genes that have been sequenced. As
stated by the authors of the initial human genome sequence paper: “In principle, the
string of genetic bits holds long-sought secrets of human development, physiology and
medicine. In practice, our ability to transform such information into understanding
remains woefully inadequate” (Lander et al., 2001). As a result, large-scale interna-
tional efforts are now beginning to focus on convoluted tasks such as defining the
regulatory mechanisms that coordinate gene expression, unravelling the RNA “tran-
scriptome,” and identifying the vast array of encoded proteins and their functions
(the “proteome”).

The accelerating pace of progress of genome science and molecular biology has
brought another daunting challenge into sharp focus: how to reintegrate the vast mass
of accumulating scientific knowledge into a coherent understanding of the structure
and function of whole cells, tissues, organs, and organisms. To realize the full potential
of the vast expanse of biological knowledge that has been uncovered, it is now critical to
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interpret, understand, and apply this reservoir of knowledge in its complete biological
context. In the words of physiome pioneer James Bassingthwaighte, “The time has
arrived in biological science to put it all back together again” (Bassingthwaighte
2000a).

It is from this background that the International Union of Physiological Sciences
(IUPS) Physiome Project has grown and prospered. The term physiome stems from
“physio-” (life) and “-ome” (whole) (Bassingthwaighte, 1995). In its broadest expres-
sion, the IUPS Physiome Project is an international collaborative effort that seeks
to provide a “quantitative description of the physiological dynamics and functional
behavior of the intact organism,” and moreover, of the organism in states of disease
(Bassingthwaighte, 2000a, Hunter and Borg, 2003). As outlined by Bassingthwaighte:
“(The Physiome) is built upon the morphome, the quantitative description of anatom-
ical structure, chemical and biochemical composition and material properties of an
intact organism, including its genome, proteome, cell, tissue, and organ structures up
to those of the whole intact being. The Physiome Project is a multicenter, integrated
program to design, develop, implement, test and document, archive, and dissemi-
nate quantitative information and integrative models of the functional behavior of
molecules, organelles, cells, tissues organs, and intact organisms from bacteria to
man” (Bassingthwaighte, 2000a).

The concept of a worldwide Physiome Project was originally presented at the 32nd
IUPS World Congress in Glasgow, Scotland, in 1993, in a report to the IUPS from
its Commission on Bioengineering in Physiology. The Project was officially launched
after the 33rd IUPS World Congress in 1997 in Petrodvorets, Russia, following a Satel-
lite Symposium entitled “On Designing the Physiome Project.” The 34th IUPS World
Congress in Christchurch, New Zealand, in 2001, established the Physiome Project. It
was then designated a major focus of the IUPS for the subsequent decade. Professor
Peter Hunter (Auckland Bioengineering Institute, The University of Auckland, New
Zealand) was appointed Chair of the Physiome Commission of the IUPS in 2000
and, at the time of writing, was cochair with Professor Aleksander Popel (Johns Hop-
kins University, MD) of the recently combined IUPS Physiome and Bioengineering
Committee (Hunter and Borg, 2003).

The blueprint and inspiration for the IUPS Physiome Project is derived partly
from the Human Genome Project, on which the Physiome Project was intentionally
modeled by its architects (Bassingthwaighte, 1995). A central Physiome Project aim
has, therefore, been the development of a robust, readily assessable infrastructure,
which will act as the practical framework for the mathematical modeling of molecular
pathways, cells, tissues, organs, and whole-organism functions. It is envisaged that
Physiome researchers worldwide will increasingly work and interact with each other
through this infrastructure, such that their pooled work ultimately spans and quanti-
tatively integrates information across all levels of biological organization from genes
to the whole organism. As with the Human Genome Project, one ultimate goal is
the free availability of these quantitative models via Internet repositories, in order to
maximize their potential to underpin and drive future advances in clinical medicine,
livestock science, and all other biological fields. The deep complexity of biological
systems makes the Physiome vision an ambitious one, and its success will require un-
precedented international and interdisciplinary cooperation on a grand scale (Hunter
et al., 2002).
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As in human biology, the pace of molecular advances has also been dramatic in
livestock science, and much of the technology used for investigating human biology
has been rapidly adapted to the challenges of optimizing livestock health and pro-
duction. In genomics, efforts to sequence all significant large animal genomes have
been greatly aided by the dramatic reduction in sequencing costs, which have reduced
on average by roughly twofold per 18 months over the recent decade. The bovine
genome sequencing has already been completed by the Bovine Genome Sequencing
and Analysis Consortium (Elsik et al., 2009). This was obtained by more than 300 sci-
entists in 25 countries after 6 years of effort. At the time of writing, the ovine genome
has not been fully sequenced, although a detailed genetic map has been published (de
Gortari et al., 1998), and a draft version of the complete genome has been produced
by assembling sheep DNA sequences from information given by the genomes of other
mammals (Dalrymple et al., 2007). As detailed knowledge in the livestock molecular
sciences continues to unfold, the development of livestock Physiome Projects will
become an essential adjunct to make full use of this information.

The purpose of this chapter is to review the origins, aims, and current status of the
IUPS Physiome Project. A central focus will be to explain the core principles of the
Physiome Project and the infrastructure, in order to enable researchers in the nascent
field of livestock Systems Biology to use and adapt the existing infrastructure to their
individual research efforts. Examples are sourced from current progress in several
sections of the Physiome Project, and particularly from the Digestive Physiome, and
future directions are considered.

Fundamental Principles of the Physiome Project

Systems Biology

A key concept of the Physiome Project is to promote an integrated understanding
of biological entities through quantifications of Systems Biology. One definition of
Systems Biology is as “a field of study that takes into account complex interactions in
biological systems at different scales of biological organization, from the molecular
to cellular, organ, organism, and even societal and ecosystem levels” (Popel and
Hunter, 2009). Other times, a more narrow view of Systems Biology is taken, with
the focus being on computational biology at the level of the kinetics of individual
ion channels and biochemical pathways. By either definition, the study of Systems
Biology is conceptually a holistic approach rather than the conventional reductionist
approach that is employed by the majority of biological researchers, and which has
been the dominant scientific approach to date. In a reductionist approach, components
of a system are categorically broken down into the most basic building blocks, and it is
often assumed that a system can be reconstructed by studying extensively the functions
and behaviors of each block in isolation (so-called “bottom-up” thinking).

Inevitably, the interactions between different components in a biological system are
complex, and the Systems Biology conception is that the functions of whole organism
cannot be understood simply by studying each component individually and in isolation.
A key question after the completion of the Human Genome Project is, “how do these
genes contribute to the structure and function of a biological entity?” The answer to
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this question cannot be explained simply by studying the effects of each gene alone
in isolation, but rather, the integrated functions of these genes must be considered
together at each major level of organization (e.g., cell, tissue, organ systems, and
whole body). As such, biological events are known to be much more than the sum of
their parts.

Studies into the lethal cardiac condition “Long QT syndrome” provide an example
of the potential for mathematical Physiome-type models to effectively integrate and
expand on genetic knowledge (Clancy and Rudy, 1999). Long QT syndrome is a rare
inheritable condition, characterized by palpitations, syncope (collapse), and possibly
sudden death. The condition is named after a diagnostic feature in patients’ elec-
trocardiograms (ECGs), i.e., lengthening of the QT interval, typically related to an
underlying prolongation of the ventricular action potential. As in many other biological
areas, the mechanistic understanding of Long QT syndrome underwent a revolution
in the late twentieth century, due to advances in molecular medicine, in combination
with an effective international registry of affected families (Moss and Kass, 2005). As
a result, several specific causative genetic mutations underlying Long QT syndrome
were identified, together with their consequent deleterious effects on ion channels.
To model the functional consequences of these mutations, Clancy and Rudy (1999)
focused on a distinct genetic class of the disease, occurring on the SCN5A gene (cod-
ing an element of a sodium channel in a cardiac cell), and integrated its biological
effects into a biophysically based mathematical model of a cardiac cell action poten-
tial (i.e., a model that comprehensively incorporates experimentally derived details of
ion channel and intracellular functions) (Luo and Rudy, 1994). Using this modeling
framework, these investigators were able to explicitly link genetics to cellular patho-
physiology, by quantitatively demonstrating how the SCN5A mutation induced its
arrhythmogenic consequences at the level of whole-cell behavior (Clancy and Rudy,
1999). As pointed out by the authors: “As more idiopathic diseases are linked to
congenital abnormalities, modeling strategies of this type can help bridge the gap
between genetic molecular defects and their phenotypic consequences.” (Clancy and
Rudy, 1999) Indeed, all genetics may ultimately be linked to phenotypes through
important strategies such as this, to yield integrated insights into their functions.

Another fact in favor of the Systems Biology approach is that biological functions,
such as digestion, are regulated by inputs from across multiple organ systems within
an organism. For example, normal gastrointestinal (GI) motility is a result of intrinsic
electrophysiological, hormonal, and neuronal influences (Cheng et al., 2010). There-
fore, while a reductionist approach is sufficient in the conventional sense for studying
engineering mechanical systems and the “building blocks” of biological systems, a
more global systems-oriented approach must be considered when quantifying inte-
grated tissue and organ functions. This fundamental concept has provided significant
strategic direction to the Physiome Project.

As demonstrated in the Long QT example above, it is of central importance in the
Physiome Project’s philosophy that the Systems Biology approach should be rigorously
quantitative, as can only be achieved by the construction of mathematical models. As
stated by Denis Noble, “Beyond a certain level of complexity (and in mathematical
terms this could mean something as simple as a pair of differential equations), quali-
tative thinking fails us” (Noble, 2002). The laws of physical conservation are integral
principles that guide the modeling of organ systems, for example, as conservation of
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mass and momentum, of electrical current and charge, of gas flow in the airways, of
deformation mechanics in the circulatory system, and so on. These laws inform the
foundations of “continuum models” that detail organic relationships, without having
to explicitly specify the detailed behaviors of all of the involved components (Hunter
and Borg, 2003). Fortunately, mathematical modeling approaches have been greatly
enabled in recent years by computational technical advances, such that the highly com-
plex task of quantitatively defining and applying these models can now be efficiently
performed in silico.

Multiscale

Knowledge in the biological sciences now encompasses vast spatiotemporal horizons:
time scales span from sub-microseconds for chemical reactions to months and years
for growth and development; and spatial scales span from nanometers for protein
size, up to meters for the size of whole organisms. Traditional physiological research
methods have been unable to quantifiably address such multiscale problems under
one framework, restricting them to qualitative comparisons and evaluations between
different physiological activities in the same species—effectively limiting their ability
to develop and apply quantitative insights of whole-systems function, and narrowing
their scopes of practice.

Modern computational hardware and software advances, in conjunction with math-
ematical modeling, have been instrumental catalysts in overcoming this major research
constraint in modern physiology. As a result, mathematical multiscale modeling rep-
resentations have now grown to become a central approach adopted in the Physiome
Project to advance the understanding and applications of complex biological interac-
tions. It should be clear that no single model could encompass the vast spatiotemporal
horizons discussed above; rather, a multiscale model is typically the combination of
several related models applied in unison. In addition, different information is relevant
at each level of biological function. For example, at the cell level, models are dom-
inated by the complex biochemistry of cell proteins; in contrast to the physical laws
and continuum models that dominate at the tissue and organ levels.

One of the key advantages of the multiscale representation is that it mimics the
biological hierarchy of the fundamental cellular contributions to tissue and organ
functions. Therefore, in a multiscale model, implementations to the model framework
could be imposed at any biophysical scale to represent a realistic intervention to the
biological hierarchy that the particular biophysical scale represents, such that effects
on other scales could then be quantified. Thus, a multiscale model is much more than
a one-way framework. If we conceptually treat the model components at each scale
collectively as a “module,” which could be studied as a self-contained “functional unit”
in a system (explained in detail in the following section: modularity and compatibility),
then a multiscale representation can be thought as a collage of modules, with modules
interacting within as well as in-between different scales to represent the behaviors of
the system as a whole.

Figure 3.1 provides an example of the vast temporal and spatial horizons encoun-
tered by researchers in the digestive system, with specific reference to evaluating
the basis for GI motility. The same Physiome modeling principles apply to all other
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organ systems: a multiscale approach is needed to accurately capture the physiological
activity of the system, with module models at each scale adapted and linked under
mathematical frameworks to generate physiologically quantifiable results. New infor-
mation “emerges” or is relevant at each level of biological organization, and this detail
must be accounted for if the models are ultimately to be physiologically realistic and
predictive. In parallel, it is also ideal that models should be simplified at each new
level of biological organization, such that they retain mainly the essential information
to explain the phenomena relevant to that scale.

Modularity and Compatibility

The idea of widely compatible modularity is a further major principle adopted in the
Physiome Project (Bassingthwaighte et al., 2009). A capable multiscale model should
be structured in such a fashion that as knowledge improves, model components in
modules can be updated, corrected, and augmented.

The separation and definition of module can be somewhat arbitrary, but a gen-
eral rule is that each module should contain within it a self-sufficient set of func-
tions that represent a biological process that can be studied in isolation in a system
(Bassingthwaighte et al., 2009). While such a criterion may seem a reductionist ap-
proach rather than a Systems Biology approach, one must also accept the reality that
the accrual of modern knowledge regarding the majority of physiological functions
has been established from centuries of empirical observations in in vitro specimens
isolated from their in vivo states. Therefore, it is imperative that when discussing a
complex biological system such as the digestive system, we should not presume that
the behaviors of a module and its impacts on the whole system can be extrapolated
from its self-contained functions alone.

As an example of modularity, many smooth muscle cells contain within their cell
membranes a type of L-type (named after its relatively long activation time) calcium
channel, which is thought to contribute significantly to the whole-cell electrical activ-
ity (Corrias and Buist, 2007). This type of L-type calcium channel can be treated as
a module in a cell model of the smooth muscle cell. Each L-type module does not
necessarily represent a physical L-type ion channel, but rather the collective actions
of all of the L-type channels in a smooth muscle cell form a module of L-type conduc-
tance (Corrias and Buist, 2007). The functions of this L-type conductance are studied
in experiments by chemically inhibiting other types of ion conductances in the cell
membrane, while subjecting the cell to extraneous sources of current, in a technique
known as the patch-clamping technique (Hodgkin and Huxley, 1952). There are many
other types of ion conductances in smooth muscle cells, and if each is quantified and
conceptualized as an independent module, then the whole-cell electrical activity can
be represented as a system of these modules, as has been achieved for gastric smooth
muscle cells (Corrias and Buist, 2007).

Expanding on this example of gastric electrical activity is also useful when consider-
ing modularity across multiple scales. At the subcellular level, a module may represent
the intracellular reactions that lead to the opening and closing of individual gating
channels, or of a protein kinase that mediates intracellular calcium cycling. In the
normal state, the kinetics of these subcellular level modules are inextricably linked
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Figure 3.1 Illustration of the vast temporal and spatial scales modeled within the Physiome
Project, with examples from the Digestive Physiome. The scope of the Physiome Project spans
the shaded boxes and complements other key large-scale research trends in modern biology,
such as genomics, the transcriptome, and proteomics. Inputs from these fields routinely inform
Physiome modeling, for example, the “modules” of genome and mRNA sequences being created
as functional models in the synthetic biology community can map directly into cell-components
in Physiome models (Popel and Hunter, 2009). The large variation in both spatial and temporal
scales is evident with ranges of 109 m and 1015 s. The developing field of “bioinformatics,” which
refers to computational analysis of complex protein, signaling and other metabolic pathways,
will also be instrumental in facilitating the growth of the Physiome Project. (Adapted from
Hunter and Borg, 2003.)
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to each other, such that together they give rise to the manifestation of whole-cell
electrical events. At the cellular level, a module may represent the electrical event of
a smooth muscle cell, as previously detailed. At the tissue level, a module may repre-
sent the regional variations in the distributions of electrically active cellular networks.
There are important differences in the population of these electrically active cells
and functions in the stomach, for example, experimental recordings have suggested
that in several mammalian stomachs, the gastric fundus (superior portion) is largely
electrically quiescent, reflecting its role in food storage rather than food mixing. A
whole-organ model of the stomach must incorporate modular components from all
of these lower level details in order to accurately represent the total functions of
the organ.

In order to represent the contractions that are induced by the electrical activity,
another system of modules would need to be further incorporated, again including
cellular-level components (e.g., contractile elements), tissue components (e.g., muscle
fiber orientations), and organ-level components (e.g., regional differences in muscle
thickness). As the stomach is filled with food, the mechanical properties of the fibers
may change, and the module representing muscle fiber may be substituted or updated
by another module suited to the role of changing fiber mechanical properties during
filling. Therefore, it can be seen that effectively representing higher order functions
must generally involve integrating a vast amount of relevant deeper knowledge of
distinct categories and types.

In practice, modules are often viewed as computational units, which must be easily
accessible and modifiable and readily archived in computational databases of biologi-
cal functions. A given module, e.g., the L-type conductance module, contains a set of
mathematical equations that quantitatively describe the response of the L-type con-
ductance under experimental conditions. An equation may represent the activation
(opening) or the inactivation (closing) response of a channel to voltage, and a system
of those equations results in a complicated gating kinetic (with a mixture of opening
and closing responses) of a channel to cell membrane potential. Should the under-
standing of the response of the L-type channel change, these mathematical equations
can be updated to reflect this change, while retaining the overall integrated functions
of the L-type module in the whole-cell system. Furthermore, the parameters in the
modules can be related to realistic physical quantities such as temperature and chem-
ical concentrations, and hence the environment in which the module is subjected to
can be represented accurately by updating the values of these parameters.

Multiscale models are organized in an inherently hierarchical fashion and the
boundary of a hierarchy is typically given according to the physical anatomy of the sys-
tem (Bassingthwaighte et al., 2009). For example, the highest hierarchy with the largest
physical scales may be the body scale for an individual animal. The modules at this
level may represent the overall physical attributes of the body mass. The body level
module can also comprise a set of tissue level modules such as fat and muscle compo-
sitions, and structural information such as bone densities. While higher level modules
are somewhat generic in their specific functional descriptions, they nevertheless are
necessary for representing an overall integrated function that reflects and integrates
the contributions of lower level modules. By contrast, most basic level modules are
highly specific in the descriptions of their particular functions. An example of a basic
level module in a multiscale model of gastric electrical event would be a particular
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intracellular receptor mechanism responsible for cycling calcium ions from intracel-
lular stores into the bulk cytoplasm space. If this receptor pathway was blocked in a
multiscale model, then it imposes a perturbation in the calcium cycling at the cell-
level modules, the effect of which can eventually be an aberrant generation of gastric
electrical events at the organ level.

There are a number of challenges facing a module-based implementation of multi-
scale modeling framework. Some of these challenges are theoretical but most are due
to pragmatic considerations concerning with the limitations of computation power and
implementation. Technically, as Bassingthwaighte et al. (2009) pointed out, module
compatibility within the same level and between levels require standardization in the
design and coding implementation. The ability to reproduce published equations and
formula from scientific papers into computer code is essential for communication of
modules. Units on either side of the equation must be dimensionally consistent and
adhere to the Système International (SI) standard. In practice, such standardization
is difficult to achieve without a curator of model databases. One such example is the
CellML initiative, which aims to store and exchange computer-based mathematical
modules (more detail covered under section: The framework and strategies of the
Physiome Project). Ultimately, the success of this facet of the Physiome Project relies
on the willingness of researchers and scientists around the world to commit to modular
standards that will allow the creation of individual models that can be integrated into
multiscale frameworks as widely and efficiently as possible.

Another major consideration of multiscale model is module reduction. A major im-
petus for the reduction of modules in a system is that it allows more efficient computa-
tion. In addition, a more explicit conclusion can often be gained from a simpler system.
As stated by Dennis Noble, “Models are partial representations. Their aim is expla-
nation: to show which features of a system are necessary and sufficient to understand
it . . . The power of a model lies in identifying what is essential, whereas a complete
representation would leave us just as wise, or ignorant, as before.” (Noble, 2002)

However, what is always not so clear is what degree of simplification is appropriate.
For example, if the core temperature of the body is presumed to change very slightly
and slowly over a long temporal scale, then is it necessary to include a module of tem-
perature in every system in question, or can temperature often be simply treated as a
constant value? More importantly, if we were to include a modular description of tem-
perature, how do we compute such a slow-changing module (hours) in a system that
may also contain very fast-changing submodules (milliseconds)? The same principle
applies to many spatial considerations as well. Considering the length of the GI tract,
is it computationally feasible to simulate the digestive process along the entire GI tract
while also including modules that describe activities at the molecular scale? Inevitably,
judicious design and application of modules are essential, and this is part of the “art”
of modeling. As pointed out by Hunter and Borg (2003), model detail may be best
guided by the principle of Occam’s Razor (“entities must not be multiplied beyond
what is necessary”), and therefore, in general, model detail should be kept to the min-
imum level that is necessary to convey the functions of the system (Bassingthwaighte
et al., 2009).

In practice, the level of detail included in any particular module is obviously also
highly dependent on the span of biological scales that the overall system embodies.
An example of a generic cell model that consists of many submodules is illustrated in
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Figure 3.2 Illustration of an example of modular representation of a generic biophysical
cell model. There are a number of modules in this generic cell model, and they provide an
example of mapping of lower to higher level modules. One module is used to quantify the
Nernst potential of the potassium ion (Ek) while another quantifies the gating variable (g).
The ion conductance (Ik) module is quantified through relating the Nernst potential mod-
ule, the membrane potential (Vm), and the gating variable modules; the membrane potential
module relates to the sum of a number of ion current modules (Iion). The model is solved using
the integrator module. (Adapted from Wimalaratne et al., 2009.)

Figure 3.2. At higher levels, a hierarchical arrangement is generally used, such that
the lowest level modules are complete quantitative descriptions, while the higher level
modules provide correct information for the relevant physiological question, but are
substantially reduced in detail to be more efficient representations for larger scale
computational efficiency.

Finally, while it may be necessary for us to conceptually separate and divide the
functions of a biological system into modules to understand and apply them, we should
always remember that in reality the blocks we view as modules are an ensemble
of a large system that can never really function properly without the support and
interactions of its constituents as a whole.

Anatomically Based Modeling

In order to be physiologically realistic, it is critical that Physiome models include
relevant modular information on anatomical form. Bassingthwaighte (2000b) has
likened this need to a “return to the study of anatomy as the basis for physiology”—the
two disciplines once being deeply interconnected, but having subsequently drifted
apart as a result of the dramatic progress of in vitro research approaches.

Without anatomical detail, physiological models often risk being overly simplistic,
because the structural orientations and relationships between biological elements
substantially dictate their physiological functions. When attempting to model any
particular function, it is often found that major gaps in current scientific knowledge
regarding biological structure are brought into sharp focus. While the reductionist
inquiries into molecular systems have often been rigorous, the structural relationships
between these components are often less well quantified. One important by-product
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of modeling is that the process serves to define these knowledge gaps and to direct
experimental efforts toward them.

The need to incorporate structural detail may be as relevant to a particular function
at the cellular levels as it is at the tissue level. For example, the spatial variation of
material properties (e.g., distributions of collagen, gap junctions, and ion channels) are
critical determinants of cellular function. In future, work toward anatomically based
cell models, whereby all physiological functions are largely quantified by empirically
derived structural considerations, is likely to be a productive research direction. As
stated by Bassingthwaighte (2000b), “no longer can the cell be treated as a well-stirred
chemical tank.”

Advances in medical physics have been a critically important development for en-
abling the Physiome Project (Hunter and Borg, 2003). In both clinical settings and
the lab, it is now possible to rapidly obtain high-resolution (millimeter to micrometer
range) structural information with techniques such as magnetic resonance imaging
(MRI), computed tomography (CT), ultrasound, and positron-emission tomography
(PET) scanning. The Visible Human Project (see Table 3.1), which provides macro-
scopic datasets of male and female human anatomical structures in freely available
online databases, presents the most readily available high-resolution resource, and
has already been widely applied in many simulations (Spitzer and Whitlock, 1998).
An example of the application of CT and Visible Human Data is in the creation
of geometric models of the GI-tract organs, which have been used to interpret and
study electrical and magnetic fields (Pullan et al., 2004; Cheng et al., 2007, 2010). In
another example, a pulmonary research group have used CT images of the ovine lung
as a framework to inform physiologically accurate solutions of soft-tissue mechanical
deformations and airflow dynamics during ventilation (Tawhai et al., 2006).

Fewer imaging and anatomical resources are readily available to livestock scien-
tists. Practical difficulties are encountered, such as access to high-resolution medical
imaging devices for animal work, and the size and capabilities of these devices of-
ten being incompatible with livestock. However, the options, availability, and use of
anatomical datasets in livestock science are currently expanding (Sandu et al., 2010).

Figure 3.3 shows an example of anatomically realistic models of sheep and pig
carcasses that were derived from CT images. These models provide quantitative in-
formation about the anatomy of the bone and muscle surfaces from a model carcass
as well as the connectivity between each group. Such “virtual carcasses” present the
opportunity to develop improved methods for meat dissection and for marketing and
training purposes (Crocombe et al., 1999; Bodley, 2000).

The need to define tissue structures in adequately high-resolution to provide a
useful basis for physiological simulations has driven the uptake and development of
innovative technological solutions to fill existing knowledge gaps. Micro-CT and MR
microscopy have proved highly useful advances in this regard, achieving resolutions
down to almost the cellular level (Sandu et al., 2010). PET scanning offers sensitivi-
ties in the picomolar range. Meanwhile, optical imaging techniques and multimodal
approaches offer significant future potential.

Another interesting example of research in this area is the recent development of
an automated imaging rig that allows serial confocal imaging and progressive thin
sectioning of extended stained tissue volumes, with automated reconstruction of the
tissue block achieved via a computer linked to the robotic translation stage (Sands
et al., 2005). Simulations run on cardiac tissue blocks imaged in this way have been
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Figure 3.3 Anatomically realistic finite element models of lamb carcass and pig rib cage
constructed from CT images. Shown is (upper) a lamb model consisting of 128 muscle and bone
groups and (lower) the rib cage of a pig containing 45 vertebrae and ribs. (Lamb carcass image
reproduced from Bodley, 2000.)
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Table 3.1 Physiome-type infrastructure and resources currently available.

Name Description URL

NCBI National Center for
Biotechnology Information

http://www.ncbi.nlm.nih.gov/

GenBank NIH genetic sequence database http://www.ncbi.nlm.nih.gov/Genbank/

Visible Human The Visible Human Project http://www.nlm.nih.gov/research/visible/

KEGG Kyoto Encyclopedia of Genes
and Genomes

http://www.genome.jp/kegg/

Pathway-KEGG Searches KEGG for pathways
of interest

http://www.asgbioinformatics.wur.nl/

Gene Ontology Gene Ontology database http://www.geneontology.org/

CellML Biophysical model exchange
language and model repository

http://www.cellml.org/

SBML Systems Biology Markup
Language for representing
biological processes

http://sbml.org/

BioModels Community standards for
biological models and SBML
model repository

http://biomodels.net/

MML Mathematical Modeling
Language

http://nsr.bioeng.washington.edu/jsim/
docs/MML.html

FieldML Exchange language for defining
generalized mathematical fields

http://fieldml.org/

JSim Simulation environment for
physiology

http://nsr.bioeng.washington.edu/jsim/

Chaste Cancer, Heart, and Soft-tissue
environment

http://web.comlab.ox.ac.uk/chaste/

Continuity Simulation environment for
multiscale modeling.

http://www.continuity.ucsd.edu/

CMISS Mathematical modeling and
visualization environment

http://www.cmiss.org/

SimTK Software and model repository
for physics-based simulations of
biological structures

http://simtk.org/

OpenCell Simulation environment for
CellML models

http://www.cellml.org/tools/opencell/

used to understand the effects of complex tissue architectures on the propagation
of electrical activity, providing an excellent example of multiscale biophysically and
anatomically applied modeling to “bridge scale gaps” to provide original physio-
logical insights (Trew et al., 2006). For example, such work is now being applied
to understand cardiac defibrillation strategies. Large-scale structures, such as a to-
tal human gastroesophageal junction segment have also been imaged in this way
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with unprecedented high definition, using a digital camera instead of a microscope
(Yassi et al., 2011).

Ultimately, the key to successful anatomically based modeling is “the ability to
understand and represent structure–function relationships,” and this is true at all levels
of biological organization from proteins to whole organs (Hunter and Borg, 2003).
Repositories of mathematical models that couple detailed structural and functional
relationships will be one the most valuable outcomes of the Physiome Project.

Experimental Evidence, Guidance, and Validation

Another fundamental principle of the Physiome Project is that each mathematical
parameter included in each model should be informed, where possible, by empirical
experimental evidence. This need has already been emphasized in the above sections:
in order for a physiological model to be accurate, reliable, and predictable, it must be
appropriately informed by reliable high-quality functional and structural experimen-
tally derived detail. Models cannot simply be built from engineering or mathematical
first-principles under the assumption that the result will approximate reality.

In practice, it is not always possible to inform or verify models from experimental
evidence alone, because often that evidence is not available or has not been discovered.
In fact, as pointed out above, it is often the case that modeling aims will lead to the
direct identification of knowledge gaps, leading to new experiments and driving new
technologies.

In other cases, applied modeling is able to inform experimental work by presenting
new insights and theories, and by specifically identifying likely experimental targets.
For example, in silico studies are now being used to guide therapeutic drug devel-
opment. This work is receiving significant interest from pharmaceutical companies
hoping to dramatically reduce the massive costs associated with bringing each new
drug to market. As another example of this type of application, models are also being
applied in the experimental field of gastric electrical stimulation (applied to treat
gastric motility disorders and obesity), in order to refine experimental protocols and
reduce the total experimental animal burden needed to achieve scientific outcomes
(Cheng et al., 2010). Like drug development, gastric electrical stimulation is an exper-
imentally demanding field of research, because there a wide range of variables such
as stimulus pulse width, pulse amplitude, pulse on-off timing, location, and number of
stimulation leads. By using biophysical cell models, and incorporating these models
into tissue frameworks, combined modeling and experimental teams have been able
to closely replicate experimental stimulation outcomes in silico. Subsequent work is
now underway to apply the models to intelligently reduce the vast field of possible
stimulation protocols to a smaller number of theoretically promising protocols for
targeted experimental studies (Du et al., 2009a, 2009b).

For a model to be regarded as an accurate and reliable representation of a phys-
iological function, it must be carefully validated in experimental studies. Thus, the
experimental guidance of modeling links in at multiple stages in model creation: in
reliably informing all integral elements of a model where possible, and then once
the description of the model is thought to be complete, predictive simulations can be
carried out and compared against objective experimental evidence.
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While current research in the Physiome Project and Systems Biology has been
largely focused on outputs related to human clinical medicine, the knowledge of these
studies are certainly relevant and transferable to livestock science. There is also a
volume of research being performed on livestock animals (e.g., porcine and ovine
models) as part of the translation process from in vitro investigations to medical
science, and much of this work will be instrumental in accelerating progress in various
parts of livestock Physiome Projects.

Open, Readily Available Access

The Physiome Project encompasses more than simply research and science. It includes
the archiving, dissemination, and organization or information. Of particular relevance,
in our view, is the need to establish public access to data and models derived as part
of ongoing research. One problem in medicine and biology is that much relevant
information is simply difficult to retrieve.

A fundamental cornerstone of the Physiome Project involves enabling collaborative
developments between interested research groups. Rapidly developing technologies
such as high-speed Internet, grid and cloud computing, video conferencing, and col-
laborative document sharing are facilitating effective collaborative research. To avoid
continually, “reinventing the wheel,” the ability to review, (re)use, develop, and effi-
ciently apply prior work is highly desirable. The successful decision for the majority of
Human Genome Project investigators to publish and share information on annotated
gene sequences, obtained through publicly funded research, should be followed in
the Physiome Project. The alternative of patenting and therefore “locking up” and
restricting the application of outputs would invoke a whole host of ethical, scientific,
and socioeconomic dilemmas, as would have occurred with regard to the data derived
from the Human Genome Project.

However, the public release of these data also raises its own range of ethical and
logistical issues. One key issue is the importance of scientific integrity and social re-
sponsibility. Existing methods of publishing experimental observations and models
are notorious for populating the literature with partly outdated or incomplete repre-
sentations, arising in part from the translation into the manuscript form, as part of
typesetting process, or as a result of the long periods between initial submission and
final publication. A globally accepted standard solution to these challenges may be
regarded as a key factor for promoting widespread use and trust in online Physiome
resources. For these resources to be equally available to users from all around the
world, reliability is also a key issue, such that mirrored dissemination sites located
around the world may need to be considered.

The Framework and Strategies of the Physiome Project

In the foundation years of the Physiome Project, significant effort has been devoted
to establishing a comprehensive modeling infrastructure to support effective sim-
ulation, model sharing, and international collaboration. This effort has specifically
focused on the building of model databases and computational tools (see Table 3.1)
(Bassingthwaighte, 2000a). In a task as grand and complex as the Physiome Project,
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any particular research group can only be expert in a small portion of the work, and a
framework of common working languages is essential to pull together, assimilate, and
disseminate the tools and results from and to the many groups focused on different
parts of the whole.

Fundamental to implementing this framework is the standardization of scientific
and programmatic vocabularies to reduce the growing heterogeneity of terms used
to formalize the description of both experimental data and mathematical models of
physiological processes from different organ systems presented by different research
groups. The ultimate demonstration of the importance of standardization of units
between groups was when NASA lost a $125 million Mars Climate Orbiter because
one part of the engineering team used metric units while another part used imperial
units to prescribe the power provided by the thrusters of the Orbiter. Another example
is when incompatible software caused significant delays in the production of the Airbus
A380. In this case, it seemed the incompatibilities formed when German and Spanish
Airbus facilities continued to use version 4 of the design package CATAI, while British
and French sites had migrated to version 5.

In physiological terms, different schools of thoughts have argued over decades
over the terminology of a great number of variables in many specialist fields. As writer
Felipe Fernandez-Armesto pointed out, “the same things are called by different names
by rival schools and the same terms are assigned conflicting meanings.” (Fernandez-
Armesto, 1997) A key aspect of the Physiome Project is to standardize the naming
conventions and unit measurement of biological functions, because only then can the
fragmented knowledge produced by many different research groups be truly applied
in an integrated fashion.

To facilitate the understanding of Systems Biology, the Physiome Project com-
munity has developed and maintained a number of key databases and programming
environments (Popel and Hunter, 2009). Significant current efforts focus on develop-
ing markup languages for encoding models, including metadata and data, application
programming interfaces based on the markup languages, libraries of open source tools
that can read and write markup encoded files, data and model repositories based on
markups, and implementing work flows that enable model results to be reproduced
(Popel and Hunter, 2009). Examples of Physiome model encoding standards and in-
frastructures are listed in Table 3.1. Additional information about each resource can
be obtained via the home page for each project.

Two major model repositories have been developed: Biomodels (primarily contain-
ing SBML pathways models) and the CellML repository. In particular, the CellML
repository serves an important purpose of reproducing results of published cell models
in a consistent manner. As published biophysically based cell models are beginning
to encompass a system many ordinary differential equations (ODEs), it is becoming
difficult to represent the results within a paper version of the work. For example, a
modified version of the Corrias and Buist interstitial cell of Cajal (ICC) model con-
tains a system of 18 differential equations and as many as 67 cell parameters (Corrias
and Buist, 2008; Du et al., 2010).

To further complicate the issue, cell models are often programmed in different
programming languages, and interpreted and solved in different software environ-
ments. Therefore, there is also a significant need for a standard coding environment
and curated databases for published cell models and results. Accordingly, the CellML
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repository also allows scientists to share and reuse models even if they are using
different model-building software, ensuring the reproducibility of the model and ac-
celerating model building. Ultimately, the aim is that curated models should be made
available both at the time of peer review and after publication of an associated peer-
reviewed manuscript.

Recently, there has been a drive to also develop common metadata standards
for annotating the deposited models with detailed biophysical information, and the
SBML and CellML groups are now working together to develop such standards. This
metadata serves several purposes. Firstly, it provides a readily accessible means to
establish the sources and correctness of the model’s derivation. Secondly, it smoothes
the process of combining models into composite models, in order to achieve vertical,
i.e., multiscale, or horizontal integration of the models in further applications. An-
other metadata standard presently under development is SED-ML (the Simulation
Experiment Description Markup Language) (MIASE, 2009.), which seeks to encode
the numerical algorithms and associated parameters for running a model simulation.
One drawback of the metadata process is that it can be a time-consuming task for
the developer of the models, presenting a disincentive to complete the process in
ideal depth.

In addition to the markup coding standards and model repositories, software frame-
works are also currently being developed by the Physiome Project for solving the
equations encoded by the markup languages, particularly in multiscale models that
incorporate structural and anatomical information (Popel and Hunter, 2009). As per
the Physiome Project principles, these frameworks are also open source and based on
internationally collaborative efforts (refer to Table 3.2; readers are referred to each
projects’ Web site for more specific and up-to-date details).

Future work in Physiome framework development includes developing appropri-
ate standards and databases for model parameter sets, and including the ability to
record the provenance of those parameters. There are currently no mechanisms for
annotating the experimental origin of these parameters, and their dependence on
species, temperature, pH, etc., is often obscure. Having the models and data available
in standardized formats, with clearly stated dependencies, will improve the utility of

Table 3.2 Example Physiome-style projects based around the world from different major
organ systems.

X-ome URL

IUPS Physiome Project http://www.physiome.org.nz/
NSR Physiome Project http://www.physiome.org/
Virtual Physiological Human http://www.vph-noe.eu/
Heart Physiome http://www.physiome.ox.ac.uk/

http://www.physiome.org.nz/heart/
Digestive Physiome http://www.physiome.org.nz/projects/digestive/

http://www.abi.auckland.ac.nz/uoa/gi-current-projects/
Lung Physiome http://www.physiome.org.nz/projects/respiratory/
EuroPhysiome http://www.europhysiome.org/
Kidney Physiome http://physiome.ibisc.fr/qkdb/
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the models and facilitate the creation of work flows that can generate model results
from parameter sets and input data, in order to compare model predictions with
experimental data in an automated fashion (Popel and Hunter, 2009).

The Current Status of Physiome Modeling

The Physiome Project can be considered to be a collation of various sub-“physiomes,”
e.g., of organ systems (the cardiome, the digestive physiome) or of molecular,
cell, or tissue systems (e.g., the “metabolome” and the “epitheliome”) (Popel and
Hunter, 2009).

By far the most mature and advanced branch of the Physiome Project is the Car-
diome. The Cardiome is an international effort to build a biophysically based mul-
tiscale mathematical model of the heart, and has advanced on several biophysical
fronts that together represent a sophisticated understanding of the cardiac structure
and function (Bassingthwaighte et al., 2009). Advanced Cardiome examples include
models describing the cardiac electrical conduction (Hunter et al., 2003), mechanics
of ventricular contractions (Nash and Hunter, 2000), the fluid dynamics of ventric-
ular blood flow (Nordsletten et al., 2007), and the perfusion of myocardial tissues
(Lee et al., 2009). These models span from ion channel mechanisms to whole-organ
function and are now being applied to clinical applications such as drug discovery,
medical device development, and the diagnosis of coronary artery disease (Popel and
Hunter, 2009).

Many of the other “–omes” related to major biological systems are rapidly develop-
ing as shown in Table 3.2. For example, in the Lung Physiome, mathematical models
have been applied to calculate the airway transport mechanisms for airflow and gas
exchange. Soft-tissue mechanics techniques have also been applied to investigate the
relationship between diminished lung capacity in diseases such as emphysema and the
functional residual capacity. In the musculoskeletal system, mathematical models of
the connective tissues such as muscles, tendons, ligaments and cartilage, and bones
have been developed. In another applied field, sophisticated imaging and mapping
techniques are being applied to predict the spread of cancers such as melanoma via
lymph nodes (Popel and Hunter, 2009).

Another rapidly developing Physiome area, with significant potential for applica-
tions to livestock science, is the Digestive Physiome. The work developing from this
branch of science is likely to eventually find application in multiple important live-
stock research areas, including optimizing animal nutrition and growth, minimizing
methane production, optimizing milk production, and maintaining digestive health.
The current status of this Physiome is discussed in some depth in the next section, to
provide a more complete example of Physiome principles and frameworks in action.

The Digestive Physiome

The Digestive Physiome is a category of the Physiome Project, which deals with the
physiological processes involved in the digestion of food particle and absorption of
nutrients in the GI tract. The GI tract is a continuous tube comprising several distinct
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organs that runs over several meters in length from the mouth to the anus. While
these GI tract organs are functionally discrete, their behavior is also tightly coordi-
nated and coregulated, affording a sophisticated overall level of integrated function
(Du et al., 2010).

Significant recent attention in the Digestive Physiome has focused on the electro-
physiological basis for motility. Like the heart, the GI tract has intrinsic pacemakers
and propagating electrical rhythms that underlie contractile function. These electrical
rhythms are known as slow waves, and it is now known that they are generated and
propagated by a specialized network of cells, termed the interstitial cells of Cajal
(ICCs), which lie in the wall of the GI tract. The slow waves spread from the ICCs
to the surrounding smooth muscle cells, causing depolarization and gut contractions,
when other coregulatory conditions are met, such as occurs after a meal.

Multiple Scales in the Digestive Physiome

Recent work on modeling slow wave function provides an excellent example of
a multiscale analysis at work, whereby mathematical modeling techniques have
been productively applied to bridge the gaps between vast biological scales (Cheng
et al., 2010).

An extensive literature of cellular and subcellular studies has now grown to explain
the detailed molecular basis of the slow wave in the ICCs, and this remains a focus
of substantial ongoing investigation (Sanders et al., 2006). While these subcellular
functions occur over the scale of milliseconds and nanometers, the whole-cell electrical
events occur over the course of seconds. Meanwhile, at the tissue level, GI electrical
propagation is actively mediated over many centimeters of the gut via a process
termed entrainment, in which ICCs with different intrinsic frequencies operate at a
single common frequency in the intact tissue (Sanders et al., 2006). It takes over a
minute for this entrained behavior to propagate the length of a large animal stomach
(Lammers et al., 2009). At the organ level, significant regional differences in slow
wave propagation characteristics (velocity and amplitude) have been observed, and
the geometry of the gut organs also fundamentally dictates the properties of slow
wave propagation. At the whole-body level, interest in the GI field has focused on
noninvasively evaluating the dispersion of the resultant electrical potential across the
torso in normal and disease states (akin to ECGs), in order to inform the diagnosis
such disorders, (Cheng et al., 2010). Therefore, it can be readily appreciated that a
multiscale approach is required to encapsulate the range of activities of this system.

Mathematical Modeling of GI Electrophysiology

Mathematical modeling has now been applied to multiple levels of GI electrical
activity to understand, interpret, and extend knowledge of slow wave function in health
and disease (Cheng et al., 2010). As mentioned above, these validated mathematical
models essentially provide an alternative virtual medium in which the hypothesis of
normal and abnormal physiology can be exhaustively investigated, and the effects for
treatment strategies predicted, without explicitly relying solely on animal and human
experimental models.
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Mathematical models of intestinal electrical activity have been formulated as early
as the 1960s, when Nelsen and Becker (1968) suggested that a chain of relaxation
oscillators could simulate the electromechanical activity in the small intestine. During
the early 1970s, Sarna et al. (1971) developed this idea further by using an array of
bidirectionally coupled oscillators to simulate different aspects of the GI-tract activity.
For the next two decades, the pioneering work by these authors had a significant
influence on the terminology and experimental methods used in investigations of
GI motility.

As in all areas of Physiome science, the ongoing development of mathematical
models of gut electrical activity have been steadily growing in complexity as more
experimental evidence regarding the electrophysiological roles of the ICCs and gastric
smooth muscle cells is progressively uncovered. In the GI field, it was not until 2004 that
the gastric electrical events were finally simulated under the multiscale framework,
almost a decade after the inception of the Physiome Project (Pullan et al., 2004).
This early work strongly motivated the creation of more sophisticated cell models
containing biophysical subcellular components based on real empirical data, rather
than being based on purely theoretical considerations such as chains of relaxation
oscillators (Corrias and Buist, 2007, 2008; Faville et al., 2008, 2009).

Even though the concept of a multiscale framework to gut modeling has been
adopted relatively recently compared to the cardiac field, significant process is now
being made, and integrated understanding of the gut electrophysiology is now appear-
ing across multiple biophysical scales (Cheng et al., 2010). Multiscale GI mathematical
models have now been developed that span from the cell to tissue to organ and finally
through to the body surface levels. As illustrated in Figure 3.4, these multiscale GI
models have been able to show how cellular events coupled with tissue, organ, and
torso geometries, ultimately give rise to signals that can be recorded from the body

Figure 3.4 Multiscale gastric electrical models. Left, simulated autonomous electrical activity
of the interstitial cells of Cajal (ICC) using the Corrias and Buist (2007) ICC model; Middle,
simulated propagation of ICC electrical events in (top) normal ICC network and (bottom),
diminished ICC network induced by altering the genetics of H5T2B receptors in mouse subjects
(Du et al., 2010); Right, simulated gastric electrical propagation in an anatomical model of the
human stomach (Cheng et al., 2007).
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surface for diagnostic purposes (Buist et al., 2006; Cheng et al., 2010), including in
states of gastric dysrhythmias (Cheng et al., 2007).

Anatomical Structure and Physiological Function in the Digestive Physiome

Recent work in this branch of the Digestive Physiome also illustrates the potential of
detailed anatomical modeling to quantifiably link structure and function. Degradation
in the ICCs network has been associated with several disorders of GI motility and
transit, most notably diabetic gastroparesis and slow transit constipation (Farrugia,
2008). However, tissue preparations and quantifications of loss of ICCs are typically
carried out after the tissue is processed and fixed by chemicals. As a result, the
effects of structural degradation on electrophysiology and mechanical contraction are
generally qualitative in nature, because the cellular and tissue electrophysiological
and structural properties in these fixed states cannot be quantitatively inferred in the
context to their in vivo states.

In a recent study, mathematical modeling was used to quantitatively relate the
anatomical structure of ICCs to electrical propagation in health (mouse intestines
at normal state), and disease (a model in which the ICC population was physically
depleted, by knockout of the 5-HT2B serotonin receptors) (Du et al., 2010; Tharayil
et al., 2010). To achieve this, a modified version of a biophysically based ICC model
(Corrias and Buist, 2008) was used to simulate the electrical activity of ICCs, and was
embedded into a virtual network created from images of ICC networks taken from
the healthy and diseased mouse intestines. As this cell model has previously been
extensively validated to simulate realistic cellular electrical activity, the model was
capable of rendering realistic propagation of intestinal electrical events through the
virtual ICC networks. To model these emergent tissue level properties, investigators
recently incorporated new molecular elements (i.e., introducing a voltage-dependent
IP3-related mechanism) into an ICC cell model to enable virtual entrainment, then
simplified the model by removing many components unessential for basic entrainment
activity, such that larger scale simulations could be handled with computational ef-
ficiency (Du et al., 2010). The results showed that there was a substantially reduced
current density generated by the abnormal ICC network, helping to explain why a
motility difference might occur clinically in diseases in which ICCs are lost (Figure 3.4
middle) (Du et al., 2010).

While the example of detailed structural modeling of ICC networks focuses on a
highly specialized area of digestive science, some valuable principles are demonstrated
by this work that are generally applicable to Physiome research as a whole. A multiscale
model was effectively developed and applied by “linking” the activities of different
cell models to tissue and anatomical structures—to generate a predictive physiological
outcome that could not easily be quantified through traditional experimental methods.
Secondly, this example illustrates the general pattern through which the Physiome
progresses: interdisciplinary teams of modelers and experimentalists working together
on a small problem of physiological importance, giving rise to novel methods and
models/modules that can be archived such that they are available for groups in future.

Mechanical Models in the Digestive Physiome

To date, mechanical modeling in the GI tract has mostly been performed independent
of electrical activity. One reason for the lack of coupling between electrical and
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mechanical models can be attributed to the limited availability of GI experimental
data regarding the underlying molecular events. By contrast, in the cardiac field,
electromechanical coupling models are more advanced (e.g., Nickerson et al., 2006),
and are being applied to address a number of important clinical questions, including
quantifying the effects of cardiac arrhythmias on cardiac mechanical functions.

Some of the mechanical models of the GI tract that are now being developed have
focused on modeling the flow of luminal contents within the stomach and intestines.
The main aim of these models has been to establish how the physical contractions of the
gut wall contribute to the mixing and transportation of luminal contents. This work is
highly relevant to livestock science, for example, in order to optimize the constituency
and bioavailability of feed, and to minimize the production of waste products such as
methane. Drug companies are also becoming interested in such models, in order to
predict and optimize the breakdown and bioavailability of pharmaceutical agents that
are delivered via the gut.

One of the earlier examples of this field of modeling represented the GI tract as a
hydraulic system, in which the profile of luminal flow is studied using fluid dynamics
over a cylindrical control volume with major assumptions such as incompressibility,
Newtonian fluid, axial symmetry (Melville et al., 1975). The assumptions made via
this approach were relatively crude, in the sense that the geometry of the intestines is
complex, so the luminal flow is most likely not axial symmetric. Furthermore, luminal
contents are a heterogenous mixture of solid and liquid particles, therefore, not a
Newtonian fluid (Stavitsky et al., 1981). However, as an initial model these assumptions
are useful. The consequences of these assumptions is such that the luminal flow velocity
can be expressed as a function of the contraction velocity of the gut wall, the cavity
radius, and the maximum radius of the luminal wall (Melville et al., 1975)

As more advanced imaging modalities such as the MRI have become available,
the in vivo movements of the stomach have been captured in real time and used as
boundary conditions to the mechanical models (Pal et al., 2004). From simultaneous
recordings using MRI and gastric manometry, the changes in shape and pressure of
the stomach during gastric emptying have been characterized. Subsequently, com-
putational simulations of stomach emptying have been performed (Pal et al., 2004).
This model used the lattice-Boltzmann method to quantify the distribution of food
particles in the stomach by calculating the spread of particles by the root-mean-square
radius of the particles from their collective center of mass. This model demonstrated
interesting theories regarding gastric fluid motion during contractions, such as describ-
ing a jet-like retrograde stream that generates large stresses on the gastric contents,
and a circulatory motion that facilitates the mixing of gastric contents (Pal et al.,
2004, 2007).

Similar studies have also been carried out by reconstructing the three-dimensional
(3D) anatomy of the stomach from ultrasound scans of a rat stomach (Liao et al., 2005).
In this case, a set of algorithms was used to calculate the geometric characteristics
of the 3D model, such as the volume, surface area, and curvatures. The relationships
between the curvatures of the stomach in the longitudinal and circular directions with
respect to gastric distension pressures were investigated. The model demonstrated
that the relative radii of the curvatures were dependent on the magnitude of gastric
distension pressure. It is known that abnormal gastric accommodation found in some
conditions, such as functional dyspepsia and after vagotomy (dissection of the vagus
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nerve), is expected to alter the regional gastric curvatures. Hence, the algorithms used
in the rat stomach model offer a methodological way of characterizing the geometry
of the stomach in order to identify abnormal gastric accommodations.

In summary, progress in the Digestive Physiome is beginning to link multiple
scales and quantifiably link structural and functional relationships. In future, work
in fields that are currently distinct, such as GI electrophysiology and mechanics will
be integrated into more sophisticated models. Importantly, much of this work is
applicable and transferrable to mammalian physiology as a whole, or is readily able to
be translated to livestock science.

Present Challenges in Physiome Project

The use of modeling the biological fields has lagged behind the fields of physics and
chemistry, where many fundamental modeling advances were made in the eighteenth
and nineteenth centuries. This lag is partly due to the high levels of complexity within
biological systems, which is due to the large number of variables defining these systems,
the huge number of interactions between these variables, the many inbuilt redundan-
cies, and the fact that these events occur over vast spatial and temporal scales. The
use of mathematical models as descriptions of these complicated biological systems is
inevitably incomplete or inaccurate to some degree. The process is, by necessity, also
one of iterative improvement and refinement.

Although mathematical modeling is increasingly able to meet these complex re-
quirements, and continues to grow in importance in today’s multidisciplinary research
environment, many other significant challenges remain, principally related to the cre-
ation of models, computational expenditure, experimental methodologies, and ethics.
The creation of reliable models is largely dependent on the existing knowledge of
molecular biology, signal-pathways, and imaging techniques—and in many instances
the components and interactions of these complex pathways are far from being ex-
haustively quantified. Where the functions and behaviors of a component or a number
of key components in a system are unknown, assumptions made during the modeling
process could sometimes lead to an erroneous analysis of the system.

Furthermore, in practice, experimental evidence of a system generally comes from
studies of many different species due to model suitability and cost and ethical con-
straints. Here, the models face the problem of presenting an idealized mammalian
description of an integrated system based on data from different species, while being
accurately representative of no single species. Indeed, physiological functions within
the same biological pathways will often differ markedly between different species.
Therefore, accuracy of inference using a model is dependent on how well the pa-
rameters in that model are tailored to a particular species. Transference of model
and information should be considered in the context of careful parameterization and
application of a model in a particular species.

Computational limitation is another area of major practical concern. In general,
computational power is progressively increasing at a rapid rate, and large and more
complex problems are continually being tackled. However, in many cases, the extent
of analysis for a multiscale problem is limited by the amount of computer power at
one’s disposal. This is particularly important in instances where a very high spatial
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resolution of computational points is required to gain a numerically converged solu-
tion. If a multiscale model was to be “truly multiscale,” then it would ideally contain
both extremes of spatiotemporal resolutions, and consequently the model must be
solved at a time step lower than the finest temporal scale. This would incur a huge
computation expense. In practice, this is generally avoided by dividing the larger mul-
tiscale models into smaller models that include similar spatiotemporal scales, to be
solved separately, and then using appropriate coupling conditions to ensure continu-
ity. This is a technique readily being employed when coupling cardiac fluid flow and
mechanics simulations as well as simulation of body surface electrical potentials from
far field sources (Pullan et al., 2005). However, with the continual development of
numerical algorithms and solvers and computer hardware, the solution times of large-
scale models will be reduced in future, and the applications of multiscale models will
continue to grow.

Applications to Livestock Science

The complexity of modern livestock science presents many opportunities and chal-
lenges for applying Physiome-type strategies. As Woelders et al. (2011) have described
the growing appreciation of the high complexity of biological organization in livestock
analyses has yielded a huge reservoir of empirical data now available for integration
into models. As a result, livestock Physiomes will undoubtedly grow to inform areas
of current livestock research focus, across such research domains as increased pro-
ductivity, product quality, disease resistance, fertility, behaviors, animal welfare, and
reduced ecological footprints.

Of central importance is the power of Physiome models to define and apply quan-
tifiable relationships between the genotype and phenotype, in order to gain a finer
control over optimizing and expressing the desired traits in livestock—whether re-
searching improved salmonella resistance in chickens or manipulations of the bovine
oestrous cycle.

One simple applied example for livestock science that has grown out of the Phys-
iome approach is in the identification and optimization of lamb cuts via video-imaging
analyses. In this example, a laser-scanning system captures a 3D image of as a meat
carcass is cut along the conveyor belt (Hilton et al., 1992). The snapshots of the cuts
are compared to a computer database of different cuts. The type of cut is automatically
classified using mathematical equations at a rate of 1 second per cut, leading to an
optimized result specific to each particular animal. This modeling technology holds sig-
nificant potential to decrease labor costs and increase food safety, product quality, and
processing efficiency (Bowman et al., 1993). One of the aims of this particular project is
to develop means of “virtual dissection” using computational modeling techniques on
“virtual carcasses” (discussed above on page 63), in order to maximize yield through
objective-orientated optimizing techniques. Soft-tissue mechanics techniques could
then be applied to the virtual carcass to simulate virtual deformation or dissection. The
sophisticated anatomical lamb and pig models previously shown in Figure 3.3 already
provide the foundations on which this Physiome-output research can readily be based.

In general, the most developed analysis of Systems Biology in livestock science is
genome network pathway informatics. Recent studies have related microarray data
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to larger biochemical pathways from the KEGG database (te Pas et al., 2007, 2008).
The key information of Systems Biology approach targets the different physiological
pathways that may be involved in the regulation and proliferation in different physio-
logical features, thereby relating genome functions to developmental process (te Pas
et al., 2007). Another important application of the Physiome Project to livestock
science is the categorization and modeling of critical molecular pathway information
(te Pas et al., 2008). Pathway information provides insight into the biological processes
underlying microarray data.

Much less detailed pathway information is currently available in the livestock sci-
ences, than in human biology, but this volume is now rapidly expanding. Research
also suggests that the genetics of many livestock species will be similar to those hu-
mans’ genes, which have already been sequenced and stored in databases such as
the KEGG (Kanehisa et al., 2006). However, one issue that needs to be addressed
is that many software packages use species-specific gene IDs that cannot yet handle
genomics data from other species (te Pas et al., 2008). Therefore, bioinformatics were
combined with the programming language PERL to create a software tool (Pathway-
Kegg in Table 3.1) that uses species-independent gene IDs to streamline the process
of searching for pathways information in online databases, using microarrays data fol-
lowed by combining pathway information with microarray data. An example analysis
using the software provided insight into differential line-specific biological processes
that may explain the variations in the host chicken’s response to Salmonella (te Pas
et al., 2008).

The selection and progressive improvement of genetic makeup in order to ac-
centuate certain desirable phenotypes has obviously long been practiced, such as is
exemplified in the domestication and resultant varieties of the common cat and dog
(Kadarmideen et al., 2006). The discovery of DNA and advances in both experimental
and modeling tools now presents a highly exciting time in livestock science, allowing
mankind the opportunity of selectively manipulating genetics in our favor, to greater
degrees and with substantially more precision than ever before. The latest incorpora-
tion of “-omics” technologies and the Physiome Project could “fundamentally change
the practice of animal breeding, moving away from a basically “black box” approach
toward an approach that considers the regulatory network and pathways underlying
the expression of important phenotypes.” (Kadarmideen et al., 2006).

The key issue in moving toward this exciting future prospect is no longer so much
the lack of basic information, but the ability to understand the interactions and poly-
morphisms of these fundamental modules in higher biological scales. There is hope
that the various “-omics” technologies and broader multiscale principle of the Phys-
iome Project will ultimately initiate a new era of information utilization and ultimately
bring many innovative applications of these new insights to livestock science research.

Conclusions and Future Directions

The Physiome Project is an ambitious, collaborative project with a long horizon. Work
involving more complex levels of structural and functional multiscale integration is
essential, if the Physiome Project is to significantly improve the understanding of
whole-organ physiology. In addition to this vertical integration across multiple scales,
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it is important to include horizontal integration across boundaries such as between
organ systems and organisms (Kohl and Noble, 2009).

The paradigm whereby theoretical work is pursued in close and continuous itera-
tion with experimental and/or clinical investigations often produces the best results.
Therefore, an essential aim for the Physiome Project is the quantitative integration
of in silico, in vitro, and in vivo research from multiple species. In addition, as new
types of data, methods, and technologies emerge and computation power continues
to rapidly advance, the Physiome Project must be capable of rapidly and efficiently
adapting to these changes.

Although one of its principal focuses is on improving the understanding of hu-
man health, many of the techniques and new knowledge growing out of the Physiome
Project community is directly applicable to other organisms and to the livestock indus-
try. As stated by Denis Noble, “Biology is set to become a highly quantitative science.
In the present century, it will also become the most computer-intensive science”
(Noble, 2002). The Physiome Project is underway, the goals are set, and the frame-
works are in place, but in reality it is still very early days for this visionary enterprise.
Ultimately, livestock science stands to gain a great deal from the advances that the
Project will provide, and livestock scientists who embrace this field while it is still
developing will have much to add and gain.
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Chapter 4
Systems Biology in Livestock Health
and Disease

Gordon M. Kirby

Introduction

This chapter focuses on the impact of Systems Biology in livestock health and disease.
The application of Systems Biology concepts and technologies in personalized human
medicine is discussed and contrasted to the present use of Systems Biology approaches
in the management of livestock diseases at the population level. Examples of current or
potential applications of Systems Biology in the prevention of disease and in the main-
tenance of health and productivity of food-producing ruminants, swine, and poultry
are presented. Discussions focus on the impact of Systems Biology in the identifica-
tion of pathogens, diagnosis of disease, understanding the genetic determinants of
disease susceptibility or resistance, host–pathogen interactions, and the mechanisms
of development and spread of important diseases in livestock production systems.

Defining Systems Biology in the Medical Context

Systems Biology constitutes the comprehensive and integrative analysis of the struc-
tural and functional properties of all the components of biological organisms including
their identity, correlations, and dynamic interactivity (Peng et al., 2009). This includes
analysis of the hierarchical complexities of biological information from DNA to RNA,
proteins, metabolites, macromolecular complexes, signaling networks, cells, organs,
organisms, and species and their responses to environmental stimuli. The reductionist
approach advocated by molecular biology has made notable advances in defining the
mechanisms of disease including specific host–agent interactions, identification of tar-
gets for therapy and prevention of disease by studying a limited number of individual
components of biological systems (Feng et al., 2009). However, this approach is not
conducive to generating a complete understanding the entire biological system. With
the realization that organisms do not consist of isolated subsets of genes, proteins,
and metabolites, Systems Biology constitutes a more rational approach to the study of
the mechanisms that underlie health and disease. Systems Biology examines disease
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Box 4.1 System Biology and Disease

“Systems Biology examines disease through qualitative and quantitative analyses
of the complex relationships between multiple components of a biological system
as a whole and the responses to genetic and environmental perturbations. This new
paradigm is changing the way we understand, prevent, diagnose, and treat disease.”

through qualitative and quantitative analysis of the complex relationships between
multiple components of a system and the responses to genetic and environmental
perturbations (see Box 4.1).

Measurement of the genomic, proteomic, and metabolic data that reflect the in-
teractivity of the system’s components is accomplished through the use of various
high-throughput technologies (Peng et al., 2009). Because of the potential to generate
vast amounts of data, bioinformatics and computational resources are key elements
that enable the integration and interpretation of these data.

From many perspectives, Systems Biology represents a paradigm shift in biology
and medicine by embracing a new culture that recognizes the importance of system-
atic interpretation of biology, health, and disease through the study of the dynamic
and interdependent interactions of the complex network of genes and their protein
products (Feng et al., 2009). Application of this new holistic philosophy to human and
veterinary medicine has the potential to evolve healthcare to new standards that will
substantially enhance our knowledge of the pathogenesis and improve the diagnosis,
prevention, and treatment of disease (Olden, 2006).

Establishing the Need for Systems Biology Approaches
in Human and Veterinary Medicine

Imbalances in the interconnected networks of proteins, cells, and tissues result in
perturbations of the specialized structural and functional roles of components that are
manifested as disease. There is a need to develop more predictive tools to assist in the
early diagnosis of disease, to identify and assess new candidates for drug development,
and to improve our understanding of the complex mechanisms and causes of disease
development. Currently, many of the existing biomarkers lack the necessary sensitivity
or specificity for the early detection of human and animal diseases. Systems Biology
technologies have the potential capacity to identify and characterize biomarkers that
reflect the exposure of the system to environmental insults (e.g., infectious agents,
toxins, abnormal diets) and mirror the associated biological consequences that are
manifested as disease.

Such biomarkers may represent indicators of disease states that could be validated
as new diagnostic tests, but they may also represent new targets for novel thera-
pies, opportunities for vaccine development, or reflect patient responses to therapeu-
tic interventions to be used for prognostication. As a result, implementing Systems
Biology concepts and approaches has the potential to substantially expand the range
of options for patient treatment and to improve treatment outcomes (Elrick et al.,
2006). Following this strategy represents a shift from the current situation of intensive
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reaction at the later stages of clinical disease toward a more predictive, preemptive,
and preventive approach to maintaining health, whereby disease susceptibility and
predisposing factors are assessed and treatments are optimized for individuals before
clinical disease becomes apparent (Olden, 2006; Downing, 2009).

In order to adopt Systems Biology concepts in medical research and clinical prac-
tice, there is a need to derive the capacity to process the massive amounts of in-
formation. This can be accomplished through the development and routine use of
“omics” technologies (i.e., genomics, transcriptomics, proteomics, metabolomics) with
high-throughput capabilities and bioinformatics tools that have the capacity to store,
analyze, integrate, and interpret large amounts of complex data.

More recently, the development of new technologies such as microfluidics and
nanotechnologies is providing the capacity to efficiently deliver, multiple and more
precise biological measurements in real time at the point-of-care (i.e., patient-side).

The fallout of the human genome project has revealed that the complex phenotype
of chronic multifactorial diseases is not a result of single genes and their associated
proteins, but is more likely due to the interactions of multiple genes and environmental
factors. Thus, the past reliance on studying a few genes or proteins in single pathways
is inadequate for predicting and preventing the occurrence of multifactorial diseases
with complex etiologies. Using a Systems Biology approach, the dynamic alterations in
activity and amount of molecular components of cells and tissues can be monitored in
animals whose genetic makeup has been characterized. The challenge of biomedical
research is to identify the relevant genes and environmental factors associated with
disease development, to elucidate the underlying mechanisms by which they interact
to the cause disease, and to delineate the inherited capacity of individuals to respond
to and resist environmental influences (Olden, 2006; Borden and Raghavan, 2010). By
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monitoring the influences of environmental factors on gene expression at the mRNA
and protein level and on the associated metabolite profiles in body fluids and tissues,
biological indicators or biomarkers can be developed and validated that reflect the
activity of all relevant genes and related products. In this way, events that have an
adverse impact on health can be identified and predicted, and specific intervention
strategies can be implemented, long before clinical disease is detected by the diagnostic
approaches currently used in medical practice (Olden, 2006).

Systems Biology and Personalized Healthcare in Human Medicine

The concept of personalized healthcare has evolved from the need to develop novel
and effective approaches to managing human health and disease of individuals. Sys-
tems Biology is beginning to have a profound impact on human medicine by enabling
clinicians and biomedical scientists to comprehend and model the biological system
in a more holistic and comprehensive manner. A more precise and thorough un-
derstanding of the molecular pathogenesis of disease enables the development of a
more effective healthcare system through the design of optimal therapies that can be
initiated earlier, or the design of strategies that can detect and prevent disease prior
to onset. (Joshi and Kucherlapati, 2008). Thus, Systems Biology approaches have the
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potential to develop personalized healthcare and to guide medical decision-making
by integrating information regarding individual genetic profiles and environmental
perturbations with patient-specific preventative, diagnostic, and therapeutic interven-
tions with minimal side effects (Weston and Hood, 2004; Joshi and Kucherlapati, 2008;
Borden and Raghavan, 2010). The introduction of analytical tools with increasing so-
phistication will allow medical practitioners to assess the risk of disease development
in individual patients, to use “molecular signatures” for disease diagnosis and prog-
nosis, and to make informed decisions regarding the management of their patients’
health by selecting the appropriate drug and dose for therapy.

Therefore, personalized medicine is preemptive in that disease is identified and
managed early before clinical signs are apparent (Downing, 2009); predictive in iden-
tifying the risk of disease development by factors such as pathogens or toxins through
the presence of protein or metabolite markers in body fluids, and preventive by iden-
tifying genes that determine the susceptibility to the development of disease or the
response to drug therapy (Weston and Hood, 2004).

Areas of Application of Systems Biology to Human Medicine

Biological systems can be explored to acquire the relevant medical information re-
garding system malfunction. This information includes the environmental or genetic
factors that contribute to the etiology of the system malfunction, the specific underly-
ing pathogenic mechanisms, the diagnostic evidence that specific components of the
system are defective and the identity of the therapeutic targets that may result in a
functional restoration of the system (Ginsburg and Willard, 2009). Some areas where
Systems Biology and personalized medicine are expected to have potential impact are
outlined in the following sections.

Understanding Disease

Disruption of the interactivity of the components of a complex system and the
subsequent functional impairment is manifested clinically as disease. Systems Biology
uses a holistic approach to elucidate the complex pathophysiological mechanisms of
disease by examining gene expression and the connectivity of their protein products
(see Box 4.2).

Box 4.2 System Biology in Clinical Medicine and Pathology

Assists in:
� understanding mechanisms of disease and host–pathogen interactions;
� identifying and characterizing biological roles for proteins with abnormal

expression;
� identifying potential targets for clinical therapy;
� identifying predictive biomarkers for diagnosis, disease susceptibility, and

prognosis.
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Bioinformatic tools can help with the elucidation of the mechanisms of ac-
tion by associating sets of differentially expressed genes with a particular pathway
(Harrill and Rusyn, 2008). Harrill and Rusyn (2008) assembled a list of public
databases that aid in the annotation and interpretation of gene expression data in
terms of cellular process, functions, and pathways. These databases include Gene
Ontology (GO; www.geneontology.org), Gene Map Annotator and Pathway Pro-
filer (www.genmapp.org), the Science Signaling Connections Map (stke.sciencemag.
org/cm/), BioCarta (www.biocarta.com/genes/index.asp), Reactome (www.genome
knowledge.org), and KEGG (www.genome.jp/kegg/pathway.html). By associating
changes in gene expression with a particular pathway, these databases can provide
biological relevance to gene expression data by identifying perturbations in molecular
mechanisms.

Screening for Disease Susceptibility

Disease susceptibility can be characterized by genomics assessments of inactivating
mutations or gene deletions that remain stable through an individual’s lifetime, or
by assessing dynamic alterations in gene expression (e.g., transcriptional profiles,
patterns of protein expression and metabolite levels) that change in response to en-
vironmental stimuli (Ginsburg and Willard, 2009). Individuals can then be screened
for disease susceptibility using genomics or gene expression techniques. The rela-
tionship between genomics and disease phenotypes can be investigated by examining
quantitative trait loci (QTL) that identify specific genotypes or polymorphic vari-
ations of a phenotype (e.g., single nucleotide polymorphisms or single nucleotide
polymorphisms (SNP)) that characterize a disease in a population of individuals
(Harrill and Rusyn, 2008). For example, the risk of developing cancer can be de-
termined by assessing mutations in susceptibility genes such as BRCA1 or BRCA2
in hereditary forms of breast cancer, and in the mismatch repair genes MLH1
and MSH2 in hereditary nonpolyposis colorectal cancer (HNPCC) (Borden and
Raghavan, 2010).

Optimizing Diagnosis and Prognosis

Genome expression profiling can be used to correlate gene expression patterns with
disease classification in individual patients and to predict their response to therapy.
For example, genomic signatures are currently being used to identify specific sub-
types of cancer. This approach is useful in determining patient prognosis, in assisting
with decisions of whether or not to implement therapy or in delineating specific
therapeutic options. Indeed, expression of drug resistance genes in specific tumors
can influence patient survival following chemotherapy. For example, glutathione S-
transferase Pi (GSTP) overexpression is a marker of resistance to the chemotherapeutic
agent cisplatin. Expression of alleles that reduce GSTP activity can result in a higher
susceptibility to drug treatment and a prolonged survival for lung, ovarian, breast,
metastatic colon cancers, and multiple myeloma (Ginsburg and Willard, 2009; Calvo
et al., 2005).
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Box 4.3 System Biology in Pharmacology and Toxicology

Assists in:
� understanding mechanisms of action of pharmaceutical agents;
� screening for therapeutic efficacy and safety in drug discovery;
� monitoring of drug therapy in clinical practice;
� characterizing drug resistance;
� understanding the genetic basis for variable responses to drugs or toxicants.

Improving Treatment (See Box 4.3)

Targeted Therapies

Systems Biology can personalize medicine by assisting in the selection of therapies
based on the genetic characteristics of the patient as well as the molecular features of
the disease (Ginsburg and Willard, 2009). Some drugs have been developed that target
specific sites in molecular pathways to interrupt signaling pathways. For example,
imatinib is a kinase inhibitor drug used in the treatment of chronic myelogenous
leukemia that inactivates signaling by inappropriately activated human epidermal
growth factor receptor 2 (HER2) receptors. The molecular profile of tumors can
also provide useful information regarding patient response to therapy. For example,
characterizing the expression of the HER2 gene in tumors can identify breast cancer
patients who are likely to respond to either imatinib or trastuzumab, a monoclonal
antibody that specifically targets HER2 (Schilsky, 2010).

Dose Calculations

There is increasing awareness in the human medical community of the impact of
genetics on drug metabolism, and it is acknowledged that not all patients benefit
equally from the same dosage. Pharmacogenomics examines the influence of spe-
cific genes on patient responses to relevant drugs as well as the effects of drugs
on gene expression. Molecular biomarkers can provide information on drug dis-
tribution and drug targets as well as patient response to therapy (Ginsburg and
Willard, 2009). Some drug metabolizing enzymes are polymorphic with variable
expression, resulting in a limited or an extensive degree of metabolism of specific
drugs. For example, cytochrome P450 2D6 (CYP2D6) is a polymorphic enzyme
that metabolizes tamoxifen (an estrogen receptor antagonist) to active metabolites
that are effective in targeting estrogen receptors in some breast cancers. Individ-
uals with limited CYP2D6 metabolizing capacity are unlikely to benefit from ta-
moxifen therapy, leading to an increased risk of cancer progression. There is a
need to identify and validate clinically useful biomarkers that can identify drug-
metabolizing capacity and thereby predict the clinical benefit in individual patients
(Schilsky, 2010).
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Drug Development

Systems Biology can increase the efficiency of the process of drug discovery by identi-
fying new drug targets or by streamlining clinical trials by selecting participants based
on their drug metabolizing phenotype. For example, novel antimicrobial agents can be
identified using DNA microarrays and genome sequencing data and the effect of pu-
tative anti-inflammatory compounds on proinflammatory mediators can be assessed
in cell lines using two-dimensional electrophoresis or other proteomics technologies
(Witkamp, 2005).

Maximizing Drug Safety

Systems Biology concepts and high-throughput “omics” technologies are also being
applied to toxicology to enhance understanding of toxicity mechanisms and to facili-
tate the early detection and prediction of toxicities (Joshi and Kucherlapati, 2008). A
personalized medicine approach may improve the safety of drug therapy by using toxi-
cogenomics and toxicoproteomics approaches to discover new noninvasive biomarkers
and gene expression patterns that reflect subclinical drug toxicity. These biomarkers
serve as molecular fingerprints that could subsequently be developed into diagnostic
tests that identify individuals who are susceptible to developing adverse drug reac-
tions. Such applications would be very useful in minimizing adverse drug reactions
and facilitate drug development, clinical trials, and postmarket surveillance (Elrick
et al., 2006). Indeed, pharmacogenomic tests for polymorphisms of drug metaboliz-
ing enzymes have resulted in regulatory changes affecting labeling and prescribing
conditions for certain medications (Downing, 2009).

Barriers to Implementing Personalized Medicine
in Human Medical Practice

For personalized medicine to be fully accepted, the validity and utility of new treat-
ments and the diagnostic and prognostic tests developed using “omics” technologies
must be established. Typically, clinical utility is evaluated by assessing outcomes in
expensive, randomized clinical trials. Because personalized medicine is an evolving
field, the underlying knowledge base is often incomplete. This prevents universal ac-
ceptance and creates difficulties in establishing specific regulatory requirements that
guide the use of genetic information in clinical practice. While advances in sequencing
technologies will make the complete genomic sequence of individuals a financially vi-
able reality, assessment tools are necessary to allow physicians to extract the relevant
information for knowledge-based clinical decision-making. In addition, complex ge-
netic tests are expensive from the perspective of their validation and use, but they have
the potential for significant savings to healthcare systems. Nonetheless, broad access
to genetic information has raised concerns regarding the possibility of inappropriate
discrimination of individuals by employers, insurance companies, or society in general
(Joshi and Kucherlapati, 2008).
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Box 4.4 Characteristics of “omics” technologies
� Highly selective, sensitive, and specific
� High throughput and easily reproduced
� Enable simultaneous analysis of thousands of transcripts, proteins, or

metabolites
� Enable comparisons of gene expression in different cell types, normal and

diseased tissues, treated and untreated samples, etc.

Systems Biology Techniques

A number of sophisticated, high-throughput, analytical tools have been developed
with considerable capacity for collection, analysis, processing, and management of
large amounts of data that are relevant to the understanding of the likelihood of
occurrence, progression, or management of disease (Feng et al., 2009; Ginsburg and
Willard, 2009) (see Box 4.4).

The following discussion focuses on the new technological developments in high-
throughput assessment tools that are currently in use in biomedical research and
clinical practice.

Polymerase Chain Reaction

The polymerase chain reaction (PCR) is a highly specific, sensitive, and rapid tech-
nology that is capable of identifying DNA or RNA in a wide range of samples. The
qualities of high specificity, sensitivity, and speed make PCR an attractive technology
for the analysis of DNA and RNA in a broad range of samples that includes tissues
and body fluids. In this respect, PCR represents an efficient alternative to in vitro
culture of infectious agents or immunoassays for the diagnosis of infectious disease.
Fluorescence-based real-time PCR has the added attraction that it allows for the
detection and the simultaneous quantitative analysis of known genetic targets with
minimal cross-contamination and a broad dynamic range. Examples of applications of
real-time PCR include comparisons of gene expression profiles, analysis of SNP and
specific genetic defects, viral load determination, and allelic discrimination. Multiplex
PCR has the capacity to simultaneously amplify two or more genetic targets using
sequence-specific primers that are unique to each target, allowing for multiple tests to
be performed on a single diagnostic sample. Real-time PCR can also be used to confirm
the expression of genes identified in large sample populations that were originally iden-
tified in gene expression patterns by cDNA microarray technology. A disadvantage
of real-time PCR is the cost of reagents, equipment, and requirement of specialized
technical expertise (Coussens and Nobis, 2002; Plummer, 2007; Hoffmann et al., 2009).

Restriction fragment length polymorphism (RFLP) is a PCR-based assay that iden-
tifies genotype by evaluating specific DNA sequences that are recognized by restriction
enzymes. Digestion by restriction enzymes recognizes nucleotide differences in the
amplified sites allowing for identification of allelic variants (Plummer, 2007).
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Proteomics

While DNA microarray analysis identifies gene expression patterns, it provides lim-
ited understanding of changes in protein levels, protein–protein interactions, stability
of proteins, and posttranslational modifications (Calvo et al., 2005). Proteomics is
the study of the entire complement of proteins produced by an organism with a par-
ticular focus on structural and functional aspects and the temporal and quantitative
alterations that occur in association with disease, cellular stress, toxicity, or specific
physiological conditions. Proteomics approaches include various techniques that sep-
arate complex mixtures of proteins and mass spectrometry (MS) that identifies the
individual separated proteins.

Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) separates pro-
teins electrophoretically; first, by isoelectric point (the pH at which the protein carries
a neutral charge) and second, by molecular weight. Capillary electrophoresis (CE) uses
high voltages to electrophoretically separate proteins and peptides in microcapillary
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tubes. Known or novel proteins of interest can then be identified by MS techniques
such as matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) and
surface enhanced laser desorption ionization (SELDI). With these techniques, pro-
teins are mixed with an energy-absorbing matrix and separated by TOF-MS by applying
laser beam energy that causes desorption/ionization of proteins followed by measure-
ment of their mass/charge ratio. Liquid chromatography-tandem mass spectrometry
(LC-MS-MS) combines the physical separation of proteins by liquid chromatography
with multiple steps of mass analysis and fragmentation of peptides by mass spectrom-
etry. The LC-MS-MS can detect protein components of a complex mixture and derive
the amino acid sequence of individual peptides (Lescuyer et al., 2010).

Proteomics and Biomarker Discovery

Proteomics allows for the elucidation of the pathophysiological mechanisms of dis-
ease and the identification of disease biomarkers (Lescuyer et al., 2007). Patterns of
proteins and differences in protein expression in healthy and diseased patients provide
proteomic signatures that characterize disease-specific profiles. While single protein
biomarkers may be indicative of a specific disease, recent evidence has demonstrated
that multiple serum biomarkers measured simultaneously is a more effective diag-
nostic approach. Other approaches suggest that the pattern of altered protein levels
is diagnostic rather than the identity of biomarker proteins (Calvo et al., 2005). The
identification of detected proteins allows for the evaluation of biological relevance by
determining the relationship between the biomarkers and the disease process, a key
factor in clinical decision-making.

Various tissues, body fluids, cells, and subcellular components have been analyzed
using proteomics techniques to identify biomarkers of disease (Calvo et al., 2005;
Elrick et al., 2006; Lescuyer et al., 2007, 2010). The biomarkers can then be developed
into screening tools for early detection of disease, disease classification, indicators
of drug toxicity, indicators of prognosis, or response to therapy. Biological fluids are
readily accessible and are frequently used to assess the presence of biomarkers. How-
ever, the analysis of the serum or plasma proteome, considered to be a universal
source of biomarker for many tissues, has proven to be challenging due to the large
number of proteins and the predominance of high-abundance proteins such as al-
bumin, immunoglobulins, and transferrin. Typically, abundant proteins are depleted
from serum or plasma to increase the likelihood of detecting proteins of low abun-
dance that often represent biomarkers. Unfortunately, even with efficient removal
of abundant proteins, current proteomics technologies are still unable to assess the
full dynamic range of protein concentrations in serum or plasma (Elrick et al., 2006;
Lescuyer et al., 2007).

The cerebral spinal fluid constitutes a useful biological fluid for the diagnosis of
neurological diseases as this fluid has a lower volume and it contains fewer proteins
than plasma and accumulates proteins from a single organ, i.e., the brain and spinal
cord (Lescuyer et al., 2007). While urine is readily obtainable, the disadvantages of
analyzing this fluid are that urine collects proteins from plasma and the urogenital
system, protein concentrations vary considerably and the presence of excreted com-
pounds such as salts and urea makes comparative analysis difficult. Current thinking
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is that the proteome of serum or plasma, or of other biological fluids, is altered by
proteins that are liberated by diseased tissue or released by enzymatic cleavage. For ex-
ample, increased serum levels of liver transaminases such as alanine aminotransferase
reflects liver damage, prostate-specific antigen is a biomarker for prostate cancer and
troponin I and T are indicative of acute myocardial infarction (Lescuyer et al., 2007).
However, comparison of serum or plasma from cancer patients and healthy individ-
uals has frequently revealed increases in inflammation-related proteins (e.g., hap-
toglobins or serum amyloid protein) that do not necessarily represent cancer-specific
biomarkers.

In order to be clinically useful, biomarkers must be validated in clinical trials by
demonstrating a significant and consistent difference in biomarker concentration in
the diseased compared to the control state. In clinical trials, the precision and ac-
curacy of the diagnostic test are evaluated by determining the specificity, sensitivity,
and predictive value. If preliminary evaluation of sensitivity looks promising, then
the biomarker may be developed into a diagnostic test using a technique such as the
enzyme-linked immunosorbent assay (ELISA) that allows for quantitative measure-
ments in larger cohort studies. Ideal biomarkers should be (a) highly specific, i.e.,
have a low false-positive rate such that a positive result rules a disease in (SpPin),
(b) highly sensitive, i.e., have a low false-negative rate such that a negative result rules
a disease out (SnNout), and (c) have a high predictive value, i.e., the probability that a
positive test actually indicates the presence of the disease. In addition, the test should
be clinically useful and represent a significant improvement over existing diagnostic
tests. Thus, biomarker discovery is divided into a discovery and a validation phase,
both of which involve close collaboration between clinical chemists and clinicians.
(Lescuyer et al., 2007).

Metabolomics

One of the most recent “omics” technologies to be applied to Systems Biology and
clinical medicine and research is metabolomics. Metabolomics involves the identifi-
cation and quantification of all metabolites in a cell, tissue, or whole organism under
specific states or conditions (Weckwerth, 2010). As with other Systems Biology tech-
niques that contribute to the characterization of molecular phenotypes, metabolomics
has evolved with technological advancements. In particular, nuclear magnetic reso-
nance, mass spectrometry, bioinformatics, and advanced statistical analysis allow for
high-throughput analysis of the physicochemical properties of a metabolome. How-
ever, compared to proteins and nucleic acids, the chemical diversity of metabolites
makes them more difficult to extract and analyze with the use of a universal technique
(Hocquette et al., 2009). Moreover, analytical sensitivity for the detection of metabo-
lites is critical, as there are no amplification techniques that are available for nucleic
acids. The separation of organic metabolites by gas or liquid chromatography and
subsequent ionization and separation of ions according to their mass/charge ratio
by MS allows for the sensitive detection of metabolites in tissues or body fluids
in micromolar quantities (Dettmer et al., 2007). While biomarkers of metabolism
can be identified through comparisons of mass information with existing libraries,
a major limitation with metabolomics is the paucity of extensive databases and
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bioinformatics tools for Systems Biology-based analysis of metabolites (Hocquette
et al., 2009).

In human medicine, metabolomics has typically been used to characterize di-
etary and therapeutic interventions and disorders of metabolism (Oresic, 2009)
with applications in nutrition research and biomarker studies in diagnostics and
drug research. These metabolomics studies have focused on age- and obesity-
related disorders, such as diabetes mellitus, metabolic syndrome, and atherosclerosis.
However, metabolomics is increasingly applied to the study of pathogenic mechanisms
of complex diseases, such as cancer, cardiovascular diseases as well as disorders of the
nervous, endocrine, and digestive systems (Griffiths et al., 2010).

Novel Technologies

Several new technologies have recently been developed that have some considerable
advantages over conventional analytical systems. Our discussion focuses on those
based on microfluidic systems and nanotechnology.

Microfluidic Systems

By miniaturizing components of existing analytical techniques, microfluidic technol-
ogy has the potential to improve existing Systems Biology tools by reducing sample
consumption and analysis time and maximizing throughput. However, the require-
ments of micropumps and miniaturized detection systems constitute disadvantages
that complicate the mechanics of microfluidic systems (Feng et al., 2009). Microfluidic
methods based on CE have been used to analyze DNA, protein, and metabolites. For
example, chip-based CE with multiple microfluidic channel arrays markedly improves
DNA sequencing performance compared to conventional technology. In addition,
pyrosequencing, a DNA sequencing method that monitors pyrophosphate release on
nucleotide incorporation, has been adapted to microfluidics by trapping DNA on
microbeads in a filter chamber while monitoring the flow of nanoliter quantities of
pyrosequencing reagents. Other applications of microfluidics include cell culture, cell
sorting, and cell–cell signaling (Feng et al., 2009). Moreover, microreactors for DNA
amplification have been developed that involve submicroliter PCR chambers with mi-
crofabricated CE systems for ultrasensitive PCR of single DNA template molecules
and real-time detection of genomic samples (Feng et al., 2009).

As mentioned above, the detection of low abundance target proteins by proteomics
analysis requires a preconcentration step through the elimination of high-abundance
proteins. Enrichment of low-abundance proteins has been facilitated by microfluidic
technology using miniaturized isoelectric focusing, immunoaffinity CE or membrane-
based approaches. On-chip protein separation involving one-dimensional and 2D CE
separation systems is also achieved via microfluidics. Microfluidic chips have also been
coupled to MS analysis to facilitate peptide mapping, to identify posttranslational
modifications, protein–protein interactions, and amino acid sequences of biomark-
ers thereby addressing issues such as speed, throughput, and cost efficiency (Feng
et al., 2009).
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Cell-Based Biosensors (CBBs)

Current pathogen detection methods rely on the culture of microorganisms, PCR, or
immunochemical approaches that are time-consuming and often inconclusive or fail
to detect unknown or emerging pathogens. There is a need to develop broad-spectrum
cell-based screening tools for rapid biosensing of pathogenic microorganisms that can
be used on patients at point-of-care (i.e., bedside or stall-side) or for environmen-
tal monitoring. Cell-based biosensors (CBBs) are powerful tools that rapidly assess
functional responses of cells to stressors such as pathogens and toxins, and other
hazards relevant to clinical, environmental, agricultural, and pharmaceutical settings.
By combining methods pertaining to microbiology, molecular biology, physics, and
engineering, CBBs comprise of cell culture systems (prokaryotic or eukaryotic cells)
that detect cell–analyte interactions with the capacity for high-throughput optical and
electrical screening (Banerjee and Bhunia, 2009). Disadvantages of CBBs are a lack of
specificity, a limited long-term stability, fragility, and high cost (Banerjee and Bhunia,
2009). However, refinements to CBB systems, such as three-dimensional cell culture
systems, modified growth media, genetically engineered cell surface antibodies or re-
ceptors and fluorescence probes, have improved specificity and sensitivity of analyte
detection (Banerjee and Bhunia, 2009). For example, B lymphocyte-based biosensors
that express immunoglobulins to specific pathogens produce bioluminescence that
can be detected by a luminometer when specific bacteria or viruses bind to the anti-
bodies. Other cell-based assays detect cytotoxicity resulting from cellular membrane
damage induced by the bacterium or toxin. Membrane damage can then be measured
by intracellular incorporation of dyes or release of cellular enzymes such as lactate
dehyrogenase that are detected by secondary transducers such as microelectrodes or
optical detectors (Banerjee and Bhunia, 2009).

Personalized Medicine Versus Livestock Population Health

The intrinsic differences in human and veterinary medicine precludes their direct
comparison with respect to the application of Systems Biology approaches in health-
care. For example, personalized or individualized medicine is unlikely to be of major
interest in the treatment of livestock diseases, as there is limited emphasis on cus-
tomizing healthcare for individual food-producing animals and the major focus is on
herd or population health. Notable exceptions are individual incidences of health
problems in high-yielding dairy cows, where certain individual animals are more sen-
sitive to diseases such as subclinical rumen acidosis, mastitis or Johne’s disease, and
other problems during early lactation. A current challenge is to use Systems Biol-
ogy techniques to determine the underlying determinants of individual susceptibility
to disease and to implement prevention and selective breeding strategies to reduce
these incidences. The prevalence of chronic degenerative diseases such as cancer,
diabetes, and heart disease in aging human beings has spawned interest in individ-
ualized medicine due to the need for increased understanding of molecular patho-
genesis and more precise and effective diagnostic tests and therapies. Factors such
as the economics of modern agriculture and intensive livestock production, the lim-
ited life span of food animals, and differences in environmental influences on disease
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Box 4.5 Impact of Systems Biology in Livestock Management
� Diagnosis of disease and determining etiology
� Identification of genetic determinants of disease susceptibility or resistance
� Understanding pathogenic mechanisms and host–pathogen interactions
� Disease surveillance and identification of factors affecting spread of diseases
� Development of vaccines, antimicrobial drugs, and selective breeding programs

development tend to shift the focus of healthcare of livestock from chronic degen-
erative diseases to infectious diseases. Again, dairy cattle is the obvious exception
to this trend in livestock health management due to their comparatively longer life
spans that lead to the development of chronic problems such as infertility, metabolic
diseases, lameness and mastitis, and other factors associated with suboptimal produc-
tion. As a result, current interest is centered on the use of Systems Biology concepts
and technologies in the area of molecular diagnostics of infectious agents as well
as the identification of factors associated with susceptibility or resistance to infec-
tious disease. While there is less investment in the development of new pharmaceu-
ticals for animal health than in human medicine, Systems Biology may have a large
impact in the development of vaccines and new antimicrobial drugs for livestock
(see Box 4.5).

Until recently, limitations in the availability of reagents and genomic information
have limited our understanding of the molecular pathogenesis of infectious diseases of
livestock species. However, the sequencing of the genomes of major domestic species
and postsequence activities such as proteomics and metabolomics promise to provide
significant benefits for livestock species. Following the sequencing of the human
genome in 2001, several projects aimed at sequencing the genomes of food-producing
animals including cattle, chickens, pigs, sheep, and several aquatic species are either
completed or ongoing (Plummer, 2007). In April 2009, domestic cattle were the
first livestock species to have their genome sequence published, followed by the pig
genome in November, 2009. The US Livestock Species Genome Projects Web page
(http://www.animalgenome.org/), supported by the National Animal Genome Re-
search Program provides information on the status of these projects and information
on livestock species. The National Institute of Food and Agriculture, US Department
of Agriculture in conjunction with the governments of Australia and New Zealand
are currently working to provide a road map of the sheep genome. In addition,
public data from prokaryotic genome sequencing projects is available at the following
Web site: http://www.ncbi.nlm.nih.gov/genomes/MICROBES/microbial_taxtree.html.
Finally, introduction of new generation DNA sequencing technologies should allow
for the rapid and inexpensive sequencing of individual genomes in under 4 weeks for
less than US$ 50,000 (Pushkarev et al., 2009).

At the moment, the challenge is to not to gather as much information as possible but
to understand the functional and operational implications of genomic information.
A holistic approach is required that integrates the various elements (DNA, RNA,
proteins, metabolites, cells tissues) and biological information in order to unravel
the complexities of environment–genotype interactions and the underlying biology
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of the resultant phenotypes of livestock disease. In the postsequencing era, use of
increasingly sophisticated quantification platforms such as microarrays, proteomics,
metabolomics, EST libraries, and QTL markers will help to elucidate the influence of
environmental factors on gene expression and phenotype and the underlying mech-
anisms that control functionality (Green et al., 2007). This process will be facilitated
by the already well-characterized phenotypes of agricultural species that have been
closely monitored and modified through selective breeding (Green et al., 2007). The
principal benefit for food-producing animals will be in translating genomic data to
identify those phenotypic characteristics with added value such as disease resistance,
optimal reproductive efficiency, or enhanced growth rate and to understand the under-
lying mechanisms. In addition, genomics can create opportunities to develop and vali-
date new tests and screening tools to diagnose disease and detect emerging pathogens,
to increase understanding of disease pathogenesis or mechanisms of antimicrobial re-
sistance, to discover and evaluate new therapies, and to identify biomarkers of drug
efficacy and toxicity, all of which could contribute to maximizing the health and pro-
ductivity of food animals (Green et al., 2007).

Molecular Diagnostics

Identification of Pathogens

In veterinary medicine of livestock, the most frequent and extensive application
of Systems Biology techniques is in the area of molecular diagnostics. The emer-
gence of PCR enabled the development of new testing modalities that can identify
and amplify specific DNA or RNA sequences from infectious agents (e.g., bacte-
ria and viruses) and specific genomic sequences responsible for disease suscepti-
bility and resistance in production animals (Plummer, 2007). PCR-based molecular
tests are routinely performed by veterinary diagnostic lab to provide definitive diag-
nosis of infection based on the presence of specific pathogens. For example, PCR
assays can differentiate toxin types of Clostridium perfringens and identify strains of
Escherichia coli and Pasteurella multocida based on PCR amplification of toxin genes.
In many diagnostic lab, the cost of diagnostic testing is reduced through the use
of multiplex PCR technology that can detect multiple pathogens or genetic toxin
typing in a single reaction. As was mentioned previously, real-time PCR may even-
tually replace conventional PCR in molecular diagnosis due to the advantages of
quantification of DNA or RNA copy numbers and the reduced risk of sample cross-
contamination (Plummer, 2007). The challenges of reliable real-time PCR detection
of RNA viruses with mutation-induced variable genomes can be circumvented by run-
ning multiplex PCR with primers to different regions of the viral genome (Hoffmann
et al., 2009).

The impact of real-time PCR on molecular diagnostics is most apparent in the
diagnosis of viral pathogens of livestock that can result in diseases with serious impact
and are notifiable to the World Organisation for Animal Health (OIE) or other reg-
ulatory agencies. Examples of these diseases include foot-and-mouth disease (FMD),
classical swine fever virus (CSF), bluetongue virus (BTD), avian influenza (AI), and
Newcastle disease (ND) (Hoffmann et al., 2009).
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Foot-and-Mouth Disease (FMD)

Foot-and-mouth disease is a severe, highly contagious viral disease of cattle, sheep,
goats, pigs, and cloven-hoofed wild ruminants. While there are no public health or
food safety risks associated with FMD, the devastating impact of this disease on the
food industry and entire economies due to rapid spread, high morbidity, and reduced
animal productivity necessitates rapid testing and disease control actions such as
widespread culling of infected and at-risk animals in response to FMD. In Canada,
confirmatory testing for FMD is done by the Canadian Food Inspection Agency
at the National Centre for Foreign Animal Diseases by either tissue culture, virus
isolation, ELISA, or RT-PCR. In the 2001 outbreak of FMD in the United Kingdom,
control strategies required that infected animals be slaughtered within 24 hours of
detection. Given the requirement for speedy diagnosis, portable RT-PCR machines
were required in the field. This reflects the need for simple, easy to use, point-of-care
technologies for pathogen diagnosis and robust protocols that eliminate tissue-derived
inhibitors of the PCR reaction. In addition, current studies are investigating the use
of RNA interference (RNAi) techniques to identify regions of the FMD virus that
are least variable, information that would be useful in the generation of disease-
resistant livestock, and the strategic development of new drugs and vaccines (Pengyan
et al., 2008).

Bluetongue Disease (BTD)

Bluetongue disease is a noncontagious viral disease of domestic and wild ruminants
that is transmitted by insects, particularly biting midges of the Culicoides species.
BTD virus causes serious debilitating disease in domestic ruminants and significant
mortality, requiring rapid diagnosis and control measures. The recent spread of BTD
into northern Europe has necessitated the development of high-throughput protocols
for rapid and sensitive detection of BTD virus by real-time PCR.

Avian Influenza (AI)

Avian influenza is a contagious viral infection caused by the influenza virus Type “A,”
family Orthomyxoviridae that can affect several species of poultry as well as wild birds.
The AI viruses can be classified into two categories: low pathogenic AI (LPAI) and
high pathogenic AI (HPAI) forms based on the severity of the illness. The HPAI
form is extremely infectious in poultry resulting in rapid spread and high mortality
within 48 hours. Some HPAI strains such as H5N1 may, on rare occasions, cause
disease in humans. While virus isolation is the gold standard for AI diagnosis, this
method and subsequent testing can take several days to reach a diagnosis. Real-time
PCR is also a valuable and rapid diagnostic tool for clinical specimens particularly in
LPAI outbreaks, where clinical signs may be vague, and in HPAI epidemics, where
emergency management is dependent upon rapid and definitive diagnosis. Primer
sets specific for the hemagglutinin gene are currently used; however, high sequence
variability may affect diagnostic sensitivity of validated RT-PCR protocols (Hoffmann
et al., 2009).
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Newcastle Disease (ND)

Newcastle disease is a highly contagious viral disease of wild birds and domestic fowl
that causes a high incidence of mortality and serious economic impact to the poultry
industry. Conventional diagnostic methods are labor-intensive, time-consuming, ex-
pensive, and can significantly delay disease control measures. While RT-PCR has the
potential for rapid diagnosis, the variability of the F (fusion protein) gene precludes
reliable amplification of all virulent ND viruses. Due to the devastating consequences
of misdiagnosis resulting from false-negative or false-positive data, RT-PCR is cur-
rently not approved by the World Organisation for Animal Health (OIE) for the
diagnosis of ND (Hoffmann et al., 2009).

Classical Swine Fever (CSF)

Classical swine fever is a highly contagious viral disease that causes high morbidity
and frequent fatalities in domestic and wild pigs. Because of variable and nonspecific
clinical and pathological signs, laboratory testing is essential for the confirmation
of diagnosis. While virus isolation and immunochemical assays for virus or antibody
detection are standard, PCR techniques including RT-PCR are becoming increasingly
important and acceptable approaches for rapid and accurate identification of CSF
(Hoffmann et al., 2009).

Identification of Genetic Disease

The sequencing of the genomes of several food-producing animals has facilitated
the development of molecular diagnostics for genetic diseases and the identification
of genes responsible for susceptibility to specific diseases of economic importance
(Plummer, 2007). While diagnostic testing for genetic disease in livestock is rare,
an increasing number of tests is commercially available that can be used to detect
the genetic variations associated with these diseases. For example, ovine hereditary
chondrodysplasia (spider lamb syndrome) characterized by musculoskeletal deformi-
ties in lambs is caused by a SNP in the fibroblast growth factor receptor 3 gene that
results in loss of tyrosine kinase function. A commercial test is currently available to
screen breeding animals and detect carriers of this gene (Plummer, 2007). Some of the
commercial tests for genetic diseases of cattle currently available in North America
include deficiency of uridine monophosphate synthetase (UMPS gene), complex ver-
tebral malformation (SLC35A3 gene), and Factor IX deficiency (factor IX gene)
in Holstein cows, protoporphyria (ferrochelatase gene) in Limousin cattle, bovine
hereditary zinc deficiency (SLC39A4 gene) in Shorthorn cattle, alpha-mannosidosis
(MANNA) in Angus cattle, and platelet bleeding disorder (CalDAG-GEFI) in
Simmental cattle.

The main utility of these molecular diagnostics tests is to screen breeding animals
in order to identify carriers and limit their use with the eventual goal of genetic disease
elimination. As a result, some breed associations now require the inclusion of genetic
disease test results on official documents of registered animals. The use of this type of
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molecular diagnostic testing will undoubtedly become routine as genetic diseases are
characterized and the associated genes are identified.

Determining Disease Susceptibility or Resistance

Susceptibility to disease may result from a limited functional capacity in one or more of
the components of host defense mechanisms. For example, bovine leukocyte adhesion
deficiency (BLAD) is a disease of cattle characterized by an increased susceptibility
to infection due to the dysfunction of leukocytes. Neutrophil recruitment to sites of
inflammation requires that neutrophils adhere to, and migrate through, the capillary
endothelium. This is an autosomal recessive disease due to a genetic polymorphism
in the CD18 gene that codes for adhesion molecules in leukocytes reducing their
adhesion to the capillary endothelium (Nagahata, 2004). Carriers of BLAD can be
readily detected by PCR followed by restriction enzyme analysis of the amplicons (i.e.,
RFLP). Because the use of BLAD carrier bulls in artificial insemination programs
increases the prevalence of BLAD in dairy herds, control programs are focusing on
eliminating the BLAD carriers via PCR screening (Norouzy et al., 2005).

Genetic polymorphisms can also affect disease susceptibility in the presence of
a pathogen or toxin. Malignant hyperthermia (MH) is an inherited myopathy and
hypermetabolic syndrome involving skeletal muscle. Clinical signs are characterized
by hyperthermia, tachycardia, hypoxemia, metabolic and respiratory acidosis, muscle
rigidity, and death. Researchers at the University of Guelph and the University of
Toronto determined the cause of MH to be a mutation in the ryanodine receptor
gene that controls Ca2+ release from the sarcoplasmic reticulum in skeletal muscle
(Fujii et al., 1991). Malignant hyperthermia is typically triggered by succinylcholine
or volatile anesthetics in genetically susceptible pigs and humans, but the porcine
disease may also be triggered by environmental stresses (e.g., rough handling, trans-
portation, fighting, or hot weather) and hence it is also called porcine stress syn-
drome. A PCR-based test that detects the mutation in the ryanodine receptor gene
can identify homozygous MH-resistant and MH-susceptible animals as well as het-
erozygous carriers. Pigs carrying this mutation are more prone to producing pale, soft,
and exudative pork that is unattractive to consumers due the gray, soft, and watery
appearance.

Systems Biology approaches have the potential to elucidate the relative contribu-
tions of genetics and the environment to the susceptibility of food-producing animals
to more common problems such as gastrointestinal infections in poultry and pigs and
rumen malfunction in ruminants. An integrated Systems Biology approach would ben-
efit livestock producers by providing critical information and guidance as to whether
specific production-limiting problems should be handled by farm management or by
genetics/breeding programs or a combination of both.

Using Systems Biology to Understand Host–Pathogen Interactions

Study of the interactions between pathogens or toxins and host gene products is an
important requirement in understanding the pathogenesis of disease. This knowledge
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is fundamental to the implementation of intervention strategies that are intended
to prevent or treat disease. However, use of Systems Biology concepts and high-
throughput technologies is often hindered by a lack understanding of gene function.
One of the main challenges of Systems Biology is to convert large datasets derived from
high-throughput technologies into meaningful information related to structure and
function. Gene Ontology (GO) is a well-developed and commonly used bioontology
process for applying Systems Biology to livestock and poultry health and productivity
and the interrelationship of host and pathogen. The GO provides “functional an-
notations based on molecular function, biological process, and cellular component”
(Mccarthy et al., 2009). In this way, GO can impart relevance to data derived from mi-
croarray and proteomics technologies allowing researchers to understand the function
and interactive relationships of pathogens and various host gene products in order
to elucidate disease mechanisms (Mccarthy et al., 2009). Recently, a Web-accessible
database called “AgBase” (www.agbase.msstate.edu) has been established to provide
assistance with analysis of functional genomics datasets and interpretation of Systems
Biology in agricultural species (Mccarthy et al., 2007).

Molecular Epidemiology

The field of molecular epidemiology uses molecular techniques to examine the causes
and spread of disease. The objective of molecular epidemiology is to identify the eti-
ologic agents (e.g., viruses, bacteria, parasites, toxins, etc.) and detect their source,
the dynamics and routes of disease transmission, the determinants of disease spread
(e.g., virulence genes), the factors that affect disease control such as drug resistance
(e.g., against antimicrobials), and antigens relevant to vaccine efficacy (e.g., immuno-
genic epitopes) (Zadoks and Schukken, 2006). In addition, molecular epidemiology
can detect environmental or host factors, or conditions that influence the introduc-
tion and spread of disease-causing agents. For example, molecular biology meth-
ods can be used to identify and monitor the global spread of highly contagious and
pathogenic strains of microorganisms (Guan et al., 2009). These methods distinguish
between persistent, emerging, or reemerging diseases, and they can differentiate vac-
cinated farm animals from those with natural infections (Klein, 2009). Molecular
epidemiology is becoming an increasingly important resource for veterinary pub-
lic health and the maintenance of health of food-producing animals (Zadoks and
Schukken, 2006).

Comparative Genotyping

The majority of comparative genotyping methods used in molecular epidemiology, in
particular the applications used in the identification of different strains of pathogens,
involve PCR (Zadoks and Schukken, 2006). For example, PCR specifically identi-
fies zoonotic pathogens in food products such as Listeria monocytogenes in meat or
Salmonella sp. in contaminated milk. In addition, PCR-based strain typing methods
and sequence-specific primers can be used to identify specific subspecies of bacteria.
Alternatively, antimicrobial resistance or virulence genes can be identified and their
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horizontal transmission tracked through a process called multilocus sequence typing
(MLST). With MLST, the identification of strains is achieved by sequencing multiple
distinctive genes or loci within the genome of an organism (Zadoks and Schukken,
2006). Thus, molecular epidemiology approaches can monitor the evolution of virulent
strains of pathogens (e.g., E. coli 0157:H7) and the acquisition and spread of antimi-
crobial resistance (e.g., methicillin-resistant Staphylococcus aureus). In addition, the
geographic site of origin and transmission of RNA viruses, such as FMD that can
have potentially devastating effects on food security and those viruses such as HPAI
with severe public health implications, can be monitored by RT-PCR (Zadoks and
Schukken, 2006).

Source Tracing

Molecular epidemiology plays an important role in the identification of the source
of infection or contamination. For example, the source of contamination of drinking
water by E. coli 0157:H7 in the town of Walkerton, Ontario, Canada, that resulted in
the death of seven people and 2500 illnesses in May, 2000, was traced by the genetic
testing of well water contaminated by healthy carrier cattle. Similarly, the origin of the
pandemic H1N1 strain of influenza that emerged in Mexico and the United States in
2009 probably originated in swine, since DNA sequencing determined that the closest
ancestral gene of the novel segments found in this strain were of swine origin (Forrest
and Webster, 2010). Moreover, molecular epidemiological studies have determined
that the highly pathogenic H5N1 strain of avian influenza crossed the host species bar-
rier from birds to humans in 1997 in southern China and was eventually spread globally
via migrating birds (Forrest and Webster, 2010). Thus, techniques used in molecular
epidemiology have generated important information concerning the point of origin
of pathogens, and they are instrumental in monitoring the spread of zoonotic disease
from animals to humans. Since many livestock diseases have profound implications
on the security and safety of our food supply, molecular epidemiology has consid-
erable impact on both animal and public health emergency management. A clear
understanding of the transmission dynamics of highly contagious viral diseases such
as FMD, AI, or ND can influence international trade through the implementation and
enforcement of severe regulatory measures such as trade embargoes, quarantine of an-
imals and food products, strict sanitary procedures, and import controls (Zadoks and
Schukken, 2006).

Pathogen Adaptation to Host Species

The ability of pathogenic strains to adapt to specific host species has been characterized
by molecular epidemiology studies. For example, different strains of Streptococcus
agalactiae cause mastitis in dairy cows and clinical infection in humans. Moreover,
strains of Mycobacterium avium subspecies paratuberculosis found in sheep are different
from those isolated from goats and cattle suggesting that sheep do not represent a
risk of transmission to cattle.
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Vaccine Development

Molecular epidemiology can also be useful in vaccine development and predicting the
efficacy of a vaccine. Evaluating whether a disease is due to a single or multiple strains
of a pathogen determines whether a multivalent vaccine will be required. In addition,
characterizing the geographic distribution of serotypes will determine vaccine efficacy
in different countries (Terregino et al., 2008; Reeve et al., 2010).

Example of Systems Biology Applications in Livestock Health:
Mastitis in Dairy Cattle

Mastitis is the most frequent and costly disease in dairy herds resulting in reduced
productivity and negatively affects yield, composition, and technological properties
of milk (Seegers et al., 2003). The overall mean incidence rate of clinical mastitis is
23 cases per 100 cow-years in Canadian dairy herds (Olde Riekerink et al., 2008).
While there are no current statistics for the incidence rate of subclinical mastitis on
Canadian dairy farms, it has been estimated that for every case of clinical mastitis in
the herd, there are between 15 and 40 subclinical cases (Gill et al., 1990).

Immunogenomics research may provide molecular explanations for genetic varia-
tion in susceptibility to mastitis, and it may identify potential new therapeutic targets
and strategies to protect against mastitis-causing bacteria by enhancing mammary
immunity in susceptible cows. Analysis of gene expression profiles in neutrophils
and other leukocytes in early nonlactating and periparturient dairy cows may iden-
tify genes that affect susceptibility to clinical mastitis. Moreover, knowledge of the
genomics of bacterial pathogens may allow for the production of DNA vaccines
that express genes involved in antigen presentation to T helper-1 lymphocytes.
In this way, DNA vaccines or novel adjuvant drugs could stimulate B lympho-
cytes to produce antibodies that target pathogens involved in mastitis (Burton and
Erskine, 2003).

The current methods of diagnosing clinical mastitis, e.g., somatic cell counting, cul-
ture of causative microorganisms, measurement of biomarker enzymes (e.g., N-acetyl-
ß-D-glucosaminidase and lactate dehydrogenase) and California mastitis testing, have
disadvantages of being either labor-intensive, costly, or ineffective in detecting sub-
clinical mastitis. Therefore, there is a need to develop rapid and sensitive diagnostic
assays for early detection of mastitis based on novel molecular biomarkers and sensor-
based platforms in order to reduce the economic effects of this disease (Viguier et al.,
2009). Proteomics techniques have identified proteins found at varying concentrations
in milk from cows with mastitis. Haptoglobin and serum amyloid A (SAA) are two
sensitive acute phase proteins that have been assessed in serum and in milk during
acute clinical mastitis and in milk from cows with experimentally induced chronic
sub-clinical S. aureus mastitis (Gronlund et al., 2005). Molecular chaperone proteins
involved in protein folding, proteins associated with neutrophils and macrophage
function and serum proteins such as transferrin and bovine serum albumin have also
been found in mastitic milk (Viguier et al., 2009). Other researchers have identified
bacterial proteins associated with pathogen resistance in milk with mastitis. While
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some immunoassays have been developed to these biomarkers, validation in clini-
cal trials is required before these tests are routinely accepted as screening tools for
mastitis detection (Viguier et al., 2009).

In summary, Systems Biology principles and technologies have the capacity to re-
duce the impact of mastitis on the dairy industry by identifying new diagnostic biomark-
ers and by elucidating the immunopathogenic mechanisms of mastitis. The latter in
particular may reveal targets for prevention and therapy. For example, metabolic
adaptations such as altered lipid metabolism and oxidative stress during the peripar-
turient period, may result in changes in the bovine immune system that contribute to
uncontrolled inflammation and the development of disorders of economic importance
such as metritis and mastitis. (Goff, 2006; Sordillo et al., 2009)

Conclusion: Challenges of Applying Systems Biology Concepts
and Techniques to Livestock Health Management

The application of Systems Biology concepts and techniques to veterinary medicine
and livestock health and disease has made significant advances in recent years, but
still lags behind human medicine. Indeed, there are very few examples of gene-based
healthcare currently in use in livestock veterinary medicine. Reasons for the delay
in the widespread implementation of new molecular techniques in the study of live-
stock health and disease include a lack of molecular reagents for the target animals,
minimal characterization of drug metabolism, limited capacity for bioinformatics, the
complexity of data required to support System Biology applications for herd health,
and a paucity of commercial tests for genotyping diseases and genes related to disease
resistance (Coussens and Nobis, 2002). Newly generated data must be rigorously as-
sessed with reproducible assays so that outcomes are evidence-based. Thus, genes and
protein products that are responsible for disease resistance and susceptibility must be
characterized and investigated as potential opportunities for therapeutic intervention.
Biomarkers of early detection, prognostication, and response of disease to therapy
must be characterized and validated as tests for use in selective breeding and dis-
ease prevention programs. This approach will reduce false associations between gene
expression and health that may be costly to the food animal industry.

There is a need for increased funding for basic and clinical research in order to gain
a full understanding of the mechanisms and factors that influence production-limiting
diseases, to identify novel targets for therapy, and to formulate strategies for pre-
vention and control of diseases of livestock. Government funding is limited, private
veterinary diagnostics labs and pharmaceutical companies have typically not invested
substantially in research and development, and livestock organizations have minimal
resources and impact. On the other hand, researchers must develop reliable diagnostic
tests that will be perceived as useful and acceptable by regulatory authorities, diag-
nostic companies, and clinical practitioners (Ginsburg and Willard, 2009). National
agencies such as the Canadian Food Inspection Agency and the US Department of
Agriculture and international organizations such as the OIE and the FAO must be
supportive of the concepts and benefits of Systems Biology in livestock health. These
organizations must promote the integration of the Systems Biology paradigm and
related technologies into the culture of livestock production so that the benefits are
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clear to food animal producers and veterinarians. Livestock veterinary medicine needs
to build on the momentum of preventive herd health that has developed over the past
25 years by replacing the reactive approach to disease and management and mainte-
nance of livestock health to one that focuses on disease prediction and prevention in
food-producing animals (Borden and Raghavan, 2010; Schilsky, 2010).

In conclusion, Systems Biology approaches and technologies will undoubtedly con-
tribute significantly to improving health and productivity of livestock. Moreover, im-
plementation of Systems Biology concepts and practices has the potential to provide
enormous benefits for livestock producers and consumers of animal products. For ex-
ample, there is an opportunity to distinguish health from disease using multiparameter
analysis of tissues and body fluids (e.g., disease diagnosis), to determine the proba-
bility of disease in individual animals (e.g., immune resistance), to monitor exposure
to environmental signals (e.g., identification of pathogens and toxins), and to facili-
tate the integration the various livestock research disciplines (e.g., animal nutrition,
management, breeding, and veterinary sciences). Handheld microfluidic devices have
the capacity for on-site analysis of protein or mRNA levels, detection of emerging
gene mutations, and exposure to infectious agents. These technologies are currently
in development and could contribute considerably to assuring a safe and secure food
supply and minimizing the impact of production-limiting disease (Downing, 2009). In
view of this potential positive impact, governments and the livestock industry should
develop a long-term vision and strategy to support research on Systems Biology and
the development of high-throughput technologies that could significantly influence
health, performance, and productivity of food-producing animals (Green et al., 2007).
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Chapter 5
Systems Biology of Host–Food–Microbe
Interactions in the Mammalian Gut

Vitor A.P. Martins dos Santos, Michael Müller, Willem M.
de Vos, Jerry Wells, Marinus F.W. te Pas, Guido Hooiveld,
Peter van Baarlen, Mari. A. Smits, and Jaap Keijer

The Gastrointestinal Tract and Body Homeostasis

The gastrointestinal tract (GI-tract) is the major site where food and feed meets
the body, is converted into nutrients and metabolites that serve as fuel, components
or signaling molecules for our cells, and is scrutinized for the presence of toxic or
pathogenic components. It contains the largest repertoire of immune functions, it
has intense metabolic activity, and is colonized since birth by microbes (collectively
called microbiota) that have developed intimate relations with the host in many dif-
ferent ways (Bäckhed et al., 2005; O’Hara and Shanahan, 2006; Zoetendal et al.,
2008; Camp et al., 2009). The intestinal microbiota consists for a large part of bacte-
ria that belong to the phyla of Firmicutes, Bacteroides, Actinobacteria, Proteobacteria,
and Verrucomicrobia. These contribute to nutrient processing and signaling, and pro-
duce metabolites with essential functions, such as vitamins and short-chain fatty acids
(SCFAs) (Zoetendal et al., 2008).

The GI-tract not only serves as the entry point for nutrients and energy in the
body, but is also an important metabolic and endocrine organ as such, being a target
for balancing the body energy status. The metabolic capacity of the intestine affects
whole-body physiology, directly, by altering its energy use, but also indirectly, by secret-
ing key metabolic (endocrine) hormones (such as glucagon-like peptide-1 (GLP-1),
gastric inhibitory polypeptide (GIP), cholecystokinin (CCK), and oxyntomodulin).
Hormones that regulate long-term energy balance (leptin, adiponectin, insulin) also
affect the intestine. Malfunctions in this system can cause obesity and a cluster of as-
sociated metabolic disorders, including insulin resistance, type-2 diabetes, endothelial
dysfunction, complex dyslipidemia, hypertension, and atherosclerosis. A causal link to
low-grade inflammation has been well established, but the mechanisms by which high-
fat diets and high energy feeding promote these disorders are not fully understood.
Furthermore, growing evidence suggests that the gut microbiota plays a key role in the
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development of metabolic disease. The microbiota ferment dietary compounds not
digested by the host thereby contributing to our energy harvest and provide lipogenic
substrates leading to modulation of lipid metabolism and fat deposition. The ability
of the intestine for energy production and energy signaling is affected by the body en-
ergy status and can be modulated by specific nutrients. Quantitative modeling of these
processes will provide fundamental physiological understanding of the regulation of
intestinal energy metabolism in the context of the whole body, and will be key to the
development of nutritional strategies to improve metabolic fitness and resistance to
disease.

The Mammalian Gut as Gatekeeper of Homeostasis

The mucosal tissues along the intestine are responsible for sensing luminal contents.
Moreover, intestinal cells secrete signaling molecules, such as gut hormones and pro-
and anti-inflammatory chemokines and cytokines, to which the liver, pancreas, muscle,
adipose tissue, and the immune system respond by modulating their functionality to
maintain homeostatic control. Compromised functionality of the intestine has been
linked to various diseases such as obesity, cardiovascular and inflammatory intestinal
disorders, metabolic syndrome, diabetes, septic shock, infections, and brain diseases
(Ley et al., 2005; Dumas et al., 2006; Cani et al., 2008; Membrez et al., 2008; Hilde-
brandt et al., 2009; Tilg et al., 2009; Wall et al., 2009; Vijay-Kumar et al., 2010). This
highlights importance of the interplay between food, microbes, and host, and the role
of the gatekeeper of body homeostasis, as depicted in Figure 5.1.

Homeostasis Dysfunction Disease

Diet

Microbiota Host

Homeostasis
of nutrient

metabolism

Intestine as
gatekeeper

Energy
homeostasis

Homeostasis of
mucosal immunity

Technological platforms

Obesity
Metabolic syndrome
Diabetes
Infection
Cancer
IBD

Healthy nutrition
Resistance to infection
Oral tolerance
Organ vitality
Healthy ageing

Health

Figure 5.1 Schematic representation of the role of the intestine as gatekeeper of homeostasis
and in preventing dysfunction (disease).
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Although the relations above described between the intestine and chronic dis-
eases refer to humans, they are equally applicable to pets, horses, and zoo animals.
A proper functioning GI-tract is equally important for the health of production an-
imals and directly relates to production efficiency. Several different disturbances of
the gut usually occur during the lifetime of food-producing animals, especially dur-
ing stressful periods like weaning. Intestinal disturbances may be the result of the
presence and outgrowth of pathogens, the presence of contaminants, unbalanced nu-
trition, and an imbalance in the composition of microbiota, e.g., by the frequent use
of antibiotics. In an unbalanced state of the gut, processing, conversion, and absorp-
tion of nutrients are negatively affected, resulting in decreased feed conversions and
growth rates and higher susceptibilities to infections with residing or new pathogens.
Intestinal disturbances also affect the immunological development and responsive-
ness of the gut, thereby further promoting the animal’s susceptibility to infections
with pathogens. Likewise, large amounts of antibiotics are frequently supplied to farm
animals, especially during or immediately after stressful transition periods. However,
human health issues urge for a rapid and significant decline in the use of antibi-
otics by the animal production sector. Therefore, a major challenge is to develop
animal production systems that do not depend on the large-scale use of antibiotics
without compromising health parameters while simultaneously improving production
efficiency and reducing its ecological footprint. One important way to accomplish this
is to unravel the mechanisms involved in host–feed–microbe/pathogen interactions in
the GI-tract and to fully exploit the intrinsic biological potential of these interactions.
Since it is known that there is a significant variation in intestinal functionality and
health between livestock animals in and between breeds, there is much to gain in
this respect.

The Need for Systems Approaches to Study
Diet–Host–Microbiota Interactions

To exploit the ever-increasing wealth of information in an intelligent way, mathemati-
cal models need to be constructed to predict how the host, food, and microbes react to
one another and, collectively, determine the gut functions and body homeostasis. This
requires the application of Systems Biology approaches to the intestinal tract. While
this is a challenging task, it is a timely moment to consider these approaches not only
to capitalize on the wealth of the accumulating data but also to generate hypotheses
and experimental approaches that lead to a better understanding of the gut function.
Hence, here we discuss the basic elements for initiating such a (post-) genomics-
based Systems Biology approach with specific focus on the spatiotemporal processes
along the intestinal tract, the effect of diet, and the contribution of interacting mi-
crobes. We argue that such a mathematical framework should cross-link, top-down,
and bottom-up modeling approaches as exemplified in Figure 5.2 below. For the ani-
mal sciences such models would be valuable tools for simulation purposes in order to
optimize and “customize” animal feeds, to improve health and efficiency traits of the
gut by genetic selection, and for the development of prevention and/or intervention
schemes.
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Figure 5.2 Anatomy of the digestive tract showing the relationship of the small bowel (stom-
ach, duodenum, jejunum, and ileum) to the stomach and colon. (Adapted from http://www.
yoursurgery.com/ProcedureDetails.cfm?BR=1&Proc=49.)

The Gastrointestinal (GI) Tract

The mammalian GI-tract is differentiated into various anatomical regions with dif-
ferent dimensions that are linked to digestive processing of the food (Figure 5.2).
The functions of the upper part (stomach, duodenum, jejunum) are mainly digestion
of carbohydrates, proteins, and fat; acid secretion; and absorption of monosaccha-
rides, fatty acids (FAs), cholesterol, amino acids, di- and tripeptides, vitamins, and
minerals. In the rumen of ruminants, digestion and fermentation processes (biohy-
drogenation of FAs) occur that play a central role in the conversion of forages and
fibers into valuable animal products, like milk FAs but also in the emission of green
house gases.

The longest in size is the ileum, which has also has the largest surface allowing
primary uptake of nutrients and other food components. The colon in contrast is
relatively short, but the food components that have escaped earlier digestion are
exposed for a considerable amount of time to a large consortium of anaerobic microbes
allowing for final digestion. The function of this lower part of the intestinal tract
(cecum and colon) is mainly absorption of water, electrolytes, and SCFAs produced
by the microbes. The majority population of bacteria in the lower part is anaerobic
and the amount of bacteria is much higher compared to the upper part of the GI-tract
(Table 5.1).

While at all sites there is a gradient of enzymes, pH and oxygen, and microbes,
they share a common architecture consisting of a single layer of epithelial intesti-
nal cells that are producing large amounts of mucus, heavily glycosylated proteins
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Table 5.1 Features of the various anatomic sites of the average
gastrointestinal tract in humans indicating the different food transit times
and progressive microbial colonization.

Intestinal site Length (cm) Transit (h) Density microbiota (cells/g)

Stomach 12 2–6 100–104

Duodenum 25 3–5 104–105

Jejunum 160 3–5 105–107

Ileum 215 3–5 107–108

Cecum 6 10–20 1010–1011

Colon 130 10–20 1010–1011

Rectum 18 1 1010–1011

(Derrien et al., 2010). This constitutes the interface that separates the intestinal food
components and microbiota from the body.

Energy Homeostasis

Both the handling of food and maintenance of the barrier function require sub-
stantial energy. This is exemplified by the fact that the intestine uses 5–10% of
body energy in the postprandial/fasting state (Rolfe and Brown, 1997), while its en-
ergy use increases to 15–30% in the prandial/fed state. Clearly, this requires major
adaptive responses that have to take place in an organized manner. At present, no
models, let alone quantitative models, are available for adaptive changes in intesti-
nal energy metabolism. A sufficient ATP-generating capacity is essential for uptake
and secretion, but also to maintain its barrier function. Indeed, both synthetic and
natural compounds, including the cytokine TNF-alpha, which can uncouple mito-
chondrial electron transfer from ATP production, increase intestinal permeability
(Somasundaram et al., 2000; Baregamian et al., 2009).

Signaling and Hormone Homeostasis

Obviously, the intestine does not operate in isolation in the body. It is a major en-
docrine organ that produces a large number of hormones, including CCK, peptide YY
(PYY), and glucose-dependent insulinotropic peptide (GIP) and the preproglucagon-
derived peptides such as Glucagon like peptides 1 and 2 (GLP-1, GLP-2) and oxynto-
modulin. GLP-1 and GIP are incretins that evoke an insulin response. These hormones
have a role in signaling energy use, energy demand, and energy uptake in the body
and as such (or directly) have a role in hunger and satiety. In return, the intestine re-
sponds to endocrine hormones that are involved in signaling of the body energy status,
including leptin, adiponectin, and insulin. Profound quantitative understanding of the
relationship between intestinal energy metabolism, body energy status, and endocrine
signaling is essential to develop (nutritional) strategies, not only to improve intestinal
function but also to prevent metabolic complications arising from dysfunctional energy
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homeostasis. This is especially true for production animals that encounter periods of
negative energy balance, for example, milk cows at the start of lactation.

Homeostasis of Tolerance and Immunity

Epithelial cells form a single cell layer that is in continuous contact with the intestinal
lumen content. Together with immune cells, epithelial cells regulate immune home-
ostasis and tolerance that ensure that antigens from the food and microbiota do not
lead to inflammation. Tolerance and homeostasis are comediated by the microbiota,
which can influence inflammation through modulation of NF-κB and PPAR acti-
vation. Moreover, SCFAs produced by the intestinal microbiota have recently been
shown to affect inflammation via GPR43 (Oberhardt et al., 2009). Homeostasis is also
linked to dietary factors, such as high fat, which can exacerbate inflammatory signaling
and ultimately negatively impacts epithelial integrity under conditions of stress or mild
inflammation. Immune homeostasis is tightly linked to metabolic (lipid) homeostasis
through antagonistic activity of PPAR signaling and NF-κB signaling.

Our current model for the homeostasis of tolerance and immunity at mucosal
surfaces highlights a regulatory role for the epithelium (Figure 5.3A). Under steady-
state conditions, the epithelia produce retinoic acid, TGF-β, and TSLP, factors that
“condition” immune cells toward a “tolerogenic” phenotype. Moderate stimulation of
epithelial cells leads to NF-κB-mediated increased secretion of additional factors such
as IL-10, BAFF, APRIL, and SLPI (Figure 5.3). These factors serve to promote and
regulate immune cell activation and maturation such that homeostasis and immune
tolerance are maintained.

Nutritional Challenges

The intestine is the major organ for the uptake of nutrients and other food com-
ponents. Whereas much is known about the absorption and transport of nutrients
and food components, only recently work has been done focusing on the regulation
of intestinal genes and functional properties upon adaptive response to nutritional
challenges. One of the most important challenges that has received significant atten-
tion is dietary fat, and in particular in its recently recognized interaction with the gut
microbiota (Cani et al., 2008; De Wit et al., 2008; Hildebrandt et al., 2009). Below, we
discuss recent aspects on the role of dietary lipids on the regulation of gene expression
in the different regions of the small intestine with a particular focus on the role of
nutrient-sensing transcription factor PPARα. Up to now, in most of these studies the
mouse has been applied as a model.

Dietary Lipids

On a daily basis, the human small intestine metabolizes an average of 100 g of dietary
fat, more than 90% of which is composed of triacylglycerols (TGs). The absorption of
lipids from the lumen is generally highly efficient, whereby approximately 4% of the
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Figure 5.3 (A) Schematic depiction of the main epithelial factors that condition immune cells
to maintain homeostasis at mucosal surfaces. (B) Stimulation of TLR and other receptors in
epithelial cells leads to intracellular signaling, degradation of IκB, and transcriptional activity
of NF-κB, including release of factors promoting immune cell maturation and PPAR-mediated
conditioning of immune cells to non-inflammatory cell type.

ingested fat escapes into feces. Prior to absorption, TGs are hydrolyzed by gastric and
pancreatic lipases to free FAs and 2-monoacylglycerols (2MAGs), both of which are
taken up by enterocytes.

Because both products are potentially toxic—especially free FAs at higher
concentrations—they must be rapidly neutralized. This can be accomplished through
multiple mechanisms. The dietary fat is metabolized or converted to TGs. Once
taken up by cells in the enterocyte they have diverse metabolic and cellular fates.
The incoming FAs are activated and may be sequestered by binding to FA-binding
proteins (FABPs), which also regulate intracellular trafficking of FAs. The absorbed
FAs and 2MAGs are quickly resynthesized into TG, which temporarily resides in
intracellular lipid droplets and is ultimately transported out of the cell as TG-rich
lipoprotein particles called chylomicrons. Because the intestine expresses many en-
zymes that control mitochondrial, peroxisomal, and microsomal oxidation, FAs can
also be catabolized. The amount of TGs that are absorbed by the intestine depends on
several physiological and nutritional factors, including the amount and composition
of TGs and phosphatidylcholine (PC) in the intestinal lumen. However, the molecular
mechanisms that underlie these phenomena are not fully understood.

FAs play an important role as signaling molecules in the regulation of their own
metabolism. The transcription factor PPARα, a member of the superfamily of nuclear
receptors, plays an essential role in this regulation. PPARα (NR1C1) is a member of
the superfamily of nuclear receptors and is closely related to the PPAR isoforms β/δ
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(NR1C2) and γ (NR1C3). Bunger et al. (2007) demonstrated that PPARα is highly ex-
pressed in small-intestine cells, coinciding with the primary anatomical location where
FAs are digested, absorbed, and transported into the body as chylomicrons. Moreover,
this genome-wide analysis and preliminary data (Hooiveld et al., unpublished) suggest
that all major steps in enterocyte lipid handling are regulated by PPARα, pointing to
a role of this nuclear receptor as a major regulator of intestinal lipid absorption.

The capacity for fat absorption in the intestine can be adapted to the fat con-
tent of the diet in the mouse, and this adaptive capacity is apparently much more
pronounced for lipids than for other nutrients. Fat-mediated adaptation takes place
through two complementary events (Niot et al., 2009). A switch from a low fat and
high-carbohydrate diet to a high-fat and low-carbohydrate diet results in the induc-
tion of intestinal cell proliferation with the apparent goal to increase the absorptive
area. Furthermore, chronic high-fat diet results in the coordinate regulation of a large
array of genes many of them contributing to an increased metabolic capacity related
to lipid homeostasis. To gain insights into the potential role of the small intestine in
development of obesity, De Wit et al. (2008) and Bunger et al. (unpublished) studied
dietary fat-induced differential gene expression along the longitudinal axis of small
intestines of C57BL/6J mice (Figure 5.4).

Dietary fat (45 energy%) had the most pronounced effect on differential gene
expression in the middle part of the small intestine mainly on biological processes re-
lated to lipid metabolism, cell cycle, and inflammation. In-depth network analysis—see
modeling section below for the methods—revealed that the lipid-sensing nuclear re-
ceptors such as peroxisome proliferator-activated receptors (PPARs), liver X recep-
tors (LXRs), and farnesoid X receptor (FXR) play an important regulatory role in
the response of the small intestine to high-fat diet. A hypothesis derived from this
is that dietary fat-induced development of obesity and insulin resistance in mice
with substantial changes in gene expression in the small intestine over time are
causally linked.

Short-Chain Fatty Acids (SCFA) and Microbiota

SCFA, along with middle- and long-chain FAs, are derived from dietary lipids and
have important nutritional implications. They are major products from fermentation
processes from gut microbiota of nondigestible carbohydrates. SCFAs consist mainly
of butyrate, acetate, and propionate, which are almost completely absorbed along the
GI-tract and in the rumen of cattle. Many metabolic properties are shared between
microbial taxa and hence it is difficult to link the capacity of producing specific SCFAs
to phylogenetic information (Zoetendal et al., 2008). However, there is great interest
in doing so following the hallmark observation that the ratio of bacteria belonging to
the Bacteroidetes and Firmicutes changes in obese subjects that are losing weight (Ley
et al., 2006). This and following studies have shifted the attention to the impact of the
intestinal microbiota on nutrient processing and have been reviewed recently (Ley,
2010; Vrieze et al., 2010). Bacteria of the Bacteroidetes phylum produce high levels of
acetate and propionate, whereas several members of the Firmicutes phylum produce
high amounts of butyrate (Maslowski et al., 2009). Normal colonic epithelia derive
60–70% of their energy supply from SCFAs, particularly butyrate. Propionate is largely
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taken up by the liver and is a good precursor for gluconeogenesis, liponeogenesis,
and protein synthesis. Acetate enters the peripheral circulation to be metabolized
by peripheral tissues and is a substrate for lipid and cholesterol synthesis (Schwiertz
et al., 2010).

SCFA can affect the intestinal barrier function. Dietary intervention in rats with
a diet high in fructo-oligosaccharides (FOS), which produces high levels of SCFA in
cecum and colon, resulted in increased permeability to pathogenic bacteria. Tran-
scriptome analysis showed a concomitant upregulation of intestinal peptides with a
role in satiety signaling, such as proglucagon, CCK, peptide YY (PYY), and pancre-
atic polypeptide (PPY), as well as up-regulation of mitochondrial gene expression
(Rodenburg et al., 2008a). These results were explained by exhaustion of mitochon-
drial capacity for ATP production, which was used to maximal capacity for main-
tenance of cellular pH. In more detail, high levels of FOS fermentation products
cause intracellular acidification of epithelial cells, when protonated SCFA diffuse
from the gut lumen into epithelial cells. These SCFA cause intracellular acidifica-
tion and induce proton pump activity (NHE and NBC transporters), which may
lead to ATP depletion. Reduced ATP levels are compensated by increased mito-
chondrial gene expression. The consequential disturbed energy metabolism causes
increased permeability. These results show the importance of homeostasis of in-
testinal epithelial energy metabolism for maintenance of the intestinal barrier func-
tion. Indeed, it has been shown that uncoupling of intestinal mitochondria leads
to increased bacterial translocation, immune cell infiltration, and ulceration in
rats (Somasundaram et al., 1997; Nazli et al., 2004). These data further raise the
question how the very high production of SCFA is dealt with in ruminants at a
mechanistic level.

SCFA and Energy Metabolism

Also, other interventions can change SCFA production. In a recent human study
(Duncan et al., 2007), it was discovered that when carbohydrate intake was lower the
acetate production increased, the butyrate production decreased, and that of propi-
onate did not change. Subsequently, leaner people had a higher ratio of acetate to
butyrate and propionate. This respective ratio was also higher, though only slightly, in
lean volunteers (Schwiertz et al., 2010). Here, the Bacteroides species, the known pro-
pionate producers, are also higher in the overweight volunteers. The colonic mucosa
also draws on butyrate as energy source. In addition, butyrate functions as histone
deacetylation inhibitor and has significant effects on chromatin structure and in-
creased levels will have effects on increased DNA transcription, including potentially
increased release of gut hormones. From the SCFA produced in the gut, butyrate will
have the most significant local effects on functional properties of the gut.

SCFA and Signaling

Beside their role as fuels or metabolic precursor, SCFAs can also serve as ligands for
G-protein-coupled receptors (GPCRs): GPR43 and GPR41. The GPR41 is activated
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equally by propionate or butyrate, whereas GPR43 prefers propionate to other SCFAs
(Hirasawa et al., 2008). GPR41 is associated with the excretion of the incretin PYY.
Samuel et al. (2008) found that GPR41 is expressed in enteroendocrine cells, mainly
in the distal small intestine (ileum) and colon. They found that a deficiency of GPR41
is associated with reduced expression of PYY, increased intestinal transit rate, and
reduced extraction of energy from SCFAs that are made by the microbiota. These
results indicate that GPR41 regulates host energy balance through mechanisms that
are dependent upon the gut microbiota (Ichimura et al., 2009). GPR41 mediates a
key microbial–host communication circuit via the SCFAs produced by microbiota.
One feature of this interaction is that activating GPR41 increases the amount of
circulating enteroendocrine hormones such as PYY, which reduces gut motility and
thus increases production/absorption of SCFAs. Analysis of the deficient mice suggests
that inhibition of GPR41 could mean that less energy is extracted from the indigestible
fibers and thus could contribute to weight loss (Samuel et al., 2008).

The Intestinal Microbiota

As a consequence of developments in high-throughput, functional genomics, and
metagenomics-based approaches, recent years have seen a renaissance in the inter-
est in the microbial diversity and activity in the intestinal tract (Zoetendal et al.,
2008). Since the vast majority of the intestinal microbes have not yet been cultured
(Rajilić-Stojanović et al., 2007), recent progress in determining the microbial diversity
in the intestinal tract has largely been based on the application of 16S rRNA-based
methods that include high-throughput methods, such as next-generation sequencing
and microarray analysis or both (Zoetendal et al., 2008; Claesson et al., 2009). An
ultimate exponent is the recent study providing the sequence of 3 million genes that
provide a baseline intestinal coding capacity of the intestinal microbes (Qin et al.,
2010). These and earlier lower throughput methods have shown that the intestinal
colonization process starts immediately after birth resulting in adult-like complexity
developing after the weaning process (Palmer et al., 2007). The intestine microbial
community in adult animals is high individual and consists of over 1000 microbial
phylotypes (Rajilić-Stojanović et al., 2007; Zoetendal et al., 2008). This indicates that
the intestinal microbiota may be an important factor contributing to the subject’s
health status. Within our life span, the average composition of the adult commu-
nities appears to be rather similar and only subjects with an age above 100 years
are characterized by a significantly different microbiota, possibly to their changed
immune system (Biagi et al., 2010). Moreover, the adult community is remarkably
stable and resilient, even against major perturbations such as the use of antibiotics
(Dethlefsen et al., 2008). Long-term studies have even shown significant stability in
a period over 10 years and this led to the concept of an individual core of microbes
that reflect specific interactions with the host (Zoetendal et al., 2008). This individ-
ual core differs from the common core of microbes that include the phylotypes that
are shared between individuals as discussed below. This indicates that the compo-
sition of gut microbiota can be regarded as a complex polygenic trait that can be
modulated by specific environmental factors as well as by specific host genetic fac-
tors (Bensona et al., 2010). Comparisons of microbiota composition between humans,
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chickens, cows, pigs, and geese have also been described recently (Lee et al., 2010).
Moreover, a wide array of studies in germ-free and other model animal systems has
been providing considerable insight in the impact of microbes on the host (Hooper
et al., 2010). Finally, host–microbe interactions are now being studied in human and
livestock systems with both attentions for the host as well the microbe expression
(Gross et al., 2008; van Baarlen et al., 2009; Marco et al., 2010). Similarly, the effects
of different dietary conditions diet on intestinal gene expression have been studied
extensively in various nutrigenomics studies (Bunger et al., 2007; De Vogel–van den
Bosch et al., 2008; De Wit et al., 2008; Van Den Bosch et al., 2008; Mair et al., 2010).
Impaired barrier function by dietary FOS in rats is accompanied by increased colonic
mitochondrial gene expression (Rodenburg et al., 2007a, 2007b, 2008a). These stud-
ies have led to a framework to analyze datasets that can be applied to many species
(Rodenburg et al., 2008b). Together, enormous amounts of the datasets of different
types are being continuously generated that need to be considered in a higher context
framework.

Defining Scales in Microbial Ecology of the Intestinal Tract

The GI-tract, as any ecosystem, exists along temporal, spatial, and environmental
scales; these scales define three conceptual dimensions within which the GI ecosystem
exists. However, any single analysis of an ecosystem is performed using a limited range
of scales: “a low-dimensional slice through a high-dimensional cake” (Zengler et al.,
2002; Camp et al., 2009). This restricted range of scale is imposed by our experimental
design as well as limitations in our perceptual capabilities. This is important because
different scales might be subject to different selective processes. Fine temporal and
spatial scales can generally provide greater detail yet be more susceptible to stochastic
events, whereas coarser scales can be more regular and predictable. Therefore, the
biases associated with each scale must be recognized and an understanding of the
interaction among phenomena on different scales has to be developed. Figure 5.5
depicts schematically (after Camp et al., 2009) how temporal and spatial scales apply
to the GI ecosystem for three mammalian “levels.”

Microbiota and Systems Approaches

The enormous complexity and individuality of the intestinal microbiota complicates
the application of Systems Biology approaches. Hence, it is of interest to determine the
microbial phylotypes that are shared by different individuals. This so-called common
core has attracted considerable attention and recent studies on the adult core
microbiota in humans revealed a varying number of phylotypes (Rajilić-Stojanović
et al., 2009; Tap et al., 2009; Turnbaugh et al., 2009). This can be attributed to the
absence of a common definition, the application of different methodologies, and the
analysis of subjects with a widely different genetic background. Hence, standardized
approaches are required to further define the core microbiota. This was initiated in
a recent meta-analysis of the intestinal microbiota of over 1000 subjects that were all
characterized in the same way by deep analysis with a phylogenetic an intestinal
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Figure 5.5 Schematic representation of the embedding of the gastrointestinal tract (GI-tract)
and the levels and complexity handled for different mammalian systems. The y-axis defines the
increasing complexity of the model system, whereas the x-axis defines various complexity levels
at which the GI ecosystem is perceived. The upper macroscopic level consists of the individual
host and progresses down through the levels of organ system, tissue, epithelial cell, microbial
cell, and molecule. Temporal scales (z-axis) are defined by the time over which variation in the
GI ecosystem is perceived, beginning with the present and progressing into seconds, minutes,
days, and years. (Adapted from Camp et al., 2009.)

microarray (Nikkila and de Vos, 2010). Similar studies are underway for major
livestock species.

Another factor complicating the application of systems approaches is the fact that
the vast majority of studies of the intestinal microbiota draw on fecal samples. While
these may reflect the overall microbiota, the colonic microbes are the most numerically
dominant (see Table 5.1). This prevents the analysis of the upper intestinal microbes,
and these can only be detected by ultra deep analysis methods assuming that they reach
the colon in an intact form. Other avenues to study the ileum intestinal microbiota
have recently been developed and rely on direct sampling or analysis of ileostoma
subjects (Hartman et al., 2009; Booijink et al., 2010).

A last aspect that affects the use of systems approaches is the absence of genomic
data for all intestinal microbes. In this regard, the Human Microbiome Project has
made substantial progress. Recently, the draft genome sequences of 178 genomes
of partly related microbial species were determined, revealing over 30,000 unique
genes (Nelson et al., 2010). However, the majority of the intestinal microbiota has not
yet been cultured and the number of new phylotypes grows faster than the cultured



P1: SFK/UKS P2: SFK

BLBS088-05 te Pas September 10, 2011 4:17 Trim: 244mm×172mm

122 Systems Biology and Livestock Science

intestinal species (Rajilić-Stojanović et al., 2007). Hence, much progress can be ex-
pected from metagenomic approaches and from the thorough analyses of the results
thereof. Following the first metagenomic sequences of 3 US and 12 Japanese subjects,
now the metagenomes of 121 EU subjects have been reported by the MetaHit consor-
tium (Gill et al., 2006; Kurokawa et al., 2007; Qin et al., 2010, respectively). This has
led to an inventory of over 3,000,000 unique genes that serve as a baseline for future
studies. In the latter study, use was made of new, generation sequencing technologies
and with the advent of even higher throughput machines significant progress is to be
expected, even if the complete metagenome exceeds the nine million genes presently
estimated (Xie et al., 2009). The major bottleneck is now how to use this large amount
of data and provide predictive models based on relevant sets of microbial genes.

Host–Microbiota Interactions

A variety of interactions with the host have been described. However, most have
been derived from gnotobiotic animal model studies. A high level of sophistication
has been reached since the first pioneering studies with Bacteroides thetaiotamicron
colonizing germ-free mice (Hooper et al., 2010). Recent reports describe the use of
knockout mice, microbial communities of varying complexity, and global approaches
that not only addressed the host but also the microbiota response (Wen et al., 2008;
Mahowald et al., 2009; Rey et al., 2010). Moreover, various labs are involved in the
design and construction of germ-free mice that stably harbor microbial communities
exclusively consisting of relevant human species. These could be of great interest as
initiating points for model studies aiming at systems approaches. However, it remains
to be seen whether these interactions are stable and representative, notably in view
of the observation that the human microbiota is highly subject-specific. Moreover,
this approach relies on the cultivation of human microbes in gnotobiotic animals.
Finally, the number of combinations of microbes increases exponentially with the
amount of species and hence may provide only information on a small part of the
microbiota.

An alternative approach is the use of human and livestock species as models to test
the effect of added microbiota. This has now become technically feasible and the first
reports have described the effect of orally administered Lactobacillus plantarum on
the gene expression in the human duodenum (Troost et al., 2008; van Baarlen et al.,
2010) and the gene expression in duodenum, ileum, and colon of pigs (Gross et al.,
2008). This has revealed a large impact on the immune signaling network providing
support for a probiotic function. This is to be expected in view of the high oral dose
(over 109 cells per mL) and the low degree of colonization in the human duodenum
(see Table 5.1). In the pig study, gene expression was most affected in the ileum. In
a recent comparative study with three different Lactobacillus species, it was found
that the host gene expression is determined by the specific strain that is applied (van
Baarlen et al., 2010). Obviously, this approach with human volunteers can be used only
in a limited number of cases, in livestock species these limitations are less. It illustrates
the power and potential of performing studies in humans and livestock animals. Hence,
holistic studies with changing microbiota or diet can be designed where the host gene
expression is addressed and can be analyzed with systems tools designed for that
purpose. A major challenge is now to integrate, manage, and interpret this wealth of
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generated information so to translate it to testable hypotheses and insights that can
contribute to the understanding of gut function.

Integrated Modeling Approaches

Understanding that microbiota is pivotal in our intestinal function has revolution-
ized our insights into the intestinal tract. The triangle of food/feed–host–microbes
(Figure 5.1) has become the pinnacle of advanced global initiatives aiming at charac-
terizing the role of the intestine as pivot of body homeostasis. Currently, the generation
of “omics” data is no longer the main bottleneck toward the understanding of gut func-
tions. What is urgently needed are systems approaches to position the accumulating
data on the interplay between food/feed–microbiota–intestine with spatial, tempo-
ral, and environmental dimensions into a conceptual framework, provide mechanistic
models, and allow predictions. Figure 5.6 frames the various modeling approaches
herein discussed.

Top-Down Modeling

Multivariate Statistics

The generation of increasingly more—omics and other—data in wider sets of experi-
ments over many conditions has enabled the application of robust statistical analysis
and modeling procedures to—possibly—ascertain causality and links between differ-
ent factors. In a recent study, Martin et al. (2008) used multivariate statistical analysis
to assess the correlations between changes in host parameters, bacterial populations,

Figure 5.6 Simplified schematic representation of the various modeling approaches herein
described. These approaches run for different levels of biological organization and time scales.
These would be then a third and fourth dimensions to be taken into account.
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and in the fecal composition of SCFAs in a humanized microbiome mouse model. In
that same study, the authors represented the intercompartment metabolic correlation
through pixel maps and used bipartite graphs to display the correlation matrix derived
from focal SCFAs and respective microbial profiles to assess the probiotic-induced
changes in the microbial metabolism of the gut. Jointly, the analyses indicated that a
probiotic formulation modulated a range of host metabolic pathways associated to fer-
mentation of carbohydrates by different bacterial strains in the gut. Similar methods
were used to describe the host–metabolite–microbiome associations in obese rodents,
enabling the authors to conclude that both lean and obese animals could have spe-
cific metabolic phenotypes linked to their individual microbiomes (Waldram et al.,
2009). Multivariate statistical modeling of the spectra from a series of metabolomic
experiments revealed the pivotal contribution of gut microbiota to fatty liver phe-
notype in insulin-resistant mice (Dumas et al., 2006), whereas principal components
analysis (PCA) and partial least squares discriminant analysis (PLS-DA) profiling of
urinary metabolites, which are influenced by gut bacteria, enabled the discrimination
of cohorts of Crohn’s disease (CD), ulcerative colitis (UC), and control patients, a
distinction that is of pivotal importance for both management and prognostic reasons
(Williams et al., 2009. Similar methods have been employed for computational meta-
analysis of a collection of independent studies, including over 1000 phylogenetic array
datasets, as a means to characterize the variability of human intestinal microbiota
(Nikkila and de Vos, 2010). This type of analysis is an important step toward the
ability to describe the extent and type of variability of the microbiota in the human
gut, and establish relations between microbial taxa and their interaction with the host,
intestinal location, or genotype.

Embedding Experimental Design and Data Decomposition

Multivariate statistics is generally used to determine the relationship between given
types of data (e.g., omics data and a phenotype) obtained from the study subjects.
In these studies, the aim of regression is not to predict the value of the phenotype
but to derive reliable and validated relationships that can be studied further to select
and interpret those genes, proteins, or metabolites that are most important with
respect to the phenotype (Thissen et al., 2009). By combining these types of analyses
with a study design to decompose the total data into data blocks that are associated
with specific effects (such as ANOVA), the quality and interpretability of statistical
regression models can be greatly improved by explicitly using the data structure.
This was illustrated by Thissen et al. (2009) in a nutritional intervention study using
Apoliprotein E3-Leiden transgenic mice to assess the relation between liver lipidomics
and a plasma inflammation marker, Serum Amyloid A, where they have shown that
ANOVA-PLS leads to a better statistical model that is more reliable and better
interpretable compared to standard PLS analysis.

Network Analysis Methods

Network-based approaches have been used in a series of studies to characterize the
microbiota abundance and temporal dynamics in diverse intestinal samples and cor-
relate potential interactions between the identified species with respect to the healthy
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and diseased states. Through topological network analysis, i.e., by computing several
local and global network statistics, Naqvi et al. (2010) identified recurring patterns
and motifs in gut microbiota datasets and subsequently fitted the network models to
a family of well-studied graph models. This enabled to discriminate gut microbiota
in alcoholic subjects and healthy subjects. In a different line, Trosvik et al. (2010)
through a combination of nonlinear data modeling (regression) and simulations of
the early phylum-level colonization process of the early infant gut colonization, ad-
dressed the ecological dynamics of the gut microbiota in infants. PCA of infant micro-
biota 16S rRNA gene microarray data showed that the main directions of variation
were defined by three phylum-specific probes targeting Bacteroides, Proteobacteria,
and Firmicutes. Nonlinear regression analysis identified several dynamic interactions
between these three phyla. Simulations of the early phylum-level colonization process
showed that, in general, varying the initial composition of phyla in the simulations
had little bearing on the final equilibrium. Through a combination of spectroscopic,
microbiomic, and multivariate statistical tools to analyze focal and urinary samples,
Li et al. (2008) established structural differences in gut microbiomes of Chinese and
American populations, which is consistent with population microbial and metabolic
differences reported in epidemiological studies. In a thorough deep sequencing study
supported by extensive bioinformatics analysis, Turnbaugh et al. (2006) have deter-
mined the organismal, genetic, and transcriptional variation in the deeply sequenced
gut microbiomes of identical twins.

These bioinformatics and network analysis methods have been pivotal as well
to characterize the (meta-) transcriptome of the human focal microbiota and that
of the human and rodent host under a series of conditions. In a recent study by
Booijink et al. (2010), metatranscriptomic analysis revealed subject-specific expression
profiles with genes encoding proteins involved in carbohydrate metabolism being
dominantly expressed. On the host side, studies such as those by Cavalieri et al.
(2009), De Vogel-van den Bosch et al. (2008), and Bunger et al. (2007) generated
significant new knowledge on the regulation and extension of the PPARα signaling
network. A genome-wide mRNA expression analysis by Radonjic et al. (2009) of
hepatic adaptation to high-fat diets revealed a switch from an inflammatory to steatotic
transcriptional program.

Host–Microbe Interaction Models

Ascertaining the interactions between gut microbes and the host is crucial for the
understanding of the GI-function. In a specially relevant study, van Baarlen et al.
(2009), found that expression profiles of human mucosa displayed striking differ-
ences in modulation of NFκB-dependent pathways, notably after consumption of
the probiotic bacterium L. plantarum in different growth phases. The study identi-
fied mucosal gene expression patterns and cellular pathways that correlated with the
establishment of immune tolerance in healthy adults. Similar studies have been per-
formed in pigs (Gross et al., 2008). A follow-up, comparative study with 3 different
Lactobacillus species, revealed that the host gene expression is determined by the
specific strain that is applied. Rizzetto and Cavalieri (2010) unveiled key interactions
between yeast and the immune system by analyzing the transcriptional response of
dendritic cells (DC) stimulated by the harmless Saccharomyces cerevisiae and of this
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phagocytosed fungus. Pathway analyses provided valuable insights into the interac-
tions and responses elicited by of DCs in the fungus.

Cross-Linking Top-Down and Bottom-Up Approaches

Different biological systems and scales require the application of appropriate model-
ing approaches. In general, top-down methods as those described above, are used to
map the interactions and general structure of the systems understudy, and to pinpoint
areas within the underlying networks that need to be subjected to more detailed ex-
amination to answer a particular biological question. This is then subsequently done
through approaches involving more detailed models of smaller subsets. Ideally, these
models generate novel or refined hypotheses that enable a redesign of the experimen-
tal setting and subsequent analysis of the outcomes. This procedure is highly iterative
and conductive of an ever-more refinement model of the particular (sub)system un-
derstudy. This Systems Biology process is schematically exemplified in Figure 5.7 for
the mammalian gut system.

Kinetic Modeling

Research as that described in the studies described above is crucial for the elucida-
tion of the host–microbiota–nutrient interactions. The top-down approaches used are
essential in helping to organize, structure, and interpret the wealth of information
generated. Bottom-up approaches, in which the cellular and interaction networks are
built from the genomic and other postgenomic information are particularly impor-
tant to complement those top-down analyses in that they enable to generate specific,
testable hypotheses and to make predictions of, for example, the effects of perturba-
tions (e.g., mutations, stresses, or changed component composition) or the effect of
different host genotypes on a given network. One such approach is that followed by
de Graaf et al. (2009, 2010) who used stable-isotope metabolic flux analysis (MFA)
to selective profile the human intestinal microbial metabolic products of carbohy-
drate food components and to measure the kinetics of their formation pathways, in a
single experiment. Subsequent modeling of the 12C contents and 13C labeling kinet-
ics allowed to determine the metabolic fluxes in the gut microbial pathways for the
synthesis of lactate, formate, acetate, and butyrate. By manipulating substrate and mi-
crobiota composition in a purposeful manner, this approach enables the study of the
modulation of human intestinal function by single nutrients, providing a new rational
basis for achieving control of the specific gut metabolites (such as the SCFAs profile
in this study). Linking such MFA and derived models for the quantitative analysis
of material fluxes within the single cell as well as between different cell populations
and organs, up to the whole-body level, with those of population dynamics and with
the omics technologies and the analysis thereof, as described above, will provide a
powerful way to explore gut function in an integrated manner and across the various
levels of organization and time scales (de Graaf et al., 2009).

Kinetic models of given pathways, such as those of SCFA and lipid metabolism, or
as described above, give valuable mechanistic insights into the underlying molecular
interactions. These models are usually built from differential equations and solved
through numerical simulation and other computational analyses such as metabolic
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control analysis, which determines how the control of flux is distributed in metabolic
networks (de Graaf et al., 2009; Röling et al., 2010). A relevant, recent example is the
modeling of carbohydrate degradation by human colonic microbiota, which was based
on mass-balance (differential) equations to account for physiology of the intestine,
metabolic reactions, and transport phenomena (Muñoz-Tamayo et al., 2010). The
model was used to study various nutritional scenarios and to assess the role of the
mucus on the system behavior, having provided reasonable, qualitative representation
of the human colon. However, a major bottleneck of these models is that they also
require detailed knowledge of the underlying molecular and physical mechanisms
and of the respective model parameter values. These are in practice often difficult to
obtain in vivo even after careful model reduction and parameterization.

Network Topology Models

Coarse-grain network topological models, in contrast, describe the interactions
(edges) between molecular components (nodes) with less molecular detail than ki-
netic mechanistic models, but often include hundreds to thousands of components, up
to the full genome scale (Puchałka et al., 2008; de Graaf 2009; Oberhardt et al., 2009;
Ruppin et al., 2010). Genome-scale, stoichiometric constraint-based models, which
describe the entire set of metabolic and transport reactions in an organism under the
assumption of steady-state and by balancing mass and charge, have been developed for
human, mice, and a series of gut-relevant bacteria, including some that are potential
probiotic (Pastink et al., 2009; Teusink et al., 2009). These models, while lacking the
detail of kinetic representations, provide a valuable framework with which to explore
the metabolic space and capabilities of the organisms involved, to generate testable
hypotheses of the relationship between genotype and phenotype, and to test the effect
of external and internal perturbations (such as nutrients or other microbial species).
Whereas relevant insights have been generated for single organisms, little work has
been done so far in tackling the interactions of gut organisms with each other and
with the mammalian host. Constraint-based modeling provides a valuable scaffold to
account for interacting species and to ascertain the emergent properties arising from
these interactions (Klitgord and Segrè, 2010; Röling et al., 2010). Albeit there are still
considerable conceptual, technological, and computational challenges to overcome
(such as the precise knowledge of the interactions, exchange and transport properties,
heterogeneities, etc.), these approaches can be applied not only to a small number
of interacting organisms, but, potentially, to the full gut microbiome. Owing to the
various undergoing efforts worldwide in this area, much is expected in the next few
years in this regard.

Boolean and Agent-Based Models

Other types of bottom-up, network models are those that attempt to map and capture
regulatory interactions in a system by assuming that individual regulatory interactions
are either on or off. Such so-called, Boolean approaches generate a kind of discrete
network dynamics much the same way as in logical electronic circuits (de Graaf et al.,
2009). Since these models require less experimental detail and knowledge of param-
eters than true dynamic models—as available, for example, for the epidermal growth
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factor receptor (EGFR) signaling pathway (Samaga et al., 2009), or for canonical
NFκB pathways (Calzone et al., 2010), discrete logic modeling has emerged as a
means to link protein signaling networks with functional analysis of mammalian signal
transduction complex systems such as those of the Toll-receptor signaling (Oda and
Kitano, 2006), T-cell receptor (Saez-Rodriguez et al., 2009), and other signaling net-
works (Morris et al., 2010). These types of models enable thus also to describe, unto a
reasonable extent, cross talk of different signaling pathways and are likely to become
increasingly important in the future to handle immune responses in the gut to diet
and gut microbiota, and to tackle the multiple interactions of this complex system.

Agent-based modeling (ABM) is a modeling technique based on the rules and in-
teractions between the components of a system, simulating them in a “virtual world”
to create an in silico experimental model. ABM is an approach that has been used in a
number of relevant fields (e.g., to describe biofilm dynamics (Xavier et al., 2007), in-
flammatory cell trafficking, and epidemiological features (Ajelli et al., 2010)). Owing
to its characteristics (object-oriented, rule-based, discrete-event, and discrete-time),
it is in principle suited for the goal of dynamic knowledge representation and con-
ceptual model verification. Its structure facilitates the development of aggregated
modular multiscale models. Therefore, it has been proposed to use ABM as a unify-
ing translational architecture for dynamic knowledge representation. An (2008) has
presented a series of linked ABMs representing multiple levels of biological organiza-
tion in the context of inflammation. An epithelial ABM derived from an in vitro model
of gut epithelial permeability was concatenated with the endothelial/inflammatory cell
ABM to produce an organ model of the gut. This model was validated against in vivo
models of the inflammatory response of the gut to ischemia. Finally, the gut ABM
was linked to a similarly constructed pulmonary ABM to simulate the gut–pulmonary
axis in the pathogenesis of multiple organ failure. The behavior of this model was
validated against in vivo and clinical observations on the cross talk between these two
organ systems. Thus, albeit not mechanistic as detailed as true dynamic models, such
ABM models are nevertheless useful as a navigation tool across the various levels of
biological organization and hold the potential of enabling the coupling of scales.

Challenges Ahead

Some of the challenges ahead in these various approaches relate to the integration
of the different omics datasets and the models derived of the analysis thereof. Re-
cent reviews on the visualization (Gehlenborg et al., 2010) and integration of data
and models (Zhang et al., 2008; Han et al., 2010; Kint et al., 2010) have addressed
the major bottlenecks and possible solutions ahead in these top-down approaches.
In their reviews, Raes and Bork (2008) and Röling et al. (2010) focus in particular
on the necessary data types and methods that are required to unite molecular micro-
biology and ecology to develop an understanding of community function within their
environments—including the gut—and discuss the potential shortcomings of these
approaches. Despite the importance of both qualitative and quantitative models to
unravel host–microbe interactions, the complexity and heterogeneity of the systems
involved have so far hindered further developments. Ultimately, the goal is to de-
velop interacting, detailed dynamic models of the gut function accounting for immune
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responses to diet and microbiota, as well as nutrient and energy homeostasis. This will
require both the cross-linking of top-down and bottom-up approaches and the inte-
gration of models covering a range of scales of biological organization. A way forward
would be the development of multiscale models that tackle key interacting subsets of
the host–microbiota–food system, as it has been done successfully for a number of sys-
tems, including type 1 diabetes through PhysioLab platform by Entelos (Shoda et al.,
2010), the host–pathogen–therapy system in tuberculosis (Kirschner et al., 2010) and
host–HIV–cocktail systems (Perelson, 2002). These approaches would then need to
be complemented with thorough experimentally validated models of the microbiota
involved such as those based on constraint-based, kinetic, and logic models above
described.

Conclusions

The interplay of food, microbiota, and host is a complex mesh of intestinal-related
functions that can be only understood from a systems perspective. The major chal-
lenges ahead lie in the integration of heterogeneous data and on the modeling of the
many functions at various levels of biological organization. The long-term ambition
in the field is to generate a solid knowledge-base and predictive mathematical frame-
works on the functionality of the intestinal tract along its various spatial, temporal,
and environmental dimensions. Linked to epidemiological, clinical, and comparative
(post-) genomic background data, this will enable a thorough understanding of how
specific host factors, nutrients, diets, and environmental conditions influence cell and
organ function and how they thereby impact on health and disease. This systems
knowledge will be pivotal for the development of rational intervention strategies for
the prevention of human diseases such as diabetes, metabolic syndrome, obesity, and
inflammatory bowel diseases. It will also be essential to fully exploit the intrinsic bi-
ological potential of host–feed–microbe interactions in livestock species, in order to
optimize and “customize” animal feeds, to improve health and efficiency traits of the
gut (by genetic selection), and for the development of prevention and/or intervention
schemes. Moreover, it will enable generate in silico intestinal tract models that will
advance our basic understanding and allow predicting the health effects of current
and novel foods and feeds.
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Chapter 6
From Visual Biological Models Toward
Mathematical Models of the Biology of
Complex Traits

Marinus F.W. te Pas, Arend J.W. Hoekman, and
Ina Hulsegge

Introduction

Complex Traits

Genetic diseases can be caused by a single gene defect or by multiple gene defects
(Thomson, 1994). Similarly, traits can be regulated by a single gene or a single gene can
be responsible for most of the genetic variation in that trait (called a major gene (Guo
and Thompson, 1992; Janss et al., 1995, 1997; Thaller et al., 1996)). However, most
traits in livestock science, such as traits related to production, reproduction, or health,
have a complex genetic regulation based upon the combined expressions and functions
of many genes (http://www.biology.duke.edu/nijhout/) (Nijhout, 2002; Nijhout et al.,
2007). The expression of many genes is the net result of genetic composition and
environmental effects. For most genes, the variation in the expression has only small
effects on variation of the traits. This also makes that observed variation in complex
traits can only be partly explained by variation in the expression of a single gene.
These facts indicate the urge to a detailed measurement of the phenotype of the
complex trait. Having as good as possible phenotypic data is vital for the association of
genomic and biological data and the development of a biological model (Freimer and
Sabbati, 2003). A biological model can be defined as (part of) the biological knowledge
displayed as a model. In this chapter, we will often use physiological pathways as can
be found in several databases (see below). However, morphological models, or models
of complex molecules or organelles are also biological models.

Some of the complexity of the regulation of traits can already be seen in the
number of quantitative trait loci (QTL) for a specific trait identified on the genetic
maps available for individual species (http://www.thearkdb.org/arkdb/) (Hu et al.,
2001). However, a comprehensive view of the regulation of the traits is lacking for
most traits.
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Research in the Post Genomic Era

Following the sequencing of the human genome an increasing number of animal
genomes are being published including livestock species (chicken: Wallis et al., 2004;
cattle: Bovine Genome Sequencing and Analysis Consortium, Elsik et al., 2009;
pig: http://www.ncbi.nlm.nih.gov/genome/guide/pig/). Knowledge of the genome of a
species includes the knowledge of the existence of (most of) the genes in a genome, but
does not necessarily include insight into the regulation of the expression of the genome
and how this regulates complex traits of the animal, or even how it is associated to
them. Using sequence information, functional genomics investigates the expression of
the genome at the RNA level (called transcriptomics), the protein level (proteomics),
or the activity level (metabolomics). By getting an improved understanding of the
functioning of the genome, the research aims to get an improved understanding of
the biological processes that underlie the genetic regulation of complex traits.

Functional genomics intends to measure the entire genomic expression equivalent
of a cell, tissue, or organ at a certain condition or physiological state. By comparing the
expression profiles obtained under different physiological or environmental situations,
insight is acquired into differences in genomic expression. In this way, functional
genomics generated an ever-increasing amount of data during the last decades. The
raw data of many experiments are available through specific databases (e.g., the
Gene Expression Omnibus or GEO: http://www.ncbi.nlm.nih.gov/geo/) opening the
opportunity to compare experiments and species. However, the large data content
urges for thorough analyses of the data at several levels of aggregation of the biological
system under study. Going through each of these levels is necessary toward building a
biological model.

Recent research indicates that the expression of the genome is regulated in a
complex way on all levels. The mechanism of transcription factors is well known.
These mechanisms include the effect of enhancing or repressing proteins that regu-
late mRNA expression of genes by binding to specific regulatory sequences close-by
or more distant to the location of the gene on the chromosome. More recently, it was
discovered that these mechanisms are more complex as a result of small noncoding
RNAs, called miRNAs that regulate the stability of mRNAs or the translation pos-
sibilities of the mRNA by binding to the mRNA (Kim, 2005). At the protein level,
carbohydrate, lipid, or phosphate groups may be attached to the protein that regulates
it half-life time or its activity (Burnett and Kennedy, 1954; Mann and Jensen, 2003).
For example, attached groups may regulate the activity of an enzyme and thereby af-
fect the composition of the metabolome of a cell. What exactly triggers a cell to decide
which modification to use and what mechanisms are involved is often still unknown.

The transcriptomic and proteomic expression of the genome is the result of the
interaction of the genome with the environment. Differences in the expression of
the genome may be induced by food intake of the animal (Yoshizawa et al., 1997;
Müller and Kersten, 2003) (see also Chapters 8 and 9 ), by environmental temper-
ature (Goldspink, 1995) or daylight (Guido et al., 1999), or by pathogens including
the host–pathogen interaction (Diehn and Relman, 2001) (see also Chapter 10).
Other animals from the same or different species may also affect gene expression
levels. Differences in the expression of the genome between individuals, which may
be related to mutations in the genome sequence, are related to differences among
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individual animals in observed traits (Andersson and Georges, 2004; Chesler et al.,
2005). Knowledge of the regulatory mechanisms of important traits hence opens the
ability to modulate the traits by management or breeding.

Functional genomics started the investigation of the expression of the genomes of
livestock species (te Pas et al., 2005, 2008, 2009; Cagnazzo et al., 2006; Kadarmideen
and Reverter, 2007; Wimmers et al., 2007). The picture that arises from this research
is often complex and hampers a full understanding, which is necessary, however, to
be able to modulate traits through the modulation of genome expression via animal
management of breeding. Analyses with bioinformatics tools help in this stage of the
research. Such analyses build on known biological models, which are often based upon
the sparse knowledge of the physiological function associated with a limited number
of genes (te Pas et al., 2008). These biological models may be used for mathematical
modeling and a Systems Biology approach. When information of biological models
is combined with mathematical modeling, a useful tool may be obtained that helps
to understand, explain, and, preferably, even predict the regulation of these complex
traits. Such an increased understanding is needed to provide insight into how the
trait can be optimized for the purpose of livestock production. Also, the interactions
between various traits can be studied in this manner. It can, for example, clarify the
relation between productive traits and other traits such as animal health and animal
welfare.

Objective

The objective of this chapter is to review methods used to develop biological models
that represent regulation and causal relationships for complex traits in animals’ use in
livestock production. The methods used to generate these models will be discussed and
it will be shown how their development is an essential step toward the development
of mathematical models called Systems Biology. We define Systems Biology as the
science generating mathematical (predictive) models, which are based on biological
knowledge. These mathematical models may serve as a basis for the monitoring, the
control, and the modulation of complex traits in an integrative and balanced way in
farm animals in the future. Such achievement would add to sustainable change of
livestock production system in the future.

Complex Traits and Biological Models

Biological models generally are based on basic knowledge of physiological processes.
Although these physiological processes are related to the complex traits, at present,
functional genomic regulatory mechanisms, gene functions, and their associated phys-
iological function are only partly known. Therefore, biological models may only partly
explain a complex trait. Because many genes have redundant functions the contribu-
tions of genes may also be hidden in the variations of other genes. Even in knock out
mice, which completely turns off the expression of a gene, redundant gene functional-
ity may hide the function of a gene (Heber et al., 2000; te Pas and Soumillion, 2001).
Therefore, it should be kept in mind that genes may remain unnoticed when studying
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or describing regulatory mechanisms. If not recognized by other methods, this may
leave the explanation by the biological model of the complex trait incomplete. Thus,
methods need to be used that are able to identify the currently unknown physiological
function of certain genes influencing a complex trait.

Identify Genes That Influence Complex Traits

Several methods can identify genes as part of the regulatory mechanism of a complex
trait. First of all, the expression profile of genes may indicate association with the trait.
Statistical methods can show the relatedness of expression profile and changes in the
complex trait phenotype.

Other methods use available physiological information of genes. Genes do not act as
stand, alone units but are actively integrated in pathways or networks. Pathways show
how genes work together based upon physiological information. Several databases that
are accessible via the Internet show pathways in diverse graphical formats (Table 6.1).
Networks show how genes (proteins) interact based upon knowledge about physical
binding of proteins or proteins and DNA (Vazquez et al., 2003; Merico et al., 2009).
Alternatively, networks may be created by combining pathways (te Pas et al., 2007,
2008). It should be noted that pathways and networks are graphical, not quantitative
representations of physiology. Such biological models can be visually interpreted
(Merico et al., 2009) and lead to increased understanding of complex traits. This is in
line with biology as a descriptive science. However, future use of the models to modify

Table 6.1 Example of the different pathway databases.

Database URL Type of data

KEGG http://www.genome.jp/kegg/ Metabolic and nonmetabolic
pathways—focus on sequence
of reactions

BioCarta http://www.biocarta.com/ Metabolic and nonmetabolic
pathways—focus on protein
interactions and position in the
cell

Reactome http://www.reactome.org/ Metabolic and nonmetabolic
pathways

Interactome http://interactome.dfci.harvard.edu/ Human protein–protein
interaction map

Database of
interacting
proteins

http://dip.doe-mbi.ucla.edu/dip/Main.cgi Experimentally determined
protein–protein interactions

BioGrid http://www.thebiogrid.org/ Curated set of physical and
genetic interactions

MetaCyc http://metacyc.org/ Experimentally elucidated
metabolic pathways from over
900 organisms
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the traits requires a quantitative model that can be used to predict. To transform these
into quantitative items combination with experimental data is necessary. This is a vital
step to be taken before mathematical modeling can start.

Finally, genes lacking a physiological annotation may be added to the model using
cluster analysis (Eisen et al., 1998). Cluster analysis can join together genes with
similar expression profiles and suggests that such genes have common functionality.
Thus, genes with unknown function can be ascribed the same function as genes with
known function in the same cluster. Although a bit speculative, it may help to make the
biological model more complete and improve the representation of the relationship
with the complex trait. However, there is no guarantee that this will automatically also
improve the insight in the regulation of the trait itself.

Generation of a Biological Model

Building a biological model that represents (aspects of) the functionality of an organ,
tissue, or cell type always starts with collecting biological data at several biological
levels. Often, functional genomics generates expression profiles at mRNA and/or
protein levels (transcriptomics, proteomics). In addition, physiological information
shows how the cells or tissues work at the biochemical level. It can include cell biology
information about functioning, anatomy, histology, or histochemistry of the cells. Next
to functional genomics, metabolomics provides data and insights on the metabolic flux
through enzymes and pathways and thereby of the functioning of the proteome (i.e.,
the total protein expression of a cell, tissue, or organ). Combining the data generated
by transcriptomics (i.e., the total genomic mRNA expression of a cell, tissue, or
organ), proteomics, and metabolomics describing the cells or tissue for a range of
physiological statuses is needed to generate knowledge about the functionality and
cause-effects relationships of molecule fluxes through a system. Knowledge about
the fluxes can make a biological model more quantitative as a first step toward a
mathematical model. Here, we will describe the steps that can be taken to generate a
biological model.

Analysis of Functional Genomics Research

A typical transcriptomics experiment generates data of all (or most of) the genes
expressed in a tissue. The expression levels are either recorded directly in each animal
and each status of the complex trait or as a ratio to another situation. The latter may,
for example, be a pool of samples to generate a mean expression level related to the
mean status of the trait. This type of research can generate two lists of genes: (1)
a list of expressed genes (as opposite to a list of genes not expressed in the cells or
tissue under investigation), and (2) a list of genes with differential expression when two
situations are compared. Although these lists are important in themselves, they do not
directly generate knowledge about the cell type or regulation of the difference between
the two physiological states. Also, they do not deliver a quantitative understanding
in terms of concentrations, massive ion fluxes. However, they can be used to derive
essential elements to be included in a biological model.
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Adding Biological Data to Lists of Genes

As a first step, the lists of genes can be analyzed with the data in the Gene Ontology
(GO) database (http://www.geneontology.org/)(Barrell et al., 2008). This database
provides a controlled vocabulary of terms for describing gene product characteristics
and gene product annotation data, and tools to access and process the provided data.
The gene annotation includes known biological functions and cellular locations of
the protein encoded by the gene. The database is organized top-down and consists of
three major parts: (1) cellular component, (2) biological process, and (3) molecular
function. Each of these is split into smaller parts describing further details. A gene
is annotated first in one or more of the top categories (biological function, cellular
localization, molecular function) and in more detailed (sub)functions. Although no
direct information about livestock (production) traits are given, the interpretation of
these biological data delivers the user background information about the regulation
of the trait.

Another important feature of the GO database is the synonym function. Many
genes have more than one name, and not all databases contain all names. Using
the synonym function of the GO database opens the possibility to extract maximum
information from other databases (Ashburner et al., 2000; Gene Ontology Consortium
et al., 2004).

Genes Cooperate in Pathways

In a next step of the analysis toward building the biological model, it should be
realized that genes usually do not act alone. Proteins may physically interact or may
interact through a series of substrate–product combinations in which the product of
one gene (protein) act as a substrate for the next one, for example, in a series of
enzyme reactions. These functionalities may form networks of genes (proteins) or
they may form pathways leading to specific functionalities of cells such as cell division
or other cell features or fates of the cell (Kanehisa and Goto, 2000; Kanehisa et al.,
2006, 2008). These pathways describe how genes interact (see Table 6.1). Pathways
may only be partly used in a tissue (for the concept of subpathways, see te Pas
et al., 2007). Similar to the gene ontologies in the GO database different types of
pathways exist; biochemical pathways indicating lines of genes converting a substrate
via several steps into an end product, morphological pathways indicating how cellular
structures are built from physical interaction of proteins, and physiological pathways
indicating how biological processes are regulated. Figure 6.1 shows an example of
different forms of pathways as generated by the KEGG (Kyoto Encyclopedia of
Genes and Genomes, http://www.genome.jp/kegg/) database (Kanehisa and Goto,
2000; Kanehisa et al., 2006, 2008). The figure shows an example of a biochemical
pathway (Figure 6.1A, the well-known Citric acid cycle or Krebs cycle generating ATP
energy via a sequence of enzymatic reactions), a morphological pathway (Figure 6.1B,
the proteasome, a complex molecule build by the physical interaction of many peptides
encoded by different genes), and a physiological pathway (Figure 6.1C, the sequence of
events leading to prion disease (e.g., mad cow disease, scrapie) via resistance against
protein degradation). The type of information gained from each type of model is
different. A combination of pathways may be more accurately describing the complex
trait phenotype than individual, separate models. To get a better understanding of
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Figure 6.1 Three examples of biological pathways taken from the KEGG database
(http://www.genome.jp/kegg/) (Kanehisa and Goto, 2000; Kanehisa et al., 2006, 2008). (A)
The citrate cycle (also called TCA cycle or Krebs cycle), a typical biochemical pathway showing
arrays of enzymes. Several input and output pathways are indicated making suggestions for net-
works of pathways. (B) The structure of the proteasome consisting of many peptides encoded
by different genes—an example of a pathway showing the morphology of a cellular structure.
(Continued)

pathways a Web site with a growing number of molecular animations is available
(http://www.johnkyrk.com/).

Different databases may represent the same pathways, but in a different way. Each
visual representation provides specific biological insights, thus, combining the data
would give the most comprehensive representation of the biological model for the
complex trait. Figure 6.2 shows an example of the WNT signaling pathway. The WNT
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Figure 6.1 (Continued) (C) An overview of the biochemical events leading to prion disease,
well known as scrapie or mad cow disease—a complex trait in which a single protein is converted
in such a 3D structure that it resists degradation by the proteasome.

signaling pathway describes a network of proteins most well known for their roles in
embryogenesis and cancer, but also involved in normal physiological processes in adult
animals such as adult hippocampal neurogenesis (Lie et al., 2005). Figure 6.2A shows
the pathway as composed by the KEGG database focusing on the biochemical se-
quence of reactions; Figure 6.2B shows the same pathway from the BioCarta database
(http://www.biocarta.com/) focusing more on physical interactions of proteins and the
cellular localization of the reaction process; Figure 6.2C and D show two representa-
tions from the same pathway in the Reactome database (http://www.reactome.org/); C
was generated with the Cytoscape software (http://www.cytoscape.org/) which ONLY
uses data of physical interactions from two proteins, and D shows how the database
splits the pathway into small subpathways taking the other parts of the pathway as
black boxes. The Cytoscape version indicates that the pathway divides into two parts
with limited connection. This was also seen in the presentation of the KEGG database,
but less clear. Thus, different representations by different databases of the same bi-
ological model can generate different insights for the explanation of the regulatory
mechanisms involved with complex traits.

It is important to visualize the available experimental data related to investigate
a complex trait in the pathway models in order to gain understanding of that trait.
Different software tools exist to find the relevant pathways. One example is the often
used Internet tool called DAVID (The Database for Annotation, Visualization, and
Integrated Discovery) (http://david.abcc.ncifcrf.gov/home.jsp) (Dennis et al., 2003;
Huang et al., 2009). Following statistical testing, the significant pathways from the
KEGG and the BioCarta databases are shown. Unfortunately, only the relevant genes
are indicated by an asterisk without indication of the other genes under investigation.
Figure 6.3 shows the different types of output of a pathway analysis tool developed by
te Pas et al. (2007, 2008). All the genes under investigation are encircled in the pathway
(Figure 6.3A). In this specific investigation, the expression profiles of the genes were
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determined at seven moments during pig prenatal muscle tissue formation (te Pas
et al., 2005, 2006; Cagnazzo et al., 2006). The profiles are shown in B indicating that all
the genes in this pathway have similar expression profiles. Furthermore, these profiles
were directly related to the muscle tissue formation trait (te Pas et al., 2005, 2007).
It was concluded that this pathway must have an important place in the regulation
of the trait. Indeed, calcium metabolism is known to be important for muscle fiber
development as it may be involved in precursor cell differentiation (Przybylski et al.,
1994; Baudier et al., 1995). In Figures 6.3C and D, a color coding indicates regulation
of the expression: green circle indicates upregulated gene expression in this state of
the complex trait as compared to a any other status of the complex trait, red indicates
down regulation, and black indicates similarity of the expression level of the genes.
In C, the means of the results per gene are shown; in D, the results for each animal
are represented by a circle around each gene, with each next animal making a circle
below the circle of the previous animal. This directly indicates the variation between
individual animals of the regulation of the gene expression in relation to the phenotype
of the trait under investigation (te Pas et al., 2007 and unpublished results).

From Pathways to Network of Pathways

A single pathway may end up in regulation of a specific function (i.e., a biological
process such as cell division), but most pathways only describe a physiological process
or a morphological feature in a cell. Therefore, a complex process may be executed
by connecting and integrating pathways. The output of a pathway may be the input
of a next pathway. In this manner, networks of pathways may be generated together
regulating a biological process (te Pas et al., 2007, 2008). Such a network of pathways
indicates the interactions between pathways including the direction (stimulation or
inhibition) of the interaction. The individual pathways may be either used as black
boxes or with the underlying biochemical information indicated. Alternative to the
interaction of pathways also the genes may act in more than one pathway. Thus, a
network of pathways may also be generated by linking together via common genes (te
Pas et al., 2007, 2008).

A network of pathways can serve as a first biological model of a complex trait.
Figure 6.4 shows a biological model highlighting interactions between pathways di-
rected to the regulation of muscle formation and contraction—part of a model for the
complex trait “skeletal muscle formation and physiological functioning.” Using the
pathway tool as described above, the results of the investigation of the skeletal muscle
tissue formation in prenatal pigs were integrated into KEGG pathways. Next, regu-
lated (sub) pathways were followed in diverse pathways. Thus, the individual pathways
were linked together in a complex network of pathways, together regulating prolifer-
ation (i.e., growth) and function (i.e., contraction) of muscle tissue. Figure 6.4 shows
that a biological model has been generated for two complex traits that are closely
associated in physiological function of muscle tissue (te Pas et al., 2007). Similarly, in
jejunum tissue, biological models based upon networks of pathways were generated
for the genomic reaction of 1-day-old chicken to Salmonella enteritidis infection (Van
Hemert et al., 2006a, 2006b). These pathways were associated to cellular reorgani-
zations and cellular energy metabolism. The model comprises known and unknown
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Figure 6.4 Biological model constructed using a network of pathways. The individual path-
ways were down loaded from the KEGG database and analyzed as shown in Figure 6.3C. As
indicated in Figure 6.1A, the pathways were combined into a model where the analysis shown
relevance to the trait, i.e., muscle tissue formation and functionality. (Adapted from te Pas
et al., 2007.)

aspects of the host response to Salmonella infection, thus, increasing understanding
of the biology of infection and resistance to Salmonella (te Pas et al., 2008).

Genes Cooperate in Networks

Generating pathways requires detailed information about reaction sequences or po-
sitional information of peptides in complex proteins or cellular structures. Such high-
level information can explain many reaction constants and thus the reaction kinet-
ics. If such high-level information is not available, networks can be generated using
lower level information like (potential) protein–protein or protein–DNA (physical)
interaction. Such relational networks can be built using specific softwares like Cy-
toscape (http://www.cytoscape.org/) (Shannon et al., 2003; Cline et al., 2007) or Osprey
(http://biodata.mshri.on.ca/osprey/servlet/Index) (Breitkreutz et al., 2003). Cytoscape
and Osprey are open source bioinformatics software platforms for visualizing complex
molecular interaction networks and integrating these interactions with gene expres-
sion profiles and other data (e.g., associated physiological processes if association
information is available).

The genes are the nodes and interactions are edges (i.e., lines between two genes) in
visualizations of these networks. Quantitative levels of gene expression or relationships
can be indicated in the network using color or shape of the nodes and edges. The
number of relations with other genes (i.e., the number of edges) is often interpreted
as the importance of a gene (node).

Such a network model can be regarded to be a different visual form of a biological
model. The network model focuses on (physical) interactions and is unable to describe
a sequence of (biochemical) reactions like the pathways model can. Furthermore, the
network model describes relationships between genes or proteins, but due to the
level of input knowledge with less certainty than the biological model that is built on
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pathways information. Furthermore, the constructed networks tend to become too
confusing to understand if the network describes larger datasets, and partial networks
need to be constructed to gain insight from the network. Nevertheless, the biological
model can provide insight in processes underlying the studied traits. Figure 6.2C
presents an example of a biological network model.

Conclusions

Physiological knowledge can be used to generate biological models that provide insight
in the regulation of biological processes involved with complex livestock traits such
as production, reproduction, and health. Different methodologies and analysis tools
produce different information models, each with their own characteristics, advantages,
and disadvantages, which may even lead to different insights. The models may become
quantitative to a limited extent in describing the expression levels of genes in a cell
or tissue type. The model may describe the difference between two situations more
quantitatively, depending upon the methodology used to measure the expression
levels.

These models can be used to predict the importance of individual genes for regu-
lating a biological process. However, this model application is hampered by the lack
of knowledge about the genes in a model, for example, which genes are the important
rate determining steps in pathways. This can be solved by combining the model with
the results of an association study taking the genes with association to the trait as the
important nodes in the model (Dixon et al., 2007; te Pas et al., unpublished results).
Furthermore, these models cannot be used to predict the changes in a complex trait
that is induced by environmental influences such as nutrition and housing manage-
ment, or by genetic changes induced by breeding or historic effects on genotype. For
this purpose, it is necessary to have quantitative understanding of the relationship be-
tween the conversion of the complex trait and changes in transcriptome or proteome
expression profiles and to changing morphological/histological conditions of the cell
or tissue. Such understanding can be obtained by combining the biological model with
mathematical models (Laursen, 2009). Combining the models is possible since both
models represent the physiology of a trait in a different form. The next two sections
will describe these two additions to the biological models.

Association Studies Relating the Expression Levels of Genes
or Proteins to Quantitative Traits

Until now we have a biological model of a trait based upon functional genomic
and physiological knowledge. The model comprises a biochemical reaction path or
complex associations of proteins and/or DNA. Furthermore, it may comprise other
biological information such as morphology, etc. We assume that variation in the
expression of genes in the biological model causes variation in the trait. To characterize
the important genes within a biological model, the relationship between the expression
profiles of the genes and the variation in the complex trait can be calculated. Several
statistical methods can be used depending upon the importance of relations within
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the statistical model (Lawless, 2003). Often, linear models are used, but for optimum
traits quadratic associations may be more relevant. These models correct for all kinds
of factors that may lead to false-positive associations such as variation in date of the
measurements, animal feeding, and or housing, etc.

The result of such a study is a list of genes with association between the expression
levels of the genes and the trait and the corresponding P-values for the linear or
higher orders of associations. In a next step, this list is compared with the pathways
and networks found. Some genes may be included in multiple pathways and networks.
It is fair to assume that the genes with good association and a central position in the
pathways or networks may be most important for the regulation of the trait.

However, presently, we have the problem that physiological information for many
genes is still lacking, so not all genes will be found in the biological model. It is impor-
tant to keep in mind that genes lacking physiological information may be even more
important than the genes included in the pathways and networks. Therefore, the ulti-
mate biological model explaining every aspect of a trait may be still far away. It could
be interesting to include physiological information in the creation of the mathematical
model to investigate the relative importance of the physiological unknown part of the
biological model.

Classical association studies relating livestock production or reproduction trait
phenotypes and genetic/genomic variation in genes or QTL are well known in the
literature (Cardon and Bell, 2001; Lohmueller et al., 2003). In a next step, the associ-
ation is determined between the complex trait phenotypes and continuous variables
like transcriptome or proteome profiles (Devaux et al., 2001; Dixon et al., 2007). It is
new to integrate the results of such an association study in a biological pathway (te Pas
et al., 2010). Table 6.2 gives an example of part of such a study relating meat quality
pH traits (measured at several hours postmortem) and transcriptomic analysis. The
relations among genes, KEGG pathways, and complex trait are not directly clear in
this example. This may be due to the trait. However, further integration with other
complex meat quality traits and other association studies provides more insight into
regulation of the meat quality traits (te Pas et al., 2010).

Table 6.2 Genes with association to the complex trait pH of meat quality at several time
points postmortem and potential biochemical pathways (KEGG database).

Gene name
Meat quality trait pH
(hours postmortem) KEGG pathways

Fatty acid-binding protein, heart
(H-FABP) (Muscle fatty
acid-binding protein) (Fabp3)

pH6 PPAR signaling pathway

Heat shock 70 kDa protein 1A pH24 MAPK signaling pathway;
Antigen processing and
presentation

GTP-binding protein RAD
(RAD1) (aph-1)

pH24 Notch signaling pathway;
Cell cycle yeast
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Bioinformatics Toward Systems Biology: Biological Models Toward
Mathematical Models

When having taken all these steps, where are we now? The aim of the research is to
monitor, control, and change complex traits in livestock in a predetermined direction.
As a first step, the underlying biological mechanism was investigated at as much as
possible biological levels. Using bioinformatics enables to integrate all levels into a
biological model comprising biochemical (physiological) pathways, histological and
morphological pathways, and networks of pathways. Furthermore, networks based
upon protein–protein and protein–DNA interactions can be integrated. Where pos-
sible, clustering analysis will be used to add genes with unknown biological function
to the model. Furthermore, association studies indicated the most important genes of
the model. In an optimal situation, this should provide a comprehensive picture of the
biology that underlies the complex trait. In this manner, understanding and insight
is obtained in the regulation of the complex traits of livestock, and possibly enabling
some monitoring of the trait by measuring the expression levels of a few genes of
the model instead of measuring the trait. However, the picture may have been ham-
pered by the fact that genes with very small effects and genes with unknown function
are missing in the model. Nevertheless, the biological model provides a wealth of
information about the regulation mechanisms of complex traits at various levels of
organization of the biological system.

Our aim was to monitor, control, and change the trait in a predetermined direction.
Especially the latter two aims require that the reaction of the biological model to an
action from outside can be predicted toward these aims. The biological model may do
so qualitatively—i.e., showing the direction of the reaction or indicating a difference
between two statuses, but not quantitatively—i.e., predicting the size and rate of
changes in the biological model and the extent of the effect on the complex trait.

Adding mathematical modeling adds a further dimension to the model. Mathemat-
ical modeling describes the biological model as a set of mathematical formulas. This
new type of model might be called a Systems Biology model.

Building the Systems Biology Model Using the Biological Model

Systems Biology can make a mathematical model from the biological model. Usually,
the mathematical model is written in a special language called Systems Biology Markup
Language (SBML) (Hucka et al., 2003; Strömbäck and Lambrix, 2005). The model
will consist of a set of equations. The set of equations may describe each detail of the
model or may take the details as a black box and models only the input and output, and
how these are related. The latter is in itself enough for an empirical representation in
the model that predicts the effect of changes in input on a complex trait. However, it
excludes the incorporation of future-detailed measurements.

The biological model includes biochemical (physiological) pathways. A closer look
at these pathways often indicates that they consist of arrays of enzymatic reactions.
The first enzyme takes a substrate and converts it into a product. The reaction can
be characterized by the reaction constant (Michaelis–Menten constant (Dowd and
Riggs, 1965; Cornish-Bowden, 1995)). This consists of the association and dissociation
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characteristics of the enzyme for the substrate and the product. It may include infor-
mation about the reaction speed. It is important to remember that all enzymatic
reactions are in principle equilibrium reactions, so there is always the possibility that
the product is used to form the substrate back. The expression level, activity, and prop-
erties of the enzymes also influence this equilibrium. However, usually the reaction is
directed to form the product and to continue to do so by the driving forces of the asso-
ciation constant of the substrate and the dissociation constant of the product. Often,
the concentrations of substrate and product also force the reaction in that direction.
If the values for the substrate concentration are known, and the association constant of
the substrate and the dissociation constant of the product are known, the flux through
the enzyme can be calculated. Thus, the model is a quantitative model with predictive
capacity for the reaction if the substrate concentration changes, or what happens if a
mutation changes the characteristics of the molecule to substrate or product.

In a biochemical pathway, a second enzyme follows after the first enzyme. The sec-
ond enzyme uses the product of the first enzyme as substrate. The same mathematical
modeling can be used for the second enzyme. This argues for making premade math-
ematical modules of such general reaction types as enzyme reactions. Perhaps the use
of such premade modules will allow not-specialized researchers to generate mathe-
matical models using biological models as a template. One should just keep in mind
that the reaction constants and the values for the substrate concentration differ for
each enzyme. Furthermore, since each next enzyme uses the product of the previous
enzyme as a substrate the concentrations of substrate and product of each enzyme will
change constantly. This may be a complicating factor in the model since changes in
the reaction conditions or changes in the enzyme molecule characteristics may affect
these concentrations. It would be best (if possible) if these changes themselves could
be quantified.

Another complicating factor may be that some genes/enzymes are nodes in the
pathway that are the starting point of several branches. Thus, the pathway can continue
in several directions, even with the possibility to affect different aspects of a trait (e.g.,
apoptosis trait (pathway): apoptosis or cell death), or even different traits. Especially
nodal enzymes in the networks of pathways and other networks may have complex
modeling constants. Here, competition for the product of the enzyme takes place. This
should be modeled keeping in mind that the flux through each of the subpathways can
vary differently with changing environmental or tissue conditions.

Another important factor that needs to be modeled is the substrate of the first
enzyme in a pathway. The substrate may come from other reactions/pathways in the
cell or from substances imported in the cell such as food products. The first option is to
relate the pathway/network to other pathways/networks not involved in the biological
model of the complex trait under investigation. The second option is to relate the
pathway/network to couple the metabolism to a metabolic state, or some drive of that,
such as food intake, digestion, or exchange with the blood system. The second approach
allows an integration of modeling of the trait with the functional response of other
body organs or some general characteristics of animal performance and physiological
state (e.g., see also Chapters 8 and 9). In both cases, scientific knowledge at different
levels is generated.

Alternatively, if a (sub)pathway consists of a single array of enzymes, the whole
pathway can be modeled as a black box with first substrate input and last product



P1: SFK/UKS P2: SFK

BLBS088-06 te Pas September 10, 2011 4:18 Trim: 244mm×172mm

From Visual Biological Models Toward Mathematical Models of the Biology 153

output. This only means that apparent reaction characteristics at the level of the
whole box have been modeled. The specific aim of this is to determine which details
have to be modeled and which details can possibly be excluded. A disadvantage of
this type of modeling is the lack of detail and less specific explanatory power or
relationships to the detailed information at the molecular level. On the other hand,
the model becomes simpler, which adds to the comprehension of the model and testing
of hypothesis on how to affect a trait or animal response. Although simplified, such
a model may explain more of the regulatory mechanisms of a complex trait due to
its easy understandability (Boer et al., 2010). Furthermore, the role of genes without
known physiological function added to the model, identified to be relevant by cluster
analysis, may be placed inside a black box by an empirical representation instead of a
mechanistic one.

The mathematical model needs to focus on genes whose variabilities were shown
to be of higher importance in the biological model. If the mathematical model can
support the role of this gene or provide an explanation for its role in the complex
trait investigated, this will strengthen the central position of the gene in the biological
model.

Mathematical models written in SBML or BIOPAX (Strömbäck and Lambrix,
2005) are available for the pathways in several databases. As an example of the type
of available models, Figure 6.5 shows a part of the glycolysis pathway of the KEGG
database (written in BIOPAX) and represent an enzymatic reaction, and a part of the
WNT pathway from the Reactome database (written in SBML) representing protein
complex formation.

From the available downloads it is not always clear which variables can be changed
and how predictive the model actually is. However, these mathematical models can
certainly be used as starting template to integrate into each other and integrate with
other mathematical models and aid in the building of a new mathematical model
of a complex trait. Furthermore, the mathematical models of networks of genes or
proteins created with softwares like Cytoscape and Osprey should be made similarly
using the specific network as a template. However, it should be noted that also for these
networks mathematical modules are under development and visualized networks will
be converted to mathematical models within the software in the near future.

The Mathematical Model: From Pathways and Networks
to Model of the Complex Trait

If all the pathways and networks of reactions, and morphological structures are in-
cluded in a biological model, a mathematical model can be constructed that predicts
the reaction of the system to disturbances, e.g., environmental changes, or genetic
mutations that change characteristics of specific molecules and structures. A mathe-
matical model of the complex trait should integrate all the mathematical descriptions
of individual pathways derived from biological models (e.g., Figure 6.4). The model
can be fed with changing concentrations of substrates or changing molecular char-
acteristics affecting biochemical reactions or morphological structures leading to a
prediction of the changes to the regulatory mechanism. This will lead to a changed
phenotype of the complex trait.
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Figure 6.5 Mathematical models of an enzymatic reaction (A) and of a protein complex
formation (B). (A): Part of the mathematical model of the Glycolysis/Gluconeogenesis pathway
of KEGG; (B): Part of the WNT signaling pathway of Reactome.
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The model predictions can be evaluated by experimental data. The result of
such evaluations studies identifies imperfections in the model and guides in the
decision of what must improve. This cycle can be repeated as long as necessary,
until a mathematical model is obtained that predicts satisfactorily the effects of
interest.

The Mathematical Model, the Biological Model, and the Complex Trait

In the end, if the mathematical model is optimal but the predictions of the changes in
the complex trait remains suboptimal, this is an indication that the biological model
is not complete. Repeating the whole procedure can improve the biological model as
well as the mathematical model and systems biological model. The outcome of such
a cycle of experimentation and mathematical modeling first of all delivers scientific
knowledge about the biology underlying a complex trait, but also involves the inte-
gration of scientific disciplines and application of results. Perhaps, more importantly,
the knowledge generates the possibility to change a complex trait in a predetermined
direction because the effect of intended actions to change the complex trait can be
calculated before starting the experiment.

Future Expectations

In theory, the constructed mathematical model describes the complex trait now as
a kind of Mealy machine (Mealy, 1955). In computation theory, a Mealy machine
is a finite state transducer using an adaptable input (e.g., substrate concentration)
and a current state (e.g., the system with the alleles as it is) to produce an output
(e.g., the biological regulatory mechanism leading to a complex trait phenotype).
For each change in input and current state, a different output will be predicted.
Thus, the complex trait phenotype can be monitored, controlled, and changed into
a predetermined direction now. This will enable real balanced breeding to improve
animal welfare and productivity simultaneously taking into account the dynamics and
variation in the mechanisms involved with the effects exerted by physiological, genetic,
and environmental factors (nutrition, management), including the representation of
historic effects. This also improves sustainability of livestock production systems. This
was a major aim of Systems Biology for livestock science.
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Chapter 7
Molecular Networks as Sensors and Drivers
of Uterine Receptivity in Livestock

Stefan Bauersachs and Eckhard Wolf

Introduction

Successful reproduction depends on a cascade of biological processes, including mat-
uration and selection of gametes, fertilization, pre- and postimplantation embryonic
development, fetal growth, and birth. Importantly, biological filters involved in the
various steps of the reproduction cascade may be overcome by assisted reproduction
techniques (ART) that are increasingly used in humans and animals. In dairy cattle, a
reduction in fertilization and embryonic survival rates has been suggested as the most
important component for decreasing reproductive efficiency (Santos et al., 2004). A
prerequisite for a successful pregnancy is a functional embryo–maternal communi-
cation to facilitate establishment, recognition, and maintenance of pregnancy. Via
paracrine signals, the conceptus prepares its environment, the uterine endometrium,
for attachment and implantation. Thus, analyzing the dynamic responses of the en-
dometrium to a conceptus is a powerful approach to (i) identify biological processes
that are stimulated or suppressed in the endometrium by the conceptus, and (ii) eval-
uate the quality of embryos regarding their ability to elicit physiological responses
of the surrounding endometrium. Interestingly, the mechanisms of pregnancy recog-
nition show in many aspects differences between mammalian species (Bazer et al.,
2009). Therefore, the comparative analysis of common and species-specific mecha-
nisms involved in preparation of the endometrium for implantation of the conceptus
provides a unique opportunity for dissecting phylogenetically conserved and distinct
pathways involved in this pivotal step of reproductive biology. Holistic and sensitive
Omics-technologies characterizing the transcriptome, proteome, metabolome, etc.,
of cells or tissues facilitate the comprehensive description of molecular patterns of
gametes, embryos, and their maternal environment. Importantly, dynamic changes of
these patterns during development may point to genes or pathways that have an effect
on reproductive success. Thus, molecular patterns identified by Omics-technologies
can be viewed as “intermediate phenotypes” (Schadt, 2009), whose comprehensive
description, interpretation, and modeling may help to understand the genetic basis of
cellular functions that are important for fertility (Figure 7.1).

Systems Biology and Livestock Science, First Edition. Edited by Marinus F.W. te Pas,
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Figure 7.1 Flow of genetic information via different classes of molecules producing molec-
ular patterns and networks, which affect cellular and organ functions. Integrating large-scale,
high-dimensional molecular and physiological data holds promise for defining the molecular
networks that respond to genetic and environmental perturbations of the physiological func-
tions. The different layers of information provide a hierarchy of intermediate phenotypes, RNA
being the most proximal non-DNA species of all molecular entities in the cell. Complex epige-
nomic mechanisms and interactions between the different classes of molecules modulate the
flow of genetic information into biological functions.

Transcriptome Analysis as a Holistic Approach for the Study of
Cellular Changes at the Molecular Level

Mammalian genomes contain approximately 20,000–22,000 protein-coding genes. The
number of individual transcripts encoded by mammalian genomes is significantly
higher due to transcript variants arising from the same gene and the fast growing
world of noncoding RNAs that have structural and regulatory functions (Gustincich
et al., 2006; Licatalosi and Darnell, 2010; Lindberg and Lundeberg, 2010; Orom et al.,
2010). Furthermore, all these RNAs existing in a given tissue occur in very different
abundances (Gustincich et al., 2006; Carninci et al., 2008). Since most physiological
processes are accompanied by complex changes in the RNA profile, transcriptome
analyses are a powerful approach for a system-wide description of cellular changes
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at the molecular level. However, changes at the mRNA levels do not automatically
predict similar changes at the protein level. To address the proteins themselves, as
the functional players in the cell, would be the ideal way. However, this is limited
due to the considerably larger differences in abundances and the extremely diverse
chemical properties of individual proteins making them only partially accessible for
current proteome analysis techniques (mass spectrometry and two-dimensional gel
electrophoresis). In contrast, various analytical approaches have been developed to
comprehensively profile mammalian transcriptomes (Stanton, 2001; Hoheisel, 2006;
Bauersachs et al., 2008; Wang et al., 2009). Currently, the most powerful technolo-
gies are hybridization-based (DNA microarrays) or sequencing-based (RNA-Seq),
both are able to generate comprehensive genome-wide expression profiles. The most
widespread approach for the analysis of transcriptome changes is still the microarray
technology. However, the RNA-Seq technology provides much more information on
absolute transcript levels, transcript variants, and currently not annotated transcribed
regions and is used more and more in different biological applications (Wang et al.,
2009; Marguerat and Bahler, 2010). Due to their high performance, RNA-Seq tech-
nologies are particularly suited for the analysis of mammalian transcriptomes and will
enable the detection of rare transcripts in complex tissues, such as the endometrium.
For domestic animals, the next-generation sequencing technologies will also be help-
ful to improve the current gene annotation, to define the entire transcriptome, and
finally provide sequence information for the design of comprehensive genome-wide
microarrays. A comparison of the results derived from an RNA-Seq study and an
Affymetrix microarray study of bovine endometrium at day 18 of pregnancy is shown
in Table 7.1 (our unpublished results). The same RNA samples were used for both
studies. The comparison revealed a consistent overlap between the results but many
more differentially expressed genes (DEGs) for the RNA-Seq data.

In humans, the microarray technology has been used for the analysis of the en-
dometrium transcriptome during the window of implantation and has provided re-
markable insight into endometrial maturation and implantation (Giudice, 2004). Also,
in domestic species such as sheep, cattle, swine, and the horse, several microarray stud-
ies have been performed on different reproductive tissues (Bauersachs et al., 2008;
Evans et al., 2008; Spencer et al., 2008; Satterfield et al., 2009; Merkl et al., 2010;

Table 7.1 Comparison of Illumina RNA-Seq and Affymetrix GeneChip data derived from
the analysis of bovine endometrium at day 18 of pregnancy.

Number of genes %

RNA-Seq DEGs (FDR 1% FC ≥ 2) 664
Not represented on Affymetrix array 218 32.8
Not detectable with Affymetrix 37 5.6
Differential with Affymetrix 320 78.2
Affymetrix DEGs (FDR 1% FC ≥ 2) 336
Contained in annotation used for RNA-Seq 297 88.4
Found as differential with RNA-Seq 278 93.6

DEGs (differentially expressed genes)
FDR (false discovery rate)
FC (fold change)
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Ostrup et al., 2010) to characterize regulatory processes underlying the establishment
and maintenance of pregnancy.

Resources for Functional Gene Annotation and Gene/Protein
Interactions and Corresponding Analysis Tools

With the beginning of the systematic analysis of genomes, molecular functions were
assigned to the newly identified genes. To provide a defined functional description
and classification of genes, the Gene Ontology (GO) project has developed three
structured, controlled vocabularies (ontologies) that describe gene products in terms
of their associated biological processes, cellular components, and molecular functions
in a species-independent manner (Ashburner et al., 2000). Genes are assigned based
on data from the literature, on belonging to a known protein family, but also merely
based on the presence of conserved protein domains. There are numerous tools for
the analysis of GO terms associated with a list of differentially expressed transcripts
or proteins (see Table 7.2). Many of these tools provide quantitatively enriched GO
terms associated with a gene list, i.e., GO terms for which significantly more associated
genes were found than expected by chance. Although most of the annotated genes are
assigned to GO categories, gene functions for large animals are mostly inferred from
functions, which were only experimentally validated for the classical model organisms
(Table 7.3). Therefore, the results of GO annotations for large animals need careful
interpretation.

The processing of the results of such analyses can be very laborious due to the re-
dundant structure of the GO categories. The “functional annotation clustering” tool of
the database for annotation, visualization, and integrated discovery (DAVID) (Dennis
et al., 2003; Huang et al., 2009) avoids this problem by clustering enriched functional
categories that have overlapping gene contents. Furthermore, the DAVID “functional
annotation clustering” tool uses information from a variety of databases, including
GO data, KEGG pathways, BioCarta pathways, but also data from completely differ-
ent sources, e.g., protein databases (SP PIR keywords), disease databases (OMIM
Disease), protein domain (Interpro) and protein interaction databases (BIND),
and others.

Another strategy for obtaining information on gene functions and interactions is
text mining of MEDLINE abstracts (Clegg and Shepherd, 2008). The analysis tool
CoPub (Frijters et al., 2008) combines text mining with the analysis of lists of DEGs
or proteins to find gene–gene cocitation and cocitation of genes with keywords. This
analysis identifies biological or disease-related keywords overrepresented within the
DEGs and can be used as complement to GO analyses or as a basis for the construction
of gene interaction networks.

Microarray datasets can also be characterized by comparison with gene sets derived
from other gene expression studies or from defined functional categories by the use
of the “gene set enrichment analysis” (GSEA) tool (Subramanian et al., 2005). GSEA
compares a gene expression dataset with different collections of gene sets: positional
gene sets, curated gene sets, motif gene sets, computational gene sets, and GO gene
sets (for detailed explanation, see www.broadinstitute.org/gsea/msigdb/index.jsp).
The genes of an expression dataset are ranked according to differential expression
with the most significantly upregulated genes at the top and the most significantly
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Table 7.3 Percentage of annotations not inferred from electronic annotation (IEA) for
selected model organisms.a

Gene
products GO

Species Database annotated annotations Non-IEA (%)

Bos taurus GOA@EBI 22,440 110,068 7,270 6.6
Caenorhabditis elegans WormBase 17,688 114,213 59,122 51.8
Danio rerio ZFIN 15,566 110,114 24,313 22.1
Drosophila melanogaster FlyBase 12,747 76,970 61,333 79.7
Gallus gallus GOA@EBI 18,185 79,614 3,316 4.2
Homo sapiens GOA@EBI 18,410 222,229 124,324 55.9
Mus musculus MGI 33,908 280,811 184,682 65.8
Rattus norwegicus RGD 28,808 250,004 128,233 51.3

aStatus: 12/2010.

downregulated genes at the bottom. On the basis of the positions of the genes of
the gene sets in the ranked gene expression dataset, enrichment toward one end of
the ranked list is calculated that indicates concordance of the gene set with the gene
expression dataset. User-provided gene sets can also be used for comparison with the
expression dataset. GSEA results can be helpful, for example, for drawing conclusions
from regulatory mechanisms that are known for a given gene set or from gene sets
that belong to defined functional categories or cellular pathways.

The tools described above reveal groups of genes associated with a certain common
biological function. This does not automatically mean that these genes/proteins have
direct interactions or are regulated by the same regulatory factor. With regard to
the identification of a common gene regulation underlying observed gene expression
changes, several tools (GSEA, DAVID, oPOSSUM (Ho Sui et al., 2007)) look for
transcription factor binding sites in the promoter regions of the DEGs to find tran-
scription factors whose binding sites are overrepresented. Unfortunately, these tools
are based on known human, mouse, and rat promoter regions, i.e., the analysis in
other species assumes conserved regulatory elements in the corresponding promoter
regions. Nevertheless, a comparative study of human and bovine transcription fac-
tor binding sites (TFBS) encourages the use of human promoter databases for the
inference of bovine gene regulation (Zadissa et al., 2007).

In order to better understand observed gene expression changes in the context
of complex cellular processes, potential interactions between the identified genes or
proteins and with other genes or proteins are analyzed and visualized. These analyses
are based on data from different interaction databases/resources, e.g., BIND, HPRD,
BioGRID (Table 7.1). Also, protein interactions and regulations can be obtained
with the help of natural language preprocessing tools (Fundel et al., 2007). There
are a number of open source tools available for interaction and pathway analysis,
e.g., Reactome (Matthews et al., 2009), Cytoscape (Cline et al., 2007), and STRING
(Jensen et al., 2009). The latter tool is a searchable database for known and predicted
protein–protein interactions and also provides network visualization for a provided
set of genes.
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Identification of Biological Themes Related to Endometrial
Remodeling and Receptivity in a Microarray Study of Bovine
Endometrium During the Estrous Cycle

Endometrial gene expression is mainly regulated by the complex interplay of the
ovarian steroid hormones such as estradiol and progesterone (Goff, 2004; Spencer
et al., 2004). They act via the classical nuclear steroid hormone receptors, but also via
nonclassical receptors such as progesterone receptor membrane component 1 and the
novel family of membrane progestin receptors (Gellersen et al., 2009). Although the
basic principles of hormonal regulations in the endometrium during the estrous cycle
are known, the highly complex molecular responses in the endometrium to the ovarian
hormones are not completely understood. Basically, progesterone is the key hormone
for preparation of the endometrium for embryo implantation and maintenance of
pregnancy (Bazer et al., 2008) and genes with increased expression levels in the luteal
phase are probably regulated by progesterone, directly or indirectly. The supportive
role of progesterone has been confirmed in a recent study, where a positive influence
of progesterone on conceptus growth and development was found (Clemente et al.,
2009). To identify genes playing a role in the context of fertility, two microarray stud-
ies of bovine intercaruncular endometrium during the estrous cycle were performed
and different data analysis tools were used to characterize the obtained gene sets
(Bauersachs et al., 2005, 2008; Mitko et al., 2008). These studies revealed several
hundred genes differentially expressed between different stages of the estrous cycle.
Two major groups of genes according to their expression profiles were observed that
showed either highest mRNA levels during the estrus phase or highest levels during
the luteal phase, respectively, corresponding to the steroid hormone profiles during
the cycle. A minor group of genes exhibited highest mRNA levels on day 3.5. GO
analysis, pathway analysis, and functional classification using the DAVID “functional
annotation clustering” tool were used to infer regulated biological processes from
gene expression data and to identify overrepresented biological themes from the list
of differentially expressed genes. In addition, interaction networks were built for
genes upregulated at estrus and genes upregulated at diestrus, respectively, to visu-
alize potential interactions between the identified genes (Mitko et al., 2008). These
networks were drawn on the basis of different types of interactions like binding, reg-
ulation, expression, transport, and assignment to a protein family or a biological pro-
cess. Results from both studies characterized the estrus phase by overrepresentation
of genes related to the functional terms “focal adhesion formation”, “cell motility”,
“cytoskeleton”, “extracellular matrix” (ECM), “ECM remodeling”, and “cell growth”.
The interaction network for genes upregulated at estrus showed that the ECM pro-
teins together with cytoskeletal proteins are linked to the process “focal adhesion”
(cell-matrix adhesion). Coordinated regulation of genes involved in ECM remodel-
ing during the estrous cycle is reflected by the expression patterns of genes encoding
matrix metallopeptidases and their inhibitors in addition to genes coding for ECM
constituents and genes involved in regulation of ECM proteins. In addition to genes
related to ECM remodeling, a number of genes with lower mRNA levels at diestrus
were identified that have been described in the context of positive regulation of in-
vasive processes. Thus, decreased levels of these mRNAs during the luteal phase
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may be characteristic for the noninvasive implantation process in cattle. This is also
supported by the fact that the majority of genes from the functional category “invasive
growth” with higher mRNA levels during the luteal phase have been described in the
context of negative regulation of invasive growth.

The processes of angiogenesis and regulation of blood flow also play an important
role for endometrial remodeling during the estrous cycle and the specific functions
of the endometrium. Several genes related to these processes were identified as dif-
ferentially expressed during the estrous cycle, including members of the angiopoietin
family, transcription factors controlling the expression of vascular endothelial growth
factors (VEGF) and their receptors, and other genes involved, e.g., in endothelial
differentiation and regulation of blood flow. Furthermore, elevated concentrations of
mRNAs coding for a variety of proteins involved in metabolic and transport processes
were found during the luteal phase. Elevated transport and metabolism during the
luteal phase may indicate increased secretion of nutrients (histotroph) necessary for
the development of the embryo (Allison Gray et al., 2000).

Correlation of Gene Expression Data and Data from Genome-Wide
Association Studies (GWAS) Links Differential Gene Expression
with Phenotypes Related to Fertility

The studies described in the previous paragraphs aimed at the identification of DEGs
during the estrous cycle and inferred from this a functional role in regulation of
endometrial receptivity. To further substantiate a functional role of genes differen-
tially expressed in endometrium during the estrous cycle in relation to fertility, the
results of the transcriptome studies were linked to results of genome-wide association
studies (GWAS). Whereas transcriptome and also proteome studies are restricted to
experimental sets of animals with limited size, GWAS are performed on the whole
population, allowing correlation with phenotypic traits. Linking findings from GWAS
with transcriptome and other Omics-data derived from experimental settings can
identify genetic loci that are associated with particular traits and thereby may help to
unravel causal genes associated with the trait of interest. A possible scenario is out-
lined in Figure 7.2. Useful inks between these two types of datasets can be obtained
in at least two different ways. First, candidate genes derived by microarray studies
can be investigated for the presence of SNPs, and their influence on particular traits
can be investigated in the breeding population. Second, genome-wide screening with
increasingly dense sets of genetic markers will probably yield multiple associations,
and it would be favorable to identify the most interesting ones. Again, a comparison
with findings from transcriptome, proteome, and other Omics-studies might help to
add functional validation to the positional information derived from the genome-wide
association studies but also vice versa.

A first attempt to combine findings from microarray studies of endometrial tissue
samples (genes with higher mRNA levels at diestrus compared to estrus (Bauersachs
et al., 2005; Mitko et al., 2008) and selected candidate genes) with genome-wide
association studies for fertility and production traits in dairy cattle was performed
in a recent study (Pimentel et al., 2011). A total of 12 traits related to fertility and
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Figure 7.2 Linking data from gene expression and genome-wide association studies. (See
insert for color representation of this figure.)

production that are typically included in national dairy cattle genetic evaluations were
considered in this study. From the six fertility traits, two were heifer traits: nonreturn
rate to 56 d (NRh) and interval from first to successful insemination (FLh); and
four were cow traits: interval from calving to first insemination (CFc), nonreturn rate
to 56 d (NRc), interval from first to successful insemination (FLc) and days open
(DOc). Production traits were as following: milk yield (Mkg), fat yield (Fkg), protein
yield (Pkg), fat percentage (Fpr), and protein percentage (Ppr). Another functional
trait considered was somatic cell score (SCS). A set of 2294 Holstein–Friesian bulls
genotyped for 39,557 single nucleotide polymorphisms (SNPs) was used, and a total
of 111 SNPs were located on chromosomal segments harboring a candidate gene.
Many of the SNP effects provided evidence for the antagonistic relationship between
production and fertility at the molecular level. Interestingly, with respect to cattle
breeding, five SNP alleles had favorable effects on yield and percentage traits, as well
as on at least one fertility trait. For example, for the identified SNP within the tumor
necrosis factor (ligand) superfamily, member 10 gene (TNFSF10, TRAIL) one allele
had a positive effect on Fkg, Pkg, Fpr, and FLc. The TNFSF10 mRNA has been
shown to be upregulated in human endometrium during the window of implantation
(Riesewijk et al., 2003), in equine endometrium at day 12 of pregnancy (Merkl et al.,
2010), and in bovine endometrium at day 18 of pregnancy (Bauersachs et al., 2006).
Furthermore, a role of TNFSF10 in the modulation of the cytokine milieu at the
implantation site has been suggested on the basis of the differential regulation of
cytokines and chemokines in human endometrial stromal cells by TNFSF10 (Fluhr
et al., 2009). For the gene interferon induced with helicase C domain 1 (IFIH1),
specific allele increased Mkg and also the estimated breeding value (EBV) for FLc,
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i.e., resulted in a reduction in the interval from first to successful insemination. IFIH1
codes for an RNA helicase known to be involved in cellular recognition of RNA
viruses (Wilkins and Gale, 2010). Song et al. (2007) reported that IFIH1 is involved
in the establishment of uterine receptivity to the conceptus during implantation in
sheep. Effects in the same direction on Mkg, NRh, and FLh were found for a SNP
located within the gene for insulin-like growth factor binding protein 7 (IGFBP7).
Gene expression studies in other species underline the importance of this gene during
early pregnancy. In equine endometrium, higher mRNA levels of IGFBP7 were found
in samples derived from day 12 of pregnancy compared to nonpregnant samples
(Merkl et al., 2010). Furthermore, abundant expression of IGFBP7 has been found
in human glandular epithelial cells during the secretory phase and an in vitro knock-
down experiment revealed a role of IGFBP7 protein in differentiation of these cells
(Kutsukake et al., 2010). In a study of human endometrium during the menstrual cycle,
an increase in expression during the receptive phase compared with the prereceptive
phase, followed by a sharp increase in the late luteal phase, was found, suggesting an
implication of IGFBP7 in endometrial physiology and receptivity (Dominguez et al.,
2003). APBA APP-binding family A (APBA) is the gene for the X11α member of the
X11 multidomain protein that is primarily expressed in neurons (reviewed in Rogelj
et al., 2006). Knockout mice lacking functional Apba1 expression show normal fertility,
but a slight reduction in body weight gain (Mori et al., 2002; Ho et al. 2003), indicating
a potential link of Apba1 to production traits in livestock.

In general, the coupling of GWAS results to transcriptomic data can be a first
step to a better understanding of the biology and mechanisms associated with SNPs
(or genome fragments), which contribute to the improvement of specific traits. With
regard to genomic selection, insights into the biological mechanisms underlying par-
ticular traits could help to search more directly towards preventing trade-offs. Gene
expression data could be seen as novel phenotypes making genomic selection possible
also for other than the currently accessible traits. The other way around, the link to
GWAS data can help to confirm the functional role of genes in context of fertility in
addition to their differential expression in the endometrium during the estrous cycle
or early pregnancy.

Identification of Genes Involved in Preparation of the Bovine
Endometrium for Embryo Implantation

In contrast to primates and rodents, in ruminants the time of implantation is late (in
cattle after day 18 of gestation), when the trophoblast layer of the conceptus is elon-
gated and fills out the entire pregnant uterine horn, and an epitheliochorial placenta is
formed through a relatively noninvasive placentation process. Interferon tau (IFNT)
has been identified as the embryonic pregnancy recognition signal in ruminants, which
prevents the induction of luteolysis, thus enabling the establishment and maintenance
of pregnancy (Bazer et al., 1997). This is mediated by the suppression of the genes
for estrogen receptor-alpha (ESR1) and oxytocin receptor (OXTR), which prevents
the pulsatile secretion of luteolytic prostaglandin F2 alpha (PGF2α) resulting in the
maintenance of the ovarian corpus luteum and progesterone production (Spencer and
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Bazer, 1996). In cattle, maximum secretion of IFNT was observed on day 17 (Bazer
et al., 1997) in parallel to the time of maternal recognition of pregnancy. To get more
detailed insights into the gene expression changes during the preimplantation period
in bovine endometrium in response to the presence of a conceptus, transcriptome
analyses were performed comparing samples recovered from day 18 pregnant animals
and corresponding nonpregnant controls. In the first study, monozygotic twin cows
were used, where one twin received two in vitro-produced embryos and the corre-
sponding twin a sham transfer (Klein et al., 2006). Endometrial tissue samples were
recovered on day 18 of pregnancy and the estrous cycle, respectively. Eighty-seven
different genes were identified as upregulated in pregnant animals by the use of a
combination of subtracted cDNA libraries and cDNA microarrays. GO analysis re-
vealed that almost half of the obtained genes have been described as classical type
I interferon-induced genes and could be directly assigned to the effects of IFNT,
the embryonic pregnancy recognition signal in ruminants, on the endometrium. In
the second experimental model, pregnancy was obtained by artificial insemination of
heifers and control animals received a sham insemination (Bauersachs et al., 2006).
Endometrial tissue samples were recovered on day 18 of pregnancy and the estrous
cycle, respectively. In contrast to the first model, the control animals showed low
serum progesterone levels due to a shortened estrous cycle. Thus, the differential ex-
pression of the identified genes was a mixed effect of embryonic signals and different
steroid hormone levels. In this study, 179 DEGs were found, 109 with higher and 70
with lower mRNA abundance in pregnant animals. Similar to the first study, many
mRNAs with higher abundance in pregnant animals were found, which have already
been described earlier as being induced by interferons.

In addition to the typical interferon-induced genes, a number of upregulated genes
were found with potentially important roles in establishment and maintenance of preg-
nancy. Among these genes was the transcription factor nuclear receptor subfamily 2,
group F, member 2 (NR2F2, alias COUP-TFII), a nuclear orphan receptor, which is
essential for progesterone control of implantation and a mediator of uterine epithelial-
stromal cross talk in the mouse (Kurihara et al., 2007; Petit et al., 2007). During the
peri-implantation period, NR2F2 regulates embryo attachment and decidualization
through controlling ESR1 activity but is also required in the postimplantation period
to facilitate placentation (Lee et al., 2010). Heterozygous Nr2f2-mutant mice showed
decreased fecundity (Takamoto et al., 2005). Upregulation of NR2F2 was also found in
equine endometrium at day 12 of pregnancy compared to nonpregnant controls, sug-
gesting a conserved role of NR2F2 during establishment of pregnancy in mammalian
species. A molecular interaction network for NR2F2 is shown in Figure 7.3. Most
interestingly, NR2F2 is a target gene of Indian hedgehog (IHH), which is induced by
progesterone via the progesterone receptor (PGR) (Simon et al., 2009). In addition
to the negative regulation of ESR1 expression, NR2F2 also downregulates expression
of the gene for oxytocin receptor (OXTR) in a complex with NR2F6 (Chu and Zingg,
1997). Furthermore, analysis of the microarray data for bovine endometrium assigned
many of the DEGs to a variety of processes that are important with respect to the
preparation of the endometrium for embryo attachment and implantation, such as
endometrial remodeling (ECM remodeling, vascular remodeling), cell adhesion, and
immunomodulation. Genes involved in immunomodulation are potentially important
for tolerance of the fetal allograft by the maternal immune system. Most of them, if
not all, are probably regulated by the embryonic IFNT.
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Analysis of Gene Expression in Endometrium During
the Preimplantation Phase in Porcine Endometrium

In swine, the implantation takes place after elongation of the conceptuses and pla-
centation is noninvasive (epitheliochorial) similar to ruminants (Carter and Enders,
2004). However, the embryonic signal for maternal recognition of pregnancy in pigs
is estrogen produced by the conceptus in increasing amounts from day 10 (Geisert
et al., 1990) resulting in changes in the prostaglandin metabolism of the endometrium
to prevent regression of the corpora lutea by prostaglandin F2alpha (PGF2α) (Ziecik,
2002). Recent research indicates that the estrogen signal from the conceptuses stim-
ulates endometrial prostaglandin E2 (PGE2) synthesis. Combined with a positive
PGE2 feedback loop in the endometrium, this synthesis leads to an increase in the
PGE2:PGF2α ratio, which helps to overcome the luteolytic effect of PGF2α (Waclawik
et al., 2009). The porcine embryos remain free-floating in the uterine lumen until
days 13–14 of gestation, when they appose and subsequently attach to the uterine
luminal epithelium (Dantzer, 1985). The apposition and the onset of implantation are
accompanied by extensive tissue remodeling of the endometrium (Cencic et al., 2003),
where a pronounced vascularization is evident already from day 13 of gestation (Keys
et al., 1986).

To characterize the processes involved in the initiation of placentation at the gene
expression level, a microarray study of porcine endometrium at day 14 of pregnancy
in comparison to corresponding nonpregnant controls was performed (Østrup et al.,
2010). This study identified 263 DEGs between pregnant and nonpregnant sows. The
identification of overrepresented GO terms for these genes revealed that most of the
significantly enriched GO terms had allocated more upregulated than downregulated
genes. These GO terms included: developmental process, transporter activity, calcium
ion binding, apoptosis, cell motility, enzyme linked receptor protein signaling pathway,
positive regulation of cell proliferation, ion homeostasis, and hormone activity. Only
three terms had an overrepresentation of downregulated genes, namely, oxidoreduc-
tase activity, lipid metabolic process, and organic acid metabolic process. A number
of the genes assigned to these terms are known to be involved in steroid hormone and
prostaglandin metabolism. In the next step, an interaction network was built based on
the genes assigned to the functional term developmental process (Østrup et al., 2010).
This interaction network and known gene functions found in the literature identified
the genes interleukin 6 receptor (IL6R), leukemia inhibitory factor receptor alpha
(LIFR), interleukin 11 receptor, alpha (IL11RA), mucin 4 (MUC4), v-erb-b2 erythrob-
lastic leukemia viral oncogene homolog 3 (avian) (ERBB3), fibroblast growth factor 9
(glia-activating factor) (FGF9), and fibroblast growth factor receptor 3 (FGFR3) likely
to be involved in the process of placentation. IL6R, LIFR, and IL11RA are related
to the interleukin gene families and involved in cytokine cell signaling. Among the
growth factor-related genes were FGF9, FGFR3, and ERBB3. The differential gene
expression and localization of IL11RA protein expression together with the described
role of IL11 signaling for decidualization and regulation of trophoblast invasion in the
mouse (Robb et al., 1998) indicated a role for IL11RA and IL11 signaling in porcine
endometrium by inhibiting trophoblast invasion. Interestingly, the microarray study
of porcine endometrium at day 14 of pregnancy identified differential expression
of the cytokine receptor genes IL6R, LIFR, and IL11RA but the corresponding
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cytokines were not found as differentially expressed. This suggests that regulation of
signaling in this cytokine family in porcine endometrium is to great extent controlled
by the expression of the specific receptors. A second interesting finding was the
upregulation of the mRNA coding for the growth factor FGF9, which functions as
an endometrial growth factor in humans (Tsai et al., 2002), in pregnant animals and
the concomitant downregulation of FGFR3 mRNA, coding for an FGF9 receptor.
FGFR3 downregulation and localization of FGF9 protein in the apical domain of
the glandular epithelial cells in porcine endometrium of day 14 pregnant animals
suggests that secreted FGF9 functions as an embryonic growth factor in the pig.

Analysis of Gene Expression in Endometrium During
the Preimplantation Phase in Equine Endometrium

The nature of embryo–maternal communication and maternal recognition of preg-
nancy in equids is still not completely understood. A number of features of equine
pregnancy are unique to the genus Equus and differ from other mammals. The equine
embryo is completely enveloped by a tough glycoprotein capsule between days 7 and
21, which prevents the trophoblast from elongating and provides its typical spherical
shape. The conceptus shows constant, self-induced mobility throughout the uterine
lumen between days 6 and 17 after ovulation. Around day 17, as a result of increased
conceptus diameter, increased uterine tone, and because of changes in the embryo’s
capsule and uterine environment, the conceptus becomes immobilized (“fixed”) at
the base of one of the uterine horns. At days 35–37, an “injection” of specialized,
gonadotropin-secreting trophoblast cells into the maternal endometrium takes place
followed by the establishment of a stable, microvillous contact of trophoblast cells with
the luminal epithelium of the endometrium around days 40–42 (Allen, 2001; Allen
and Wilsher, 2009).

In contrast to ruminants and swine, the nature of the embryonic pregnancy
recognition signal to prevent luteolysis still remains unknown. However, the presence
of a conceptus somehow uncouples the oxytocin-induced release of PGF2α thereby
preventing luteolysis (Goff, 1987; Sharp, 2000). The equine conceptus produces a
number of different secretory products during early pregnancy, including steroids,
prostaglandins, different proteins and peptides (Betteridge, 2000), such as interferon
delta, a member of the type I interferon family (Cochet et al., 2009). Interestingly, the
application of intrauterine devices has been demonstrated to prolong the luteal phase
in the mare, indicating that a form of mechanotransduction by the migrating conceptus
may also play a role in preventing production and release of PGF2α (Rivera Del Alamo
et al., 2008).

Very recently, two microarray studies of equine endometrium during early preg-
nancy were published. These studies analyzed days 8 and 12 (Merkl et al., 2010), and
day 13.5 (Klein et al., 2010) of pregnancy and identified several hundred DEGs at days
12 and 13.5 of pregnancy. Gene set enrichment analysis, DAVID functional annota-
tion clustering, and cocitation (CoPub) analysis were performed to identify overrepre-
sented functional terms and biological pathways for the genes differentially expressed
in day 12 pregnant endometrium. GSEA was performed to characterize the DEGs by
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comparison with gene sets derived from other Omics studies. The greatest overlap with
the genes upregulated at day 12 of pregnancy was found for a set of genes differentially
expressed between two types of CD45 (PTPRC)− CD34+ CD105 (endoglin)+ stromal
stem cells distinguished by the expression of CD31 (PECAM1) (Boquest et al., 2005).
The CD31+ cells are closely related to microvascular endothelial cells based on their
upregulated transcripts. This agreed well with the results of DAVID and CoPub anal-
ysis, where terms related to angiogenesis/vascular remodeling were found to be quan-
titatively enriched. Furthermore, the mRNA coding for CD31 (PECAM1), a marker
of endothelial cells that has also been described in context of angiogenesis (Woodfin
et al., 2007), was found as 1.6-fold upregulated in the samples of day 12 pregnant en-
dometrium. A substantial overlap was also found for the CD31+ downregulated gene
set that contains transcripts associated with ECM, transcripts that have been shown
as expressed in early osteoblast differentiation, osteoclast-related transcripts, and
transcripts typical of neuronal tissue (Boquest et al., 2005). Related terms were also
found with DAVID and CoPub, such as extracellular region, tissue remodeling, bone
remodeling, neurogenesis, and inflammation. Thus, GSEA revealed a biological char-
acterization of many of the differentially expressed genes. Overall, GSEA identified
biologically very different gene sets that could reflect (i) differential gene expression
in different compartments of the endometrium and (ii) a response to different embry-
onic signals. This corresponds to the fact that the equine conceptus produces different
molecules (Betteridge, 2000), such as progesterone, estradiol, and prostaglandins.

GSEA revealed many estrogen-induced genes and genes involved in regulation
of estrogen signaling, but also genes known to be regulated by progesterone and
prostaglandin E2. Likewise, at day 13.5, many genes with known or inferred func-
tions are probably upregulated by embryonic estrogen. In addition, DAVID analysis
revealed for the genes with elevated transcript levels overrepresentation of genes
involved in cell–cell signaling, heat shock response, and genes coding for secretory
proteins. Among the genes showing lower expression in pregnant mares on day 13.5,
estrogen receptor 1 (ESR1) was of particular interest because of its potential involve-
ment in the initiation of luteolysis in cyclic mares (Klein et al., 2010).

Based on the genes identified as upregulated at day 12 of pregnancy, putative inter-
action networks for genes related to the process of angiogenesis/vascular remodeling
and genes described in context of steroid hormone and prostaglandin signaling were
generated on the basis of a literature search, CoPub results and interactions from
the Pathway Architect database (Stratagene) and other public protein interaction
databases (Merkl et al., 2010). For the process of angiogenesis/vascular remodeling
genes representing different regulatory levels were found, such as members of the an-
giopoietin family, of the VEGF system, hypoxia-induced genes, and genes regulating
endothelial cell fate. Most of these genes have been described in context of positive
regulation of angiogenesis, however, no difference in the proportion of blood vessels
between pregnant and control samples was observed by quantitative stereology. A pos-
sible explanation could be a delay of changes in the expression of the corresponding
proteins and the resulting biological consequences. In studies of vascular perfusion
during early pregnancy, where transient changes in endometrial vascular perfusion
accompanying the migrating embryonic vesicle have been shown (Silva et al., 2005),
the microarray results indicate vascular remodeling at day 12 of pregnancy in response
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to the migrating conceptus that likely could play a role in maternal support of concep-
tus growth and in preparing the uterus for the prospective pregnancy. Furthermore,
deregulation of angiogenesis in the endometrium during early pregnancy has been
found in pregnancy failure (Tayade et al., 2007).

The second interaction network related to steroid hormone and prostaglandin
signaling was clearly dominated by estradiol with many estrogen-regulated genes.
The identification of many estrogen-induced genes fits well with the finding that the
equine embryo begins to secrete significant amounts of estrogens as early as day
10 after fertilization (Zavy et al., 1984; Choi et al., 1997). The interaction network
contained also a number of negative regulators of ESR1, but also genes involved in
regulation of growth and differentiation, and in estrogen metabolism. One important
mediator of estrogen signaling in equine endometrium could be FGF9, which has
been described as an autocrine endometrial stromal growth factor induced by E2 in
human endometrial stroma (Tsai et al., 2002). The upregulation of the FGF9 mRNA,
the findings from other species and the concomitant upregulation of a putative FGF9
antisense transcript make this gene an especially interesting candidate. Furthermore, a
number of negative regulators of estrogen signaling, e.g., Kruppel-like factor 5 (KLF5),
ERBB receptor feedback inhibitor 1 (ERRFI1), and heat shock 27kDa protein 2
(HSPB2), were found as upregulated, which could be an indication for either a negative
feedback regulation in response to the estrogen signal or the result of progesterone
action on the endometrium. The interaction network also contained a number of
genes that function in prostaglandin signaling and metabolism. Similar to findings
in the pig, where the PGE2 receptor EP2 (PTGER2) transcript level is increased in
early pregnancy (Waclawik et al., 2009), mRNAs of PGE2 receptors EP3 (PTGER3)
and EP4 (PTGER4) were upregulated. However, in contrast to studies in porcine
endometrium, mRNA levels of prostaglandin E synthases did not differ between
pregnant and nonpregnant equine endometrium. There was also no difference in
mRNA levels for the known PGF synthases. Unlike in ruminants, where upregulation
of mRNA for oxytocin receptor (OXTR) is prevented by the signaling of IFNT (Wolf
et al., 2003), OXTR mRNA was slightly upregulated in equine endometrium at day 12
of pregnancy.

Although the results of this study revealed a response to different signaling
molecules, a mechanical signaling induced by the migrating conceptus is not ex-
cluded. In a recent study, a small intrauterine device (water-filled plastic ball) was
shown to induce prolonged luteal function (Rivera Del Alamo et al., 2008), sup-
porting the concept of pregnancy recognition via mechanosensation. Some of the
identified changes in mRNA expression levels at day 12 of pregnancy could in part re-
flect mechanosensation. Some of the upregulated genes were already described in the
context of mechanotransduction. First, a direct response to mechanical force has been
shown for PECAM1 (Fujiwara, 2006). Second, upregulation of insulin-like growth fac-
tor binding protein 1 (IGFBP1) secretion in response to mechanical stretch was found
in decidualized endometrial stromal cells (Harada et al., 2006). Third, Rho activation
(members of the Rho GTPase family (RND1, RND3) (key regulators of cytoskeletal
signaling) and a Rho GTPase activating protein (ARHGAP29) were upregulated at
day 12 of pregnancy, which has been described in context of mechanotransduction-
associated alveolar epithelial cell differentiation (Foster et al., 2010).
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Altogether, these two microarray studies of equine endometrium during early preg-
nancy revealed potential target genes and pathways of conceptus-derived estrogens,
progesterone, and prostaglandin E2 in the equine endometrium probably involved in
the early events of establishment and maintenance of pregnancy in the mare.

Comparison of Gene Expression Datasets from Different
Mammalian Species

The comparison of endometrial gene expression datasets between species of different
mammalian groups can be used as an approach for the identification of genes related to
common and species-specific mechanisms involved in establishment and maintenance
of pregnancy. Such a comparison was done between the datasets for gene expression
during the estrous cycle and on day 18 of pregnancy in bovine endometrium, and
results of a number of similar microarray studies in human, mouse, and Rhesus
monkey (Bauersachs et al., 2008). This analysis revealed an overlap of 70 genes that
were differentially expressed during the estrous cycle in bovine endometrium and in
at least one of the other studies. For 38 of these genes, the changes of mRNA levels
were comparable to the changes found in the other studies. For 29 genes, expression
changes were in opposite directions, for example, genes were downregulated in bovine
endometrium during the luteal phase but upregulated in human endometrium during
the window of implantation. For the remaining three genes, expression changes were
contrary within the compared studies regarding the expression profile during the
sexual cycle or the regulation by estrogen, respectively. This finding reflects (1) the
differences between ruminant species and primates and rodents regarding histological
changes in the endometrium during the cycle and the type of implantation of the
embryo and (2) some common regulatory mechanisms between mammalian species.

For example, similar gene expression was found for claudin 4 (CLDN4), a cell
adhesion molecule in tight junctions involved in intercellular sealing in simple and
stratified epithelia (Tsukita and Furuse, 2002). CLDN4 has been found to selectively
decrease Na+ permeability in tight junctions. Likewise, dickkopf homolog 1 (DKK1)
mRNA, coding for an inhibitor of WNT signaling (Glinka et al., 1998), has been
found as upregulated in four human studies at the window of implantation time and in
bovine endometrium during the luteal phase and at day 18 of pregnancy (Bauersachs
et al., 2008). Correlated expression differences were also found in two human studies
for nuclear protein 1 (NUPR1, candidate of metastasis 1, P8), SLC1A1 and decidual
protein induced by progesterone (C10orf10). Further, there seem to be some common
regulatory mechanisms of the maternal immune system as indicated by the similar
regulation of C1R, SERPING1, and TAP1.

In a recent study, GSEA was used to compare a microarray dataset from equine
endometrium at day 12 of pregnancy to similar gene sets derived from other mammals
(Merkl et al., 2010). Interestingly, the best enrichment toward the day 12 upregulated
genes was found for genes upregulated in human endometrium during the window of
implantation, indicating similarities in gene expression changes in equine and human
endometrium during early pregnancy. Significant enrichment was also obtained for
genes induced at day 14 of early pregnancy in porcine endometrium and at day 18 of
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early pregnancy in bovine endometrium, but the number of genes overlapping with
the genes significantly upregulated at day 12 of pregnancy in equine endometrium
was relatively low. Higher numbers of overlapping genes were seen for genes regu-
lated during the estrous cycle in bovine endometrium and estrogen-induced genes in
general. Furthermore, the comparison of the overlapping genes of the gene sets from
human, bovine, and porcine endometrium revealed a number of genes that probably
have conserved functions across species such as crystallin, alpha B (CRYAB), ERRFI1,
FGF9, insulin-like growth factor binding protein 2 (IGFBP2), NR2F2, stanniocalcin 1
(STC1), and TNFSF10.

The data analysis of the microarray studies of bovine, porcine, and equine en-
dometrium during early pregnancy each revealed some major themes and pathways
probably related to establishment and maintenance of pregnancy, in which some of
these themes and pathways are likely to be common for the three species, whereas
others are species-specific. A schematic overview of selected processes and functional
groups of genes and their possible relationship to pregnancy recognition and endome-
trial receptivity is shown in Figure 7.4.

Identification of Fertility-Related Genes by the Analysis
of Pathological Conditions

Transcriptome studies of the endometrium during the sexual cycle and early pregnancy
revealed numerous DEGs reflecting the complex changes in the endometrium during
the cycle and in the course of establishment and maintenance of pregnancy. This
makes the identification of genes with essential and/or regulatory roles difficult. One
approach to find the most crucial fertility-related genes is the analysis of pathological
conditions, for example, those that lead to abnormal placenta formation and embryo
development.

Analysis of Endometrial Responses to Clone Pregnancies in Comparison
to IVF Pregnancies in Cattle

Somatic cell nuclear transfer (SCNT) cloning has been successfully performed in a
number of species, but is particularly critical with respect to epigenetic abnormalities
of the resulting embryos, fetuses, and offspring (reviewed in Shi et al., 2003). DNA hy-
permethylation was observed in some tissues of cloned bovine fetuses, but—to a lesser
extent—also in fetuses derived from in vitro-produced embryos (Hiendleder et al.,
2004b, 2006). However, it is largely unclear whether and how epigenetic changes
cause developmental abnormalities and abortions of cloned embryos or fetuses. A
number of studies suggested placental abnormalities as primary cause of pregnancy
loss and abnormal fetal growth after transfer of SCNT embryos (reviewed in Palmieri
et al., 2008). Observed placental changes in bovine SCNT pregnancies included,
for example, a reduced number, but increased size of placentomes (Constant et al.,
2006). Furthermore, transplacental leakage of maternal cells into the circulation of
fetuses derived by SCNT, but not in IVF-derived fetuses was observed (Hiendleder
et al., 2004a). These findings raised the question, how and when abnormal placental
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development is induced. To clarify if placental abnormalities may have their origin
in abnormal embryo–maternal communication already in the preimplantation period,
a microarray study of the response of the endometrium on day 18 of pregnancy to
SCNT embryos versus embryos derived by in vitro fertilization (IVF) was performed
(Bauersachs et al., 2009). To exclude specific effects of a particular embryonic geno-
type and to have a similar genetic variation in the SCNT and the IVF groups, several
different nuclear donor cell lines were used for SCNT. Cluster analysis of the mi-
croarray data revealed a greater variation of mRNA profiles in the SCNT group than
in the IVF group. Despite this variation in the SCNT group, 58 transcripts were dif-
ferentially abundant comparing endometria from SCNT versus IVF pregnancies. For
many of these genes an important role in implantation and/or placentation has already
been shown or suggested. For the gene serpin peptidase inhibitor, clade A (alpha-1
antiproteinase, antitrypsin), member 14 (SERPINA14, also known as uterine milk
protein or UTMP) upregulation of transcript levels in bovine endometrium during
the ovulatory phase and during early pregnancy was shown (Ulbrich et al., 2009).
In endometrium from SCNT pregnancies, SERPINA14 mRNA levels were lower
compared to IVF pregnancies. Studies of SERPINA14 function indicate a role in me-
diating immunosuppressive effects of progesterone on the endometrium (Arck et al.,
2007). The most interesting of the identified transcription factor genes was NR2F2 for
which an essential function in placentation in the mouse has been shown (see above)
(Petit et al., 2007). Another interesting gene in the context of placenta formation was
gap junction protein, alpha 1, 43 kDa (GJA1, also known as connexin 43) with lower
transcript levels in SCNT pregnancies. A conditional deletion of the Gja1 gene in
the stromal cells of the murine endometrium, leading to impaired production of key
angiogenic factors needed for the development of new blood vessels within the stro-
mal compartment, resulted in the arrest of embryo growth and early pregnancy loss
(Laws et al., 2008).

These findings indicate that abnormal placentation in bovine clone pregnancies
may originate from a disturbed embryo–maternal communication starting already
during the peri-implantation period.

At the same time, a second study was published that analyzed endometrial samples
derived from SCNT pregnancies in comparison to IVF pregnancies and pregnancies
after artificial insemination (AI) at day 20 of gestation (Mansouri-Attia et al., 2009).
The authors provided evidence that the endometrium can be seen as a biological
sensor able to fine-tune its physiology in response to embryos of different sources and
developmental stages. Compared with AI, many biological functions and canonical
pathways related to metabolism and immune function were found to be significantly
altered in the endometrium of SCNT pregnancies at implantation. Gene expression
differences between endometrium samples from IVF and AI pregnancies were less
pronounced. In comparison to our study, a different experimental setup was used.
SCNT embryos were derived from a single cell line, four embryos were transferred
in case of SCNT and IVF, caruncular samples were analyzed in addition to samples
from intercaruncular regions, and SCNT samples were compared to AI samples.
Furthermore, different array platforms were used: a 13,000 elements oligonucleotide
microarray in Mansouri-Attia et al. (2009) and a custom cDNA array representing 950
genes identified in the endometrium and the oviduct during the estrous cycle and early
pregnancy (Bauersachs et al., 2007, 2009). Due to these differences in the experimental
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design and the different array platforms, a direct comparison of the results is not
possible. However, the principal findings of these two studies are similar. Both studies
revealed many DEGs between SCNT pregnancies and pregnancies initiated with
fertilized embryos (after AI or IVF). In general, these studies showed that there is an
endometrial plasticity at the onset of implantation and deregulation of the maternal
environment greatly influences the development of an embryo and the success of
pregnancy.

Comparison of Porcine Endometrium from Day 30 of Clone Pregnancies
with Normal Pregnancies Identified Genes Involved in Placenta Formation

In the pig, disturbed development of SCNT embryos to full-term fetuses is mainly
caused by failures in extraembryonic tissue formation (Lee et al., 2007). Losses of clone
pregnancies in pigs are mainly due to placental insufficiency. To understand how the
maternal uterine environment responds to porcine SCNT embryos during early preg-
nancy, Ka et al. (2008) compared gene expression profiles in the endometrium from
uteri containing SCNT embryos with endometrium from uteri containing embryos
produced by natural mating on day 30 of pregnancy. Morphological analysis showed
that extraembryonic tissues and fetuses derived from SCNT embryos were smaller
than those derived from normal embryos. In addition, the uterine endometrium with
SCNT embryos and also fetal membranes derived from SCNT embryos were less
vascularized compared to normal pregnancy. Accordingly, a relatively large number
of genes were found differentially expressed, most of them with decreased levels in
endometrium from SCNT pregnancies. The DEGs included genes for enzymes in-
volved in steroidogenesis and ECM remodeling and uterine secretory proteins. In line
with the retarded development of the SCNT embryos, expression of mRNAs coding
for steroidogenic enzymes was decreased, which could probably result in insufficient
steroid supply to the placenta needed for maintenance of pregnancy. The expression
of cathepsins B, D, H, L, and Y was also found to be decreased in endometrium from
SCNT pregnancies. Different cathepsins were also found as differentially expressed
in bovine and equine endometrium during the estrous cycle and early pregnancy
(Bauersachs et al., 2006; Klein et al., 2006; Mitko et al., 2008; Merkl et al., 2010;
Ostrup et al., 2010). Cathepsins belong to lysosomal cysteine, serine, and aspartic
proteases, and have a variety of functions such as degradation of ECM molecules,
activation of intracellular proteins and prohormones, and also regulation of the im-
mune system and apoptosis (Conus and Simon, 2008; Mason, 2008; Obermajer et al.,
2008). With regard to endometrial functions, cathepsins are implicated as regulators
for implantation, placentation, and trophoblast invasion. The decreased expression
of cathepsins in the endometrium with SCNT embryos could result in inappropriate
endometrial tissue remodeling and/or a lack of other protein activation, which is im-
portant for the maintenance of pregnancy. From this study, conclusions can be drawn
on the molecular differences between endometria of clone pregnancies and normal
pregnancies. In addition to these conclusions, the results also provide genes that play
an important role in the process of placenta formation, since deregulation due to
insufficient embryonic signaling led to retarded placenta development.
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Strategies and Approaches to Obtain Deeper Insights into and Better
Understanding of the Processes Related to Establishment and
Maintenance of Pregnancy

Most of the studies conducted so far were performed on the analysis of complete
endometrial tissue samples, which have a complex composition containing luminal and
glandular epithelial cells, stromal cells, blood vessels, and a variety of immune cells.
This can result, for example, in sensitivity issues, since some genes are only expressed
in a proportion of the endometrial cells, and can also lead to wrong conclusions
with respect to putative interaction networks when two “interacting” genes are not
expressed in the same cell type. To overcome this problem, a separate analysis of the
most important endometrial cell types by the use of laser microdissection could be
performed. However, the separate analysis of several parts of the endometrium would
considerably increase the complexity of the transcriptome analyses.

Another approach to find genes or pathways associated with fertility is the analysis
of endometrial transcriptomes across different mammalian species. So far, results
of different microarray studies were already compared, but this has a number of
limitations. First of all, microarray data cannot be directly compared due to different
hybridization kinetics, nucleotide composition, and location of the probe within the
target transcript. Furthermore, different array platforms were used in the respective
studies and most of the used microarrays did not contain all known genes of the corre-
sponding species. This problem could be overcome by the use of RNA-Seq, analyzing
in principle all poly(A) RNAs present in a cell or tissue. Since the whole transcript is
sequenced, the expression data is more quantitative than data from microarrays and
can also be compared between different species for orthologous genes.

A third example for a strategy to get more insights into gene expression regulation in
the endometrium is the analysis of microRNAs (miRNA). MicroRNAs have a central
role in regulation of translation and stability of mRNAs and are themselves subject of
complex regulation (Krol et al., 2010). An important role of miRNAs in endometrial
gene expression can be postulated. For example, in human endometrium, differen-
tial expression of miRNAs during the menstrual cycle has been shown, suggesting a
function in mediating responses to the ovarian hormones (Kuokkanen et al., 2010).

A formal proof for the relevance of a gene or mechanism would be the targeted
alteration of its function followed by a comprehensive analysis of the phenotypic
consequences. This reverse genetics approach is routinely used in mouse models,
where a plethora of strategies for tailored genetic modification is available. The find-
ings from genetically modified mouse models may also be relevant for other species.
For instance, the reproductive deficits in Nr2f2 mutant mice (Takamoto et al., 2005)
pointed to an important function of this gene for implantation also in other species.
In comparison to mouse, the spectrum of techniques for genetic engineering of live-
stock species is much more limited, although efficient techniques, such as lentiviral
transgenesis (Hofmann et al., 2003, 2004) or nuclear transfer cloning using genet-
ically modified cells (reviewed in Aigner et al., 2010) facilitate the generation of
tailored animal models. However, such approaches are still labor, time, and cost
intensive. A more feasible approach is the modification of embryos and the subse-
quent observation of their development including the cross talk with the maternal
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environment. One example is the knockdown of specific gene products by using RNA
interference. The first pilot experiments for this approach have already been per-
formed in livestock species (Tesfaye et al., 2007, 2010).

Another possibility is the use of embryos carrying fluorescent marker genes which
may help to localize early embryos in the uterus or—in later stages of pregnancy—to
clearly distinguish maternal and embryonic/fetal portions of the placenta (Reichen-
bach et al., 2010). Reporter genes may be also used to label important steps in de-
velopment (Wuensch et al., 2007), which may help to classify embryos according to
their developmental potential and to characterize the differential responses of the
endometrium, The endometrium may also be directly targeted, for example, by using
morpholino antisense oligonucleotides to block specific gene products. This approach
has been successfully used in the mouse model to dissect mechanisms of implantation
(Luu et al., 2004; Nie et al., 2005) and may also be feasible in livestock models.

In summary, holistic and sensitive Omics-technologies characterizing the tran-
scriptome, proteome, metabolome, and other molecular characteristics of cells or
tissues facilitate the comprehensive description of molecular patterns of tissues that
are associated with particular physiological or pathophysiological conditions. Impor-
tantly, dynamic changes of these patterns during development or disease may point
to genes or pathways that have an effect on the trait under investigation. In addi-
tion to the development and implementation of Omics-phenotypes, a refinement of
physiological readouts is urgently required. Those can be obtained, for example, by
the development of noninvasive longitudinal techniques such as remote/indirect sens-
ing or imaging. Integrating large-scale, high-dimensional molecular and physiological
data holds promise for defining the molecular networks that respond to genetic and
environmental perturbations of physiological functions, including reproduction.
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Chapter 8
Modeling Approaches to Link Various Levels
of Organization in Animal Physiology

André Bannink, James France, and Jan Dijkstra

Introduction

With the rise of high-throughput technologies, vast amounts of so-called “omics” data
are generated nowadays (Chapters 6 and 9). Also, comprehensive software tools or
databases that can be used as Web applications on the Internet are available to sci-
entists to handle and interpret these vast amounts of data (Chapters 6 and 9). These
developments offer a whole new range of information, which means that new types
of data and new physiological concepts come within reach for modeling the regula-
tory mechanisms underlying observed animal physiology. The -omics data essentially
involve measurements at the molecular level of animal physiology in sampled tissues
or fluids. An attempt to relate such -omics data to animal physiology requires that a
precise and simultaneous record is made of the physiological state of the animal. The
present capacity to generate huge amounts of new -omics data seems to have out-
stripped the capacity of the scientists to make sense of it all. Emphasis on the latter is
essential to obtain a richer understanding of the links between -omics data and animal
physiology. For example, Baldwin et al. (1980) already addressed the issues of iden-
tification for genetic improvement versus understanding of physiological response.
Baldwin et al. (1980) noticed considerable biological variation between animals, with
efficiencies of nutrient utilization below theoretical optima. He raised two questions:
(1) Is it possible to identify animals that have high efficiencies and by genetic selection
improve efficiency? (2) If the unfortunate metabolic decisions that less-efficient ani-
mals make were known, could the metabolism of those animals be manipulated such
that their efficiencies would improve? A large amount of -omics data is available to
address the first question Baldwin et al. (1980) raised, whereas the further integration
of the -omics data with the metabolism is much less clear.

Various approaches may be taken to identify the relationships between -omics data
and animal physiology. An empirical approach may be followed, identifying which
observed physiological characteristics appear to be associated with changes in -omics
observations, which have been collected simultaneously. This approach can reveal
fairly quick answers to questions such as what molecular aspects, metabolic pathways,
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or regulatory mechanisms of gene expression are associated with the observed physi-
ological characteristics or phenotypic traits. More complex approaches attempt to use
less of a black-box kind of approach, and try to develop a vision about how animal
physiology is organized and by what mechanisms this organization is regulated. Al-
though being more complex and detailed, the latter approach likely results in a model
with mechanistic representation and broader applicability, both necessary for inte-
gration of information from various levels of organization and various physiological
aspects (behavior, digestion, metabolism, production, health, gene expression). Both
the more empirical and the more mechanistic approaches are referred to in literature
by the same term “Systems Biology” (Woelders et al., 2011). Furthermore, both make
use of similar terminology to discriminate between various applications.

In the following sections of this chapter, the link between the objectives of a
modeling effort and type of representation of physiological functions will be discussed.
Choices have to be made when representing various levels of biological organization.
Further, modeling approaches and methods that allow integration of various levels of
organization in order to represent physiological function, including the mechanisms
governing its regulation and control, will be discussed. Finally, examples will be given
to illustrate how a specific modeling objective dictates the modeling approach adopted
and type of information required for building the model. This chapter does not intend
to give an exhaustive review of modeling techniques for -omics data analysis; for that,
the reader is referred to the other chapters (Chapters 6 and 9).

Levels of Organization

Before discussing some frequently used modeling techniques to capture the essence
of physiological function in numbers and mathematical formulae, the importance of
the concept of “level of organization” needs to be discussed. Although level of orga-
nization appears to be a rather abstract phrase that does not add any clarification at
first sight, it actually is a useful term in discussions of animal physiology (France and
Kebreab, 2008). It helps in finding common ground and pinpointing the differences in
approach when various scientific disciplines work on the same physiological problem.
The term can be used to draw attention to how and where there are differences in the
type of information used and ways this information is interpreted. The term can be
used to distinguish between (1) the various levels of detail involved with (or absent
in) observational data, (2) the various entities and levels of detail needed to explain
observed events and changes in physiological state or function, (3) the various levels
of regulation of a physiological function. With respect to the observations made in
livestock science, the level of organization ranges from the macromolecular level (the
level of -omics data, the lowest level of organization) to the level of the whole animal
or even herd or farm (the highest level of organization) (Figure 8.1).

However, the term certainly does not only address the level of detail of the observa-
tions made. The term also addresses other aspects, for example, the way observations
on different levels of detail are interconnected in terms of the metabolic and physi-
ological mechanisms involved, and the way physiological information and regulatory
functions are organized and conducted. Each level has its own concepts and ideas,
problems to address, and hypotheses and theories, which are described using its own
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Level Description of level

Herd, flock

Organism (animal)

Organ/tissue

Cell

i + 1

i

i – 1

i – 2

Figure 8.1 Levels of organization (at a higher or a lower level than the level i indicating a
whole animal) of animal physiology (Dijkstra et al., 2005). Most Systems Biology approaches
will focus on representation of levels of organization from i (organism) downwards to less than
i − 2 (molecular mechanisms).

language (Thornley and France, 2007). This certainly holds for the vast amounts of
-omics information that can be gathered and analyzed nowadays, and will become
available in livestock science in the near future (Chapters 6 and 9). In this regard,
the difference in description or approach taken to study a physiological aspect in the
-omics literature as opposed to the physiological literature is sometimes striking, al-
though the same aspect is addressed. For example, from a (nutri)genomics viewpoint,
gut health may be investigated by studying gene expression profiles in samples of gut
tissue, and by deriving the most likely functionalities by making use of databases to an-
alyze such data (Chapters 6 and 10). These functionalities may include a whole range
of tissue functions (metabolism, transport, communication, immune response, repair,
proliferation, and the networks/mechanisms regulating the expression of genes coding
for these functions). From a physiological point of view, similar samples of gut tissue
are collected. However, maintaining its integrity and functionality is of major concern
when recording a physiological response by a tissue or organ; an aspect easily excluded
when gathering -omics data. It is well known from trials testing the effect of nutrition
on gut function and metabolic fluxes that there are major implications of state and
filling of the gut lumen (and its consequences) for mesenteric blood flow, nutrient and
metabolite fluxes, and functioning of gut tissues (Johnson et al., 1990; Baldwin, 1995;
Bannink et al., 2006a). Ignoring these aspects has unforeseen consequences for the
conclusions that can be drawn from -omics data.

The example indicates it is important to include information from higher levels of
organization when interpreting observations at a lower level, and vice versa. It also
illustrates that, depending on the focus of the research, a whole array of intervening
levels of organization may unintentionally be excluded from the discussion. In do-
ing so, often general and undefined terms are introduced in texts, such as “animal,”
“random,” or “environmental” effects. In reality, the interconnection between these
intervening levels of organization may prove to be extremely important in explain-
ing variation in observed animal physiology that is of particular interest to farmers.
With the aim of developing predictive tools that can be applied in livestock science
and farming practice, a vision about which levels of organization (including their
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interconnections) are to be represented in a mathematical model is of utmost im-
portance (Cornish-Bowden and Cárdenas, 2005, 2007). Such a vision guides the de-
velopment of mathematical models. However, the vision is based on a whole array
of studies and observations, including -omics data. In this regard, the modeling and
experimental work are clearly intertwined instead of being separate research efforts.
This holds for the well-established physiological modeling efforts, which already ad-
dressed higher levels of organization than current -omics efforts. It will also hold for
Systems Biology, however, when it aims to predict at higher levels of organization
by making use of -omics data. Ideally, Systems Biology and physiological modeling
should converge and be combined to realize current modeling objectives in livestock
science (Woelders et al., 2011).

Representing Animal Physiology

No standard methodologies are available to identify the entities and relationships that
underlie a physiological function. For example, a mechanistic, dynamic growth model
developed for veal calves (Gerrits et al., 1997) also may serve as a conceptual frame-
work for pig growth. However, to make it reliable for pigs, the whole model needs to
be revisited and reparameterized because of the species-specific characteristics (Halas
et al., 2004). Hence, there is no such thing as simply copying a framework to resolve
another problem, although the general aspects of physiological function may appear
similar, i.e., fat and protein accretion in a growing animal. As another example, the
same holds for the application of models to represent digestive function in the gas-
trointestinal tract. Common concepts and a model framework might be developed for
the functioning of the gastrointestinal tract (Bannink et al., 2008; Figure 8.2). How-
ever, every animal species, and probably the various genotypes within a species, have
their own digestive characteristics requiring different variants of the common frame-
work and separate parameterization. Furthermore, the digestive characteristics will
depend on the type and amount of feed ingested as well. This means that nutritional
factors need to be included when representing species or genotype differences in di-
gestion and gut health. -Omics data are needed to identify the differences between
species and genotypes, but they are preferably gathered in combination with variation
in nutritional factors. For example, significant genotype × diet interactions for milk
production have been demonstrated (Beerda et al., 2007). Only with sufficient vari-
ation in such observations can relationships be derived that will serve as descriptive
elements in quantitative, predictive models.

Standard tools to analyze -omics data are not always able to cover the range of
concepts and data needed to represent physiological function. Some physiological
functions may require that -omics data are combined with other concepts proven to
be relevant (Conner et al., 2010). Examples of physiological concepts often lacking in
basic -omics datasets are representation of the physical–chemical compartmentation
in cells (cell organelles, membranes, associated protein functions), tissues (various cell
types, organization of cells), organs (various tissue types, combination of physiological
functions and regulation), and in the whole body (functions of various organs, blood
circulation, body reserves, distribution pools). Also, data on the physiological history
of the animal are usually missing. A record of historical events or a track record of
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Type of diet
Type of animal
State of GIW

GIT work load and
Metabolic activity
Hormonal regulation

Tissue turnover

Ion transport

Nutrient transport
Enzyme synthesis

Immune response

Mucus synthesis
Tissue mass

MODEL
INPUTS

MODEL
OUTPUTS

Nutrient supply
Arterial blood

Level animal
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Figure 8.2 Schematic representation of the modeling approach at different levels of organiza-
tion: the animal, the gastrointestinal tract (GIT), and tissue of the gastrointestinal wall (GIW).
A distinction is made between model inputs (nutrient inputs, parameters for the physiological
state of the GIT, productive functions), model representation (intracellular biochemical path-
ways of nutrients utilization), and model outputs (nutrient supply to portal blood, apparent
nutrient utilization by the GIW).

the animal’s history from a physiological perspective is often lacking. These historical
aspects are important because they can interfere with regulation of gene expression
and, hence, with observed physiological response, and be a cause of interanimal
variation. Although it is probably less difficult to organize such historical observations
in livestock science compared to the medical sciences, conducting such experiments
is certainly hampered by time and costs. The review of Gluckman et al. (2009) is
an illustrative example of the existence of such historic effects and discusses the
developmental plasticity during development in order to let the organism match its
environment. The influence of the environment can lead to stable changes in the
epigenome of human individuals, which may make the individual more susceptible to
the development of chronic cardiovascular and metabolic disease. The type of health
problems and the life span of livestock obviously are not comparable to that of the
humans. However, this does not exclude historic and epigenetic effects as important
determinants of observed physiological function in farm animals.

It is concluded that besides the ability to handle and analyze -omics data to re-
veal the information they hold, additional modeling work is needed to quantify their
physiological relevance. A physiological trait that demonstrates itself at different lev-
els of organization, or at different moments in time, has to be represented as such
in a model that aims to predict and explain under a wide range of management
conditions.
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Choice of Levels of Organization to Represent

With a different modeling objective, a different selection is made as to what levels of
organization need to be represented in the model. For example, to predict the effect
of SCD and DGAT polymorphisms in dairy cows on yield and composition of milk fat
(Schennink et al., 2008; Heck et al., 2009), a model might be developed that includes
a rather straightforward relationship between increased gene expression and activity
of the stearoyl-CoA desaturase (SCD) and diacyl glycerol acyltransferase (DGAT)
enzymes. This means that observations at the lowest level of organization (genotype)
are associated directly with the highest level of organization (cow performance; milk
fat yield). Such a relationship between DGAT gene expression and DGAT enzyme
activity does not represent other key elements including translational and posttrans-
lational control. Moreover, to predict the response of a cow with a certain genotype
under various feeding regimes and farming conditions, other levels of organization
also need to be taken into account. Nutrient supply and hormonal control of mammary
function (as well as whole-cow function) will strongly affect animal performance in
terms of production and composition of milk fat. Therefore, other aspects need to be
included to become truly predictive (Figure 8.3). These aspects include nutrient supply
(nutrition, composition of dietary crude fat, rumen fat metabolism; Dijkstra et al.,
2000); intestinal fat digestion (Doreau and Chilliard, 1997); liver fat metabolism
(Drackley et al., 2001); metabolism in adipose tissues (Baldwin, 1995); transport and
udder uptake of nutrients and fatty acids from arterial blood (Volpe et al., 2010); and
hormonal control and other regulatory processes of intracellular metabolism and sec-
retory function of milk-secreting udder cells (Bionaz and Loor, 2007; Rius et al., 2010).

Adopted Model Representation

The representation adopted in the model varies with modeling objectives. A more
mechanistic approach may be taken in which concepts and theories are represented
explicitly to describe the mechanisms of how functioning of the biological system is
organized. Alternatively, more empirical representations that describes the biological
system directly from observations at the highest level observed and without presump-
tions and theories on the underlying mechanism, may be thought to suit a similar
purpose. A comparison between dynamic, mechanistic growth models (France et al.,
1987; Gerrits et al., 1997; Halas et al., 2004) and more empirical approaches (Oltjen
et al., 1986; De Greef, 1992) shows that different assumptions and concepts were used
(individual nutrients versus metabolizable energy, dynamic versus static, continuous
versus discrete).

Another example is the distinct functionality of a more mechanistic approach to
describe rumen fermentation in comparison to less mechanistic ones that chose not
to represent concentration dependency of the enzyme- or protein-driven processes of
feed degradation and microbial activity (Russell et al., 1992; Pitt et al., 1996).

There is no general rule as to whether a more mechanistic or a more empiri-
cal approach should be used. Growth performance and rumen fermentation can be
modeled using both approaches, each having its own advantages and disadvantages
(Thornley and France, 2007). It fully depends on the objectives of the exercise as
to which approach suits purposes best. For practical application and extension, an
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Figure 8.3 Simplified representation of the model elements needed to predict the variation
in content of unsaturated fatty acids (FAu_i; i = 1. . .n) and saturated fatty acids (FAs_j;
j = 1. . .m) in secreted milk fat. Elements that require representation are feed intake, dietary
composition of FAu and FAs, microbial activity in the rumen responsible for lipolysis and
biohydrogenation of unsaturated FA, arterial supply of VFA, FAu, and FAs to the secreting
cells in the mammary gland. Arterial FAu and FAs represented as such, although the udder
actually takes up plasma fatty acids in various forms (nonesterified FA, triglycerides circulating
in chylomicrons, or very low-density lipoprotein). Not yet represented in the scheme, but
highly relevant depending on stage of lactation and nutrition, are the utilization and supply
of FAu and FAs by adipose tissue, and liver metabolism of VFA, FAu, and FAs (Chapter 9).
Abbreviations used: ACC, acetyl-CoA carboxylase; FAS, fatty acid synthase; AGPAT, acyl
glycerol phosphate acyltransferase; DGAT, diacyl glycerol acyltransferase; GPAT, glycerol
3-phosphate acyltransferase.

empirical model is often a priori thought more suitable because the use of practical
indices of animal performance is relatively easy. However, with some modeling goals
a more mechanistic approach may be required. For example, when the aim is to obtain
an understanding at a certain level of organization, on the basis of a representation
that makes use of elements from a lower level of organization and that addresses
the concentration dependency of processes driven by enzymes or functional proteins.
Also, with extrapolation to situations outside the area of data used to develop the em-
pirical model, a mechanistic approach may be more advantageous. Thus, the specific
aims of the modeling exercise dictates the approach adopted. The aim of an empirical
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modeling approach will never be identical to that of a mechanistic approach, which
makes them incomparable in a strict sense.

Representation of -Omics Data

With respect to modeling the meaning of -omics data in livestock science, the same
decisions need to be made as with modeling physiological functions. The results
of analyses of -omics data can be related directly to some observed physiological
functions or even to whole-animal performance. This would be a rather empirical
treatment of animal physiology aiming to associate -omics observations directly to
observed variation in animal performance. On the other hand, an alternative ap-
proach can be chosen to represent the various physiological processes and underlying
mechanisms, in an attempt to get an understanding of how physiological function
is organized within the animal. This organization ranges from the lowest molecular
level (chemical: nutrients, metabolites, gene regulatory factors, enzymes, transport
proteins; physical: membranes, cell organelles, tissues, histology, morphology) to the
highest whole-animal level of organization. Besides continuous relationships, models
may also contain noncontinuous elements such as representation of discrete effects
or logical operations. In particular with the onset of gene function, or when processes
depend more on the presence or absence of hormones, for example, or when simply
defining certain physiological or regulatory states in an empirical manner, use of such
logical operations must be made.

Data gathered with -omics techniques are generally at the lowest level. Although
perhaps valid from a chemical viewpoint, this approach does not necessarily hold from
a physical and temporal (historical) point of view. Various levels of compartmentation
exist, which means that a chemical compound can have different functions in different
physical compartments. An example is the need to distinguish acetate in the cytosol of
mammary gland cells and acetate in the mitochondrion (Volpe et al., 2010). Such com-
partmentation also exists from an anatomical point of view. For example, the location
of the gastrointestinal tract sampled will have a decisive influence on experimental re-
sults. Also from a physicochemical point of view of compartmentation, different forms
or states of the same chemical compound may well have to be represented (e.g., the
distinction between different distribution pools). For example, for an understanding
of absorption of volatile fatty acids (VFA) in an acid rumen environment, a distinction
needs to be made between absorption rate of the dissociated and undissociated forms
of these acids (Dijkstra et al., 1993). Furthermore, a distinction is necessary between
the various states encountered for rumen papillae and their epithelia (Bannink et al.,
2008; Penner et al., 2009).

Notwithstanding all these levels of organization that may be involved when inter-
preting -omics data, the aims of the modeling exercise determine which aspects should
be treated in a rather empirical manner and which aspects should not be.

Modeling Approaches

Because the conceptual approach always reflects the aims of a modeling exercise, it is
not determined as much by the wealth of data available, but rather depends on a vision
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of how the system actually functions. This vision has to be available at the start of the
modeling process, but certainly must develop further during the recurrent process
of mathematical modeling, experimental testing and data gathering, and evaluation
against knowledge presented in literature.

The intention of mathematical modeling in animal physiology should not be to
duplicate life and to include as many details as possible, or with as much -omics
detail as possible. Instead, it should attempt to distinguish the essential from the
superfluous (France and Kebreab, 2008) and in this way assist in identifying the most
relevant entities, concepts, and factors involved. Also, it should attempt to explain the
animal physiological phenomena observed. Moreover, it has to be realized that these
observations may also be the result of historical effects.

Systems Biology

Although “System Biology” obviously involves modeling at various levels of organiza-
tion of animal physiology, we will not try to give a definition. The term Systems Biology
includes a wide range of scientific research areas. Hood (2003) referred to Systems
Biology as the integration of genome sequence and regulatory networks specifying
gene behavior in order to find the logic of life of an organism. Similarly, Ideker (2004)
defined Systems Biology as the integration of knowledge from diverse biological com-
ponents and data into models of the system as a whole. Such definitions originate from
situations in which modeling is applied to data gathered using high-throughput tech-
nologies. We would like to emphasize that for solving physiologically oriented
problems in livestock science (related to feed production, animal production, animal
metabolism, animal disease and behavior, and environmental and climate effects) the
variability and dynamics of the physiological processes themselves are just as impor-
tant as the regulatory mechanisms, which let that physiology be expressed. Preventing
the uncoupling of cause and effect derived from data sources of different origin is
crucial when developing a vision about the logic of animal life (Cornish-Bowden and
Cárdenas, 2007). It means that variation in environmental, genetic, and physiological
factors, and variation in gene expression may all be causally related, be of equal
relevance, and become manifest in observational data in a fully confounded manner
(Chapter 9).

The concept of Systems Biology is not new. Already in the sixties, Mihaljo Mesarovic
(mathematician and engineer) commented that in spite of considerable interest and
efforts at that time, the application of systems theory in biology has not quite lived
up to expectation (Cornish-Bowden, 2005). We believe that Systems Biology will not
be more than just a new name for already existing research (though practiced on
ever-larger scales and equipment), if Systems Biology does not succeed in integrating
knowledge from various disciplines and levels. Thus, if Systems Biology is to lead to
expected benefits, a need for a shift in focus away from molecular characterization
toward understanding functional activity is required. Indeed, integration of knowl-
edge from a lower level may well give rise to new knowledge at the level of interest
itself; the whole is more than the sum of the parts, as illustrated in various examples
in Thornley and France (2007). Although the whole is more than the sum of the parts,
it is explainable in terms of the parts and how they interact. Thus, in using -omics data
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for modeling, focus should be on the understanding of variation in functional activity
that arises from various molecular characterizations. This includes, for example, rep-
resenting the causal factors (molecular mechanisms) involved with variation in the way
gene expression is regulated under various physiological conditions. It also includes
the various metabolic interactions between different molecules given a nonvarying
gene expression.

Static and Empirical Approaches

Many kinds of mathematical equations can be used for constructing a model describing
a physiological function. The choice of static equations means that dynamics and the
time course of events cannot be handled by the model itself but have to be inputs. The
choice of equations that do not contain entities defined at a lower level of organization
means that the model is descriptive and unable to explain how changes in those entities
are related to the physiological function observed. There are many examples of rather
empirical approaches to address physiological problems in livestock production (feed
intake, digestion, production, excretion, health, and welfare). Most models used in
current practice probably have to be considered empirical and static. These may
range from rules of the thumb (e.g., limits and advice for nutrition and management,
avoiding risks of developing (subclinical) rumen acidosis and metabolic disorders) to
more complex mathematical models predicting digestion, animal performance, and
animal requirements (e.g., feed evaluation systems). Although static, empirical models
may attempt to represent the underlying mechanisms at a lower level of organization
(e.g., De Greef, 1992; Russell et al., 1992), dynamic, mechanistic models are without
doubt more effective candidates to explore and explain in cases where physiological
events have to be described as concentration-dependent processes (e.g., Dijkstra et al.,
1992; Gerrits et al, 1997).

Mathematical Representation in Dynamic Models

With the development of any model, it is important to maintain internal consistency
and a correct use of units (Baldwin, 1995). Only in this way a model fulfills physical,
chemical, and physiological theories commonly accepted (e.g., balance of charge,
energy, mass, and fluxes). Various text books are available on modeling quantitative
aspects of the digestion and metabolism in farm animals, with various applications
that range from modeling productive traits, modeling the impact of animal production
on the environment, to modeling whole-farm systems (Dijkstra et al., 2005; Kebreab
and France, 2008).

Because most physiological processes are concentration dependent and essentially
nonlinear, mathematical representation of the underlying mechanisms mostly involves
a dynamic system of ordinary nonlinear differential equations with a separate differ-
ential equation dQi,j/dt to describe the rate of change of each state variable Qi,j (i.e.,
the quantity of i present in compartment j) at any time point t in response to the
state of the system (rate:state formalism; Dijkstra et al., 2005). The Qi,j may be any
entity represented in the model. The dQi,j/dt can represent any physiological aspect,
such as substrate degradation or absorption, nutrient utilization in specific tissues,
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transport functions, and receptor binding. Many examples of this type of model-
ing can be given for physiologically oriented studies, ranging from growth models
(Gerrits et al., 1997), microbial fermentation models (Dijkstra et al., 1992; Dijkstra,
1994), models predicting end-products of enzymatic digestion and microbial fermenta-
tion (Bannink et al., 2006b, 2009; Kebreab et al., 2009), models of mineral metabolism
(Hill et al., 2008), models of organ function (Freetly et al., 1993; Hanigan and
Baldwin, 1994), and infection models (Perelson and Weisbuch, 1997; Thornley and
France, 2008, 2009). But, dQi,j/dt can just as well represent changes in gene expression,
enzyme activity, the effect of transcription factors, or any other associated regulatory
and signaling mechanism investigated using -omics technologies. Similar to the above-
mentioned physiological examples, there are examples of the representation of gene
expression and other -omics measurements (e.g., Zak et al., 2003). Stochasticity and
modeling techniques to perform network analysis appears more relevant for the anal-
ysis of -omics data than for representing animal physiology. The obvious reason is the
more straightforward relationship studied between influencing effect and physiolog-
ical response. Description of such a relationship often considers a far more limited
number of entities and a far more limited number of (types of) conditions to be
analyzed by the model. The various modeling approaches used to represent gene
regulatory networks are reviewed by De Jong (2002).

The remainder of this section gives an outline of the types of mathematical equa-
tions used to describe the relationships underlying observed physiological phenomena
in deterministic, dynamic models to link information from various levels of organiza-
tion in animal physiology. Parameters and units have been chosen arbitrarily and only
serve to demonstrate the way a physiological process can be represented. Empirical,
static approaches are often applied to represent physiological phenomena, but the
mathematical equations are easy to comprehend and require no explanation here.

Conversion or Translocation Driven by Enzymes or Protein Functions

Most physiological processes are driven by protein activity. These may involve trans-
port proteins binding to receptors or metabolic enzymes that catalyze the conversion
of substrate. All these processes are essentially reversible and saturate with increas-
ing rate and can be represented by equations similar to the basic Michaelis–Menten
equation for substrate conversion:

v1 = vmax 1/(1 + M1/[S1]) (8.1)

with

v1 = actual conversion rate of substrate S1 (mol S1/d)
vmax 1 = maximum conversion rate (mol S1/d)
M1 = affinity of enzyme for substrate S1 (mol S1/L)
[S1] = concentration of substrate S1 (mol S1/L)

Equation (8.1) describes the reversible binding of S1 to enzyme, and vmax 1 repre-
sents the effect of available enzyme concentration and M1 the affinity of the enzyme
for S1. Both aspects may vary as a result of regulatory factors at the transcription
level or the level of gene expression when considered proportional to transcription
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rate. The parameters of this type of equation can be derived from either in vivo ob-
servations, knowledge of animal metabolism, or -omics studies and databases used to
analyze -omics data. The problem and aim of the modeling exercise dictates to what
extent general estimates from databases or literature apply. There are a wide variety of
applications of this type of equation in the literature. For example, it has been applied
to represent the interdependency between available hexose, ammonia, and soluble
protein on rumen microbial activity and rumen digestive function of these microor-
ganism (Dijkstra et al., 1992); the utilization of fatty acids in oxidative metabolism
versus deposition of acetyl-CoA equivalents in adipose tissue in calves (Gerrits et al.,
1997); and the interactions between bacterial infection, macrophages, cytokines, and
lymphocytes (Gammack et al., 2005).

Multiple Effects

Equation (8.1) can be extended to represent the effect of another substrate S2 along-
side the converted substrate S1. The effect of S2 can be either stimulatory or inhibitory,
and its effect on S1 conversion can be represented in either an independent or depen-
dent fashion. The following equations show an independent (Equation (8.2)) and a
dependent (Equation (8.3)) stimulatory effect of S2 on the conversion of S1:

V1 = vmax 1/((1 + M1/[S1])(1 + M2/[S2])) (8.2)

V1 = vmax 1/(1 + M1/[S1] + M2/[S2]) (8.3)

with

M2 = affinity of enzyme for substrate S1 (mol S2/L)
[S2] = concentration of substrate S2 (mol S2/L)

There are many examples and different expressions may be used. The choice of
expression partly depends on the method used to estimate the parameters.

Competitive Inhibition

A special case of multiple effects is that of competitive inhibition between different
substrates, with S2 inhibiting the conversion of S1 (Equation (8.4)) and S1 inhibiting
conversion of S2 (Equation (8.5)):

v1 = vmax 1/((1 + M1/[S1])(1 + [S2]/J2)) (8.4)

v2 = vmax 2/((1 + M2/[S2])(1 + [S1]/J1)) (8.5)

with

v1, v2 = actual conversion rate of substrate S1 and S2, respectively (mol S1 or S2/d)
vmax 1, vmax 2 = maximum conversion rate for S1 and S2 respectively (mol S1 or S2/d)
M1, M2 = affinity of enzyme for substrate S1 and S2, respectively (mol S1 or S2/L)
J1, J2 = inhibitory constant for S1 and S2, respectively (mol S1 or S2/L)
[S1], [S2] = concentration of substrate S1 and S2, respectively (mol S1 or S2/L)
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This form of expression was used by Bannink et al. (2008) to represent competitive
inhibition between acetate, propionate, and butyrate for their activation by acyl-CoA-
synthetases in rumen epithelium. Similar expressions also apply when representing
competitive inhibition for multiple amino acids for mutual sodium-dependent trans-
port sites in the mammary gland (Maas et al., 1998), and representing the effect of a
specific inhibitor on enzyme activity such as the inhibiting effect of glutathione against
glutamate on activity of glutamyl-cysteine synthetase (Reed et al., 2008).

Allosteric Effects, Threshold Values, or (Noncontinuous) Switch Functions

In reality, enzymatic reactions often follow a different pattern to that described by the
basic Michaelis–Menten Equation (8.1). The binding between substrate and enzyme
may be stimulated with increasing substrate concentration, leading to an acceleration
of enzyme activity and substrate conversion. Such effects are referred to by the term
allosteric effects, and result in a different equation form, known as Hill’s equation,
which allows for a steeper increase in enzyme activity with an increase in substrate
concentration:

v1 = vmax 1/(1 + (M1/[S1])P1 ) (8.6)

with P1 = a value higher than 1 in case of a stimulatory effect, and a value between 0
and 1 in case of an inhibitory effect (no units).

Such allosteric effects occur in metabolic pathways in cells (Volpe et al., 2010), with
the expression or transcription of genes (Matiatis and Reed, 2002), with translation
of mRNA as discussed by Xu et al. (2001) for the effect of leucine on the mTOR-
signaling pathway in pancreatic β-cells, and with effect of nutrient supply to the bovine
mammary gland on milk protein synthesis (Rius et al., 2010).

Depending on the size of P1, the curve for enzymatic conversion of S1 becomes
sigmoidal in shape (France et al., 2000). With high values of P1, the sigmoidal shape
becomes extreme and resembles a switch mechanism between no conversion ([S1] <

M1) and maximum conversion ([S1] > P1). The concentration of S1 at which such a
switch will operate is determined by M1, which acts as a threshold concentration for
the onset of S1 conversion.

Regulatory and Hormonal Effects

Hormonal effects can also be represented using Hill’s equation described in the
previous section. Various forms have been used, varying from a modulation of M and
P through scaling of simulated hormone concentrations by a standard concentration
(Gill et al., 1989), to inclusion of an independent term 1/(1+(Mh/[hormone])Ph) or
1/(1+([hormone]/Jh)Ph) to represent the stimulatory or inhibitory effect of hormones
on a particular process with parameters Mh, Jh, and Ph. The units of Mh and Jh depend
on whether actual plasma concentrations or a relative scale compared to a reference
value is used.

Conditional Statements and Logical Expressions

Representation of physiological processes using kinetic equations for enzymes and
functional proteins can be a less suitable representation for some physiological aspects
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or events. In particular, in cases where the quantity of molecules involved is very small
or where single events or signals may evoke a physiological response, this form of re-
presentation is less suitable. In such cases, logical or Boolean expressions can be used,
for example, to indicate the presence of certain cytokines that are produced in very
small numbers (Thakar et al., 2007). Combinations of various modeling techniques
have been applied to represent immune response as reviewed by Perelson and Weis-
buch (1997). Further, logical expressions can be used to indicate whether a cow is
in a certain physiological state or not, such as lactation, or presence of an immune
challenge.

Anatomical, histological, and morphological aspects can be seen as aspects to be
modeled conditionally, indicating a certain state. When of interest for representing
the dynamics of enzyme activity or a physiological process, however, different com-
partments may be identified in the model, each with its own entities and with an
exchange between compartments represented.

In addition to logical expressions, various conditional statements may be required to
allow model description to correspond with generally accepted rules and theories for
physical, chemical, and physiological processes. For example, a model has to satisfy the
principle of mass conservation, thermodynamic principles, neutral electrical charge
(balance of anions and cations), neutral metabolic charge (ATP production equals
ATP utilization), acid–base chemistry, or other physicochemical aspects.

Representation of genotype in models of physiological aspects in animals is a special
case of a conditional statement or a Boolean expression. The effect of genotype can be
represented by modulation of the parameters values discussed in Chapter 6. Examples
are the representation of the effect of DGAT polymorphisms (Schennink et al., 2008)
in dynamic models that aim to predict the effects of nutrition and management as well
as genotype on composition and production of milk fat (Shorten et al., 2004). The
effect of polymorphisms on gene expression and translation rate affects the quantity
of enzyme produced, hence, affecting parameter vmax. Other effects of polymorphisms
that modulate the characteristics of an enzyme produced by the altered affinity for
substrate(s) affect parameter M. Altered enzyme characteristics may also involve a
changed susceptibility to regulatory factors or signals present or conducted to the
same compartment accommodating the enzyme. When the model also attempts to
represent the dynamics of the regulatory factor as well (i.e., the factor actually is a
state variable in the model), the effect of a regulatory factor has to be represented by
an additional term in the mathematical equation for enzyme activity (e.g., Equations
(8.2)–(8.5) versus Equation (8.1)). Otherwise, the regulatory effect is represented by
an altered parameterization of the equation of enzyme activity (e.g., Equation (8.6)
versus Equation (8.1)). Regulatory effects may be a stimulatory, inhibitory, or any
other modulatory effect on enzyme activity and can be parameterized by M, J, or P
parameters. Which terms have to be included and what parameterizations need to be
chosen, has to be deduced from insights gained from experimental data.

Historic and Memory Effects

The cumulative effect of a condition, challenge, or nutrient load in time can be rep-
resented in a model using a historic or memory function. The principle has been
described by Neal and Thornley (1983) in a model representing mammary gland
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tissue development and lactation in time. The same concept was used to represent the
adaptation of rumen epithelia in a dynamic model of production, epithelial transport,
epithelial metabolism, and portal appearance of the VFA (acetate, propionate, bu-
tyrate) in the rumen of cows (Bannink et al., 2008). The cumulative effect of the load
of VFA was used as an initiator of morphological changes in rumen epithelia. It was
postulated that this makes sense because the load of acid to be transported is a relevant
factor for the amount of epithelial tissue needed to manage this acid (Dirksen et al.,
1984). Another example is representation of the effect of variation in genotype and the
effect of compensatory growth in a model that predicts the performance of veal calves
with varying nutritional strategies (Gerrits et al., 2000). Related to this is the need to
identify the effect of management history on ontogenic aspects (Conner et al., 2010).
As a final example, modeling of historic effects is important when the aim is to become
predictive instead of diagnostic with respect to the effect of management on animal
health. Also, for identifying the relationship between lactation performance and cow
health, indicators of metabolic imbalance and immune competence are needed. Such
indicators may guide the nutrition of high-yielding cows to account for their genotype
as well as management history. Studying such historic effects using -omics technol-
ogy can help trace the effects of nutritional management from a historic perspective
and elucidate how in time the interaction between genotype and nutrition lead to a
compromised health status of modern dairy cows.

The aim of including historic or tissue memory effects, to be traced from analysis of
-omics data, into a model can be achieved by a representation of a memory function.
An additional entity or state variable may be introduced describing the cumulative or
historic effect, which can be formulated to have its effect on a change in parameters
values discussed in Sections “Conversion or translocation driven by enzymes or protein
functions” through “Conditional statements and logical expressions.”

Some Examples of Physiological Aspects

Interaction between Nutrition and Digestive Physiology

The extent and site of feed digestion in the gastrointestinal tract of farm animals de-
termines the amount and profile of nutrients available for productive functions (e.g.,
growth, milk, offspring) and maintenance aspects (e.g., metabolic costs of physiolog-
ical functions such as transport, tissue turn-over, secretions, immune response, basal
cell metabolism). However, digestion also affects the tissues directly responsible for
it (Bannink et al., 2006a). The tissues in the rumen wall in dairy cows are of interest
because of the large amount of end products of rumen microbial fermentation that
are absorbed, transported, and metabolized by them. The case of cattle is of interest
because of the intensive feeding regimes they are exposed to. Tissues of the rumen
wall adapt to these feeding regimes, but literature suggests that certain nutritional
management or cow susceptibility may lead to subclinical rumen acidosis, which is
mentioned as a major cause of many health problems in cattle through lactation
(Enemark et al., 2002). The concept of subclinical acidosis is also of practical signifi-
cance because a high level of rumen acidity can have a detrimental effect on fiber diges-
tion (Dijkstra et al., 1992) and hence decrease the efficiency of utilization of roughages.
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Figure 8.4 Comparison of enzyme assays in rumen epithelium by Harmon et al. (1991; closed
symbols) and Ash and Baird (1973; open symbols). The effect of inhibiting VFA on the activity
of VFA activation is demonstrated by a double-reciprocal plot of cosynthetase activity (V in
μmol/g tissue/min) and VFA-concentration of the activated VFA type (S in mmol/L); (A)
acetate, � and Ac; (B) propionate, � and Pr; (C) butyrate, ◦ and Bu. Codes and numbers that
guide the symbols indicate the type and concentration (in mmol/L) of inhibiting VFA (absence
of a guiding code indicates absence of inhibiting VFA). (The graphs were reproduced with
permission from Bannink et al., 2008.)

Prediction of the effect of nutrition on rumen wall function first of all requires
prediction of microbial activity and the amount and type of VFA produced (Bannink
et al., 2006b, 2008). Next, the effect of absorbed VFA on rumen wall tissues needs to
be understood. Response of these tissues to VFA exposure may be alteration of the
enzymatic activity per unit tissue. Also, tissue morphology may be altered affecting the
amount of tissue, and hence the amount of enzyme, present in whole tissue. However,
early enzyme assay studies indicated a relatively small effect of nutrition on enzymatic
activity in tissue samples in cattle (Figure 8.4; Bannink et al., 2008). The amount of
enzyme available would have to be represented by the parameter vmax discussed in
section “Modeling approaches,” affinity of the enzyme for a substrate by parameter
M, and regulatory effects on enzyme activity by parameters J and P.
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Also, more recent work on the expression of genes encoding for acylCoA-
synthetases of acetate, propionate, and butyrate give either rather small effects or
results, which remain difficult to interpret (Baldwin et al., 2007). Conner et al. (2010)
reviewed the effect of nutrition on gene expression in digestive tissues of ruminants
but focused on data available for developmental changes in tissues of juvenile ru-
minants. They concluded that a thorough understanding of the mechanism involved
requires more detailed knowledge of gene expression during various physiological
states to well-designed, more-complex functional investigation and hypothesis-driven
experiments. Although this may be true, it cannot be discounted at the moment that
gene expression of metabolic pathways and transport functions might not change
dramatically with nutritional strategy. It may be that the adaptation response mainly
consists of a morphological change of the rumen wall (Dirksen et al., 1984; Bannink
et al., 2008, 2010a) without apparent changes in gene expression per unit of tissue as
established in early enzyme assays, or even a lower gene expression (Penner et al.,
2009), which may also have been affected by morphological changes.

Discussion in the current literature on rumen function makes it clear that simply
collecting -omics data on gene expression in rumen wall tissue, without giving proper
consideration to the quantification of rumen physiological aspects (microbial fer-
mentation, rumen wall morphology, and function), is unlikely to generate the insight
needed to be able to predict the risk of acidosis and abnormal rumen function (Penner
et al., 2009; Conner et al., 2010). Current results remain too inconclusive, whereas the
problem of acidosis and related health problems in cattle remain prevalent in practice
(Enemark et al., 2002). A breakthrough in the current impasse might be forced with
a combined approach of using new -omics technologies and simultaneously making
efforts to improve physiological-oriented predictive models.

Interaction between Nutrition, Methanogenesis, Fat
Metabolism, and Milk Fat Quality

Currently, there is much interest in both modulation of milk fatty acid composition
and mitigation of methane emission in dairy cows. Both may, in principle, be achieved
by nutritional measures as well as animal breeding. A genetic background to milk fat
composition has been demonstrated (Schennink et al., 2008 ), although nutrition can
be considered to have an equal or larger impact (Bionaz and Loor, 2007). A genetic
background to methanogenesis, other than the common effect of feed intake, feed
digestibility, and cow productivity, remains to be established, however. There is much
interest in profiling microorganisms in the rumen and finding a genetic background of
differences among individuals for this profile and accompanying methane production.
However, there are limitations to what simply profiling the microbiota might explain.
Recently, Hook et al. (2009) investigated the quantity and diversity of methanogens
in the rumen of dairy cows subjected to long-tern feeding of monensin to reduce
methanogenesis. In contrast to a reduction of methanogenesis with monensin by 6%
for more than 6 months (Odongo et al., 2007), Hook et al. (2007) were not able to
establish any effect on the quantity or diversity of methanogens in the rumen. This
result confirms that there may be a serious risk just demonstrating the presence and
profile of microbiota in the rumen will not give an indication of their activity and of
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the consequences for rumen function. As with the previous example, it is probably
necessary to combine the use of -omics techniques with functional measurements
of methanogenesis or with modeling rumen physiology to become predictive with
respect to methanogenesis. Dijkstra et al. (1992, 1994) used three microbial entities
(cellulolytic bacteria, amylolytic bacteria, protozoa) and their mutual interaction (pre-
dation by protozoa) to represent the most relevant processes for rumen fermentation.
It is likely that this representation is also required to address details on activity of
methanogens that may become available in the near future.

Again, the potential appears high for using -omics technologies to gain further
insight into the effect of nutritional strategies on the dynamics of methanogens and
their activity in the rumen environment. With this insight it can probably be answered
with more confidence whether it is feasible to breed for low-methane individuals
(apart from the ongoing breeding for higher milk yield and hence less methane per
unit of milk produced) without unforeseen detrimental effects.

The other current interest, changing milk fat composition, may also be related to
methanogenesis. Vlaeminck et al. (2006) showed the pattern of milk fatty acids to be
correlated with the profile of VFA produced in the rumen (next to feed intake and
amount of organic matter fermented, the most important determinant of methane;
Figure 8.5).

This suggests that milk fat composition may be an indicator of methanogenesis.
However, milk fat composition is not only dependent on the rumen profile of the
microbiota and related production of VFA, hydrogen, and methane (Figure 8.5). It
is also affected by the fatty acid profile of dietary fat and its consequences for rumen
microbial activity (Dijkstra et al., 2000), for the profile of fatty acids transported to
the mammary gland, and for fatty acid metabolism and de novo synthesis of fatty acid
in mammary secretory cells (Bionaz and Loor, 2007; Figure 8.3). These processes
again may be influenced by genetic background of the cow (Schennink et al., 2008).
Furthermore, mobilization of fat from adipose tissue during early lactation and the
strong effects of nutrition and stage of lactation on the amount of milk fat produced
(e.g., Odongo et al., 2007, established a 9% reduction in milk fat in combination with
a 6% reduction of methane), complicates things even further and means that the milk
fatty acid profile is probably confounded by a large number of factors besides VFA in
the rumen.

Although proving very complex, there are good arguments to explore further the
regulatory mechanism of fatty acid supply to the rumen environment, to the cow’s
intermediary metabolism and to the mammary secretory cells. For application and
accurate prediction in practice, predictive models need to be developed that allow
combined evaluation of all relevant factors with respect to milk fat composition, but
also with respect to rumen fermentation, digestion, and cow productivity.

Interaction between Nutrition, Preabsorptive and Postabsorptive Processes

The profile of nutrients available for uptake by the mammary secretory cells of the
cow (VFA, various forms of long-chain fatty acids, glucose, amino acids) depends on
the extent and the gut compartment in which digestion takes place (preabsorptive as-
pects), and the effects on mobilization of body reserves, nutrient partitioning between
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Figure 8.5 (A) Diagram of dynamic model for substrate and microorganisms, VFA, and
methane; (B) effect of fermented substrates on methane; (C) diagram of rumen H2-balance as
outcome of VFA production and microbial growth (Bannink et al., 2010b).
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organs and nutrient utilization by mammary secretory cells. At present, new insights
are being gained into the regulation of milk protein synthesis with regard to depen-
dency of nutrient supply and hormones by use of -omics technologies to elucidate
the molecular mechanisms (Rius et al., 2010), including mTOR signaling proteins,
protein kinase, and ribosomal protein S6. To allow postabsorptive models to provide
accurate predictions, crucial aspects need to be included as represented in models of
mammary gland metabolism (Hanigan and Baldwin, 1994; Shorten et al., 2004; Volpe
et al., 2010) and of adipose tissue metabolism (Baldwin, 1995). Moreover, they need
to be linked to models of digestive or preabsorptive processes (e.g., Dijkstra et al.,
1992; Bannink et al., 2006a, 2006b).

Many aspects have not been accommodated in such models, for example, the
recent finding of Van Knegsel et al. (2007) that extent of negative energy balance
and mobilization of body reserves is affected by amount of glucogenic nutrients. A
postabsorptive model needs to accommodate the preabsorptive effects of nutrition,
management, and cow genotype as well to become predictive in practice. Both aspects
are of high relevance and without doubt, further development of pre- as well as
postabsorptive models to predict cow performance and milk synthesis benefits from
the use of modern -omics technologies to elucidate the mechanisms involved and
test hypothesis in vivo. The challenge lies ahead to demonstrate where the largest
achievements can be made.

Implications and Perspectives

Regulation of physiological processes in farm animals is complex and covers sev-
eral levels of organization. Furthermore, the regulatory mechanisms are of a highly
dynamic nature and the result of changing environmental influences (nutrition, man-
agement, disease), physiological factors (phenotypic traits), and regulatory mecha-
nisms (regulation of gene expression). Sufficient comprehension of these dynamics is
needed to address most problems in livestock science, instead of considering animal
characteristics and responses fixed. Such comprehension requires that different levels
of biological organization need to be included in modeling efforts that aim to become
predictive. As much use as possible has to be made of both the outcomes of data
analyses at the level at which -omics data are gathered, and observation of physiolog-
ical aspects at higher levels of organization. The specific aim of the modeling effort
determines the boundaries set upon model representation, and the assumptions and
concepts adopted. Which levels of organization require representation, and which
entities need to be defined, depends on the modeling objectives and the vision one
has of how observed physiological function is organized. This vision is created by both
-omics data and physiological insights, instead of either one. Modeling functional as-
pects of animal physiology is always needed when the aim is to address physiological
problems. Otherwise, the risk of becoming not predictive must be considered real.
Current developments in Systems Biology appear very promising. When combined
with modeling of physiological aspects in livestock sciences, there appears to be great
potential for actually becoming more predictive, thereby assisting industry and farmers
in solving problems. Linking data from various levels of organization and from various
disciplines can lead to the development of models that are able to separate causes, and
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which may be an improvement upon current insights in practice. Improved predictive
capacity is the challenge that needs to be addressed. Instead of investing in large-scale
monitoring studies, research activities are better directed at finding causal relation-
ships and testing hypothesis formulated with the help of mathematical modeling. The
latter should not be limited to modeling large volumes of -omics data alone.
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Chapter 9
Systems Biology and Animal Nutrition:
Insights from the Dairy Cow During
Growth and the Lactation Cycle

Juan J. Loor, Massimo Bionaz, and Guido Invernizzi

Introduction

The biological complexity of agricultural animals unavoidably requires a Systems
Biology approach, i.e., a way to systematically study the complex interactions in the
animal using a method of integration instead of reduction (Loor and Cohick, 2009).
Important goals of Systems Biology are to uncover the underlying links (pathways,
regulatory networks, and structural organization) within and between tissues (e.g.,
adipose and liver, mammary fat pad, and mammary parenchyma), and also to discover
new emergent properties that may arise from examining the interactions between all
components of a system. This integrative approach provides the means to arrive at
a holistic view of how the organism functions (Bruggeman and Westerhoff, 2007).
Work in model organisms during the past 15 years has demonstrated the applicability
of high-throughput technologies to discern biological networks (Lin and Qian, 2007;
Feist and Palsson, 2008).

The advent of high-throughput sequencing, transcriptomics, and proteomics tech-
nologies has dramatically accelerated the rate at which biological and genetic informa-
tion can be collected from agricultural animals (Lippolis and Reinhardt, 2008; Loor,
2010). In the context of animal nutrition and animal metabolism, a substantial body
of work linking the transcriptome and the genome has been conducted in chickens
(e.g., Cogburn et al., 2007). Fewer studies have addressed the role of nutrition on
transcriptional adaptations in other agricultural species, let alone attempted a more
holistic approach using “omics” and bioinformatics tools. Despite progress in the area
of transcriptomics and bioinformatics in livestock research, application of a Systems
Biology approach is still in its infancy.

Dairy cows represent both an economically important livestock species and a unique
biological model of mammalian adaptations partly because of an unrivaled require-
ment for dietary energy (Allen et al., 2005). Extensive microbial fermentation in the
rumen (forestomach) results in a constant reliance on gluconeogenesis, a process that
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increases dramatically immediately after parturition. The transition from pregnancy
into lactation in mammals, and particularly dairy cattle, is characterized by metabolic
adaptations in major organs (e.g., mammary, liver, adipose) that allow the animal to
adjust to the need of synthesizing milk for the neonate. Different physiological stages
during growth or the lactation cycle provide powerful models to study how long-term
signals interact to affect long-term tissue and whole-animal function.

This chapter focuses on the use of transcriptomics and bioinformatics as tools to
study the complex interactions that occur in liver, adipose, and mammary as dairy cows
adapt to changes in physiological state and nutritional management during postnatal
growth, lactation, or the transition from pregnancy to lactation. The goal is to provide
specific examples of how these combined approaches could advance our understanding
of tissue function beyond the classical biochemical pathways.

The Peripartal Dairy Cow as a Model for Whole-Animal
Systems Biology

Achieving homeostasis during the transition from late-pregnancy to lactation repre-
sents a monumental task in modern high-producing dairy cows. In early postpartal
dairy cows, a series of biological mechanisms bring about the prioritization for milk
production at the cost of body reserves (Leroy et al., 2008). Drastically reduced insulin
concentrations and alterations in adipose cellular response to this hormone cause a re-
duction in lipogenesis to extremely low rates. Adipose tissue of high-yielding dairy cows
has an increased sensitivity to lipolytic stimuli (low insulin, high catecholamines, and
high glucocorticoid concentrations; McNamara, 1989). As a result, lipolytic activity
postpartum increases and lipid is mobilized among other things to supply nonesterified
fatty acids (NEFA) to the udder.

These NEFA are primarily supplied to the liver where they are fully oxidized to
CO2, converted to ketone bodies, or esterified into triacylglycerol (TAG) either for
delivery into blood as very-low density lipoproteins (VLDL) or for storage as cytoso-
lic lipid droplets (Drackley, 1999). Because ruminants have inherently low rates of
VLDL synthesis and secretion, accumulation of TAG in liver cells as well as extensive
output of ketone bodies such as β-hydroxybutyrate into the circulation likely afflict
all postpartal dairy cows. The metabolic load placed on the peripartal cow liver is
exacerbated by the decrease in feed intake and the strong increase in milk production
rate, causing a negative energy balance (NEB) that can occur as early as 10 days prior
to parturition (Drackley, 1999). This NEB also seems to be exacerbated by feeding
higher energy diets, i.e., allowing cows to overconsume energy, during the dry period
(Dann et al., 2006; Bertoni et al., 2009).

The nature of the physiologic and metabolic adaptations during the transition from
pregnancy to lactation is multifaceted and involves key tissues and cell types, further
underscoring the need for a Systems Biology approach to identify control points,
which go beyond the classical metabolic pathways. We have recently proposed (Loor,
2010) that in order to address the complex metabolic phenotypes of the peripartal
period, there is a need to identify at the very least transcript variations in liver,
mammary, and adipose that might underlie variation in metabolism and health. The
approach could initially encompass a transcriptomic characterization of each tissue as
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well as immune cells (e.g., neutrophils) over a wider range of nutritional treatments
of practical relevance, and also across cows of different genetic merit (Loor, 2010).
Within individual experiments, the data generated would allow for the identification
of underlying gene networks and pathways that can be linked to a particular metabolic
or health phenotype.

In the next sections we first introduce a bioinformatics approach that makes use of
commercial software (Ingenuity Pathways Analysis

R©
, IPA) as well as freely available

online resources (DAVID, KEGG pathways) to mine transcriptomics data in order to
assign biological relevance to gene transcription. Specific examples of the transcrip-
tomics and bioinformatics approach are then presented using primarily data generated
from our lab with dairy cattle. We do not attempt a full discussion of the findings,
but want to highlight novel aspects of the system. These aspects have been uncovered
recently and serve as an example how a Systems Biology approach may help to under-
stand the underlying links between various tissues at various physiological states and
in response to nutrition.

The Mammary Gland as a Unique System

The importance of the mammary gland is not only related to nutrition of the offspring,
but milk and milk-related products are of high importance to human nutrition in many
societies. Worldwide human consumption of bovine milk and milk-derived products
has increased markedly in the last decades, especially in countries where this food was
not part of the traditional diet (Wiley, 2007). The bovine mammary gland is an extraor-
dinary organ able to produce more than 30,000 kg of milk in a complete lactation cycle
(∼305 d), with an estimated average of ∼6% of body weight per day in high-producing
Holstein cows. For example, the top-producing US Holstein in 1997 produced ca.
100 kg milk/d (Holstein Association USA ((http://www.holsteinusa.com/index.jsp),
July 2, 2009).

The anabolic capacity of this organ in modern dairy cows, but also in other species, is
so remarkable that it has been suggested, probably exaggerating, that from a metabolic
perspective the cow can be considered an appendage of the mammary gland (Bauman
et al., 2006). The milk yield potential, which particularly for dairy cows has been sub-
stantially improved through artificial selection programs, can be optimized through
appropriate overall management with diet playing a pivotal role. Proper nutritional
management can satisfy requirements for energy, protein, carbohydrate, lipid, miner-
als, and vitamins as well as prevent digestive and metabolic disorders. The quality of
milk can also be manipulated by nutrition, particularly by specific components of the
diet such as fatty acids.

In the past several decades, there have been extraordinary advances on the knowl-
edge of the physiology of the lactating mammary gland (reviewed by Bauman et al.,
2006). Despite those efforts, the physiological and cellular adaptations required for
the synthesis and secretion of milk remain largely unknown. In our view, it is safe to
conclude that most advances to date for improving bovine milk yield and composition
through specific dietary components (e.g., fatty acids) have been made through an
empirical and reductionist approach. The lack of availability and the costs of alterna-
tive techniques for use in livestock species have certainly limited the development of
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a holistic and integral view, at the least at the molecular level, of the physio-cellular
adaptations in mammary tissue. The recent development of microarray platforms for
livestock species in combination with bioinformatics provides a valid alternative to
overcome the previous limitations.

Overall findings from a recent Systems Biology analysis by Lemay et al. (2007)
provided unique insights into the molecular basis that underlies the physiology of
murine mammary gland during the course of lactation. However, their bioinformatics
approach had several limitations, some highlighted by the authors themselves. In our
view, one of the most important drawbacks was the lack of consideration of all the
information that was available in the comparison of the 10 time points examined. This
limited a more holistic view of the underlying biological adaptations.

Transcriptomics was used recently to study the adaptations of the bovine mam-
mary gland between day 5 (± 5) before parturition (day −5) and day 10 (± 5) after
parturition (Finucane et al., 2008). Besides the excessive variation in the sampling
times (large variation in sampling days between animals), the study used bioinformat-
ics approaches to a limited extent (Gene Ontology (GO) analysis only) without the
application of appropriate statistics in the functional analysis. The main findings of
the study were that twice as many genes were significantly downregulated than up-
regulated at day 10 postpartum, and that many of the upregulated genes were related
to transport activity, lipid and carbohydrate metabolism, and cell signaling pathways.
Downregulated genes were related to cell cycle and cell proliferation, DNA repli-
cation and chromosome organization, microtubule-based processes, and protein and
RNA degradation.

The overall data generated by the above study in bovine mammary underscored the
tremendous anabolic capacity of the mammary gland, particularly for the synthesis of
lipid, which also is a characteristic in mouse mammary (Rudolph et al., 2007). Those
findings confirmed what has been known for a long time about ruminant mammary
gland. A novel piece of information from that study was the decrease in chromo-
some reorganization after parturition, which also has been found in mouse mammary
(Rudolph et al., 2007) and suggests that the mammary gland reduces chromosome
reorganization in order to allow for a “consistent” transcriptome. This finding points
to epigenetics as an important event during the control of milk synthesis.

Systems Analysis of the Cow Mammary Transcriptome

We have built a Systems Biology pipeline using a large transcriptomics experiment
in mammary tissue considering 9 time points beginning a month prior to parturition
through 300 days into the subsequent lactation. Functional and gene network
analyses of the more than 6000 differentially expressed genes (DEG) from microarray
data, filtered by quality and statistical significance (false discovery rate or FDR
≤ 0.001), were mined using several bioinformatics tools (DAVID at http://david.abcc.
ncifcrf.gov/home.jsp; Huang da et al., 2009b, 2009c; IPA at http://ingenuity.com/,
Kyoto Encyclopedia of Genes and Genomes (KEGG) at http://www.genome.jp/kegg/)
implemented by a novel approach developed in our lab and termed dynamic impact
approach (DIA). All time points after parturition were compared with the month
prior to parturition (+1 versus −30, +15 versus −30, and so on) as well as with each
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preceding time point (+15 versus +1, +30 versus +15, and so on). Those comparisons
allowed for a complete visualization of the mammary gland’s adaptations to the onset
of lactation as well as each discrete lactating stage relative to the late-pregnant state,
all of which exhibit distinct features (Grossman and Koops, 2003).

The data generated by our microarray experiment uncovered that bovine mammary
experiences a large degree of transcriptomics adaptations (i.e., large number of DEG
with overall time effect at FDR = 0.001 and p-value ≤0.001 between comparisons)
both at the onset of copious milk secretion (1 day) and when milk yield declines
(at 240 days postpartum) suggesting a large degree of transcriptional control of milk
secretion. In addition, from day 30 prior to parturition through 60 days postpartum
we observed a consistent increase in the number of DEG, reaching more than 3000 at
30 days postpartum. These results reveal a different pattern than observed in mouse
mammary (Lemay et al., 2007), or in a previous small-scale bovine microarray study
(Finucane et al., 2008).

Limitations and Potential Solutions for the Proposed Analytical Approach

A preliminary analysis of our mammary microarray data was conducted using the gene-
enrichment approach (also known as overrepresented approach or ORA) (Huang da
et al., 2009a). This statistical approach is the most widely used in high-throughput
biological function analysis. It is based on the assumption that in order for pathways,
functions, or terms in a given gene list to be biologically relevant, they have to be
overrepresented, i.e., must be present in the gene list at a greater proportion compared
to the background (that is the proportion of the genes in that pathway, function, or
term on the microarray platform used for transcriptomics). In other words, the genes
associated with a specific pathway, function, or term have to be present in the list of
DEG in a significantly greater proportion compared to the proportion of genes of that
pathway, function, or term in the microarray that are picked randomly.

The preliminary analysis clearly indicated that the enrichment analysis was not
adequate to address the objective of our experiment. In fact, an orthodox application
of the statistics, i.e., the use of Benjamini–Hochberg FDR adjustment to account
for multiple comparisons (Benjamini and Hochberg, 1995), to the functional analysis
provided almost no overrepresented functions or pathways when data were mined
in DAVID or IPA. On the one hand, those results suggested that there were tran-
scriptomics adaptations encompassing most of the known functions of the mammary
gland during lactation. However, more importantly, those results highlighted several
limitations of the ORA approach, which have been underscored previously (Draghici
et al., 2007; Huang da et al., 2009a). A serious limitation in our longitudinal study
of the mammary transcriptome was the well-known impossibility of comparing the
functional analysis between gene lists (Huang da et al., 2009a). This precluded a full
investigation of the dynamism of the functional adaptations during a time-course ex-
periment. Another important limitation was that the larger the gene list, the lower the
likelihood of finding significantly enriched functions/pathways and vice versa (Huang
da et al., 2009a). For those reasons we have undertaken a different approach, which
is not based on ORA but on the calculation of the impact of DEG on functions and
pathways; it is referred as DIA.
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The foundation of the DIA approach lies on the fact that pathways (or functions)
are proportionally affected or impacted by several factors: the proportion of DEG (i.e.,
their encoded proteins) among all genes in the microarray that belong to a pathway,
function, or term, the average significance (p-value) of the change in expression of
those DEG, and the average fold change of the DEG composing the pathway, function,
or term.

The DIA approach to investigate affected pathways is based on the combina-
tion between percentage of up- or downregulated DEG compared with all genes on
the microarray that belong to the pathway/function, the mean –log p-value of the
up- and downregulated DEG, and the mean of log (base 2) fold change of the DEG.
An overall impact of DEG on the pathway/function is calculated for each compari-
son. The approach has several caveats, such as the fact that no specific gene/s is/are
considered “rate-limiting” (which is not in itself a limitation considering that many, if
not most, of the genes on the pathway need to be affected to have an impact on the
metabolic flux or function (Morandini, 2009)). Also, up- or downregulation does not
always coincide with an increase or decrease in metabolic flux or function, because
proteins with regulatory roles often exist within pathways or functions.

The DIA also estimates the potential direction of the flux (increased or decreased).
The DIA was implemented in Microsoft Excel and used in combination with DAVID
and KEGG. The mammary dataset with significant DEG and relative Entrez Gene IDs
was uploaded in DAVID and results without any thresholds were downloaded. For
KEGG pathways analysis, the whole KEGG bovine pathway database was downloaded
from KEGG Web site as a platform for analysis of impact and direction of flux within
the DEG. For the KEGG analysis, the DIA also clusters the pathways at a higher
level of organization and calculates the average impact and flux to provide a readable
overview of the pathways (Figure 9.1).

The Proposed Analytical Approach Assessed

The validity of the DIA, which was explained in section “Limitations and potential
solutions for the proposed analytical approach,” was confirmed by the high association
between the calculated impact of pathways and functions with functional measure-
ments (milk yield, fat, protein, and lactose content in milk) and known biology of the
lactating mammary gland. For example, the approach uncovered BTA6, known to be
the chromosome with the highest association to milk yield, milk protein, and fat per-
centage (Sheehy et al., 2009), as the most impacted chromosome; the DIA revealed
milk, mammary epithelial, mammary gland, and lactating mammary gland among the
most impacted “tissues”; and lactose synthesis was the most impacted biological pro-
cess. All those terms, except for milk at 60 versus −30 days in milk (DIM), were not
significantly enriched (Benjamini–Hochberg FDR ≤0.05) using the ORA approach
both in IPA and DAVID.

Application of DIA to the KEGG pathways using our mammary time-course mi-
croarray data suggested that metabolic pathways were the most impacted and induced
during lactation, with lipid and carbohydrate metabolism being the most important
(Figure 9.1). Among carbohydrate metabolism, galactose metabolism was the most
impacted and induced followed by the TCA cycle, whereas ascorbate and aldarate
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metabolism, pyruvate metabolism, and glycolysis/gluconeogenesis were among the
most inhibited during lactation. Among lipid metabolism, biosynthesis of unsatu-
rated fatty acids and synthesis and degradation of ketone bodies were among the
most induced (Figure 9.1). Overall, the functional analysis using DIA suggested that
from a metabolic standpoint the mammary gland increases lipid and carbohydrates
metabolism, i.e., increases synthesis of carbohydrates and lipid molecules and de-
creases utilization of glucose for energy production with an apparent increase in the
utilization of ketone bodies for energy production. Concurrently, it was revealed that
there is a considerable inhibition of amino acid metabolism, protein synthesis, and
RNA metabolism during the course of lactation (Figure 9.1). The cell cycle together
with DNA metabolism, cell assembly and organization, and gene expression appeared
greatly inhibited during the whole lactation, whereas signaling and interactions be-
tween cells were generally enhanced. Cell signaling together with development of the
immune system appeared to be substantially impacted and induced, whereas immune
cell trafficking was inhibited. One of the most impacted and inhibited subfunctions
during the whole lactation was the major histocompatibility complex, particularly
the class I.

Interestingly, most of the pathways induced during lactation were inhibited between
120 and 240 days postpartum, which coincided with a substantial drop in milk yield.
In addition, among signaling pathways the one involving peroxisome proliferator
activated receptor (PPAR) appeared to be the most induced during lactation. On
the basis of those results, we have tested the role of PPAR, and particularly PPARγ

among subtypes of PPAR, in regulating expression of genes involved in milk fat
synthesis. Data from such investigation provided evidence of a likely role for this
nuclear receptor (Kadegowda et al., 2009).

Overall, the use of DIA to investigate the temporal transcriptomics of the mammary
tissue suggested the following. (1) From a functional point of view, that the mammary
gland of the modern high-producing dairy cow concentrates all its efforts in producing
milk. Hence, this effort leads to a shutdown of nonessential or milk synthesis- and
-secretion-competitive functions. The data allowed us to infer a mechanism where
the genes coding for milk-related proteins (milk components and protein essential for
milk synthesis) have a substantial increase in expression, thus, greatly enhancing the
competitive advantage in the use of the protein synthesis machinery whose availability
decreases during lactation. This appears to be a feature in common between bovine
and mouse mammary (Lemay et al., 2007). (2) The organization of the tissue for milk
production has to be set before the onset of lactation. During lactation, the tissue
attempts to maintain a stable organization and transcriptional program. This also
appears to be similar to mouse mammary (Lemay et al., 2007). (3) The mammary
gland uses a substantial amount of resources to enhance its immune system capacity,
but it prevents an overly sensitive activation of the immune response (i.e., inhibition
of major histocompatibility complex (MHC)).

Transcriptional Networks in Systems Analysis

The analysis of pathways, functions, and terms is only a part of a System Biol-
ogy approach. In fact, the viability of cells as well tissues, organs, or the entire
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organism is dependent upon interactive networks among molecular components.
Therefore, central to the definition of System Biology is the analysis of interactive
networks.

Among global interactive networks those formed by transcription factors (TF) and
their putative target genes (i.e., TF networks) are an important element of a Systems
Biology approach. This analysis allows transcriptional networks to be uncovered that
may play important regulatory functions and, being TF able to regulate expression of
many genes, provides avenues for potential manipulation (e.g., via nutrients). The TF
networks are generated by investigating the potential impact of one or more TF on
the expression of DEG. In case of our longitudinal study of bovine mammary tissue
we relied on the IPA Knowledge Base. The analysis allowed the identification of more
than 100 TF, which may play a pivotal role in orchestrating the adaptations of the
mammary gland to lactation. A large TF regulatory network (i.e., a larger number
of known relationships of TF with DEG) was uncovered for v-myc myelocytomatosis
viral oncogene (MYC) and tumor protein p53 (TP53), both of which were downregu-
lated during lactation, and for lysine (K)-specific demethylase 5B (KDM5B) and YY1
transcription factor (YY1), both of which were upregulated.

Several TF had a tremendous increase in expression through lactation (e.g., E74-
like factor 2 and ankyrin repeat and SOCS box-containing 11), but were not able
to produce known transcriptional networks with other DEG. The lack of underlying
networks is consequence of the limited availability of information about those TF. In-
depth molecular studies will probably reveal downstream genes and overall functional
impacts of the TF uncovered. It will be important to conduct additional molecular
studies to assign a functional meaning to those TF networks.

The TF network analysis within a System Biology approach revealed previously
unrecognized networks of genes with major TF at play. This is of interest because
manipulation of those TF networks, both directly (e.g., inhibiting or activating one or
several TF in the network) or indirectly (e.g., through selection or genetic engineering),
might lead to improvements in milk synthesis capacity, efficiency of nutrient utilization
(e.g., optimal dietary N and P), or regulation of mammary metabolism in order to
prevent/treat metabolic disorders.

Clustering Approaches as a Tool in Systems Biology

We have conducted clustering analysis to further evaluate the coexpression of func-
tions/pathways and key TF that control the expression of DEG during lactation in
bovine mammary tissue. Using Genesis (Sturn et al., 2002) we conducted k-means
clustering analysis that partitions the observations (in our case, the DEG) into k
clusters (k denotes a number of clusters decided a prior) in which each observation
belongs to a cluster with the nearest mean. This is the most appropriate approach
for clustering time-course data. The k-mean clustering analysis identified 16 clusters
that best describe the temporal pattern of gene expression among the more than 6000
DEG affected by time at an FDR = 0.001. This number of clusters was deemed most
appropriate using the minimum gain of power of the figure of merit as criterion. The
figure of merit is a system used to characterize the performance of a device, system,
or method, relative to its alternatives; the analysis in the clustering-decision process
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reaches the best number of clusters among alternatives when the gain of power of
prediction of an additional cluster reaches a minimum (Yeung et al., 2001)

We used DAVID and IPA to allow uncovering functions/pathways significantly
enriched in each cluster. The IPA was used to investigate the functional networks
among genes and those potentially key TF-controlling expression of the cluster of
genes. In addition to providing an in-depth analysis of potential TF controlling the
cluster, we examined overrepresented DNA binding motifs for TF in promoter or
coding regions of genes within the clusters. For this we used previously developed
bioinformatics tools (a tool developed by Tabach et al., 2007 and cREMaG from
Piechota et al., 2010).

Application of the above-mentioned approaches uncovered several functional clus-
ters. Five clusters grouped genes with evident upregulation during lactation. Those
clusters were significantly enriched with milk-related products and functions, lipid
biosynthetic processes, tight junctions, endomembrane system and transport (par-
ticularly endoplasmic reticulum and Golgi membranes), lactation, mammary gland
development, signal, extracellular region, and secretion. Four clusters grouped genes
downregulated during lactation. Those clusters contain significantly enriched func-
tions/components such as those involved in protein synthesis, immune response, chro-
matin remodeling, and cell cycle.

The analysis also uncovered several clusters of genes that were enriched in partic-
ular chromosomes. For example, Chr 6 was enriched by the milk protein gene cluster
(i.e., the cluster composed of genes with the greatest upregulation during lactation),
Chr 19 and 23 were enriched by the cluster of genes significantly enriched with cell
cycle and chromosome modification. Interestingly, the cluster of genes most upreg-
ulated during lactation encompassed, besides genes coding for milk protein, those
coding the major fatty acid binding protein (FABP), isoform (FABP3), and DnaJ
[Hsp40] homolog subfamily C member 12. The latter is involved in protein assembly
and export.

The network analysis uncovered a large degree of interactions between gene prod-
ucts of the same upregulated clusters. The unsupervised TF analysis using IPA high-
lighted that many TF are potentially involved in controlling expression of genes within
the clusters. Among TF, the hepatocyte nuclear factor 4 alpha (HNF4A) appeared to
be common among nearly all the upregulated clusters, which may indicate that this
TF is a plausible candidate for future molecular studies.

The search for significantly enriched motifs in the clusters of genes using the method
developed by Tabach et al. (2007) uncovered AREB6.03 (Atp1a1 regulatory element
binding factor 6) as being the most significantly enriched in one of the clusters of the
most upregulated genes during lactation. The biological significance of this finding for
the mammary gland is unknown. Progress in understanding the function of AREB6
has been made (e.g., Ikeda et al., 1998), but specific molecular studies in bovine will be
required to understand the function of this TF in the context of the mammary gland
biology. The reader also has to consider that our TF motif analysis was heavily limited
by the low numbers of DEG with a suitable promoter region (ca. 2000 out of more
than 6000 DEG). Future progress in bovine genome sequencing and annotation will
hopefully bridge the gap and deliver a more complete comprehension of these data.

The analysis of significantly enriched motifs using cREMaG provided further infor-
mation about the genes found in the k-mean clusters. The motifs for LIM homeobox 3,
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myocyte enhancer factor 2A, and glucocorticoid receptor were significantly enriched
within the cluster of genes with the largest upregulation during lactation; whereas, the
motif for nuclear factor NF-kappa-B p65 subunit was significantly enriched in genes
within the cluster with the second most upregulated pattern during lactation. The
interferon regulatory factor 2 motif was uniquely enriched within a cluster of down-
regulated genes during lactation. The significance of these findings, with exception of
glucocorticoid receptor (Doppler et al., 1989), is not apparent; however, this opens
up possibilities for future investigations.

Applying the Systems Biology approach to microarray data of mammary tissue
during pregnancy and lactation allowed us to confirm several previously established
responses but also provided new information on other salient pathways and functions
underlying the mammary gland’s adaptations to copious milk synthesis. However,
the most novel outcome of this approach was the prospect of viewing the mammary
gland as a complex interactive system where activation or inactivation of pathways and
induction or inhibition of functions is occurring simultaneously; more importantly, the
gene products encompassing these pathways/functions specifically interact in order to
properly carry out their assigned function(s).

As stated in the introduction to this chapter, application of the Systems Biology
approach to livestock is still in its infancy and several limitations still exist, both of a
technical and mechanistic nature (i.e., knowledge about specific molecules and their
interactions). The mammary gland has, for the most part, been studied in isolation dis-
regarding the fact that (as an organ) it is composed of additional cells beside epithelial.
An orthodox Systems Biology approach will require consideration of the interactions
of one tissue with others composing the organism as well as the intimate relationship
between neighboring cells. In section “Intertissue cross talk during prepubertal bovine
mammary development,” we provide an example of a Systems Biology approach to
uncover the interactive network in the main compartments of the mammary gland
during preweaning development.

Intertissue Cross Talk During Prepubertal Bovine
Mammary Development

The development of the mammary gland in preweaned dairy calves is crucial for future
milk production. It is characterized by an important cross talk between the two major
developing tissues: the parenchyma (PAR) and the mammary fat pad (MFP). In a
recent study (Piantoni et al., 2010), we investigated the effects of milk replacers (fed
for ∼60 days), with different levels of fat and protein, or different rates of intake, on
transcriptomics in PAR and MFP of preweaned calves. The two tissues were carefully
dissected and RNA extracted for microarray analysis. Despite the large morphological
changes due to type of milk replacer (Daniels et al., 2009a, 2009b), analysis of tissue
collected at slaughter indicated that diet had only a modest effect on the transcriptome
(Piantoni et al., 2007). Besides the evaluation of treatment effects, the availability of
dissected samples and tools for high-throughput analysis allowed for the first time a
direct transcriptomics comparison between PAR and MFP. Furthermore, it provided
the means of using a Systems Biology approach to investigate potential cross talk
between the developing PAR and MFP.
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The transcriptomics differences between the two tissues were remarkable, with
more than 9000 DEG (FDR-corrected p-value ≤0.05). A cutoff of 1.5-fold differences
in gene expression between tissues was applied in order to identify more pronounced
DEG. This resulted in more than 1400 DEG. A functional analysis using IPA and
DAVID was conducted to identify the most enriched functions in genes highly ex-
pressed in one tissue versus the other tissue. Not surprisingly, the top significantly
enriched functions among DEG that are more expressed in PAR compared to MFP
were related to proliferation and morphogenesis of epithelial tissue, whereas, the top
significantly enriched functions among DEG that are more expressed in MFP versus
PAR were related to adipose tissue (Piantoni et al., 2010).

To evaluate the TF with main roles in controlling highly expressed DEG in one
tissue versus the other, we conducted a transcriptional network analysis. The TF
in each list were extrapolated and all known effects on transcription of DEG were
analyzed. This allowed uncovering several TF (e.g., peroxisome proliferator-activated
receptor γ (PPARG) and HNF4A among DEG that were more expressed in MFP
versus PAR, and MYC and TP53 in DEG that were more expressed in PAR versus
MFP) and relative networks as chief hubs in controlling the specific transcriptomics
differences between PAR and MFP. More importantly, the data revealed that these
TF are not only central during lactation (see section “transcriptional networks in
Systems Biology”) but also during prepubertal mammary development. With the aim
to investigate the potential cross talk between the two tissues, we identified all possible
DEG in PAR versus MFP that encode for secreted signaling molecules (i.e., cytokines
and growth factors), and we analyzed possible interactions with DEG that were more
expressed in MFP versus PAR that encode for receptors, and vice versa. The analyses
suggested a large degree of interaction between the two tissues and allowed us to
envisage a reciprocal influence during development.

Several cytokines and growth factors, such as interleukin 1 beta (IL1B), osteopon-
tin (SPP1), chemokine (C-X-C motif) ligand 10 (CXCL10), platelet-derived growth
factor alpha polypeptide (PDGFA), dickkopf homolog 1 (DFF1), and neuregulin 1
(NRG1) were among the signaling molecules with likely higher production (i.e., higher
gene expression) and secretion in the PAR compared to MFP. The network analysis
indicated that those signaling molecules upon reaching the MFP could have increased
lipid accumulation (e.g., through increased expression of PPARG and several lipogenic
enzymes) and have reduced its proliferation rate (Piantoni et al., 2010).

Cytokines and growth factors released preferentially by MFP such as adiponectin
(ADIPOQ), leptin (LEP), fibroblast growth factor 2 (FGF2), interleukin 13 (IL13),
interleukin 7 (IL7), and jagged 1 (JAG1) could have a potential role in the organization
and proliferation of PAR. A model of cross talk between PAR and MFP on the basis
of the overall functional analysis was proposed. This model provides the targets for
future hypotheses-driven studies.

The discovery of networks of genes with seemingly important roles in the reciprocal
influence between the two adjacent tissues in the developing mammary gland was an
important achievement. We are now poised to design studies to uncover, among
other things, factors (including nutrients) that may influence the dynamics of the TF
networks. In the future, the discovery of agonists or antagonists of these interactive
networks would be powerful tools in the hands of dairy farmers that may desire to
enhance mammary gland development.
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Effect of Prepartal Nutrient and Energy Intake on Dairy
Cow Adipose Tissue

The biological active role of liver and mammary in coordination of animal physiology,
particularly during the transition from pregnancy into lactation in dairy cows is well
known. Until a decade ago, adipose tissue was considered as a mere passive energy
storage organ in the body, with some additional corollary functions such as providing
cushion and thermoregulation. Due to the large and rapid rise of obesity-related dis-
eases in Western countries, research on adipose tissue biology has exploded in recent
years (Hausman et al., 2009). It is now evident that adipose tissue is far from being
a passive tissue, but that it has an active role in regulating whole-body metabolism,
appetite, and the immune system. Adipose tissue appears to have an important degree
of cross talk with other tissues through the release of endocrine molecules (Hausman
et al., 2009; Lee et al., 2009). The tissue appears to be very sensitive to energy status
of the organism (Lee et al., 2009).

Several studies carried out in model organisms or humans have shown that energy
status has a quick and strong impact on adipose tissue transcriptomics (Higami et al.,
2006; Swindell, 2008; Palou et al., 2010). This impact involves the regulation of lipid
metabolism in particular, but also immune-related functions. Nutrigenomic studies in
animal models using high-throughput technologies have mainly focused on short- and
long-term transcriptomics and metabolomics in adipose tissue as it pertains to high-
fat feeding (Kim and Park, 2008; Shearer et al., 2008; Jobgen et al., 2009), calcium,
dairy products (Bruckbauer et al., 2009), leucine supplementation (Jobgen et al.,
2009), coffee (Fukushima et al., 2009), soy proteins (Takamatsu et al., 2004), cocoa
(Matsui et al., 2005), and specific long-chain fatty acids such as conjugated linoleic
acid (LaRosa et al., 2006).

In livestock species, adipose has been studied predominantly in meat animals such
as pig, chickens, and beef with a strong emphasis on subcutaneous and intramuscular
fat (Hausman et al., 2009). Relatively few nutrigenomics studies have been carried out
in livestock using high-throughput technologies and most have made limited use of
bioinformatics. Therefore, the outcomes of those efforts have been primarily lists of
genes or proteins for future investigations (e.g., Wang et al., 2009) with few systematic
insights into the tissue’s adaptation to nutrition.

We recently studied the transcriptomics adaptations of bovine subcutaneous adi-
pose tissue from the beginning of pregnancy through early lactation in cows fed diets
designed to meet (∼100% of net energy requirements; 1.21 Mcal/kg diet dry mat-
ter) or exceed (∼150%; 1.63 Mcal/kg diet dry matter, i.e., energy-overfed) energy
requirements during the entire dry period (∼65 days; Janovick and Drackley, 2010).
The higher energy diet led to greater accumulation of body fat, as measured by body
condition score (Janovick and Drackley, 2010), and robust transcriptional adaptations
with more than 3000 DEG affected (FDR = 0.05) by the interaction of time × diet
(Janovick et al., 2009). In response to the higher energy diet prepartum and using
a cutoff of P ≤0.01 for the comparison between diets at each time point plus the
FDR-corrected p-value ≤0.05 for the interaction effect, we uncovered more than
1500 DEG at 2 weeks prepartum, less than 100 at 1 day after calving, and ∼200 DEG
at 2 weeks postpartum compared to control (i.e., diet to meet 100% of energy require-
ments). These longitudinal adaptations suggested that the transcriptome responded
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quickly to prepartal energy overfeeding, but there was little carryover effect after
parturition.

Using a combination of ORA tools and the DIA described above for the mammary
gland, it was evident that the higher energy diet had a strong impact on metabolism
and other cellular functions compared to the requirement diet (Figure 9.2 shows re-
sults from DIA and ORA for the diet comparison at −14 DIM). In cows overfed
energy compared to controls, the DIA analysis of KEGG pathways and the enrich-
ment analysis of pathways in DAVID and IPA indicated a large activation of energy
metabolism and lipid synthesis, including de novo fatty acid synthesis. The analysis
also indicated a pivotal role of PPAR signaling and a larger induction of protein
synthesis in the adipose tissue of overfed cows. Interestingly, almost all the KEGG
pathways were induced in adipose tissue of energy-overfed cows at two weeks prior
to parturition, but those pathways were strongly inhibited in the same group at par-
turition (i.e., +1 versus −14 DIM), suggesting that they are tightly controlled by
homeorhetic adaptations required for energy repartitioning at the onset of lactation
(Drackley, 1999).

Network analysis uncovered large interactions among DEG in the comparison of
the higher energy to the requirement diet at −14 days from parturition (Figure 9.2).
Among TF in the network CCAAT/enhancer binding protein alpha and beta (CEBPA
and CEBPB), both upregulated by overfeeding energy at −14 days, produced the
transcriptional networks with the largest number of DEG suggesting that these TF are
central in orchestrating prepartal adipose transcriptional adaptations to high-energy
diet. On the basis of the high-impact of PPAR pathways, we evaluated the relevance
of PPARγ in controlling expression of DEG in response to overfeeding energy at
−14 days. The PPARγ appeared to be central as well (Figure 9.2) with a large control
among most of the lipogenic genes that were affected (see Loor, 2010, for a description
of them). In addition, among the functions that were significantly enriched (FDR =
0.15) we found growth (inhibited) and activity (induced) of neurons, inhibition of
growth of the immune system, and induction of protein synthesis. From previous
experiments with pregnant, nonlactating dairy cows, it is well established that blood
insulin increases dramatically and chronically soon after animals are fed higher energy
diets, either during the entire dry period or during the last 3 weeks prepartum (Dann
et al., 2006; Loor et al., 2006). Through network analysis we evaluated the potential
effect of elevated blood insulin on gene networks. Just as it would be expected in
nonruminants this hormone appears to control most of the networks, and it is affected
significantly by overfeeding metabolizable energy (Figure 9.2).

The Systems Biology approach allowed us to uncover that the adipose transcrip-
tome responds rapidly to overfeeding dietary energy through marked induction of
genes involved in lipid accumulation and protein synthesis. Central to these adapta-
tions were PPAR signaling together with the CEBP family of TF, which are part of a
large interactive network underlying these coordinated adaptations. From a physio-
logical standpoint, the overall molecular adaptations observed might have been driven
by the large insulin surge caused by prepartal energy overfeeding.

The adipose tissue plays a pivotal role during transition from pregnancy to lactation
due to the release of NEFA. As previously shown (Dann et al., 2006), overfeeding
dietary energy prepartum increases NEFA concentration in the immediate postpartal
period, often with negative effects on cow health (Drackley, 1999; Bertoni et al., 2009).
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Excessive concentrations of NEFA in blood can be deleterious to liver (hence, the cow)
because of this organ’s involvement in metabolizing the NEFA. Besides metabolizing
NEFA, liver has additional crucial roles during the transition from pregnancy to
lactation, e.g., it is the major site of gluconeogenesis and actively participates in the
immune response (Drackley et al., 2006; Bertoni et al., 2009). Thus, the importance of
studying the liver’s adaptations to prepartal dietary energy is evident. As in mammary
tissue, the combination of microarray technology with bioinformatics is a unique mean
for applying a Systems Biology approach to liver.

Effect of Prepartal Nutrient and Energy Intake on Dairy Cow Liver

In nonruminants, the differentiation of hepatocytes and the function of the adult
liver are controlled through the coordinated expression of a large number of genes
(Columbano and Ledda-Columbano, 2003). Environmental (including nutrients), au-
tocrine, endocrine, or paracrine signals all contribute to changes in hepatic gene
expression (Columbano and Ledda-Columbano, 2003). Therefore, transcriptomics
analyzed thorough bioinformatics tools are ideal to help identify regulatory mecha-
nisms in the bovine liver that are sensitive to nutrient balance during the transition
from pregnancy into lactation.

With current practice of feeding dairy cows, the energy density of prepartal diets is
increased during the last 2–3 weeks before parturition in the hope to maximize feed
intake before parturition and to provide an adjustment period for the rumen to adapt
to the higher energy diets typically fed at the onset of lactation (Grummer et al., 2004).
However, our data suggest that cows that are moderately overfed (more than 140% of
net energy requirements) during this phase of the dry period, even without becoming
obese or obtaining a too high body condition score, may be placed at greater risk for
peripartal health problems (Dann et al., 2006). A consistent finding in our studies
and others (Rabelo et al., 2003; Grummer et al., 2004) is that cows allowed ad libitum
access to higher than required energy diets (net energy of lactation greater than
1.50 Mcal/kg dry matter) at the end of the dry period have a stronger decrease
in feed intake before parturition and a lower increase in feed intake postpartum.
Therefore, a more controlled energy content of the diet (i.e., diets that meet but do
not greatly exceed energy requirements prepartum) may be beneficial by promoting
a more consistent feed intake around parturition (Drackley et al., 2006). The amount
of energy intake prepartum is known to induce changes in blood and liver tissue
metabolic indicators after parturition (Drackley, 1999; Dann et al., 2006).

In two studies, we used a cDNA microarray consisting of 7872 annotated cattle
genes to evaluate liver transcriptional adaptations to the prepartal level of energy
intake and the change in physiological state (Loor et al., 2005, 2006). Diets were
fed ad libitum to exceed net energy requirements (∼140% of requirements), were
restricted to provide less than estimated requirements (∼80%), or were fed to meet
(∼100%) the calculated energy requirements during the dry period. When the indi-
vidual datasets (Loor et al., 2005; 2006) were combined and reanalyzed statistically
(Bionaz et al., 2007b), we found more than 4790 DEG (FDR ≤ 0.05) due to the inter-
action of treatment × time. An initial approach used for mining the data consisted of
clustering analysis using the same criteria as for the mammary time-course experiment
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(reported above). This analysis resulted in 13 clusters of genes with correlated expres-
sion profiles (Figure 9.3). In order to uncover coordinated molecular adaptations to
prepartum dietary energy level in liver, we performed for each cluster an enrichment
analysis of GO biological process, GO cellular component, and KEGG pathways using
DAVID. In addition, we also have analyzed functions and most enriched pathways
using Ingenuity Pathway Analysis.

The cluster analysis allowed uncovering many genes with a coordinated adaptation
to prepartal level of dietary energy. Interestingly, among the 13 clusters generated
by our data, 5 clusters (ca. 25% of DEG) had a similar pattern in both restricted
and energy-overfed cows versus controls (clusters 2, 5, 8, and 13, and to some degree
also cluster 12; Figure 9.3). The other 8 clusters revealed several differences between
groups (Figure 9.3). For example, cluster 1, cluster 9, cluster 10 and, to some extent,
also cluster 12, contained genes with greater temporal upregulation in liver of energy-
restricted cows than energy-overfed or control cows; whereas, cluster 4 and 6 contained
genes with greater downregulation in energy-restricted cows than the other groups
(Figure 9.3).

The functional analysis of the clusters identified few highly significant (FDR < 0.05)
enriched terms (biological process, cellular component, functions, or pathway) in
the clusters (Figure 9.3). However, most of the clusters presented overrepresented
functions. The genes in cluster 2, characterized by a strong downregulation by both
energy-overfed and restricted versus controls, were overrepresented with terms related
to induction of inflammation, suggesting that those dietary management approaches
similarly down-regulate genes involved in inflammatory response, in particular the
complement pathway (Figure 9.3). The IPA analysis confirmed the enrichment of
inflammatory-related functions, in particular acute phase response, with high enrich-
ment of several signaling pathways involving nuclear receptors that control cholesterol
synthesis (e.g., farnesoid X-activated receptor and liver X receptor beta). IPA also
identified among the top enriched functions in this cluster tissue morphology (mainly
involved in increasing number of cells), lipid metabolism (mainly increasing oxidation
of fatty acids), and cell-to-cell interaction (general activation of cells).

Those findings and the coordinated downregulation of inflammatory response-
associated genes by either overfeeding or restricting dietary energy prepartum were
novel. The complement system components are synthesized (ca. 90%) by liver and
participate in the activation of the immune system (Qin and Gao, 2006). The biolog-
ical consequence of down-regulation of the complement system would be a reduc-
tion in inflammatory-like responses after parturition compared to control cows. The
inflammatory-like conditions typical in peripartal cows have detrimental influence on
performance (Bionaz et al., 2007a; Bertoni et al., 2009); thus, the reduction of the com-
plement system should have prevented or reduced the postpartal inflammatory-like
response.

The synthesis of complement system components appears to behave as positive
acute-phase proteins (Qin and Gao, 2006); thus, a decrease in expression of these
molecules is indicative of a decreased acute-phase reaction in both energy-overfed
and energy-restricted cows after parturition. However, the evaluation of temporal ex-
pression of genes coding for acute-phase proteins (e.g., serum amyloid A 1 and ceru-
loplasmin) indicated a stronger acute-phase reaction postpartum in energy-restricted
cows compared to the other groups. In addition, a strong down-regulation of the
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Figure 9.3 k-means clustering analysis using Genesis software (Sturn et al., 2002) of ∼4790
DEG (false discovery rate ≤ 0.05) due to treatment × time in liver of cows underfed energy
(ca. 80% of energy requirements), overfed energy (ca. 150% of energy requirements), or fed
energy to meet requirements (control) prepartum (from dry-off to parturition). The X-axis
depicts the dietary treatments imposed by time point (−30, −14, 1, 14, 28, and 49 days relative
to parturition). The Y-axis depicts fold change in expression compared with −65 days relative
to parturition (i.e., the first sample before cows were assigned to treatments). The average
trend in expression pattern for all the genes composing each cluster is shown in pink. Genes
composing each cluster have correlated expression profiles and may take part in the same or
similar biological processes. Reported also are the GO biological process, GO cellular compo-
nent, and KEGG pathways in DAVID that were enriched significantly (Benjamini–Hochberg
multiple comparison correction <0.05). To help in data interpretation, the color of the ta-
ble matches the color of the cluster. Microarray data are from a reanalysis of Loor et al.
(2005, 2006). (See insert for color representation of this figure.)
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complement system can increase susceptibility of the cow to bacteria and virus infec-
tions because it will reduce the capacity of the immune system to respond to such
challenges (Qin and Gao, 2006).

Another common feature of the two diets versus controls that was uncovered by
the cluster analysis is the similar and strong up-regulation of genes involved in protein
synthesis (clusters 8 and 12 in Figure 9.3). The cluster 5, which grouped genes having
a similar pattern as those in cluster 8 and 12, was significantly enriched in the DAVID
analysis by genes involved in cytoskeletal organization. The IPA analysis confirmed
the significant enrichment of protein synthesis in cluster 8. No additional functions
or pathways were enriched at an FDR < 0.05. The high-enrichment and coordinated
upregulation of protein synthesis-related genes by over- and under-feeding energy in
the diet is a novel finding but an explanation for this response is not apparent when
considering that ruminant liver protein synthesis is rather unaffected by food intake
(Connell et al., 1997). However, it could be possible that the coordinated cytoskeletal
modification might require large increases in protein synthesis.

The functional analysis using DAVID of the clusters with a greater temporal in-
crease in expression in liver of energy-restricted versus energy-overfed or control
cows (clusters 9, 10, and 12) highlighted a significant enrichment of terms related
to catabolic activity of mitochondria (e.g., oxidative phosphorylation) and protein
synthesis (no pathways or functions were enriched significantly in IPA). Those results
indicated a coordinated up-regulation of catabolic activity by restricted energy feeding
prepartum. The consideration of all the terms enriched with an EASE score of 0.10
(a correction of the p-value implemented in DAVID) uncovered that also cluster 1
was enriched by the same terms, and that the increase in catabolic activity of the mito-
chondria was due to an increase of glucose catabolism (probably thorough increase of
TCA cycle). In IPA, cluster 1 was significantly-enriched by the fatty acid metabolism
pathway, indicating a greater degree of oxidation of fatty acids in the mitochondria
of energy-restricted versus energy-overfed or control cows. In particular, this cluster
included genes such as carnitine palmitoyltransferase 1A, acyl-CoA dehydrogenase
very long chain, acetyl-CoA acyltransferase 1, and cytochrome P450 family 3 subfam-
ily A polypeptide 4. In addition, antigen processing and presentation was enriched in
cluster 10. The coordinated increase in expression of genes involved in antigen pro-
cessing and presentation indicates a significant degree of responsiveness of liver from
energy-restricted cows to the presence of antigens, followed by an immune response.
This conclusion appears to be supported by the larger acute-phase reaction in those
cows as indicated by the greater expression of the SAA1 and CP.

The clusters 3 and 7, which grouped genes with greater increase in expression
(especially prepartum) in energy-overfed than energy-restricted or control cows, were
not enriched with any terms at an FDR-corrected p-value <0.05 in DAVID or IPA.
However, using as cutoff the EASE score <0.10 in DAVID we observed in both
clusters an enrichment of terms related to negative regulation of RNA metabolism
and processing, including transcription. The latter appears to be in contradiction with
the greater number of up-regulated genes between −65 to +14 DIM observed in
energy-overfed versus energy-restricted cows (Bionaz et al., 2007b).

The clusters 4 and 6 grouped genes with expression patterns characterized by a
greater temporal decrease in energy-restricted versus energy-overfed or control cows.
Cluster 4 was significantly enriched by the WNT signaling pathway, which is involved
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in liver development, regeneration, metabolism, and maintenance of normal function
(Behari, 2010). No functions or pathways were significantly enriched in IPA. At an
EASE score <0.10 as cutoff, we found that cluster 4 was enriched in DAVID by genes
involved in apoptosis and cellular response to stress; in addition, both clusters 4 and 6
were enriched by terms related to proteolysis and DNA damage response. Enrichment
analysis of clusters 4 and 6 suggests that liver of energy-restricted animals had either a
decreased ability to respond to damage and stress, or that liver experienced less stress.
The second suggestion appears to be the most likely explanation because liver from
obese rats had a decreased ability to respond to a damaging insult induced by reactive
metabolites (Corcoran et al., 1989). In our experiment, energy-overfed cows had
greater TAG accumulation in liver (Loor et al., 2006) and steatosis has been associated
with increased liver damage (Adinolfi et al., 2001) and greater mitochondrial ROS
production coupled with oxidative damage of the DNA (Gao et al., 2004). However,
as suggested by clusters with a coordinated upregulation in expression in energy-
restricted cows versus the other groups, energy-restricted cows appeared to have
experienced an increase capacity for postpartal oxidation of fatty acids, which may
have increased the production of ROS.

The more than three-fold increase in prepartal serum insulin in energy-overfed
versus restricted cows could have primed the liver to accumulate more triglycerides
postpartum (Loor et al., 2006); however, none of the clusters was significantly enriched
by insulin signaling pathways or related terms, not even considering the noncorrected
p-value. To further evaluate potential effects of insulin on liver, we performed a
large network analysis considering all the interactions of the DEG in each cluster
with insulin.

Results from the analysis suggested a minor effect of insulin on the clusters of
genes, with a proportionally greater effect on cluster 10, followed by cluster 8 and 9
(the expression of 2.3, 2.0, and 1.7%, respectively, of genes in those clusters could be
affected by insulin). Our analysis suggests a lack of direct role of insulin in driving
coordinated transcriptome adaptations in liver of peripartal dairy cows. The higher
concentration of plasma insulin in energy-overfed cows could have had an indirect
effect on liver by increasing accumulation of triglycerides in adipose tissue resulting
in a more sustained postpartal release of NEFA into blood (Loor et al., 2006).

To further characterize the coordinated transcriptomics adaptations to energy
prepartum, we performed network analysis using IPA. The clusters that could form
the largest networks of genes encompassing all possible relationships (e.g., protein/
protein, DNA/protein, etc) were cluster 10 and 12, with more than 36% of the genes
able to form networks, followed by cluster 4 (with 35% of the genes in cluster able
to form networks). Cluster 3 was the most highly enriched by TF (ca. 46% of genes
were TF).

Interestingly, except for cluster 8 where the top function among the networks of
genes was protein synthesis, all the other networks in clusters were highly enriched
by genes involved in cell cycle, cell death, and cell growth and proliferation. In fact,
the largest transcriptional networks were enriched by TF such as MYC, TP53, and
FOS, which are involved in cell cycle/death. In this last analysis it has to be taken into
account that those TF are among the most studied; thus, it is not surprising that these
TF have the greatest number of interactions in the original IPA knowledge base. Few
clusters contained TF other than the above among the most important in terms of
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numbers of genes within the network controlled. For example, in cluster 1, the largest
transcriptional networks were produced by PPARA, XBP1, and STAT, while the TF
with the largest connections in the networks of cluster 2 was NFE2L2 (nuclear factor
erythroid-derived 2-like 2) and PPARA. In addition, HIF1A (hypoxia inducible factor
1 alpha subunit) was among the TF with the largest network in cluster 5.

The overall analysis surprisingly uncovered very few functions/pathways with a co-
ordinated transcriptional regulation. Among those, protein synthesis appears to have
been coordinately induced by either overfeeding or restricting dietary energy prepar-
tum, with an overall larger increase in restricted cows. It also appears that there was a
coordinated downregulation of genes involved in liver response to inflammation with
both dietary treatments. The restriction of dietary energy prepartum appears to have
coordinately increased expression of genes involved in fatty acid oxidation and energy
production (with a likely role of PPARA and STAT) mostly involving mitochondrial
components. Because of the well-known response of PPAR to long-chain fatty acids,
our results point at potential practical uses of dietary lipid supplementation during the
peripartal period. However, as we argued before (Loor, 2010), more in-depth studies
with various doses and combinations of long-chain fatty acids need to be conducted
with peripartal cows.

From a Systems Biology perspective, it would be important to conduct functional
studies, which address the relevance of the pathways/functions that have been found
to be altered by nutritional management and physiological state. A starting point in
such efforts could entail the identification and testing of TF networks and their targets
as we have proposed recently (Loor et al., 2007; Loor, 2010). Several transcription
regulators, their target genes, and the molecular functions that they affect have been
uncovered among the DEG (for additional detailed examples, refer to Loor, 2010).
Those regulators could be potential markers that can be targeted via management or
nutritional measures in the future.

Dietary Lipid Supplementation, Ruminal Metabolism, and the
Mammary Gland Transcriptome

In the past two decades, there has been substantial interest in the possibility to modu-
late bovine, caprine, and ovine milk fatty acid profiles through nutrition with the goal
to improve the nutritional properties of milk fat with respect to human health (Bau-
man et al., 2006). It is now well established that dietary factors such as level of forage
and grain, source and amount of supplemental lipid (e.g., marine polyunsaturated FA,
saturated FA), and their combinations can have marked effects on ruminal microbial
lipid metabolism (Lourenco et al., 2010), which largely dictates the type and amount
of LCFA (trans-18:1, conjugated 18:2, and 18:3 isomers versus saturated LCFA) that
is available to tissues for metabolism (Shingfield et al., 2010).

Previous studies have resulted in a better understanding of the productive response
of the animals, the underlying differences between species, and have increased our
knowledge of the metabolism of dietary and ruminally derived LCFA in the mammary
gland (Shingfield et al., 2010). Although there have been several studies of transcrip-
tional adaptations of bovine mammary tissue to dietary lipids, they have focused mostly
on lipogenic target genes (e.g., Bauman et al., 2008). Large-scale transcriptomics
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adaptations of bovine mammary tissue in response to dietary lipids remain largely
unknown.

The use of microarrays in rodent mammary gland in response to supplemental
lipid has allowed for a more holistic view of the systematic adaptations in mammary
tissue. An initial study in mice underscored the importance of gene transcription in
the regulation of lipid synthesis (Rudolph et al., 2007). Although with technical, but
unavoidable, limitations (caprine RNA on a bovine microarray), a study of the caprine
mammary transcriptome in response to fat supplementation (Ollier et al., 2009) pro-
vided evidence of the suitability of large-scale transcriptomics to study responses to
nutrients by the ruminant mammary gland.

Ruminal unsaturated lipid metabolism gives rise to a wide variety of 18:1 and
18:2 fatty acids containing trans double bonds, some which have been clearly shown
(e.g., trans10–18:1, trans10, cis12–18:2) to alter bovine mammary lipid metabolism
(Shingfield et al., 2010). Previous work from our lab (Bionaz and Loor, 2008) suggested
that the complex dynamic process of regulation of milk fat synthesis in the bovine
mammary gland may be influenced by LCFA through the PPARγ transcriptional
network. Using immortalized bovine mammary epithelial cells, we recently provided
demonstration that saturated LCFA affect transcription of a large array of genes
involved in milk fat synthesis (Kadegowda et al., 2009).

In order to better understand the longer term systemic adaptations in biological
processes and gene networks in the mammary gland in response to dietary fat sup-
plementation, we conducted (Invernizzi et al., 2010) a transcriptomics analysis of the
mammary tissue in mid-lactating cows fed a control diet (CTR), a saturated fat diet
(EB), or a diet supplemented with blend of fish oil and soybean oil (FSO) for a period
of 3 weeks. The temporal adaptations of 29 genes associated with milk fat synthesis
have been reported previously (Invernizzi et al., 2010). At the level of production,
results clearly indicated that the FSO diet decreased milk fat synthesis markedly,
while feeding EB had no effect (Invernizzi et al., 2010). In addition, the composition
of LCFA in milk fat was substantially affected by the treatments, with FSO-fed cows
yielding greater amounts (moles/day) of trans-LCFA and lower amounts of de novo-
synthesized LCFA in milk (Invernizzi et al., 2010). Those results confirmed previous
work with similar types of diets (Shingfield et al., 2006). Despite the large effect at
the level of milk fat synthesis, which was most dramatic at ∼1 week postinitiation
of feeding, only 2 of 29 genes were affected significantly at day 21 of feeding. Quite
unexpectedly, most transcriptomics adaptations to supplemental fat were observed at
7 days postfeeding. Those results led us to conclude that control mechanisms regu-
lating fat synthesis in response to milk fat-depressing diets occur quite rapidly, i.e.,
the mammary gland adapts/adjusts its metabolism via transcriptional mechanisms
(Invernizzi et al., 2010)

In this section we present results from the same samples analyzed by a microarray
but only at day 21 of treatments. The statistical analysis at day 21 was covariate-
adjusted to day 0 (prior to feeding treatment diets) to account for potential animal
variation. We found at 3 weeks of treatment a total of 1432 DEG (FDR ≤ 0.05 for
the overall effect and a p-value ≤ 0.01 for each comparison) in mammary tissue due
to feeding EB versus CTR, 847 DEG between FSO and CTR, and 1137 between the
two lipid-supplemented treatments. Those data indicated a larger effect of saturated
LCFA (i.e., EB) on the bovine mammary tissue transcriptome. The greater sensitivity
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of bovine cells to saturated versus unsaturated LCFA seems to be quite consistent
across different bovine cell types, as shown by previous findings from our lab using
immortalized mammary or kidney epithelial cells (Invernizzi et al., 2009; Kadegowda
et al., 2009; Thering et al., 2009).

The bioinformatics analysis of DEG was performed with Ingenuity Pathway Anal-
ysis (IPA relies on the ORA approach) and the DIA approach described in the first
sections of this chapter. Analysis of DEG between EB and FSO using IPA showed that
the top enriched functions (FDR ≤ 0.05) after 21 days of supplemental lipid feeding
were associated with lipid metabolism, molecular transport, small molecule biochem-
istry and carbohydrate metabolism. Interpretation of the functional analysis suggests
that mammary tissue of cows fed EB versus FSO decreased lipid synthesis processes
(LCFA, triglyceride, and cholesterol), catabolism of fatty acids, and metabolism of
carbohydrate. In addition, the same gene list contained as the most enriched pathways
acute phase response, oxidative phosphorylation, and TCA cycle.

The results of pathway analysis reinforced the finding of a greater degree of energy
utilization by mammary cells of cows fed for 21 days with FSO than EB; furthermore,
supplemental FSO appeared to have induced a more pronounced immune response
by mammary cells compared to EB. The DIA analysis results supported the above
conclusions (Figure 9.4). On the basis of known biochemistry of the ruminant mam-
mary gland (Bauman et al., 1970), a reduction in energy production in mammary cells
can be partly explained by the inhibition of cytosolic isocitrate dehydrogenase and
the pentose phosphate shunt (more induced by FSO than EB), both of which are the
major sources of NADPH for mammary cells. The functional analysis suggest that
this coordinated mechanism could partly have reduced de novo fatty acids synthesis
in favor of greater uptake of preformed LCFA in cows fed EB versus FSO. However,
the calculated de novo synthesis of LCFA was greater due to EB than FSO at day 21
(Invernizzi et al., 2010).

A reduction of NADPH also might involve an inhibition of glutathione metabolism
(Invernizzi et al., 2009), which is dependent on NADPH. Glutathione metabolism was
significantly enriched and was downregulated in the comparison of DEG between EB
and FSO. The inhibition of glutathione metabolism would imply an alteration in the
antioxidant status and/or the level of reactive oxygen species in mammary cells when
saturated fat is fed. Opposite to our results with marine LCFA (rich in 20:5n-3 and
22:5n-3), soybean oil supplementation (with high concentration of 18:2n-6 LCFA)
for 5 days decreased murine mammary mRNA expression of enzymes of the pentose
phosphate shunt, mitochondrial citrate transporter, and enzymes of fatty acid synthesis
(Rudolph et al., 2007). Thus, there may be species differences in sensitivity to type of
dietary unsaturated LCFA.

The functional adaptations of the cows fed EB versus FSO was opposite to what
would be expected from evaluating milk fat percentage and yield, i.e., saturated LCFA
feeding does not result in lower milk fat percentage or yield and should not affect
mammary lipogenic pathways (Shingfield et al., 2010). However, the data also indi-
cated a large inhibition of lipid and glucose catabolism due to EB, suggesting that the
mammary gland was likely using saturated LCFA as energy source or for esterifica-
tion to TAG to produce milk fat. Under such scenario, the reduction in expression
of genes involved in lipid metabolism pathways may be a way to control flux through
these pathways. Because most changes in lipogenic gene expression assessed by qPCR
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Figure 9.4 Overall calculated dynamic impact (DIA) in KEGG pathways of DEG in bovine
mammary tissue from midlactation cows fed a control diet (CTR), the control diet supplemented
with saturated lipid (EB), or the control diet supplemented with a blend of fish oil and soybean
oil (FSO) for 3 weeks. Shown are the main pathway classification groups (left column) and
corresponding subgroups. The heat map denotes potential increase (red shade) or decrease
(green shade) of metabolic flux or signaling through the pathway for each treatment comparison.
The overall impact is denoted by the size of the blue bar (the larger the bar the greater the
impact of DEG on the category of pathways). The most impacted pathways with the overall
flux (red shade denotes increases and green shade denotes decreases) for the comparison EB
versus CTR and FSO versus CTR are shown in the right column. The transcription factor (TF)
networks produced by DEG in EB versus CTR and FSO versus CTR are reported in the bottom
panel. The TF in each network are highlighted by larger font. Details of the animal experiment
and portions of the microarray analysis have been reported previously (Invernizzi et al., 2009,
2010). (See insert for color representation of this figure.)
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were observed at 7 than 21 days post treatment (Invernizzi et al., 2010), it is likely
that the “bigger-picture” response to long-term supplemental lipid represented a type
of adaptation despite the sustained reduction in milk fat synthesis through day 21 in
cows fed FSO. The results point to an interpretation of the large-scale transcriptomics
data in which the changes observed due to FSO are a consequence of the mammary
tissue attempting to counteract the milk fat depression effect, whereas, in the case
of EB, mammary tissue is controlling a milk fat synthesis response due to influx of
saturated LCFA.

The analysis of KEGG pathways using DIA (Figure 9.4) suggested an activation
of amino acid metabolism in FSO versus CTR. In general, feeding FSO or EB versus
CTR resulted in an overall activation of phenylalanine, histidine, and tryptophan
metabolism (Figure 9.4). In addition, primary bile acid biosynthesis was a highly
impacted pathway by both EB and FSO versus CTR but in an opposite fashion, i.e.,
flux was upregulated by FSO and downregulated by EB (Figure 9.4). Although it
is unlikely that mammary cells synthesize bile acids per se, the significance of this
metabolic pathway likely is due to an increase in the availability of cholesterol in
blood as a response to lipid supplementation (e.g., Loor et al., 2005). Such a response
is supported by the fact that negative regulation of cholesterol import and negative
regulation of sterol and cholesterol transport (among GO biological processes) were
the most impacted in the comparison of EB versus CTR; it can be envisioned that such
responses at the level of mammary tissue favored an increase in cholesterol import into
the mammary gland, thus, decreasing the need to use LCFA for cholesterol synthesis
within the tissue. Among the pathways related to genetic information processing,
protein export was activated by FSO versus CTR but inhibited with EB versus CTR.
This finding suggests a potential decrease in protein secretion due to EB and increase
in protein secretion due to FSO. However, milk protein percentage and yield did not
differ due to diet (Invernizzi et al., 2010).

The PPAR signaling pathway was the most-inhibited pathway under the organismal
system category in the comparison EB versus CTR. Studies performed in our lab
support the idea that PPARγ exerts a crucial role in mammary gland lipid metabolism
in response to saturated long-chain fatty acids or very long-chain polyunsaturated
fatty acids, with an activation of the nuclear receptor network by saturated LCFA
(Kadegowda et al., 2009). Because PPARγ is a nuclear receptor controlling expression
of several genes involved in milk fat synthesis and its activity can be modulated
by LCFA, the practical implications of our findings are exciting. By increasing or
decreasing supplementation of specific LCFA in the diet, it might be possible to
modulate milk fat synthesis for a desire purpose, for example, reduce energy utilization
by mammary gland during the peripartal period as a means to lessen NEB.

The large degree of inhibition of the PPAR signaling pathway due to EB appears
to contradict our previous in vitro data. However, besides the in vitro nature of our
previous work, we evaluated the short-term effect (12 hours post treatment) while
in the present analysis we are clearly dealing with long-term consequences of dietary
lipid supplementation in addition to the “confounding” of ruminal and inter-organ
metabolism. As mentioned above, the fact that in vivo and in vitro data contrast might
be explained by the need of the mammary gland to control milk fat synthesis due
to influx of saturated LCFA. The data from the present analysis clearly indicated
that feeding LCFA, both saturated and unsaturated, has a strong and long-term
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transcriptomics effect on the mammary gland. In the case of FSO, despite the
pronounced negative effect on milk fat synthesis (Invernizzi et al., 2010) driven partly
by short-term transcriptional adaptations in key lipogenic genes (Invernizzi et al.,
2010), the mammary gland attempted to counteract the milk fat depressing effect
by further transcriptional adaptations beyond the classical lipogenic pathway. This
hypothesis will need to be tested further. However, if it held true, this new knowledge
might be exploited in practical terms to help in preventing milk fat depression.

Network analysis of TF and their targets within DEG was conducted to aid in the
identification of putative mechanisms of differential regulation of mammary tissue
in response to dietary EB or FSO (Figure 9.4). Feeding EB up-regulated expression
of E2F transcription factor 4, p107/p130-binding (E2F4), nuclear factor (erythroid-
derived 2)-like 2 (NFE2L2), retinoic acid receptor, alpha (RARA), forkhead box
O1 (FOXO1), and nuclear transcription factor Y, alpha (NFYA); whereas, it down-
regulated expression of breast cancer 1 early onset (BRCA1) and nuclear receptor
subfamily 5 group A member 2 (NR5A2). In addition, there were a large number of
PPARγ target genes affected (Figure 9.4) and most were downregulated. The ma-
jority of those genes are involved in transport and glyceroneogenesis (i.e., pyruvate
carboxylase (PC); phosphoenolpyruvate carboxykinase 1 (soluble), PCK1). Among
TF affected by feeding FSO, YY1 transcription factor (YY1, downregulated), his-
tone deacetylase 5 (HDAC5, upregulated), and nuclear receptor subfamily 3 group
C member 1 (glucocorticoid receptor) (NR3C1, upregulated) formed the largest net-
works with other target DEG (Figure 9.4). Those DEG are involved in response to
stimulus, development, transcription, and programmed cell death.

The above TF uncovered by our study are potential candidates for future molecular
studies in order to further characterize networks regulating milk fat synthesis beyond
the classical lipogenic genes. Once their role in mammary tissue has been demon-
strated, an additional step would be to determine whether they bind specific nutrients
including LCFA and what effects that may bring about. These approaches will lead
to identification of specific agonists and antagonists that could be used to manipulate
milk fat synthesis and/or other functional aspects of mammary function (e.g., milk
protein synthesis).

A detailed analysis of the mammary response to supplemental lipid was beyond
the scope of this manuscript. This brief discussion, in conjunction with qPCR data
reported previously (Invernizzi et al., 2010), allowed us to propose that mammary
gland is capable of adapting to the specific cellular concentration of LCFA, which is
largely dictated by diet and ruminal metabolism. In the milk fat-depression scenario,
the mammary gland of cows fed for more than 20 days with FSO counteracted the
antilipogenic effect by increasing expression of genes involved in lipid synthesis, par-
ticularly the synthesis of cholesterol and TAG. In the milk fat-enhancing scenario, the
large influx of saturated LCFA the mammary gland controlled lipid metabolic fluxes
by decreasing the expression of genes coding for enzymes involved in those biological
processes.

The analysis, interpretation, and conclusion of this nutrigenomic study only in-
cluded mammary tissue, but the mammary is highly dependent on other tissues such
as liver and adipose which also are sensitive to LCFA. There is evidence that those
tissues also are altered by dietary fat (Harvatine et al., 2009; Thering et al., 2009), thus,
the ensuing biological events can potentially influence mammary gland adjustments
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to LCFA. This represents another important consideration in the context of Systems
Biology, i.e., mammary function is one important element of an integrated system.
Future studies of lipid supplementation would benefit from simultaneous analyses of
molecular and flux data across key organs or cell types.

Perspectives

Although still far from “complete” Systems Biology as exemplified by work in model
organisms (e.g., Ishii et al., 2007), use of transcriptomics coupled with bioinformatics
analysis and blood and tissue-level data, have allowed for a more holistic study of
the multifaceted adaptations of livestock tissues. This adaptation not only refers to
nutrition strategies but also to changes in physiological state. This information pro-
vides the basis for more detailed functional studies that could encompass evaluations
of gene function (e.g., via gene silencing) and subsequent effects on transcriptional
networks. There are ongoing efforts to develop algorithms for identifying TF and their
regulatory networks in livestock tissues (e.g., Hudson et al., 2009). These adaptations
undoubtedly will add to the currently available tools for bioinformatics analysis.

Current limitations for a more complete Systems Biology approach in livestock
include the lack of other “omics” data (e.g., metabolomics, proteomics, microR-
NAomics), incomplete genome annotation, lack of measurements of biochemical
fluxes and tissue nutrient flows, and the lack of additional bioinformatics tools to
analyze with a greater confidence the time course of the regulation of tissue function,
or to interpret multiple treatment experimental designs. Despite those limitations,
the Systems Biology approach appears extremely promising. Besides leading to the
discovery of regulatory targets, the Systems Biology approach might help to address
a broader spectrum of basic and practical applications including interpretation of
phenotypic data, metabolic engineering, or interpretation of lactation phenotypes.
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Chapter 10
Host–Pathogen Interactions

Mari A. Smits and Dirkjan Schokker

Introduction

Despite huge research efforts to understand the interactions between hosts and
pathogens during an infection, it is still very difficult to translate the generated fun-
damental knowledge into strategies to prevent and fight infection diseases effectively,
not only in humans but also in livestock animals. This inability is most probably due to
the focus of researchers on particular components of the “host–pathogen interaction”
system. Nevertheless, these focused approaches have been very successful in the iden-
tification of major virulence and host defense mechanisms. However, the research
field is not able yet to explain the course and severity of infections due to the fact that
several hundreds of host- and pathogen-encoded components interact with each other
in a complex manner, each contributing to the infection process, either quantitatively
or qualitatively. Therefore, appropriate methodologies are required to integrate and
analyze the vast amount of existing and future interaction data in order to get a more
complete picture of host–pathogen interaction networks. The field of Systems Biology
provides novel concepts and methodologies that allow such analyses on the behav-
ior of biological systems. This chapter describes the first steps in the application of
Systems Biology to study the behavior of two highly interacting biological systems,
namely that of the invading pathogen and that of the defending host.

In a general sense, the research field of host–pathogen interactions is well devel-
oped due to its impact and importance of infectious diseases that threaten human and
animal health. The field is closely linked to our growing fundamental understanding
of the host’s innate and adaptive immune system and to our current understanding
of the wide variety of mechanisms that pathogenic microorganisms use to invade, re-
side, and replicate within hosts. Quantitative and qualitative aspects of host–pathogen
interactions determine whether pathogens are able to invade hosts, survive and repli-
cate, spread throughout the body, and transmitted to other hosts. These aspects also
determine the pathology and severity of the disease resulting from the interplay be-
tween host and pathogen: either elimination or colonization of the microbe without
causing clinical signs of disease, or colonization of the microbe causing diseas, ranging
from mild to deadly. Both microbial virulence as well as host disease susceptibilities
are frequently seen as traits of pathogens and hosts, respectively. However, this is not
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correct since both depend on dynamic interactions between the two (Casadevall and
Pirofski, 2000).

Recent studies focusing on host–pathogen interactions increasingly use high-
throughput -omics technologies that generate ten to several hundred of thousands of
data points. They provide genome-wide global views of the molecular structures and
molecular compositions of biological samples. Such studies have shed light on several
virulence strategies used by microbes, on a number of defense strategies used by hosts,
and on several mechanisms by which the interactions between hosts and pathogens are
influenced by external factors, such as nutrition and stress. However, biological func-
tions do not simply manifest themselves from the addition of the properties of system
components, but rather arise from the dynamic interactions of these components. In
addition, individual studies usually focus on one specific biological level, i.e., genes, cy-
tokines, or macrophage activity, on particular cells or tissues, i.e., dendritic cells (DCs)
or spleen, a particular time frame, and either host-response or pathogen inference.
However, to understand the genetics and physiology of host–pathogen interactions,
it is required to get data information from different time frames and different scales,
i.e., genes, molecules, networks, pathways, cells (host as well as pathogens), tissues,
organs, organisms.

Unfortunately, it is still difficult to analyze such multiscale systems as a whole.
As described elsewhere in this book, the framework of obtaining a better view of
the behavior of complex biological systems is now beginning to emerge through the
application of Systems Biology. The goal of the application of Systems Biology in
host–pathogen research is the development of models that describe the biology of
host–pathogen interactions. These models will provide a framework to predict (aspects
of) the outcome of “host–pathogen interaction” system in response to changes in the
environment, host, and pathogens. The availability of such models may provide a
sound innovative basis for improving the prevention and intervention of infectious
diseases in farmed animals. Several examples, approaches, and perspectives are given
in the rest of this chapter.

Data Explosion and the Rationale for Systems Biology Approaches

Data Explosion

Livestock research experiences an enormous data explosion. Complete genome se-
quences of major livestock species are available for several years now (see, e.g.,
http://www.ebi.ac.uk/ and http://www.ncbi.nlm.nih.gov/) and projects to sequence in-
dividual livestock genomes are underway. In addition, data on the genetic variability of
livestock genomes, especially with regard to single nucleotide polymorphisms (SNP),
is rapidly expanding. The field of pathogen genomics is even more mature compared
to that of livestock genomics. Because of their relatively small sizes, pathogen genomes
were the first to be completely sequenced. These efforts have provided researchers
fundamental insights into the biology of pathogens, evolutionary relationships, and
the determinants of virulence. The availability of a new-generation DNA sequencing
machines using massively parallel approaches increases the amount of DNA- and
RNA-based information as well as information on genetic variation (Mardis, 2008a,
2008b). With this type of information, the genetic potential of organisms can be



P1: SFK/UKS P2: SFK

BLBS088-10 te Pas September 10, 2011 4:27 Trim: 244mm×172mm

Host–Pathogen Interactions 249

documented and, theoretically, their complete genetic potential for traits and char-
acteristics can be assessed. Advanced statistical approaches are currently successfully
applied to investigate direct correlations between genome sequence variants and phe-
notypic characteristics (Mardis, 2008b).

High-throughput functional genomic approaches are also increasingly used in this
area for the identification of system components, such as genes, transcripts and pro-
teins, and processes, such as ligand–receptor interactions, cell-to-cell communication
(hormones, cytokines), cell proliferation, cell differentiation, and cell motility. Such
studies use a wide variety of in vitro, ex vivo, and in vivo infection systems and focus
on either individual cells, tissues, and/or organs. They compare infected hosts with
uninfected hosts, hosts that differ in their susceptibility to (particular) pathogens, as
well as the effect of pathogens (serotypes, isolates, mutants) that differ in virulence
characteristics. These studies shed light on the composition and dynamics of the bio-
logical systems and help to identify the molecular and cellular mechanisms involved in
the phenotypic characteristics displayed by the system. Especially mRNA expression
profiling is a powerful tool to study the behavior of host–pathogen interaction systems
(http://www.ncbi.nlm.nih.gov/sites/entrez?db=geo). Technical improvements in the
area of functional genomic approaches will further enhance our insight into the spa-
tiotemporal dynamics of gene expression (Yashiro et al., 2009). In a similar way, tech-
nical advances in the field of mass spectrometry will also contribute to a data explosion
in proteomic and metabolomic research (Lippolis and Reinhardt, 2008). Furthermore,
high-throughput cell-based assays are widespread and provide massive data on system
parameters that go beyond the level of cellular components (Wunder et al., 2008).

Rationale for Systems Biology Approaches

A number of specific host–pathogen interactions have been addressed by various dif-
ferent experimental and theoretical approaches. For example, the effect of pathogen
W on the gene expression of in vitro-cultured cell type X, or the effect of a host serum
factor Y on the expression level of virulence factor Z. As indicated in the previous
paragraph and elsewhere in this book, the behavior of biological systems cannot be
derived from the simple addition of the properties of (sub)system components, but
emerge from the dynamic interactions between all system components. Fortunately,
the framework of obtaining a better view of the properties of biological systems is now
beginning to emerge through the application of Systems Biology. Unlike traditional
research, Systems Biology approaches take into account the information derived from
multiple biological scales and multiple time frames. The goal of host–pathogen Sys-
tems Biology is to develop models representing the biological mechanisms underlying
host–pathogen interaction at the various scales and time frames, both from the per-
spective of the host as well as that of the pathogen. Undoubtedly, such models will
consist of different modules, each describing a specific aspect of the interaction be-
tween hosts and pathogens. Each module will include key biological building blocks as
nodes and quantitative parameters representing the flow of material and information
within the system. An important issue hereby is to identify the external variable factors
affecting model outputs. They include host and pathogen genetic factors, historical
factors, and factors of the production environment, such as housing, management,
nutrition, humidity, pathogen load, stress, etc. The development of such models in
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which the dynamic (kinetic) relationships between system components and the effect
of external factors are represented by mathematical equations, will allow the com-
putational simulations of system responses. However, it should be noted here that at
this stage the development of models that integrate various, different aspects, such
as metabolic aspects, immunological aspects, and health aspects, as a function of two
independent genomes and multiple environmental factors is a major challenge. It is
particularly difficult because two different systems (host and pathogen) as well as their
interactions need to be understood. As indicated later on in this chapter, the novel
concepts and methods that are or will be developed within the Systems Biology arena,
may help to meet these challenges.

The expectation is that not only the models but even the individual modules of
such models will provide a robust framework to predict aspects of the outcome of
host–pathogen interactions in response to external changes and/or changes in host
and microbe genetics. The expectation is also that the availability of such models
will contribute to the improvement of diagnosis, development of improved drugs,
discovery of new methods for therapeutic intervention, and prevention of infectious
diseases. Like in the human biomedical field, Systems Biology may be used to develop
veterinary practices that are more preventive and predictive than they are now. Spe-
cific benefits would be: the assessment of the probability of farm animals to develop
(specific) infectious diseases, the selection of animals adapted to specific health man-
agement programs, the selection of animals with lower disease susceptibility to assist
in developing early warning systems for disease, and the identification of new targets
for diagnosis, prevention, and intervention.

Infection Biology

Infection biology is a research area that combines the fields of immunology and
microbiology (virology, bacteriology, parasitology, and epidemiology) in order to get
more insight in the development of infectious diseases. In this paragraph, we briefly
discuss the immune system, which is classified as a two-component system consisting
of innate and adaptive immunity. The innate system is the most dominant one and
is activated when microbes are recognized by components that are conserved among
broad groups of microorganisms or when host cells send out alarm signals. Innate
immune defenses are not antigen-specific, they operate in a generic way, and do not
lead to immunological memory. The adaptive system provides an antigen-dependent
lagged response, it requires the specific recognition of “nonself” antigens, and leads
to immunological memory. This memory is used to quickly eliminate pathogens that
infect the host more than once. The most important host cells involved in innate and
adaptive immunity are indicated in Tables 10.1 and 10.2. At the end of this paragraph,
we also describe briefly some major virulence factors of pathogens, as well as some
examples of mechanism that pathogens use to evade host immunity.

Innate Immunity

Before innate immune mechanisms are activated, pathogens encounter several bar-
riers that protect host organisms from infection. Mechanical factors such as the skin
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and epithelial layers act as a first line of defense. The shedding of the outermost layers
of barrier tissues removes adhered microorganisms. The flushing action of saliva and
tears protect mouth and eyes. Moreover, movement of cilia keeps the respiratory
tract free of microorganisms, and the mucus layer of the gastrointestinal tract traps
microorganisms and prevents direct contact with epithelial cells. Chemical factors,
such as lysozymes and phospholipases are present in saliva, nasal secretions, and
tears, destabilize bacterial membranes and break down bacterial cell walls. Gastric
secretions and sweat have a low pH to prevent bacterial growth. Furthermore, in
the gastrointestinal and respiratory tract, defensin proteins are present, which con-
tain antimicrobial activity. In the lungs, surfactant proteins can bind to pathogens
(opsonize), which makes them more susceptible to the action of phagocytes. Biologi-
cal factors, such as the microbiota in the gut and skin, also contribute to host defense.
They secrete toxins or compete for nutrients, thereby preventing adhesion, coloniza-
tion, and growth of invading pathogens. Important aspects of the innate immune
system are: complement activation, recognition of pathogenic invaders, inflamma-
tion and recruitment of leukocytes to infection sites, and activation of the adaptive
immune system.

Complement Activation

The complement system consists of approximately 25 small inactive proteins that cir-
culate in the blood. After activation, protein cleavage events occur, leading to the
release of cytokines and to the initiation of further protein cleavage events. This re-
sults in a massive activation of membrane bound complexes that kill invading cells.
The complement system is part of the innate immune system since it does not change
in time. However, the complement system can be brought into action by products
(antibodies) of the adaptive immune system via the so-called classical complement
pathway. The alternative complement pathway and the mannose-binding lectin path-
way are activated without the presence of antibodies (nonspecific immune response).
Although the three pathways contain different receptors, in all three pathways the
key protein C3 is proteolytic activated. C3 has a unique internal thioester bond, which
is exposed to the molecular surface upon activation and which covalently binds to
invading microorganisms (Law et al., 1980). Activation of the complement system
results in opsonization, chemotaxis, and lysis. Through opsonization, phagocytosis of
the invading pathogens is enhanced. Chemotaxis contributes to attracting different
immunological cells such as macrophages and neutrophils. Direct lysis and bursting
of the invading pathogen by disrupting the membrane is a major protective function
of the complement system.

Recognition of Pathogenic Invaders

At the molecular level, various host-encoded receptors are in place to discriminate
between self and nonself (foreign) components. These receptors are the primary sen-
sors of the host to detect foreign (microbial) products. Practically all cells of the
innate immune system, such as macrophages, DCs, neutrophils, natural killer cells,
and mast cells, express such receptors. And also epithelial cells use them to constantly
screen their environment for the presence of unwanted pathogens. A special branch
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of these receptors is the pattern recognition receptors (PRRs), which are usually lo-
cated on the surface of a number of different host cells. These PRRs can recognize
pathogen-associated molecular patterns (PAMPs) (Janeway, 1989; Medzhitov, 2001).
PAMPs are conserved molecular patterns and are uniquely produced by microbes.
PAMPs are often invariant between microorganisms of a given class and are essen-
tial for their survival. Because of these typical features they are very suitable targets
for innate immune recognition (Tapping, 2009). Examples of PRRs are the Toll-
like receptors (TLRs), C-type lectin receptors (CLRs), and the intracellular-located
nucleotide-binding oligomerization domain (NOD) family of proteins. TLRs recog-
nize an array of PAMPs, e.g., lipopolysaccharide (LPS), peptidoglycan, or lipoeichoic
acids, lipoproteins, CpG DNA, dsRNA, zymosan, and flagellin, which are found in
bacteria, viruses, or fungi. The TLR family size differs in species, humans have ap-
proximately 12 TLRs, whereas sea urchin has up to 222 (Hibino et al., 2006). CLRs
bind specific carbohydrate structures on both self-antigens and cell wall components
of pathogens in a calcium-dependent manner (Cambi et al., 2005). After recognition
of PAMPs by PRRs, intracellular signaling pathways are activated leading to activa-
tion of transcription factors such as those belonging to the NF-κB family which, in
turn, are able to induce transcriptional programs of the innate immune system, for
example, the synthesis and secretion of inflammatory cytokines (Kumar et al., 2009).
Furthermore, CLR-ligand binding leads to antigen internalization and degradation,
followed by antigen processing and presentation to DCs (Beg, 2002; Figdor et al.,
2002; Dam and Brewer, 2010).

Inflammation and Leukocytes

Inflammation is initiated by cells, such as macrophages, DCs, and mast cells, which
are present in nearly all tissues. After infection, these cells become activated and
secrete eicosanoids and cytokines. These molecules cause an increased blood flow into
infected areas and induce the migration of additional white blood cells (leukocytes) to
these sites. The cytokines include chemokines that induce chemotaxis and interferons
(IFNs) that induce antiviral effects, such as the inhibition of the protein synthesis
machinery. The inflammatory mediators not only recruit immune cells to the site
of infection, but also promote the healing of affected tissues. Therefore, leukocytes
can move unrestricted through the body for surveillance and protection. Most innate
leukocytes are not able to replicate, but are the progeny of multipotent hematopoietic
stem cells. A schematic overview of the different leukocytes and their functions is
presented in Table 10.1.

Activation of Adaptive Immunity

DCs are central in the induction and regulation of immune responses (Banchereau
et al., 2003). In fact, DCs are thought to be the link between innate and adaptive
immunity, because of their ability to induce adaptive immunity. Their main function
is to process antigens and present it on the surface to other cells of the immune
system. They are mainly present in tissues that are in close contact with the external
environment. After activation of mature DCs, they migrate to lymphoid nodes where
they interact with T cells and B cells of the adaptive immune system. There they
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Table 10.1 Leukocytes and their functions

Class Function Reference

Mast cell Releasing granules containing histamine and
heparin (allergies)

(Marshall and Jawdat,
2004)

Monocyte Phagocytosis and activation of immune system,
antigen presentation

(Serbina et al., 2008)

Macrophage Phagocytosis and activation of immune system,
antigen presentation

(Serbina et al., 2008

Dendritic
cell (DC)

Antigen uptake and presentation (stimulating of
näıve T cells)

(Howard et al., 2004)

Neutrophil Phagocytosis and activation of immune system (Serbina et al., 2008)

Basophil Killing parasites covered with antibody and allergies (Schroeder, 2009)

Eosinophil Killing parasites covered with antibody and allergies (Cadman and
Lawrence, 2010)

Natural
killer cell

Tumor rejection and eliminate virus-infected cells (Hamerman et al.,
2005)

γ δ T cells Immunoregulation and cytotoxicity (Hayday, 2000)

orchestrate the development of an appropriate adaptive immune response (Finkelman
et al., 1996; Heath and Carbone 2001). Immature DCs gather self-antigens from
apoptotic cells and induce tolerance (Huang et al., 2000; Steinman et al., 2000). DCs
are constantly in communication with other cells in their neighborhood, either by direct
cell-to-cell contact or by cytokines. DCs produce a wide variety of cytokines, including
interleukins (ILs), IFNs, growth factors, and chemokines. Different combinations of
these cytokines can lead to particular differentiations of T cells. For example, high IL4
expression leads to a Th2 differentiation, whereas high IL12 and IFNG expression
leads to Th1 differentiation (Mosmann and Sad, 1996). This results in the priming and
activation of the adaptive immune system for attack against the presented antigens.
There are significant differences in the cytokines produced by the various DCs. For
example, the lymphoid DCs have also the ability to produce huge amounts of type-1
IFNs, which recruit more activated macrophage to allow phagocytosis.

Adaptive Immunity

The cells of the adaptive immune system are called lymphocytes, a specific type of
leukocytes, and constitute for the major part of B- and T-cells. They circulate through
the body within the lymphatic system and the blood. Approximately 20–40% of the
white blood cells are lymphocytes. Adaptive immunity is based on the recognition
and binding of specific determinants (epitopes) of nonself antigens by T-cell receptors
(TCRs) and immunoglobulins (Igs). TCRs are expressed on the surface of T-cells,
whereas Igs are produced by B-cells, either as cell membrane bound receptors or
as secreted molecules (antibodies). At their N-termini these receptors have loops
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Table 10.2 Lymphocytes and their functions.

Class Function Reference

Cytotoxic T
cell

Eliminate virus-infected and tumor
cells (allograft)

(Williams and Bevan, 2007)

B cell Secretion of antibodies and generating
memory cells

(McHeyzer-Williams and
McHeyzer-Williams , 2005)

Th1 Maximizes the killing efficacy of the
macrophages, proliferation of cytotoxic
T cells and produces opsonizing antibodies
(bacteria and some viruses)

(Romagnani, 2006)

Th2 Stimulate B-cell proliferation, induce
class switching and increase neutralizing
antibody production (helminthes)

(Romagnani, 2006)

Th17 Antimicrobial immunity (Romagnani, 2006)

Regulatory T
cells

Homeostasis of immune system and
self-antigen tolerance

(Romagnani, 2006)

of peptides that fold into a pocket for epitope binding, the primary sequence of the
peptide loops provide a specific binding structure to an epitope (Sadofsky, 2001). After
the primary adaptive immune response, immunological memory is created leading to
rapid response against pathogens that infect the host more than once. A schematic
overview of the major cell types of the adaptive immune response and their functions
is presented in Table 10.2.

Generation of Diversity

TCRs and Igs must be able to distinguish between many different potential antigens
and therefore these molecules must be produced in a very large variety of configura-
tions. Indeed, animals and humans are capable to produce more than 1014 different
Igs or TCRs. To generate such variation, T- and B-cells use site-specific DNA recom-
bination mechanism. This mechanism involves rearranging and assembling variable
(V), diversity (D), and joining (J) gene segments and is called V(D)J recombination
(Hozumi and Tonegawa, 1976; Brack et al., 1978). V(D)J recombination occurs be-
tween Ig and TCR gene segments that are flanked by conserved recombination signal
(RS) sequences. A palindromic heptamer and an AT-rich nonamer make up RSs and
these are adjacent to each of the coding segments. The heptamers and nonamers can
be separated by either 12 or 23 base pair spacers (Lieber, 1991). V(D)J recombination
starts when DNA double-strand breaks between the V, D, J segments and flanking
RSs are introduced. The latter process is induced by recombination of activating gene
(RAG)-1 and RAG-2, which are exclusively expressed in lymphocytic cells (Schatz
et al., 1989; Oettinger et al., 1990). Next, RS ends are accurately joined, while coding
ends are modified by potentially adding or removing nucleotides (Bassing et al., 2002).
Therefore, this variety of antigen receptors is not germ line encoded, but somatically
generated through a process known as clonal selection. Through these mechanisms
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the adaptive immune system contains an immense diversity of TCRs and Igs. As a con-
sequence, they are capable of initiating an immune response to an enormous diversity
of foreign antigens.

Virulence Factors

Virulence factors are molecules expressed by bacteria, viruses, fungi, and protozoa
that enable them to survive on or within a host. Frequently, these virulence factors
cause disease in the host as they interfere with certain functions of (the) host (cells).
Virulence factors are produced by pathogens to achieve specific properties for sur-
vival. These includes adherence to host components and colonization, inhibition and
evasion of the host immune system, entry into host cells, and the acquisition of the
necessary nutrients. Pathogens have developed a remarkable variety of strategies and
molecular machinery to accomplish survival in hosts (Aldridge et al., 2005; Jenner
and Young, 2005). In many cases, the pathogens interfere with the common transcrip-
tional program of the innate immune system. In other cases, pathogens exploit vital
cellular processes such as modulation of cell cycle progression, modulation of the actin
cytoskeleton, or modulation of secretory pathways. An extensive description of these
strategies goes beyond the scope of this review. Only some examples will be briefly
described here, just to demonstrate the diversity in strategies. (i) After the infection of
DCs by the HIV-1, the virus interferes with the host transcriptional machinery in such
a way that only an interferon-stimulated-gene cluster is induced while other immune
signaling gene clusters are inhibited (Izmailova et al., 2003). This results in the recruit-
ment of T-cells and macrophages, the main target for HIV replication, while avoiding
the activation of immune responses. (ii) Streptococcus pyogenes produces a surface
component that recognizes adhesive matrix molecules of the host. This component
mediates attachment to epithelial layers and commit to infection (Fisher et al., 2008).
(iii) Gram-negative bacteria possess the so-called type III secretion system (TTSS),
which acts as supramolecular syringes and inject bacterial proteins directly into the
cytoplasm of host cells. Many different TTSS translocated proteins have been identi-
fied in various bacterial species, including Escherichia coli, Salmonella, and Yersinia.
The injected bacterial proteins interfere with normal cellular functions, usually at
the transcriptional level, in order to convert the hostile environment of the pathogen
into a beneficial one. A multitude of cellular effects of TTSS-based injections have
been described in literature, including disruption of adhesion complexes, disruption of
phagocytosis, inhibition of cytokine production, and induction of apoptosis (Nomura
and He, 2005; Ly and Casanova, 2007). (iv) Evading the immune system can also be
a property of specific surface components of microorganisms, such as capsules. Such
components can inhibit phagocytosis (Hyams et al., 2010) and protect the pathogen
outside the host (Roberts, 1996). (v) A major group of virulence factors are bacte-
rial toxins, consisting of two groups: endotoxins, which are an intrinsic part of the
pathogens (such as capsule) and secreted exotoxins. Exotoxins can act as superanti-
gens (Kotb, 1995), damage the host cell membrane (Bhakdi et al., 1985), or act in the
cytoplasm of the host cell (Iglewski and Kabat, 1975). They cause a variety of effects,
such as hemolysis and necrosis of host cells or inhibiting protein synthesis (Dinges
et al., 2000). Endotoxins are primarily found on gram-negative bacteria. For example,
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LPS is present in gram-negative bacteria and causes a range of detrimental effects in
the host, including septic shock (Galanos and Freudenberg, 1993).

Transmission

Pathogens are transmitted from one source to another. Pathogens can be acquired
by direct contact with body fluids, objects, aerosolized droplets, or by ingesting of
contaminated food. Transmission of pathogens may also occur via a vector, which
could be mechanical or biological. Biological vectors deliver pathogens to new hosts
in an active manner, for example, by a byte, mechanical vectors transmit pathogens
in a passive manner, for example, by adherence to the legs of a fly. Transmission
parameters are influenced by a number of different factors, including environmental
factors (temperature, humidity), pathogen load, host density, genetic background
of populations, genetic factors of pathogens, host immune competence, vaccination,
nutrition, etc. There is a complex relationship between transmission and virulence
characteristics. This relationship affects the longer term coevolution of hosts and
pathogens. In general, one sees more severe clinical signs and higher death rates
during the first wave of new emerging disease.

Complexity and Scales

Space

The final goal of host–pathogen Systems Biology is to understand the physiology and
infectious disease development from the level of molecules, to cellular networks, host
cells, viruses, bacterial pathogens, tissues, organs, organisms, up to whole populations.
Since each biological level is already complex in its own, the complexity of the whole
system is enormous. Individual components are continually created, destroyed, and
circulated throughout the body, which increases the temporal and spatial diversity
even further. The whole systems spans about ten orders of magnitudes in space scale,
ranging from the size of a molecule to the size of a population. The temporal scale
spans from microseconds, for biochemical reactions, to the life span of organisms
and population in years. For the sake of simplicity, here we define and describe only
five biological levels from the perspective of the host, namely the molecular, cellular,
tissue, organism, and population level.

Molecular

The complexity of the host on the molecular level is mostly explained by the quan-
titative and qualitative variability of receptor molecules, the molecules involved in
signaling cascades, and the variation in the effector molecules. Mathematical models
could shed light on, for example, the efficiency of PAMP binding to PRRs or describe
the kinetics of the interactions between epitopes and TCRs.
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Cellular

The complexity at the cellular level has been investigated by a plethora of -omics
technologies. This provided insight into the complex signaling pathways that cells use
to adapt their transcriptional program in response to signals, picked up at the cell
surface or in the cytoplasm. At this time, only the global frameworks of a number
of these signaling pathways have been established. Models could help to understand
how these signaling pathways interact with each other in different cell types and how
they influence cellular transcriptional regulation and affect the resulting properties of
cells.

Tissue

The complexity at the tissue level is nicely demonstrated by the complexity and dy-
namics of the immune system. As described before, the immune system is highly com-
plicated and appears to be precisely tuned to detecting and eliminating infections. It
is made up of numerous different types of cells that communicate with each other and
migrate through the body and have different jobs to do. Immune responses involve the
collective and coordinated response of approximately 1012 cells. Mathematical mod-
eling of (parts of) the immune system may predict how various interactions together
result in particular immunological phenomena. Furthermore, the effect of potential
drugs can be tested in silico.

Organism

The complexity at the level of an organism is illustrated by the ability of pathogens
evading the immune system and migrating into different tissues. For example, My-
cobacterium tuberculosis can hide themselves in cells of the immune system (Pieters
and Gatfield, 2002) and subsequently induce systemic infection. They can reside in
multiple tissues and multiple organs. Communication between these tissues and or-
gans exist, as well as communication toward the immune system. Since each organ
contains tissue specific cells and other abiotic characteristics, pathogens are associated
to a certain biological environment (niche). Models describing host–pathogen inter-
actions at the organism level are useful for the identification of the critical bacterial
factors responsible for successful infection and the main components of the immune
response for successful defense. The first Boolean-based model that covers multiple
aspects of host–pathogen interactions have been published now and some examples
will be described in section “Interaction models.”

Population

The complexity of host–pathogen interaction at the population level is mostly captured
by ecological and epidemiological models. These models are top-down approaches and
may predict antigenic shifts, spatial-temporal effects (of vaccination), and transmission
characteristics of infectious disease outbreaks. Moreover, genetics also contributes to
the complexity at the population level, each individual has its genetic background and
will, therefore, react differently to infection. The SIR model, for example, computes
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the theoretical number of infected individuals with a disease in a closed population
over time. The model involves equations relating to the number of Susceptible animals,
the number of Infected animals, and number of Recovered animals. The SIR-derived
SEIR model includes exposed animals that do not have (yet) the disease (Li et al., 1999)
and the SIS model takes into account that recovered animals can be infected again
(Hethcote and Van Den Driessche, 1995). Also, combinations of susceptible, infected,
recovered, exposed, carrier state animals and animals with maternal immunity are
possible (Hethcote, 2000).

Time

The time course of an infection not only differs from pathogen to pathogen but also
differs between hosts. The time elapsed between exposures to a pathogen and when
clinical signs first appear may be as short as minutes to as long as several years. The
same is true for other phases of the infection process. Adherence is one of the first
events that connect a pathogen to structures of the body. After adherence, pathogens
can migrate and spread to other parts of the body and start to multiply to cause an
infection. After multiplication begins, pathogens can continue to multiply and resist
the defense mechanisms of the host, or a state of balance is achieved that causes
a chronic infection, or a carrier state is achieved without disease symptoms, or the
body is able to destroy and eliminate the invading pathogen. Usually, innate immune
responses will show-up in an attempt to eliminate the invading pathogens. However,
immune evasion mechanisms allow several pathogens to resist innate defense mecha-
nisms. In such cases, innate immunity alone is not sufficient and an adaptive immune
response needs to be build-up. The adaptive immune response is time delayed because
extended proliferation of B and/or T cells is necessary to produce an effective amount
of specific immune cells and/or antibodies. Usually, this takes several days. At the
same time, memory cells are generated that will be present for years. These memory
cells allow a much quicker specific immune response after follow-up infections with
the same pathogen or pathogens bearing homologous antigens.

Mathematical Models

Models can represent certain biological systems or phenomena and are by definition
imperfect. However, models can help to understand (parts of) systems by deduction
to only the most important components. In Systems Biology, mathematical modeling
is required to structure and represent the relationships between components of the
systems at various different levels. As indicated before, the information of the vari-
ous components of biological systems is rapidly increasing by application of -omics
technologies. With the help of mathematical models and computational tools, these
data can be used to improve our understanding of the functioning of biological
systems. By in silico simulations and experimental validations, hypotheses obtained
with these models can be tested, accepted or rejected, and adjusted to new or im-
proved hypotheses. This iterative cycle is a typical aspect of mathematical modeling in
Systems Biology.
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Mathematical Frameworks

Mathematical models are a collection of equations and variables, which describe a
system. With these equations, simulations in time can be run and predictions can be
made. The variables of models can have diverse sets of values, such as real numbers,
integer numbers, Boolean values, or strings. Equations describe the relations between
variables and thus represent properties of the system. Because of the large variety in
variables and equations, models can be classified into different groups: static versus
dynamic models, deterministic versus stochastic (probabilistic) models, and linear
versus nonlinear models. Static models do not account for time scales, in contrast
to dynamic models. In deterministic models, the outcome is precisely determined by
known relations among states and events. Contrary, in stochastic models, all variables
are described by probability distributions. In deterministic models, a specific input
always produces an identical output, this is not the case in stochastic models due to
randomness. Linearity or nonlinearity depends on the context, but in general when
all operators exhibit linearity, the model is defined as linear. Since different models
answer different questions, multiple mathematical models are in use and operate on
different scales. Here, we describe briefly a selection of models used to represent
aspects of host–pathogen interaction.

Boolean functions are used to describe gene regulatory networks (see also
Chapter 1). Moreover, Boolean functions are either true or false, often depicted by nu-
merical 0 or 1. By using logical operators like conjunction (AND), disjunction (OR),
and complement or negation (NOT), different scenarios for gene regulation can be
simulated (Table 10.3). However, more operators are known such as NOR, XOR,
XNOR, NAND, TRUE or FALSE, each having a different output on the regulation
of genes.

Although Boolean networks have a deterministic nature, Garg et al. (2009) have
managed to model stochasticity and robustness in gene regulatory networks. Boolean
functions are also used to model the dynamic interactions between pathogens with
the host immune system, for example, with Bordetella bronchiseptica or Bordetella
pertussis (Thakar et al., 2007). Both gram-negative pathogens are closely related but
cause different diseases in their host (Mattoo et al., 2001; Parkhill et al., 2003).
The model of Thakar et al. encompasses immunological cells, cytokines, antibodies,
and antigens, represented in 18 nodes that are common to both pathogenic species
(Thakar et al., 2007). After loading in BooleanNet for simulation studies (Albert
et al., 2008), three different phases could be identified for Bordetella infections and the

Table 10.3 Different scenarios for gene regulation of genes A and B.

Input Output

A B A AND B A OR B NOT B NOT A

0 0 0 0 1 1
0 1 0 1 0 1
1 0 0 1 1 0
1 1 1 1 0 0
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predicted differences in the clearance between the two species could be confirmed by
experimental data. The model was also used to simulate secondary infections. Again,
this resulted in differences between the two species. As expected, primary Bordetella
infections had a predicted effect on the progression of a secondary infection.

ODEs (ordinary differential equations) are often used to describe temporal dy-
namic events in systems. ODEs consist of one independent variable, here time, and
one or more derivatives to the independent variable. Furthermore, these different
variables can be expressed by one or more equations. A relatively simple model is the
Lotka–Volterra model (reviewed by Wangersky, 1978), also known as predator–prey
model, which models the interactions between two species. The following equations
describe this relation between preys and predators:

dN
dt

= aN − bN P

d P
dt

= cN P − d P

where N is the number of preys and P the number of predators. Furthermore, dN/dt
and dP/dt denote the growth of these populations in time t. Interactions between preys
and predators are described with the following parameters, a, b, c, and d. Parameter
a is the natural growth rate of preys, b is the predation rate coefficient, c is the
efficiency of converting preys into predators, and d is natural death of predators.
These ODE models and more enhanced models are already applied in the field of
microbial communities competing for food (Kaunzinger and Morin, 1998) and in
host–pathogen interactions (Hethcote, 2000; Fenton and Perkins, 2010). A time plot
of simulation with preys and predators is given in Figure 10.1.

Cellular automata models consist of many identical uncomplicated cells, which
together are capable of displaying complex behavior (Wolfram, 1984). These models
comprise a grid of cells, and each cell has a limited number of states, like “on” and
“off” or “0,” “1,” “2,” and “3.” The grid is also limited to a certain set of dimensions.
A set of cells is called a neighborhood, each cell has its own neighborhood. Before
simulations are run (t = 0), each cell has an assigned state. When simulation starts,
t is incremented by 1 and the state of all cells are updated by fixed rules. Cellular
automata models are applied in biology, e.g., insect population dynamics (Hassell
et al., 1991), HIV dynamics (dos Santos and Coutinho, 2001), and cellular dynamics in
the immune system (Celada and Seiden, 1992; Seiden and Celada, 1992). The “Game
of Life” is an example of simple rules leading to complex behavior (Gardner, 1970).
Three requirements have to be met: (i) the seeding pattern must not have simple
proof that the population can grow limitless, (ii) seeding patterns should apparently
grow limitless, and (iii) the seeding patterns change considerably for a period of time,
before ending in three possible situations: disappear completely, going to a stable
configuration, or entering an oscillating phase (repeating an endless cycle of two or
more periods) (Gardner, 1970). It is an infinite grid of square cells, where each cell
can be either alive (“on”) or dead (“off”). All cells interact with their eight neighbors,
which are the horizontal, vertical, and diagonal adjacent cells. Then, for the time-step
the following transition occurs (simultaneously): (i) live cells with fewer than two live
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Figure 10.1 Time plot of simulation with preys and predators. The y-axis depicts the number
of prey (black circles) and predator (grey triangles), whereas the x-axis depicts time in months.
The following parameter values were used, a = 0.4, b = 0.005, c = 0.00075, d = 0.2, initial N
(N0) = 200, initial P (P0) = 20, for the prey-predator model.

neighbors die, (ii) live cells with two or three live neighbors stay alive, (iii) live cells
with more than three live neighbors die, and (iv) dead cells with exactly three live
neighbors become alive. A few simple examples are depicted in Figure 10.2.

Partial differential equations (PDEs) are able to describe multiscale systems. When
a system consist of different types of components, it is sometimes necessary to
distinguish between these components by the use of PDEs. Almost all PDEs have

Figure 10.2 Game of Life. With only one simple rule “A live cell with two live neighbors, or
any cell with three live neighbors, is alive at the next step” (Gardner, 1970), different patterns can
be generated. The system is seeded state “1” (left) and the subsequent time point (right) the
new state “2” will be achieved. The following time point the system will go back to its initial
state, and thus a loop between state “1” and “2” is established (upper-left; blinker, upper-right;
block, bottom; toad).
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infinitely many solutions, thus, solving PDEs is often finding properties of the so-
lutions. A relatively simple PDE to solve is μt + μx = 0. The general solutions is
μ(x, t) = ϕ(x − t) for any function ϕ of one variable. However, most PDEs are very
difficult or impossible to solve, like indefinite integrals. For example, PDEs describ-
ing different cell types in a tissue, such as macrophages and tumor cells (Owen and
Sherratt, 1999), or morphogen gradient concentrations and axis development (Baker
et al., 2008). In section “Interaction models,” a M. tuberculosis infection model will be
described. In this model, spatial movement and temporal development dynamics of
cells are described with PDEs (Gammack et al., 2004). The model consisted of coupled
reaction–diffusion–advection equations, describing dynamics of resting and infected
macrophages, intra- and extracellular bacteria, as well as important chemokines af-
fecting granuloma growth.

Computational Tools

Because of the plethora of mathematical models describing biological systems, also
a variety of software and tools are (freely) available. For example, tools for creat-
ing and editing models, time-series simulation, and many other analyses, but some
tools also interact with model repositories and are able converting models in differ-
ent formats. These tools cover different mathematical frameworks, such as ODEs,
PDEs, discrete stochastic simulation, discrete events, logical models, etc. Moreover,
consensus languages for biological models were generated, such as Systems Biology
graphical notation (SBGN) (Le Novere et al., 2009) and Systems Biology markup lan-
guage (SBML) (Hucka et al., 2003). The SBGN project aims to standardize graphical
notation, for example, for signaling pathways and other biochemical processes occur-
ring in cells. These graphical notations can be expressed in mathematical formulas and
written in SMBL, which is machine readable. These initiatives are necessary, because
sharing and understanding of data and models will be easier. Table 10.4 provides sev-
eral tools covering most of the available options and frameworks. They were extracted
from a more comprehensive overview of available tools in the field of Systems Biology
(http://sbml.org/SBML_Software_Guide/SBML_Software_Matrix).

Interaction Models

The outcome of an infection with pathogens is dependent on the interplay between
pathogen-related, host-related, and environmental factors (Figure 10.3). Each of these
individual players can be regarded to be build up of subsystems or modules, as extend-
edly described for the host in the previous paragraphs. As a consequence, modules
interact with each other within and between hosts, pathogens, and environment, re-
spectively. In addition, during the time course of an infection, these interactions
may change. As indicated before, the development of a comprehensive model of a
“host–pathogen system” is currently not feasible. However, several models have been
described in literatures that describe the behavior of well-characterized subsystems
or modules of host–pathogen interaction systems (Bumann, 2009). In this section,
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Figure 10.3 Host–pathogen interactions in conjunction with environment. The three key
players, environment, host, and pathogen, are divided into various modules. These modules
can be of different scales, i.e., genotype or community effect, and interaction can occur between
different modules, however, modules of different key players can also interact. To make it even
more complex, over time module characteristics can change and therefore possibly also their
interaction.

several examples are provided about how System Biology models are generated and
used to understand important aspects of host–pathogen interactions.

Pathogens

Metabolomic networks of prokaryotic microorganisms belong to the best-understood
biological systems, since they have been studied for many years at the level of metabolic
fluxes, enzymes, and reaction kinetics (Feist et al., 2007; Ishii et al., 2007). Therefore,
pathogen metabolism is one of the most suitable subsystem for modeling. Indeed,
in silico models have been generated that represent the quantitative interactions of
more than thousand E. coli enzymes and metabolites (Feist et al., 2007). This model
is able to predict the metabolic behavior of more than a thousand E. coli mutants
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in vitro. Since the interaction of a pathogen with a particular host dramatically affects
the metabolism of pathogens, sometimes with a direct link to virulence (Milenbachs
et al., 1997; Exley et al., 2005; Bruggemann et al., 2006), similar approaches are used
now to build high-resolution reconstructions of microbial metabolism of pathogens in
infected cells and/or tissues. The idea behind these modeling efforts is that the in vivo
metabolism of pathogens provides important information to understand their lifestyle
within the host as well as to understand nutrient-based host defense mechanisms.
In silico simulations with these models may generate new hypotheses about in vivo
metabolism of pathogens and might be of value for the rational design of novel
antibiotics or attenuated live vaccines.

Raghunathan et al. (2009), for example, recently developed a model describing
the metabolic capacity of Salmonella typhimurium during host–pathogen interaction.
The model was reconstructed by the integration of existing genomic, proteomic,
and phenotypic data. The authors developed a genome-scale metabolic network
using more than thousand genes, involved in many different metabolic and trans-
port reactions. The model was used to study growth parameters under several in
vivo and in vitro conditions using flux balance analysis and in silico gene essential-
ity analysis. Model predictions and experimental data showed an overlap of more
than 80% for growth and virulence phenotypes. In an extended model, gene expres-
sion data, obtained from Salmonella-infected macrophages, were used to identify
sets of metabolic pathways required for replication inside host cells. In this case,
model development started with an annotated genome, and through several iterative
steps, it moved to a genome-wide metabolic network that could be used to pre-
dict in silico the functional properties of the “Salmonella-into-host-cell” system. The
model pointed toward essential nodes of the metabolic network and toward relation-
ship between nutritional factors and microbial genetic factors and provided insight
into their functional contribution toward systems behavior: growth versus killing of
Salmonella. The model could also be used as a toolbox to visualize the functional
properties as represented by large-scale -omics datasets. With this model, the au-
thors expect to arrive at a conserved set of metabolic reactions that intertwine with
those of the host cell. Such metabolic reactions might be novel targets for therapeutic
intervention.

Receptor-Ligand Kinetics

The kinetics of receptor–ligand interactions codetermines the speed and efficiency
of virulence and host defense mechanisms. Modeling this “subsystem” requires first
the definition of the set of components involved, as well as their interactions, of-
ten on the basis of empiric observations. Subsequently, parameters have to be in-
ferred that quantify the intensity of these interactions and cellular concentrations
of the components. In a further step, a mathematical formalism or simulation
method has to be selected (Goldstein et al., 2004). The simplest model describ-
ing the kinetics of receptor–ligand interaction is Equation 10.1 (Figure 10.4), where
L stand for ligand, R for receptor, k+1 for binding association, k−1 for binding
disassociation, and LR for ligand–receptor complex. Binding studies mostly mea-
sure specific binding, in other words, measuring the complex. After several steps
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Figure 10.4 Equations of receptor–ligand interaction kinetics. Equation 10.1 describes the
kinetics of a receptor (R) and ligand (L) interaction. Often, the complex (LR) is measured and
therefore these kinetics can also be described as Equation 10.2 where [R]tot is the total number
of nonbound receptors and Kd the equilibrium dissociation constant.

the equation can be rearranged with the complex on the left and similar to en-
zyme kinetics function on the right (Equation 10.2, Figure 10.4), where LR is the
ligand–receptor complex, Rtot is the total number of nonbound receptors, L is the lig-
and concentration, and Kd is the equilibrium dissociation constant (Kd = k+1/k−1).
This formula is similar to calculating enzyme activity, the well-known Michaelis–
Menten kinetics.

The model sketched above is a good description of the core process, however, in na-
ture multiple ligands could be present competing for the same receptor and sometimes
ligands can trigger multiple responses by associating and dissociating from receptors.
The latter is known as serial triggering and was proposed to explain how antigen pre-
senting cells, having low densities of peptide–MHC complexes, could trigger a whole
set of TCRs over a short period of time (Valitutti et al., 1995). Wofsy et al. developed
a mathematical model to test whether this serial engagement of peptide-MHC really
occurs (Wofsy et al., 2001). With this model, it was calculated that approximately
50–200 receptors could be triggered by only one peptide–MHC complex (Valitutti
et al., 1995; Wofsy et al., 2001). Furthermore, each peptide–MHC complex is be-
ing subjected to serial engagement and is an increasing function of the dissociation
rate constant.

Next to the serial engagement concept, another concept was put forward, namely
that of kinetic proofreading (McKeithan, 1995). Kinetic proofreading is used by
TCRs to discriminate between ligands during the ligand–receptor bond (dwell time).
The TCR undergoes modifications during this dwell time, but when the ligand dissoci-
ates then the modifications are reversed (McKeithan, 1995). Thus, the duration of the
dwell time determines whether activation signals are induced or not. Later, “kinetic
discrimination” was proposed as a more realistic model that also accounted for TCR
ligand sensitivity and the resulting biological response (positive or negative). Com-
pared to kinetic proofreading where many intermediate steps are needed (Rabinowitz
et al., 1996), here agonist and antagonist peptides are distinguished in one single step.
These examples demonstrate that complex ligand–receptor kinetics can be described
in relatively simple equations. The models are valuable to study the characteristics
and dynamics receptor–ligand interactions.
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Intracellular Signaling

Cellular host–pathogen interaction models are frequently based on large-scale -omics
data. They comprise interaction networks that represent the cellular effects of the
attachment, recognition, or invasion of by pathogens. In the case of viral infection, the
cell response is usually initiated by a few viral components in an attempt to transform
the cellular machinery into an environment suitable for virus replication. On the basis
of extended viral–host interaction studies, usually under in vitro conditions, several
mechanistic models have been developed describing specific aspects of the biological
events in infected cell. A classical example is the recognition of viral components
by TLRs and the induction of Toll-like signaling pathways that play a crucial role in
the induction of antiviral and inflammatory immune responses (Wong et al., 2009)
(Figure 10.5).

Other models describe the binding of viral proteins to host molecules and that result
into a change of cellular metabolism, like the inhibition of host mRNA synthesis or
the inhibition of cytokine synthesis. In fact, on the basis of long-lasting intensive
research in the field of molecular virology, a prototype of the human virtual infected
cell has been developed (Navratil et al., 2010). This model contains more than 100
viral “infectomes,” including the viral pathogens HCV, HBV, HIV, HHV, HPV, and
has resulted into several hypotheses for the development of novel antiviral strategies
based on interventions of cellular functions. The first attempts to use such system
approaches for the development of new vaccines show promising results, particularly in
the identification of molecular signatures or biomarkers that are induced immediately
after vaccination and that correlate with protection after experimental or natural
infections (Pulendran, 2009). Furthermore, systems approaches are also applied now
to understand the functional properties of vaccine adjuvants (Mosca et al., 2008).

A nice demonstration of the identification of key cellular molecules, which play de-
cisive roles in the cellular functions that arise after interaction with pathogens, is given
by the recent work of Amit et al., in mammalian DCs (Amit et al., 2009). These cells
play a central role in the induction of the adaptive immune system through antigen
presentation after identification of invading pathogens. First, the authors measured
gene expression profiles of the DCs after interaction with five different pathogen
(bacterial and viral) encoded ligands for a number of TLRs at nine different time
points after stimulating. These profiles were used to identify 144 putative regulator
genes involved in driving DC responses. Systematic perturbation of the regulator
gene expression, using RNAi knock-down technology, followed by large-scale gene
expression measurements was subsequently used to associate the putative regulators
to their targets. From this, a picture emerged that showed the complexity of TLR-
mediated sensing and signaling in DCs, with several key regulators being connected
to different targets in feed-forward and feed-back loops (see Figure 1.7, Chapter 1).
Feed-forward circuits respond to persistent rather than transient stimulation, pro-
tecting the system from responding to spurious signals. The authors identified 13
“known” as well as 11 “new” key regulatory factors involved in dendritic inflammatory
or antiviral responses. Twelve of the key regulators were also found to be associated
with autoimmune and related diseases in genome-wide SNP association studies. The
identified regulator and fine-tuner molecules are probably the main driver molecules
that modulate the functional properties of DCs. Thus, this information is of great help
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Figure 10.5 Simplified view of Toll-like receptors (TLRs), their ligands, and the downstream
signaling cascade. TLR1, TLR2, TLR4, TLR5, and TLR6 are positioned on the cell membrane,
whereas TLR3, TLR7, TLR8, and TLR9 are located inside an endosome. Different TLRs can
bind different components of pathogens, after which various signaling cascades are triggered.
This results in the onset of transcription of genes involved in inflammatory responses, T-cell
stimulation or antiviral immune responses.

to explain and describe how pathogen-sensing pathways in DCs achieve specificity
and sensitivity. Quantitative data of such key drivers molecules should become part
of future (mathematical) models that capture and predict the behavior of DCs upon
exposure to a particular pathogen.

Another example is published by Gilchrist et al. (2006) and further improved
by Litvak et al. (2009) in which regulatory factors were identified that orchestrate
the response of macrophages upon exposure to LPS. They used several differ-
ent datasets, including time-dependent gene expression data, comparative sequence
analysis, protein–protein interaction data, and quantitative protein localization
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data to develop a model. The model was able to explain the behavior of the
LPS/macrophage system: predictions produced by the model could be validated by
experimental data.

Tissue/Organs

Several attempts have been described to model parts of the immune system. Folcik
et al., generated the Basic Immune Simulator to identify potential targets for
prevention of infectious diseases (Folcik et al., 2007). The model simulates the
actions and interactions of autonomous “agents or entities” of the immune system
and is used to study the relationship between cells of the innate and adaptive
branch of the immune system and reproduces its complex behavior. The model is
using basic molecular and cellular knowledge of the immune system. Also, Kalita
et al. modeled and simulated the immune system computationally (Kalita et al.,
2006). Macrophages, DCs, neutrophils, natural killer cells, B-cells, T-helper cells,
complement proteins, and pathogenic bacteria are represented in the model. In fact,
as early as 1995 the development of a C-language-based version of an IMMune system
SIMulator (C-ImmSim) was started (Bernaschi and Castiglione, 2001; Castiglione
et al., 2004). This computational program is based on known mechanisms that direct
the humoral and cellular response of the immune system at the cellular level to
specific antigens. The model includes several known aspects of the adaptive immunity,
including the diversity of lymphocyte receptors due to genomic rearrangements in
their encoding V-, J-, and C-regions, MHC restriction, clonal selection, development
of immunocompetent T cells, antigen processing, antigen presentation, cell–cell
cooperation, cell mobility, chemotaxis, hyper mutation of antibodies, maturation of
the cellular and humoral response, and memory. Thus, the model represents the
process of antigen processing and immune development that occurs locally in a small
tissue part of organs like spleen, tonsil, and lymph nodes.

Recently, Rapin et al. provided an extended version of C-ImmSim that com-
bined the power of genomic information with the abilities of C-ImmSim. The ex-
tended model takes into account, not only the genetic variation of lymphocyte re-
ceptors, but also the amino acid sequence variation in immunogenic proteins of
pathogens. To this end, bioinformatic tools for T and B cell epitope predictions
are used to mimic the recognition and binding of epitopes together with the acti-
vation and cooperation from T cells to stimulate host immune responses. This al-
lowed the authors to perform in silico immunization experiments with real antigens.
To assess the utility of the model, several different simulations were performed.
In one instance, the authors performed a classical immunization experiment with
the gag protein of the HIV-1 virus using a primary and secondary immunization.
The model predicted a typical primary and secondary immune response, includ-
ing the development memory since the secondary response appeared much faster
than the primary response. In another simulation, the model predicted the phe-
nomenon of affinity maturation of lymphocytes, i.e., higher proliferation levels and
dominating outgrowth of lymphocyte clones with a high affinity to specific epitopes.
Also, the advantage of MHC heterozygosity over homozygosity to clear viral infec-
tions was predicted in a simulation with influenza virus H1N1. Thus, this simulator
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produces characteristics and dynamics that are consistent with basic immunological
knowledge.

In our institute, we recently initiated efforts to identify key molecules that po-
tentially drive the biological behavior of a developing intestine of young chicks. To
this end, we generated gene correlation networks on the basis of time-series data
(Schokker et al., 2009) to identify highly connected genes (or hub genes) in unin-
fected and Salmonella-infected animals. In healthy chickens, the identified hub genes
were predominantly related to developmental processes, whereas in infected chicks
the hub genes were more involved in processes related to host responses to pathogens
(Schokker et al., 2011 accepted for publication). Furthermore, the data suggested
that the major drive of the healthy system was focused on cellular development and
cellular differentiation, whereas the infected system was focusing more on intercel-
lular communication. The hypothesis is that the identified hubs are major drivers of
system behavior and therefore putative candidates to modulate the system. We are
now using this information to generate a mathematical model, using ODEs, in order
to contribute to a better understanding of intestinal processes related to intestinal
infections with gram-negative pathogens.

Organisms

Maybe the most challenging models are those that can predict the outcome of an
infection on the organism level. An early example in this field has been published
by Raman et al. (2010). They report an extensive model that covers multiple aspects
of host–pathogen interaction of M. tuberculosis and integrates information from vari-
ous biological levels. The host–pathogen interaction system is modeled as a Boolean
network. The model accounts for several different steps in the infection process, in-
cluding several mechanisms of pathogen invasion, defense of the host, and various
defense mechanisms of the pathogen. The model consists of 56 host-related nodes
(26 molecules, 11 cellular processes, 19 cell types or cell states), 18 pathogen-encoded
components, and 12 quantitative parameters like bacterial load and growth, delayed
onset of adaptive immunity, phagocytosis, and apoptosis. The nodes in the model rep-
resent molecules, processes, and cells, and their connections and interdependencies
are represented by sequential processes that describe activities related to inhibition,
activation, signaling, and proliferation or recruitment of cells. With this model, the
authors try to identify the critical bacterial factors responsible for successful infec-
tion and the main components of the immune response for successful defense. At
the end, the authors want to predict the influence of various factors and events, such
as bacterial growth rate and delay in adaptive immune onset, on disease outcome,
which is either bacterial clearance (no disease), bacterial persistence (carrier state),
or bacterial growth (active disease).

Conclusions

Genomic technologies and tools offer major new opportunities to understand
the genetic and nongenetic components involved in host–pathogen interactions.
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Currently, large-scale genetic information is already used in the livestock industries
to introduce the predictive principles (models) of “genomic selection” (Meuwissen
and Goddard, 2001; Calus et al., 2008). Although genomic selection approaches are
also applied in the field of host–pathogen interaction, this has not resulted yet in
the selection of animals with improved disease resistance traits. A critical goal of
host-pathogen research in livestock species is the identification of (new) targets for
prevention and intervention and the development of (genomic-based) assays to select
for disease resistance/susceptibility traits. This is a complex and very challenging task.
As a first step, it is necessary to characterize infected animals in as comprehensive
a manner as possible, thus studying the host and the pathogen at different space
and time scales and at different biological levels, i.e., genomic, metabolic, immuno-
logic, nutritional, health trait. The next step is most challenging: merging the data
and providing a comprehensive and systems level perspective of host and pathogen
responses. With the application of Systems Biology approaches, researchers will be
able to better integrate and analyze data to improve our understanding of the spatial-
and temporal-events leading to traits. In the future, the application of System Biol-
ogy approaches will allow the animal sciences to predict the effect of both genetic as
well as environmental changes on systems outcome through computational simula-
tion. Compared to “genomics selection” this brings the animal sciences a next step
forward in the area of predictive biology. Such predictive approaches will allow the
monitoring and further improvements of traits by optimizing genotype–environment
interactions.

As can be concluded from this chapter, the use of Systems Biology-based models
that describe host–pathogen interaction and that integrate signaling, metabolic, im-
munologic, and health aspects as a function of two independent genomes and several
environmental factors is still in its infancy. Disease is the outcome of the complex
interplay between various pathogenic factors, as well as the host immune systems.
Models that describe aspects of this interplay, some of which have been described in
this chapter, are just a first step toward making sense of this complex interplay. Nev-
ertheless, the available models already provide valuable insights into the importance
of specific components for controlling infectious disease development. For example,
they already provide insight into the role of specific pathogenic factors for cytokine
expression and regulation. In addition, currently available models facilitate the inte-
gration and evaluation of new hypotheses. Of course, the current models still have
major limitations, which originate for a great part from our limited understanding
of the mechanistic details and quantitative aspects of virulence and host immune
mechanisms. Therefore, most current models represent approximations of processes
involved in host–pathogen interactions, as shown by the Boolean models in which
nodes can have only two states (on or off; active or inactive). However, such a cellular
state represents the outcome of a number of molecular events. Despite such limita-
tions, several current models already provided new insights into the complex interplay
between hosts and pathogens. The example described in 10.6.5 nicely demonstrates
that systems-level modeling is an important step toward a holistic understanding of
complex biological systems that can be used to predict the outcome of an infection,
such as active disease, persistence, or clearance. Since we have only just arrived at
the threshold of the area of Systems Biology, the expectation is that in the future it
would be possible to develop a “virtual animal” model representing comprehensive
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quantitative information on host–pathogen interactions, that takes into account both
environmental as well as host- and pathogen-related genotypic variation.
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Chapter 11
Systems Biology in Livestock Science
and Commercial Livestock Business

Marinus F.W. te Pas, Henri Woelders,
and André Bannink

Introduction

This book demonstrates that Systems Biology is an emerging interdisciplinary science
combining biology at all its levels of organization. This requires information from
biochemistry, biophysics, bioinformatics, and physiology and it includes the interac-
tions between them and mathematics to develop quantitative, predictive models. The
aim of Systems Biology is to provide insight in the complexity of biological processes,
which underlie the characteristics of living organisms.

Many production traits or production-related traits in livestock are the result of
complex biological processes. Livestock traits have a genetic basis with interactions
with the environment being of a variable importance. Production traits—or the prod-
ucts they relate to—are either produced in tissues and excreted (e.g., milk), are the
tissues themselves (e.g., muscle mass—meat yield), or are the product of the function-
ing of combinations of tissues (e.g., reproduction, health). Genetic selection to opti-
mize production is thereby accompanied by a changed cellular and tissue metabolism
and/or composition. Animals nutrition can be directed at an optimal performance
with respect to production, health, and environmental impact. Farm management
may allow a certain animal behavior or induce stress to the animals (interaction with
the environment) affecting the response to be expected from genetic selection and
nutrition. Breeding, nutrition, and management all may induce unwanted side effects
with optimization on a narrow window of selection of traits, and may affect animal
health or welfare, and hence consumer’s concern.

Thus, livestock management is complex. Because Systems Biology aims to unravel
the complex relations of life, it is expected that commercial livestock industry will
benefit from it. However, it is important that not only science has a say in this but
also the livestock industry gives an opinion on the benefits that may be expected from
Systems Biology. Is the concept of Systems Biology known in the livestock industry?
Does the livestock industry have experience with Systems Biology research? What are
the expectations of the livestock industry from Systems Biology? This chapter reflects
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Box 11.1 Experts from the Livestock Industries

Prof. Dr. Leo den Hartog, Professor Farm Management in Animal Production
at Wageningen University and Director R&D and Quality Affairs at Nutreco.
Nutreco is a global leader in animal nutrition and fish feed.

Dr. Theo van Kempen and Dr. John Newbold, Provimi Research and Innovation.
Newbold and van Kempen are Science Director for Ruminant and Swine, re-
spectively. Van Kempen is also Adjunct Professor at the North Carolina State
University, USA. Provimi is one of the leaders in the international animal feed
industry.

Dr. Pramod Mathur, Senior Research Geneticist at IPG. IPG is an independent
enterprise, strategic partner of Topigs—one of the three largest pig breeders in
the world.

Dr. Alfred de Vries, Manager Genetic Products of CRV. CRV is an international
enterprise in the field of cattle improvement.

Dr. Gerard Albers and Pierre Cherel, DVM, of Hendrix Genetics. Albers is Director
Research and Technology of Hendrix Genetics. Cherel, DVM, is a Research
Geneticist located in France and involved in several more fundamental projects.
Hendrix Genetics is a leading multispecies breeding company (poultry, layers,
turkeys, pigs, aquaculture) serving at least half of the world production of laying
hens as well as turkeys and is the second largest pig breeder in the world.

the opinion of a number of leading scientists and managers from the livestock industry
itself (see Box 11.1) on the potential of Systems Biology.

Expectations from Systems Biology for Livestock Science
and Industrial Innovations

Animal Feed Industry

What Is Systems Biology?

The definition of what Systems Biology is was discussed in most interviews. For in-
stance, Newbold and Van Kempen, science directors at Provimi, stated that the def-
inition of Systems Biology remains still rather vague. What does it exactly stand for,
how is it defined, and how does it differ from previous modeling work? What knowl-
edge will it add? According to Den Hartog, R&D and Quality Affairs Director at
Nutreco, the lack of a straightforward definition of Systems Biology makes it diffi-
cult to define the opportunities that lie ahead. Different types of system definitions
can be distinguished when seeking solutions for the practice of livestock production.
Systems may be the whole production chain, a specific farming system or a specific
multi-site production system, and intra-animal physiological and regulatory systems.
Another requirement is that Systems Biology needs to deliver the mode of action of
an opportunity in order to become applicable for animal feed industry. In this respect,
Van Kempen, Newbold, and Den Hartog all indicated that a black-box approach must
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be considered insufficient for introduction of a new nutritional or farm management
concept in the market. To have Systems Biology applied by industry, statements are
needed on the factors that play a role, on how they interact and on what mechanisms
are involved. Often, science demonstrates associations between factors and animal
responses, but for industry, it should be clarified how they can be used and how they
actually have to be interpreted.

Furthermore, Den Hartog indicated that answers need to be generated within the
system of interest to the industry as a starting point, which may go beyond that of an
individual animal. This means that Systems Biology needs to start from a well-defined
problem for the industry or some specific consumer’s demands.

Integration

Independently of each other, the research directors of the two animal feed companies
value the integration of research results from the diverse biological levels. With all
the scientific achievements and new technologies becoming available, Den Hartog
explained that an integrated approach from a farm perspective remains most impor-
tant. Various disciplines and different viewpoints on a problem have to come together
when on-farm problems are to be solved. In the animal feed industry, integration of
known aspects of the feed and interactions with the animals of different genotype and
phenotype is already applied. Functioning of the gastrointestinal tract is a key issue to
address at this moment for both Provimi and Nutreco. The focus is on optimizing the
relation between the nutritional requirements of the animal and the offered nutrients,
and on the interaction with the environment (e.g., immune responses to pathogens).
The role of feed composition in relation to these traits is of major importance. Addi-
tionally, there is a strong focus on transition phases in the life of farm animals (i.e.,
birth, weaning, lactation, animal housing) related to animal health and well-being.

Systems Biology aims to integrate “omics” data and mechanisms at the molecular
level, to mechanisms at the level of the animal, including the response of the animal
to its environment. Indeed, the interesting factors for animal feed companies such as
Nutreco and Provimi go beyond the level of the animal, including groups of an-
imals, the animal’s environment, farm management, and expectations from con-
sumers/society. When Systems Biology is to deliver applicable answers for the animal
feed industry, these factors need to be taken into account as well. For example, Den
Hartog indicated that a huge part (about 30%) of the theoretical genetic potential is
estimated not to be utilized because of suboptimal farm circumstances or suboptimal
feeding. Taking the large variation among animals into account may contribute to the
possibility to make more and better use (with less problems and side effects) of the ge-
netic potential of individual animals. It needs to be defined and understood how diet,
nutritional strategy, and other environmental factors interact with genotype. Models
that are developed with a Systems Biology approach must obtain a truly predictive
capacity. This means that they should become able to quantitatively predict the inter-
actions between nutrition, genotype, and environment. These relationships are quite
diverse and may refer to, for example, effects across generations, effects on the carbon
footprint of livestock production, or the need to eradicate Salmonella from the food
chain. Although every livestock species has its own specific problems to be solved,
to become helpful, Systems Biology should deliver a better understanding of (1) the
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variation expressed among animals and (2) the variations in the interactions among
animals and the environmental conditions, such as the relationship between nutri-
tion, genotype, and environment. Systems Biology should do better than traditional
monodisciplinary approaches can deliver. Customized feeding (precision feeding) of
individual animals or farm-specific strategies are needed to exploit the full potential
and to prevent common problems in livestock production.

Also, applicability of omics techniques themselves was discussed with Van Kempen
and Newbold. They questioned how to make use of the possibilities offered by the
new omics technologies using the Systems Biology approach. They stated that results
collected with the new omics technologies are challenging, but puzzling as well. Such
omics methods result in large datasets, which require interpretation. Also, at least
at present, use of omics analysis still brings high costs and the need for specialized
labs. Furthermore, there is a need to go beyond the stage of identifying associations
between omics data and the animals’ traits or responses of interest. Besides the
ability to measure many things with new high-throughput technologies, the ability to
integrate all these data into a view on cause and effect in the animal is considered a
very important condition for Systems Biology to be useful for industry.

A Systems Biology approach may help industry if some important conditions are
met. Firstly, Systems Biology has to be able to quantify effects at different biological
levels to indicate positive effects on animal performance as an end result. Secondly, it
has to add up information up to the level, which accommodates the interest of indus-
try, which is often metabolites and physiological regulatory mechanisms. Physiological
mechanisms have, of course, also been studied in the past, but without the possibil-
ities of omics techniques that are currently available. For example, metabolomics is
considered a useful new technology because it can deliver a more complete picture of
metabolites and factors involved with the regulation of animal physiology and animal
response under various conditions, which remained unnoticed or unidentified before.
Van Kempen stated that Provimi has already trials in which the range of metabolites
is measured in search for clues what is happening in the animal, for example, in the
case of a new disease. In this manner, these omics technologies may deliver a more
complete picture and contribute to a formulation of new (types of) hypotheses or
ideas to be explored further and applied by industry.

For example, Newbold mentioned an area of research, which seems rather unex-
plored so far, but which is considered to be highly important in bringing together
nutrition, genetics, and genomics. Newbold expects that the interactions between
these expertises will bring new knowledge that can explain why animals react diversely
to feed substances, feeding strategies, and farm management. It may also lead to
prediction of the animal’s response for future use. The question remains how this
research actually can be organized, because combining these disciplines will require
very extensive and costly trials, including many animals as well as costly techniques
to be used for every single animal. Another area deserving more attention is a more
detailed description and understanding of the components in feed and their pre- as
well as postabsorptive effects on the target animal (with respect to species, type of
animal, physiological state).

However, there are also concerns. Van Kempen and Newbold expressed their con-
cern that software currently available to analyze omics results may not be conclusive
enough (too much black-box and too general) to pinpoint the mode of action and
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cause and effect relationships in a specific well-defined target animal. Van Kempen
indicated that a major problem for industry is the lack of reasonable explanations
for the inconsistent results from different trials with the same nutritional measure or
problem investigated, but performed at different locations or by different research
groups or in different lab. Moreover, often, no effects are seen in large-scale experi-
ments performed by industry when positive results had been obtained in smaller scale,
detailed experiments conducted at research institutes and universities. It would be a
major step forward if a Systems Biology approach helps out by demonstrating why
certain observations are not reproduced in some of the trials. This could lead to a
much faster development of successful new products by the feed industry as solutions
for specific problems in the farming practice.

Animal Breeding Industry

Expectations: Genomics as a Starting Point

Mathur, senior geneticist as IPG, stated that livestock industry is moving away from
traditional farming to a technology- and innovation-based industry. The global com-
petition requires a faster rate of progress in delivering the quality as desired by con-
sumers. Whether it is milk, meat, or eggs, the traditional emphasis on increasing the
quantity of production are becoming obsolete. There is a higher demand for quality
to meet the consumer and societal needs. The consumers now are looking for healthy,
nutritive products, produced with proper care of environment and animal welfare.
Many of these characteristics are hard to improve through conventional means. The
sequencing of genomes of some of the livestock species (e.g., cattle, pigs, and poul-
try) has provided some tools for identification of SNPs, genomic region, and some
genes related to the traits of interest. But these are bits and pieces of the puzzle. An
integrated approach through Systems Biology will be of interest to understand the
systems structure and dynamics as well as the control and design mechanisms for the
biological processes. This will enhance our understanding of the new phenotypes for
new breeding goals in livestock production. It is otherwise very difficult and expensive
to measure some of these characteristics and attempt to make genetic progress in
strictly the conventional ways.

Currently, a major part of the livestock industry looks upon Systems Biology as
an interesting emerging discipline that should be able to contribute to a better un-
derstanding of important biological functions. However, Systems Biology is still in its
infancy, especially for livestock. There are hardly any results that the industry can
directly apply. The science has to grow and provide tools that can be applied in the
livestock industry in a cost-effective manner.

De Vries of cattle breeding organization CRV indicated that genomic selection has
become very important for CRV. With genomic selection, one predicts the breeding
value of individual animals in the absence of direct phenotypic measurements. Pre-
dictions are based on the relationship between large numbers of consecutive genome
fragments and phenotypical performance as established in a reference population.
The current genomic selection methods use an additive model, i.e., all effects of genes
(or rather of pieces of the genome) are simply added, without allowing for interactions
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between genes. Moreover, as genomic selection only relies on associations established
in a reference population, the results may not be fully translatable to other populations
or breeds, for example, in other countries. This may be due to genetic differences as
well as interactions with environmental factors. In his opinion, Systems Biology could
help predicting these interactions in order to solve this problem. A related issue is
that CRV uses a multitude of (small) herds, which have variation in management
and environmental factors, to test bulls or to find associations for genomic selection,
whereas some other breeding organizations use just a few defined large testing herds.
The advantages of the CRV approach are the wide involvement of the farmers and
the validity of the results over the tested range of environments. But, on the other
hand, this approach makes it difficult to actually describe and quantify how genotypes
and environmental factors interact.

Similarly, Hendrix Genetics’ research director Albers indicated the research aims
with regard to breeding value estimations. Presently, the use of (structural) genomics
using several types of SNP-CHIPs or sequencing in order to describe genetic variation
and relate it to phenotypic variation is generally applied. Preparations to sequence
the entire genomes of a number of chickens are ongoing, aiming to know the com-
plete sequence of breeding lines. In France, a candidate gene project showed several
interesting candidate genes. In the Netherlands, also some functional genomics (tran-
scriptomics) results were obtained, but Dr. Albers indicates that he is less interested in
gene expression profiling. Breeding (breeding business) is about selling genotypes that
have a predictable potential for producing certain phenotypes. The process between
the two is in itself of no direct interest to him unless the knowledge of this process
would yield useful biomarkers that can be used for more efficient genetic selection
programs.

Cherel stated that Systems Biology in itself is an interesting and logical option as a
follow-up of genomics. The potential of predicting traits is always challenging for the
livestock industry. And forecasting the output of animal productions is more than ever
important in a risk-averse economic environment. But, when it comes to expectations
for the livestock industry, he thinks that although in livestock research and especially
nutrition modeling is not new, today, application of Systems Biology to livestock
species might be a premature attempt. The outcomes of successful attempts to model
livestock production through a Systems Biology approach would be extremely valuable
to the industry. But, Systems Biology approaches need to demonstrate step by step
their capabilities to integrate complex datasets, and to model results of a growing
number of genetic and environment effects. Livestock may just not be the easiest test
case for such a demonstration. This is noteworthy in a contemporary context where
functional genomics recently delivered more data than applications, thus motivating
the demand of proofs of concept first.

Mathur added that Systems Biology offers a huge potential, but that it is important
to be cautious in the optimism. The science should not overestimate the potential, or
should not make false promises that will be hard to meet. In biological science, the
past experience is that the more we discover the more complex it gets. The approaches
in genomics, transcriptomics, proteomics, and several others “omics” will generate a
huge volume of data. A lot of development in bioinformatics will be required to manage
and process the data. Further, developments will be required also in understanding
and making use of the information.
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Another important aspect is development of methods for accurately measuring
functions of minute cellular particles and molecules. Also, for these aspects, a high-
throughput and ability of processing large volumes of information will be required.

It will be very important to select the right question and hypothesis relevant to
the industry. Gathering molecular and biological data with respect to a single type
of disease, or a single type of protein can take several years. In that time frame
either the pathogens can mutate and become ineffective or completely wipe off the
industry. Therefore, choosing the right question and delivering the expected result
in a timely manner will be an important aspect of how relevant Systems Biology can
be for industry. In most cases, the solutions do not need to be complex, or even be
complete. A lot of progress can be made with less than perfect but simple, targeted
and timely information.

Expectations: Application of Systems Biology for Specific
Problems and Questions

Albers indicated that Systems Biology might be interesting for scientific aims. For
example, it may add to the knowledge on interactions between host and parasites. But
apart from pure academic use, Albers is skeptical about Systems Biology producing
usable results for the breeding industry. However, Systems Biology may have some
use for gaining knowledge about processes taking place at a whole-animal level that
may not be directly measurable. In the process from DNA to phenotype of an animal,
Albers is skeptical for a role of Systems Biology. The whole animal is important. And
not only the whole animal but also its interactions with other animals, its nutrition,
and other environmental factors. This is the complete system. And it is quite unlikely
that Systems Biology would be able to encompass this entire system, completely and
with sufficient detail and accuracy, to be of use to help in predicting this complete
system adequately and correctly. One could try and limit the system by modeling only
part of the system, for example, an organ or tissue, but then, is that Systems Biology or
reductionism? The work that is currently done in simulating (parts of) the functioning
of an animal are interesting and probably useful to understand physiological processes
or diseases. But these models may yet not be complete enough to explain the phenotype
of the entire animal from its genotype. And that is what breeding is about. The
development of ascites in broilers is mentioned as an example of what would seem
a relatively simple process, but even in this case a systems analysis is not likely to
produce a model with good predictive value.

In contrast, De Vries indicated several specific problems where he thinks that
Systems Biology may be helpful to find solutions. As indicated above, in relation to
breeding value estimation, it is important to address the interactions between genes
or between genes and environment. But, additionally one would like to be able to
take into account that relationships may be nonlinear, which adds to the difficulty
of predicting a phenotype or a breeding value. One other reason that a Systems
Biology approach may be helpful is that selection in most cases is not toward a sin-
gle trait but rather toward a combination of traits. These traits may influence each
other as they rely on the same (energy/nutrient) resources or make use of the same
intermediary metabolism or regulation mechanisms. (As an example, interactions
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between milk yield, energy metabolism, body composition, and fertility is men-
tioned). Systems Biology could help understanding such interactions between trait
systems, and define how traits can be optimally combined in the genetic models. Sim-
ilarly, understanding of the relations between genes plus environment and phenotype
could make it easier to “translate” results from one population or even one breed
to another.

One other aspect is the fact that in some cases we may not know which param-
eters could be used best to estimate a phenotype. Milk measurements like the NIR
spectrometry for determining the fatty acid composition are adding to the repertoire
of possibilities. For some traits, we may not know (yet) which parameters could be
best suited to estimate a phenotypic trait and can also be obtained in large numbers
easily and cheaply. Systems Biology could help in defining which (deep) phenotypic
parameters could be used.

Another knowledge gap where Systems Biology could importantly add to under-
standing is the rumen. Due to complex processes by the bacteria in the rumen, cattle
can live on grass—a low nutrient food. However, this mechanism results in emissions
of high levels of methane, which is a potent greenhouse gas. So, one goal would be to
reduce methane emission. On the other hand, the effective functioning of the rumen
and the rest of the digestive tract is important for the energy requiring trait systems
like milk production in the udder, fertility, and disease resistance. Systems Biology
could help in understanding the interactions between the animal and the rumen flora
in relation to nutrient use and methane emission.

Mathur believes that Systems Biology should prove to be most useful in areas
that are relatively new and difficult to handle compared to the traits of quantity
and efficiency of livestock production. New subjects of major interest are health,
welfare, and product quality, production efficiency including robustness, and emis-
sions and environmental issues. An example is animal welfare. Consider the con-
cern about castration of little piglets. This intervention is becoming a huge animal
welfare issue and a ban on castration is expected to be imposed on pig producers
soon. Also, producers do not benefit from castration because production of castrated
males is less efficient. However, if boars are not castrated, the meat of some en-
tire males may have a penetrating “animal,” “sweat,” “fecal,” or “urine” like odor
called boar taint. One can measure and quantify, and select against boar taint in
conventional ways. Genomic analysis with the 60K SNP chip has allowed identify-
ing some SNPs and genomic regions associated with boar taint. But, the biological
background remains hard to understand. Therefore, selection using these SNPs may
have unwanted side effects on fertility of females and aggression of males is less
than optimal.

Another example is animal health, which is a very complex trait, and difficult
and expensive to measure. Usually, challenge experiments are required that provide
only few phenotypes. A Systems Biology approach will enhance our understanding
in host pathogen interactions and allow the development of diagnostic tools and
bioassays for the measurement of immune responses on a larger scale and at a
lower price.

Mathur elaborated on how Systems Biology could work to fulfill these promises. Let
us take an example of animal health; one of the approaches related to Systems Biology
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is Proteomics. Proteomics contributes to the study of Systems Biology by revealing
protein–protein interactions as well as protein expression levels. For example, it can be
used to suggest pathways involved in cellular function or in a pathogenic infection. The
use of two-dimensional electrophoresis can create proteome maps of cells and tissues
and provides the relative abundance of proteins present in a sample. Further, mass
spectrometry can be used to determine masses as well as the sequences of peptides
from a given protein. Proteomic techniques can be used to identify possible pathways
that are involved in normal cellular function and in pathogen-altered functions, and
thus can serve as one of the initial steps in the study of Systems Biology.

Cherel suggests an indirect route for Systems Biology toward livestock industrial
use: His advice would be to concentrate first on model organisms, as yeast or mice,
of which well-defined and more extensive genetic models are available and which
may be more suited for building up causative and quantitative links from genotype
or environment to phenotype. Livestock industry is obviously concentrating on the
most productive genotypes only, and is unlikely to explore genome variation at large
and all of its consequences. Variation in environment conditions may also hinder
the productive use of data from livestock species. Production environments tend to
be standardized overall, from a management perspective. But, practically speaking,
and from an organism side, the chronic and multiple health infectious challenges, the
continuous optimization of feed, interactions among production groups members, and
to a lesser extent climate variation all contribute to sources of noises in observations
of the phenotype. It may prove difficult to use most of these types of variation in
modeling approaches just because some factors, such as infectious pressure as an
example, are not documented.

In subsequent stages, outbred selected lines from model organisms may be used
as a more realistic animal model for quantitative genetic variation relevant to animal
breeders, but in a fully controlled environment. Furthermore, although other traits
may be more important, Cherel’s advice would be to start with well defined but complex
traits such as growth (rate), for which model species can offer realistic proxies.

A major determinant of growth (rate) is nutrition (which is, for example, approx-
imately 60% of the costs of pig production). Historically, application of complex
nutrition models have always been limited by the ability to realistically measure ani-
mal genotypes capabilities with regard to fat or lean tissue deposition rates in response
to variation in nutrient input. Revisiting those response curves may be a good starting
point for Systems Biology, although this represents a major undertaking as it covers
numerous physiological functions: feed digestion, nutrients absorption, storage, tissue
build up, and energy control. Economic interest of such modeling is large and known
for decades but may get a chance to go a few steps forward using additional sources
of data in a Systems Biology context. This would be a boon if it can provide additional
hints on physiological traits relevant to growth phenotype, which could be further
explored for genetic variation.

One may argue that chicken shows numerous attributes of a model species while
being a major contributor of animal products. Still, an extensive range of genetic mod-
els is probably needed to set up a System Biology approach, controlling environment
is possible but not standard in production, and livestock industry is unlikely to sustain
the needed genetic variability in their normal operations!
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Conclusions

Scientists from animal feed industry conclude that Systems Biology has potential
for them, provided that certain conditions are met. The scientists from the different
breeding industries have more varying views on the relevance of Systems Biology for
the industry.

Den Hartog thinks Systems Biology may become a promising approach within
livestock sciences. A Systems Biology approach needs to include aspects of livestock
production systems taking into account the interaction of the environment with the
animal. To become applicable for the animal feed industry, it has to also highlight
the biological mechanism underlying suggested solutions for problems. Van Kempen
and Newbold conclude that industry might benefit from Systems Biology, but also
indicate that perhaps industry does not realize or recognize this yet. The term Systems
Biology remains too vague and unknown, as long as there are no good examples
available of successful applications of Systems Biology. Systems Biology certainly
seems helpful in developing new ways of conducting research and in improving the
process of hypothesis formulation and testing. Nevertheless, industry must often focus
on the rather short term, which contrasts with the rather long-term research agenda
probably needed for successful Systems Biology projects. Systems Biology should
deliver convincing results with respect to the physiological mechanisms involved,
including the side effects to be expected, to make it applicable for industry and for the
development of successful feeding strategies and products for the animal feed market.

Mathur and De Vries think there may also be useful applications of Systems Biology
regarding the breeding industry. De Vries expects that Systems Biology will provide
better predictability of results, especially when interactions between animal and envi-
ronmental factors are involved. Mathur warns that livestock industry has to function in
a very cost-effective way to retain global competitiveness. The Systems Biology needs
to provide practical knowledge that can be applied directly by the livestock industry in
a cost-effective way. Contrary to this, Cherel thinks that Systems Biology is a very in-
teresting long-term ambition that may be important for defining better-characterized
phenotypes and will be helpful in interpretation of omics results. Albers believes that
Systems Biology may be very interesting for academic purposes and for fundamental
research, but at present he sees a limited use for the breeding industry.

Considering these views from experts in the field, we can state that Systems Biology
is still in its infancy, especially for livestock science. However, if Systems Biology proves
itself by demonstrating that it can deliver applicable results it can have a golden future
in livestock science and livestock industry.
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Cancer, 38, 95, 96
Capillary electrophoresis, 92
Capsules, 255
Carbohydrates

bovine lactation, galactose metabolism
and, 220

digestion of, 112
Carcasses, virtual, 63, 64, 76
Cardiome, 70
Cardiovascular disorders

compromised intestinal functionality and,
110

metabolomics studies and, 95
Castration, of piglets, 284
CATAL, 68
Cathepsins, 182
Cattle

endometrial responses to clone
pregnancies vs. IVF pregnancies in,
179, 181–182

feeding regimes and rumen wall tissues in,
205

IFNT secretion and, 172
microarray studies on reproductive tissues

in, 163
processes and signaling pathways from

transcriptome studies and knowledge
related to pregnancy recognition and
endometrial receptivity in, 180

Cattle datasets, systems biology and, 18–19
Cattle genome, 97
CBBs. See Cell-based biosensors
CCK. See Cholecystokinin
CD. See Crohn’s disease
CD45, equine endometrium and, 176
CD105, equine endometrium and, 176
CD31+ cells, equine endometrium and, 176
CE. See Capillary electrophoresis
CEBP TFs, analysis of, 14
Cecum, features of, 113t
Cell-based biosensors, 96
Cell biology, 38
CellDesigner, 263t
Cell differentiation, high-throughput

genomic approaches and, 249
CellML, 61, 65t, 68–69
Cell models, programming of, in different

programming languages, 68
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Cell motility, high-throughput genomic
approaches and, 249

Cell proliferation
high-throughput genomic approaches and,

249
strength of emergence and, 36

Cells, 3
Cell-to-cell communication, high-throughput

genomic approaches and, 249
Cellular automata models, applications with,

260
Cellular changes at molecular level,

transcriptome analysis as holistic tool
for study of, 162–164

Cellular functions, auto-, para-, and
endocrine regulation of, 162

Cellular level, host-pathogen interactions
and, 257

Chaste, 65t
Chemokine (C-X-C motif) ligand 10, cross

talk between PAR, MFP and, 226
Chemokines, 253
Cherel, Pierre, 278 (box 11.1), 285, 286
Chicken datasets, systems biology and,

17–18
Chicken genome sequence, publication of,

17
Chickens

adipose tissue studies in, 227
hub genes identified in, 269
linking transcriptome and genome in,

215
Cholecystokinin, 109, 113
Cholesterol, digestion of, 112
C-ImmSim, 269
CIR, comparison of gene expression data sets

from mammalian species and, 178
Cisplatin, GSTP overexpression and

resistance to, 88
Classical complement pathway, 251
Classical swine fever, 98, 100
CLDN4, comparison of gene expression data

sets from mammalian species and, 178
Clinical applications, workflow in systems

biology, disease and, 86
Clinical medicine and pathology, system

biology in, 87 (box 4.2)
Clonal selection process, 254
Clone pregnancies, analysis of endometrial

responses to, vs. IVF pregnancies in
cattle, 179, 181–182

Clostridium perfringen, differentiating toxin
types of, PCR assays and, 98

Cloud computing, Physiome Project access
and, 67

CLRs. See C-type lectin receptors
Cluster analysis, of prepartal nutrient and

energy intake on dairy cow liver, 231,
232, 233

Clustering approaches, in systems biology,
223–225

CMISS, 65t
Coarse dynamic models, of body function,

123
COBRA. See Constraint-based

reconstruction and analysis
Cocoa, adipose tissue and, 227
Coffee, adipose tissue and, 227
Collaborative document sharing, Physiome

Project access and, 67
Colon, 112, 112, 113t
Commission on Bioengineering in

Physiology, 54
Comparative genotyping, 102–103
Comparative systems genetics approach, with

cross-species data, 20
Compartmentalization, -omics data

representation and, 198
Compatible modularity, Physiome Project

and, 58, 59, 60–62, 62
Competitive inhibition, mathematical

representation in dynamic models
and, 202–203

Complement activation, innate immunity
and, 251

Complexity. See also Modularity of
complexity

Complex traits, 137, 149, 150
bioinformatics toward systems biology and,

151–155
biological models and, identifying genes

related to, 140–141
mathematical models, and model of, 153,

155
mathematical models, biological models

and, 155
networks of pathways and, 147
visualizing experimental results of, on

biological pathways, 146
Computational limitation, Physiome Project

and, 75
Computational tools, 262
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Computed tomography
images of sheep and pig carcasses, 63, 64
Visible Human Data and, 63

Computer modeling, 32
Conceptus, analyzing dynamic responses of

endometrium to, 161
Conditional statements, noncontinuous,

mathematical representation in
dynamic models and, 204

Connexin 43, 181
Constraint-based models, 123, 128
Constraint-based reconstruction and analysis,

42
Continuity, 65t
Continuum models, 57
Control diet (CTR), transcriptomics analysis

of mammary tissue in mid-lactating
cows fed with, 236, 238, 239

COPASI, 263t
CoPub, 164
Coronary artery disease, Cardiome and, 70
Corrias and Buist ICC model, 68, 72
COUP-TFII, 172
Cow mammary transcriptome, systems

analysis of, 218–219
CpG DNA, 252
Crohn’s disease, 124
CRV, 281, 282
Crystallin, alpha B (CRYAB), 179
CSF. See Classical swine fever
CT. See Computed tomography
C3 activation, 251
C-type lectin receptors, 252
Culicoides spp., bluetongue disease and

biting midges of, 99
Customized feeding, 280
CXCL10. See Chemokine (C-X-C motif)

ligand 10
Cystatin C, rod-specific genes and, 9
Cytochrome P450 2D6 (CYP2D6), 89
Cytokines, 253
Cytoscape, 10, 144, 145, 148, 153, 166t, 167,

263t
Cytosolic isocitrate dehydrogenase, as major

source of NADPH for mammary cells,
237

Cytotoxic T cells, function of, 254t

D
Dairy cow adipose tissue, effect of prepartal

nutrient/energy intake on, 227–228,
230

Dairy cow liver, effect of prepartal nutrient
and energy intake on, 230–231,
233–235

Dairy cows
decreasing reproductive efficiency in,

161
insights from, during growth and lactation

cycle, 215–241
linking data from gene expression, to

genome-wide association studies for,
170

mammary transcriptome, systems analysis
of, 218–219

optimizing milk yield potential of, 217
peripartal, as model for whole-animal

systems biology, 216–217
predicting effect of SCD and DGAT

polymorphisms on yield and
composition of milk fat, 196

systems biology application: mastitis in,
104–105

systems biology techniques and, 96, 97
transition from pregnancy to lactation in,

216
as unique biological model of mammalian

adaptations, 215–216
Dairy products, adipose tissue and, 227
Database of Interacting Proteins, 140t
Data explosion, in livestock research,

248–249
Data management, workflow in systems

biology, disease and, 86
Data validation/interpretation, workflow in

systems biology, disease and, 86
DAVID, 144, 167, 217, 219, 223, 226

effects of overfeeding energy during dry
period on bovine subcutaneous
adipose tissue metabolic flux and, 228,
229

as functional annotation clustering tool,
164, 168

function and Web site/source for, 165t
gene expression in equine endometrium

and, 175, 176
KEGG pathways in, analysis of prepartal

nutrient and energy intake on dairy
cow liver, 231, 232, 233

mammary dataset uploaded in, 220
systems analysis of cow mammary

transcriptome and, 218
Days in milk, 220
DCs. See Dendritic cells
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Defensin proteins, 251
DEGs, 164, 167, 172, 182, 219, 224, 226

analysis of prepartal nutrient and energy
intake on dairy cow liver and, 231

in bovine mammary tissue during lactation
cycle, overall calculated DIA among
KEGG pathways and, 221

calculating overall impact of, on
pathway/function, 220

effects of overfeeding energy during dry
period on bovine subcutaneous
adipose tissue metabolic flux and, 229

equine endometrium and, 176
identification of, during estrous cycle, 169
between pregnant and nonpregnant sows,

174
for RNA-Seq data, 163
systems analysis of cow mammary

transcriptome and, 218, 219
transcriptomics analysis of mammary

tissue in mid-lactating cows in
response to dietary fat
supplementation, 236, 237, 238, 240

Dendritic cells, 248, 251
activation of adaptive immunity and,

252–253
functions of, 253t

den Hartog, Leo, 278 (box 11.1), 279, 286
Design, defined, 48
Design principles of system, revealing,

models and, 49
Detailed models, simplified models vs., 39–40
Deterministic models, 259
de Vries, Alfred, 278 (box 11.1), 281, 283, 286
DFF1. See Dickkopf homolog 1
DGAT. See Diacyl glycerol acyltransferase
DGAT polymorphisms, representing effect

of, 204
DIA. See Dynamic impact approach
DIA approach/analysis, 219

for bovine subcutaneous adipose tissue,
228

foundation of, 220
for mammary tissue in mid-lactating cows

in response to dietary fat
supplementation, 237, 238, 239

Diabetes, 95, 96, 109
Diacyl glycerol acyltransferase, 196
Diagnostic testing

proteomics strategies and, 92
reduced costs and use of multiplex PCR

technology, 98

Diamond hardness, emergence of, 33
Dickkopf homolog 1, cross talk between

PAR, MFP and, 226
Diet, milk yield potential of dairy cows and,

217
Dietary lipids

intestinal, nutritional challenges and,
114–116

metabolism of, in small intestine in
wild-type mice on PPAR alpha
activation by WY14643, 117

Diet-host-microbiota interactions, systems
approaches and study of, 111

Differential equations, dynamic models and,
200

Differentially expressed genes. See
DEGs

Differential network-based drug design,
models and, 48

Differential wiring (DW) method, cattle
datasets and, 18–19

Digestion, inputs from multiple organ
systems and, 56

Digestive function, GI tract function and
representative models for,
194

Digestive physiology, interaction between
nutrition and, 205–207

Digestive Physiome, 55, 69t, 70–75
anatomical structure and physiological

function in, 73
mathematical modeling of GI

electrophysiology, 71–73
mechanical models in, 73–75
multiple scales in, 71

Digestive system disorders, metabolomics
studies and, 95

Digestive tract, anatomy of, 112
DIM. See Days in milk
Dipeptides, digestion of, 112
DIP protein-protein interaction database,

11
Directed acyclic graphs, 6
Directed graphs, 4, 5
Discrimination concerns, personalized

medicine in human medical practice
and, 90

Disease
complex interplay of pathogenic factors

and, 271
diagnosis and prognosis, molecular

signatures and, 87
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Disease (Continued )
systems biology and, 84 (box 4.1), 85

determining susceptibility or resistance
to, 101

understanding, systems biology and,
87–88

virulence factors and, 255–256
workflow in systems biology and, 86

Disease databases, 164
Disease susceptibility, screening for, systems

biology and, 88
Dissection, virtual, 76
Diversity, adaptive immunity and generation

of, 254–255
DKK1, comparison of gene expression data

sets from mammalian species and, 178
DNA, 3, 32, 83, 140
DnaJ [Hsp40] homolog subfamily C member

12, 224
DNA metabolism, inhibition of, during

course of lactation, 222
DNA microarrays, 90, 92, 163
DNA recombination mechanism,

site-specific, 254
DNA sequencing technologies, new

generation of, 97, 248
Domino approach, silicon cell modeling and,

44, 45
Dose calculations, systems biology and,

89
Drug design, differential network-based,

models and, 48
Drug development

applied modeling and, 66
systems biology and, 90

Drug metabolism, genetics and impact on, 89
Drug safety, maximizing, systems biology

and, 90
dsRNA, 252
Duodenum, 112, 112, 113t
Dwell time, 266
Dynamic growth models, animal physiology

and, 194
Dynamic impact approach

investigating temporal transcriptomics of
bovine mammary tissue, summary,
222

mammary transcriptome and validity of,
219, 220

systems analysis of cow mammary
transcriptome and, 218

Dynamic model(s), 6, 259
mathematical representation in, 200–205

allosteric effects, threshold values, or
(noncontinuous) switch functions, 203

competitive inhibition, 202–203
conditional statements and logical

expressions, 204
conversion or translocation driven by

enzymes or protein functions, 201–202
historic and memory effects, 204–205
multiple effects, 202
regulatory and hormonal effects, 203

for substrate and microorganisms, VFA,
and methane, 209

Dyslipidemia, complex, 109

E
EASE score, analysis of prepartal nutrient

and energy intake on dairy cow liver
and, 233, 234

EBV. See Estimated breeding value
E-Cell, 46
ECGs. See Electrocardiograms
ECM. See Extracellular matrix
ECM remodeling, 168, 172, 182
Ecologies, 3
Ecotoxicogenomics, 20
Edges, 39
E2F4, bovine mammary tissue, milk fat

synthesis and, 240
Electrocardiograms, long QT syndrome and,

56
Electromechanical coupling models, cardiac

field and use of, 74
ELISA. See Enzyme-linked immunosorbent

assay
Embryo implantation

identification of genes involved in
preparation of bovine endometrium
for, 171–172

progesterone and, 168
Emergence

concept of, 33
deeming to be less strong, 37–38
mathematics and computers–systems

biology taking strong emergence as
strong as it is, 38–39

strong, toward a hierarchy of, 35–37
two conditions for, 34
varieties of irreducibility and, 33–35
weak, 33
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Emergent, defined, 33
Emergent property(ies)

defined, 33
reconstruction of, 35

Empirical approach
levels of organization and, 196, 197, 200
linking organization levels in animal

physiology and, 191–192, 200
Empirical experimental evidence, Physiome

Project and, 66
Endocrine system disorders, metabolomics

studies and, 95
Endometrial gene expression, regulation of,

168
Endometrial prostaglandin E2, 174
Endometrial receptivity

in cattle, swine, and horse, overview of
transcriptome studies, 180

IGFBP7 and, 171
Endometrium

bovine, microarray study of, 168–169
dynamic responses of, to conceptus, 161

Endothelial dysfunction, 109
Endotoxins, 255
Energy homeostasis, 113
Energy metabolism, SCFA and, 118
Environment

flow of genetic information via different
classes of molecules producing
molecular patterns and networks, 162

genome interaction with, 138
host-pathogen interactions in conjunction

with, 264
Enzymatic reactions

in biochemical pathways in biological
model, 151–152

mathematical model of, 154
Enzyme assays, comparison of, in rumen

epithelium, 206
Enzyme-linked immunosorbent assay,

biomarkers and, 94
Enzymes

conversion or translocation driven by,
201–202

oscilllatory behavior and network of, 36
Eosinophils, functions of, 253t
Epidemiology, 250
Epidermal growth factor receptor (EGFR)

signaling pathway, 128
Epigenetics, control of milk synthesis and,

217, 218

Epithelial cells
immune cell homeostasis and, 115
recognition of pathogenic invaders and,

251
eQTL study, in mice, 20
Equations

mathematical frameworks and, 259
of receptor-ligand interaction kinetics, 265,

266
Equilibrium reactions, enzymatic reactions

as, 152
Equine endometrium

preimplantation phase in, analysis of gene
expression, 175–178

TNFSF10 mRNA and, 170
ERBB3, 174
ERRF11, 177, 179
Escherichia coli, 12, 264

PCR assays and identifying strains of, 98
TTSS translocated proteins in, 255

Escherichia coli 0157:H7, MLST and
monitoring evolution of, 103

Esophagus, 112
ESR1, 171, 177
Estimated breeding value, 170
Estradiol, endometrial gene expression and,

168
Estrogen, pregnancy recognition and

endometrial receptivity in cattle,
swine, and horse, 180

Estrus phase, mRNA levels and, 168
EuroPhysiome, 69t
Exotoxins, 255
Experimental evidence, guidance, and

validation, IUPS Physiome Project
and, 66–67

Experiments, prioritizing, leveraging
high-throughput data for, 7–12

Exportins, 45
Expression profiles, pathways and, 147
Extracellular matrix, 168

F
FABPs. See Fatty acid binding proteins
Factor IX deficiency, in Holstein cows, 100
FALSE operator, 259
FAO, 105
Farnesoid X receptor, 116
Fathead minnows, 20
Fat-mediated adaptation, complementary

events tied to, 116
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Fat metabolism, interaction between
methanogenesis, nutrition, milk fat
quality and, 207–208

Fatty acid binding proteins, 115, 224
Fatty acids, digestion of, 112
Feeding regimes, rumen wall tissues in cattle

and, 205
Fernandez-Armesto, Felipe, 68
Fertility

correlating gene expression data and data
from GWAS with phenotypes related
to, 169–171

identifying genes playing role in, 168
Fertility-related genes

identification by analysis of pathological
conditions, 179–182

analysis of endometrial responses to
clone pregnancies vs. IVF pregnancies
in cattle, 179, 181–182

comparison of porcine endometrium
from day 30 of clone pregnancies with
normal pregnancies, 182

Fertilization, 161
Fetal growth and birth, 161
FGF2, cross talk between PAR, MFP and,

226
FGF9, 174, 175, 177, 179
FGFR3, 174, 175
FHMs. See Fathead minnows
FieldML, 65t
Firmicutes, 109, 116, 125
Fish oil and soybean oil supplemented diet

(FSO), transcriptomics analysis of
mammary tissue in mid-lactating cows
fed with, 236, 237, 238, 239, 240

Fish species, systems biology approaches
with, 20–21

Flagellin, 252
Fluorescence-based real-time PCR, 91
Flux

DIA and estimating potential direction of,
220

of energy through cell, network of
enzymes, metabolites and, 36

FMD. See Foot-and-mouth disease
Food-producing animals, intestinal

disturbances in, 111
Food security, source tracing and, 103
Foot-and-mouth disease, 98, 99

monitoring, RT-PCR and, 103
source tracing and, 103

FOS. See Fructooligosaccharides
FOX01, bovine mammary tissue, milk fat

synthesis and, 240
Free fatty acids, 115
Fructooligosaccharides

dietary intervention in rats with diet high
with, 118

effect of prepartal nutrient and energy
intake on dairy cow liver and, 234

Functional genomics, 138
Functional genomics research, analysis of,

141
Funding, systems biology, livestock health

management and, 105
FXR. See Farnesoid X receptor

G
Galactose metabolism, bovine lactation,

carbohydrate metabolism and, 220
“Game of Life,” 260, 261
Gastric electrical activity, modularity across

multiple scales and, 58, 60
Gastric electrical models, multiscale, 72
Gastric electrical stimulation, applied

modeling and, 66
Gastric inhibitory peptide, 109
Gastrointestinal (GI) motility, normal, 56
Gastrointestinal (GI) tract

anatomical regions of, 112
body homeostasis and, 109–111
defining scales in microbial energy of,

120
description of, 70–71, 109
digestive function, representative models

and, 194
embedding of, and levels/complexity

handled for different mammalian
systems, 121

features of various anatomic sites related
to, 113t

geometric models of organs, 63
modeling approach at different levels of

organization and, 197
mucus layer of, 251

Gastrointestinal wall, modeling approach at
different levels of organization and,
197

Gen Bank, 65t
Gene annotation, functional, resources for,

164, 167
Gene coexpression networks, 7



P1: SFK/UKS P2: SFK

BLBS088-IND te Pas September 10, 2011 5:7 Trim: 244mm×172mm

Index 297

Gene expression
in endometrium during preimplantation

phase in equine endometrium,
175–178

in endometrium during preimplantation
phase in porcine endometrium,
174–175

linking data from, to genome-wide
association studies, 170

Gene expression data, gene network models
and, 7

Gene Expression Omnibus, 138
Gene knockouts, 6, 7
Gene Map Annotator and Pathway Profiler,

88
Gene networks

increasing reliability of, 6–7
methods for iterative refinement of, 8

Gene Ontology, 65t, 88, 102
analysis of terms, 164
annotation classification, 7
biological process, analysis of prepartal

nutrient and energy intake on dairy
cow liver and, 231, 232

cellular component, analysis of prepartal
nutrient and energy intake on dairy
cow liver and, 231, 232

description of, 142
function and Web site/source for, 165t
terms, gene expression during

preimplantation phase in porcine
endometrium, 174

Gene/protein interactions, resources for, 164,
167

General Repository for Interaction Datasets,
11

Gene regulation, of genes A and B, different
scenarios for, 259t

Gene regulatory networks, Boolean functions
and, 259

Genes
biological data added to lists of, 142–144,

147
cooperation of, in networks, 148–149
relating expression levels of, to

quantitative traits, 149–150
Gene selection, regulatory network

construction example, 15
Gene set enrichment analysis, 164, 165t, 167

gene expression data sets from mammalian
species in, 178–179

gene expression in equine endometrium
and, 176

Genesis, 223
Genetic disease(s)

causes of, 137
systems biology and

determining disease susceptibility or
resistance, 101

identification of, 100–101
Genetic information, flow of, via different

classes of molecules producing
molecular patterns and networks, 162

Genome, complex regulation of, 138
Genome expression profiling, optimizing

diagnosis/prognosis with, 88
Genome information, new, for all species,

systems biology and, 2–3
Genome network pathway informatics,

livestock science and, 76–77
Genome sequencing data, identifying novel

antimicrobial agents and, 90
Genome-wide association studies

correlating gene expression data and data
from, relative to fertility, 169–171

linking data from gene expression and, 170
Genomic information, understanding

functional/operational implications of,
97–98

Genomics, 38
Genomic selection approaches, 271
Geometric models, of GI-tract organs, 63
GI electrophysiology, mathematical

modeling of, 71–73
GIP. See Gastric inhibitory peptide
GIT. See Gastrointestinal (GI) tract
GIW. See Gastrointestinal wall
GjaI gene, 181
Global networks, 16, 223
GLP-1 (glucagon-like peptide-1), 109, 113
GLP-2 (glucagon-like peptide-2), 113
Glucocorticoid receptor, 44
Gluconeogenesis, 215–216
Glucose-dependent insulinotropic peptide,

113
Glutathione metabolism, reduction of

NADPH and inhibition of, 237
Glutathione S-transferase Pi, overexpression

of, 88
Glycolysis, turbo effect in, 47–48, 49
Glycolysis/gluconeogenesis, inhibition of,

during bovine lactation, 222
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GO. See Gene Ontology
GPCRs. See G-protein-coupled receptors
GPR41, 118, 119
GPR43, 118, 119
G-protein-coupled receptors, 118
GR. See Glucocorticoid receptor
Gram-negative bacteria

endotoxins in, 255–256
virulence factors and, 255

Graph models, 123
Graphs

defined, 39
directed, 4, 5
directed acyclic, 6
undirected, 4, 5, 39

Graph theory, systems biological models and,
39

GRID. See General Repository for
Interaction Datasets

Grid computing, Physiome Project access
and, 67

Growth factors, 253
Growth models, 201
Growth performance, modeling, 196–197
GSEA. See Gene set enrichment analysis
GSTP. See Glutathione S-transferase Pi
Gut

electrical activity, mathematical models of,
72

health of, from (nutri)genomics viewpoint,
193

hormones, 110
microbiota in, 251

metabolic disease and, 109
GWAS. See Genome-wide association studies

H
Haptoglobin, diagnosing clinical mastitis and,

104
HBV, 267
HCV, 267
HDAC5, bovine mammary tissue, milk fat

synthesis and, 240
Heart disease, 96
Heart modeling, 70
Heart Physiome, 69t
Hemolysis, 255
Heparin sulfate biosynthesis, rod-specific

genes and, 9
Hepatocyte nuclear factor 4 alpha, 224, 226
Hepatocytes, 362

Heptamers, V(D)J recombination and,
254

Heriditary nonpolyposis colorectal cancer,
screening for susceptibility to, 88

HER2, systems biology and specific targeting
of, 89

H5N1 strain of avian influenza, source
tracing of, 103

H5N1 virus, 99
HGP. See Human Genome Project
HHV, 267
Hierarchical modularity, protein and

metabolic networks with, 11
HIF1A. See Hypoxia inducible factor 1 alpha

subunit
High-fat feeding, adipose tissue and, 227
High pathogenic avian influenza (HPAI),

99
High-throughput technologies

adipose tissue studies and, 227
applicability of, in discerning biological

networks, 215
host-pathogen interactions and, 248

Hill’s equation, 203
Historic effects, mathematical representation

in dynamic models and, 204–205
HIV, 267
HIV-1, 255
HNF4A. See Hepatocyte nuclear factor 4

alpha
HNPCC. See Heriditary nonpolyposis

colorectal cancer
Holism, systems biology and, 31, 39
Holstein cows

Factor IX deficiency in, 100
milk production, bovine mammary gland

and, 217
Holstein-Friesian bulls, genotyping of, 170
Homeostasis, 32

energy, 113
gastrointestinal (GI) tract and, 109–111
hormone, signaling and, 113–114
mammalian gut as gatekeeper of, 110–111,

111
of tolerance and immunity, 114

H1N1, 103, 269
Hormonal effects, mathematical

representation in dynamic models
and, 203

Hormone homeostasis, signaling and,
113–114
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Horse
microarray studies on reproductive tissues

in, 163
processes and signaling pathways from

transcriptome studies and knowledge
related to pregnancy recognition and
endometrial receptivity in, 180

Host-encoded receptors, 251
Host-food-microbe interactions

challenges ahead relative to, 129–130
top-down modeling, 123–126, 128–129

Boolean and agent-based models,
128–129

embedding experimental design and
data decomposition, 124

host-microbe interaction models,
125–126

kinetic modeling, 126, 128
multivariate statistics, 123–124
network analysis methods, 124–125
network topology models, 128

Host-microbiota interactions, defining scales
in microbial ecology of intestinal tract
and, 122–123

Host-pathogen interactions, 247–272
adaptive immunity, 253–255

generation of diversity, 254–255
complexity and scales, 256–258

cellular, 257
molecular, 256
organism, 257
population, 257–258
space, 256
time, 258
tissue, 257

conclusions, 270–272
in conjunction with environment, 264
data explosion, 248–249
innate immunity, 250–253

activation of adaptive immunity,
252–253

complement activation, 251
inflammation and leukocytes, 252
recognition of pathogenic invaders,

251–252
interaction models, 262–270

intracellular signaling, 267–269
organisms, 270
pathogens, 264–265
receptor-ligand kinetics, 265–266
tissue/organs, 269–270

introduction, 247–248
mathematical models, 258–262

computational tools, 262
mathematical frameworks, 259–262

rationale for systems biology approaches,
249–250

software tools for modeling, selection,
263t

understanding, systems biology and,
101–102

virulence factors, 255–256
Host-pathogen systems biology, goal of, 249
Host species, pathogen adaptation to, 103
Hoxd13-containing cluster, chicken

phenotype talpid3 and, 18
HPRD, 166t, 167
HPV, 267
HSPB2, equine endometrium and, 177
Human Genome Project, 2, 53, 54, 55, 67,

85
Human medicine

barriers to implementing personalized
medicine in, 90

establishing need for systems biology
approaches in, 84–86

systems biology and personalized
healthcare in, 86–87

Human Microbiome Project, 121
Human nutrition, importance of

milk/milk-related products to, 217
Human orthologs, of mouse proteins, 11–12,

13
Humans

embedding of gastrointestinal (GI) tract in,
121

microarray technology and analysis of
endometrium transcriptome in, 163

whole-body mechanistic model of, 49
Hunter, Peter, 54
Hypertension, 109
Hypoxia inducible factor 1 alpha subunit,

effect of prepartal nutrient and energy
intake on dairy cow liver and, 235

Hysteresis in system, strength of emergence
and, 37

I
ICCs. See Interstitial cells of Cajal
IFH1, uterine receptivity and, 171
IFNs. See Interferons
IFNT. See Interferon tau
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IGFBP1, 177
IGFBP7, 171
IGFBP2, 179
Igs. See Immunoglobulins
IHH. See Indian hedgehog
IL7. See Interleukin 7
IL10. See Interleukin 10
IL13. See Interleukin 13
IL1B. See Interleukin 1 beta
Ileum, 112, 112, 113t
Ileum intestinal microbiota, studying, 121
Illumina RNA-Seq, Affymetrix GeneChip

data vs., bovine endometrium at day
18 of pregnancy, 163t

IL6R, 174
IL11RA, 174
Imatinib, systems biology, targeting of HER2

and patient response to, 89
Immune cell homeostasis, epithelial cells

and, 115
Immune cell trafficking, inhibition of, during

course of lactation, 222
Immune response models, 123
Immune system

classification of, 250
complexity of, 257

IMMune system SIMulator, 269
Immunity, homeostasis of, 114
Immunoglobulins, 253, 254
Immunological memory, 250
Immunology, systems biology analyses in,

12–16
Importin-cargo complex, transport of,

through nuclear membrane, 45
Importins, 45
Indian hedgehog, NRF2 and, 172
Indicial response function, porcine

expression data and, 20
Infection biology, description of, 250
Infection models, 201
Infectious disease(s)

cellular level and, 257
molecular level and, 256–257
organism level and, 257
population level and, 257–258
prevention of, Basic Immune Simulator

and, 269
space and, 256
time course of, 258
tissue level and, 257

Inflammation, leukocytes and, 252

Inflammatory intestinal disorders,
compromised intestinal functionality
and, 110

Influenza virus Type “A,” avian influenza
and, 99

Ingenuity Pathways Analysis, 217, 219, 226,
237

analysis of prepartal nutrient and energy
intake on dairy cow liver, 231, 233, 234

of effects of overfeeding energy during dry
period on bovine subcutaneous
adipose tissue metabolic flux, 228, 229

Knowledge Base, 223, 224
Innate immunity, 250–253

activation of adaptive immunity, 252–253
complement activation, 251
important aspects of, 250–251
inflammation and leukocytes, 252
recognition of pathogenic invaders,

251–252
INR2F2, 179
Insulin, 109

prepartal serum, energy-overfed vs.
restricted cows and increase in, 234

Insulin resistance, 109
Insulin response, evoking, 113
Insurance coverage, personalized medicine in

human medical practice and, 90
Interaction models, 262, 264–270

intracellular signaling, 267–269
organisms, 270
pathogens, 264–265
receptor-ligand kinetics, 265–266
tissue/organs, 269–270

Interaction networks, topological analysis of,
10–11

Interactome, 140t
Interactome mining, chicken datasets and, 18
Interferon delta, pregnancy recognition and

endometrial receptivity in cattle,
swine, and horse, 180

Interferon gamma, pregnancy recognition
and endometrial receptivity in cattle,
swine, and horse, 180

Interferons, 252, 253
Interferon tau

embryonic pregnancy recognition and, 171,
172

pregnancy recognition and endometrial
receptivity in cattle, swine, and horse,
180
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Interleukin 7, cross talk between PAR, MFP
and, 226

Interleukin 10, 114
Interleukin 13, cross talk between PAR and

MFP and, 226
Interleukin 1 beta, cross talk between PAR,

MFP and, 226
Interleukins, 253
Internal consistency, in models, 200
International Union of Physiological

Sciences Physiome Project. See IUPS
Physiome Project

Internet, high-speed, Physiome Project
access and, 67

Interstitial cells of Cajal, 71, 72, 72, 73
Intertissue cross talk, during prepubertal

bovine mammary development,
225–226

Intestinal barrier function, SCFA and, 118
Intestinal electrical activity, mathematical

models of, 72
Intestinal microbiota, 119–120

systems approaches and, 120–122
Intestinal tract. See also Gastrointestinal (GI)

tract
defining scales in microbial ecology of,

120–123
host-microbiota interactions, 122–123
microbiota and systems approach,

120–122
Intestine

as gatekeeper of homeostasis, 110–111, 111
metabolic capacity of, 109
nutritional challenges

dietary lipids, 114–116
SCFA and energy metabolism, 118
SCFA and microbiota, 116, 118
SCFA and signaling, 118–119

Intracellular network, 32
Intracellular signaling, interaction models

and, 267–269
in vitro fertilization, 181
Ion conductances, in smooth muscle cells,

58
IPA. See Ingenuity Pathways Analysis
IRF. See Indicial response function
Irreducibility

defined, 33
three varieties of, 33–35

Isoelectric point, 2D-PAGE and, 92
Isoform (FABP3), 224

IUPS Physiome Project
broadest expression of, 54
conclusions and future directions, 77–78
current status of physiome modeling, 70–77

applications to livestock science, 76–77
Digestive Physiome, 70–75
present challenges in, 75–76

Digestive Physiome, examples from, 59
framework and strategies of, 67–70
fundamental principles of, 55–67

anatomically based modeling, 62, 62–63,
64, 65–66

experimental evidence, guidance, and
validation, 66–67

modularity and complementarity, 58,
60–62

multiscale representation, 57–58
open, readily available access, 67
systems biology, 55–57

growth of, 54
introduction, 53–55
physiome-type infrastructure and

resources, 65t
IVF. See in vitro fertilization
IVF pregnancies, in cattle, endometrial

responses to clone pregnancies vs.,
179, 181–182

J
Jackson Labs’ mammalian orthology

resource, 12
Jagged 1 (JAG1), cross talk between PAR,

MFP and, 226
Jejunum, 112, 112, 113t
Johne’s disease, 96
JSim, 65t, 263t
JWS site, 45, 46

K
KDM5B. See Lysine (K)-specific demethylase

5B
KEGG database, 4, 65t, 77, 88, 140t, 142, 144,

145, 217
biological pathway examples from, 143
downloading bovine pathway database

from KEGG Web site, 220
function and Web site/source for, 165t
part of mathematical model of Glycolysis/

Gluconeogenesis pathway of, 153, 155
systems analysis of cow mammary

transcriptome and, 218
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KEGG pathways, 147, 150, 164
analyzing adipose tissue of energy-overfed

cows and, 228
in DAVID, analysis of prepartal nutrient

and energy intake on dairy cow liver
and, 231, 232, 233

overall calculated DIA in, of DEG in
bovine mammary tissue in response to
dietary fat supplementation, 238

overall calculated DIA in, using DEGs in
bovine mammary tissue during
lactation cycle, 221

KIAA0585 cDNA, chicken phenotype talpid3
and, 18

Kidney Physiome, 69t
Kinetic model, 39

host-food-microbe interactions and, 126,
128

Kinetic proofreading, 266
KLF5, equine endometrium and, 177
k-mean clustering analysis, 223
Krebs cycle, 142, 143
Kyoto Encyclopedia of Genes and Genomes.

See KEGG database

L
Lactate dehydrogenase, diagnosing clinical

mastitis and, 104
Lactating mammary gland, advances in

knowledge about, 217
Lactation

liver and transition from pregnancy to, 230
setting organization of mammary tissue for

milk production before onset of, 222
transition from pregnancy to, in dairy cow,

216
Lactobacillus plantarum, effect of, on gene

expression in human duodenum, 122
Lamb carcass, anatomically realistic finite

element model of, 64
Lamb cuts, video-imaging analyses of, 76
Lameness, 97
Large-scale-omics data, cellular

host-pathogen interaction models
and, 267

Lattice-Boltzmann method, gastric fluid
motion and, 74

LCFA in milk, transcriptomics analysis of
mammary tissue in mid-lactating cows
in response to dietary fat
supplementation and, 236, 237, 239,
240, 241

LC-MS-MS. See Liquid
chromatography-tandem mass
spectrometry

Leptin, 109
cross talk between PAR, MFP and, 226

Leucine supplementation, adipose tissue and,
227

Leukocytes
functions of, 253t
inflammation and, 252

Levels of organization
animal physiology and, 192–198, 193

interconnection between, 193–194
role and description of, 192–193

modeling approach at: the animal, GI tract,
and tissue of gastrointestinal wall,
197

regulation of physiological processes in
farm animals and, 210

for representation, choosing, 196–198
adopted model representation,

196–198
-omics data, 198

Life, nature of, debates over, 31
LIFR, 174
Ligand-receptor interactions,

high-throughput genomic approaches
and, 249

Limousin cattle, protoporphyria in, 100
Linear models, 150, 259
Lines, 39
Linoleic acid, conjugated, adipose tissue and,

227
Lipid supplementation, dietary, mammary

gland transcriptome, ruminal
metabolism and, 235–237, 239–241

Lipoeichoic acids, 252
Lipolytic activity, adipose tissue of

high-yielding dairy cows and, 216
Lipopolysaccharides, 12–14, 252
Lipoproteins, 252
Liquid chromatography-tandem mass

spectrometry, 93
Liver

alanine aminotransferase and damage to,
94

dairy cow, effect of prepartal nutrient and
energy intake on, 230–231,
233–235

transition from pregnancy to lactation and
role of, 230

Liver X receptors, 116
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Livestock industry
experts from, 278 (box 11.1)
systems biology and, 285, 286

Livestock management. See also Uterine
receptivity in livestock

complexity of, 277
systems biology and, 97 (box 4.5)

Livestock population health, personalized
medicine vs., 96–98

Livestock production systems, improving
sustainability of, 155

Livestock research, data explosion in,
248–249

Livestock science
anatomical datasets used in, 63
Digestive Physiome and, 75
dramatic pace of molecular advances in, 55
modeling meaning of -omics data in, 198
Physiome Project and new advances in, 78
Physiome-type strategies applied in, 76–77
silicon human project and, 49

Livestock species
adipose studies in, 227
functional genomics and, 138
host-pathogen research in, goal of, 271
improvement in systems-level modeling of,

3
translation of systems biology

understanding of human and model
vertebrates to, 2

Livestock traits, genetic basis of, 277
Logical expressions, noncontinuous,

mathematical representation in
dynamic models and, 204

Long-chain fatty acids, 116
Long QT syndrome, characteristics of, 56
Lotka-Volterra model, 260
Low pathogenic avian influenza (LPAI),

99
LPS/macrophage system, model explaining

behavior of, 268–269
LPSs. See Lipopolysaccharides
L-type calcium channel, smooth muscle cells

and, 58
L-type conductance module, 60
Lung Physiome, 69t, 70
Lungs, surfactant proteins in, 251
Luteal phase, mRNA levels and, 168, 169
LXRs. See Liver X receptors
Lymphocytes

adaptive immunity and, 253
functions of, 254t

Lysine (K)-specific demethylase 5B, 223
Lysozymes, 251

M
Macromolecules, systems biology and

interactions between, 39
Macrophages

chemotaxis and, 251, 252
functions of, 253t

Macroscopic modeling, 39
Mad cow disease, biochemical events leading

to, overview, 144
Magnetic resonance imaging, 63, 74
Major histocompatibility complex, Class I,

inhibition of, during lactation, 222
MALDI-TOF. See Matrix-assisted laser

desorption ionization-time of flight
Malignant hyperthermia, 101
Mammalian DCs, intracellular signaling and,

267–268
Mammalian genomes, number of

protein-coding genes in, 162
Mammalian gut, as gatekeeper of

homeostasis, 110–111, 111
Mammalian immune response network,

systems biology paradigm: progress in
analysis, 12–16

Mammalian species, comparison of gene
expression data sets from, 178–179

Mammalian transcriptomes, comprehensive
profiling of, 163

Mammary fat pad, 225, 226
Mammary gland

as unique system, 217–225
clustering approaches as tool in systems

biology, 223–225
limitations and potential solutions for

proposed analytical approach,
219–220

proposed analytical approach assessed,
220, 222

systems analysis of cow mammary
transcriptome, 218–219

transcriptional networks as systems
analysis, 222–223

Mammary gland transcriptome, dietary lipid
supplementation, ruminal metabolism
and, 235–237, 239–241

Mannose-binding lectin pathway, 251
Markup languages, Physiome Project model

encoding standards and, 68, 69
Mars Climate Orbiter, 68
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Mass spectrometry, 163
Mast cells, 252

functions of, 253t
recognition of pathogenic invaders and,

251
Mastitis, 103

in dairy cattle, systems biology application,
104–105

personalized medicine vs. livestock
population health and, 96, 97

Mathematical biology, 32, 38
Mathematical frameworks, 259–262
Mathematical modeling, 32, 57, 211

biological modeling combined with,
138

of GI electrophysiology, 71–73
intention of, in animal physiology, 199

Mathematical Modeling Language, 65t
Mathematical models, 258–262

biological model, complex traits and,
155

biological models toward, 151–155
of complex traits, 153, 155
computational tools, 262
of enzymatic reaction and of protein

complex formation, 154
guiding principle for, 194
mathematical frameworks, 259–262
for studying diet-host-microbiota

interactions, 111
systems biology and making from

biological models, 151–153
Mathematical representation, in dynamic

models, 200–205
Mathematics, biology and, 38–39
Mathur, Pramod, 278 (box 11.1), 284, 286
Matrix-assisted laser desorption

ionization-time of flight, 93
Mealy machine, 155
Meat quality, pH of, genes with association to

at several time points postmortem and
potential biochemical pathways,
150t

Mechanical models, in Digestive Physiome,
73–75

Mechanistic approaches, levels of
organization and, 196, 197, 198

Medical physics, Physiome Project and
advances in, 63

MEDLINE abstracts, text mining of, 164
Memory cells, 258

Memory effects, mathematical
representation in dynamic models
and, 204–205

Mesoscopic modeling, 39
Metabolic control analysis model, 40
Metabolic disease, gut microbiota and, 109
Metabolic flux analysis, 126
Metabolic networks

example silicon model of, 48
hierarchical modularity with, 11

Metabolic syndrome
compromised intestinal functionality and,

110
metabolomics studies and, 95

Metabolic systems, 31
Metabolites, oscilllatory behavior and

network of, 36
Metabolomics, 138, 141

adipose tissue, 227
livestock species and, 97
systems biology and, 94–95
workflow in systems biology, disease and,

86
MetaCyc, 18, 140t
Metadata standards, common, development

of, 69
MetaHit consortium, 122
Methane

dynamic model for, 209
fermented substrates and effect on, 209

Methane emission, systems biology, effective
functioning of rumen and, 284

Methanogenesis, interaction between
nutrition, fat metabolism, milk fat
quality and, 207–208

Methicillin-resistant Staphylococcus aureus,
MLST and monitoring spread of, 103

MFA. See Metabolic flux analysis
MFP. See Mammary fat pad
MH. See Malignant hyperthermia
MHC. See Major histocompatibility complex
Michaelis-Menten equation, for substrate

conversion, 201, 203
Michaelis-Menten kinetics, 39, 266
Microarray datasets, characterizing, 164
Microarray platforms, bovine mammary

gland and, 218
Microarray studies

of bovine endometrium during estrous
cycle, 168–169

of equine endometrium, 175
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Microarray technology, analysis of
transcriptome changes and, 163

Microbial fermentation models, 201
Microbiota

in gut and skin, 251
short-chain fatty acids and, 116, 118

Micro-CT, 63
Microfluidics, 85, 95
Microscopic modeling, 39
Microsoft Excel, 220
Middle-out modeling strategy, 32

building a model and, 41, 42
Migration, host-pathogen interactions and,

258
Milk fat quality, interaction between fat

metabolism, methanogenesis,
nutrition and, 207–208

Milk/milk-related products, importance of, to
human nutrition, 217

Milk protein synthesis, regulation of, new
insights on, 210

Mineral metabolism models, 201
Minerals, digestion of, 112
MINT protein-protein interaction database,

11
miRNAs, 138, 183
MLH1, 88
MLST. See Multilocus sequence typing
MML. See Mathematical Modeling Language
Modeling, software/tools for, selection of,

263t
Modeling approaches in systems biology,

31–49
bottom-up strategy, 40–41
deeming emergence to be less strong,

37–38
emergence

concept of, 33
reconstruction of emergent properties,

35
three varieties of irreducibility, 33–35
toward a hierarchy of strong emergence,

35–37
middle-out strategy, 42
silicon cell models

advantages and concerns with, 42–46
use of, 47–49

taking strong emergence as strong as it is,
38–39

top-down strategy, 41–42
usefulness of modeling, 47

use of systems biological models, 47–49
various biological models, 39–40

Modeling to link organization levels in
animal physiology, 191–211

examples of physiological aspects, 205–210
nutrition, methanogenesis, fat

metabolism, and milk fat quality,
207–208

nutrition, preabsorptive and
postabsorptive processes, 208, 210

nutrition and digestive physiology,
205–207

implications and perspectives, 210–211
introduction, 191–192
levels of organization, 192–198, 193

adopted model representation, 196–198
representation of -omics data, 198
representing animal physiology, 194–196

mathematical representation in dynamic
models, 200–205

allosteric effects, threshold values, or
noncontinuous switch functions, 203

competitive inhibition, 202–203
conditional statements and logical

expressions, 204
conversion or translocation driven by

enzymes or protein functions, 201–202
historic and memory effects, 204–205
multiple effects, 202
regulatory and hormonal effects, 203

static and empirical approaches, 200
systems biology approach, 199–200

Model organisms, selected, percentage of
annotations not inferred from
electronic annotation for, 167t

Models
applications for, 48–49
continuum, 57
defining, 32
geometric, 63
host-pathogen systems biology and

development of, 250
improving and fitting the reality, 47–48
lag in biological field modeling, 75
multiscale, 57–58
multiscale gastric electrical, 72
validating, 47

Modularity
Physiome Project and, 58, 60–62
silicon model of entire organism and,

43–44
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Modularity of complexity, example of, 40
Modular representation of biophysical cell

model, example, 62
Modular structure, of living system, 32
Module reduction, 61
Molecular biology, 38
Molecular biomarkers, drug distribution and,

89
Molecular diagnostics

genetic disease identified with, 100–101
impact of real-time PCR on, 98

Molecular epidemiology
objective of, 102
systems biology and, 102–104

comparative genotyping, 102–103
pathogen adaptation to host species,

103
source tracing, 103
vaccine development, 104

Molecular level, host-pathogen interactions
and, 256

Molecular pathway information modeling,
Physiome Project, livestock science
and, 77

Molecular signatures, for disease diagnosis
and prognosis, 87

Molecular weight, 2D-PAGE and, 92
Monocytes, functions of, 253t
Morpholino antisense oligonucleotides,

184
Morphological models, 137
Morphological pathways, building biological

model and role of, 142
MOSES project, 45
Mouse, embedding of gastrointestinal (GI)

tract in, 121
Mouse mammary gland, common features

with bovine mammary gland, 222
Mouse protein-protein interaction network

clusters within, obtained by spectral
clustering, 12

fragment expanded on basis of human
counterpart, 13

Mouse proteins, human otrhologs and,
11–12, 13

MRI. See Magnetic resonance imaging
MR microscopy, 63
mRNA, 138

estrous cycle and, 168
expression profiling, host-pathogen

interactions and, 249

MSH2, 88
mTOR signaling proteins, regulation of milk

protein synthesis and, 210
MUC4, 174
Multilocus sequence typing, 103
Multiple effects, mathematical

representation in dynamic models
and, 202

Multiplex PCR, 91
Multiplication, host-pathogen interactions

and, 258
Multiscale gastric electrical models, 72
Multiscale modeling, Physiome Project and,

57
Multi-scale modeling framework, challenges

facing module-based implementation
of, 61

Multiscale models
hierarchical organization of, 60
“truly multiscale,” 76

Multiscale systems, partial differential
equations and, 261–262

Multivariate statistics, host-food-microbe
interactions and, 123–124

Muscle fiber development, calcium
metabolism and, 147

Mutations, 38
MYC, 223, 234
Mycobacterium avium paratuberculosis,

pathogen adaptation to host species
and, 103

Mycobacterium tuberculosis, 257, 270
Myostatin gene, Piedmontese breed and

mutation in, 18–19

N
N-acetyl-ß-D-glucosaminidase, diagnosing

clinical mastitis and, 104
NADPH, major sources of, for mammary

cells, 237
Naming conventions, standardizing,

Physiome Project and, 68
NAND operator, 259
Nanotechnologies, 85
NASA, loss of Mars Climate Orbiter, 68
National Animal Genome Research

Program, 97
National Center for Biotechnology

Information, 8, 65t
National Centre for Foreign Animal Diseases

(Canada), 99
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National Institute of Food and Agriculture,
97

Natural killer cells, 251, 253t
Natural language processing tools, 167
NCBI. See National Center for

Biotechnology Information
NCI/Nature pathway Interaction database,

function and Web site/source for,
165t

ND. See Newcastle disease
NEB. See Negative energy balance
Necrosis, of host cells, 255
NEFAs. See Nonesterified fatty acids
Negative energy balance, peripartal cow liver

and, 216
Neighborhood, 260
Nernst potential module, 62
Nervous system disorders, metabolomics

studies and, 95
Network analysis

of effects of overfeeding energy during dry
period on bovine subcutaneous
adipose tissue metabolic flux, 228, 229

host-food-microbe interactions and,
124–125

-omics data and, 201
Network models

developing, in systems biology, 4
Boolean networks, 4, 6
directed graphs, 4
dynamic models, 6
probabilistic models, 6
undirected graphs, 4

refining, leveraging high-throughput data
for, 7–12

Network perturbation, regulatory network
construction example, 15

Network reconstruction, regulatory network
construction example, 15

Networks, genes cooperating in, 148–149
Network topology models, host-food-microbe

interactions and, 128
Neuregulin 1, cross talk between PAR, MFP

and, 226
Neutrophils, 251, 253t
Newbold, John, 278 (box 11.1), 280, 286
Newcastle disease, 98, 100, 103
NFE2L2. See Nuclear factor

erythroid-derived-2-like-2
NFYA, bovine mammary tissue, milk fat

synthesis and, 240

Noble, Dennis, 61
NOD. See Nucleotide-binding

oligomerization domain
Nodes, 39
Nonamers, V(D)J recombination and, 254
Noncontinuous switch functions,

mathematical representation in
dynamic models and, 203

Nonesterified fatty acids, 234
lipolytic activity and supply of, to udder,

216
liver and excessive concentrations of,

230
Nonlinear differential equations, dynamic

models and, 200
Nonlinear models, 259
Nonspecific immune response, 251
NOR operator, 259
NOT logical operator, 259
Novel technologies, 96
NR1C2, 116
NR1C3, 116
NR3C1, bovine mammary tissue, milk fat

synthesis and, 240
NR5A2, bovine mammary tissue, milk fat

synthesis and, 240
NRG1. See Neuregulin 1
NRh. See Nonreturn rate
NR1C1, 115
NRs. See Nuclear receptors
NR2F2, 172, 181

interaction network for, 173
NSR Physiome Project, 69t
Nuclear factor erythroid-derived-2-like-2

bovine mammary tissue, milk fat synthesis
and, 240

effect of prepartal nutrient and energy
intake on dairy cow liver and, 234, 235

Nuclear receptors, 44
Nucleocytoplasmic transport systems, 40
Nucleotide-binding oligomerization domain,

family of proteins, 252
Nutreco, 279
Nutrigenomics, adipose tissue studies and,

227
(Nutri)genomics viewpoint, gut health from,

193
Nutrition. See also Systems biology and

animal nutrition
interaction between digestive physiology

and, 205–207
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Nutrition (Continued )
interaction between methanogenesis, fat

metabolism, milk fat quality and,
207–208

interaction between preabsorptive and
postabsorptive processes and, 208, 210

Nutritional challenges
intestine and, 114–119

dietary lipids, 114–116
SCFA and energy metabolism, 118
SCFA and microbiota, 116, 118
SCFA and signaling, 118–119

Nutritional management, milk yield potential
of dairy cows and, 217

O
Obesity

compromised intestinal functionality and,
110

hormonal malfunctions and, 109
metabolomics studies and, 95
research on adipose tissue biology and rise

in, 227
small intestine and, 116

Occam’s Razor, principle of, 61
ODEs. See Ordinary differential equations
OIE. See World Organisation for Animal

Health
Olivier, Brett, 45
-omics data

high-throughput technologies and
generation of, 191

physiological concepts lacking in,
examples, 194–196

representation of, 198
selected tools for bioinformatic analysis of,

165t–166t
stochasticity and analysis of, 201

“Omics” technologies
characteristics of, 91 (box 4.4)
complexity at cellular level and, 257
maximizing drug safety and, 90
milk protein synthesis and, 210
molecular patterns of gametes, embryos,

maternal environment and, 161
personalized medicine in human medical

practice and, 90
OpenCell, 65t
Open source bioinformatics software

platforms, 148
oPOSSUM, 166t, 167

Opsonize, 251
Optical imaging techniques, 63
ORA. See Overrepresented approach
ORA tools, analysis of bovine subcutaneous

adipose tissue with, 228
Ordinary differential equations, 260
Organ function models, 201
Organism level, host-pathogen interactions

and, 257
Organisms, 3

interaction model and, 270
Organs, 3

interaction models and, 269–270
Origins of Life and Evolution of Biospheres,

31
OR logical operator, 259
Orthologs, paralogs vs., 7
Oscilllatory behavior, network of enzymes,

metabolites and, 36, 36
Osprey, 148, 153
Osteopontin, cross talk between PAR, MFP

and, 226
Ovarian hormones, molecular endometrial

responses and, 168
Overfeeding energy, effects of, during dry

period on bovine subcutaneous
adipose tissue metabolic flux, 229

Overrepresented approach, 219, 220
Ovine hereditary chondrodysplasia, 100
OXTR, 171, 172, 177
Oxyntomodulin, 109, 113

P
Pacemakers, GI tract, 71
PAMPs. See Pathogen-associated molecular

patterns
Paralogs, orthologs vs., 7
Parasitology, 250
Parenchyma, 225, 226
Partial differential equations, 261–262
Partial least squares discriminant analysis,

124
Parturition, gluconeogenesis and, 216
Pasteurella multocida, PCR assays and

identifying strains of, 98
Patch-clamping technique, 58
Pathogen adaptation, to host species, 103
Pathogen-associated molecular patterns,

252
Pathogen genomics, maturing field of, 248
Pathogenic invaders, recognition of, 251–252
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Pathogen identification
systems biology and, 98–100

avian influenza, 99
bluetongue disease, 99
classical swine fever, 100
foot-and-mouth disease, 99
Newcastle disease, 100

Pathogens, 247. See also Host-pathogen
interactions

interaction models and, 264–265
Pathway analysis, open source tools for, 167
Pathway analysis models, 123
Pathway Architect database, 176
Pathway databases, 140t
Pathway-KEGG, 65t
Pathways, networks of, 147–148
Pathway Tools, cattle datasets and, 18
Pattern recognition receptors, 252
PC. See Pyruvate carboxylase
PCA. See Principal components analysis
PCK1. See Phosphoenolpyruvate

carboxykinase 1
PCR. See Polymerase chain reaction
PDEs. See Partial differential equations
PDGFA. See Platelet-derived growth factor

alpha polypeptide
PECAM1, equine endometrium and, 176, 177
Peer review, 69
Pentose phosphate shunt, as major source of

NADPH for mammary cells, 237
Peptide mapping, microfluidic chips and, 95
Peptide-MHC complex, 266
Peptide YY (PYY), 113
Peptidoglycan, 252
Peripartal dairy cow, as model for

whole-animal systems biology,
216–217

PERL, 77
Peroxisome proliferator activated receptor,

222, 226
Personalized healthcare, systems biology and,

86–87
Personalized medicine

barriers to implementing in human
medical practice, 90

livestock population health vs., 96–98
maximizing drug safety with, 90
preemptive, predictive, and preventive

natures of, 87
Perturbation approach, broad-scale, major

value of, 16

PET. See Positron-emission tomography
PGR. See Progesterone receptor
Phagocytosis, 255
Pharmacogenomics, 89
Pharmacology, systems biology in, 89

(box 4.3)
Phenotypic impact factor, cattle datasets and,

19
Phosphatidylcholine, 115
Phosphoenolpyruvate carboxykinase 1,

bovine mammary tissue, milk fat
synthesis and, 240

Phospholipases, 251
Physical monism, thesis of, 33
Physiological aspects examples, 205–210

interactions between
nutrition, methanogenesis, metabolism,

and milk fat quality, 207–208
nutrition, preabsorptive and

postabsorptive processes, 208, 210
nutrition and digestive physiology,

205–207
Physiological function, in Digestive

Physiome, 73
Physiological information, in biological

model, 141
Physiological knowledge, building biological

models and, 149
Physiological pathways, 137
Physiology, 277

systems biology vs., 38–39
Physiome, meaning of term, 54
Physiome Project, 42, 59
Physiome-style projects, based around the

world, examples, 69t
Piedmontese breed, mutation in myostatin

gene in, 18–19
PIF. See Phenotypic impact factor
Pig datasets, systems biology and, 19–20
Pig genome, 97
Piglets, castration of, 284
Pig rib cage, anatomically realistic finite

element model of, 64
Pigs

adipose tissue studies in, 227
embedding of gastrointestinal (GI) tract in,

121
Placenta formation, comparison of porcine

endometrium from day 30 of clone
pregnancies vs. normal pregnancies
identified genes involved in, 182
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Platelet bleeding disorder, in Simmental
cattle, 100

Platelet-derived growth factor alpha
polypeptide, cross talk between PAR,
MFP and, 226

PLS-DA. See Partial least squares
discriminant analysis

Polylactic acid, producing, designing
Escherichia coli strain for, 48

Polymerase chain reaction
comparative genotyping and, 102–103
systems biology and, 91

Popel, Aleksander, 54
Population level, host-pathogen interactions

and, 257–258
Porcine endometrium

analysis of gene expression in
endometrium during preimplantation
phase in, 174–175

comparison of, from day 30 of clone
pregnancies vs. with normal
pregnancies, 182

Porcine gene expression data, clustering of,
19

Porcine stress syndrome, 101
Positron-emission tomography, 63
Postabsorptive processes, interaction

between nutrition, preabsorptive
processes and, 208, 210

Post genomic era, research in, 138–139
Postpartal dairy cows, early, milk production

and, 216
PottersWheel, 263t
Poultry, avian influenza and, 99
PPAR. See Peroxisome proliferator activated

receptor
PPARA, effect of prepartal nutrient and

energy intake on dairy cow liver and,
235

PPARalpha, 115, 116
PPAR signaling pathway

analyzing adipose tissue of energy-overfed
cows and, 228

EB vs. CTR and, in bovine mammary
tissue, 239

pQTL mapping, 20
Preabsorptive processes, interaction between

nutrition, postabsorbtive processes
and, 208, 210

Precision feeding, 280
Predator-prey model, 260

Predators and preys, time plot of number of,
261

Predictive biology, development of, across
vertebrate species, 2

Predictive regulatory control models, systems
immunology and, 14

Pregnancy
comparing Illumina RNA-Seq and

Affymetrix GeneChip data derived
from analysis of bovine endometrium
at day 18 of, 163t

liver and transition from, to lactation,
230

progesterone and maintenance of, 168
successful, prerequisite for, 161
transition from, to lactation in mammals,

216
understanding processes related to

establishment and maintenance of,
183–184

Pregnancy recognition, in cattle, swine, and
horse, overview of transcriptome
studies, 180

Pregnane X receptor, 45
Prepartal nutrient/energy intake

effect of, on dairy cow liver, 230–231,
233–235

effect on diary cow adipose tissue,
227–228, 230

Prepubertal bovine mammary development,
intertissue cross talk during, 225–226

Principal components analysis, 124
Prion disease, biochemical events leading to,

overview, 144
Probabilistic models, 6
Production traits, 277
Progein domain, 164
Progesterone

endometrial gene expression and, 168
pregnancy recognition and endometrial

receptivity in cattle, swine, and horse,
180

Progesterone receptor, 172
Progressive thin sectioning, of extended

stained tissue volumes, 63
Proliferator-activated receptors, 116
ProMoT, 263t
Propionate, 207

rumen epithelium and, 206
in short-chain fatty acids, 116

energy metabolism and, 118
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Prostaglandin E2, pregnancy recognition and
endometrial receptivity in cattle,
swine, and horse, 180

Prostaglandin F2 alpha, 171, 174
Prostate-specific antigen, prostate cancer

and, 94
Protein complex formation, mathematical

model of, 154
Protein databases, 164
Protein functions, conversion or

translocation driven by, 201–202
Protein interaction databases, 164
Protein kinase, regulation of milk protein

synthesis and, 210
Protein networks

hierarchical modularity with, 11
increasing reliability of, 6–7

Protein-protein interaction networks, 7
identifying novel interactions in, 11–12
spectral analysis of, 11

Proteins, 3
building biological model and role of,

142
nucleotide-binding oligomerization

domain of, 252
relating expression levels of, to

quantitative traits, 149–150
Protein synthesis

analysis of prepartal nutrient and energy
intake on dairy cow liver and, 233, 235

inhibition of, during course of lactation,
222

Proteobacteria, 109, 125
Proteomics, 138, 141

advent of, 215
animal health and, 284–285
biomarker discovery and, 92, 93–94
livestock species and, 97
systems biology and, 92–93
workflow in systems biology, disease and,

86
Protoporphyria, in Limousin cattle, 100
Provimi, 279, 280
PRRs. See Pattern recognition receptors
PTGER2, equine endometrium and, 177
PTGER4, equine endometrium and, 177
Public health emergency management,

source tracing and, 103
PXR. See Pregnane X receptor
Pyruvate carboxylase, bovine mammary

tissue, milk fat synthesis and, 240

Pyruvate metabolism, inhibition of, during
bovine lacation, 222

PySCeS, 263t
PYY, 119

Q
QT interval, 56
QTL. See Quantitative trait loci
QTL mapping, 17, 20
Quantitative trait loci, 88, 137, 150
Quantitative traits, relating expression levels

of genes or proteins to, 149–150

R
RAG-1, 254
RAG-2, 254
Random variables, in probabilistic models, 6
RARA, bovine mammary tissue, milk fat

synthesis and, 240
Reachability analysis, Boolean networks and,

6
Reaction kinetics, models of, 123
Reactome, 88, 140t, 167

biochemical pathways, 144, 145
function and Web site/source for, 166t
part of WNT signaling pathway of, 153,

155
Real-time PCR, 91, 98
Receptor-ligand kinetics, interaction models

and, 265–266
Receptors, host-encoded, 251
Recombination signal (RS) sequences, 254
Rectum, 112, 113t
Reductionism, systems biology and, 31, 39
Reductionist approach

defining systems biology and, 55
waning use of, 2

Regulatory effects, mathematical
representation in dynamic models
and, 203

Regulatory impact factor, cattle datasets and,
19

Regulatory network construction, example
of unbiased and systematic strategy
for, 15

Regulatory network schematic, 5
Regulatory T cells, function of, 254t
REMaG, 224
Reparameterization, 49
Reproduction, successful, factors related to,

161. See also Fertility; Pregnancy
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Research
functional genomics, analysis of, 141
host-pathogen interactions and, 247
in post genomic era, 138–139

Research workflow example, iterative
“dry-wet” cycle centered around
bottom-up and top-down analyses,
127

Respiratory tract, cilia movement and, 251
Response element, nuclear receptors and,

44
Restriction fragment length polymorphism,

91
Retinal development, expanding seed

network of genes involved in, by
querying multiple gene expression
datasets, 8–10

Retina Workbench, 10
RFLP. See Restriction fragment length

polymorphism
Ribosomal protein S6, regulation of milk

protein synthesis and, 210
RIF. See Regulatory impact factor
RNA, 3, 32, 83
RNA interference (RNAi), identifying

regions of FMD virus with, 99
RNA metabolism, inhibition of, during

course of lactation, 222
RNA profile, physiological processes and

complex changes in, 162–163
RNA-Seq, 163, 183
RND1, equine endometrium and, 177
RND3, equine endometrium and, 177
Rod cell differentiation in eye, initial seed

network of gene interactions involved
in, 8

ROS production, energy-restricted cows and,
234

Rumen, systems biology and understanding
interactions between animal and, 284

Rumen acidosis, subclinical, 96
Rumen epithelium, comparison of enzyme

assays in, 206
Rumen fermentation, modeling, 197
Rumen H2-balance, VFA production,

microbial growth and, 209
Rumen wall tissues, of cattle, feeding regimes

and, 205
Ruminal metabolism, mammary gland

transcriptome, dietary lipid
supplementation and, 235–237,
239–241

RVs. See Random variables
Ryanodine receptor gene, malignant

hyperthermia and, 101

S
Saccharomyces cerevisiae, 125
Saliva, innate immunity and, 251
Salmonella spp., 12

software analysis of host chicken’s
response to, 77

TTSS translocated proteins in, 255
Salmonella typhimurium, model describing

metabolic capacity of, 265
Saturated fat diet (EB), transcriptomics

analysis of mammary tissue in
mid-lactating cows fed with, 236, 237,
238, 239, 240

Saturated fatty acids, model elements needed
to predict variation in content of,
195

SBGN. See Systems biology graphical
notation

SBML. See Systems Biology Markup
Language

SBToolbox2, 263t
SBW, 263t
Scale-free networks, 11
SCD. See Steroyl-CoA desaturase
SCFAs. See Short-chain fatty acids
Science Signaling Connections Map, 88
Scientific integrity and social responsibility,

Physiome Project access and, 67
Scientific reality, 32
SCN5A gene, Long QT syndrome and, 56
SCNT cloning. See Somatic cell nuclear

transfer cloning
SCNT embryos, 182
SCNT pregnancies, 181, 182
Scrapie, biochemical events leading to,

overview, 144
SCS. See Somatic cell score
SED-ML, 69
Seed network

retinal development
expanded, 10
of genes involved in retinal

development, 8–10
initial, of gene interactions involved in

rod cell differentiation in eye, 8
reconstruction from multiple gene

expression datasets, 9
SEIR model, SIR-derived, 258



P1: SFK/UKS P2: SFK

BLBS088-IND te Pas September 10, 2011 5:7 Trim: 244mm×172mm

Index 313

SELDI. See Surface enhanced laser
desorption ionization

Self-consciousness, emergence of, 33
Septic shock, compromised intestinal

functionality and, 110
Sequencing, advent of, 215
Serial confocal imaging, 63
Serial triggering, 266
SERPINA14, 181
SERPING1, comparison of gene expression

data sets from mammalian species
and, 178

Serum amyloid A (SAA), diagnosing clinical
mastitis and, 104

Sheep, microarray studies on reproductive
tissues in, 163

Sheep genome, 97
Short-chain fatty acids, 109

energy metabolism and, 118
microbiota and, 116, 118
signaling and, 118–119

Shorthorn cattle, bovine hereditary zinc
deficiency in, 100

Signaling, hormone homeostasis and,
113–114

Signaling pathway models, 123
Silicon animals, 43, 49
Silicon cell models, 32

advantages and concerns with, 42–46
ideal, 41
use of, 47–49

Silicon human, 43
Tokyo Declaration and, 49

Silicon human project, livestock science and,
49

Silicon pig, 49
Simmental cattle, platelet bleeding disorder

in, 100
Simplified models, detailed models vs.,

39–40
SimTK, 65t
Single-nucleotide polymorphisms, 88, 248

ABCA1 and, 359
genotyping of Holstein-Friesian bulls and,

170
Singular value decomposition, 11
SIR model, 257–258
SIS model, 258
Skin, microbiota in, 251
SLC1A1, comparison of gene expression data

sets from mammalian species and,
178

SLC35A3 gene, 100
Slow waves, GI tract, 71
SLPI, 114
Smooth muscle cells, L-type calcium channel

and, 58
Snoep, Jacky, 45
SNP association mapping, 17
SNPs. See Single-nucleotide polymorphisms
Soft-tissue mechanics techniques, 76
Software frameworks, Physiome Project and,

69
Software incompatibilities, 68
Somatic cell counting, diagnosing clinical

mastitis with, 104
Somatic cell nuclear transfer cloning, 179
Somatic cell score, 170
Source tracing, molecular epidemiology and,

103
Soy proteins, adipose tissue and, 227
Space, host-pathogen interactions and,

256
Spatial scales, in Physiome Project, 59
Spatiotemporal horizons, knowledge in

biological sciences and, 57
Spatiotemporal scales, “truly multiscale”

multiscale models and, 76
Spectral analysis, of protein-protein

interaction networks, 11
Spectral clustering, clusters within mouse

protein-protein interaction network
obtained by, 12

Spider lamb syndrome, 100
SPP1. See Osteopontin
SPTLC1. See Serine palmitoyltransferase
Standardization of scientific vocabularies,

Physiome Project and, 68–70
Stanniocalcin 1, 179
Staphylococcus aureus, methicillin-resistant,

MLST and monitoring spread of,
103

Starnet, 17
STAT, effect of prepartal nutrient and

energy intake on dairy cow liver and,
235

State-dependent properties, strength of
emergence and, 36

State measurement, regulatory network
construction example, 15

Static approach, levels of organization and,
200

Static models, 259
Statistical models, 123, 150
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STC1. See Stanniocalcin 1
Steatosis, liver damage and, 234
Stephan, A., 33
Steroyl-CoA desaturase, 196
Stochasticity, analysis of -omics data and,

201
Stochastic models, 259
Stomach, 112, 112, 113t
Stomach emptying, computational

simulations of, 74
Streptococcus agalactiae, mastitis in dairy

cows and, 103
Streptococcus pyogenes, virulence factors and,

255
STRING, 166t, 167
Strong emergence, 33, 34, 35–37
Subnetwork extraction, chicken datasets and,

18
Subpathways, 147
Sub-physiomes, in Physiome Project, 70
Substrate conversion, Michaelis-Menten

equation for, 201, 203
Subsystems, strength of emergence and, 37
Superantigens, 255
Surface enhanced laser desorption

ionization, 93
SVD. See Singular value decomposition
Swine

implantation in, 174
microarray studies on reproductive tissues

in, 163
processes and signaling pathways from

transcriptome studies and knowledge
related to pregnancy recognition and
endometrial receptivity in, 180

Switch functions, noncontinuous,
mathematical representation in
dynamic models and, 203

Symphony of Genomatica, 46
Synchronous determinism, thesis of, 33
Systeme Inernational (SI) standard, 61
Systemic approach, 32
Systemic (organizational) determinism, thesis

of, 33
Systemic properties, 31, 32, 33
Systemic property, irreducibility of, 33–35
Systems, 32
Systems analysis

of cow mammary transcriptome, 218–219
transcriptional networks in, 222–223

Systems approach, robustness of, 16

Systems biology, 247
animal science goals aligned with, 1
applying techniques of, livestock health

management and challenges related
to, 105–106

areas applicable to human medicine,
87–90

drug development, 90
drug safety, 90
improving treatment, 89
optimizing diagnosis and prognosis, 88
screening for disease susceptibility, 88
understanding diseases, 87–88

bioinformatics toward, 151–155
in clinical medicine and pathology, 87

(box 4.2)
clustering approaches as tools in, 223–225
deeming emergence to be less strong,

37–38
defined, 3, 31–32, 55, 138, 199, 278
defining in medical context, 83–84
diagnosing mastitis in dairy cattle and,

104–105
disease and, 84 (box 4.1), 85
emergence of, 33–37

concept of emergence, 33
reconstruction of emergent properties,

35
three varieties of irreducibility, 33–35
toward a hierarchy of strong emergence,

35–37
two conditions for, 34

as emerging interdisciplinary science, 277
establishing need for, in human and

veterinary medicine, 84–86
expectations from, for livestock science

and industrial innovations, 278–285
animal breeding industry, 281–285
animal feed industry, 278–281

genetic disease and
determining disease susceptibility or

resistance, 101
identification of, 100–101

graphical notation, 262
host-pathogen interaction and goal of, 248
important goals of, 215
livestock management and, 97 (box 4.5)
mathematical biology, molecular genetics

and, 38–39
model building strategies: top-down,

middle-out, and bottom-up, 40–42
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molecular diagnostics and, 98–101
determining disease susceptibility and

resistance, 101
genetic disease identification, 100–101
pathogen identification, 98–100

molecular epidemiology and, 102–104
comparative genotyping, 102–103
pathogen adaptation to host species,

103
source tracing, 103
vaccine development, 104

novel technologies, 95–96
cell-based biosensors, 96
microfluidic systems, 95

on-line resources, 21–22
parts of, used in animal science today,

17–21
aquaculture, 20–21
cattle, 18–19
chicken and turkey, 17–18
pig, 19–20

personalized healthcare in human
medicine and, 86–87

in pharmacology and toxicology, 89
(box 4.3)

quantifications of, Physiome Project and,
55–57

reductionism and holism in, 31, 39
right moment for taking strong emergence

as strong as it is, 38–39
silicon cell models: advantages and

concerns, 42–46
translation of, and understanding human

and model vertebrates to livestock
species, 2

understanding host-pathogen interactions
and, 101–102

use of systems biological models, including
silicon cell models, 47–49

using -omics data for modeling and,
199–200

utilizing new genome information for all
species and, 2–3

various models in, 39–40
workflow in disease and, 86

Systems biology and animal nutrition
insights from dairy cow during growth and

lactation cycle, 215–241
effect of prepartal nutrient and energy

intake on dairy cow liver, 230–231,
233–235

intertissue cross talk during prepubertal
bovine mammary development,
225–226

lipid supplementation, ruminal
metabolism, and mammary gland
transcriptome, 235–237, 239–241

mammary gland as a unique system,
217–225

peripartal dairy cow as model for
whole-animal systems biology,
216–217

perspectives, 241
prepartal nutrient and energy intake on

dairy cow adipose tissue, 227–228, 230
Systems biology approach

host-pathogen interactions and rationale
for, 249–250

levels of organization and, 193
linking organization levels in animal

physiology and, 192
Systems Biology Markup Language, 47, 65t,

69, 151, 153, 262
Systems biology model, building with

biological model, 151–153
Systems biology research, examples of, 3
Systems biology techniques, 91–95

metabolomics, 94–95
polymerase chain reaction, 91
proteomics and, 92–93

strategies for biomarker discovery and
diagnostic test development, 92,
93–94

Systems immunology, predictive regulatory
control models and, 14

T
talpid3, identification/analysis of genetic

lesion responsible for, 18
Tamoxifen, limited CYP2D6 metabolizing

capacity and, 89
TAP1, comparison of gene expression data

sets from mammalian species and, 178
Targeted therapies, systems biology and, 89
T-cell receptors, 253, 254

kinetic proofreading and, 266
T cells, 252, 253, 254, 258

bioinformatic tools and, 269
functions of, 253t

cytotoxic, 254t
regulatory, 254t

TCRs. See T-cell receptors
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Temporal scales, in Physiome Project, 59
Text mining, of MEDLINE abstracts, 164
TFBS. See Transcription factor binding sites
TFs. See Transcription factors
TGs. See Triacylglycerols
Th1, function of, 254t
Th2, function of, 254t
Th17, function of, 254t
Thermodynamic model, nonequilibrium, 39
Thesis of physical monism, 33
Thesis of synchronous determinism, 33
Thesis of systemic (organizational) property,

33
3D cell culture systems, 96
Threshold values, mathematical

representation in dynamic models
and, 203

Time, host-pathogen interactions and, 258
Time plot, of number of predators and preys,

261
Time-series simulation, 262
Tissue, interaction models and, 269–270
Tissue level, host-pathogen interactions and,

257
TLRs. See Toll-like receptors
TNFSF10, 179
TNFSF10 mRNA, upregulation of, in human

endometrium during window of
implantation, 170

TOF-MS, 93
Tokyo Declaration, 49
Tolerance, homeostasis of, 114
Toll-like receptors, 252

ligands of, and downstream signaling
cascade, 268

viral components recognized by, 267
Toll-like signaling pathways, 267
Top-down approaches, bottom-up

approaches cross-linked with, 130
Top-down modeling, 32, 123, 126

building a model and, 41, 41–42
host-food-microbe interactions

Boolean and agent-based models,
128–129

embedding experimental design and
data decomposition, 124

host-microbe interaction models,
125–126

kinetic modeling, 126, 128
multivariate statistics, 123–124
network analysis methods, 124–125
network topology models, 128

Topological analysis, of interaction networks,
10–11

Toxicogenomics, maximizing drug safety and,
90

Toxicology, systems biology in, 89 (box 4.3)
Toxicoproteomics, maximizing drug safety

and, 90
TP53, effect of prepartal nutrient and energy

intake on dairy cow liver and, 234
Transcriptional networks, in systems analysis,

222–223
Transcription factor binding sites, 167
Transcription factor networks, generation of,

223
Transcription factors, 138, 223, 226

effect of prepartal nutrient and energy
intake on dairy cow liver and, 234,
235

LPS response and, 13, 14
network analysis of, differential regulation

of mammary tissue in response to
dietary fat supplementation, 240

Transcriptome analysis, as holistic tool for
study of cellular changes at molecular
level, 162–164

Transcriptomics, 138, 141
adipose tissue, 227
advent of, 215
bovine mammary gland and, 218
workflow in systems biology, disease and,

86
Transcriptomics adaptations, of bovine

subcutaneous adipose tissue, 227–228,
230

Transcriptomics analysis, of mammary tissue
in mid-lactating cows fed various
diets, 236–241

Transmission of pathogens, 256
TRANSPATH, 4
Trastuzumab, systems biology, targeting of

HER2 and patient response to, 89
Treatment of disease, improving, systems

biology and, 89
Triacylglycerol, 114, 115

accumulation in liver, energy-overfed dairy
cows and, 234

nonesterified fatty acids and, 216
Tripeptides, digestion of, 112
Troponin I, acute myocardial infarction and,

94
Troponin T, acute myocardial infarction and,

94



P1: SFK/UKS P2: SFK

BLBS088-IND te Pas September 10, 2011 5:7 Trim: 244mm×172mm

Index 317

TRUE operator, 259
Trypanosoma brucei, glycosome and

preventing glycolytic turbo explosion
in, 48

TTSS. See Type III secretion system
Tumor necrosis factor-alpha, energy

homeostasis and, 113
Turbo effect, in glycolysis, 47–48, 49
Turkey genome, draft sequence assembly of,

17
2D gel electrophoresis, 163
Two-dimensional polyacrylamide gel

electrophoresis (2D-PAGE), 92
2-monoacylglycerols, 115
Type III secretion system, 255

U
UC. See Ulcerative colitis
Udder, nonesterified fatty acids supplied to,

216
Ulcerative colitis, 124
Ultrasound, 63
Undirected graphs, 4, 5, 39
Units, models and correct use of, 200
Unsaturated fatty acids, model elements

needed to predict variation in content
of, 195

Uridine monophosphate synthetase (UMPS
gene), 100

US Department of Agriculture, 97, 105
US Livestock Species Genome Project Web

page, 97
Uterine receptivity, IFH1 and, 171
Uterine receptivity in livestock

identifying fertility-rated genes by analysis
of pathological conditions

analysis of endometrial responses to
clone vs. IVG pregnancies in cattle,
179, 181–182

comparison of porcine endometrium day
30 of clone pregnancies vs. normal
pregnancies, 182

molecular networks as sensors and drivers
of, 161–184

analysis of gene expression in
endometrium during preimplantation
phase in equine endometrium,
175–178

analysis of gene expression in
endometrium during preimplantation
phase in porcine endometrium,
174–175

comparing gene expression data sets,
178–179

correlation of gene expression data and
data from genome-wide association
studies, 169–171

identifying biological themes related to
endometrial remodeling and
receptivity, 168–169

identifying genes involved in preparing
bovine endometrium for embryo
implantation, 171

interaction network for essential
transcription factor NR2F2, 173

introduction, 161
linking data from gene expression and

genome-wide association studies,
170

percentage of annotations not inferred
from electronic annotation for
selected model organisms, 167t

resources for functional gene annotation
and gene/protein interactions, 164,
167

transcriptome analysis and, 162–164
obtaining better understanding of

processes, 183–184

V
Vaccine development, molecular

epidemiology and, 104
van Kempen, Theo, 278 (box 11.1), 280, 281,

286
Variables

mathematical frameworks and, 259
ordinary differential equations and,

260
Vascular endothelial growth factors, estrous

cycle and, 169
Vascular remodeling, 172
Vcell, 263t
V(D)J recombination, 254
VEGF. See Vascular endothelial growth

factors
Verrucomicrobia, 109
Vertices, 39
Very-low density lipoproteins, nonesterified

fatty acids and, 216
Veterinary medicine

challenges in applying systems biology
techniques in, 105–106

establishing need for systems biology
approaches in, 84–86
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VFAs. See Volatile fatty acids
Video conferencing, Physiome Project access

and, 67
Video-imaging analyses, of lamb cuts, 76
Viral components, TLRs and recognition of,

267
Viral “infectomes,” 267
Virology, 250
“Virtual animal” model, 271
Virtual carcasses, 63, 64, 76
Virtual Cell, 46
Virtual dissection, 76
Virtual FRAP, 46
Virtual Physiological Human, 69t
Virulence factors, 255–256
Visible Human Project, 63, 65t
Vitamin D receptor (VDR), 45
Vitamins, 109, 112
VLDLs. See Very-low density lipoproteins
Volatile fatty acids, 198, 205, 208

comparison of enzyme assays in rumen
epithelium and, 206, 206

dynamic model for, 209

W
Weak emergence, 33, 35
Web-based modeling environment, 46
White blood cells, 253

Whole-animal systems biology, peripartal
dairy cow as model for, 216–217

WikiPathways, 46
WNT/Frizzled signaling, rod photoreceptor

differentiation and, 9
WNT signaling pathway, 143, 145
World Organisation for Animal Health, 98,

100, 105

X
XBP1, effect of prepartal nutrient and energy

intake on dairy cow liver and, 235
XNOR operator, 259
XOR operator, 259

Y
Yeast glycolysis model, discussion about,

47–48
Yersinia, TTSS translocated proteins in, 255
YY1, bovine mammary tissue, milk fat

synthesis and, 240
YY1 transcription factor, 223

Z
Zebrafish, 21
Zoonotic disease, source tracing and

monitoring spread of, 103
Zymosan, 252


