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Welcome to the MOOCs course Transport Phenomena of Non-Newtonian Fluids. The title 

of today’s lecture is Mass Transfer Combined with Chemical Reactions. So, in the 1st 

lecture of mass transfer part what we have seen? If there is a chemical reaction, so, then 

according to reaction type the contribution from the reaction in the flux has to be brought 

in differently because of the different nature of the reactions because if it is homogeneous 

reaction, it is occurring in the entire volume. 

So, then that contribution of the reaction in the mass transfer whatever is there or the flux 

whatever is there that should be brought as a kind of source term in the you know species 

conservation equation or the balance equation cell balance equation whatever we do. If it 

is a heterogeneous reaction it must be taking place at specified locations like you know 

catalyst surface etcetera. 

So, under such conditions what happens? The contribution from the reaction in the flux 

whatever is there that should be brought through the boundary condition because it is 

occurring at a specified location. Since the nature of the reactions are different they are 

occurring in different locations different way. So, then their contribution in the mass flux 

would also be coming differently so, then corresponding mathematical representation 

would also be different, that is what we have seen.  

So, now, what we do? We are taking two different problem one problem is the mass 

transfer combined with heterogeneous reaction because that would be simple one, simple 

in the sense the contribution from the reaction would be coming into the picture as a kind 

of boundary condition only. Then second problem we take mass transfer combined with 

homogeneous reaction, where the reaction part is would be appearing in the in a balanced 

equation species conservation equation as a source term. 
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So, diffusion with heterogeneous chemical reaction we take, we are taking only the 

diffusive mass transfer because when you include the forced to convective mass transfer 

combined with chemical reactions, the equations complexity would increase and then you 

have to go for a numerical solution. 

So, that is the reason in order to keep the complexity up to tractable level we are taking 

only diffusive mass transfer. Consider a model for a catalytic reactor such as shown in 

below figure in which reaction 2A tends to B is being carried out. We have a catalytic bit 

in which gas A is coming in and then that is reacting on the surface of catalyst particles 

and then product B is forming and then outlet unreacted gas A and then product B are 

coming out, right. 

An example of reaction of this type would be the solid catalyst dimerization reactions 

which are very common in polymers polymer industries in general. Assume that each 

catalyst particle is surrounded by a stagnant gas film through which A has to diffuse to 

reach catalyst surface as shown in figure below that we have in the next slide. 

So, that is if you enlarge this catalytic particle. So, if it is a particle. So, each particle is 

surrounded by a gas film thin gas film, ok. So, let us say thickness is δ film thickness is δ, 

but compared to the radius of catalyst particle, this δ is very very small that is δ is very 

very smaller than R. 



So, under such conditions what we can do? We do not need to consider the curvature effect 

and then we can have a Cartesian coordinate representation of these thing because now 

this entire all number of catalysts the complexity of the packing bed etcetera the all that 

we are not taking place all that we are not considering here, we are taking only one catalyst 

particle on which the reaction is taking place. 

So, that simple case we are taking. So, now, for that we are taking like this. So, if it is a 

catalyst surface let us say we will locate z = δ and then hypothetical film boundary 

whatever is there that we take z = 0, right. At z = 0 the concentration of A would be 

maximum let us say xA0 and then as it moves through the reaction takes place at z = δ and 

then the depending on the fastness order of the reaction rate constant of the reaction. 

So, then this disappearance what is the concentration at of x at boundary on this catalytic 

surface that you know accordingly that concentration will be there. If it is an instantaneous 

reaction; instantaneous reaction in the sense instantaneous and irreversible that is whatever 

A is there that is immediately reacting and then forming B within very short time. 

So, then at the catalyst surface virtually xA would be 0. If it is an instantaneous reaction 

we are going to take both the cases anyway. So, whereas, the B is very small you know at 

film boundary that is xB0 we are calling it, this is forming at the catalyst surface and then 

diffusing into the bulk gas film like this. 

So, xB would be maximum on the catalyst surface and then minimum at hypothetical film 

boundary that is at z = 0, right. So, what is this xA as function of z we have to find out and 

then we have to find out NAz also, ok. 
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The same thing is pictorially shown here. So, since the film thickness is very very small 

compared to the radius of the catalyst particle curvature effect we are not taking into 

consideration. So, hypothetical stagnant gas film edge whatever is there that we are calling 

z = 0, catalyst surface whatever is there that we calling z = δ right and then the diffusion 

is taking place in the z direction.  

In this representation x axis is concentration xA or xB and then y axis and the reverse 

direction is Z and the vertical direction in the downward is z axis here. So, now xA is xA0 

at hypothetical film which is almost pure and then it is reacting and then its concentration 

dropping and becoming 0 at x = δ, if it is irreversible and instantaneously occurring then 

xA would be 0 at x = δ otherwise it has to be represented accordingly and then this B is 

forming on the catalyst surface. 

Because immediately the reaction is taking place immediately A is being converted into 

the B by dimerization equation. So, then it having profile maximum concentration on the 

surface x = δ and then it diffuses back to the bulk from z = δ to z = 0. At catalyst surface 

assume reaction 2A tends to B occurs instantaneously and product B then diffuses back 

out through the gas film to the main turbulence stream composed of A and B. 

And then obtain expression for local rate of conversion from xA to from A to B when the 

effective gas film thickness that is δ is known and then mainstream concentration xA0 xB0 

are not are known. So, that is xA0 xB0 are known and δ is also known. Assume the gas film 



is isothermal that is actually not true most of the catalytic reactions heat is in energy is 

involved. 

So, then there will be temperature difference also, but we are not considering it here in this 

problem. So, this problem we are taking two cases first case we take the instantaneous 

reaction instantaneous irreversible reaction as stated in the problem, second case we are 

taking a reaction of certain order of reaction and then see the solution. 

But the procedure of getting the solution is same only boundary condition would be 

changing. Because, why only boundary conditions be changing? Because it is a 

heterogeneous reaction. So, whatever the changes are there they are occurring at 

boundaries only specified locations only. 
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The case 1 instantaneous reaction from the reaction 2A tends to B stoichiometry of the 

reaction we can get 
𝑁𝐴𝑧

2
= −

𝑁𝐵𝑧

1
; that means, 𝑁𝐵𝑧 =

−1

2
𝑁𝐴𝑧. So, in the combined flux in 

place of 𝑁𝐵𝑧 we can write 
−1

2
𝑁𝐴𝑧 like this, then you take all the 𝑁𝐴𝑧 terms one side then 

we have 𝑁𝐴𝑧 = −
𝑐𝐷𝐴𝐵

1−
1

2
𝑥𝐴

𝑑𝑥𝐴

𝑑𝑧
. 

So, now if you have an expression for 𝑁𝐴𝑧, you can find out what is 𝑥𝐴 as function of z. 

For that what we do? In order to get 𝑁𝐴𝑧 we write a balance equation, then we write 

𝑆𝑁𝐴𝑧|𝑧 − 𝑆𝑁𝐴𝑧|𝑧+∆𝑧 = 0 because reaction part will not come here in the source as a source 



term in the balance equation, it will come as a boundary condition because it is a 

heterogeneous reaction it is occurring only at specified location of the catalyst surface. 

It is not occurring in the film; in the film only, diffusion is occurring. Diffusion of species 

are occurring so that they reach from the bulk to the catalyst surface or catalyst surface to 

the bulk, ok. So, now, this equation you divide both sides by S ∆ z and then take limit ∆ z 

tends to 0 then you have −
𝑑𝑁𝐴𝑧

𝑑𝑧
= 0; that means, 

𝑑𝑁𝐴𝑧

𝑑𝑧
 is this one from equation 2 = 0. 
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Now, 𝑐𝐷𝐴𝐵 we can take constant here then what we have? 
𝑑

𝑑𝑧
(

1

1−
1

2
𝑥𝐴

𝑑𝑥𝐴

𝑑𝑧
) = 0 when you 

integrate first time what you get? 
1

1−
1

2
𝑥𝐴

𝑑𝑥𝐴

𝑑𝑧
= 𝐶1. Now, this dz you take to the other side 

and then integrate both sides one side with respect to x another side with respect to z then 

what we have? 

𝑙𝑛(1−
1

2
𝑥𝐴)

−
1

2

= 𝐶1𝑧 + 𝐶2, this −
1

2
 I can write here as a −2𝑙𝑛 (1 −

1

2
𝑥𝐴) = 𝐶1𝑧 + 𝐶2. Two 

boundary conditions we have at z = 0 xA is xA0. So, 𝐶2 is −2𝑙𝑛 (1 −
1

2
𝑥𝐴0) that is what we 

get. The other boundary condition that is at = δ, xA = 0, why it is xA = 0? Because the 

reaction is very instantaneous; the reaction is very instantaneous. 



That is moment the molecules of A comes and reaches the surface of the catalyst 

immediately they are reacting and forming B, right. So, there is no A present at any given 

time immediately they are converting into the B because of the reaction. So, that is the 

reason xA is 0 at z = δ, z = δ is nothing but catalyst surface location. 

So, when you apply this boundary condition you get this one that is and this ln of 1 is 0 

and then C1 δ + C2 = 0 that is C1 you get −
𝐶2

δ
. So, that is this one. So, now, you have C2 

and then C1 these two if you substitute in an equation number 3 you will get the 

concentration profile. 
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So, this 
2

δ
 ln [1 −

1

2
𝑥𝐴0] is nothing but C1 and then −2𝑙𝑛 [1 −

1

2
𝑥𝐴0] this is nothing but C2. 

These two we can cancel out right. Then what we are doing? From these two terms 

𝑙𝑛 [1 −
1

2
𝑥𝐴0] if we take common we get 

𝑧

δ
− 1 right or these both sides if you multiplied 

by minus, so, 𝑙𝑛 [1 −
1

2
𝑥𝐴] = (1 −

𝑧

δ
) 𝑙𝑛 [1 −

1

2
𝑥𝐴0] this is the concentration profile.  

The same thing you can write this way also right, so, but we need to find out the flux that 

is the question. 
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So, then what we have to do? This concentration profile this equation we have to 

differentiate with respect to z then we get 
1

[1−
1

2
𝑥𝐴]

(−
1

2

𝑑𝑥𝐴

𝑑𝑧
) = 0 −

1

δ
𝑙𝑛 of this is constant 

anyway right. So; that means, these 2 also if I take to the right hand side −
2

δ
𝑙𝑛 [1 −

1

2
𝑥𝐴0] 

I will get in the right hand side.  

Left hand side I am not doing any simplification and keeping as it is because flux equation 

we derived it as you know 𝑁𝐴𝑧 =
−𝑐𝐷𝐴𝐵

[1−
1

2
𝑥𝐴]

𝑑𝑥𝐴

𝑑𝑧
; that means, this equation whatever is there if 

I simply multiply by c DAB I will get the flux. 

That is flux is 
2𝑐𝐷𝐴𝐵

δ
𝑙𝑛 [

1

[1−
1

2
𝑥𝐴0]

]. This is the case where you know reaction is 

instantaneously occurring, an irreversible instantaneous reaction, but in general always we 

may not have such kind of reaction. So, what we do now? 
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We take a case 2A tends to B is not instantaneous at catalyst surface at z is equals to δ. For 

that assume that the rate at which A disappears at the catalyst surface is proportional to the 

concentration of A in the fluid at interface. So, that is 𝑁𝐴𝑧 = 𝑘1
" 𝑐𝐴 that I can write 𝑘1

" 𝑐𝑥𝐴. 

This is one of the boundary conditions that we have seen in the first lecture on mass 

transfer, right. 

So, here 𝑘1
"  is rate constant for pseudo first order catalytic reaction right. So, now, from 

this equation what we get? This equation is actually valid at z = δ right. So, z = δ at z = δ 

NAz = 𝑘1
" 𝑐𝑥𝐴; that means, 𝑥𝐴 =

𝑁𝐴𝑧

𝑘1
" 𝑐

 this is the boundary condition. 

Whereas, the other boundary condition at z = 0 xA = xA0 that is remaining same B.C. 1 that 

is not changing right. Only at the catalyst surface which is at z = δ. Now the reaction is not 

instantaneous it is a first order reaction as per that one the flux 𝑁𝐴𝑧is 𝑘1
" 𝑐𝑥𝐴 and then 𝑥𝐴 =

𝑁𝐴𝑧

𝑘1
" 𝑐

. 
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So, in the previous problem whatever this you know solving the you know combined flux 

equation etcetera integrating up to that part it is same; it is same, the changes whatever is 

there compared to the previous part of the problem that is occurring in this problem only 

from boundary conditions point of view. 

So, B.C. 1 is same. So, that is at x = 0, xA = xA0. So, C2 you are going to get the same 

constant like previous case and then B.C. 1 at z = δ xA is nothing but 
𝑁𝐴𝑧

𝑘1
" 𝑐

. So, that is we 

have written here. So, from here C1 you get this particular term. The C2 we have substituted 

here and then this ln term also we have taken to the left hand side.  

So, that all the ln terms are together and then right hand side we have only C1 δ. So, that δ 

also if you take to the left hand side you have 
2

δ
𝑙𝑛 [

1−
1

2
𝑥𝐴0

1−
1

2

𝑁𝐴𝑧

𝑘1
" 𝑐

]. So, this C1 this C2 you got it 

that if substitute in the equation number 3 you will get concentration profile. 
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So, that is this other than z here in the first term in the right hand side is C1, the second 

term −2𝑙𝑛 [1 −
1

2
𝑥𝐴0] is nothing but C2. Now, here also 2 you can take off from both sides, 

then this particular term you expand it as two terms. Last term you keep it as it is and then 

both sides you are multiplying by minus 1. So, that right hand side we have plus term and 

then left hand side all the terms are multiplied by minus. So, this is what you are getting 

right.  

Now these two terms are same actually similar right. So, 𝑙𝑛 [1 −
1

2
𝑥𝐴0] if you take 

common, you get (1 −
𝑧

δ
) as a multiplication factor, the other term is remaining same right. 

So, now, all the terms are having ln. So, then these multiplication factors whatever are 

there, you can take as a power terms and then you get concentration profile expression this 

one. 

Now, if the reaction instantaneous; that means, 𝑘1
"  tends to infinity very large. So, then if 

𝑘1
"  is very large 

1

𝑘1
"  would be 0. So, under such condition this term would be you know this 

entire parenthesis term would be 1− 0 power something. So, it will be 1 power something. 

So, it will be 1 only. 

So, only this part would be there. So, which is the same as a solution of part a where the 

reaction is instantaneous. So, if the reaction is not instantaneous and then reaction is 



pseudo first order reaction. So, then this additional correction term will appear in the right 

hand side. 
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Now, we have to differentiate that concentration profile in order to get the flux equation 

because in the flux equation what we have? We have −
𝑑𝑥𝐴

𝑑𝑧
 terms. So, this is the equation 

that we got. This if you differentiate both sides with respect to z, what you get? Left hand 

side 
1

[1−
1

2
𝑥𝐴]

(−
1

2

𝑑𝑥𝐴

𝑑𝑧
) = here −

1

δ
𝑙𝑛 (1 −

1

2
𝑥𝐴0) +

1

δ
𝑙𝑛 (1 −

1

2

𝑁𝐴𝑧

𝑘1
" 𝑐

). 
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So, the same equation is written here again and then what we have done? We combined 

these two terms by you know after taking these 2 also to the right hand side. So, 
2

δ
 we are 

having an 𝑙𝑛 [
(1−

1

2

𝑁𝐴𝑧

𝑘1
" 𝑐

)

(1−
1

2
𝑥𝐴0)

] right. 

So, now this equation left hand side we are keeping as it is because this left hand side if 

you multiply by c DAB, then that would be same as flux. So, the same thing c DAB if you 

have to; you have to multiply in the right hand side. So, 
2𝑐𝐷𝐴𝐵

δ
𝑙𝑛 [

(1−
1

2

𝑁𝐴𝑧

𝑘1
" 𝑐

)

(1−
1

2
𝑥𝐴0)

]. 

Now, here also, if the 𝑘1
"  the reaction is instantaneous. So, then infinity then this term again 

will go to 1 and then solution would be same as a previous case; previous case of party 

where the reaction is instantaneous only thing that 𝑘1
"  would be infinity. So, then 1 − 0 in 

the numerator you will be having 1 here if the reaction is instantaneous which is the 

solution like a previous one. 

So, if the reaction is not instantaneous, then this correction factor of this particular term is 

coming into the picture. So, for large values of 𝑘1
" instantaneous conversion case whatever 

𝑙𝑛 (1 −
1

2

𝑁𝐴𝑧

𝑘1
" 𝑐

) if 𝑘1
"  is very large. So, then this term would be very small. 
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So, ln of 1 minus this term is we can write 1 minus of that term right. So, NAz we can 

further simplify like this, then we have this particular term. So, in this particular term after 

expanding in place of ln of this term, I can directly write 1 minus of that particular term. 

Then after that I what I can do? I can combine these 
2𝑐𝐷𝐴𝐵

δ
 terms together and then we see 

what we can get. 

(Refer Slide Time: 22:59) 

 

We can get this particular term on expansion and then all the terms whatever NAz terms 

are there have been taken one side and then remaining terms are taken other side. So, here 

again, what we can get? 𝑁𝐴𝑧 =
2𝑐𝐷𝐴𝐵 δ⁄

(1+
𝐷𝐴𝐵

𝑘1
" δ

)

𝑙𝑛 (
1

(1−
1

2
𝑥𝐴0)

).  

If 𝑘1
"  is large so, then this would be you know 0. So, in the denominator we will be having 

only 1. So, that is 
2𝑐𝐷𝐴𝐵

δ
𝑙𝑛 (

1

(1−
1

2
𝑥𝐴0)

) is the same as a previous part a problem when the 

reaction is instantaneous and this 
𝐷𝐴𝐵

𝑘1
" δ

 is nothing but Damkohler number. Now, we take a 

homogeneous reaction diffusion with a homogeneous chemical reaction, ok. 
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Here also we are not taking the first convective mass transfer, we are taking only diffusive 

mass transfer because if you take the first convective mass transfer, the velocity part would 

come into the picture and then the equation will become more complicated you have to go 

for you know numerical solution. 

So, in order to have the complexities you know under detectable conditions, we are taking 

only diffusive mass transfer which is affected by the homogeneous chemical reaction that 

is simultaneously occurring while the diffusion is occurring, ok. Consider a system where 

gas A dissolves in liquid B in a beaker and diffuses isothermally into liquid phase. 

So, as A diffuses it also undergoes irreversible first order homogeneous reaction A + B 

giving rise to AB. So, a reversible first order homogeneous reaction is occurring. Since it 

is a homogeneous reaction whatever the contribution in the flux is there, that should come 

as a source term in the balance equation species conservation balance equation whatever 

we write. 

So, the contribution from the reaction has to come as a source term in the right hand side 

or the third term and then here A, B and then AB are there. So, it is not a binary system 

three components are there. So, what we do? We assume this AB is present in very small 

component so, that we can have a pseudo binary system. 



The examples where we can have such kind of situations are absorption of CO2 by 

concentrated aqueous solution of NaOH. Consider this as a binary solution of A and B 

ignoring small amount of AB that is formed because of the reaction that is pseudo binary 

system. Pictorially if you see we have a beaker in which liquid B is there. 

Now, gas A is coming in and then dissolving here. So, while it is dissolving because of the 

diffusion, the reaction is also taking place that reaction is irreversible first order reaction 

homogeneous reaction right. So, now, the liquid whatever height is there that height we 

are taking L. 

So, the top location we are taking z = 0, bottom location of the beaker we are taking z = 

L. So, at the top only pure gas A is there. So, at the gas liquid interface whatever the 

concentration of A is there that is cA0 that is the solubility of A in B whatever is there that 

was right and then at z = L we do not know how much it is. So, usually that is 
𝜕𝑐

𝜕𝑧
= 0. 
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Now, mass balance and species A over thickness ∆z of liquid face if you right 𝑁𝐴𝑧|𝑧𝑆 −

𝑁𝐴𝑧|𝑧+∆𝑧𝑆 − rate of disappearance of A that is 𝑘1
′′′𝑐𝐴𝑆∆𝑧 = 0. Now, this equation here 

again if you see 𝑘1
′′′ is first order rate constant for decompression of A whereas, 𝑘1

′′′𝑐𝐴 is 

the moles of A consumed by the reaction per unit volume per unit time right. 



Now, here also what we do? Divided by 𝑆∆𝑧 and ∆𝑧 tends to 0 limiting conditions you 

take 
−𝑑𝑁𝐴𝑧

𝑑𝑧
− 𝑘1

′′′𝑐𝐴 = 0 that is 
𝑑𝑁𝐴𝑧

𝑑𝑧
+ 𝑘1

′′′𝑐𝐴 = 0 right. This we can solve to get the 

concentration profile, but that we can do only when you know the NAz expression. 

So, if concentration A is small then we can approximate this combined flux NAz as simply 

−𝐷𝐴𝐵
𝑑𝑐𝐴

𝑑𝑧
. If xA is very small assuming the concentration of A is very small right within 

the defusing a within the liquid system because we are saying that only a small amount is 

diffusing. 

So, then this contribution would be very small compared to this contribution. So, we are 

not considering this part second part in the right hand side we are taking only this part. So, 

c xA we can write as cA. So, −𝐷𝐴𝐵
𝑑𝑐𝐴

𝑑𝑧
 that is nothing but NAz. 
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So, that if you substitute here in this equation, what we have? 
𝑑

𝑑𝑧
(−𝐷𝐴𝐵

𝑑𝑐𝐴

𝑑𝑧
) + 𝑘1

′′′𝑐𝐴 = 0. 

So, that −𝐷𝐴𝐵
𝑑2𝑐𝐴

𝑑𝑧2
+ 𝑘1

′′′𝑐𝐴 = 0. So, that we can write 𝐷𝐴𝐵
𝑑2𝑐𝐴

𝑑𝑧2
− 𝑘1

′′′𝑐𝐴 = 0. This 

equation we have to solve to get the concentration profile.  

Boundary conditions we have already seen at z = 0 cA is nothing but cA0 at z = L 
𝑑𝑐𝐴

𝑑𝑧
= 0 

or if 
𝑑𝑐𝐴

𝑑𝑧
= 0; that means, NAz is 0. So, now this equation we are multiplying both sides by 



L2/(cA0 DAB) why are we doing? We are trying to non-dimensionalize equation. So, how 

this L2/(cA0 DAB) is coming? So, because this equation 𝐷𝐴𝐵
𝑑2𝑐𝐴

𝑑𝑧2 − 𝑘1
′′′𝑐𝐴 = 0. 

So, DAB this cA in place of cA we can have cA0 and then in place of z we can have L2. So, 

this particular term is having the units of this one right. So, then inverse of this one if you 

multiply, then this particular first term would become dimensionless same would be true 

for this one also right. 

So, then if you have that one what we will have? Non-dimensionalized parameters we have 

to find. z/L we will be writing as ζ and then 
𝑐𝐴

𝑐𝐴0
 we will be writing Γ alright. So, that is 

what we are doing now. 
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So, this is the equation, we are multiplying by 
𝐿2

𝑐𝐴0𝐷𝐴𝐵
. So, this what we do? We just do it 

once again so, that you can understand clearly. So, this 𝜁 =
𝑧

𝐿
 so; that means, 𝑑𝜁 =

1

𝐿
𝑑𝑧 

and then Γ =
𝑐𝐴

𝑐𝐴0
; that means, 𝑑Γ =

1

𝑐𝐴0
𝑑𝑐𝐴 that we are applying.  

So, now, here first we have first term DAB we are having and then multiplying by 
𝐿2

𝑐𝐴0𝐷𝐴𝐵
 

and then in place of this d2 is cA we have cA0 𝑑2Γ divided by in place of 𝑑𝑧2 we have 𝐿2 



𝑑𝜁2 − 𝑘1
′′′𝑐𝐴

𝐿2

𝑐𝐴0𝐷𝐴𝐵
 this is the other time other term. So, then what we have? This cA what 

we can write? In place of cA we can write 𝑐𝐴0Γ. 

So, there is this cA0 this cA0 is cancelled out ok. So, 
Γ𝐿2

𝐷𝐴𝐵
 is here, now here this 𝐷𝐴𝐵 this 𝐷𝐴𝐵 

is cancelled out, this cA0 this cA0 cancelled out, 𝐿2𝐿2 cancelled out. So, then what we have? 

We have only 𝑑Γ we have only 
𝑑2Γ

𝑑𝜁2 − this term what is having? 
𝑘1

′′′𝐿2

𝐷𝐴𝐵
 is there. 

So, this term we are calling 𝜙2. So, 𝜙2 Γ we are having. So, this ϕ is nothing, but √
𝑘1

′′′𝐿2

𝐷𝐴𝐵
 

under root or 𝜙2 = this one. So, this is nothing but Thiele modulus right. So, this equation 

we have to get the solution, this is this equation 5 is in this form; 
𝑑2y

𝑑𝑥2
− 𝑎2𝑦 = 0 whose 

solution is 𝑦 = 𝐶1 cosh 𝑎𝑥 + 𝐶2 sinh 𝑎𝑥. So, for this equation 5 similarly solution would 

be Γ = 𝐶1 cosh 𝜙𝜁 + 𝐶2 sinh 𝜙𝜁 right. 
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The same solution is written here. So, now, actually this is nothing but the concentration 

profile in dimensionless coordinates, then some boundary conditions also we have to write 

in dimensionless form. So, at z = 0 cA = cA0, if z = 0 then ζ = 0 and then if cA = cA0; that 

means, Γ = 1 so; that means, 1 = 𝐶1 cosh 0 + 𝐶2 sinh 0; that means, sinh 0 is 0 and then 

cosh 0 is 1. 



So, C1 is 1 right and then at z = L, NAz = 0 or 
𝑑𝑐𝐴

𝑑𝑧
= 0. If n is if z = l; that means, ζ = 1 and 

then if 
𝑑𝑐𝐴

𝑑𝑧
= 0; that means, 

𝑑𝛤

𝑑ζ
= 0 and dimensionless form; that means you have to get 

what is this? 
𝑑𝛤

𝑑ζ
. 

So, 
𝑑

𝑑x
cosh 𝑥 is sinh 𝑥 similarly 

𝑑

𝑑x
sinh 𝑥 is cosh 𝑥. So, 𝐶1 sinh 𝜙𝜁 + 𝐶2 cosh 𝜙𝜁. Now ζ 

= 1 you have to substitute here because it is true with ζ = 1 right. So, that is 𝐶1 sinh 𝜙 +

cosh 𝜙 = 0; that means, 𝐶2 = cosh 𝜙 = −𝐶1 sinh 𝜙, 𝐶1 is 1.  

So, that is 𝐶2 is nothing but − tanh 𝜙 ok. So, now, you have 𝐶2 and then 𝐶1 those things 

if you substitute in this equation we have the final solution. 
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So, 𝐶1 is 1, 𝐶2 is −
sinh 𝜙

cosh 𝜙
, we are not writing as a tan hyperbolic of ϕ for some reason. So, 

then what we do? Now you do the LCM. So, then you have this one. So, now, this is 

cosh 𝑥 cosh 𝑦 − sinh 𝑥 sinh 𝑦cos x is nothing but cosh (𝑥 − 𝑦)  form right. 

That means, you get Γ = 
cosh[𝜙−𝜙𝜁]

cosh 𝜙
 is as it is. So, that is 

cosh[𝜙(1−𝜁)]

cosh 𝜙
 is the concentration 

profile in non-dimensional form right. 
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Thus the final solution in dimensional form would be in place of phi, you write√
𝑘1

′′′𝐿2

𝐷𝐴𝐵
 in 

place of ζ you write z/L and in place of Γyou write 
𝑐𝐴

𝑐𝐴0
. So, 

𝑐𝐴

𝑐𝐴0
=

𝑐𝑜𝑠ℎ[√
𝑘1

′′′𝐿2

𝐷𝐴𝐵
 (1−

𝑧

𝐿
)]

cosh[√
𝑘1

′′′𝐿2

𝐷𝐴𝐵
]

. 

(Refer Slide Time: 37:15) 

 



So, now, we wanted to find out the average concentration. So, this average concentration 

if you do 
𝑐𝐴,𝑎𝑣𝑔

𝑐𝐴0
 it will be 

∫
𝑐𝐴

𝑐𝐴0
𝑑𝑧

𝐿
0

∫ 𝑑𝑧
𝐿

0

. If the same thing if you write dimensionless form 
𝑐𝐴

𝑐𝐴0
 is 

Γdz is nothing but L dζ integral limits would be 0 to L. If L = 1; that means, ζ = 1 right 

similarly here also we can write the same thing the limit is 1 here also the limit is 1. So, 

this L this L you can cancel out right. 

So, now you do the integration of this particular term divided by integration of the d ζ is 

one limits 1 to 0. So, it is 1 and then integration of cosh x is nothing sinh x. So, that is 

sinh[𝜙(1−𝜁)]0
1

− 𝜙
 whatever divided by cosh ϕ is the constant as it is. 

So, limits 0 to 1 if you substitute sinh ϕ(0) − sinh ϕ(1). So, this term is 0 and then the 

sinh ϕ

cosh 𝜙
 is  tanh ϕ and then this divided by ϕ is as it is. So, then 

𝑐𝐴,𝑎𝑣𝑔

𝑐𝐴0
 is nothing but 

tanh ϕ

ϕ
. 

So, if you replace 
ϕ

√
𝑘1

′′′𝐿2

𝐷𝐴𝐵

 this is what you have the equation, this is the equation for the 

average you know concentration right. 
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Now, the flux if you wanted to find out this whatever the 
𝑐𝐴

𝑐𝐴0
 expression that we have in 

the previous slide. So, that we have to you know differentiate with respect to z. So, then 



𝑑

𝑑𝑧

𝑐𝐴

𝑐𝐴0
 is 

1

𝑐𝐴0

𝑑𝑐𝐴

𝑑𝑧
 and then 

𝑑

𝑑𝑧
 of this entire thing this is anyway constant. So, this is as it is 

and then 
𝑑

𝑑𝑥
cosh 𝑥 is nothing but sinh 𝑥.  

So, sin ℎ [√
𝑘1

′′′𝐿2

𝐷𝐴𝐵
(1 −

𝑧

𝐿
)] and then differentiation of a −

𝑧

𝐿
 √

𝑘1
′′′𝐿2

𝐷𝐴𝐵
 is nothing but 

−
1

𝐿
√

𝑘1
′′′𝐿2

𝐷𝐴𝐵
. 
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So, the cA0 in the left hand side that we take to the right hand side and then wherever this 

√
𝑘1

′′′𝐿2

𝐷𝐴𝐵
 is there that we are writing phi. So, 

−𝑐𝐴0𝜙

𝐿
 is this term,sinh [ϕ (1 −

0

𝐿
)] because this 

we are now doing it z = 0, the flux we are calculating at z = 0 location that is at the interface 

gas liquid interface. 

So, if you substitute z = 0 this sinh ϕ you get. So, 
𝑠𝑖𝑛ℎ 𝜙

cosh 𝜙
 is 𝑡𝑎𝑛ℎ 𝜙 right. So, this term both 

sides if you multiply by −𝐷𝐴𝐵, you will be getting the flux because 𝑁𝐴𝑧 = 𝐷𝐴𝐵
𝑑𝑐𝐴

𝑑𝑧
 at z = 0 

= (
𝑐𝐴0𝐷𝐴𝐵

𝐿
) ϕ tanh 𝜙.  

That if you write in terms of you know dimensional coordinates, so, then we have 

(
𝑐𝐴0𝐷𝐴𝐵

𝐿2 ) √
𝑘1

′′′𝐿2

𝐷𝐴𝐵
tanh √

𝑘1
′′′𝐿2

𝐷𝐴𝐵
  as the flux that we suppose to find out. 
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The references for this lecture are provided here. Of course, both the problems you can 

find out in this book Transport Phenomena by Bird, Stewart and Lightfoot. 

Thank you. 


