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Having established  excision and Mayer  Vietoris  sequence,  let  us now give  some immediate

applications of Mayer Vietoris sequence. The very first one itself is an important result and is

called  homology suspension  theorem.  There  are  similar  results  called  homotopy suspension

theorem and so on. The homology suspension theorem is much powerful than the corresponding

homotopy  suspension  theorem  which  will  need  more  hypotheses,  and  yields  lesser  less

conclusion.  Also  homology  suspension  theorem  is  very  easily  obtained  and  there  is  no

hypothesis at all you will see.

Let  be a topological space. There is a canonical isomorphism , (that is the standard notation

so I have to use that) from  to , for . Here this  denote the suspension

of . The suspension of  can be written as the join of  and . Or you can think of it as a

double cone, take two copies of cone over  and glue them together along  on their bases. 



So, that is the suspension isomorphism on the domain I have put a twiddle here and on the

codomain whether you put a twiddle or not it is immaterial because   and so  .

Then we know that that reduce homology coincides with unreduced homology. So, you can put a

twiddle here or not it does not matter. But here the twiddle is necessary for . If you do not

put that then this will not be correct for . 
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So, this is the first remark here. The suspension  is always path connected and hence 

is   in positive dimensions okay? Whereas if   is not path connected then for  ,

you know, there will be problems. So, you have to take   which will be different from

. Only  will be isomorphic to , okay? So, putting twiddle is a must because

I want have the statement for all non negative integers,  included, okay? 

So,   is the double cone you can treat it as   join   okay? Instead of  , which is a

dangerous notation, it is better to write  all the time, just like you are taking any other sphere.

Also note that a sphere can be treated as a double cone over a sphere of   dimension lower,

which  is  its  equator,  two copies  of  the  cone,  namely,   upper  one   and  lower  one

, the hemispheres identified along their common boundary. 

The first thing that you must notice is that for any cone over , this is the notation,  is

nothing but the join of the singleton space and . If we throw away the point  from it the space



is homeomorphic to . where the class of  corresponds to the single point  called

the tip or the vertex of the cone. (Equivalently, you could have the other definition wherein

 is identified to a single point. But stick to any one of the conventions.)

So that  is  the notation here. The subspace   can be deformed to the base subspace

, because  can be deformed to singleton . So, it follows that the suspension minus

the south pole, let denote it by  and suspension minus the north pole denoted by , these are

both contractible okay? 

Similarly,  sitting inside  is a deformation retract. You collapse both the sides to

the  equator.  So,  the  general  picture  is  exactly  similar  the  case  of  a  -sphere.  Here  

represents the equator. So,  can completely deformed to , okay?

So, these are the few things that you have to observe which are topological aspects. here both 

and  are open subsets, because each time you have thrown away a single point namely, the

respective vertices. So, what we have is a Mayer Vietoris sequence now because these are both

open  so  therefore  form  an  excessive  couple.  So,  I  can  take  the  direct  sum

 to  the  reduced  homology  of  the  union  and  then  the  connecting

morphism  to  of the intersection and then again the direct sum and so on. Now these two end

groups here are both identically  , why? Because the spaces are contractible. So, the reduced

homology is  even in dimension . This is a part of the long exact sequence, the scene repeating

for every . 

So, the exactness therefore means this delta is an isomorphism. So from the homology of the

suspension to the homology of intersection of these two spaces.
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Now  being  a  deformation  retract,  the  inclusion  map   from   to   induces  an

isomorphism  in reduced homology. Therefore, you may replace this one by . That is, start

with   from   to   then go back by  . So that is the isomomorphism  

okay?  is an isomorphism,   is also an isomorphism and I am taking inverse of that one and

asking the composite. 

So, you see that is why the Mayer-Vietoris sequence is called a ready to use tool. So, all basic

things you have done already.  It  gives  you the proof immediately okay? There  is  this  word

canonical.  Why  is  it  canonical?  The  inclusion  map  here  is  canonical  okay?  Also  taking

suspension is a functor, and from the snake lemma the connecting homomorphism is canonical. 
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A remark. Whenever a pair of closed subspaces  is given, introducing intermediate pairs

of open sets  and  such that  a deformation retract of  is a typical way excision theorem

will be used in practice. Convert the sets into slightly larger open subsets which will deform to

the given closed sets. So that is what we have done in the proof of this suspension theorem. If

you take the two cones forming the suspension, they intersect along the equator . But neither of

the cone is an open subset. So, what do you do? You take a larger subset which is open. Instead

of these cones, I am just looking at the two poles, and removing one of them each time, okay? So

those are much larger open sets. Now excision theorem can be applied. But as far as homology is

concerned it is the same thing as homology of this cone because the open sets deform to the

cones. And then in this special case, the cones are contractible and so their reduced homology is

zero.

So, this is a standard way in which we can apply the excision theorem, whenever you have to

deal with closed sets. But this may not be always possible. For that we have other techniques

such as cofibrations and so on, which you have seen earlier.
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However the simplicity of this proof brings some kind of mystery. Where and how does the final

isomorphism come out. Topologically, what is the role of the inclusion map from  to   in

this situation? Can one, in principle at least, directly in some sense, starting with an -cycle in ,

`suspend'  it  and get  an  -cycle or  the other  way round? I  would like to have such an

explicit way, a direct way and see how this suspension isomorphism looks like at the homology

level, if not at the chain level. We know there is an isomorphism we have no doubt about that.

But how does it look like at least in some special cases? 

So, this is here I am going to do it in much more generality but then it will be explicit okay. So,

for this you have to really know how the cones and suspensions etc. are defined. The first thing is

to recall that the cone construction is functorial, namely, when you form a cone on a topological

space, along with that given a function   from   to  , you associate a map from  to  

which you can call cone of , okay?

 from  to . How is this defined? , remember  is nothing but the quotient

of  ,   so,  I  am writing these notation   for  the element which is  represented by

. So, take   equal to   the class of  . This gives you

the cone construction which you notice is canonical, namely, if you have another map  from 

to , then  equal to , okay and . So that is the meaning of saying

that cone construction is functorial. 



Now one more fact we want to use, namely, look at the standard -simplex . You can

think of it as a cone over the subspace , okay? Note  which is a single point, but  can be

thought of as a cone over  , this one is a line segment and then  can be thought of as the

cone over , this one is a triangle and so on. In this convention, one the apex of the cone is the

last vertex . Alternatively, you take the apex to be  for all of them. Both conventions are

possible.

So, I  want to attack this suspension map directly  at the chain  level.  So,  chains are after  all

generated by singular and simplex, take a singular and simplex that means combines function to

 to   this is   and  , I am going to define 2 such things namely if you look at the

upper cone namely  and star with  the North Pole that will give you a cone construction of

this  itself .

So, I want to attack this suspension map directly at the chain level okay? So, chains are after all

generated by singular simplexes. Take a singular -simplex that means a continuous function 

from  into  . I am going to define two copies of the cone of  , namely, if you look at the

upper  over   viz.,  send   to  ,  the  North  Pole  as  the  apex  that  will  give  you a  cone

construction of this tau, denote it by . That will give you a map from  to , that is

the upper part. Similarly another cone over  in which the last point  is going to . Denote it

by . So, there are two such cone constructions out of the singular simplex , okay? Both of

them are inside the suspension .  
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Now what we do is to take the sum of these two singular simplexes with a correct sign, viz.,

define  . Clearly,   is a cycle okay? Starting with  , you

can explicitly write down a full formula for  of the identity of -simplex later on. 

I  have  defined   only  on  a  singular  -simplex,  but  if  you  take  a  general  -chain

 gives  you the unique linear  extension of   to  a  chain  map

 to  of degree . Be careful about that. Unlike the situation so far, where we have

come across with chain maps of degree  only. So, an -simplex in  has gone to -chain

in  , okay? Once you verify  that  it  is  a chain map, then you get  a  homomorphism at the

homology level okay? But out a tilde and take the reduced homology. 

We claim that this  is nothing but the morphism , which we have already proved, is an

isomorphism. So, we want to prove that   is the suspension isomorphism . That is the same

thing as showing that   is  .  Remember that   is  the inclusion induced map under this

deformation. So, it is like identity map as far as the homology is concerned. 
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So, in order to show that this delta component sigma star is eta star we need to go back, okay, to

the snake lemma. Go through the steps how  was defined. And then you will get it. There is no

shorter way here to see how this is equal to this one okay, other than going through the steps of

the definition of . No theorems will give you this. So, you have to go back to the snake lemma

okay.
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So, let me do that. So I have copied that diagram slightly differently to suit the present situation,

viz., the spaces involved are   are the two cone over  , their intersection being  and

union being  .  So,  therefore  the  entire  thing becomes  very  easy here.  Now how was the

connecting homomorphism defined from this kernel you come here this inclusion map then you



pick up something here then you push it down then pick up something here and push it down

right? 

What is the element here I am taking? So, I start with  of something -cycle okay and then

apply   and see what is it. Whether I get back the same element that is what I have to check

okay?
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Starting with an element  in  instead of a singular simplex, represented by a cycle ,  is

a cycle means  , right? so that is in the kernel okay? And then we have   okay?

Then I want to show that  of that is again equal to 

So,  is equal to , right? But  is equal to ,

from the direct sum. For the time being ignore the sign , we shall adjust it at the end.

Therefore in the definition of  , I do not have to pick up something else. It is already there,

namely, . Remember that . 

So, now look at the boundary of this element. The boundary of the direct sum is nothing but a

direct sum of the boundaries. So, I have to apply boundary here, boundary here to get an element

here. So that is what is boundary of  . It is nothing but boundary of this, minus

boundary of that. Now you must know how to compute boundary of this one,  



This   itself is a summation of singular simplexes   For each fixed  , what is the

boundary of . Since  is the linear extension of  and the map which sends  to the

vertex  ,  it  follows   for   and  .  Similar

conclusion applies to  also. Since  etc., and since  is a cycle,  we

get,  . We can now bring tin the other factor

 which we had ignored and the conclusion follows.   
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Next let us do computation of the homology of  itself. Here, for the first time, we are doing

something non  trivial  now okay?  Again  I  have  been  telling  you that   is  nothing  but  the

suspension of  , etc.,  finally   is the iterated suspension of  . And   is what? Just the

discrete space with two points, for which the entire homology modules we know okay? All the

higher homology modules are . And because it has  components  is . 

But  when  you  take  the  reduced  homology,  it  will  be  infinite  cyclic  okay?  Therefore,

immediately, you see that   is infinite cyclic and  is infinite cyclic and so on, you

would  immediately get that  is infinite cyclic. Here whether you put tilde or not it does

not matter. Only thing is that twiddle is necessary when you take . When ,  is

. But if you do not put twiddle then it is . Okay? For that reason you have take reduced

homology, okay? So, what happens to other homology groups.  Let us look at . For ,



there is no information coming from this Mayer-Vietoris sequence or the homology suspension

theorem. 

But we already know that  depends upon number of path connected components of the space.

 is path connected. Therefore,  is infinite cycle and  is . This is true for all sphere  for

.  To  compute  ,  for  ,  we  can  use  the  homology  suspension  theorem

iteratively  and conclude  that  it  is  isomorphic  to   and  for  ,  it  is  equal  to
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Once you have this you can actually write down a generator for , as mentioned earlier in

this picture. So, this  represent  respectively of , Under the augmentation  goes to

 and so it is -cycle. The element  in  represented by  is a generator of .

Denote this by  and inductively define  to get a generator of . 

How does   look like? It is equal to  . If you put arrows

indicate  the direction  of  edges  then you will  see  that  it  is  like a  quadrilateral  traced  in  the

clockwise direction. So, this is the picture in dimension , okay? 

Like this now you can go on to make a cone over double cone over this one to get the picture of

 and the -cycle will be the sum of various triangles there, oriented triangles, correctly oriented



okay? So, when you study simplicial  homology, you will  come again to have a look at  this

picture.
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Next thing is we can now compute the homology of the pair  . This time we do not

need Mayer Vietoris sequence. We just need the long homology sequence of the pair okay?  is

contractible, therefore if you take the long homology exact sequence, what we have is  to

 to   to   and so on, the two end terms in this part are   and

hence this middle arrow will be an isomorphism. Since we have computed this thing now we

know  is   if   and is equal to  if  , okay? So when you are discussing

relative homology, there is no need to put the twiddle here. 

So, next example,  I think we cannot do that example now. It is time. So let us to stop here. 


