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Abstract. We study the real (measurable and continuous at a point) func-
tions that satisfy, almost everywhere, some systems of two simultaneous
functional inequalities. In particular, we obtain generalizations and exten-
sions of some earlier results of D. Krassowska, J. Matkowski, P. Montel,
and T. Popoviciu.

1. Introduction

In what follows N, Z, Q, and R denote, as usual the sets of positive integers,
integers, rationals and reals, respectively. Moreover N0 := N ∪ {0}.

Let a, b ∈ R \ {0}, ab−1 /∈ Q, ab < 0. P. Montel [13] (see also [15] and [12,
p. 228]) proved that a function f : R → R, that is continuous at a point and
satisfies the system of functional inequalities

(1.1) f(x+ a) ≤ f(x), f(x+ b) ≤ f(x) x ∈ R,

must be constant. A similar result for measurable functions has been proved
in [3], where a more abstract approach is assumed.

Key words and phrases: Functional inequality, microperiodic function, Lebesgue measurabil-
ity, Baire property, σ-ideal.
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The result of Montel has been generalized in [8, 9, 10] by D. Krassowska
and J. Matkowski in several ways (see also [11]). In particular, motivated by
some problem arising in a characterization of Lp norm, they have proved in [9]
(cf. [8]) that if α, β ∈ R and αb ≤ βa, then the following two inequalities

(1.2) f(x+ a) ≤ f(x) + α, f(x+ b) ≤ f(x) + β, x ∈ R,

has a solution f : R→ R, that is continuous at a point, if and only if αb = βa;
moreover every such a solution must be of the form f(x) = cx + d for x ∈ R,
with some c, d ∈ R. An analogous problem for functions f : Rn → R has been
studied in [10]. Some related interesting (and proved in a quite involved way)
results, for the following system of more general functional inequalities

(1.3) f(x+ a) ≤ f(x) +

n∑
j=0

αjx
j , f(x+ b) ≤ f(x) +

n∑
j=0

βjx
j , x ∈ R,

have been obtained in [11]. More precisely, the authors have shown how to
reduce by 1 the degree of the polynomials on the right hand side of (1.3),
but unfortunately without a precise final description of solutions of (1.3) for
arbitrary integer n ≥ 0 (similar reductions for (1.3) with n = 0 have been
already applied in [4, 5]). In this paper we continue this approach and present
a method that allows to obtain some generalizations and extensions of those
results in [9, 13, 3]. For the clarity of presentation, we consider (1.3) only
with n = 0 and n = 1, but in a conditional form (on a real interval), almost
everywhere, and for real functions that are Lebesgue or Baire measurable. We
obtain outcomes that correspond somewhat to the results in [4, 5] and to the
problem of stability of functional equations and inequalities (for some further
information concerning that problem we refer to, e.g., [2, 6, 7]).

2. Preliminaries

Let us recall some definitions.

Definition 2.1. Let E ⊂ R be nonempty and I ⊂ 2R. We say a property p(x)
(x ∈ E) holds I-almost everywhere in a set E (abbreviated in the sequel to
I-a.e. in E) provided there is a set A ∈ I such that p(x) holds for all x ∈ E \A.

Definition 2.2. I ⊂ 2R is a σ-ideal provided 2A ⊂ I for A ∈ I and⋃
n∈N

An ∈ I, {An}n∈N ⊂ I.
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If, moreover, I 6= 2X , then we say that I is proper. Next, we say that I is
nontrivial provided I 6= {∅}. Finally, I is translation invariant (abbreviated to
t.i. in the sequel) if x+A ∈ I for A ∈ I and x ∈ R.

We have the following (see [4, Propositions 2.1 and 2.2]).

Proposition 2.1. Let I ⊂ 2R be a t.i. σ-ideal and U ⊂ R be open and
nonempty. Then

(2.1) int [(U \ T )− V ] 6= ∅, V ∈ 2R \ I, T ∈ I,

where (U \ T )− V = {u− v : u ∈ U \ T, v ∈ V }.

Definition 2.3. Let D ⊂ R. We say that f : D → R is Lebesgue (Baire,
respectively) measurable provided the set f−1(U) is Lebesgue measurable (has
the Baire property (cf., e.g., [14]), respectively) in R for every open set U ⊂ R.

In what follows L stands for the σ-ideal of all the subsets of R that are of
the Lebesgue measure zero; B denotes the σ-ideal of all the subsets of R that
are of the first category of Baire.

We need yet the following proposition. It can be derived from [4, Theorem
3.1 and Remark 3.2], but for the convenience of readers we prove it.

Proposition 2.2. Let P be a dense subset of R, I be a real nontrivial interval,
E ⊂ I, and v : I → R. Then the following two statements are valid.

(i) If v is Lebesgue (Baire, respectively) measurable, the set I \ E is of

Lebesgue measure zero (of first category, resp.) and

(2.2) v(p+ x) ≤ v(x), x ∈ E, p ∈ P, x+ p ∈ E,

then there is d ∈ R with v(x) = d L–a.e. (B–a.e., resp.) in I.

(ii) If J ⊂ 2R is a proper t.i. σ-ideal, I \E ∈ J , v is continuous at a point

x0 ∈ I and (2.2) holds, then v(x) = v(x0) J –a.e. in I.

Proof. (i) For every n ∈ N we have

E ⊂ v−1(R) =
⋃
q∈Q

v−1
((

q − 1

n
, q +

1

n

))
.

Thus, for each n ∈ N, there exists q(n) ∈ Q such that the set

En := v−1
((

q(n)− 1

n
, q(n) +

1

n

))
is not of the Lebesgue measure zero (of first category, respectively).
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Suppose there exists k ∈ N such that Bk := v−1
([
q(k) + 1

k ,∞
))

is not in
L (in B, respectively). Then, according to [1, Theorem 1] (Proposition 2.1,
respectively) int (Bk −Ek) 6= ∅, whence there is p ∈ P with p ∈ int (Bk −Ek),
which means that p+ e = b ∈ Bk ⊂ E with some b ∈ Bk and e ∈ Ek. Hence

q(k) +
1

k
≤ v(b) = v(p+ e) ≤ v(e) < q(k) +

1

k
.

This is a contradiction.

Now suppose there exists k ∈ N such that Ck := v−1
((
−∞, q(k)− 1

k

])
is

not in L (in B, respectively). Then, analogously as before we obtain that there
are p ∈ P , c ∈ Ck and e ∈ Ek such that p+ c = e ∈ Ek ⊂ E, whence

q(k)− 1

k
< v(e) = v(p+ c) ≤ v(c) ≤ q(k)− 1

k
,

which is a contradiction.

Thus we have proved that the set v−1
(
R \

(
q(k)− 1

k , q(k) + 1
k

))
is in L (in

B, respectively) for every k ∈ N. Let

S :=
⋂
k∈N

(
q(k)− 1

k
, q(k) +

1

k

)
.

It is easily seen that S has at most one point, the set

A := v−1(R \ S) = v−1

(⋃
k∈N

(
R \

(
q(k)− 1

k
, q(k) +

1

k

)))
=

=
⋃
k∈N

v−1
(
R \

(
q(k)− 1

k
, q(k) +

1

k

))

is in L (in B, respectively), and v(x) ∈ S for x ∈ E \A.

Thus we have proved that there exists d ∈ R such that v(x) = d for x ∈ E\A.

(ii) Since J is proper and t.i., we deduce that I 6∈ J , whence E 6∈ J . For
each n ∈ N write

Dn := v−1
((

v(x0)− 1

n
, v(x0) +

1

n

))
,

En := v−1
([
v(x0) +

1

n
,∞
))
\H,

Fn := v−1
((
−∞, v(x0)− 1

n

])
\H
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and Cn := Dn \H, where H := I \ E. Since v is continuous at x0, int Dn 6= ∅
for n ∈ N.

Suppose that there is k ∈ N with Ek /∈ J . Then, on account of Proposition
2.1, there is p ∈ P such that p ∈ int (Ek − Ck), whence p + c = e ∈ Ek ⊂ E
with some c ∈ Ck and e ∈ Ek. Hence

v(x0) +
1

k
≤ v(e) = v(p+ c) ≤ v(c) < v(x0) +

1

k
.

This is a contradiction.

Next, suppose that there is k ∈ N with Fk /∈ J . Then, on account of
Proposition 2.1, there is p ∈ P ∩ (int (Ck − Fk)), whence p + e = c ∈ Ck ⊂ E
with some c ∈ Ck and e ∈ Fk. Hence

v(x0)− 1

k
< v(c) = v(p+ e) ≤ v(e) ≤ v(x0)− 1

k
.

This is a contradiction, too.

In this way we have shown that Gk := Ek∪Fk ∈ J for every k ∈ N. Clearly

V := v−1(R \ {v(x0)})

= v−1

(
R \

⋂
n∈N

(
v(x0)− 1

n
, v(x0) +

1

n

))
⊂H ∪

⋃
k∈N

Gk ∈ J

and v(x) = v(x0) for x ∈ E \ V . �

3. The case n = 0

In this part of the paper we consider (1.3) for n = 0. The subsequent
proposition contains auxiliary results for the next section.

Proposition 3.1. Let a1, a2, α1, α2 ∈ R, a1 < 0 < a2, a1a
−1
2 6∈ Q,

c1 :=
α1

a1
≥ α2

a2
=: c2(3.1)

and I be a real interval such that

|I| > a2 − a1,(3.2)

where |I| denotes the length of I. Then the subsequent two statements are
valid.
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(i) A function v : I → R is Lebesgue (Baire, respectively) measurable and

satisfies the following two conditional inequalities

(3.3) if a1 + x ∈ I, then v(a1 + x)− v(x) ≤ α1,

(3.4) if a2 + x ∈ I, then v(a2 + x)− v(x) ≤ α2

L-a.e. (B-a.e., resp.) in I if and only if c2 = c1 and there is d ∈ R with

(3.5) v(x) = c1x+ d, L − a.e. (B − a.e., resp.) in I.

(ii) Let J ⊂ 2R be a proper t.i. σ-ideal. Then a function v : I → R is
continuous at a point x0 ∈ I and satisfies (3.3) and (3.4) J -a.e. in I

if and only if c2 = c1 and

(3.6) v(x) = c1x+ v(x0), J − a.e. in I.

Proof. (i) Assume that v is Lebesgue (Baire, respectively) measurable and
there is T ∈ L (T ∈ B, resp.) such that (3.3) and (3.4) are valid for every
x ∈ F := I \ T . Write

wi(x) = v(x)− cix, i = 1, 2, x ∈ F.

Clearly wi is Lebesgue (Baire, respectively) measurable. Further, for every
i, j ∈ {1, 2}, we have αj ≤ ciaj and consequently

wi(x+ aj) = v(x+ aj)− ci(x+ aj) ≤(3.7)

≤ v(x) + αj − cix− ciaj ≤
≤wi(x), x ∈ F, x+ aj ∈ F.

Fix i ∈ {1, 2}. Let

(3.8) H :=
⋃

m,n∈Z
(T + na1 +ma2)

and E := I \H. Then H ∈ L (H ∈ B, resp.) and it is easily seen that

x+ na1 +ma2 ∈ E, x ∈ E,n,m ∈ N0, x+ na1 +ma2 ∈ I.(3.9)

Write Pk := {na1 +ma2 : n,m ∈ N0, n+m ≤ k} for k ∈ N and

P =
⋃
k∈N

Pk.

Then it is well known that the set P is dense in R (see, e.g., [8, 9, 10]).
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We show, by induction, that for every k ∈ N we have

(3.10) wi(x+ p) ≤ wi(x), x ∈ E, p ∈ Pk, x+ p ∈ E, i = 1, 2.

The case k = 1 is just (3.7). So fix k ∈ N and assume that (3.10) holds. Take
x ∈ E and q ∈ Pk+1 with x + q ∈ E. Clearly, in view of (3.2), x + q − aj ∈ I
and p := q−aj ∈ Pk for some j ∈ {1, 2}. Hence, in view of (3.9), x+q−aj ∈ E
and consequently, by the inductive hypotheses and (3.7),

wi(x+ q) ≤ wi(x+ q − aj) = wi(x+ p) ≤ wi(x), i = 1, 2.

Thus we have proved that (3.10) holds for all k ∈ N, which yields

(3.11) wi(x+ p) ≤ wi(x), x ∈ E, p ∈ P, x+ p ∈ E, i = 1, 2.

Consequently, by Proposition 2.2, there are d1, d2 ∈ R and sets A1, A2 ∈ L
(A1, A2 ∈ B, resp.) such that wi(x) = di for x ∈ E \Ai and i = 1, 2. Clearly

c1x+ d1 = v(x) = c2x+ d2, x ∈ E \ (A1 ∪A2),

whence we have c1 = c2 and d1 = d2 =: d.

Since the converse is easy to check, this ends the proof of (i).

(ii) Let v : I → R be continuous at a point x0 ∈ I and satisfies (3.3) and
(3.4) J -a.e. in I. Since J is proper and t.i., we have

(3.12) int T = ∅, T ∈ J .

There is a set T ∈ J such that conditions (3.3) and (3.4) hold for every
x ∈ I \ T . Analogously as in the proof of (i) we define wi and P and obtain
(3.11) for E := I \H, where H ∈ J is given by (3.8).

Then, on account of Proposition 2.2 (ii), there are V1, V2 ∈ J such that

wi(x) = wi(x0), x ∈ E \ Vi, i = 1, 2.

Clearly, by (3.12), we have int (V1 ∪ V2) = ∅ and

w1(x0) + c1x = w1(x) + c1x = v(x) = c2x+ w2(x0), x ∈ E \ (V1 ∪ V2),

whence α1a2 = α2a1 and (3.6) holds.

The converse is easy to check. �

Remark 3.1. Let a1, a2 ∈ R and α1, α2 ∈ (0,∞). Then every function
v : I → R with

sup
x∈R
|v(x)| ≤ 1

2
min {α1, α2}

fulfils (3.3) and (3.4) for each real interval I. This shows that assumption (3.1)
is necessary in Proposition 3.1.



88 A. Bahyrycz and J. Brzdȩk

4. The case n = 1

The next theorem gives results for (1.3) with n = 1.

Theorem 4.1. Let a1, a2, β1, β2, γ1, γ2 ∈ R, a1 < 0 < a2, a1a
−1
2 6∈ Q,

(4.1) e :=

(
γ2
a2
− γ1
a1

)
1

a2 − a1
≤ max

{
β1
2a1

,
β2
2a2

}
,

and I0 be a real interval which contains the interval (a1 − a2, a2 − a1). Then
the subsequent two statements are valid.

(i) A function f : I0 → R is Lebesgue (Baire, respectively) measurable and

satisfies the following system of two inequalities

(4.2) if a1 + x ∈ I0, then f(a1 + x)− f(x) ≤ β1x+ γ1,

(4.3) if a2 + x ∈ I0, then f(a2 + x)− f(x) ≤ β2x+ γ2

L-a.e. (B-a.e., resp.) in I0 if and only if

(4.4)
γ1
a1
− β1

2
=
γ2
a2
− β2

2
and

β1
a1

= 2e =
β2
a2

and there exists d ∈ R with

f(x) =
β1
2a1

x2 +

(
γ1
a1
− β1

2

)
x+ d,(4.5)

L − a.e. (B − a.e., resp.) in I0.

(ii) Let J ⊂ 2R be a t.i. σ-ideal. Then a function f : I0 → R, continuous

at a point x0 ∈ I0, satisfies conditions (4.2) and (4.3) J -a.e. in I0

if and only if (4.4) holds and

f(x) =
β1
2a1

(x− x0)2 +

(
γ1 + β1x0

a1
− β1

2

)
(x− x0) + f(x0),

J − a.e. in I0.

Proof. (i) It is easy to check that, in the case where (4.4) holds, the function
f : R→ R,

f(x) =
β1
2a1

x2 +

(
γ1
a1
− β1

2

)
x+ d,
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satisfies the equalities

f(a1 + x) = f(x) + β1x+ γ1, f(a2 + x) = f(x) + β2x+ γ2

for every x ∈ R.

So assume now that a function f : I0 → R satisfies (4.2) and (4.3) for every
x ∈ P0 := I0 \ T , with some T ∈ L (T ∈ B, resp.). Take δ ∈ R, δ ≥ 0, with

min

{
β1
2a1

,
β2
2a2

}
≤ e+ δ ≤ max

{
β1
2a1

,
β2
2a2

}
.

Write
v(x) := f(x)− (e+ δ)x2, x ∈ I0

and
αi := γi − (e+ δ)a2i , α′i := γi − ea2i , i = 1, 2.

Then

α′2
a2

=
γ2
a2
−
(
γ2
a2
− γ1
a1

)
a2

a2 − a1
=

=
γ2
a2
−
(
γ2
a2
− γ1
a1

)(
1 +

a1
a2 − a1

)
=

=
γ1
a1
−
(
γ2
a2
− γ1
a1

)
a1

a2 − a1
=
α′1
a1
,

whence

(4.6) α′2a1 = α′1a2

and, according to the definitions of αi and α′i,

(4.7) α2a1 = α′2a1 − (δa2)a2a1 ≥ α′1a2 − (δa1)a2a1 = α1a2.

First consider the case where

β1
2a1
≥ e+ δ ≥ β2

2a2
,

which means that

(4.8) βi − 2ai(e+ δ) ≤ 0, i = 1, 2.

Then, by (4.2) and (4.3), there is a set A0 ∈ L (A0 ∈ B, resp.) such that

v(x+ ai) = f(x+ ai)− (e+ δ)(x2 + 2aix+ a2i ) ≤(4.9)

≤ f(x)− (e+ δ)x2 + (βi − 2ai(e+ δ))x+ γi − (e+ δ)a2i ≤
≤ v(x) + γi − (e+ δ)a2i = v(x) + αi



90 A. Bahyrycz and J. Brzdȩk

for x ∈ E := I0 ∩ (0,∞) \ A0 with x + ai ∈ E, i = 1, 2. Consequently, on
account of Proposition 3.1 (i) and (4.7), α2a1 = α1a2 and there exists d ∈ R
such that (3.5) holds. Clearly (4.6) yields δ = 0, whence α′i = αi for i = 1, 2
and

(4.10) f(x) = v(x) + ex2 = d+ c1x+ ex2, L− a.e. (B− a.e., resp.) in E.

Substituting this form of f in (4.2) and (4.3), we obtain

0 = α′i + ea2i − γi = ciai + ea2i − γi ≤ (βi − 2eai)x

L-a.e. (B-a.e., resp.) in E, which implies βi − 2eai ≥ 0 for i = 1, 2. Note that,
according to (4.8), for every i = 1, 2, we have βi− 2aie = 0. Next, (4.6) means
that

(γ1 − ea21)a2 = (γ2 − ea22)a1.

Consequently, (4.4) holds and from (4.10) we derive (4.5).

Now assume that
β1
2a1
≤ e+ δ ≤ β2

2a2
,

i.e., βi − 2ai(e+ δ) ≥ 0 for i = 1, 2, which means that

(βi − 2ai(e+ δ))x ≤ 0, x ∈ (−∞, 0].

Consequently we argue analogously as in (4.9) for x ∈ I1 := I0 ∩ (−∞, 0).
Hence, in view of Proposition 3.1 (i) and (4.7), α2a1 = α1a2 and (3.5) holds
with some d ∈ R. We complete the proof similarly as in the previous case.

(ii) In this case we argue analogously as in the case of (i), using Proposi-
tion 3.1 (ii). �

Remark 4.1. If in Theorem 4.1 we replace (4.2) and (4.3) by the following
two conditional equalities

(4.11) if a1 + x ∈ I0, then f(a1 + x) = f(x) + β1x+ γ1,

(4.12) if a2 + x ∈ I0, then f(a2 + x) = f(x) + β2x+ γ2,

then condition (4.1) is superfluous. For, suppose that (4.1) does not hold. Then

e > max

{
β1
2a1

,
β2
2a2

}
= −min

{
−β1
2a1

,
−β2
2a2

}
and consequently(

−γ2
a2
− −γ1

a1

)
1

a2 − a1
< min

{
−β1
2a1

,
−β2
2a2

}
.

Now it is enough to observe yet that, in view of (4.11) and (4.12), (4.1)–(4.3)
hold with f, β1, β2, γ1, γ2 replaced by −f,−β1,−β2,−γ1,−γ2, respectively.
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Remark 4.2. It is easily seen in the proof of Theorem 4.1 (i) that if we assume
that (4.2) and (4.3) are fulfilled for every x ∈ I0, then there exists d ∈ R with

f(x) =
β1
2a1

x2 +

(
γ1
a1
− β1

2

)
x+ d, x ∈ I0.(4.13)

If I0 = R in Theorem 4.1, then condition (4.1) can be relaxed to some
extent as in the subsequent corollary.

Corollary 4.1. Let a′1, a
′
2, β
′
1, β
′
2, γ
′
1, γ
′
2 ∈ R, a′1 < 0 < a′2, a′1/a

′
2 6∈ Q, β′2 < β′1

and β′2β
′
1 ≥ 0. Then the subsequent two statements are valid.

(i) A function f : R → R is Lebesgue (Baire, respectively) measurable and
satisfies the following system of two inequalities

(4.14) f(a′i + x)− f(x) ≤ β′ix+ γ′i, x ∈ R, i = 1, 2,

if and only if

(4.15)
γ′1
a′1
− β′1

2
=
γ′2
a′2
− β′2

2
and

β′1
a′1

=
β′2
a′2

and there exists d ∈ R with

f(x) =
β′1
2a′1

x2 +

(
γ′1
a′1
− β′1

2

)
x+ d, x ∈ R.(4.16)

(ii) A function f : R→ R is continuous at a point x0 ∈ R and satisfies

(4.14) if and only if (4.15) and (4.16) hold with some d ∈ R.

Proof. (i) It is easy to prove by induction that (4.14) yields

f(na′i + x)− f(x) ≤ nβ′ix+ nγ′i +

n−1∑
j=0

jβ′ia
′
i, x ∈ R, i = 1, 2,(4.17)

for each n ∈ N. Further, β′2β
′
1 ≥ 0 and a′1a

′
2 < 0, whence

max

{
β′1
2a′1

,
β′2
2a′2

}
≥ 0.

Since β′2 − β′1 < 0 and a′2 − a′1 > 0, this means that there is m ∈ N with

(4.18)
1

m

(
γ′2
a′2
− γ′1
a′1

)
1

a′2 − a′1
+

(m− 1)(β′2 − β′1)

2m(a′2 − a′1)
< max

{
β′1
2a′1

,
β′2
2a′2

}
.
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Write

ai = ma′i, βi = mβ′i, γi = mγ′i +

m−1∑
j=0

jβ′ia
′
i, i = 1, 2.

Then, in view of (4.17), (4.2) and (4.3) are fulfilled for all x ∈ R, with I0 = R.
Moreover, (4.18) actually means that (4.1) holds. Now using Theorem 4.1(i)
and Remark 4.2 we obtain (4.13) and (4.4). It is easy to check that those two
conditions imply (4.15) and (4.16).

The converse is easy to verify.

(ii) We argue analogously as in the case of (i), using Theorem 4.1 (ii) with
J = {∅}. �

Remark 4.3. There arises a natural question whether similar results can be
obtained for (1.3) with n > 1.
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