Length-Based Assessment of the Fisheries Targeting Snappers, Groupers and Emperors in Indonesia, Fishery Management Area 715

YKAN Technical Paper

Peter J. Mous, Wawan B. IGede, Jos S. Pet

DECEMBER 31, 2020

Suggestion citation

Peter J. Mous, Wawan B. I Gede, and Jos S. Pet (2021). Length-based assessment of the fisheries targeting snappers, groupers, and emperors in Indonesia, Fishery Management Area 715. Yayasan Konservasi Alam Nusantara and People and Nature Consulting, Jakarta Indonesia. Report AR_715_311220

Abstract

This document provides an overview of fleet characteristics and catch composition of the demersal fishery targeting snappers in Indonesia Fishery Management Area 715. It also presents trends in length-based stock health indicators of the top-20 species in this FMA. The report presents overfishing risk levels of the top 50 species, both in terms of current status and trend. Finally, the report presents a table with the contribution of other species to the total catch. The findings are based on YKAN's Crew-Operated Data Recording System, an initiative that involves fishers in data collection using digital imagery.

Yayasan Konservasi Alam Nusantara Ikat Plaza Building - Blok L Jalan By Pass Ngurah Rai No.505, Pemogan, Denpasar Selatan Kota Denpasar 80221 Bali, Indonesia Ph. +62-361-244524

People and Nature Consulting International Jalan Tukad Pancoran 15X, Panjer, Denpasar Selatan Kota Denpasar 80225 Bali, Indonesia

TABLE OF CONTENTS

1	Intr	oduction	3
2	Mat	erials and methods for data collection, analysis and reporting	7
	2.1	Frame Survey	7
	2.2	Vessel Tracking and CODRS	7
	2.3	Data Quality Control	8
	2.4	Length-Frequency Distributions, CpUE, and Total Catch	8
	2.5	I-Fish Community	30
3	\mathbf{Fish}	ing grounds and traceability	35
4	Leng sam	gth-based assessments of Top 20 most abundant species in CODRS ples	39
5	Disc	cussion and conclusions	82
6	Refe	erences	88

1 Introduction

This report presents a length-based assessment of the multi-species deep slope fisheries targeting snappers, groupers, emperors and grunts at depths ranging from 50 to 500 meters, in fisheries management area (WPP) 715 in eastern Indonesia. WPP 715 covers mostly the Maluku and Seram Seas, and is surrounded by the Pacific Ocean to the North and the Arafura Sea and Banda Sea to the South. WPP 715 borders on WPP 716 and 717 in the North, and WPP 718 and 714 in the South (Figure 1.1). Most of the WPP 715 boundaries cut right through various fishing grounds with continuous habitat and with fishing fleets freely moving across those boundaries.

Drop line and mini long line vessels fish on both sides of WPP 715 boundaries sometimes even within a single fishing trip, but more often shifting between fishing grounds with the varying seasons and wind directions. Small scale fishing boats from the Banggai Islands for example, operate mini bottom long lines in WPP 715 on the North side of the Banggai and Sula Islands during the South Easterly monsoon winds from May through October, while fishing on the South side of these Islands in WPP 714 during the North West monsoon from December through March. They fish on both sides during the inter-monsoon months of April and November.

In terms of habitat and ecology of the target species, WPP 715 and surrounding fisheries management areas, at least for the fishing grounds directly across the boundaries, are very similar and completely connected. Fishing grounds for snappers, groupers and other target species in this region include mostly deep slopes along the many islands as well as seamounts, reefs, atolls and other structures which are characteristic for this area. Much of the habitat in WPP 715 is mostly suitable for deep drop line fishing along these structures, with some more substantial suitable long line fishing grounds mainly concentrated close to the shores of the Bird's Head of West Papua, in the South Eastern corner of the Raja Ampat islands.

Several fleets from various home ports in Indonesia contributed catch data to the current assessment of WPP 715 deep slope fisheries. This includes among others a medium scale drop line fishery operating out of Kema in North Sulawesi (inside WPP 715), a small scale mini long line fishery based in the Banggai and Sula Islands on the boundary of the Maluku and Banda Seas and medium scale drop line and long line fisheries operating out of Sorong in West Papua. In addition, data were used from fleets originating from outside the region whenever they were operating inside WPP 715. Fishing grounds for the small scale mini long line and drop line fleets are mostly concentrated near the home islands of these fleets, whereas medium scale vessels routinely make trips to locations up to 1,000 kilometres or more from their home port, to all corners of this region.

Typical medium scale drop line vessels originating from Kema operate at great distances from their home port throughout WPP 715 and all surrounding fisheries management areas. Kema-based vessels make up to about 10 trips a year, landing around 4 tons of mixed snapper, grouper and emperor for each trip or up to about 40 tons per vessel per year. Medium scale drop line and long line fishing boats from Sorong normally stay somewhat closer to home, inside the waters of Raja Ampat and make shorter and more frequent trips in general. The Indonesian deep demersal fisheries catches a large number of species, and stocks of 100 of the most common species are monitored on a continuous basis through a Crew Operated Data Recording System (CODRS). The current report presents the top 50 most abundant species of fish in CODRS samples (Tables 1.1 and 1.2) in WPP 715, and analyses length frequencies of the 50 most important species in the combined deep demersal catches in this fisheries management area. For a complete overview of the species composition with images of all 100 target species, please refer to the ID guide prepared for these fisheries¹. For further background on species life history characteristics, and data-poor length based assessment methods, as applied in this report, please refer to the assessment guide that was separately prepared for these fisheries².

Data in this report represent catches realized within WPP 715 boundaries by fishing boats from the above described fleets. Captured fish were photographed on measuring boards by fishing crew participating in our Crew Operated Data Recording System. Images were analysed by project staff to generate the species specific length frequency distributions of the catches which served as the input for our length based assessment. Fishing grounds were recorded with SPOT tracers placed on contracted vessels.

Figure 1.1: Fisheries Management Areas (*Wilayah Pengelolaan Perikanan* or WPP) in Indonesian marine waters.

¹http://72.14.187.103:8080/ifish/pub/FishID.pdf

²http://72.14.187.103:8080/ifish/pub/IFishAssessmentGuide.pdf

			Reported		- h	Length	Converted		
			Trade	W =	a L^{b}	Type	Trade	Trade	~ .
		a ·	Limit		,	for a & b	Limit	Limit	Sample
Rank		Species	Weight (g)	a	b	TL-FL-SL	L(cm)	TL(cm)	Sizes
1	1	Aphareus rutilans	1000	0.015	2.961	FL	42.20	49.61	47971
2	9	Pristipomoides filamentosus	500	0.038		$_{\rm FL}$	29.70	33.27	39872
3	$\frac{4}{21}$	Etelis boweni	500	0.022 0.024	2.950	$_{ m FL}$	30.16	32.84	36287
$\frac{4}{5}$	$\frac{21}{34}$	Lutjanus erythropterus Paracaesio kusakarii	$\frac{500}{500}$		2.870	FL FL	$31.79 \\ 30.96$	$31.79 \\ 34.80$	$32071 \\ 28468$
6	$\frac{54}{7}$	Pristipomoides multidens	500		2.944	$_{\rm FL}$	31.18	34.80 34.92	26408 26734
7	6	Etelis coruscans	500	0.020 0.041		$_{\rm FL}$	30.28	34.92 37.85	20734 25747
8	17	Lutjanus malabaricus	500	0.041 0.009		$_{\rm FL}$	33.11	37.85 33.11	23004
9	10	Pristipomoides sieboldii	300		2.942	FL	25.52	29.21	16191
10	$\frac{10}{22}$	Pinjalo lewisi	300	0.022		FL	28.42	29.21 29.64	16178
11	5	Etelis radiosus	1000	0.056		FL	38.05	43.15	14057
$11 \\ 12$	35	Paracaesio stonei	500	0.024		FL	28.78	32.35	12674
13	69	Wattsia mossambica	500		2.824	FL	28.21	29.34	9164
14	19	Lutjanus timorensis	500	0.009		FL	33.11	33.34	8310
15	85	Erythrocles schlegelii	1500		3.040	FL	48.55	53.60	8137
16	32	Paracaesio gonzalesi	300	0.020		FL	23.24	24.96	6625
17	45	Epinephelus areolatus	300	0.011		FL	28.18	28.77	4957
18	84	Seriola rivoliana	2000	0.006		$_{\rm FL}$	54.23	60.03	4927
19	8	Pristipomoides typus	500	0.014		TL	36.16	36.16	4705
20	77	Caranx bucculentus	2000	0.023		FL	42.51	49.83	3705
21	80	Caranx sexfasciatus	2000		2.930	FL	43.43	49.51	3676
22	82	Elagatis bipinnulata	1000		2.920	FL	46.53	55.37	3331
23	15	Lutjanus argentimaculatus	500	0.034		FL	31.22	31.78	3265
24	81	Caranx tille	2000	0.032	2.930	FL	43.43	49.51	3176
25	75	Carangoides chrysophrys	1000	0.027		FL	37.68	42.12	3101
26	33	Paracaesio xanthura	300	0.023	3.000	SL	23.64	27.39	3086
27	20	Lutjanus gibbus	500	0.015	3.091	FL	28.87	31.09	2884
28	27	Lutjanus vitta	300	0.017	2.978	FL	26.72	27.64	2735
29	70	Gymnocranius grandoculis	500	0.032	2.885	FL	28.43	30.53	2608
30	87	Dentex carpenteri	300	0.023	2.930	FL	25.42	27.66	2468
31	64	Lethrinus laticaudis	300	0.020	2.986	FL	25.16	26.35	2420
32	88	Glaucosoma buergeri	500	0.045	2.725	TL	30.40	30.40	2144
33	43	Epinephelus morrhua	300	0.061	2.624	FL	25.59	25.59	1980
34	67	Lethrinus amboinensis	300	0.029		FL	25.49	28.06	1955
35	54	Epinephelus stictus	300	0.027		SL	22.37	28.24	1848
36	92	Cookeolus japonicus	300	0.014		TL	27.58	27.58	1827
37	2	Aprion virescens	1000	0.023	2.886	FL	40.49	45.90	1762
38	23	Pinjalo pinjalo	300		2.970	$_{ m FL}$	28.42	31.16	1678
39	28	Lutjanus boutton	300		3.000	$_{\rm FL}$	20.75	21.56	1638
40	41	Epinephelus latifasciatus	1500		3.088	TL	48.00	48.00	1590
41	63	Lethrinus lentjan	300		2.986	FL	25.16	26.35	1474
42	51	Epinephelus chlorostigma	500		2.940	$_{\rm FL}$	34.62	34.62	1402
43	90	Diagramma pictum	500		2.988	FL	33.08	36.71	1402
44	18	Lutjanus sebae	500		3.208	FL	29.97	31.26	1388
45	66	Lethrinus olivaceus	300	0.029		FL	25.49	27.50	1340
46	72	Carangoides coeruleopinnatus	1000		2.902	FL	35.35	40.12	1312
47	30	Lipocheilus carnolabrum	500		2.488	$_{\rm FL}$	26.13	28.32	1293
48	16	Lutjanus bohar	500		3.059	FL	29.70	31.31	1280
49	24	Lutjanus johnii	300	0.020		$_{\rm FL}$	27.28	28.49	1280
50	42	Epinephelus radiatus	300	0.061	2.624	FL	25.59	25.59	1192

Table 1.1: Length-weight relationships, trading limits and total sample sizes (including all years) for the 50 most abundant species in CODRS samples from deep water demersal fisheries in 715

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Rank	Species	2016	2017	2018	2019	2020	2021	2022	2023	2024	Total
2Pristipomoides filamentosus305664497795106821189000000398723Etelis boweni1816624894648362103970000362874Lutijanus crythropterus900359210807834983330000284686Pristipomoides multidens1207883346282657200002267347Etelis coruscans73548125478640683160000230049Pristipomoides sieboldii551502025472122593800001619110Pinjalo lewisi551502027612371196800001405712Paracaesio stonei607306527612573197800001405713Wattsia mosambica7541736235223711968000001405714Lutjanus timorensis630200715771850225300 <t< td=""><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td>0</td><td>0</td><td></td></t<>		_						0		0	0	
	2											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-						0	0	0	0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	Lutjanus erythropterus	990		10807	8349	8333	0	0	0	0	32071
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5			8334		4532		0	0	0	0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						5563					0	
8Lutjanus malabaricus407256494009490143730000230049Pristipomoides sieboldii263433141783584358500001619110Prinzio lewisi5515020254721225938000016161811Etelis radiosus7642301244742384217000001267413Wattsia mosambica75117362335237119680000831015Erythrocles schlegelii25816331898188524630000662517Epinephelus arcolatus14542583923251223000000495718Seriola rivoliana32312531095988126800000470520Caranx bucculentus74327395819209000000333123Lutjanus argentimaculatus306677890595103400003331621Caranx tille7742052568314740000331624Caranx tille7742052673660229800000242652	7						8316	0	0	0	0	
9Pristipomoides sieboldii263433141783584383500001619110Pinjalo lewisi551502025472122593800001405711Etelis radiosus7642391244742384217000001405712Paracaesio stonei607306527612744349700000831015Erythrocles schlegelii258163318981885246300000662517Epinephelus arcolatus1454258392325122300000499719Pristipomoides typus28783386597117490000003367620Caranx brochentus160813885709110900003331121Caranx otrasciatus160813885705110400003367622Elagatis bipinnulata155567980595103400000336123Lutjanus argentimaculatus366778047037750000336124Caranx tille77420522683147400002688	8						4373			0	0	23004
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				4331	4178	3584		0	0	0	0	
11Etelis radiosus764239124474238421700001405712Paracaesio stonei607306527612744349700001267413Wattsia mossambica75417362335231119680000831015Erythrocles schlegelii25816331895185524630000813716Paracaesio gonzalesi252149016161295197200000495718Seriola rivoliana3231253109598812680000495719Pristipomoides typus28783386597117490000370520Caranx bucculentus7432739581920900000370521Caranx sexfasciatus16081388570911090000333131Luiganus argentimaculatus3066778047037750000317622Caranx tille7742052268314740000317623Luiganus argentimaculatus3066778047037750000317624Caranx tille77420522 </td <td>10</td> <td>-</td> <td></td> <td>5020</td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td>	10	-		5020				0	0	0	0	
12Paracaesio stonei607306527612744349700001267413Wattsia mossambica75417362335237119680000916414Lutjanus timorensis63020071570185025530000813015Erythrocles schlegelii25816331898188524630000662517Epinephelus arcolatus1454258392325122300000495718Seriola rivoliana32312531095988126800000495720Caranx bucculentus7432739581920900000370521Caranx sexfasciatus16081388570911090000332123Lutjanus argentimaculatus3066778047037750000317624Caranx tille7742052268314740000316125Carangoides chrysophrys8994356543510690000316126Paracaesio xanthura1586627366029280000248427Lutjanus grandoculis177	11	-		2391		4238	4217		0		0	
13Wattsia mossambica75417362335237119680000916414Lutjanus timorensis63020071570185022530000831015Erythrocles schlegelii252149016161295197200000813716Paraccaesio gonzalesi252149016161295197200000495717Epinephelus arcolatus1454258392325122300000497719Pristipomoides typus287833865791174900000376520Caranx buculentus74327395819209000000376521Caranx serfasciatus16081388570911030000331123Lutjanus argentimaculatus3066778047037750000316125Carangoides chrysophrys8994356543510690000316126Paraccesio xanthura1586627366029280000273529Gymnocranius grandoculis2417404965715600000246830	12			3065	2761				0	0	0	
14Lutjanus timorensis63020071570185022530000831015Erythrocles schlegelii25816331898188524630000813716Paracaesio gonzalesi252149016161295197200000495718Seriola rivoliana32312531095988126800000495719Pristipomoides typus287833865971174900000070520Caranx bucculentus7432739581920000000370521Caranx touculentus7432739559510340000333123Lutjanus argentimaculatus3066778047037750000317624Caranx tille7742052263314740000310126Paracaesio xanthura1786627366029280000273529Gymnocranius grandoculis2417404965715600000246831Lethrinus amboinensis532417424994330000242832Glaucosoma buergeri<			754	1736					0	0	0	
15Erythrocles schlegelii25816331898188524630000813716Paracaesio gonzalesi252149016161295197200000495717Epinephelus arcolatus1454258392325122300000495718Seriola rivoliana32312531095988126800000492719Pristipomoides typus287833865971174900000370521Caranx sexfasciatus16081388570911090000333123Lutjanus argentimaculatus3066778047037750000326524Caranx tille7742052268314740000317625Carangoides chrysophrys8994356543510690000326527Lutjanus gibbus7612230191814670000288428Lutjanus vitta42338819823380000240830Dentex carpenteri1633837955845430000246831Lethrinus laticaudis197 <td></td> <td>Lutianus timorensis</td> <td>630</td> <td>2007</td> <td></td> <td>1850</td> <td>2253</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td></td>		Lutianus timorensis	630	2007		1850	2253		0	0	0	
16Paracaesio gonzalesi25214901616129519720000662517Epinephelus arcolatus145425839232512230000495718Scriola rivoliana3231253109598812680000492719Pristipomoides typus287833865971174900000070520Caranx bucculentus74327395819209000000370521Caranx sexfasciatus16081388570911090000333123Lutjanus argentimaculatus3066778047037750000317624Caranx tille7742052268314740000331126Paracaesio xanthura1586627366029280000288428Lutjanus grandoculis241740496571560000246830Dentex carpenteri163383795584543000242032Glaucosoma buergeri101539625504375000242031Lethrinus laticaudis197832468360	15	0						0		0	0	
17Epinephelus areolatus145425839232512230000495718Seriola rivoliana32312531095988126800000492719Pristipomoides typus2878338659711749000000370520Caranx bucculentus7432739581920900000003367621Caranx sexfasciatus160813885709110900000333123Lutjanus argentimaculatus3066778047037750000317624Caranx tille7742052268314740000308627Lutjanus gibbus761223019181467000248828Lutjanus gibbus761223881982338000246830Dentex carpenteri163383795584543000242631Lethrinus laticaudis197832468360563000242831Lethrinus laticaudis197832468360563000124433Epinephelus morrhua1534744214994	16										0	
18Seriola rivoliana3231253109598812680000492719Pristipomoides typus28783386597117490000470520Caranx bucculentus74327395819209000000370521Caranx sexfasciatus160813885709110900000333123Lutjanus argentimaculatus3066778047037750000336524Caranx tille7774252268314740000317625Carangoides chrysophrys8994355543510690000288427Lutjanus gibbus761223019181467000288428Lutjanus vitta42338819823380000240830Dentex carpenteri163383795584543000240831Lethrinus laticaudis1978324683605630000242032Glaucosoma buergeri1015396255043750000184836Cookeolus japonicus1184434104124440 <td>17</td> <td></td> <td></td> <td>425</td> <td></td> <td></td> <td>1223</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td></td>	17			425			1223	0	0		0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1253		988				0	0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										0	0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20				395		2090			0	0	
22Elagatis bipinnulata15556798059510340000333123Lutjanus argentimaculatus3066778047037750000326524Caranx tille7742052268314740000310125Carangoides chrysophrys8994356543510690000308627Lutjanus gibbus76122301918146700002288428Lutjanus vitta42338819823380000260830Dentex carpenteri163383795584543000246831Lethrinus laticaudis197832468360563000244833Epinephelus morrhua153474421499433000198034Lethrinus amboinensis53281261502858000198535Epinephelus morrhua153474412499433000184836Cookeolus japonicus118443410412444000176238Pinjalo pinjalo111689151714130000167839 <td>21</td> <td></td> <td>160</td> <td></td> <td>885</td> <td>709</td> <td>1109</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td>	21		160		885	709	1109	0	0	0	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	Elagatis bipinnulata					1034	0			0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			306	677	804	703					0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		• •			522			0	0	0	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	Carangoides chrysophrys	89		565	435	1069	0	0	0	0	
27Lutjanus gibbus7612230191814670000288428Lutjanus vitta42338819823380000273529Gymnocranius grandoculis2417404965715600000260830Dentex carpenteri1633837955845430000246831Lethrinus laticaudis1978324683605630000242032Glaucosoma buergeri1015396255043750000242034Lethrinus amboinensis532812615028580000195535Epinephelus stictus149330539614216000184836Cookeolus japonicus1184434104124440000167839Lutjanus boutton1381997796390000163840Epinephelus latifasciatus15360645476940000140243Diagramma pictum20192489406295000140244Lutjanus sebae2073972673113330000 <td>26</td> <td></td> <td>158</td> <td>662</td> <td>736</td> <td>602</td> <td>928</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>3086</td>	26		158	662	736	602	928	0	0	0	0	3086
28Lutjanus vitta42338819823380000273529Gymnocranius grandoculis2417404965715600000260830Dentex carpenteri1633837955845430000246831Lethrinus laticaudis1978324683605630000242032Glaucosoma buergeri1015396255043750000214433Epinephelus morrhua1534744214994330000198034Lethrinus amboinensis532812615028580000184836Cookeolus japonicus1184434104124440000176237Aprion virescens1913792574514840000167839Lutjanus boutton138199779639000163840Epinephelus latifasciatus1536064547694000140243Diagramma pictum20192489406295000140244Lutjanus sebae2073972693122030001402	27	Lutjanus gibbus	76			918	1467	0	0	0	0	
29Gymnocranius grandoculis2417404965715600000260830Dentex carpenteri1633837955845430000246831Lethrinus laticaudis1978324683605630000242032Glaucosoma buergeri1015396255043750000214433Epinephelus morrhua1534744214994330000198034Lethrinus amboinensis532812615028580000195535Epinephelus stictus1493305396142160000182737Aprion virescens1913792574514840000167839Lutjanus boutton138199779639000163840Epinephelus latifasciatus1536064547694000147442Epinephelus chlorostigma105277287370363000140243Diagramma pictum20192489406295000140244Lutjanus sebae2073972693122030001402 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td></td>								0		0	0	
30Dentex carpenteri1633837955845430000246831Lethrinus laticaudis1978324683605630000242032Glaucosoma buergeri1015396255043750000214433Epinephelus morrhua1534744214994330000198034Lethrinus amboinensis532812615028580000195535Epinephelus stictus1493305396142160000182737Aprion virescens1913792574514840000167839Lutjanus boutton138199779639000159041Lethrinus lentjan474302761333000147442Epinephelus chlorostigma105277287370363000140243Diagramma pictum20192489406295000140244Lutjanus sebae207397269312203000138845Lethrinus lentjam4743027613350000134044 <t< td=""><td>29</td><td></td><td>241</td><td>740</td><td>496</td><td>571</td><td>560</td><td>0</td><td>0</td><td>0</td><td>0</td><td>2608</td></t<>	29		241	740	496	571	560	0	0	0	0	2608
31Lethrinus laticaudis1978324683605630000242032Glaucosoma buergeri1015396255043750000214433Epinephelus morrhua1534744214994330000198034Lethrinus amboinensis532812615028580000195535Epinephelus stictus1493305396142160000182737Aprion virescens1913792574514840000167839Lutjanus boutton138199779639000163840Epinephelus latifasciatus1536064547694000140241Lethrinus lentjan474302761333000140243Diagramma pictum20192489406295000138845Lethrinus olivaceus117420177231395000134046Carangoides coeruleopinnatus2647345231150000134046Carangoides coeruleopinnatus2647345231150000131247 </td <td>30</td> <td></td> <td>163</td> <td>383</td> <td>795</td> <td>584</td> <td>543</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>2468</td>	30		163	383	795	584	543	0	0	0	0	2468
33Epinephelus morthua1534744214994330000198034Lethrinus amboinensis532812615028580000195535Epinephelus stictus1493305396142160000184836Cookeolus japonicus1184434104124440000182737Aprion virescens1913792574514840000167839Lutjanus boutton138199779639000159041Lethrinus lentjan474302761333000140243Diagramma pictum20192489406295000138845Lethrinus olivaceus117420177231395000134046Carangoides coeruleopinnatus2647345231150000131247Lipocheilus carnolabrum57230275311420000129348Lutjanus bohar75231185402387000129349Lutjanus johnii1421353114442480001293	31	Lethrinus laticaudis	197	832	468	360	563	0	0	0	0	2420
34Lethrinus amboinensis532812615028580000195535Epinephelus stictus1493305396142160000184836Cookeolus japonicus1184434104124440000182737Aprion virescens1913792574514840000167238Pinjalo pinjalo111689151714130000167839Lutjanus boutton1381997796390000159041Lethrinus lentjan4743027613330000140243Diagramma pictum20192489406295000138845Lethrinus olivaceus117420177231395000134046Carangoides coeruleopinnatus2647345231150000131247Lipocheilus carnolabrum57230275311420000129348Lutjanus bohar75231185402387000129349Lutjanus johnii14213531144424800001293	32	Glaucosoma buergeri	101	539	625	504	375	0	0	0	0	2144
35Epinephelus stictus1493305396142160000184836Cookeolus japonicus1184434104124440000182737Aprion virescens1913792574514840000176238Pinjalo pinjalo111689151714130000167839Lutjanus boutton1381997796390000159041Lethrinus lentjan4743027613330000140243Diagramma pictum20192489406295000138845Lethrinus olivaceus117420177231395000134046Carangoides coeruleopinnatus2647345231150000131247Lipocheilus carnolabrum57230275311420000129348Lutjanus bohar75231185402387000128049Lutjanus johnii1421353114442480001280	33	Epinephelus morrhua	153	474	421	499	433	0	0	0	0	1980
36Cookeolus japonicus 118 443 410 412 444 0 0 0 0 0 1827 37 Aprion virescens 191 379 257 451 484 0 0 0 0 1762 38 Pinjalo pinjalo 11 168 915 171 413 0 0 0 0 1678 39 Lutjanus boutton 13 8 199 779 639 0 0 0 0 1678 40 Epinephelus latifasciatus 15 360 645 476 94 0 0 0 0 1474 42 Epinephelus chlorostigma 105 277 287 370 363 0 0 0 0 1402 43 Diagramma pictum 20 192 489 406 295 0 0 0 1402 44 Lutjanus sebae 207 397 269 312 203 0 0 0 1388 45 Lethrinus olivaceus 117 420 177 231 395 0 0 0 1312 47 Lipocheilus carnolabrum 57 230 275 311 420 0 0 0 1293 48 Lutjanus bohar 75 231 185 402 387 0 0 0 0 1280 49 Lutjanus johnii 142 135 311	34	Lethrinus amboinensis	53	281	261	502	858	0	0	0	0	1955
37Aprion virescens191 379 257 451 484 0 0 0 0 1762 38 Pinjalo pinjalo11 168 915 171 413 0 0 0 0 1678 39 Lutjanus boutton 13 8 199 779 639 0 0 0 0 1678 40 Epinephelus latifasciatus 15 360 645 476 94 0 0 0 0 1590 41 Lethrinus lentjan 4 74 302 761 333 0 0 0 0 1474 42 Epinephelus chlorostigma 105 277 287 370 363 0 0 0 1402 43 Diagramma pictum 20 192 489 406 295 0 0 0 1402 44 Lutjanus sebae 207 397 269 312 203 0 0 0 1388 45 Lethrinus olivaceus 117 420 177 231 395 0 0 0 1340 46 Carangoides coeruleopinnatus 26 473 452 311 50 0 0 0 1293 48 Lutjanus bohar 75 231 185 402 387 0 0 0 0 1280 49 Lutjanus johnii 142 135 311 444 248	35	Epinephelus stictus	149	330	539	614	216	0	0	0	0	1848
38Pinjalo pinjalo111689151714130000167839Lutjanus boutton1381997796390000163840Epinephelus latifasciatus15360645476940000159041Lethrinus lentjan4743027613330000147442Epinephelus chlorostigma1052772873703630000140243Diagramma pictum201924894062950000138845Lethrinus olivaceus1174201772313950000131246Carangoides coeruleopinnatus2647345231150000129348Lutjanus bohar75231185402387000128049Lutjanus johnii1421353114442480001280	36	Cookeolus japonicus	118	443	410	412	444	0	0	0	0	1827
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	Aprion virescens	191	379	257	451	484	0	0	0	0	1762
40Epinephelus latifasciatus153606454769400000159041Lethrinus lentjan4743027613330000147442Epinephelus chlorostigma1052772873703630000140243Diagramma pictum201924894062950000140244Lutjanus sebae2073972693122030000138845Lethrinus olivaceus1174201772313950000134046Carangoides coeruleopinnatus2647345231150000129348Lutjanus bohar752311854023870000128049Lutjanus johnii14213531144424800001280	38	Pinjalo pinjalo	11	168	915	171	413	0	0	0	0	1678
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39	Lutjanus boutton	13	8	199	779	639	0	0	0	0	1638
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	Epinephelus latifasciatus	15	360	645	476	94	0	0	0	0	1590
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	Lethrinus lentjan	4	74	302	761	333	0	0	0	0	1474
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	42	Epinephelus chlorostigma	105	277	287	370	363	0	0	0	0	1402
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	43	Diagramma pictum	20	192	489	406	295	0	0	0	0	1402
	44	Lutjanus sebae	207	397	269	312	203	0	0	0	0	1388
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45	Lethrinus olivaceus	117	420	177	231	395	0	0	0	0	1340
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								0	0			
48Lutjanus bohar 75 231 185 402 387 0 0 0 0 1280 49 Lutjanus johnii 142 135 311 444 248 0 0 0 1280	47	Lipocheilus carnolabrum	57	230			420	0	0	0	0	1293
49 Lutjanus johnii 142 135 311 444 248 0 0 0 0 1280								0	0		0	
			142		311			0	0	0	0	
	50	Epinephelus radiatus	72	251	312	320	237	0	0	0	0	1192

Table 1.2: Sample sizes over the period 2016 to 2024 for the 50 most abundant species in CODRS samples of deepwater demersal fisheries in WPP 715

2 Materials and methods for data collection, analysis and reporting

2.1 Frame Survey

A country-wide frame survey was implemented to obtain complete and detailed information on the deep demersal fishing fleet in Indonesia, using a combination of satellite image analysis and ground truthing visits to all locations where either satellite imagery or other forms of information indicated deep demersal fisheries activity. During the frame survey, data were collected on boat size, gear type, port of registration, licenses for specific FMAs, captain contacts and other details, for all fishing boats in the fleet. Following practices by fisheries managers in Indonesia, we distinguished 4 boat size categories including "nano" (<5 GT), "small" (5-< 10 GT), "medium" (10-30 GT), and "large" (>30 GT). We also distinguished 4 gear types used in these fisheries, including vertical drop lines, bottom set long lines, deep water gillnets and traps.

Frame survey data are continuously updated to keep records of the complete and currently active fishing fleet in the deep demersal fisheries. Fleet information is summarized by registration port and home district (Table 2.13), while actual fishing grounds are determined by placing SPOT Trace units on all fishing boats participating in the program. By late 2020, most (over 90%) of the Indonesian coastline had been surveyed and the vast majority of the fleet was on record. The total fleet in each WPP is a dynamic number, as boats are leaving and being added to the local fleet all the time, and therefore the fleet survey data are updated continuously.

2.2 Vessel Tracking and CODRS

Vessel movement and fishing activity as recorded with SPOT data generates the information on fleet dynamics. When in motion, SPOT Trace units automatically report an hourly location of each fishing boat in the program, and when at rest for more than 24 hours, they relay daily status reports. Data on species and size distributions of catches, as needed for accurate length based stock assessments, are collected via Crew Operated Data Recording Systems or CODRS. This catch data is georeferenced as the CODRS works in tandem with the SPOT Trace vessel tracking system. Captains were recruited for the CODRS program from across the full range of boat size and gear type categories.

The CODRS approach involves fishers taking photographs of the fish in the catch, displayed on measuring boards, while the SPOT tracking system records the positions. Data recording for each CODRS fishing trip begins when the boat leaves port with the GPS recording the vessel tracks while it is steaming out. After reaching the fishing grounds, fishing will start, changing the track of recorded positions into a pattern that shows fishing instead of steaming. During the fishing activity, fish is collected on the deck or in chiller boxes on deck. The captain or crew will then take pictures of the fish, positioned over measuring boards (Figure 2.1), before moving the fish from the deck or from the chiller to the hold (to be stored on ice) or to the freezer. The process is slightly different on some of the "nano" boats (around 1 GT), where some crew take pictures upon landing instead of at sea. In these situations, the timestamps of the photographs are still used as an indication of the fishing day, even though most fishing may have happened on the day before.

At the end of the trip, the storage chip from the camera is handed over for processing of the images by expert staff. Processing includes ID of the species and measurement of the length of the fish (Figure 2.2), double checking by a second expert, and data storage in the IFish data base. Sets of images from fishing trips with unacceptable low quality photographs are not further processed and not included in the dataset. Body weight at length is calculated for all species using length-weight relationships to enable estimation of total catch weights as well as catch weights per species for individual fishing trips by CODRS vessels. Weight converted catch length frequencies of individual catches is verified against sales records of landings. These sales receipts or ledgers represent a fairly reliable estimate of the total weight of an individual catch (from a single trip, and including all species) that is independent from CODRS data.

2.3 Data Quality Control

With information from sales records we verify that individual catches are fully represented by CODRS images and we flag catches when they are incomplete, judging from comparison with the weight converted catch size frequencies. When estimated weights from CODRS are above 90% of landed weights from receipts, they are considered complete and accepted for use in length-based analysis and calculations of CpUE. CpUE is calculated on a day by day basis, in kg/GT/day, using only those days from the trip when images were actually collected. Medium size and larger vessels (10 GT and larger) do trips of at least a week up to over a month. There may be some days on which weather or other conditions are such that no images are collected, but sufficient days with images, within those trips usually remain for daily CpUE estimates and to supply samples for length-based analysis. For boats of 10 GT and above, incomplete data sets with 30% to 90% coverage are still used for analysis, using only those days on which images were collected. For boats below 10 GT (doing day trips or trips of just a few days) only complete data sets are used for CpUE calculations. All data sets on catches with less than 30% coverage are rejected and are not used in any analysis.

2.4 Length-Frequency Distributions, CpUE, and Total Catch

By the end of 2020, more than 400 boats participated in the CODRS program (Figure 2.3) across all fishing grounds in Indonesia, with close to 40 boats enrolled in each WPP (Table 2.1). Recruitment of captains from the overall fleet into the CODRS program iss not exactly proportional to composition of the fleet in terms of vessel size, gear type and the FMA where the boat normally operates. Actual fleet composition by boat size and gear type, and activity in terms of numbers of active fishing days per year for each category, are therefore used when CODRS data are used for CpUE and catch calculations. Species composition in the catch is also not exactly the same as species composition in the CODRS samples. Catch information by WPP and by fleet segment from CODRS samples is combined with fleet composition and activity information to obtain accurate annual catch information and species composition for each segment of the fleet.

Converted weights from catch size frequencies on individual fishing days, in combination with activity data from onboard trackers are used to estimate catch per unit of effort (CpUE) by fleet segment (boat size * gear type), by FMA, by species, and over time. Plotted data show clear differences between CpUE values for different gear types and different boat size categories (Figure 2.4) and we therefore work with separated gear types and boat size categories to generate CpUE values for each distinct segment of the fleet (Table 2.2 and Table 2.3). Activity data from onboard trackers on more than 400 fishing boats are used to estimate the number of active fishing days per year for each segment of the fleet (Table 2.4) and the total (hull) Gross Tonnage in each fleet segment is combined with fleet activity to establish a measure of effort. With this information, CpUE is precisely defined in kg per GT per active fishing day for each type of gear and each category of boat size in each FMA. Annual averages of CpUE by fleet segment are plotted for the top 7 species in each FMA (Figures 2.5 through 2.11), as indicators for stock health, and to compare with indicators from length-based analysis (i.e. Spawning Potential Ratio and percentage of immature fish in the catch).

Information on fleet activity, fleet size by gear type and boat size, and average size frequencies by species (per unit of effort) is used to estimate total catch. Fishing effort in terms of the average number of active fishing days per year for each gear type and boat size category (Table 2.4), is derived from SPOT data looking at movement patterns. Fleet size by gear type and boat size category (Table 2.5) is obtained from field surveys, where each vessel is recorded in a data base with estimated GT. Average size frequency distributions by fleet segment and species for each FMA, in combination with the information on effort by fleet segment, are thus used to estimate CATCH LFD (over the entire fleet) from average CODRS LFD by fleet segment are used for further calculations. Numbers per size class for each species in the catch are multiplied with weights per size class from lengthweight relationships, to calculate catches by fleet segment (Table 2.7), species distribution in the total catch (Table 2.8), and catch by species for each gear type separately (Tables 2.9 through 2.12).

As the CODRS program is still in final stage of development, some parts for the fleet ("fleet segments", a combination of WPP, gear type, and boat size category) are not yet represented. For those missing fleet segments, we apply the following approach to estimate annual catch. First, within each WPP, we estimate the total catch and the total effort for all fleet segments where we have representation by CODRS. We express annual effort as "tonnage-days", i.e. the GT of each vessel times the annual number of fishing days. Then, we calculate the average catch-per-unit-effort, over all fleet segments that have CODRS representation within each WPP (in metric tons per tonnage-day). This results in one catch-per-unit-effort estimate for each WPP (CPUE-estimate-per-WPP). Then, we calculate the effort, in tonnage-days, for the fleet segments where we do not have CODRS representation, and we multiply this effort with CPUE-estimate-per-WPP to get the estimated total annual catch for that fleet segment. This means that, within each WPP, fleet segments that do not have CODRS representation all have the same CPUE estimate-per-WPP, but their total catch estimates vary because effort between those fleet segments vary.

Trends in CpUE by species and by fleet segment (Figures 2.5 through 2.11) can be used as indicator for year-on-year changes in status of the stocks, for as far as time series are available within each fleet segment. Note, however, that these time series sometimes are incomplete or interrupted. This is due to variations in the presence of fleet segments between years in each WPP, and sometimes the CODRS vessels representing a fleet segment may disappear from one WPP and show up in another WPP. This may happen due to problems with processing permits at local authorities, but also due to the emerging differences in efficiencies between gear types and boat size categories, as well as due to perceptions on opportunities in other WPPs.

Figure 2.1: Fishing crew preparing fish on a measuring board.

Figure 2.2: Fish photographed by fishing crew on board as part of CODRS.

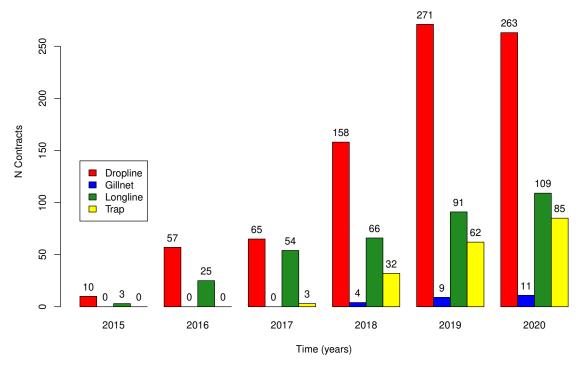


Figure 2.3: Number of CODRS contractors by gear type actively fishing in Indonesian waters.

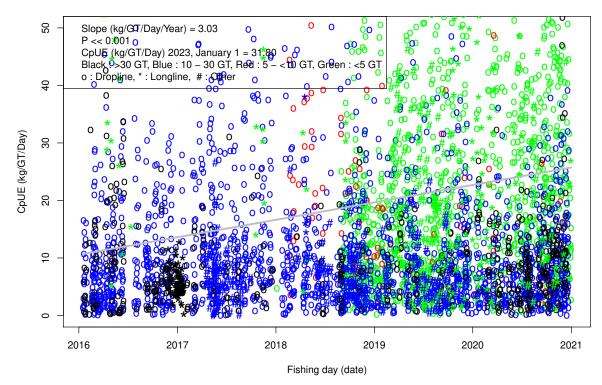


Figure 2.4: Catch per Unit of Effort in WPP 715.

_	Ν	Dropline	Longline	Gillnet	Trap	Total
	Nano	16	5	NA	1	22
	Small	2	NA	NA	NA	2
	Medium	13	NA	NA	NA	13
	Large	2	NA	NA	NA	2
	NA	33	5	0	1	39

Table 2.1: Number of CODRS deployed by gear type and boat size category in WPP 715

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Table 2.2: CpUE by fishing gear and boat size category in WPP 715 in 2020

kg/GT/Day	Dropline	Longline	Gillnet	Trap
Nano	54.85	41.43	NA	44.08
Small	15.36	NA	NA	32.76
Medium	13.05	32.76	NA	32.76
Large	13.15	32.76	NA	NA

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Table 2.3: Number of CODRS observations that contribute to CpUE value in WPP 715 in 2020

Ν	Dropline	Longline	Gillnet	Trap
Nano	530	74	NA	1
Small	19	NA	NA	1281
Medium	430	1281	NA	1281
Large	204	1281	NA	NA

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Table 2.4: Average active-fishing days per year by fishing gear and boat size category in all WPP

Days / Year	Dropline	Longline	Gillnet	Trap
Nano Dedicated	201	235	224	194
Nano Seasonal	100	118	112	97
Small Dedicated	213	258	247	277
Small Seasonal	107	129	124	139
Medium Dedicated	204	213	258	219
Medium Seasonal	102	107	129	110
Large Dedicated	166	237	151	185
Large Seasonal	83	119	75	92

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Table 2.5: Current number of boats in the fleet by fishing gear and boat size category in WPP 715

Number of Boat	Dropline	Longline	Gillnet	Trap	Total
Nano Dedicated	454	19	0	1	474
Nano Seasonal	561	0	0	0	561
Small Dedicated	3	0	0	2	5
Small Seasonal	0	0	0	0	0
Medium Dedicated	26	5	0	10	41
Medium Seasonal	0	0	0	0	0
Large Dedicated	3	1	0	0	4
Large Seasonal	0	0	0	0	0
Total	1047	25	0	13	1085

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Total GT	Dropline	Longline	Gillnet	Trap	Total
Nano Dedicated	432	26	0	3	461
Nano Seasonal	447	0	0	0	447
Small Dedicated	20	0	0	18	39
Small Seasonal	0	0	0	0	0
Medium Dedicated	614	90	0	153	856
Medium Seasonal	0	0	0	0	0
Large Dedicated	130	30	0	0	160
Large Seasonal	0	0	0	0	0
Total	1643	147	0	174	1964

Table 2.6: Current total gross tonnage of all boats in the fleet by fishing gearand boat size category in WPP 715

Table 2.7: Total catch in metric tons per year by fishing gear and boat size category in WPP 715 in 2020

Total Catch	Dropline	Longline	Gillnet	Trap	Total
Nano Dedicated	4763	255	0	27	5046
Nano Seasonal	2451	0	0	0	2451
Small Dedicated	67	0	0	165	232
Small Seasonal	0	0	0	0	0
Medium Dedicated	1634	628	0	1096	3359
Medium Seasonal	0	0	0	0	0
Large Dedicated	284	237	0	0	521
Large Seasonal	0	0	0	0	0
Total	9199	1120	0	1289	11608

Nano less than 5 GT. Small 5 - <10 GT. Medium 10 - 30 GT. Large >30 GT.

Table 2.8: Top 20 species by volume in deepwater demersal fisheries with % immature fish in the catch in WPP 715 in 2020.

Species	Weight	Weight	Cumulative	Immature	Immature	Risk
*	MT	%	% Weight	% Number	% Weight	Immature
Aphareus rutilans	3929	34	34	44	22	High
Etelis boweni	787	7	41	54	28	High
Pristipomoides multidens	737	6	47	57	29	High
Paracaesio kusakarii	643	6	53	41	18	High
Pristipomoides filamentosus	627	5	58	68	37	High
Etelis coruscans	560	5	63	72	49	High
Etelis radiosus	513	4	67	60	34	High
Lutjanus erythropterus	410	4	71	16	6	Med
Caranx sexfasciatus	349	3	74	19	5	Med
Lutjanus malabaricus	283	2	76	74	44	High
Caranx tille	218	2	78	0	0	Low
Pristipomoides typus	170	1	79	47	23	High
Seriola rivoliana	167	1	81	41	18	High
Pinjalo lewisi	166	1	82	31	21	High
Lutjanus gibbus	147	1	84	27	14	Med
Paracaesio stonei	144	1	85	19	8	Med
Erythrocles schlegelii	101	1	86	1	0	Low
Aprion virescens	95	1	87	35	14	High
Carangoides chrysophrys	85	1	87	4	1	Low
Caranx bucculentus	80	1	88	7	2	Low
Total Top 20 Species	10210	88	88	44	23	High
Total Top 100 Species	11608	100	100	38	22	High

Species	Weight	Weight	Cumulative	Immature	Immature	Risk
	\mathbf{MT}	%	% Weight	% Number	% Weight	Immature
Aphareus rutilans	3162	34	34	42	21	High
Etelis boweni	637	7	41	54	28	High
Pristipomoides multidens	538	6	47	54	27	High
Paracaesio kusakarii	525	6	53	41	18	High
Pristipomoides filamentosus	509	6	58	68	37	High
Etelis coruscans	456	5	63	72	49	High
Etelis radiosus	411	4	68	60	34	High
Lutjanus erythropterus	321	3	71	14	6	Med
Caranx sexfasciatus	283	3	74	19	5	Med
Lutjanus malabaricus	210	2	77	72	42	High
Caranx tille	178	2	79	0	0	Low
Pinjalo lewisi	133	1	80	31	21	High
Seriola rivoliana	132	1	81	41	18	High
Pristipomoides typus	122	1	83	44	20	High
Paracaesio stonei	118	1	84	19	8	Med
Lutjanus gibbus	118	1	85	27	14	Med
Erythrocles schlegelii	82	1	86	1	0	Low
Aprion virescens	77	1	87	35	14	High
Carangoides chrysophrys	69	1	88	4	1	Low
Caranx bucculentus	65	1	89	7	2	Low
Total Top 20 Species	8146	89	89	43	23	High
Total Top 100 Species	9199	100	100	38	21	High

Table 2.9: Top 20 species by volume in Dropline fisheries with % immature fish in the catch in WPP 715 in 2020.

Table 2.10: Top 20 species by volume in Longline fisheries with % immature fish in the catch in WPP 715 in 2020.

Species	Weight	Weight	Cumulative	Immature	Immature	Risk
-	MT	%	% Weight	% Number	% Weight	Immature
Aphareus rutilans	340	30	30	89	68	High
Pristipomoides multidens	119	11	41	74	48	High
Etelis boweni	65	6	47	NA	NA	
Pristipomoides filamentosus	50	4	51	NA	NA	
Paracaesio kusakarii	48	4	55	NA	NA	
Etelis radiosus	46	4	60	NA	NA	
Etelis coruscans	43	4	63	NA	NA	
Lutjanus erythropterus	31	3	66	NA	NA	
Lutjanus malabaricus	30	3	69	NA	NA	
Pristipomoides typus	29	3	71	66	40	High
Caranx sexfasciatus	29	3	74	NA	NA	
Caranx tille	17	2	76	NA	NA	
Seriola rivoliana	17	1	77	NA	NA	
Diagramma pictum	16	1	78	NA	NA	
Pinjalo lewisi	15	1	80	NA	NA	
Lutjanus bohar	14	1	81	NA	NA	
Lutjanus gibbus	14	1	82	NA	NA	
Paracaesio stonei	11	1	83	NA	NA	
Epinephelus areolatus	10	1	84	0	0	Low
Gymnocranius grandoculis	10	1	85	NA	NA	
Total Top 20 Species	953	85	85	64	51	High
Total Top 100 Species	1120	100	100	57	49	High

Species	Weight	Weight	Cumulative	Immature	Immature	Risk
	\mathbf{MT}	%	% Weight	% Number	% Weight	Immature
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA
Total Top 20 Species	0	0	0	NA	NA	NA
Total Top 100 Species	0	0	0	NA	NA	NA

Table 2.11: Top 20 species by volume in Gillnet fisheries with % immature fish in the catch in WPP 715 in 2020.

Table 2.12: Top 20 species by volume in Trap fisheries with % immature fish in the catch in WPP 715 in 2020.

Species	Weight	Weight	Cumulative	Immature	Immature	Risk
	\mathbf{MT}	%	% Weight	% Number	% Weight	Immature
Aphareus rutilans	427	33	33	NA	NA	
Etelis boweni	86	7	40	NA	NA	
Pristipomoides multidens	80	6	46	NA	NA	
Paracaesio kusakarii	70	5	51	NA	NA	
Pristipomoides filamentosus	68	5	57	NA	NA	
Etelis coruscans	61	5	61	NA	NA	
Lutjanus erythropterus	58	5	66	40	18	High
Etelis radiosus	56	4	70	NA	NA	
Lutjanus malabaricus	43	3	74	91	79	High
Caranx sexfasciatus	38	3	77	NA	NA	
Caranx tille	24	2	78	NA	NA	
Pristipomoides typus	18	1	80	NA	NA	
Seriola rivoliana	18	1	81	NA	NA	
Pinjalo lewisi	18	1	83	NA	NA	
Lutjanus gibbus	16	1	84	NA	NA	
Paracaesio stonei	16	1	85	NA	NA	
Erythrocles schlegelii	11	1	86	NA	NA	
Aprion virescens	10	1	87	NA	NA	
Carangoides chrysophrys	9	1	87	NA	NA	
Caranx bucculentus	9	1	88	NA	NA	
Total Top 20 Species	1135	88	88	65	47	High
Total Top 100 Species	1289	100	100	65	47	High

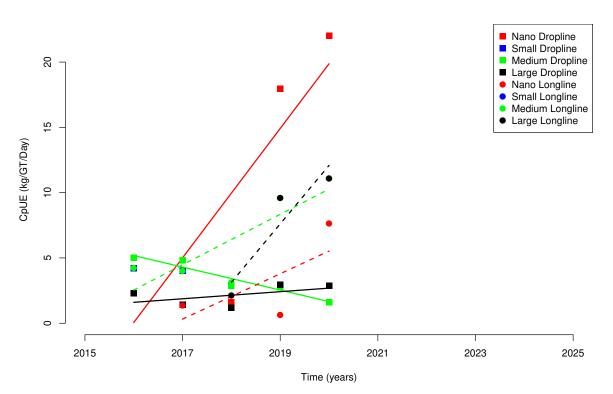


Figure 2.5: Catch per Unit of Effort per calendar year for Aphareus rutilans in WPP 715 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

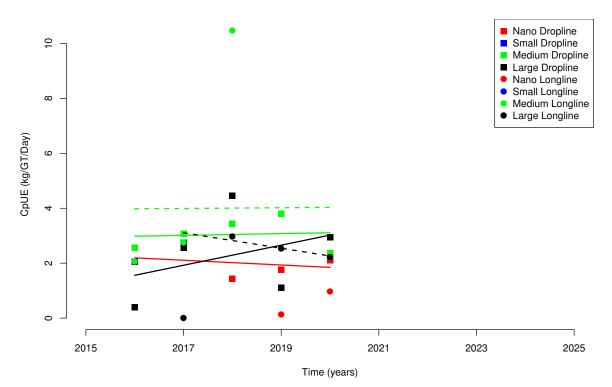


Figure 2.6: Catch per Unit of Effort per calendar year for Etelis boweni in WPP 715 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

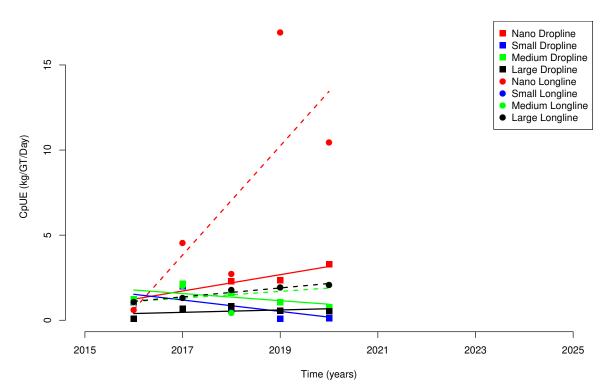


Figure 2.7: Catch per Unit of Effort per calendar year for Pristipomoides multidens in WPP 715 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

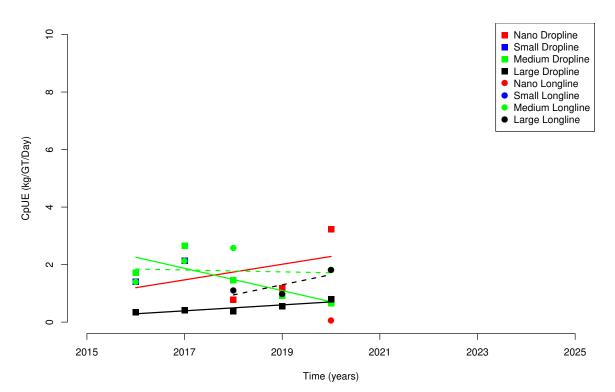


Figure 2.8: Catch per Unit of Effort per calendar year for Paracaesio kusakarii in WPP 715 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

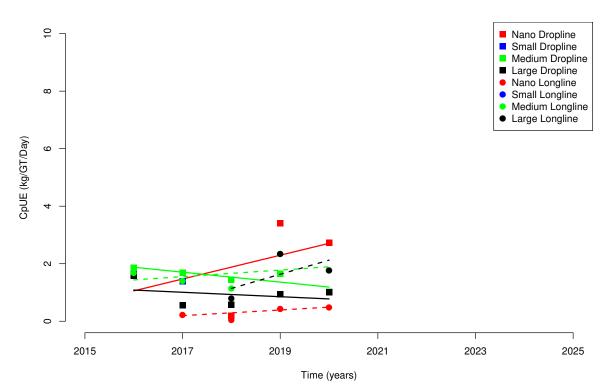


Figure 2.9: Catch per Unit of Effort per calendar year for Pristipomoides filamentosus in WPP 715 for Dropline and Longline catches by fleet segment.Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.



Figure 2.10: Catch per Unit of Effort per calendar year for Etelis coruscans in WPP 715 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

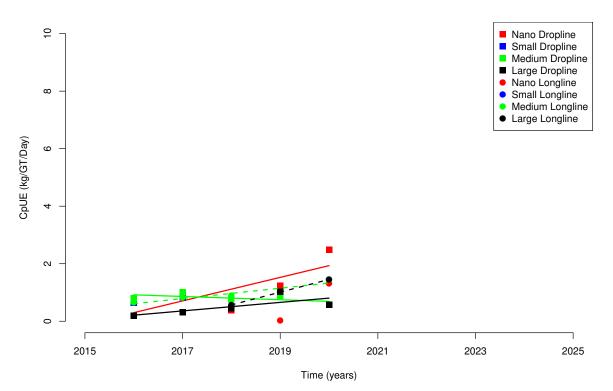


Figure 2.11: Catch per Unit of Effort per calendar year for Etelis radiosus in WPP 715 for Dropline and Longline catches by fleet segment. Solid lines and dashed lines for trends in Dropline CpUE and Longline CpUE respectively.

Row	WPP		Home District	Boat Size	Gear	Ν	Total GT
1	571	Desa Sungai Kuruk III	Aceh Tamiang	Nano	Trap	2	6
2	571	Desa Sungai Kuruk III	Aceh Tamiang	Small	Trap	6	34
3	571	PP. Kuala Cangkoi	Aceh Utara	Nano	Dropline	1	2
4	571	PP. Kuala Cangkoi	Aceh Utara	Nano	Trap	5	10
5	571	Desa Belawan Lama	Kota Medan	Small	Trap	10	50
6	571	Desa Beurawang	Kota Sabang	Nano	Dropline	1	4
7	571	PP. Pasiran	Kota Sabang	Nano	Dropline	2	3
8	571	PP. Pasiran	Kota Sabang	Small	Dropline	1	8
9	571	Desa Sei Bilah	Langkat	Medium	Trap	2	22
10	571	Desa Sei Bilah	Langkat	Nano	Dropline	1	4
11	571	Desa Sei Bilah	Langkat	Small	Dropline	2	18
12	571	Desa Sei Bilah	Langkat	Small	Trap	2	16
13	571	Desa Ujung Kampung	Langkat	Medium	Trap	1	12
14	571	Desa Ujung Kampung	Langkat	Nano	Trap	6	27
15	571	Desa Ujung Kampung	Langkat	Small	Trap	3	20
16	571	Pangkalan Susu	Langkat	Nano	Trap	38	114
17	571	Pelabuhan Ujung Kampung	Langkat	Medium	Trap	1	13
18	571	PPI. Pangkalan Brandan	Langkat	Nano	Trap	32	131
19	571	PPI. Pangkalan Brandan	Langkat	Small	Trap	2	14
20	571	PP. Ujung Blang	Lhokseumawe	Nano	Longline	7	11
21	571	Desa Sialang Buah	Serdang Bedagai	Medium	Longline	1	13
22	571	Desa Sialang Buah	Serdang Bedagai	Nano	Longline	2	7
23	571	Desa Sialang Buah	Serdang Bedagai	Small	Longline	3	22
24	571	Sialang Buah	Serdang Bedagai	Nano	Longline	11	44
25	571	Sialang Buah	Serdang Bedagai	Small	Longline	4	30
26	571	Teluk Mengkudu	Serdang Bedagai	Small	Longline	5	48
27	572	Kuala Bubon	Aceh Barat	Medium	Trap	2	21
28	572	Kuala Bubon	Aceh Barat	Small	Trap	2	14
29	572	PP. Ujoeng Baroh	Aceh Barat	Nano	Longline	1	4
30	572	PP. Ujoeng Baroh	Aceh Barat	Small	Dropline	1	6
31	572	PP. Ujoeng Baroh	Aceh Barat	Small	Longline	1	5
32	572	PP. Ujong Baroeh	Aceh Barat	Nano	Dropline	8	28
33	572	PP. Ujong Baroeh	Aceh Barat	Nano	Longline	3	12
34	572	PP. Ujong Baroeh	Aceh Barat	Small	Dropline	14	84
35	572	PP. Ujong Baroch	Aceh Barat	Small	Longline	3	21
36	572	PP. Ujong Baroeh	Aceh Barat	Small	Trap	2	10
37	572	Susoh	Aceh Barat Daya	Medium	Dropline	1	10
38	572	Susoh	Aceh Barat Daya	Small	Dropline	2	12
39	572	Desa Lampuyang	Aceh Besar	Nano	Dropline	15^{2}	$\frac{12}{22}$
40	572	PP. Lhok Bengkuang	Aceh Selatan	Nano	Dropline	5	6
41	572	PP. Lhok Bengkuang	Aceh Selatan	Nano	Longline	8	26
42	572	PP. Lhok Bengkuang	Aceh Selatan	Small	Dropline	$\frac{1}{2}$	12
43	572	PP. Lhok Bengkuang	Aceh Selatan	Small	Longline	27^{2}	165
44	572	PP. Meukek	Aceh Selatan	Nano	Longline	1	3
$44 \\ 45$	572	Desa Pulau Balai	Aceh Singkil	Medium	Gillnet	1	10
45 46	572	Desa Pulau Balai	Aceh Singkil	Nano	Trap	6	10 29
$40 \\ 47$	$572 \\ 572$	PP. Lampulo	Banda Aceh	Nano	Dropline	1	29 4
47 48	$572 \\ 572$	PP. Lampulo	Banda Aceh	Nano	Longline	2	$\frac{4}{6}$
48 49	$572 \\ 572$	PP. Lampulo	Banda Aceh	Small	Dropline	2 8	49
49 50	$572 \\ 572$	PP. Lampulo	Banda Aceh	Small	Longline	0 1	49 6
	$572 \\ 572$	-	Banda Aceh Banda Aceh				
$51 \\ 52$		PPS Lampulo PP. Sikakap		Small Nano	Dropline Dropline	9 1	63
	572 572	PP. Sikakap PP. Tuonoint	Kepulauan Mentawai Kepulauan Mentawai		Dropline	1	
53 E 4	572 572	PP. Tuapejat	Kepulauan Mentawai Kepulauan Mentawai	Medium	Dropline	2	24
54 55	572	PP. Tuapejat	Kepulauan Mentawai	Small	Dropline	2	18
55 50	572	PP. Pulau Baai	Kota Bengkulu	Large	Trap	1	31
56	572	PP. Pulau Baai	Kota Bengkulu	Medium	Dropline	8	107
57	$572 \\ 572$	PP. Pulau Baai PP. Pulau Baai	Kota Bengkulu Kota Bengkulu	Medium Nano	Gillnet Dropline	$7 \\ 4$	$\begin{array}{c} 153 \\ 16 \end{array}$
58							

Row	WPP	Registration Port	Home District	Boat Size	Gear	Ν	Total GT
59	572	PP. Pulau Baai	Kota Bengkulu	Small	Dropline	12	70
60	572	PP. Pulau Baai	Kota Bengkulu	Small	Gillnet	1	6
61	572	Desa Taluak	Kota Pariaman	Nano	Longline	10	16
52	572	Desa Keuneukai	Kota Sabang	Nano	Dropline	2	3
53	572	PP. Sibolga	Kota Sibolga	Medium	Trap	6	87
64	572	PP. Sibolga	Kota Sibolga	Nano	Dropline	4	14
55	572	PP. Sibolga	Kota Sibolga	Nano	Trap	12	47
56	572	PP. Sibolga	Kota Sibolga	Small	Dropline	3	18
37	572	PP. Sibolga	Kota Sibolga	Small	Trap	9	55
58	572	PP. Muara Piluk Bakauheni	Lampung	Nano	Longline	16	43
<u>59</u>	572	PP. Muara Piluk Bakauheni	Lampung	Small	Longline	1	5
70	572	PP. Pasar Bantal	Mukomuko	Small	Dropline	20	100
71	572	Kec. Teluk Dalam	Nias Selatan	Nano	Dropline	5	18
72	572	Desa Botolakha	Nias Utara	Small	Dropline	25	197
73	572	Desa Helera	Nias Utara	Nano	Longline	13	21
74	572	Desa Helera	Nias Utara	Small	Longline	2	11
75	572	Muara Padang	Padang	Medium	Longline	1	11
76	572	Muara Padang	Padang	Small	Dropline	4	21
7	572	PP. Bungus	Padang	Small	Longline	1	8
78	572	PP. Muaro	Padang	Medium	Dropline	4	52
79	572	PP. Muaro	Padang	Medium	Longline	5	61
30	572	PP. Muaro	Padang	Small	Dropline	1	5
31	572	PP. Muaro	Padang	Small	Longline	5	41
32	572	Pantai Ulakan	Padang Pariaman	Nano	Longline	10	17
33	572	PP. Labuan	Pandeglang	Small	Dropline	29	152
34	572	PP. Carocok Tarusan	Pesisir Selatan	Medium	Longline	4	40
35	572	PP. Kambang	Pesisir Selatan	Medium	Longline	3	30
36	572	Desa Pulau Tunda	Serang	Nano	Dropline	5	23
37	572	Desa Pulau Tunda	Serang	Small	Dropline	16	103
38	573	Desa Alor Kecil	Alor	Nano	Dropline	25	17
39	573	PP. Kedonganan	Badung	Nano	Dropline	30	56
90	573	PP. Grajagan	Banyuwangi	Nano	Dropline	452	1446
)1	573	PP. Grajagan	Banyuwangi	Small	Dropline	150	780
)2	573	PP. Pancer	Banyuwangi	Medium	Dropline	1	15
)3	573	PP. Pancer	Banyuwangi	Nano	Dropline	174	348
94	573	PP. Pancer	Banyuwangi	Small	Dropline	125	625
95	573	Atapupu	Belu	Nano	Dropline	2	3
96	573	PP. Atapupu	Belu	Nano	Dropline	3	4
)7	573	PP. Rompo	Bima	Nano	Dropline	15	15
98	573	PP. Rompo	Bima	Nano	Longline	57	44
)9	573	PP. Sape	Bima	Nano	Dropline	162	553
00	573	PP. Sape	Bima	Small	Dropline	1	6
.01	573	PP.Tambakrejo	Blitar	Nano	Longline	15	30
02	573	PP.Tambakrejo	Blitar	Small	Longline	1	6
03	573	Jetis	Cilacap	Nano	Longline	30	26
104	573	Pelabuhan Benoa	Denpasar	Medium	Dropline	11	241 241
105	573	Pelabuhan Benoa	Denpasar	Medium	Longline	1	27
.05	573	PP. Tenau Kupang	Denpasar	Medium	Dropline	1	21
07	573	PP. Hu'u	Dompu	Small	Dropline	38	236
107	573	PP. Puger	Jember	Nano	Longline	50	250 160
	$573 \\ 573$	Desa Yeh Kuning	Jembrana		Longline		
.09		0		Nano		$150 \\ 20$	126
.10	573 572	PP. Pengambengan	Jembrana Kunang	Nano	Longline	20 26	40
111	573	Desa Tablolong Dalahuhan Danaa	Kupang	Nano	Dropline	36 1	97 27
112	573	Pelabuhan Benoa	Kupang	Medium	Dropline	1	27
113	573	Pelabuhan Sulamu	Kupang	Nano	Dropline	50	87
114	573	PP. Mayangan	Kupang	Medium	Longline	1	29
115	573	PP. Oeba Kupang	Kupang	Nano	Dropline	5	5
116	573	PP. Tenau Kupang	Kupang	Medium	Dropline	21	347

Row	WPP	Registration Port	Home District	Boat Size	Gear	Ν	Total GT
117	573	PP. Tenau Kupang	Kupang	Medium	Longline	3	72
118	573	PP. Tenau Kupang	Kupang	Nano	Dropline	6	22
119	573	PP. Tenau Kupang	Kupang	Small	Dropline	21	166
120	573	Desa Tapolango	Lembata	Nano	Dropline	20	14
121	573	Desa waijarang	Lembata	Nano	Dropline	20	14
122	573	PP. Hadakewa	Lembata	Nano	Dropline	30	26
123	573	PP. Tanjung Luar	Lombok Timur	Medium	Longline	14	141
124	573	PP. Tanjung Luar	Lombok Timur	Nano	Dropline	15	36
125	573	PP. Tanjung Luar	Lombok Timur	Nano	Longline	39	101
126	573	Pulau Maringkik	Lombok Timur	Medium	Longline	1	10
127	573	Pulau Maringkik	Lombok Timur	Small	Longline	3	22
128	573	TPI Kampung Ujung	Manggarai Barat	Nano	Dropline	60	74
129	573	PP. Poumako	Mimika	Medium	Gillnet	1	29
130	573	PP. Watukarung	Pacitan	Nano	Longline	100	222
131	573	PP Cikidang	Pangandaran	Small	Gillnet	8	50
132	573	PP. Cikidang	Pangandaran	Nano	Gillnet	2	9
133	573	Desa Batutua	Rote Ndao	Nano	Dropline	9	11
134	573	Desa Oeseli	Rote Ndao	Nano	Dropline	2	2
135	573	Dusun Papela	Rote Ndao	Nano	Dropline	20	21
136	573	Sukabumi	Sukabumi	Nano	Longline	50	50
137	573	KSOP Kelas III Kupang	Sumba Barat	Nano	Dropline	35	80
138	573	Pelabuhan Waingapu	Sumba Barat	Nano	Dropline	8	14
139	573	Pelabuhan Waingapu	Sumba Barat	Nano	Longline	7	16
140	573	Desa Pulau Bungin	Sumbawa	Nano	Dropline	29	23
141	573	Desa Pulau Bungin	Sumbawa	Nano	Longline	15	12
142	573	Labuhan Mapin	Sumbawa	Nano	Dropline	61	43
143	573	Labuhan Mapin	Sumbawa	Nano	Longline	35	17
144	573	PP Labuhan Lalar	Sumbawa	Nano	Dropline	25	22
145	573	PP. Wini	Timor Tengah Utara	Nano	Dropline	7	12
146	711	PP. Sungailiat	Bangka	Medium	Trap	1	10
147	711	PP. Sungailiat	Bangka	Small	Dropline	1	6
148	711	PP. Sungailiat	Bangka	Small	Trap	17	133
149	711	PP. Kurau	Bangka Tengah	Small	Trap	30	159
150	711	Batam	Batam	Medium	Trap	2	56
151	711	Batam	Batam	Small Small	Dropline	2	12
152	711	Batam	Batam Balitara a		Trap	2	13
153	711	PP. Manggar	Belitung Belitaan	Small Madiana	Trap	1	9
154	711	PP. Tanjung Pandan	Belitung	Medium	Trap Duan lina	9	164
155 156	711	PP. Tanjung Pandan PP. Tanjung Pandan	Belitung	Nano Nano	Dropline	108	250
$156 \\ 157$	$711 \\ 711$	PP. Tanjung Pandan PP. Tanjung Pandan	Belitung Belitung	Small	Trap Dropline	$\begin{array}{c} 63 \\ 5 \end{array}$	$\frac{202}{27}$
$157 \\ 158$	711	PP. Tanjung Pandan	Belitung	Small	Trap	$\frac{5}{72}$	450
$150 \\ 159$	711	Tanjung Binga	Belitung	Small	Trap	$\frac{72}{20}$	$430 \\ 192$
		PP. Manggar Belitung Timur			Trap Trap		
$160 \\ 161$	$711 \\ 711$	PP. Manggar Belitung Timur PP. Manggar Belitung Timur	Belitung Timur Belitung Timur	Medium Nano	1rap Dropline	$\frac{3}{5}$	$\frac{42}{21}$
$161 \\ 162$	711 711	PP. Manggar Belitung Timur PP. Manggar Belitung Timur	Belitung Timur	Nano	Trap	5 1	$\frac{21}{4}$
$162 \\ 163$	711	PP. Manggar Belitung Timur PP. Manggar Belitung Timur	Belitung Timur	Small	Dropline	$\frac{1}{2}$	4 10
$163 \\ 164$	711 711	PP. Manggar Belitung Timur PP. Manggar Belitung Timur	Belitung Timur Belitung Timur	Small	Dropine Trap	$\frac{2}{87}$	10 481
$164 \\ 165$	711 711	PP. Manggar Bentung Timur PP. Kijang	Bintan	Medium	Dropline	$\frac{87}{2}$	481 33
$\frac{165}{166}$	711 711	PP. Kijang PP. Kijang	Bintan Bintan	Medium	Dropine Trap	2241	$\frac{33}{4587}$
$160 \\ 167$	711	PP. Kijang	Bintan	Nano	Trap	241	4387
$\frac{167}{168}$	711 711	PP. Kijang PP. Kijang	Bintan Bintan	Small	1rap Dropline	$\frac{2}{10}$	$\frac{8}{66}$
$169 \\ 170$	$711 \\ 711$	PP. Kijang Moro	Bintan Karimun	Small Small	Trap Trap	204 1	$\frac{1385}{7}$
				Small Modium		1	
171 172	711 711	Tanjung Balai Karimun PR. Tarampa	Karimun Kapulauan Anambag	Medium	Longline	5	111
$172 \\ 173$	711 711	PP. Tarempa PP. Tarempa	Kepulauan Anambas Kepulauan Anambas	Nano Nano	Dropline Trap	202 10	298 24
$173 \\ 174$	$711 \\ 711$	PP. Tarempa PP. Tarempa	Kepulauan Anambas Kepulauan Anambas	Nano Small	Trap Droplino	19 11	24 63
174	(11	PP. Tarempa	Kepulauan Anambas	Small	Dropline	11	63

Row	WPP	Registration Port	Home District	Boat Size		Ν	Total GT
175	711	PPI Ladan	Kepulauan Anambas	Nano	Dropline	73	182
176	711	PPI Ladan	Kepulauan Anambas	Small	Dropline	1	5
177	711	Pangkal Balam	Kota Pangkalpinang	Nano	Dropline	2	7
178	711	Pangkal Balam	Kota Pangkalpinang	Nano	Trap	1	4
179	711	Pangkal Balam	Kota Pangkalpinang	Small	Trap	12	67
180	711	PP. Muara Sungai Baturusa	Kota Pangkalpinang	Nano	Trap	3	12
181	711	PP. Muara Sungai Baturusa	Kota Pangkalpinang	Small	Trap	9	51
182	711	Dermaga Kayu Sededap	Natuna	Nano	Dropline	1	5
183	711	Desa Air Nusa	Natuna	Nano	Dropline	23	43
184	711	Desa Air Ringau	Natuna	Nano	Dropline	12	18
185	711	Desa Batu Ampar	Natuna	Nano	Dropline	5	4
186	711	Desa Batu Brilian	Natuna	Nano	Dropline	21	44
187	711	Desa Batu Brilian	Natuna	Nano	Trap	1	4
188	711	Desa Pakkalung	Natuna	Nano	Dropline	1	2
189	711	Desa Sabang Mawang Barat	Natuna	Small	Dropline	12	72
190	711	Desa Sedanau	Natuna	Nano	Dropline	22	79
191	711	Desa Sepempang	Natuna	Small	Dropline	22	132
192	711	Desa Serantas_ Teluk Lagong	Natuna	Nano	Dropline	23	69
193	711	Desa Subi besar	Natuna	Nano	Dropline	23	69
194	711	Desa Tanjung Belau	Natuna	Nano	Dropline	31	56
195	711	Desa Tanjung Kumbik Utara	Natuna	Small	Dropline	15	90
196	711	Desa Tanjung Setelung	Natuna	Nano	Dropline	9	16
197	711	Desa Tanjung Setelung	Natuna	Nano	Trap	18	39
198	711	Desa Tanjung Setelung	Natuna	Small	Trap	3	18
199	711	Desa Teluk Buton	Natuna	Nano	Dropline	26	78
200	711	Natuna	Natuna	Large	Longline	3	94 150
201	711	Pelabuhan Harapan Air Putih	Natuna	Nano	Dropline	59	159
202	711	Pelabuhan Harapan Air Putih	Natuna	Small	Dropline Dropline	1	6
203	711	Pelabuhan Midai	Natuna	Medium	Dropline	1	12
204	711	Pelabuhan Midai	Natuna	Medium	Trap	2	22
205	711	Pelabuhan Midai	Natuna	Small	Dropline Dropline	2	11
206	$711 \\ 711$	Pelabuhan Pasir Putih	Natuna Natuna	Nano Madium	Dropline	$\frac{1}{2}$	$\frac{2}{30}$
207		Pelabuhan Pering		Medium	Dropline Dropline		
208	$711 \\ 711$	Pelabuhan Pering	Natuna Natuna	Nano Small	Dropline Dropline	$ \begin{array}{c} 21 \\ 1 \end{array} $	78
$209 \\ 210$	711	Pelabuhan Pering Pelabuhan Sabang Barat-Midai		Medium	Trap	1	8 11
$210 \\ 211$	711	Pelabuhan Sabang Barat-Midai		Small	Dropline	2	11
$211 \\ 212$	711	Pelabuhan Tanjung	Natuna	Nano	Dropline	$\frac{2}{30}$	59
$212 \\ 213$	711	Pering	Natuna	Nano	Dropline	30 1	39 4
215 214	711		Natuna	Small	Dropline	1	$\frac{4}{5}$
$214 \\ 215$	711	PP. Pering PP. Tarempa	Natuna	Medium	Longline	1	18
$210 \\ 216$	711	Pulau Tiga Natuna	Natuna	Small	Dropline	1	8
210	711	Tanjung Balai Karimun	Natuna	Large	Longline	11	350
217	711	Tanjung Balai Karimun	Natuna	Medium	Longline	43	1223
$210 \\ 219$	711	PP. Bajomulyo	Pati	Large	Longline	43 1	85
$219 \\ 220$	711	PP. Kuala Mempawah	Pontianak	Medium	Trap	2	$\frac{33}{20}$
$220 \\ 221$	711	PP. Kuala Mempawah	Pontianak	Small	Trap	$\frac{2}{3}$	20 19
222	711	PP. Tanjung Pandan	Belitung	Nano	Trap	$\frac{3}{2}$	19 7
223	712	PP. Tanjung Pandan	Belitung	Small	Trap	12^{2}	63
223 224	712	Desa Parang	Jepara	Medium	Trap	$\frac{12}{26}$	404
224	712 712	Desa Parang	Jepara	Small	Trap	$\frac{20}{65}$	404 468
225 226	712 712	Pelabuhan Kartini, Jepara	Jepara	Nano	Longline	$15 \\ 15$	$\frac{408}{21}$
$220 \\ 227$	712 712	Pelabunan Kartini, Jepara PP. Karimun Jawa	Jepara	Medium	Trap	15 8	$\frac{21}{104}$
227 228	712 712	PP. Karimun Jawa PP. Karimun Jawa	-	Small	Trap Trap	$\frac{8}{4}$	$ 104 \\ 37 $
			Jepara		-		
229 230	$712 \\ 712$	TPI. Ujungbatu Kelurahan Pulau Kelana Dua	Jepara Kopulauan Soribu	Nano Small	Longline	$\frac{3}{9}$	$\frac{4}{62}$
230 231	$712 \\ 712$	Kelurahan Pulau Kelapa Dua Kelurahan Pulau Pari	Kepulauan Seribu Kepulauan Seribu		Dropline Trop		
$231 \\ 232$	$712 \\ 712$	Kelurahan Pulau Pari Kelurahan Pulau Pari	Kepulauan Seribu Kepulauan Seribu	Nano Small	Trap Trap	2	9 17
292	114	Kelurahan Pulau Pari	Kepulauan Seribu	Small	Trap	3	17

234 235 236 237 238 239 240 241 242	 712 	Kelurahan Pulau Untung Jawa Kelurahan Pulau Untung Jawa PP. Brondong	Kepulauan Seribu Kepulauan Seribu	Nano	Trap	20	36
235 236 237 238 239 240 241 242	712 712 712	PP. Brondong	Kepulauan Seribu	C			
236 237 238 239 240 241 242	712 712			Small	Trap	8	51
237 238 239 240 241 242	712		Lamongan	Medium	Dropline	167	2158
238 239 240 241 242		PP. Brondong	Lamongan	Medium	Longline	14	176
239 240 241 242	712	PP. Brondong	Lamongan	Small	Dropline	115	880
$240 \\ 241 \\ 242 $		PP. Brondong	Lamongan	Small	Longline	1	9
$ \begin{array}{c} 241 \\ 242 \end{array} $	712	PP. Bajomulyo	Pati	Large	Longline	30	1432
242 '	712	PP. Bajomulyo	Pati	Medium	Longline	13	355
	712	PP. Asem Doyong	Pemalang	Small	Dropline	10	57
243	712	PP. Mayangan	Probolinggo	Medium	Longline	1	29
	712	PP. Pondok Mimbo	Situbondo	Nano	Longline	100	156
	712	Desa Bancamara	Sumenep	Medium	Dropline	2	28
	712	Desa Bancamara	Sumenep	Nano	Dropline	1	4
	712	Desa Bancamara	Sumenep	Small	Dropline	102	702
	712	Desa Masalima	Sumenep	Small	Dropline	12	84
	712	Pagerungan Besar	Sumenep	Medium	Longline	4	41
	712	Pagerungan Besar	Sumenep	Nano	Longline	21	28
	712	Pagerungan Besar	Sumenep	Small	Longline	45	312
	712	Pagerungan Kecil	Sumenep	Nano	Longline	30	36
	712	PP. Dungkek	Sumenep	Medium	Dropline	3	32
	712	PP. Dungkek	Sumenep	Nano	Dropline	2	9
	712	PP. Dungkek	Sumenep	Small	Dropline	7	43
	712	Sumenep	Sumenep	Small	Dropline	300	2196
	712	Pagatan	Tanah Bumbu	Small	Dropline	2	10
	712	PP. Cituis	Tanggerang	Small	Trap	7	64
	713	PP. Filial Klandasan	Balikpapan	Nano	Dropline	2	8
	713	PP. Filial Klandasan	Balikpapan	Small	Dropline	22	126
	713	PP. Klandasan	Balikpapan	Small	Dropline	3	21
	713	PP. Manggar Baru	Balikpapan	Medium	Dropline	16	274
	713	PP. Manggar Baru	Balikpapan	Nano	Longline	1	3
	713	PP. Manggar Baru	Balikpapan	Small	Dropline	1	6
	713	PP. Manggar Baru	Balikpapan	Small	Longline	7	39
	713	PP. Tanjung Pandan	Belitung	Nano	Trap	1	3
	713	PP. Tanjung Pandan	Belitung	Small Small	Dropline	1	5
	713	PP. Tanjung Pandan	Belitung	10	Trap Du su lin s	4	21
	713	PP. Kore	Bima	Nano	Dropline Dropline	10	33
	713	Lok Tuan	Bontang	Nano	Dropline	4	13
	713	PP. Tanjung Limau	Bontang	Nano	Dropline Dropline	5	11
	713	PP. Tanjung Limau	Bontang	Small	Dropline Dropline	4	24
	713	Tanjung Laut	Bontang	Nano	Dropline Dropline	1	$\frac{1}{15}$
	713	Desa Sangsit	Buleleng Bulukumba	Nano	-	$50 \\ 20$	
	713	PP. Dannuang PP. Kalumeme	Bulukumba	Nano	Dropline	$\frac{20}{20}$	20 20
	$713 \\ 713$	PP. Kota Bulukumba	Bulukumba	Nano	Dropline Dropline	$\frac{20}{300}$	20 300
				Nano			
	$713 \\ 713$	PP. Keramat PP. Malaju	Dompu Dompu	Nano Nano	Longline Dropline	10 1	41
		-	-	Nano	Longline		
	713	PP. Malaju PP. Malaju	Dompu Dompu	Small		$\begin{array}{c} 1\\ 10 \end{array}$	$\begin{array}{c} 0 \\ 52 \end{array}$
	$713 \\ 713$	PP. Malaju PP. Soro Kempo	Dompu Dompu	Nano	Dropline Longline	$\frac{10}{32}$	$\frac{52}{13}$
	713 713	PP. Soro Kempo	Dompu Dompu	Small	Dropline	$\frac{52}{17}$	13 88
	713 713	PP. Labean	Dompu Donggala	Nano	Dropline	$\frac{17}{27}$	$\frac{88}{24}$
	713 713	Anawoi	Kolaka	Medium	Dropine Trap	$\frac{27}{5}$	$\frac{24}{64}$
	713 713	PP. Beba	Kota Makassar	Medium	1rap Dropline	$\frac{5}{25}$	$\frac{64}{349}$
	713 713	PP. Beba	Kota Makassar Kota Makassar	Medium	Longline	$\frac{25}{61}$	$\frac{349}{735}$
	713 713	PP. Beba	Kota Makassar Kota Makassar	Nano	Longline	1	735 3
	713 713	PP. Beba	Kota Makassar Kota Makassar	Small	Dropline	1	3 8
	713 713	PP. Beba	Kota Makassar Kota Makassar	Small	Longline	1 3	$\frac{\circ}{24}$
	713	Gang Kakap, Muara Jawa	Kutai Kartanegara	Nano	Longline	$\frac{3}{20}$	$\frac{24}{60}$

Row	WPP	Registration Port	Home District	Boat Size		Ν	Total GT
291	713	Kampung Terusan	Kutai Kartanegara	Small	Longline	10	85
292	713	Kuala Samboja	Kutai Kartanegara	Small	Longline	3	15
293	713	Pantai Biru Kersik	Kutai Kartanegara	Nano	Dropline	16	48
294	713	Semangkok	Kutai Kartanegara	Nano	Dropline	10	31
295	713	Maloy	Kutai Timur	Small	Dropline	1	5
296	713	Muara Selangkau	Kutai Timur	Nano	Dropline	40	120
297	713	PP. Kenyamukan	Kutai Timur	Medium	Dropline	3	32
298	713	PP. Kenyamukan	Kutai Timur	Nano	Dropline	40	40
299	713	PP. Kenyamukan	Kutai Timur	Small	Dropline	11	75
300	713	PP. Sangatta	Kutai Timur	Medium	Dropline	1	10
301	713	PP. Sangatta	Kutai Timur	Small	Dropline	5	31
302	713	PP. Brondong	Lamongan	Medium	Trap	1	19
303	713	Desa Wangatoa	Lembata	Nano	Dropline	20	23
304	713	Majene	Majene	Nano	Longline	38	114
305	713	Majene	Majene	Small	Dropline	1	7
306	713	Majene	Majene	Small	Longline	12	84
307	713	Pelabuhan Majene	Majene	Nano	Longline	34	96
308	713	PP. Rangas Majene	Majene	Nano	Longline	2	6
309	713	PP. Kasiwa	Mamuju	Nano	Dropline	31	93
310	713	PP. Kasiwa	Mamuju	Small	Dropline	4	20
311	713	PP. Labuhan Bajo	Manggarai Barat	Nano	Dropline	40	15
312	713	PP. Konge	Nagekeo	Nano	Dropline	30	8
313	713	Sumbawa	Pangkep	Nano	Longline	50	50
314	713	Muara Pasir	Paser	Nano	Longline	10	20
315	713	PP. Bajomulyo	Pati	Large	Longline	3	130
316	713	Kampung Pejala	Penajam Paser Utara	Nano	Dropline	2	7
317	713	Kampung Pejala	Penajam Paser Utara	Small	Dropline	17	85
318	713	Nenang	Penajam Paser Utara	Small	Trap	50	253
319	713	PP. Mayangan	Probolinggo	Medium	Longline	1	27
320	713	Desa Labuhan Sangoro	Sumbawa	Nano	Longline	20	37
321	713	Labuhan Sumbawa	Sumbawa	Medium	Dropline	1	17
322	713	Labuhan Sumbawa	Sumbawa	Nano	Dropline	3	12
323	713	Labuhan Sumbawa	Sumbawa	Small	Dropline	4	27
324	713	PP. Labuhan Terata	Sumbawa	Nano	Dropline	4	7
325	713	PP. Beba	Takalar	Medium	Dropline	2	25
326	713	PP. Beba	Takalar	Medium	Gillnet	12	185
327	713	PP. Beba	Takalar	Medium	Longline	19	244
328	713	PP. Beba	Takalar	Small	Dropline	2	17
329	713	PP. Beba	Takalar	Small	Gillnet	1	9
330	714	Kabola	Alor	Nano	Dropline	15	10
331	714	Kokar	Alor	Nano	Dropline	100	88
332	714	Banggai Kepulauan	Banggai Kepulauan	Nano	Dropline	10	10
333	714	Banggai Laut	Banggai Laut	Nano	Dropline	50	50
334	714	Bontosi	Banggai Laut	Nano	Dropline	1	3
335	714	Desa Bontosi	Banggai Laut	Nano	Dropline	1	$\frac{3}{2}$
336	714	Desa Matanga	Banggai Laut	Nano	Longline	5	4
337	714	Desa Tinakin Laut	Banggai Laut	Nano	Dropline	1	1
338	714	Kasuari	Banggai Laut	Nano	Longline	14	16
339	714	PP. Tanjung Pandan	Belitung	Small	Dropline	14	10 6
340	714	Desa Balimu	Buton	Nano	Dropline	5	6
341 341	714	Kelurahan Watolo	Buton Tengah	Nano	Gillnet	4	4
341 342	714	Kelurahan Watolo	Buton Tengah	Nano	Longline	13^{4}	13
342 343	714 714	Desa Tanjung Batu	Kepulauan Tanimbar	Nano	Dropline	13	13 2
343 344	$714 \\ 714$	Kampung Babar	Kepulauan Tanimbar Kepulauan Tanimbar	Nano	Dropline	1	2 4
					-	6	$\frac{4}{12}$
345 346	$714 \\ 714$	Kampung Barbar Pasar Baru Omele Saumlaki	Kepulauan Tanimbar Kepulauan Tanimbar	Nano Nano	Dropline Dropline		
346 247	714 714	Pasar Baru Omele Saumlaki Pasar Baru Omele Saumlaki	Kepulauan Tanimbar Kepulauan Tanimbar	Nano Nano	Dropline Longline	6	13
$347 \\ 348$	$714 \\ 714$	Pasar Baru Omele Saumlaki Pasar Lama Saumlaki	Kepulauan Tanimbar Kepulauan Tanimbar		Longline Dropline	1	$\frac{3}{2}$
.)40	714	Pasar Lama Saumlaki	Kepulauan Tanimbar	Nano	Dropline	1	2

Row	WPP	Registration Port	Home District	Boat Size	Gear	Ν	Total GT
349	714	Saumlaki	Kepulauan Tanimbar	Nano	Dropline	3	8
350	714	PPI Soropia	Konawe	Medium	Trap	1	12
351	714	PPI Soropia	Konawe	Nano	Trap	1	1
352	714	Desa Labengki	Konawe Utara	Nano	Dropline	5	5
353	714	Labengki	Konawe Utara	Nano	Dropline	4	5
354	714	Labengki	Konawe Utara	Nano	Longline	1	1
355	714	Asilulu	Maluku Tengah	Nano	Dropline	30	56
356	714	Batu Lubang	Maluku Tengah	Nano	Dropline	30	53
357	714	PP. Tulehu	Maluku Tengah	Large	Dropline	1	34
358	714	Desa Langgur	Maluku Tenggara	Small	Dropline	1	10
359	714	Desa Selayar	Maluku Tenggara	Nano	Dropline	5	7
360	714	Desa Watdek	Maluku Tenggara	Small	Dropline	5	32
361	714	PP. Kema	Minahasa Utara	Large	Dropline	1	30
362	714	Desa Bahonsuai	Morowali	Nano	Dropline	3	3
363	714	Desa Moahino	Morowali	Nano	Longline	2	4
364	714	Desa Umbele	Morowali	Nano	Dropline	2	2
365	714	Desa Umbele	Morowali	Nano	Longline	2	4
366	714	Desa Limbo	Pulau Taliabu	Nano	Longline	30	18
367	714	Dusun Anauni	Seram Bagian Barat	Nano	Dropline	15	15
368	714	Dusun Anauni	Seram Bagian Barat	Nano	Longline	35	44
369	714	Dusun Huaroa	Seram Bagian Barat	Nano	Dropline	50	74
370	714	Dusun Huhua	Seram Bagian Barat	Nano	Dropline	20	27
371	714	Dusun Naeselan	Seram Bagian Barat	Nano	Dropline	20	33
372	714	Dusun Patinea	Seram Bagian Barat	Nano	Dropline	15	21
373	714	Dusun Pohon Batu	Seram Bagian Barat	Nano	Dropline	10	11
374	714	Dusun Waisela	Seram Bagian Barat	Nano	Dropline	4	4
375	714	Desa Mangon	Tual	Small	Dropline	1	7
376	714	PP. Tual	Tual	Medium	Dropline	1	28
377	714	PP. Tual	Tual	Nano	Dropline	1	2
378	714	PP. Tual	Tual	Small	Dropline	4	25
379	714	Binongko	Wakatobi	Medium	Dropline	1	13
380	714	Binongko	Wakatobi	Nano	Dropline	28	16
381	714	Dermaga Desa Wali	Wakatobi	Small	Dropline	1	5
382	714	Desa Lagongga	Wakatobi	Nano	Dropline	7	26 C
383	714	Desa Lagongga	Wakatobi	Small	Dropline	1	6
384	714	Desa Wali Delaharkan Landara	Wakatobi	Nano	Dropline Dropline	2	8
385	714	Pelabuhan Lagelewa	Wakatobi	Nano	Dropline	1	3
386	715	Desa Jayabakti	Banggai	Nano	Dropline Longline	51	40
387	715	Desa Jayabakti	Banggai	Nano	Longline	5	4
388	715	Pagimana	Banggai	Nano	Dropline Dropline	2	4
389 200	715 715	Pangkalaseang Kampung Salar	Banggai Falsfals	Nano Nano	Dropline	10	10
390 201	715	Kampung Sekar	Fakfak Falsfal		Dropline Dropline	7	7
391 202	$715 \\ 715$	Kampung Sosar, Kokas Kampung Ugar	Fakfak Fakfak	Nano	Dropline	717	7 11
392 202			Fakfak Fakfak	Nano Nano	Dropline	17 9	$\frac{11}{22}$
393 204	715 715	Pasar Sorpeha PP. PP. Dulan Pok-Pok	Fakfak Fakfak	Nano Nano	Dropline Dropline		
394	715				-	215	206
395 206	715	Bacan	Halmahera Selatan	Nano	Dropline	9	5
396 207	$715 \\ 715$	Bacan Bacan Barat	Halmahera Selatan Halmahera Selatan	Nano	Longline	1	0
397 208	$715 \\ 715$	Bacan Barat Bacan Tangah	Halmahera Selatan Halmahera Selatan	Nano	Dropline	6 24	2
398 200	715	Bacan Tengah Bacan Timur	Halmahera Selatan Halmahera Selatan	Nano Nano	Dropline	24	8
399 400	715	Bacan Timur	Halmahera Selatan Halmahera Selatan	Nano	Dropline	4	1
400	715 715	Bacan Utara	Halmahera Selatan Halmahera Selatan	Nano	Dropline	5 15	2
401	715	Desa Akegula	Halmahera Selatan	Nano	Dropline	15	16
	715	Desa Amasing Kota Barat	Halmahera Selatan Halmahera Selatan	Nano	Longline Ducu line	1	2
402			Halmahora Solatan	Nano	Dropline	7	4
402 403	715	Desa Babang					
402 403 404	$715 \\ 715$	Desa Jikotamo	Halmahera Selatan	Nano	Dropline	15	20
402 403	715	-					

Row	WPP	Registration Port	Home District	Boat Size	Gear	Ν	Total GT
407	715	Desa Sali Kecil	Halmahera Selatan	Nano	Dropline	20	8
408	715	Desa Tabapoma	Halmahera Selatan	Nano	Dropline	11	4
409	715	Gane Barat	Halmahera Selatan	Nano	Dropline	15	5
410	715	Gane Timur Selatan	Halmahera Selatan	Nano	Dropline	40	13
411	715	Kep. Batang Lomang	Halmahera Selatan	Nano	Dropline	12	4
412	715	Kep. Joronga	Halmahera Selatan	Nano	Dropline	7	2
413	715	Mandioli Selatan	Halmahera Selatan	Nano	Dropline	13	4
414	715	Mandioli Utara	Halmahera Selatan	Nano	Dropline	17	5
415	715	Pasar Tembal	Halmahera Selatan	Nano	Dropline	30	13
416	715	Puau Obilatu	Halmahera Selatan	Nano	Dropline	10	3
417	715	Pulau Obi	Halmahera Selatan	Nano	Dropline	62	18
418	715	Buli	Halmahera Timur	Nano	Dropline	7	7
419	715	Halmahera Timur	Halmahera Timur	Nano	Dropline	48	78
420	715	Desa Trikora	Kaimana	Nano	Dropline	10	10
421	715	Kampung Air Merah	Kaimana	Nano	Dropline	33	33
422	715	Kampung Air Tiba	Kaimana	Nano	Dropline	10	10
423	715	Namatota	Kaimana	Medium	Dropline	2	49
424	715	Namatota	Kaimana	Medium	Longline	2	30
425	715	PU. Kaimana	Kaimana	Large	Longline	1	30
426	715	PU. Kaimana	Kaimana	Medium	Longline	2	43
427	715	Pasar Galala	Kota Tidore Kepulauan	Nano	Dropline	10	10
428	715	Desa Sawai	Maluku Tengah	Nano	Dropline	55	61
429	715	PP. Kema	Minahasa Utara	Large	Dropline	3	130
430	715	PP. Kema	Minahasa Utara	Medium	Dropline	11	320
431	715	Desa Geser	Seram Bagian Timur	Nano	Dropline	44	62
432	715	Desa Kilfura	Seram Bagian Timur	Nano	Dropline	31	27
433	715	Desa Kiltay	Seram Bagian Timur	Nano	Dropline	25	25
434	715	Desa Namalena	Seram Bagian Timur	Nano	Dropline	26	26
435	715	Desa Pantai Pos, Bula	Seram Bagian Timur	Nano	Dropline	10	17
436	715	Desa Pantai Pos, Bula	Seram Bagian Timur	Nano	Longline	10	17
437	715	Desa Waru	Seram Bagian Timur	Nano	Longline	2	3
438	715	Pulau Parang	Seram Bagian Timur	Nano	Dropline	10	17
439	715	Desa Kali Remu	Sorong	Nano	Dropline	2	6
440	715	Desa Kali Remu	Sorong	Nano	Trap	1	3
441	715	Jembatan Puri Sorong	Sorong	Medium	Dropline	4	75
442	715	Jembatan Puri Sorong	Sorong	Small	Dropline	3	20
443	715	PP. Sorong	Sorong	Medium	Dropline	9	170
444	715	PP. Sorong	Sorong	Medium	Longline	1	17
445	715	PP. Sorong	Sorong	Medium	Trap	10	153
446	715	PP. Sorong	Sorong	Nano	Dropline	3	11
447	715	PP. Sorong	Sorong	Small	Trap	2	18
448	715	Bajugan	Tolitoli	Nano	Dropline	10	6
449	716	Biduk-biduk	Berau	Medium	Dropline	1	22
450	716	Biduk-biduk	Berau	Nano	Dropline	23	69
451	716	Desa Tanjung Batu	Berau	Nano	Dropline	64	192
452	716	Giring-giring	Berau	Nano	Dropline	22	66
453	716	Labuan Cermin	Berau	Nano	Dropline	1	3
454	716	P. Derawan	Berau	Nano	Trap	4	7
455	716	Pantai Harapan	Berau	Nano	Dropline	20	60
456	716	Tanjung Batu	Berau	Nano	Trap	6	18
457	716	Tanjung Batu	Berau	Small	Trap	1	8
458	716	Teluk Sulaiman	Berau	Nano	Dropline	29	87
459	716	Desa Sampiro	Bolaang Mongondow Utara		Dropline	11	4
460	716	Desa Bulontio	Gorontalo Utara	Nano	Dropline	11	5
461	716	Desa Buluwatu	Gorontalo Utara	Nano	Dropline	21	16
462	716	Desa Huntokalo	Gorontalo Utara	Nano	Dropline	10	3
	1 1 0						
462	716	Desa Tihengo	Gorontalo Utara	Nano	Dropline	26	7

Row	WPP	Registration Port	Home District	Boat Size	Gear	Ν	Total GT
465	716	Desa Lipang	Kepulauan Sangihe	Nano	Dropline	5	2
466	716	Desa Paruruang	Kepulauan Sangihe	Nano	Dropline	16	8
467	716	Desa Parururang	Kepulauan Sangihe	Nano	Dropline	5	2
468	716	Kampung Lipang	Kepulauan Sangihe	Nano	Dropline	5	1
469	716	Sangihe	Kepulauan Sangihe	Nano	Dropline	2	0
470	716	Tariang Baru	Kepulauan Sangihe	Nano	Longline	4	3
471	716	Buhias	Kepulauan Sitaro	Nano	Dropline	153	124
472	716	Mahongsawang Tagulandang	Kepulauan Sitaro	Nano	Dropline	8	4
473	716	Mongsawang	Kepulauan Sitaro	Nano	Dropline	16	6
474	716	Pulau Biaro	Kepulauan Sitaro	Nano	Dropline	29	7
475	716	Desa Damau	Kepulauan Talaud	Nano	Dropline	8	3
476	716	Dusun Bawunian	Kepulauan Talaud	Nano	Dropline	26	29
477	716	Belakang BRI, Selumit Pantai	Tarakan	Nano	Longline	46	138
478	716	Belakang BRI, Selumit Pantai	Tarakan	Small	Longline	4	20
479	716	Mamburungan Dalam	Tarakan	Nano	Dropline	48	144
480	717	Biak	Biak	Nano	Dropline	1796	1793
481	717	Desa Nikakamp	Biak	Nano	Dropline	4	7
482	717	Desa Tanjung Barari	Biak	Nano	Dropline	5	4
483	717	Fanindi Pantai	Manokwari	Nano	Dropline	10	26
484	717	Kampung Arowi 2	Manokwari	Nano	Dropline	4	9
485	717	Kampung Borobudur 2	Manokwari	Nano	Dropline	12	30
486	717	Kampung Fanindi	Manokwari	Nano	Dropline	20	22
487	717	Kampung Kimi	Nabire	Nano	Dropline	1	1
488	717	Kampung Smoker	Nabire	Nano	Dropline	4	9
489	717	Kampung Waharia	Nabire	Nano	Dropline	2	2
490	717	Pasar Kalibobo	Nabire	Nano	Dropline	1	4
491	717	PP. Sanoba	Nabire	Nano	Dropline	4	14
492	717	Wasior	Teluk Wondama	Nano	Dropline	19	23
493	718	PP. Nizam Zachman	Jakarta Utara	Large	Longline	4	205
494	718	Namatota	Kaimana	Large	Longline	1	72
495	718	Dusun Wamar Desa Durjela	Kepulauan Aru	Medium	Longline	4	73
496	718	PP. Bajomulyo	Kepulauan Aru	Large	Gillnet	1	82
497	718	PP. Benjina	Kepulauan Aru	Large	Longline	2	92
498	718	PP. Dobo	Kepulauan Aru	Large	Gillnet	8	527
499	718	PP. Dobo	Kepulauan Aru	Large	Longline	10	596
500	718	PP. Dobo	Kepulauan Aru	Medium	Dropline	93	1658
501	718	PP. Dobo	Kepulauan Aru	Medium	Gillnet	5	121
502	718	PP. Dobo	Kepulauan Aru	Medium	Longline	10	185
503	718	PP. Dobo	Kepulauan Aru	Nano	Dropline	11	30
504	718	PP. Dobo	Kepulauan Aru	Nano	Longline	8	23
505	718	PP. Dobo	Kepulauan Aru	Small	Dropline	7	56
506	718	PP. Dobo	Kepulauan Aru	Small	Longline	1	7
507	718	PP. Kaimana	Kepulauan Aru	Large	Longline	1	51
508	718	PP. Klidang Lor	Kepulauan Aru	Large	Gillnet	1	73
509	718	PP. Mayangan	Kepulauan Aru	Large	Longline	19	1405
510	718	PP. Merauke	Kepulauan Aru	Large	Longline	4	397
511	718	PP. Nizam Zachman	Kepulauan Aru	Large	Gillnet	1	92
512	718	PP. Pekalongan	Kepulauan Aru	Large	Gillnet	1	115
513	718	PU. Dobo	Kepulauan Aru	Large	Gillnet	3	285
514	718	PU. Dobo	Kepulauan Aru	Large	Longline	36	2670
515	718	Saumlaki	Kepulauan Tanimbar	Nano	Dropline	37	109
516	718	Saumlaki	Kepulauan Tanimbar	Small	Dropline	1	5
517	718	Saumlaki	Kepulauan Tanimbar	Small	Longline	5	37
518	718	PP. Bajomulyo	Merauke	Large	Gillnet	1	91
519	718	PP. Merauke	Merauke	Large	Gillnet	48	3873
520	718	PP. Merauke	Merauke	Large	Longline	2	213
521	718	PP. Merauke	Merauke	Medium	Gillnet	5	138
522	718	PP. Nizam Zachman	Merauke	Large	Gillnet	13	841

Row	WPP	Registration Port	Home District	Boat Size	Gear	Ν	Total GT
523	718	PP. Nizam Zachman	Merauke	Large	Longline	1	60
524	718	PP. Poumako	Merauke	Medium	Gillnet	3	88
525	718	PP. Tegal	Merauke	Large	Gillnet	1	148
526	718	PP. Bajomulyo	Mimika	Large	Longline	1	82
527	718	PP. Dobo	Mimika	Large	Gillnet	1	75
528	718	PP. Mayangan	Mimika	Large	Gillnet	1	129
529	718	PP. Merauke	Mimika	Large	Gillnet	2	123
530	718	PP. Merauke	Mimika	Medium	Gillnet	2	49
531	718	PP. Muara Angke	Mimika	Large	Gillnet	1	92
532	718	PP. Nizam Zachman	Mimika	Large	Gillnet	1	88
533	718	PP. Paumako	Mimika	Large	Gillnet	1	30
534	718	PP. Paumako	Mimika	Medium	Gillnet	2	58
535	718	PP. Pekalongan	Mimika	Large	Gillnet	1	112
536	718	PP. Pomako	Mimika	Medium	Gillnet	1	16
537	718	PP. Poumako	Mimika	Large	Gillnet	2	60
538	718	PP. Poumako	Mimika	Medium	Gillnet	12	284
539	718	PP. Poumako	Mimika	Small	Gillnet	3	28
540	718	Timika	Mimika	Medium	Longline	3	88
541	718	PP. Bajomulyo	Pati	Large	Longline	1	119
542	718	Bagansiapiapi	Probolinggo	Large	Longline	1	40
543	718	PP. Dobo	Probolinggo	Large	Longline	2	142
544	718	PP. Mayangan	Probolinggo	Large	Gillnet	3	124
545	718	PP. Mayangan	Probolinggo	Large	Longline	34	2103
546	718	PP. Mayangan	Probolinggo	Medium	Longline	7	199
547	718	Probolinggo	Probolinggo	Large	Longline	20	1460
548	718	PP. Lappa	Sinjai	Large	Dropline	1	35
549	718	PP. Lappa	Sinjai	Medium	Dropline	10	235
550	718	PP. Bajomulyo	Tual	Large	Longline	1	87
		TOTAL				11536	62678

2.5 I-Fish Community

I-Fish Community only stores data that are relevant to fisheries management, whereas data on processed volume and sales, from the Smart Weighing and Measuring System, remain on servers at processing companies. Access to the I-Fish Community database is controlled by user name and password. I-Fish Community has different layers of privacy, which is contingent on the user's role in the supply chain. For instance, boat owners may view exact location of their boats, but not of the boats of other owners.

I-Fish Community has an automatic length-frequency distribution reporting system for length-based assessment of the fishery by species. The database generates length frequency distribution graphs for each species, together with life history parameters including length at maturity (Lmat), optimum harvest size (Lopt: Beverton, 1992), asymptotic length (Linf), and maximum total length (Lmax). Procedures for estimation of these length based life history characteristics are explained in the "Guide to Length Based Stock Assessment" (Mous et al., 2020). The data base also includes size limits used in the trade. These "trade limit" lengths are derived from general buying behavior (minimal weight) of processing companies. The weights are converted into lengths by using species-specific length- weight relationships.

Each length frequency distribution is accompanied by an automated length-based assessment on current status of the fishery by species. Any I-Fish Community user can access these graphs and the conclusions from the assessments. The report produces an assessment for the 50 most abundant species in the fishery, based on complete catches from the most recent complete calendar year (to ensure full year data sets). Graphs for the Top 20 species show the position of the catch length frequency distributions relative to various life history parameter values and trading limits for each species. Relative abundance of specific size groups is plotted for all years for which data are available, to indicate trends in status by species.

Immature fish, small mature fish, large mature fish, and a subset of large mature fish, namely "mega-spawners", which are fish larger than 1.1 times the optimum harvest size (Froese 2004), make up the specific size groups used in our length based assessment. For all fish of each species in the catch, the percentage in each category is calculated for further use in the length based assessment. These percentages are calculated and presented as the first step in the length based assessment as follows: W% is immature (smaller than the length at maturity), X% is small matures (at or above size at maturity but smaller than the optimum harvest size), and Y% is large mature fish (at or above optimum harvest size). The percentage of mega-spawners is Z%.

The automated assessment comprises of five elements from the catch length frequencies. These elements all work with length based indicators of various kinds to draw conclusions from species specific length frequencies in the catch.

1. Minimum size as traded compared to length and maturity.

We use a comparison between the trade limit (minimum size accepted by the trade) and the size at maturity as an indicator for incentives from the trade for either unsustainable targeting of juveniles or for more sustainable targeting of mature fish that have spawned at least once. We consider a trade limit at 10% below or above the length at maturity to be significantly different from the length at maturity and we consider trade limits to provide incentives for targeting of specific sizes of fish through price differentiation. IF "TradeLimit" is lower than 0.9 * L-mat THEN: "The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high."

ELSE, IF "TradeLimit" is greater than or equal to 0.9 * L-mat AND "TradeLimit" is lower than or equal to 1.1 * L-mat THEN: "The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium."

ELSE, IF "TradeLimit" is greater than 1.1 * L-mat THEN: "The trade limit is significantly higher than length at first maturity. This means that the trade puts a premium on fish that have spawned at least once. The trade does not cause any concern of recruitment overfishing for this species. Risk level is low."

2. Proportion of immature fish in the catch.

With 0% immature fish in the catch as an ideal target (Froese, 2004), a target of 10% or less is considered a reasonable indicator for sustainable (or safe) harvesting (Fujita et al., 2012; Vasilakopoulos et al., 2011). Zhang et al. (2009) consider 20% immature fish in the catch as an indicator for a fishery at risk, in their approach to an ecosystem based fisheries assessment. Results from meta-analysis over multiple fisheries showed stock status over a range of stocks to fall below precautionary limits at 30% or more immature fish in the catch (Vasilakopoulos et al., 2011). The fishery is considered highly at risk when more than 50% of the fish in the catch are immature (Froese et al, 2016).

IF "% immature" is lower than or equal to 10% THEN: "At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low."

ELSE, IF "% immature" is greater than 10% AND "% immature" is lower than or equal to 20% THEN: "Between 10% and 20% of the fish in the catch are juveniles that have not yet reproduced. There is no immediate concern in terms of overfishing through over harvesting of juveniles, but the fishery needs to be monitored closely for any further increase in this indicator and incentives need to be geared towards targeting larger fish. Risk level is medium."

ELSE, IF "% immature" is greater than 20% AND "% immature" is lower than or equal to 30% THEN: "Between 20% and 30% of the fish in the catch are specimens that have not yet reproduced. This is reason for concern in terms of potential overfishing through overharvesting of juveniles, if fishing pressure is high and percentages immature fish would further rise. Targeting larger fish and avoiding small fish in the catch will promote a sustainable fishery. Risk level is medium."

ELSE, IF "% immature" is greater than 30% AND "% immature" is lower than or equal to 50% THEN: "Between 30% and 50% of the fish in the catch are immature and have not had a chance to reproduce before capture. The fishery is in immediate danger of overfishing through overharvesting of juveniles, if fishing pressure is high. Catching small and immature fish needs to be actively avoided and a limit on overall fishing pressure is warranted. Risk level is high."

ELSE, IF "% immature" is greater than 50% THEN: "The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high."

3. Current exploitation level.

We use the current exploitation level expressed as the percentage of fish in the catch below the optimum harvest size as an indicator for fisheries status. We consider a proportion of 65% of the fish (i.e. the vast majority in numbers) in the catch below the optimum harvest size as an indicator for growth overfishing. We therefore consider a majority in the catch around or above the optimum harvest size (large matures) as an indicator for minimizing the impact of fishing (Froese et al., 2016). This indicator will be achieved when less than 50% of the fish in the catch are below the optimum harvest size.

IF "% immature + % small mature" is greater than or equal to 65% THEN: "The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high."

ELSE, IF "% immature + % small mature" is lower than or equal to 50% THEN: "The majority of the catch consists of size classes around or above the optimum harvest size (large mature fish). This means that the impact of the fishery is minimized for this species. Potentially higher yields of this species could be achieved by catching them at somewhat smaller size, although capture of smaller specimen may take place already in other fisheries. Risk level is low."

ELSE, IF "% immature + % small mature" is greater than 50% AND "% immature + % small mature" is lower than 65% THEN: "The bulk of the catch includes age groups that have just matured and are about to achieve their full growth potential. This indicates that the fishery is probably at least being fully exploited. Risk level is medium."

4. Proportion of mega spawners in the catch.

Mega spawners are fish larger than 1.1 times the optimum harvest size. We consider a proportion of 30% or more mega spawners in the catch to be a sign of a healthy population (Froese, 2004), whereas lower proportions are increasingly leading to concerns, with proportions below 20% indicating great risk to the fishery.

IF "% mega spawners" is greater than 30% THEN: "More than 30% of the catch consists of mega spawners which indicates that this fish population is in good health unless large amounts of much smaller fish from the same population are caught by other fisheries. Risk level is low."

ELSE, IF "% mega spawners" is greater than 20% AND "% mega spawners" is lower than or equal to 30% THEN: "The percentage of mega spawners is between 20 and 30%. There is no immediate reason for concern, though fishing pressure may be significantly reducing the percentage of mega-spawners, which may negatively affect the reproductive output of this population. Risk level is medium." ELSE, IF "% mega spawners" is lower than or equal to 20%, THEN: "Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

5. Spawning Potential Ratio.

As an indicator for Spawning Potential Ratio (SPR, Quinn and Deriso, 1999), we used the estimated spawning stock biomass as a fraction of the spawning stock biomass of that population if it would have been pristine (Meester et al 2001). We calculated SPR on a per-recruit basis from life-history parameters M, F, K, and Linf, and from gear selectivity parameters in the smaller part of the size spectrum caught by the fishery.

We estimated the instantaneous total mortality (Z) from the equilibrium Beverton-Holt estimator from length data using Ehrhardt and Ault (1992) bias-correction, implemented through the function bheq of the R Fishmethods package. For this estimation, we used the length range of the catch length-frequency distribution starting with the length 5% higher than the modal length and ending with the 99th percentile. We assumed that Z, and its constituents M and F, were constant over length range that we used to estimate Z. We calculated F (fishing mortality) as the difference between Z and M, assuming full selectivity for the size range starting at modal length and ending with the largest fish in the catch. We assumed an S-shaped (logistic) selectivity curve, with 99% selectivity achieved at modal length, and with the length at 50% selectivity halfway between the first percentile and modal length of the catch length-frequency distribution.

Gislason et al (2010) provides evidence that M increases with decreasing length, and fisheries scientists agree that the smaller size classes of each fish species experience higher mortality than larger fish due to higher predation risk. The method we used for calculating Z, however, assumes a Z that is constant, implicating a constant M, over the length range over which we estimated Z. To iron out this inconsistency, we applied the Gislason et al (2010) empirical relationship to the length classes (1 cm width) over which we estimated Z, we calculated the average M over these size classes, and we applied that average to the Z estimation range. Outside this range (i.e., at lengths below 1.05 times modal length and lengths above the 99th percentile), we assumed a varying M following Gislason's formula (Mous et al., 2020).

In a perfect world, fishery biologists would know what the appropriate SPR should be for every harvested stock based on the biology of that stock. Generally, however, not enough is known about managed stocks to be so precise. However, studies show that some stocks (depending on the species of fish) can maintain themselves if the spawning stock biomass per recruit can be kept at 20 to 35% (or more) of what it was in the un-fished stock. Lower values of SPR may lead to severe stock declines (Wallace and Fletcher, 2001). Froese et al. (2016) considered a total population biomass B of half the pristine population biomass Bo to be the lower limit reference point for stock size, minimizing the impact of fishing. Using SPR and B/Bo estimates from our own data set, this Froese et al. (2016) lower limit reference point correlates with an SPR of about 40%, not far from but slightly more conservative than the Wallace and Fletcher (2001) reference point. We chose an SPR of 40% as our reference point for low risk and after similar comparisons we consider and SPR between 25% and 40% to represent a medium risk situation. Risk levels on the basis of SPR estimates are determined as follows:

IF "SPR" is lower than 25% THEN: "SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high."

ELSE, IF "SPR" is greater than or equal to 25% AND "SPR" is lower than 40% THEN: "SPR is between 25% and 40%. The stock is heavily exploited, and there is some risk that the fishery will cause further decline of the stock. Risk level is medium."

ELSE, IF "SPR" is greater than or equal to 40% THEN: "SPR is more than 40%. The stock is probably not over exploited, and the risk that the fishery will cause further stock decline is small. Risk level is low."

3 Fishing grounds and traceability

Fishing grounds in WPP 715, mainly covering the Maluku and Seram Seas, are closely connected to those in surrounding fisheries management areas. The fleets that operate on these connected fishing grounds typically cover multiple WPP, often within single fishing trips. Spot trace data show great geographic spread and mobility (Figures 3.1 to 3.3) especially by medium-scale snapper fishing boats, which are making trips to fishing grounds that are up to 1,000 kilometres away from home ports.

Part of the fishing activity recorded inside WPP 715 boundaries is by fishing vessels originating from outside this area. For the purpose of this report, all fish catches recorded by SPOT and CODRS data as catches from actual fishing activity within WPP 715 boundaries were included in the stock assessments for this WPP, regardless of origin of the fishing vessel.

Decision making by boat owners on various movements can be based on fisheries technical issues such as catch rates or weather, but also on administrative issues like licensing or enforcement of rules against under-marking in Gross Tonnage. And not only are medium scale fishing operations highly mobile in terms of their trips from home port, they are also flexible in changing their base of operations from one port to another, changing from landing at home port to offloading at processing plants or on transport vessels in remote ports or offloading for air cargo at yet other places.

Fishing vessels from many home ports around the Seram and Maluku Seas (Figures 3.4 to 3.6) operate in WPP 715 as well as in neighbouring WPP. Small scale fleets from the Banggai and Sula Islands as well as from mainland Sulawesi, the Kei Islands and other locations, feed into the same supply lines as the medium scale fishing vessels. Small scale fisheries often supply fish via a network of small local traders and upstream aggregators which prepare larger volumes for sale to processing companies. For example a snapper processor based in Luwuk, Central Sulawsi, receives part of its raw product from the supply network around the local islands while additional supply comes from medium scale operations in WPP 715 and elsewhere. This company has been receiving transports for example from Kema in North Sulawesi, which is the base of a medium scale deep water snapper drop line fishery. That fishery currently lands most of its catches in Kema but operates throughout and beyond the waters of WPP 715, WPP 714 and WPP 718.

In recent years we have observed movement of staging ports but also of processing capacity to remote areas in the east such as Tual in the Kei Islands and the island of Penambulai, East of the Aru Islands in WPP 718. Fish processing capacity in the area of WPP 715 however is still very limited but some is present in Sorong in West Papua. Much of the deep slope snapper and grouper catches by medium scale drop line fleets operating out of Kema currently still ends up in processing facilities outside WPP 715.

Potential IUU issues related to snapper fisheries in and around WPP 715 include the under marking of medium scale vessels to below 30GT, the licensing of the various fleets for specific WPP and the operation of deep slope snapper fishers from remote ports at deep water sites inside Marine Protected Areas throughout this region. Especially the fisheries activity in MPAs needs to be discussed with fishing boat captains and boat owners to prevent issues of supply line "pollution" with IUU fish from thee protected areas.

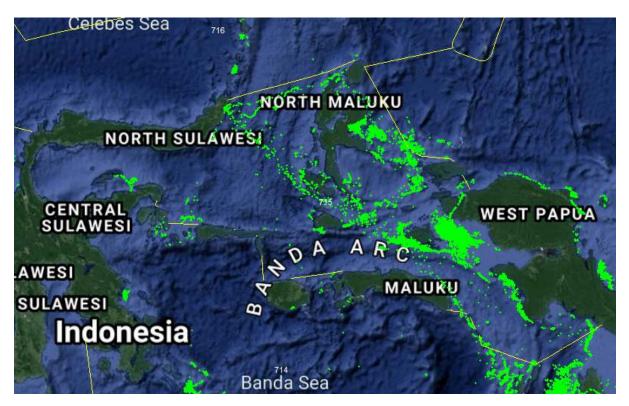


Figure 3.1: Fishing positions of dropliners participating in the CODRS program over the years 2014 - 2019 in WPP 715, as reported by Spot Trace. Reported positions during steaming, anchoring, or docking are excluded from this map.

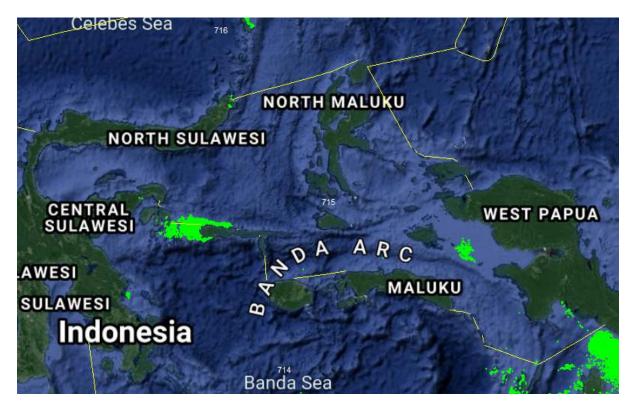


Figure 3.2: Fishing positions of longliners participating in the CODRS program over the years 2014 - 2019 in WPP 715, as reported by Spot Trace. Reported positions during steaming, anchoring, or docking are excluded from this map.

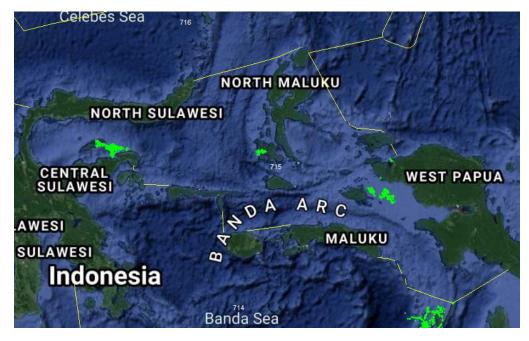


Figure 3.3: Fishing positions of vessels applying more than one gear, participating in the CODRS program over the years 2014 - 2019 in WPP 715, as reported by Spot Trace. Gears used by the vessels in this group are a combination of droplines, longlines, traps, and gillnets. Reported positions during steaming, anchoring, or docking are excluded from this map.

Figure 3.4: A typical snapper fishing boat from Kema, Minahasa Utara, Sulawesi Utara, operating in the Maluku and Seram Seas (WPP 715) and on nearby fishing grounds.

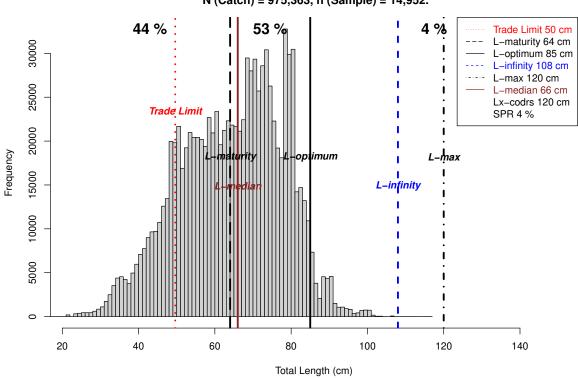
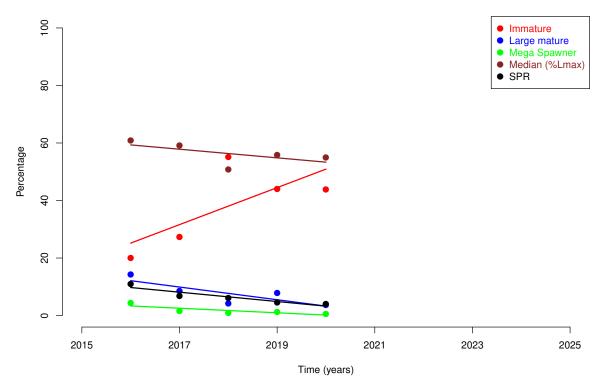


Figure 3.5: A typical snapper fishing boat from Sorong, Papua Barat, operating in the Maluku and Seram Seas (WPP 715) and on nearby fishing grounds.


Figure 3.6: A typical small scale snapper fishing fleets from Kasuari, Banggai Laut, Sulawesi Tengah, operating in the Maluku and Seram Seas (WPP 715) and on nearby fishing grounds.

4 Length-based assessments of Top 20 most abundant species in CODRS samples

Catch length frequency for Aphareus rutilans (ID #1, Lutjanidae) in WPP 715 in 2020. N (Catch) = 975,363, n (Sample) = 14,952.

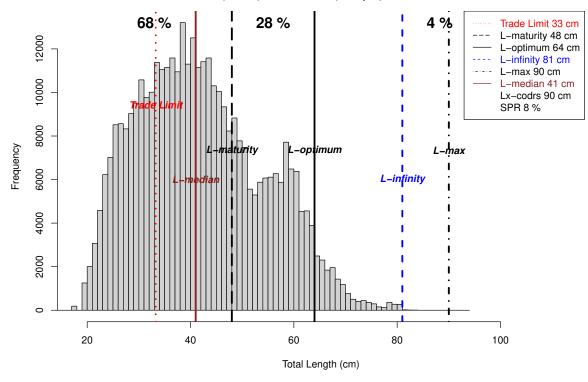
The percentages of Aphareus rutilans (ID #1, Lutjanidae) in 2020. N (Catch) =975,363, n (Sample) = 14,952 Immature (< 64cm): 44% Small mature (>= 64cm, < 85cm): 53% Large mature (>= 85cm): 4% Mega spawner (>= 93.5cm): 1% (subset of large mature fish) Spawning Potential Ratio: 4 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

Between 30% and 50% of the fish in the catch are immature and have not had a chance to reproduce before capture. The fishery is in immediate danger of overfishing through overharvesting of juveniles, if fishing pressure is high. Catching small and immature fish needs to be actively avoided and a limit on overall fishing pressure is warranted. Risk level is high.

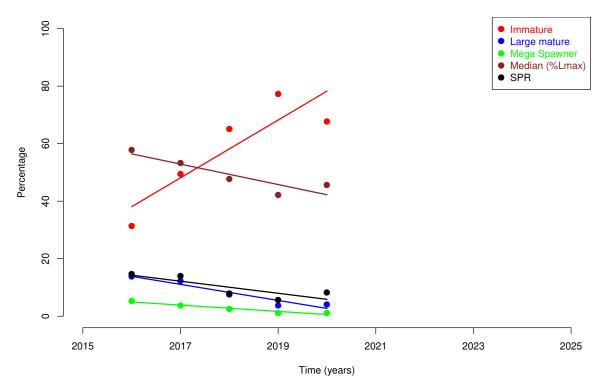
The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Aphareus rutilans (ID #1, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

% Immature rising over recent years, situation deteriorating. P: 0.172

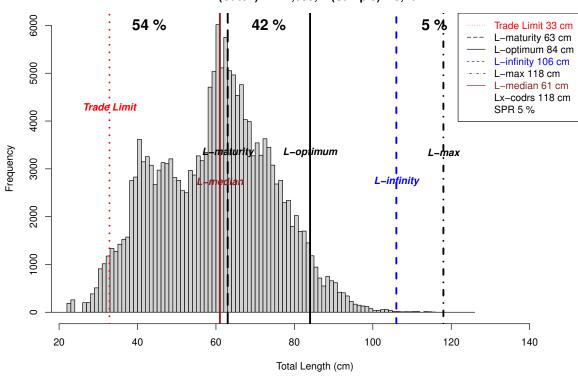

% Large Mature falling over recent years, situation deteriorating. P: 0.091

% Mega Spawner falling over recent years, situation deteriorating. P: 0.084

Catch length frequency for Pristipomoides filamentosus (ID #9, Lutjanidae) in WPP 715 in 2020. N (Catch) = 377,753, n (Sample) = 11,585.

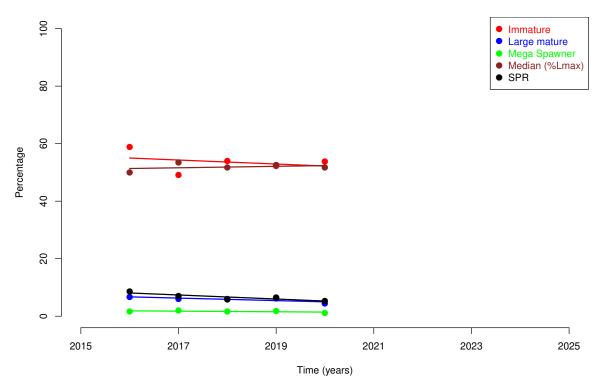
The percentages of Pristipomoides filamentosus (ID #9, Lutjanidae) in 2020. N (Catch) =377,753, n (Sample) = 11,585 Immature (< 48cm): 68% Small mature (>= 48cm, < 64cm): 28% Large mature (>= 64cm): 4% Mega spawner (>= 70.4cm): 1% (subset of large mature fish) Spawning Potential Ratio: 8 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.


The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Pristipomoides filamentosus (ID #9, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.048
% Large Mature falling over recent years, situation deteriorating. P: 0.009
% Mega Spawner falling over recent years, situation deteriorating. P: 0.004
% SPR falling over recent years, situation deteriorating. P: 0.074

Catch length frequency for Etelis boweni (ID #4, Lutjanidae) in WPP 715 in 2020. N (Catch) = 172,699, n (Sample) = 9,467.

Trends in relative abundance by size group for Etelis boweni (ID #4, Lutjanidae) in WPP 715.

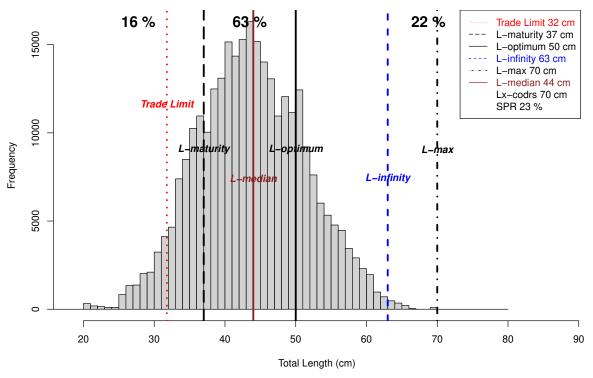
The percentages of Etelis boweni (ID #4, Lutjanidae) in 2020. N (Catch) =172,699, n (Sample) = 9,467 Immature (< 63cm): 54% Small mature (>= 63cm, < 84cm): 42% Large mature (>= 84cm): 5% Mega spawner (>= 92.4cm): 1% (subset of large mature fish) Spawning Potential Ratio: 5%

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.

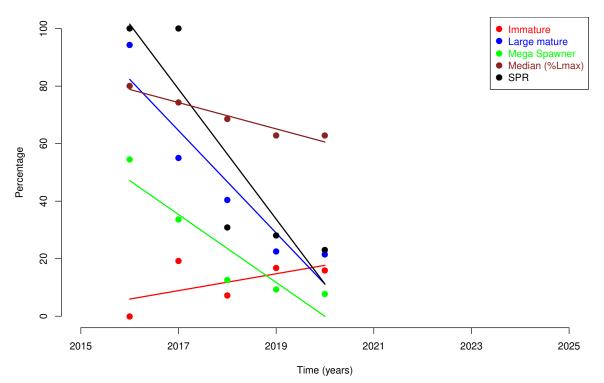
The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Etelis boweni (ID #4, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

% Immature falling over recent years, situation improving. P: 0.612


% Large Mature falling over recent years, situation deteriorating. P: 0.079

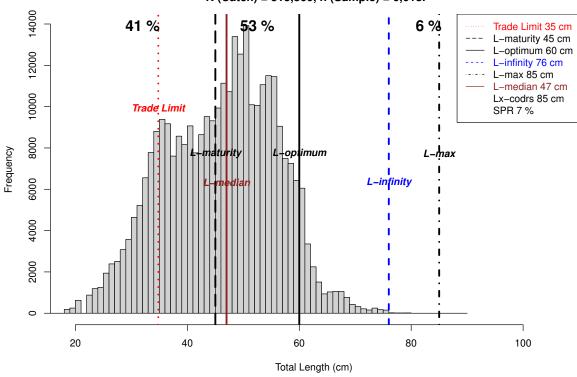
% Mega Spawner falling over recent years, situation deteriorating. P: 0.359

Catch length frequency for Lutjanus erythropterus (ID #21, Lutjanidae) in WPP 715 in 2020. N (Catch) = 294,100, n (Sample) = 7,299.

Trends in relative abundance by size group for Lutjanus erythropterus (ID #21, Lutjanidae) in WPP 715.

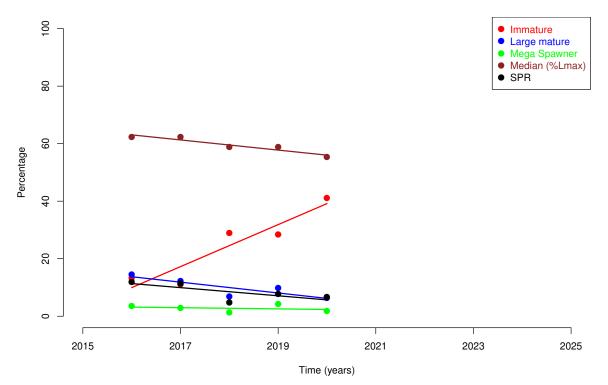
The percentages of Lutjanus erythropterus (ID #21, Lutjanidae) in 2020. N (Catch) =294,100, n (Sample) = 7,299 Immature (< 37cm): 16% Small mature (>= 37cm, < 50cm): 63% Large mature (>= 50cm): 22% Mega spawner (>= 55cm): 8% (subset of large mature fish) Spawning Potential Ratio: 23 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.


Between 10% and 20% of the fish in the catch are juveniles that have not yet reproduced. There is no immediate concern in terms of overfishing through over harvesting of juveniles, but the fishery needs to be monitored closely for any further increase in this indicator and incentives need to be geared towards targeting larger fish. Risk level is medium.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

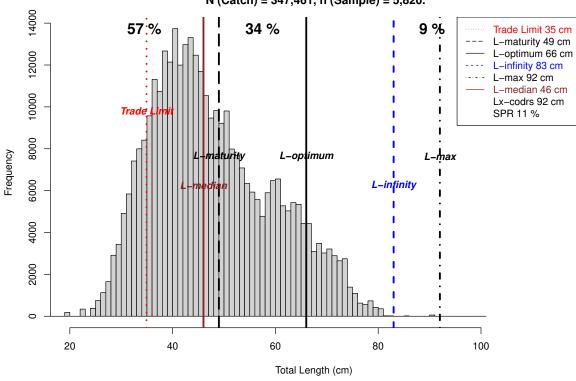
Trends in relative abundance by size group for Lutjanus erythropterus (ID #21, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.307
% Large Mature falling over recent years, situation deteriorating. P: 0.018
% Mega Spawner falling over recent years, situation deteriorating. P: 0.026
% SPR falling over recent years, situation deteriorating. P: 0.040

Catch length frequency for Paracaesio kusakarii (ID #34, Lutjanidae) in WPP 715 in 2020. N (Catch) = 313,860, n (Sample) = 6,618.

Trends in relative abundance by size group for Paracaesio kusakarii (ID #34, Lutjanidae) in WPP 715.

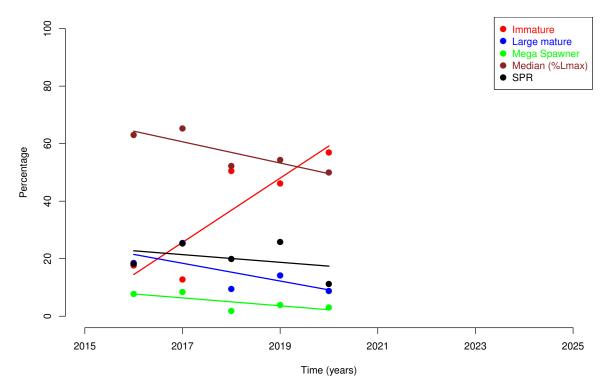
The percentages of Paracaesio kusakarii (ID #34, Lutjanidae) in 2020. N (Catch) =313,860, n (Sample) = 6,618 Immature (< 45cm): 41% Small mature (>= 45cm, < 60cm): 53% Large mature (>= 60cm): 6% Mega spawner (>= 66cm): 2% (subset of large mature fish) Spawning Potential Ratio: 7 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.


Between 30% and 50% of the fish in the catch are immature and have not had a chance to reproduce before capture. The fishery is in immediate danger of overfishing through overharvesting of juveniles, if fishing pressure is high. Catching small and immature fish needs to be actively avoided and a limit on overall fishing pressure is warranted. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

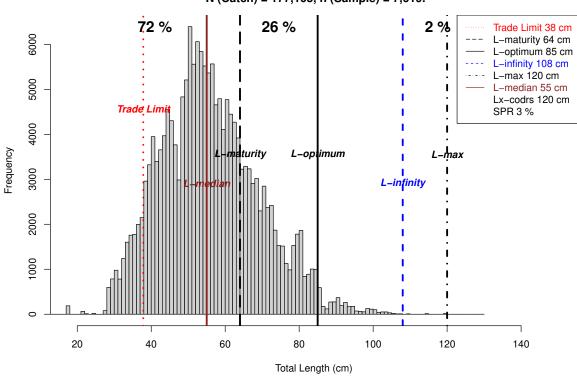
Trends in relative abundance by size group for Paracaesio kusakarii (ID #34, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.022
% Large Mature falling over recent years, situation deteriorating. P: 0.071
% Mega Spawner falling over recent years, situation deteriorating. P: 0.660
% SPR falling over recent years, situation deteriorating. P: 0.161

Catch length frequency for Pristipomoides multidens (ID #7, Lutjanidae) in WPP 715 in 2020. N (Catch) = 347,461, n (Sample) = 5,820.

Trends in relative abundance by size group for Pristipomoides multidens (ID #7, Lutjanidae) in WPP 715.

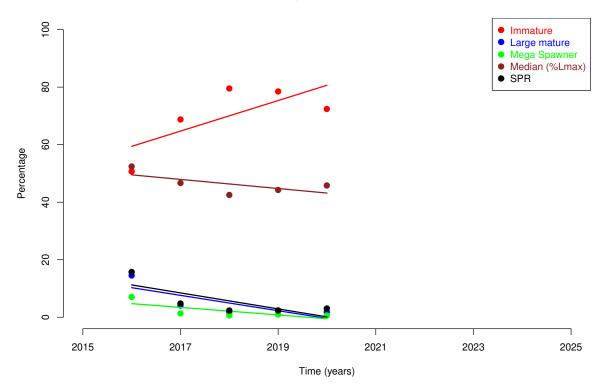
The percentages of Pristipomoides multidens (ID #7, Lutjanidae) in 2020. N (Catch) =347,461, n (Sample) = 5,820 Immature (< 49cm): 57% Small mature (>= 49cm, < 66cm): 34% Large mature (>= 66cm): 9% Mega spawner (>= 72.6cm): 3% (subset of large mature fish) Spawning Potential Ratio: 11 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.


The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Pristipomoides multidens (ID #7, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.050
% Large Mature falling over recent years, situation deteriorating. P: 0.185
% Mega Spawner falling over recent years, situation deteriorating. P: 0.147
% SPR falling over recent years, situation deteriorating. P: 0.557

Catch length frequency for Etelis coruscans (ID #6, Lutjanidae) in WPP 715 in 2020. N (Catch) = 177,105, n (Sample) = 7,619.

Trends in relative abundance by size group for Etelis coruscans (ID #6, Lutjanidae) in WPP 715.

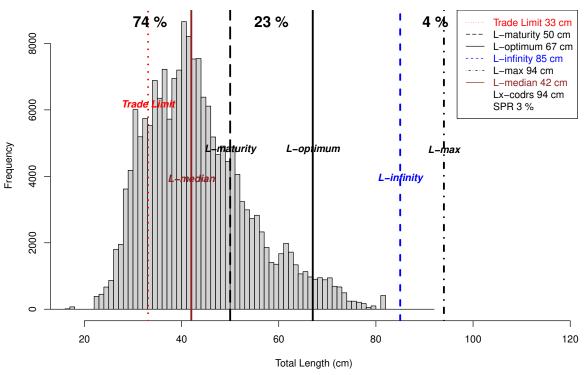
The percentages of Etelis coruscans (ID #6, Lutjanidae) in 2020. N (Catch) =177,105, n (Sample) = 7,619 Immature (< 64cm): 72% Small mature (>= 64cm, < 85cm): 26% Large mature (>= 85cm): 2% Mega spawner (>= 93.5cm): 1% (subset of large mature fish) Spawning Potential Ratio: 3 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.

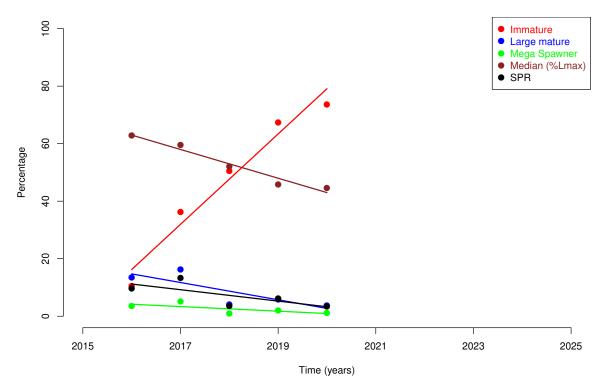
The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Etelis coruscans (ID #6, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

% Immature rising over recent years, situation deteriorating. P: 0.170


% Large Mature falling over recent years, situation deteriorating. P: 0.118

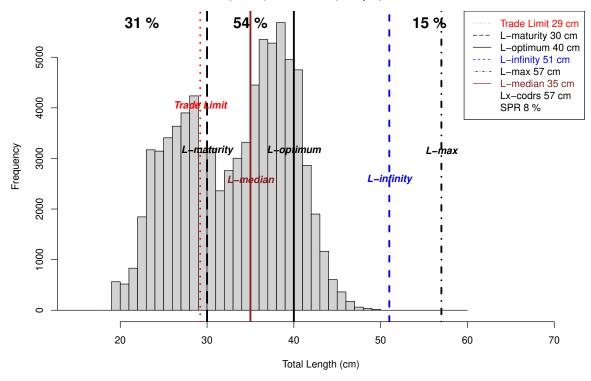
% Mega Spawner falling over recent years, situation deteriorating. P: 0.147

Catch length frequency for Lutjanus malabaricus (ID #17, Lutjanidae) in WPP 715 in 2020. N (Catch) = 184,954, n (Sample) = 3,575.

Trends in relative abundance by size group for Lutjanus malabaricus (ID #17, Lutjanidae) in WPP 715.

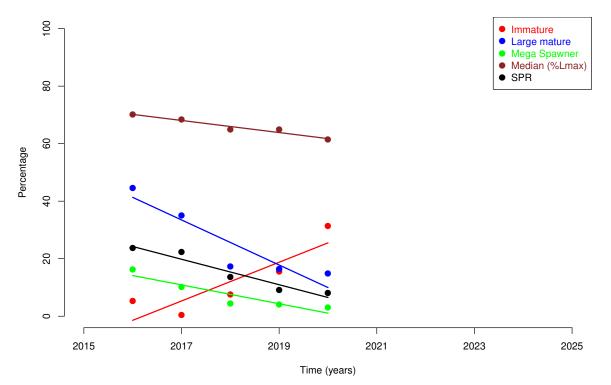
The percentages of Lutjanus malabaricus (ID #17, Lutjanidae) in 2020. N (Catch) =184,954, n (Sample) = 3,575 Immature (< 50cm): 74% Small mature (>= 50cm, < 67cm): 23% Large mature (>= 67cm): 4% Mega spawner (>= 73.7cm): 1% (subset of large mature fish) Spawning Potential Ratio: 3 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.


The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

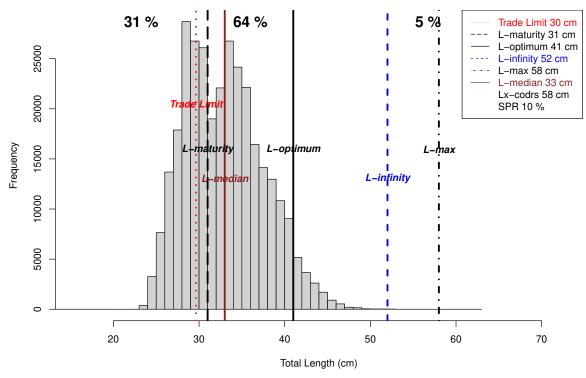
Trends in relative abundance by size group for Lutjanus malabaricus (ID #17, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.004
% Large Mature falling over recent years, situation deteriorating. P: 0.092
% Mega Spawner falling over recent years, situation deteriorating. P: 0.181
% SPR falling over recent years, situation deteriorating. P: 0.162

Catch length frequency for Pristipomoides sieboldii (ID #10, Lutjanidae) in WPP 715 in 2020. N (Catch) = 80,671, n (Sample) = 3,706.

Trends in relative abundance by size group for Pristipomoides sieboldii (ID #10, Lutjanidae) in WPP 715.

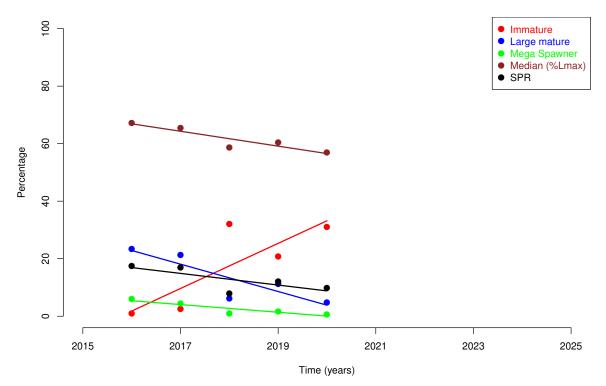
The percentages of Pristipomoides sieboldii (ID #10, Lutjanidae) in 2020. N (Catch) =80,671, n (Sample) = 3,706 Immature (< 30cm): 31% Small mature (>= 30cm, < 40cm): 54% Large mature (>= 40cm): 15% Mega spawner (>= 44cm): 3% (subset of large mature fish) Spawning Potential Ratio: 8 %

The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.


Between 30% and 50% of the fish in the catch are immature and have not had a chance to reproduce before capture. The fishery is in immediate danger of overfishing through overharvesting of juveniles, if fishing pressure is high. Catching small and immature fish needs to be actively avoided and a limit on overall fishing pressure is warranted. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Pristipomoides sieboldii (ID #10, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.050
% Large Mature falling over recent years, situation deteriorating. P: 0.026
% Mega Spawner falling over recent years, situation deteriorating. P: 0.025
% SPR falling over recent years, situation deteriorating. P: 0.009

Catch length frequency for Pinjalo lewisi (ID #22, Lutjanidae) in WPP 715 in 2020. N (Catch) = 316,951, n (Sample) = 4,780.

Trends in relative abundance by size group for Pinjalo lewisi (ID #22, Lutjanidae) in WPP 715.

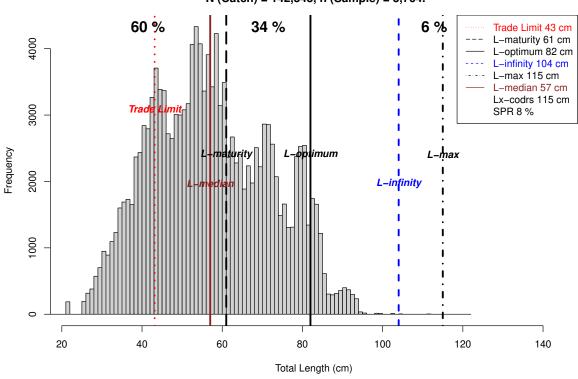
The percentages of Pinjalo lewisi (ID #22, Lutjanidae) in 2020. N (Catch) =316,951, n (Sample) = 4,780 Immature (< 31cm): 31% Small mature (>= 31cm, < 41cm): 64% Large mature (>= 41cm): 5% Mega spawner (>= 45.1cm): 1% (subset of large mature fish) Spawning Potential Ratio: 10 %

The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.

Between 30% and 50% of the fish in the catch are immature and have not had a chance to reproduce before capture. The fishery is in immediate danger of overfishing through overharvesting of juveniles, if fishing pressure is high. Catching small and immature fish needs to be actively avoided and a limit on overall fishing pressure is warranted. Risk level is high.

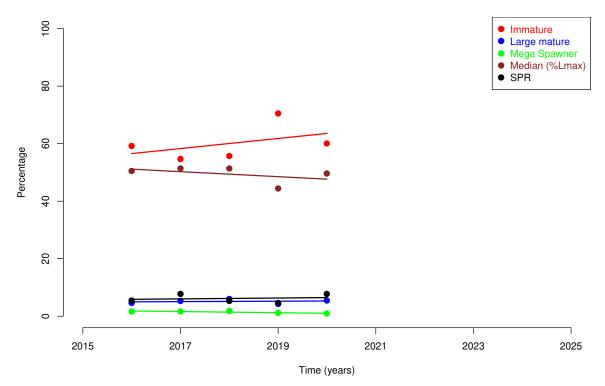
The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Pinjalo lewisi (ID #22, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

% Immature rising over recent years, situation deteriorating. P: 0.086


% Large Mature falling over recent years, situation deteriorating. P: 0.053

% Mega Spawner falling over recent years, situation deteriorating. P: 0.037

Catch length frequency for Etelis radiosus (ID #5, Lutjanidae) in WPP 715 in 2020. N (Catch) = 142,343, n (Sample) = 3,764.

Trends in relative abundance by size group for Etelis radiosus (ID #5, Lutjanidae) in WPP 715.

The percentages of Etelis radiosus (ID #5, Lutjanidae) in 2020. N (Catch) =142,343, n (Sample) = 3,764 Immature (< 61cm): 60%Small mature (>= 61cm, < 82cm): 34%Large mature (>= 82cm): 6%Mega spawner (>= 90.2cm): 1% (subset of large mature fish) Spawning Potential Ratio: 8%

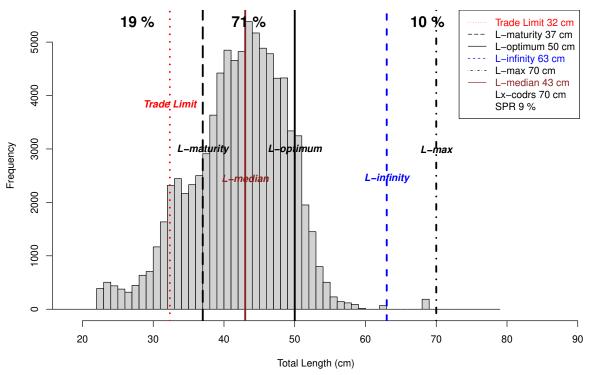
The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.

The majority of the fish in the catch have not had a chance to reproduce before capture. This fishery is most likely overfished already if fishing mortality is high for all size classes in the population. An immediate shift away from targeting juvenile fish and a reduction in overall fishing pressure is essential to prevent collapse of the stock. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

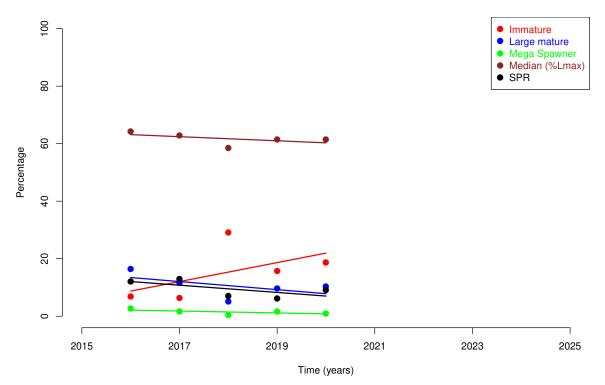
Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.


Trends in relative abundance by size group for Etelis radiosus (ID #5, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.

% Immature rising over recent years, situation deteriorating. P: 0.454

% Large Mature no trend over recent years, situation stable. P: 0.791


% Mega Spawner falling over recent years, situation deteriorating. P: 0.077

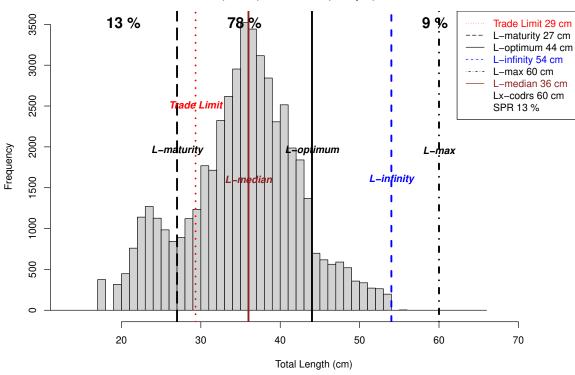
% SPR rising over recent years, situation improving. P: 0.803

Catch length frequency for Paracaesio stonei (ID #35, Lutjanidae) in WPP 715 in 2020. N (Catch) = 84,691, n (Sample) = 3,069.

Trends in relative abundance by size group for Paracaesio stonei (ID #35, Lutjanidae) in WPP 715.

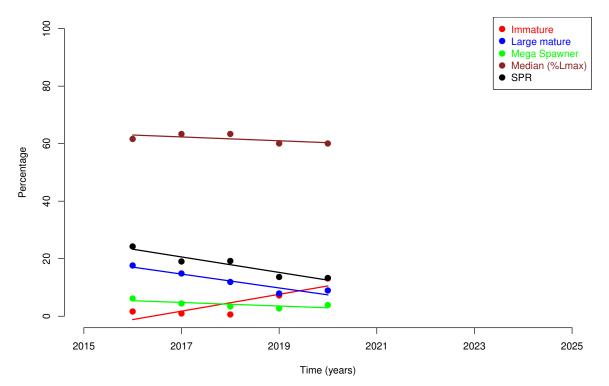
The percentages of Paracaesio stonei (ID #35, Lutjanidae) in 2020. N (Catch) =84,691, n (Sample) = 3,069 Immature (< 37cm): 19% Small mature (>= 37cm, < 50cm): 71% Large mature (>= 50cm): 10% Mega spawner (>= 55cm): 1% (subset of large mature fish) Spawning Potential Ratio: 9 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.


Between 10% and 20% of the fish in the catch are juveniles that have not yet reproduced. There is no immediate concern in terms of overfishing through over harvesting of juveniles, but the fishery needs to be monitored closely for any further increase in this indicator and incentives need to be geared towards targeting larger fish. Risk level is medium.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

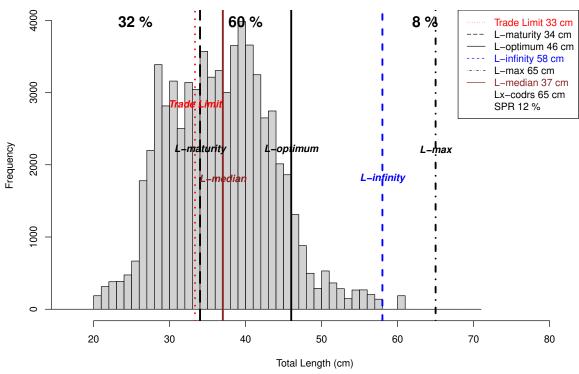
Trends in relative abundance by size group for Paracaesio stonei (ID #35, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.331
% Large Mature falling over recent years, situation deteriorating. P: 0.339
% Mega Spawner falling over recent years, situation deteriorating. P: 0.260
% SPR falling over recent years, situation deteriorating. P: 0.216

Catch length frequency for Wattsia mossambica (ID #69, Lethrinidae) in WPP 715 in 2020. N (Catch) = 49,239, n (Sample) = 1,864.

Trends in relative abundance by size group for Wattsia mossambica (ID #69, Lethrinidae) in WPP 715.

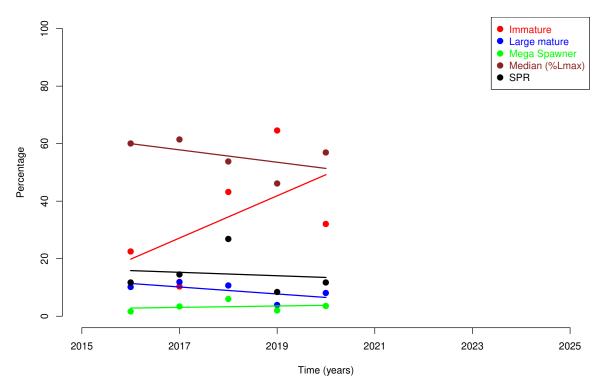
The percentages of Wattsia mossambica (ID #69, Lethrinidae) in 2020. N (Catch) =49,239, n (Sample) = 1,864 Immature (< 27cm): 13% Small mature (>= 27cm, < 44cm): 78% Large mature (>= 44cm): 9% Mega spawner (>= 48.4cm): 4% (subset of large mature fish) Spawning Potential Ratio: 13 %

The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.


Between 10% and 20% of the fish in the catch are juveniles that have not yet reproduced. There is no immediate concern in terms of overfishing through over harvesting of juveniles, but the fishery needs to be monitored closely for any further increase in this indicator and incentives need to be geared towards targeting larger fish. Risk level is medium.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

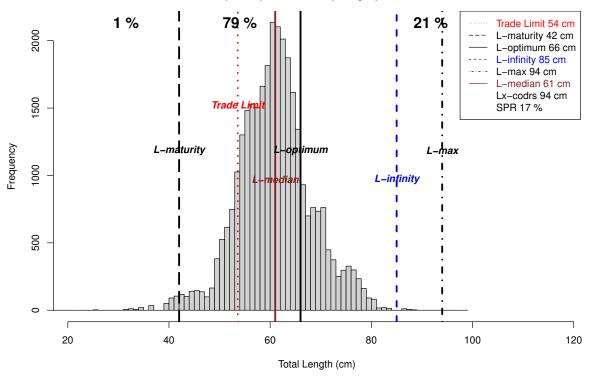
Trends in relative abundance by size group for Wattsia mossambica (ID #69, Lethrinidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.063
% Large Mature falling over recent years, situation deteriorating. P: 0.014
% Mega Spawner falling over recent years, situation deteriorating. P: 0.144
% SPR falling over recent years, situation deteriorating. P: 0.015

Catch length frequency for Lutjanus timorensis (ID #19, Lutjanidae) in WPP 715 in 2020. N (Catch) = 66,696, n (Sample) = 2,044.

Trends in relative abundance by size group for Lutjanus timorensis (ID #19, Lutjanidae) in WPP 715.

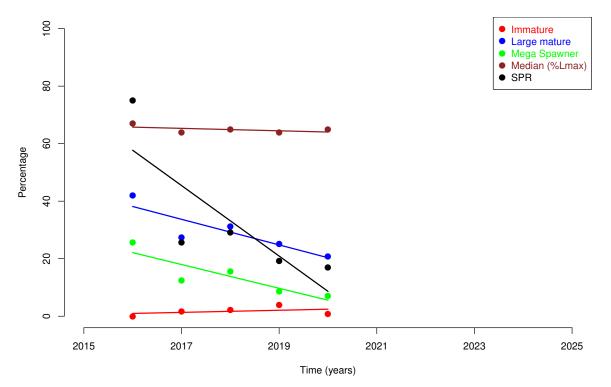
The percentages of Lutjanus timorensis (ID #19, Lutjanidae) in 2020. N (Catch) =66,696, n (Sample) = 2,044 Immature (< 34cm): 32% Small mature (>= 34cm, < 46cm): 60% Large mature (>= 46cm): 8% Mega spawner (>= 50.6cm): 4% (subset of large mature fish) Spawning Potential Ratio: 12 %

The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.


Between 30% and 50% of the fish in the catch are immature and have not had a chance to reproduce before capture. The fishery is in immediate danger of overfishing through overharvesting of juveniles, if fishing pressure is high. Catching small and immature fish needs to be actively avoided and a limit on overall fishing pressure is warranted. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

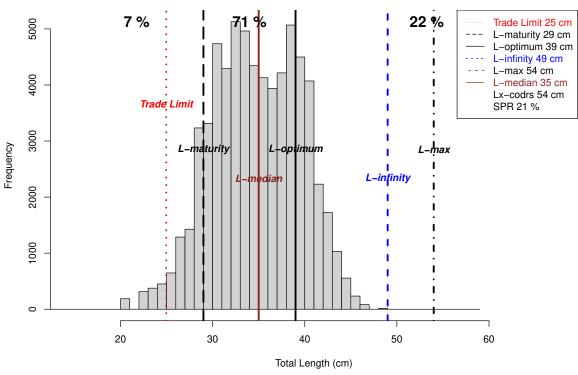
Trends in relative abundance by size group for Lutjanus timorensis (ID #19, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.326
% Large Mature falling over recent years, situation deteriorating. P: 0.273
% Mega Spawner rising over recent years, situation improving. P: 0.721
% SPR falling over recent years, situation deteriorating. P: 0.833

Catch length frequency for Erythrocles schlegelii (ID #85, Emmelichthyidae) in WPP 715 in 2020. N (Catch) = 31,439, n (Sample) = 2,251.

Trends in relative abundance by size group for Erythrocles schlegelii (ID #85, Emmelichthyidae) in WPP 71

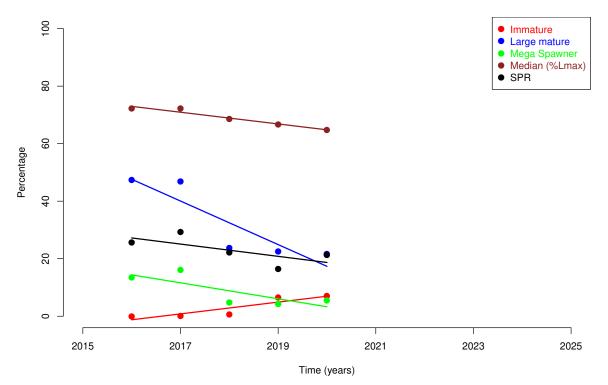
The percentages of Erythrocles schlegelii (ID #85, Emmelichthyidae) in 2020. N (Catch) =31,439, n (Sample) = 2,251 Immature (< 42cm): 1% Small mature (>= 42cm, < 66cm): 79% Large mature (>= 66cm): 21% Mega spawner (>= 72.6cm): 7% (subset of large mature fish) Spawning Potential Ratio: 17 %

The trade limit is significantly higher than length at first maturity. This means that the trade puts a premium on fish that have spawned at least once. The trade does not cause any concern of recruitment overfishing for this species. Risk level is low.


At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

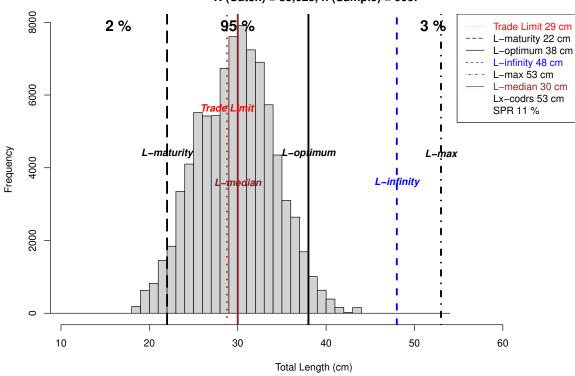
Trends in relative abundance by size group for Erythrocles schlegelii (ID #85, Emmelichthyidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.519
% Large Mature falling over recent years, situation deteriorating. P: 0.050
% Mega Spawner falling over recent years, situation deteriorating. P: 0.048
% SPR falling over recent years, situation deteriorating. P: 0.095

Catch length frequency for Paracaesio gonzalesi (ID #32, Lutjanidae) in WPP 715 in 2020. N (Catch) = 66,500, n (Sample) = 1,814.

Trends in relative abundance by size group for Paracaesio gonzalesi (ID #32, Lutjanidae) in WPP 715.

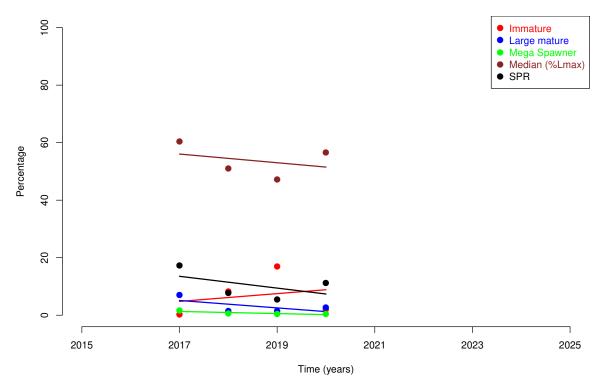
The percentages of Paracaesio gonzalesi (ID #32, Lutjanidae) in 2020. N (Catch) =66,500, n (Sample) = 1,814 Immature (< 29cm): 7% Small mature (>= 29cm, < 39cm): 71% Large mature (>= 39cm): 22% Mega spawner (>= 42.9cm): 5% (subset of large mature fish) Spawning Potential Ratio: 21 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.


At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.

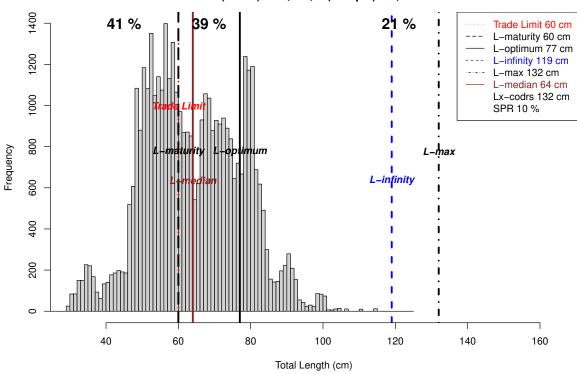

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Paracaesio gonzalesi (ID #32, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.035
% Large Mature falling over recent years, situation deteriorating. P: 0.042
% Mega Spawner falling over recent years, situation deteriorating. P: 0.108
% SPR falling over recent years, situation deteriorating. P: 0.189

Catch length frequency for Epinephelus areolatus (ID #45, Epinephelidae) in WPP 715 in 2020. N (Catch) = 85,025, n (Sample) = 999.

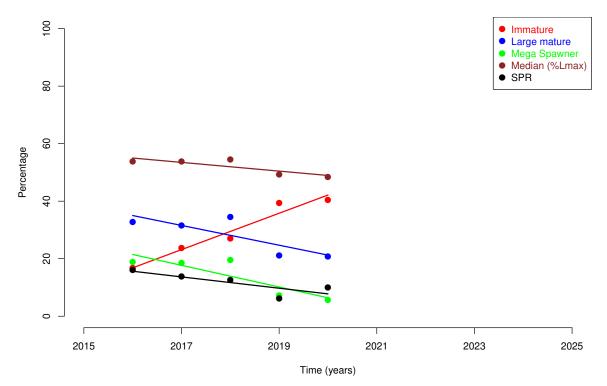
The percentages of Epinephelus areolatus (ID #45, Epinephelidae) in 2020. N (Catch) =85,025, n (Sample) = 999 Immature (< 22cm): 2% Small mature (>= 22cm, < 38cm): 95% Large mature (>= 38cm): 3% Mega spawner (>= 41.8cm): 0% (subset of large mature fish) Spawning Potential Ratio: 11 %

The trade limit is significantly higher than length at first maturity. This means that the trade puts a premium on fish that have spawned at least once. The trade does not cause any concern of recruitment overfishing for this species. Risk level is low.


At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

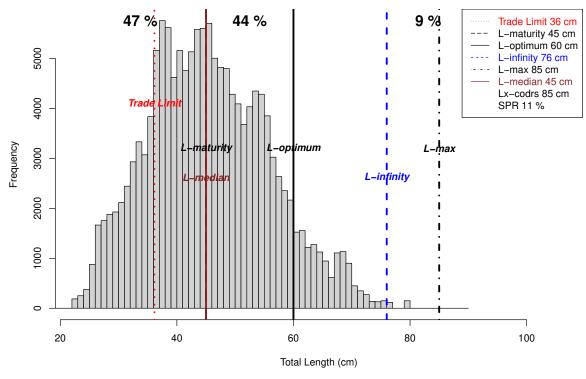
Trends in relative abundance by size group for Epinephelus areolatus (ID #45, Epinephelidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance. % Immature rising over recent years, situation deteriorating. P: 0.767 % Large Mature falling over recent years, situation deteriorating. P: 0.373 % Mega Spawner falling over recent years, situation deteriorating. P: 0.170 % SPR falling over recent years, situation deteriorating. P: 0.482

Catch length frequency for Seriola rivoliana (ID #84, Carangidae) in WPP 715 in 2020. N (Catch) = 40,198, n (Sample) = 1,198.

Trends in relative abundance by size group for Seriola rivoliana (ID #84, Carangidae) in WPP 715.

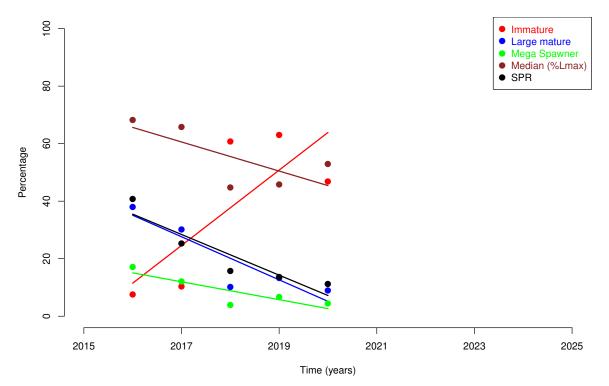
The percentages of Seriola rivoliana (ID #84, Carangidae) in 2020. N (Catch) =40,198, n (Sample) = 1,198 Immature (< 60cm): 41% Small mature (>= 60cm, < 77cm): 39% Large mature (>= 77cm): 21% Mega spawner (>= 84.7cm): 6% (subset of large mature fish) Spawning Potential Ratio: 10 %

The trade limit is about the same as the length at first maturity. This means that the trade puts a premium on fish that have spawned at least once, which improves sustainability of the fishery. Risk level is medium.


Between 30% and 50% of the fish in the catch are immature and have not had a chance to reproduce before capture. The fishery is in immediate danger of overfishing through overharvesting of juveniles, if fishing pressure is high. Catching small and immature fish needs to be actively avoided and a limit on overall fishing pressure is warranted. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

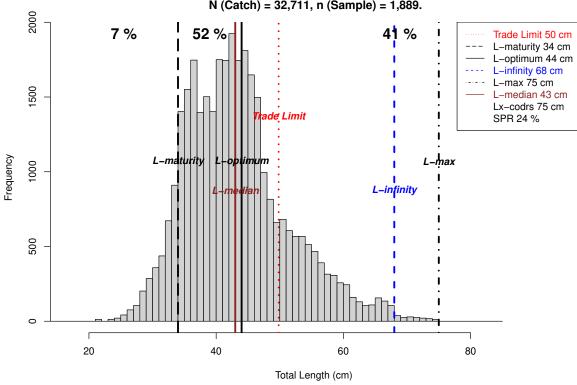
Trends in relative abundance by size group for Seriola rivoliana (ID #84, Carangidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.005
% Large Mature falling over recent years, situation deteriorating. P: 0.091
% Mega Spawner falling over recent years, situation deteriorating. P: 0.059
% SPR falling over recent years, situation deteriorating. P: 0.083

Catch length frequency for Pristipomoides typus (ID #8, Lutjanidae) in WPP 715 in 2020. N (Catch) = 146,251, n (Sample) = 1,348.

Trends in relative abundance by size group for Pristipomoides typus (ID #8, Lutjanidae) in WPP 715.

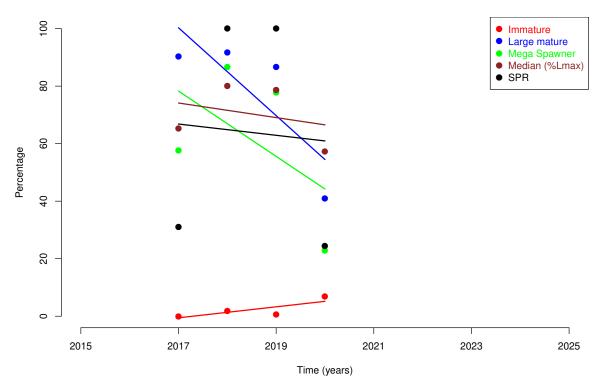
The percentages of Pristipomoides typus (ID #8, Lutjanidae) in 2020. N (Catch) =146,251, n (Sample) = 1,348 Immature (< 45cm): 47% Small mature (>= 45cm, < 60cm): 44% Large mature (>= 60cm): 9% Mega spawner (>= 66cm): 4% (subset of large mature fish) Spawning Potential Ratio: 11 %

The trade limit is significantly lower than the length at first maturity. This means that the trade encourages capture of immature fish, which impairs sustainability. Risk level is high.


Between 30% and 50% of the fish in the catch are immature and have not had a chance to reproduce before capture. The fishery is in immediate danger of overfishing through overharvesting of juveniles, if fishing pressure is high. Catching small and immature fish needs to be actively avoided and a limit on overall fishing pressure is warranted. Risk level is high.

The vast majority of the fish in the catch have not yet achieved their growth potential. The harvest of small fish promotes growth overfishing and the size distribution for this species indicates that over exploitation through growth overfishing may already be happening. Risk level is high.

Less than 20% of the catch comprises of mega spawners. This indicates that the population may be severely affected by the fishery, and that there is a substantial risk of recruitment overfishing through over harvesting of the mega spawners, unless large numbers of mega spawners would be surviving at other habitats. There is no reason to assume that this is the case and therefore a reduction of fishing effort may be necessary in this fishery. Risk level is high.


SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Pristipomoides typus (ID #8, Lutjanidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.129
% Large Mature falling over recent years, situation deteriorating. P: 0.036
% Mega Spawner falling over recent years, situation deteriorating. P: 0.058
% SPR falling over recent years, situation deteriorating. P: 0.025

Catch length frequency for Caranx bucculentus (ID #77, Carangidae) in WPP 715 in 2020. N (Catch) = 32,711, n (Sample) = 1,889.

The percentages of Caranx bucculentus (ID #77, Carangidae) in 2020. N (Catch) =32,711, n (Sample) = 1,889 Immature (< 34cm): 7% Small mature (>= 34cm, < 44cm): 52% Large mature (>= 44cm): 41% Mega spawner (>= 48.4cm): 23% (subset of large mature fish) Spawning Potential Ratio: 24 %

The trade limit is significantly higher than length at first maturity. This means that the trade puts a premium on fish that have spawned at least once. The trade does not cause any concern of recruitment overfishing for this species. Risk level is low.

At least 90% of the fish in the catch are mature specimens that have spawned at least once before they were caught. The fishery does not depend on immature size classes for this species and is considered safe for this indicator. This fishery will not be causing overfishing through over harvesting of juveniles for this species. Risk level is low.

The bulk of the catch includes age groups that have just matured and are about to achieve their full growth potential. This indicates that the fishery is probably at least being fully exploited. Risk level is medium.

The percentage of mega spawners is between 20 and 30%. There is no immediate reason for concern, though fishing pressure may be significantly reducing the percentage of mega-spawners, which may negatively affect the reproductive output of this population. Risk level is medium.

SPR is less than 25%. The fishery probably over-exploits the stock, and there is a substantial risk that the fishery will cause severe decline of the stock if fishing effort is not reduced. Risk level is high.

Trends in relative abundance by size group for Caranx bucculentus (ID #77, Carangidae), as calculated from linear regressions. The P value indicates the chance that this calculated trend is merely a result of stochastic variance.
% Immature rising over recent years, situation deteriorating. P: 0.201
% Large Mature falling over recent years, situation deteriorating. P: 0.190
% Mega Spawner falling over recent years, situation deteriorating. P: 0.483
% SPR falling over recent years, situation deteriorating. P: 0.939

Rank	#ID	Species	Trade Limit	Immature	Exploitation	Mega Spawn	SPR
			Prop. Lmat	%	%	%	%
1	1	Aphareus rutilans	0.78	44	96	1	4
2	9	Pristipomoides filamentosus	0.69	68	96	1	8
3	4	Etelis boweni	0.52	54	95	1	5
4	21	Lutjanus erythropterus	0.86	16	78	8	23
5	34	Paracaesio kusakarii	0.77	41	94	2	7
6	7	Pristipomoides multidens	0.71	57	91	3	11
7	6	Etelis coruscans	0.59	72	98	1	3
8	17	Lutjanus malabaricus	0.66	74	96	1	3
9	10	Pristipomoides sieboldii	0.97	31	85	3	8
10	22	Pinjalo lewisi	0.96	31	95	1	10
11	5	Etelis radiosus	0.71	60	94	1	8
12	35	Paracaesio stonei	0.87	19	90	1	9
13	69	Wattsia mossambica	1.09	13	91	4	13
14	19	Lutjanus timorensis	0.98	32	92	4	12
15	85	Erythrocles schlegelii	1.28	1	79	7	17
16	32	Paracaesio gonzalesi	0.86	7	78	5	21
17	45	Epinephelus areolatus	1.31	2	97	0	11
18	84	Seriola rivoliana	1.00	41	79	6	10
19	8	Pristipomoides typus	0.80	47	91	4	11
20	77	Caranx bucculentus	1.47	7	59	23	24
21	80	Caranx sexfasciatus	1.24	19	49	37	33
22	82	Elagatis bipinnulata	1.13	4	56	21	16
23	15	Lutjanus argentimaculatus	0.62	20	85	3	13
24	81	Caranx tille	1.38	0	10	87	near 100
25	75	Carangoides chrysophrys	1.17	4	59	27	29
26	33	Paracaesio xanthura	0.98	12	80	10	29
27	20	Lutjanus gibbus	1.07	27	93	1	13
28	27	Lutjanus vitta	1.20	14	96	0	7
29	70	Gymnocranius grandoculis	0.85	15	95	1	11
30	87	Dentex carpenteri	1.38	0	16	66	near 100
31	64	Lethrinus laticaudis	0.94	5	81	9	34
32	88	Glaucosoma buergeri	0.95	0	44	28	43
33	43	Epinephelus morrhua	0.83	7	97	1	9
34	67	Lethrinus amboinensis	1.08	4	80	7	21
35	54	Epinephelus stictus	1.28	0	40	21	34
36	92	Cookeolus japonicus	0.99	0	56	26	near 100
37	2	Aprion virescens	0.81	35	83	5	20
38	23	Pinjalo pinjalo	0.76	14	64	24	79
39	28	Lutjanus boutton	1.20	0	62	15	near 100
40	41	Epinephelus latifasciatus		unknown	unknown	unknown	unknown
41	63	Lethrinus lentjan	1.05	1	94	1	14
42	51	Epinephelus chlorostigma	1.19	0	85	2	18
43	90	Diagramma pictum	1.02	11	97	1	8
44	18	Lutjanus sebae		unknown	unknown	unknown	unknown
45	66	Lethrinus olivaceus	0.62	2	69	6	23
47	30	Lipocheilus carnolabrum	0.73	2	59	15	36
48	16	Lutjanus bohar	0.67	79	94	4	7
49	24	Lutjanus johnii		unknown	unknown	unknown	unknown
50	42	Epinephelus radiatus	0.83	1	82	5	26

Table 4.1: Values of indicators in length-based assessments for the top 50 most abundant species by total CODRS samples in WPP 715 in 2020.

Rank		Species			Exploitation		SPR
1	1	Aphareus rutilans	high	\mathbf{high}	high	\mathbf{high}	high
2	9	Pristipomoides filamentosus	\mathbf{high}	\mathbf{high}	high	\mathbf{high}	high
3	4	Etelis boweni	high	high	high	high	high
4	21	Lutjanus erythropterus	high	\mathbf{medium}	high	high	high
5	34	Paracaesio kusakarii	high	\mathbf{high}	high	high	high
6	7	Pristipomoides multidens	high	high	high	high	high
$\overline{7}$	6	Etelis coruscans	high	\mathbf{high}	high	high	high
8	17	Lutjanus malabaricus	high	\mathbf{high}	high	high	high
9	10	Pristipomoides sieboldii	\mathbf{medium}	high	high	high	high
10	22	Pinjalo lewisi	\mathbf{medium}	high	high	high	high
11	5	Etelis radiosus	high	high	high	high	high
12	35	Paracaesio stonei	high	\mathbf{medium}	high	high	high
13	69	Wattsia mossambica	\mathbf{medium}	medium	high	high	high
14	19	Lutjanus timorensis	\mathbf{medium}	high	high	high	high
15	85	Erythrocles schlegelii	low	low	high	high	high
16	32	Paracaesio gonzalesi	high	low	high	high	high
17	45	Epinephelus areolatus	low	low	high	high	high
18	84	Seriola rivoliana	medium	high	high	high	high
19	8	Pristipomoides typus	high	high	high	high	high
20	77	Caranx bucculentus	low	low	medium	medium	high
21^{-5}	80	Caranx sexfasciatus	low	medium	low	low	mediu
22	82	Elagatis bipinnulata	low	low	medium	medium	high
23	15	Lutjanus argentimaculatus	high	medium	high	high	high
24 24	81	Caranx tille	low	low	low	low	low
25	75	Carangoides chrysophrys	low	low	medium	medium	mediu
$\frac{-6}{26}$	33	Paracaesio xanthura	medium	medium	high	high	mediu
$\frac{20}{27}$	20	Lutjanus gibbus	medium	medium	high	high	high
28	$\frac{20}{27}$	Lutjanus vitta	low	medium	high	high	high
29	70	Gymnocranius grandoculis	high	medium	high	high	high
$\frac{20}{30}$	87	Dentex carpenteri	low	low	low	low	low
31	64	Lethrinus laticaudis	medium	low	high	high	mediu
32	88	Glaucosoma buergeri	medium	low	low	medium	low
$\frac{32}{33}$	43	Epinephelus morrhua	high	low	high	high	high
$\frac{33}{34}$	67	Lethrinus amboinensis	medium	low	high	high	high
$\frac{34}{35}$	54	Epinephelus stictus	low	low	low	medium	mediu
36 36	92	Cookeolus japonicus	medium	low	medium	medium	low
$\frac{30}{37}$	92 2	Aprion virescens	high		high	high	
37 38	$\frac{2}{23}$	-		high	medium	medium	high low
		Pinjalo pinjalo	high	medium			
39 40	28	Lutjanus boutton	low	low	medium	high	low
40	41	Epinephelus latifasciatus	unknown	unknown	unknown	unknown	unkno
41	63	Lethrinus lentjan	medium	low	high	high	high
42	51	Epinephelus chlorostigma	low	low	high	high	high
43	90	Diagramma pictum	medium	medium	high	high	high
44	18	Lutjanus sebae	unknown	unknown	unknown	unknown	unkno
45	66	Lethrinus olivaceus	high	low	high	high	high
47	30	Lipocheilus carnolabrum	high	low	\mathbf{medium}	high	mediu
48	16	Lutjanus bohar	high	high	high	high	high
49	24	Lutjanus johnii	unknown	unknown	unknown	unknown	unkno
50	42	Epinephelus radiatus	high	\mathbf{low}	high	high	mediu

Table 4.2: Risk levels in the fisheries for the top 50 most abundant sp	ecies
by total CODRS samples in WPP 715 in 2020.	

Table 4.3: Trends during recent years for SPR and relative abundance by size group
for the top 50 most abundant species by total CODRS samples in WPP 715.

Rank	#ID	Species	% Immature	% Large Mature	% Mega Spawner	% SPR
1	1	Aphareus rutilans	deteriorating	deteriorating	deteriorating	deteriorating
2	9	Pristipomoides filamentosus	deteriorating	deteriorating	deteriorating	deteriorating
3	4	Etelis boweni	improving	deteriorating	deteriorating	deteriorating
4	21	Lutjanus erythropterus	deteriorating	deteriorating	deteriorating	deteriorating
5	34	Paracaesio kusakarii	deteriorating	deteriorating	deteriorating	deteriorating
6	7	Pristipomoides multidens	deteriorating	deteriorating	deteriorating	deteriorating
7	6	Etelis coruscans	deteriorating	deteriorating	deteriorating	deteriorating
8	17	Lutjanus malabaricus	deteriorating	deteriorating	deteriorating	deteriorating
9	10	Pristipomoides sieboldii	deteriorating	deteriorating	deteriorating	deteriorating
10	22	Pinjalo lewisi	deteriorating	deteriorating	deteriorating	deteriorating
11	5	Etelis radiosus	deteriorating	\mathbf{stable}	deteriorating	improving
12	35	Paracaesio stonei	deteriorating	deteriorating	deteriorating	deteriorating
13	69	Wattsia mossambica	deteriorating	deteriorating	deteriorating	deteriorating
14	19	Lutjanus timorensis	deteriorating	deteriorating	improving	deteriorating
15	85	Erythrocles schlegelii	deteriorating	deteriorating	deteriorating	deteriorating
16	32	Paracaesio gonzalesi	deteriorating	deteriorating	deteriorating	deteriorating
17	45	Epinephelus areolatus	deteriorating	deteriorating	deteriorating	deteriorating
18	84	Seriola rivoliana	deteriorating	deteriorating	deteriorating	deteriorating
19	8	Pristipomoides typus	deteriorating	deteriorating	deteriorating	deteriorating
20	77	Caranx bucculentus	deteriorating	deteriorating	deteriorating	deteriorating
21	80	Caranx sexfasciatus	deteriorating	deteriorating	deteriorating	deteriorating
22	82	Elagatis bipinnulata	deteriorating	deteriorating	deteriorating	deteriorating
23	15	Lutjanus argentimaculatus	deteriorating	deteriorating	deteriorating	deteriorating
24	81	Caranx tille	improving	improving	improving	improving
25	75	Carangoides chrysophrys	deteriorating	deteriorating	deteriorating	improving
26	33	Paracaesio xanthura	deteriorating	deteriorating	deteriorating	deteriorating
27	20	Lutjanus gibbus	deteriorating	improving	improving	improving
28	27	Lutjanus vitta	improving	improving	deteriorating	improving
29	70	Gymnocranius grandoculis	deteriorating	deteriorating	deteriorating	deteriorating
30	87	Dentex carpenteri	\mathbf{stable}	deteriorating	deteriorating	\mathbf{stable}
31	64	Lethrinus laticaudis	deteriorating	deteriorating	deteriorating	deteriorating
32	88	Glaucosoma buergeri	improving	deteriorating	deteriorating	deteriorating
33	43	Epinephelus morrhua	\mathbf{stable}	deteriorating	deteriorating	deteriorating
34	67	Lethrinus amboinensis	deteriorating	deteriorating	deteriorating	deteriorating
35	54	Epinephelus stictus	\mathbf{stable}	improving	deteriorating	deteriorating
36	92	Cookeolus japonicus	\mathbf{stable}	deteriorating	deteriorating	improving
37	2	Aprion virescens	deteriorating	deteriorating	deteriorating	deteriorating
38	23	Pinjalo pinjalo	unknown	$\mathbf{unknown}$	unknown	unknown
39	28	Lutjanus boutton	unknown	unknown	unknown	unknown
40	41	Epinephelus latifasciatus	deteriorating	deteriorating	deteriorating	deteriorating
41	63	Lethrinus lentjan	improving	improving	improving	$\mathbf{improving}$
42	51	Epinephelus chlorostigma	\mathbf{stable}	deteriorating	deteriorating	deteriorating
43	90	Diagramma pictum	deteriorating	deteriorating	improving	deteriorating
44	18	Lutjanus sebae	deteriorating	deteriorating	deteriorating	improving
45	66	Lethrinus olivaceus	unknown	unknown	unknown	unknown
47	30	Lipocheilus carnolabrum	deteriorating	deteriorating	deteriorating	deteriorating
48	16	Lutjanus bohar	deteriorating	deteriorating	deteriorating	deteriorating
49	24	Lutjanus johnii	unknown	unknown	unknown	unknown
50	42	Epinephelus radiatus	deteriorating	deteriorating	deteriorating	deteriorating

5 Discussion and conclusions

Deepwater drop line fishing for snappers, groupers and emperors occurs throughout WPP 715 on deep slopes and seamounts at depths between 50 and 500 meters. Bottom long line fishing (targeting a similar species spectrum) occurs in a few areas with a flatter bottom profile at depths ranging from 50 to 150 meters in the Papua Bird's Head region. WPP 715 consists for a large part of deep waters, with very steep slopes around the islands, reefs and seamounts. This makes the area mostly suitable for drop line fishing around those structures. Bottom long line fishing is more common in areas with larger shelve habitats and relatively shallower slopes, such as in the South Eastern parts of the Raja Ampat archipelago and towards the coast of West Papua.

The deep demersal hook and line fisheries for snappers, groupers and emperors are fairly clean fisheries when it comes to the species spectrum in the catch (Table 5.7 and Table 5.8), even though it is much more species-rich then sometimes assumed, also within the "snapper" category, which forms the main target group. There is usually a relatively small amount of by catch from the hook and line fisheries, consisting of species that are currently not preferred by the processors who are buying the target species.

Drop line fisheries are characterized by a very low impact on habitat at the fishing grounds, whereas some more impact from entanglement can be expected from bottom long lines. Nothing near the habitat impact from destructive dragging gears is evident from either one of the two deep hook and line fisheries. However, due to limited available habitat (fishing grounds) and predictable locations of fish concentrations, combined with a very high fishing effort on the best known fishing grounds, as well as the targeting of juveniles, there is a high potential for overfishing in the deep slope fisheries.

Based on available length frequencies of multi-species snapper, grouper and emperor catches from WPP 715, the risks of overfishing are high (Table 4.1 and Table 4.2) and SPR is dangerously low (Table 5.1) for most of the target species in this fisheries management area. The deep water snapper feeding aggregations occur at predictable and well known locations and these large snappers are therefore among the most vulnerable species in these fisheries. Fishing mortality seems to be unacceptably high while the catches of these species include large percentages of relatively small and immature specimen. For many species of snappers, sizes are consistently targeted well below the size where these fish reach maturity. Bigger specimen of the largest snapper species are becoming extremely rare in Indonesia.

Fishing effort and fishing mortality have been too high in recent years in WPP 715 and the situation is currently not improving. Time trends for the major target species (ranked by abundance in samples) either show continuous decline of the stocks or unclear patterns, judging from trends in size based indicators (Table 4.3). Those trends in length based indicators can also be compared with trends in CpUE by gear types and boat size category (Tables 5.2 to 5.6), although fishing at aggregating sites may be masking some of the direct effect on CpUE. Overall we are currently looking at a high risk of overfishing for all major target species in WPP 715, combined with a worrisome trend of deterioration in the stocks, based on the size based stock assessments from the bottom long line fisheries.

The groupers seem to be somewhat less vulnerable to the deep demersal fisheries than the snappers. This may be because most groupers are staying closer to high rugosity bottom habitat, which is avoided by trap and long line vessels due to risk of entanglement, while drop line fishers are targeting schooling snappers that are hovering higher in the water column, above the grouper habitat. Fishing mortality (from deep demersal fisheries) in large mature groupers may be somewhat lower than what we see for the snappers. Groupers generally mature as females at a size relative to their maximum size which is lower than for snappers. This strategy enables them to reproduce before they are being caught, although fecundity is still relatively low at sizes below the optimum length. Fecundity for the population as a whole peaks at the optimum size for each species, and this is also the size around which sex change from females to males happens in groupers.

For those grouper species which spend all or most of their life cycle in deep water habitats, the relatively low vulnerability to the deep slope hook and line fisheries is very good news. For other grouper species which spend major parts of their life cycle in shallower habitats, like coral reefs or mangroves or estuaries for example, the reality is that their populations in general are not in good shape due to excessive fishing pressure by small scale fisheries in those shallower habitats. This situation is also evident for a few snapper species such as for example the mangrove jack.

Overall there is a clear scope for some straightforward fisheries improvements supported by relatively uncomplicated fisheries management policies and regulations. Our first recommendation for industry-led fisheries improvements is for traders to adjust trading limits (incentives to fishers) species by species to the length at maturity for each species. For a number of important species the trade limits need adjustments upwards, with government support through regulations on minimum allowable sizes. Many of the target species in the deep demersal fisheries are traded at sizes that are too small, and this impairs sustainability. The impact is clearly visible already in landed catches.

Adjustment upwards of trading limits towards the size at first maturity would be a straightforward improvement in these fisheries. By refusing undersized fish in high value supply lines, the market can provide incentives for captains of fishing boats to target larger specimen. The captains can certainly do this by using their day to day experiences, selecting locations, fishing depths, habitat types, hook sizes, etc. Literature shows that habitat separation between size groups is evident for many species, while size selectivity of specific hook sizes is obvious. Captains know about this from experience.

Besides size selectivity, fishing effort is a very important factor in resulting overall catch and size frequency of the catch. All major target species show a rapid decline in numbers above the size where the species becomes most vulnerable to the fisheries. This rapid decline in numbers, as visible in the LFD graphs, indicates a high fishing mortality for the vulnerable size classes. Fishing effort is probably too high to be sustainable and many species seem to be at risk in the deep demersal fisheries, judging from a number of indicators as presented in this report. At present these fisheries show clear signs of over-exploitation in WPP 715.

One urgently needed fisheries management intervention is to cap fishing effort (number of boats) at current level and to start looking at incentives for effort reductions. A reduction of effort will need to be supported and implemented by government to ensure an even playing field among fishing companies. An improved licensing system and an effort control system based on the Indonesia's mandatory Vessel Monitoring System, using more accurate data on Gross Tonnage for all fishing boats, could be used to better manage fishing effort. Continuous monitoring of trends in the various presented indicators will show in which direction these fisheries are heading and what the effects are of any fisheries management measures in future years.

Government policies and regulations are needed and can be formulated to support fishers and traders with the implementation of improvements across the sector. Our recommendations for supporting government policies in relation to the deep demersal fisheries include:

- Use scientific (Latin) fish names in fisheries management and in trade.
- Incorporate length-based assessments in management of specific fisheries.
- Develop species-specific length based regulations for these fisheries.
- Implement a controlled access management system for regulation of fishing effort on specific fishing grounds.
- Increase public awareness on unknown species and preferred size classes by species.
- Incorporate traceability systems in fleet management by fisheries and by fishing ground.

Recommendations for specific regulations may include:

- Make mandatory correct display of scientific name (correct labeling) of all traded fish (besides market name).
- Adopt legal minimum sizes for specific or even all traded species, at the length at maturity for each species.
- Make mandatory for each fishing vessel of all sizes to carry a simple GPS tracking device that needs to be functioning at all times. Indonesia already has a mandatory Vessel Monitoring System for vessels larger than 30 GT, so Indonesia could consider expanding this requirement to fishing vessels of smaller sizes.
- Cap fishing effort in the snapper fisheries at the current level and explore options to reduce effort to more sustainable levels.

Table 5.1: SPR values over the period 2016 to 2024 for the top 20 most abundant species in CODRS samples in WPP 715, based on total catch LFD analysis, for all gear types combined and adjusted for relative effort by gear type.

Rank	Species	2016	2017	2018	2019	2020	2021	2022	2023	2024
1	Aphareus rutilans	11	7	6	4	4	NA	NA	NA	NA
2	1	15		8	6	8	NA	NA	NA	NA
	Pristipomoides filamentosus	-	14	-	-	-				
3	Etelis boweni	9	7	6	7	5	NA	NA	NA	NA
4	Lutjanus erythropterus	100	100	31	28	23	$\mathbf{N}\mathbf{A}$	$\mathbf{N}\mathbf{A}$	NA	NA
5	Paracaesio kusakarii	12	11	5	8	7	NA	NA	NA	NA
6	Pristipomoides multidens	18	25	20	26	11	NA	NA	NA	NA
7	Etelis coruscans	16	5	2	2	3	NA	NA	NA	NA
8	Lutjanus malabaricus	10	13	3	6	3	NA	NA	NA	NA
9	Pristipomoides sieboldii	24	22	14	9	8	NA	NA	NA	NA
10	Pinjalo lewisi	18	17	8	12	10	NA	NA	NA	NA
11	Etelis radiosus	5	8	5	5	8	NA	NA	NA	NA
12	Paracaesio stonei	12	13	7	6	9	NA	NA	NA	NA
13	Wattsia mossambica	24	19	19	14	13	NA	NA	NA	NA
14	Lutjanus timorensis	12	15	27	8	12	NA	NA	NA	NA
15	Erythrocles schlegelii	75	26	29	19	17	NA	NA	NA	NA
16	Paracaesio gonzalesi	26	29	22	16	21	NA	NA	NA	NA
17	Epinephelus areolatus	NA	17	8	6	11	NA	NA	NA	NA
18	Seriola rivoliana	16	14	13	6	10	NA	NA	NA	NA
19	Pristipomoides typus	41	25	16	14	11	NA	NA	NA	NA
20	Caranx bucculentus	NA	31	100	100	25	NA	NA	NA	NA

CpUE	2016	2017	2018	2019	2020	2021	2022	2023	2024
Nano Dropline	4.2	4.0	1.6	17.9	22.0	NA	NA	NA	NA
Nano Longline	NA	1.4	NA	0.6	7.6	NA	NA	NA	NA
Small Dropline	4.2	4.0	NA						
Small Longline	NA								
Medium Dropline	5.0	4.8	2.9	2.8	1.6	NA	NA	NA	NA
Medium Longline	4.2	4.0	3.1	9.6	11.1	NA	NA	NA	NA
Large Dropline	2.3	1.4	1.2	2.9	2.9	NA	NA	NA	NA
Large Longline	NA	NA	2.1	9.6	11.1	NA	NA	NA	NA

Table 5.2: CpUE (kg/GT/day) trends by fleet segment for Aphareus rutilans in WPP 715

Table 5.3: CpUE (kg/GT/day) trends by fleet segment for Etelis boweni in WPP 715

CpUE	2016	2017	2018	2019	2020	2021	2022	2023	2024
Nano Dropline	2.1	2.7	1.4	1.8	2.1	NA	NA	NA	NA
Nano Longline	NA	NA	NA	0.1	1.0	NA	NA	NA	NA
Small Dropline	2.1	2.7	NA						
Small Longline	NA								
Medium Dropline	2.6	3.1	3.4	3.8	2.4	NA	NA	NA	NA
Medium Longline	2.1	2.7	10.5	2.5	2.2	NA	NA	NA	NA
Large Dropline	0.4	2.6	4.4	1.1	2.9	NA	NA	NA	NA
Large Longline	NA	0.0	3.0	2.5	2.2	NA	NA	NA	NA

Table 5.4: CpUE (kg/GT/day) trends by fleet segment for Pristipomoides multidens in WPP 715

		•		<u> </u>		-			
CpUE	2016	2017	2018	2019	2020	2021	2022	2023	2024
Nano Dropline	1.1	2.0	2.3	2.4	3.3	NA	NA	NA	NA
Nano Longline	0.6	4.5	2.7	16.9	10.4	NA	NA	NA	NA
Small Dropline	1.1	2.0	0.6	0.1	0.1	NA	NA	NA	NA
Small Longline	NA	NA	NA	NA	NA	NA	NA	NA	NA
Medium Dropline	1.2	2.1	1.6	1.0	0.8	NA	NA	NA	NA
Medium Longline	1.1	2.0	0.4	1.9	2.1	NA	NA	NA	NA
Large Dropline	0.1	0.7	0.8	0.5	0.5	NA	NA	NA	NA
Large Longline	1.1	1.3	1.8	1.9	2.1	NA	NA	NA	NA

Table 5.5: CpUE (kg/GT/day) trends by fleet segment for Paracaesio kusakarii in WPP 715

	,			-					
CpUE	2016	2017	2018	2019	2020	2021	2022	2023	2024
Nano Dropline	1.4	2.1	0.8	1.2	3.2	NA	NA	NA	NA
Nano Longline	NA	NA	NA	NA	0.1	NA	NA	NA	NA
Small Dropline	1.4	2.1	NA						
Small Longline	NA								
Medium Dropline	1.7	2.7	1.5	0.9	0.7	NA	NA	NA	NA
Medium Longline	1.4	2.1	2.6	1.0	1.8	NA	NA	NA	NA
Large Dropline	0.3	0.4	0.4	0.5	0.8	NA	NA	NA	NA
Large Longline	NA	NA	1.1	1.0	1.8	NA	NA	NA	NA

Table 5.6: CpUE (kg/GT/day) trends by fleet segment for all species in WPP 715

CpUE	2016	2017	2018	2019	2020	2021	2022	2023	2024
Nano Dropline	18.6	23.8	19.5	42.3	54.9	NA	NA	NA	NA
Nano Longline	76.8	58.1	29.8	50.7	41.4	NA	NA	NA	NA
Small Dropline	18.6	23.8	28.8	16.2	15.4	NA	NA	NA	NA
Small Longline	NA								
Medium Dropline	18.4	25.5	20.0	18.2	13.0	NA	NA	NA	NA
Medium Longline	18.6	23.8	29.3	29.4	32.8	NA	NA	NA	NA
Large Dropline	7.3	9.9	11.6	11.4	13.2	NA	NA	NA	NA
Large Longline	6.7	5.9	20.1	29.4	32.8	NA	NA	NA	NA
-									

Family Name	2016	2017	2018	2019	2020	2021	2022	2023	2024	Total	%Sample
Acanthuridae	0	0	2	32	26	0	0	0	0	60	0.013
Ariidae	5	4	197	129	221	0	0	0	0	556	0.120
Ariommatidae	0	0	0	0	28	0	0	0	0	28	0.006
Balistidae	0	0	15	79	122	0	0	0	0	216	0.047
Bramidae	24	0	0	368	12	0	0	0	0	404	0.087
Caesionidae	0	0	5	16	6	0	0	0	0	27	0.006
Carangidae	151	162	651	835	1205	0	0	0	0	3004	0.647
Carcharhinidae	0	0	5	0	0	0	0	0	0	5	0.001
Chaetodontidae	0	0	0	0	1	0	0	0	0	1	0.000
Coryphaenidae	0	0	0	3	10	0	0	0	0	13	0.003
Echeneidae	0	0	0	1	0	0	0	0	0	1	0.000
Elopidae	0	0	0	9	0	0	0	0	0	9	0.002
Ephippidae	0	0	22	100	36	0	0	0	0	158	0.034
Epinephelidae	44	17	198	645	174	0	0	0	0	1078	0.232
Gempylidae	31	0	0	3	1	0	0	0	0	35	0.008
Haemulidae	2	0	1	6	6	0	0	0	0	15	0.003
Holocentridae	6	1	13	91	71	0	0	0	0	182	0.039
Istiophoridae	0	0	0	0	1	0	0	0	0	1	0.000
Labridae	0	0	0	0	4	0	0	0	0	4	0.001
Lethrinidae	18	14	49	306	270	0	0	0	0	657	0.142
Lutjanidae	41	16	102	492	570	0	0	0	0	1221	0.263
Malacanthidae	6	3	6	3	7	0	0	0	0	25	0.005
Mullidae	0	0	1	31	15	0	0	0	0	47	0.010
Nemipteridae	4	0	38	773	93	0	0	0	0	908	0.196
Other	168	239	296	259	193	0	0	0	0	1155	0.249
Pomacanthidae	0	0	2	0	0	0	0	0	0	2	0.000
Priacanthidae	3	0	13	102	121	0	0	0	0	239	0.051
Rachycentridae	0	0	0	1	1	0	0	0	0	2	0.000
Rays	4	0	0	8	9	0	0	0	0	21	0.005
Scaridae	0	0	11	13	11	0	0	0	0	35	0.008
Sciaenidae	0	0	0	1	0	0	0	0	0	1	0.000
Scombridae	174	228	222	485	807	0	0	0	0	1916	0.413
Serranidae	8	5	2	$\overline{7}$	14	0	0	0	0	36	0.008
Sharks	14	$\overline{7}$	30	48	30	0	0	0	0	129	0.028
Siganidae	0	0	20	9	135	0	0	0	0	164	0.035
Sparidae	0	0	0	0	1	0	0	0	0	1	0.000
Sphyraenidae	47	25	43	57	123	0	0	0	0	295	0.064
Tetraodontidae	~	0	0	0	2	0	0	0	0	4	0.001
	0	0	0	2	2	0	0	0	0	4	0.001

Table 5.7: Sample sizes over the period 2016 to 2024 for the others species in WPP 715 Dropline

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Carangidae $4 1 0 7 18 0 0 0 0 30 0.006$
0
Carcharhinidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Chaetodontidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.000
Coryphaenidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0.000
Echeneidae 0 0 0 0 0 0 0 0 0 0 0 0 0.000
Elopidae 0 0 0 0 0 0 0 0 0 0 0 0 0.000
Ephippidae 0 0 0 0 0 0 0 0 0 0 0 0.000
Epinephelidae 3 7 0 64 22 0 0 0 96 0.021
Gempylidae 0 0 0 0 0 0 0 0 0 0 0 0.000
Haemulidae 0 0 0 1 1 0 0 0 0 2 0.000
Holocentridae 0 0 0 0 2 0 0 0 0 2 0.000
Istiophoridae 0 0 0 0 0 0 0 0 0 0 0 0 0.000
Labridae 0 0 0 1 1 0 0 0 0 2 0.000
Lethrinidae 0 3 0 21 64 0 0 0 0 88 0.019
Lutjanidae 0 0 0 11 74 0 0 0 0 85 0.018
Malacanthidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.000
Mullidae 0 0 0 3 3 0 0 0 6 0.001
Nemipteridae 0 0 0 0 6 0 0 0 0 6 0.001
Other 2 12 6 0 3 0 0 0 23 0.005
Pomacanthidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0.000
Priacanthidae 0 0 0 6 42 0 0 0 0 48 0.010
Rachycentridae 0 0 0 0 0 0 0 0 0 0 0 0 0.000
Rays 1 0 0 0 2 0 0 0 3 0.001
Scaridae 0 0 0 1 0 0 0 0 0 1 0.000
Sciaenidae 0 0 0 0 0 0 0 0 0 0 0 0.000
Scombridae 11 1 0 1 10 0 0 0 0 23 0.005
Serranidae 0 0 2 0 0 0 0 0 0 0 2 0.000
Sharks 0 4 19 0 1 0 0 0 0 24 0.005
Siganidae 0 0 0 0 0 0 0 0 0 0 0 0.000
Sparidae 0 0 0 0 0 0 0 0 0 0 0 0.000
Sphyraenidae 1 0 0 0 2 0 0 0 3 0.001
Tetraodontidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.000
Total 22 28 27 159 253 0 0 0 0 489 0.105

Table 5.8: Sample sizes over the period 2016 to 2024 for the others species in WPP 715 Longline

6 References

Australian Surveying & Land Information Group (AUSLIG), 1996. Commonwealth Department of Industry Science and Resources. MAP 96/523.21.1.

Ehrhardt, N.M. and Ault, J.S. 1992. Analysis of two length-based mortality models applied to bounded catch length frequencies. Trans. Am. Fish. Soc. 121:115-122.

Froese, R. 2004. Keep it simple: three indicators to deal with overfishing. Fish and Fisheries 5: 86-91.

Froese, R. and Binohlan C. 2000. Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data. J. Fish Biol. 56:758-773.

Froese, R. and D. Pauly, (eds.) 2000. FishBase 2000: concepts, design and data sources. ICLARM, Los Baños, Laguna, Philippines. 344 p.

Froese, R., Winker, H., Gascuel, D., Sumaila, U.R. and Pauly, D. 2016. Minimizing the impact of fishing. Fish and Fisheries DOI: 10.1111/faf.12146.

Fujita, R., Karr, K., Apel, A. and Mateo, I. 2012. Guide to the use of Froese sustainability indicators to assess and manage data-limited fish stocks. Oceans Program, Environmental Defense Fund, Research and Development Team.

Gislason, H., Daan, N., Rice, J.C. and J.G. Pope, 2010. Size, growth, temperature and the natural mortality of marine fish. Fish and Fisheries, 11: 149 U158.

Martinez-Andrade F., 2003. A comparison of life histories and ecological aspects among snappers (Pisces: lutjanidae). Dissertation http://etd.lsu.edu/docs/available/etd-1113103-230518/unrestricted/Martinez-Andrade_dis.pdf

Meester G.A., Ault J.S., Smith S.G., Mehrotra A. 2001. An integrated simulation modeling and operations research approach to spatial management decision making. Sarsia 86:543-558.

Prescott, V., 2000. East Timor's Potential Maritime Boundaries. East Timor and its Maritime Dimensions: Legal and Policy Implications for Australia, Australian Institute of International Affairs, Canberra.

Quinn, T.J. and Deriso R.B. 1999. Quantitative Fish Dynamics. New York: Oxford University Press.

Vasilakopoulos, P., O'Neill, F. G. and Marshall, C. T. 2011. Misspent youth: does catching immature fish affect fisheries sustainability? - ICES Journal of Marine Science, 68: 1525-1534.

Wallace, R.K. and Fletcher, K.M. 2001. Understanding Fisheries Management: A Manual for understanding the Federal Fisheries Management Process, Including Analysis of the 1996 Sustainable Fisheries Act. Second Edition. Auburn University and the University of Mississippi. 62 pp.

Zhang, C.I., Kim, S., Gunderson, D., Marasco, R., Lee, J.B., Park, H.W. and Lee, J.H. 2009. An ecosystem-based fisheries assessment approach for Korean fisheries. Fisheries Research 100: 26-41.