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Hello welcome to NPTEL-NOC, an introductory course on Points at topology part 2. So, as I

told you yesterday, today we shall construct the ordinals. in this section we shall construct the

ordinals and study some of its  topological properties.



First of all we have to make a definition. Two well-ordered sets , for  and , are

said to be equivalent if there is a bijection from  to  , a set theoretic bijective function

which preserves the orders. What is the meanings of that? 

 less than or equal to  in , first relation, should imply  is less than equal to , in

the second relation. There must be an order preserving bijection  from  to . 

Obviously, the inverse of   will we also ordered preserving. An equivalence class of well-

ordered sets is called an ordinal. You see, you take the collection of all well-ordered sets that

is not a set. However, we can define a binary relation on on it as above. Nobody stops you

and then you can verify that it is reflexive, symmetric and transitive. 

So, you can look at equivalence classes. This word class is very important here. Here neither

the entire collection of wel ordered sets on the individual equivalence classes are sets. The

equivalence classes are cared ordinals. So, in what follows you are going to construct a set of

representatives for a class of ordinals, not all ordinals but a large class of ordinals. 

So, we will construct that which itself is a set with a  well-order: one set of representatives.

So, this is the whole idea,  now that  will  be a  sufficiently  large class of  ordinals for  our

purpose.
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The construction of this Ordinal Space: of course, when you say when there is a well-order

on a set, then we can take the topology also and then we can say use the word ordinal space.



The following construction works well with any uncountable set. Now, you must know that

uncountable sets exist. So, that  part  is  elementary set theory or whatever.  You know, set

theory of cardinals, I am assuming that you know it. Or I will pretend that you know it. 

So, I am not going to teach you the set theory of cardinals here. So, be sure of that. So,

indeed, this is not the correct thing to do in the logical sequence of teaching perhaps. But

since you are familiar with natural numbers in whatever quote unquote way you know, you

can  take  the  power  set  of  the  natural  numbers  and  call  it  ,  that  will  do  our  job  of

understanding what are ordinals to begin with.

Strictly speaking, we should not assume that we know the natural numbers. They will be also

constructed out of what we are going to do. So, all that you have to know is that somehow

that there is an uncountable set. Now, so, fix one uncountable set , start with a well order on

it.  The theorem that we have proved, every set can be a well ordered.

Start with a well order on  and then ad one extra point.  

So, once again I denote it by   equal to   and extend the order on   to   by

declaring that all the elements of  are less than, strictly less than infinity prime. That will be

automatically a well order in which  will be an initial segment. In fact, we have used this

process earlier, extending a well order above as well below also. 
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Now, let us put   equal to all points of  such that  is uncountable. Remember what is

? It is the left open ray: take  to be all those  in  for which  is uncountable. Then 

is non empty. How do you prove that   is non-empty? Well, you can take   to be infinity

prime here. Then what is ?  is precisely  and we have started with the assumption that

 is uncountable. 

So, therefore this  contains infinity prime and hence non-empty. That is the role of infinity

prime here. If I do not put this one, I will be hard put to prove why this  is not empty. In

fact, it may not be true also. That is the trick. infinity prime is there just for this purpose. One

extra point and you have got a non-empty set you. 

Once  it  is  non-empty,  you  can  take  infimum of   belonging to   because   is  well

ordered, take the least element of   and call it  .  So, this makes sense because   is  not

empty. That is all. 

So, this  will be automatically a member of . So, it is less than equal to infinity prime, we

do not know whether this  is less than infinity prime or for that matter is equal to infinity

prime. 

So, this depends upon the set  itself, but we are not bothered about it. We started with any

uncountable set. Therefore, we do not know much about it. If you take natural numbers and

power set  then maybe you can say that this  has to be actually  infinity  that is  a different

aspect. So, we do not bother. This is an element of this  that is all we know. 

Also, now let  denote the least element of . This time I am bold enough to use the symbol

 itself. Perhaps, I better use  or  as before. But that is too much of work. Whenever it is

needed later on, I will do that. Right now let us just have this symbol , for the least element

of . The least element exists anyway because this is a well ordered set.

We then take the order topology (open intervals and half open intervals constituting a base)

on both subsets  and  of . We have seen earlier that the restricted order makes

them a well ordered set.  

So, you can take the order topology on both of them. Clearly this  will be in the closure of

. That much is clear. Apart from the properties we have listed above under total order,



(except for one property which is for a well ordered set), now, we will have more interesting

properties of this spaces  and . 
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So, basic properties of this ordinal topology. (I told you I am not interested in teaching you

cardinality theory, I hope you know it. We assume that you are familiar with this.)

So, start with  (little omega) equal to the least element of the set of all  such that, the

cardinality of this left ray  is not finite.

For example, if I take ,  is empty, if  is the immediate successor of , then  will

have only one element   and so on. (So, that is where actually the Piano construction of

natural numbers would start, if you have do it by yourself. Otherwise, you may pretend that

you know that stuff). So, you take all  such that the cardinality of  is not finite and take

the least element of that set. Because the least element is also an element of this set, it follows

that  is infinite. 

So, here this  denotes the cardinality of . 

Now for every , (that means what?  is less than  and is less than ) the cardinality

of  is also finite.  is finite, we add one more point to it, its cardinality is also finite. It

follows  that  if  you take this  check  as  a  function from  ,  this  interval  to  the  natural

numbers, (namely cardinality is now a finite, a finite number, a natural number, not equal to 

) it will be an order preserving bijection. See the domain, whatever we have started with is an



ordered set and the codomain we pretend we know it, is the set of natural numbers with the

usual  order.  Both  of  them are  well-ordered  sets  also.  This  check  is  an  order  preserving

bijection. So, in our definition, they belong to the same equivalence class and represent an

ordinal and that ordinal will be denoted  itself. That is the whole idea here. Indeed, if you do

not know what  is, then  as above, you can think of that as the definition of the set of

natural numbers. And then construct the algebra out of that by using the successor theory. I

am not going to do that here. 
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So, here are a few terms I want to recall: Every member of  is called a finite ordinal.  is

called the first limit ordinal. There are other limit ordinals, obviously, there are many more.

This is some name you can say there are many elements which are not finite. Among them

omega is the least one. That is why you call it first limit ordinal. Now, cardinality of  is

the same as that of the set of natural numbers because there is a bijection like that. Clearly

elements  of  can be broadly classified by the cardinality of . How many elements are

there before  ? look at the cardinality of that. So, it may be finite, it is countably infinite

when . Beyond that, we cannot be sure that the cardinality classifies the ordinal. I do

not want to  go on further  classifying these what kind of countability  is  there etc.  that  is

purely for logic, which we are not interested in it right now. We are only interested in some

broad classification of members of . 
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So, elements of  which are not immediate successors are called limit ordinals. I am just

repeating this one here. We only defined first limit ordinal but all of them which are not

immediate  successor  are  called  limit  ordinals.  Of  course  every  element  in   has  an

immediate successor,  whereas  not  all  elements are susscessors. So   is  not an immediate

successor,  is an immediate successor,  etc are all immediate successors. 

So, again there will be another one which is not an immediate successor and then again after

that  only immediate  successor  will  be  there  and so on.  This  is  a  wonderful  space  never

ending! That is why we have put this  here. So, that is the end this is the maximum element

amongst all of them. 

There are several equivalent as well as slightly variant definitions of limit ordinals, different

names are also, one of which we have chosen. This name can be justified partially as follows:

why limit ordinal? Just ordinary name. So why so I am going to tell you that. 
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Take any  element  in  the  open interval  .  Suppose it  is  not  a  successor.  (  is  not  a

successor anyway, we do not know what  is. So, we have omitted them.) Then there exists a

strictly  monotonically  increasing  sequence  ,  (strictly  monotonically  increasing,  very

important) which converges to .

Since every element which is not an immediate successor has this property, viz., it is a limit

in the above sense we are calling it a limit ordinal, that is the justification for the name. Soon

we will see that that is not a very good justification either.)  

Proof:  First enumerate the countable set tell ,  is countable set means it

can  be  put  in  one-to-one  correspondence  with  set  of  natural  numbers.  However,  these

 are not in the order in which  is ordered.  comes with a well order.  

That does not matter just take an enumeration to start with.

Now, I am constructing the sequence  as required. Start at  equal to  or any element in

, no problem. Having chosen , I want to define  inductively. So, how do I do that?

Once  is chosen, look at the maximum of , call it a. Clearly this is still less than

 because both  and  are less than . 

Since  is not equal to , because  is not an immediate successor, so,  is also is in

. So we can choose . Then it follows that  is less than  and  is less

than .  



So,  is strictly monotonically increasing. Given any , say  for some . Then it

follows that for all . That just means  converges to . 

(Refer Slide Time: 20:47)

So, here is a caution: do not be carried away by the above theorem.  is a limit ordinal but it

is not a limit of any sequence in .  is not a successor yet there is no sequence in .

(Of course, if include  also then you can construct a sequence converging to .)  

So, we shall soon see why this is true. Observe that  is a limit of the net viz., you think of

 as the domain of a net because it is a directed set. this is totally ordered set anyway. So,

 as the domain of a net, what is the net? Just inclusion map. Take this net inside 

closed. 

Then this   will be obviously a limit point. So, in this one single paragraph I have both

justified as well as cautioned you. So I have given you another justification for the name

limit ordinal. This time by taking, not a sequence but a net.  
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It is easy to see that the order topology on   is discrete, just like natural numbers, for

which we have already seen that. So, ordered topology, that is just discrete. However, if you

include  , it is not discrete. Something nice can be seen here, viz., singleton  ,   is not

open . Discrete means all singletons are open. 

So, to see singleton  is not open, suppose it were. Then we should have two elements 

such that  should be . If  then  is empty. Therefore

 and belongs to this intersection whereas  is not equal to .  

But  is a  set. So, it is countable intersection of open sets. What are they? start with any

sequence  as above which converges to  and look at the intersection of all . 

Indeed,  there  is  another  way  of  looking  at  is  .  There  is  an  order  reversing

homeomorphism from  to the space of all  ,   ranging over natural numbers along

with . So, send each  to  where is cardinality of , then this omega itself send it to . 

So,  that  will  be  a  continuous  function  that  will  be  a  bijection.  it  is  order  reversing

homeomorphism as you can take this also has an ordered sets, an ordered topology, then we

will have this,  is a limit point. So, that is the way you have to think of this one. This  is a

limit point of . 

(Refer Slide Time: 24:48)



A subset   of   is  bounded in   (bounded in   open is  very important  here

because everything is  bounded in   closed, i.e.,  if  you include  ) if  and only if it  is

countable. Note that all subsets are bounded below obviously by . So, we are only interested

in bounded means bounded above everything is bounded below in a well-ordered set. 

So, if and only if it is countable, is the statement. Only countable subsets and all countable

subsets are bounded inside   itself. So, this is the crucial thing I said. Wait a minute.

Slowly we are building it up. 

So, why so, in particular, if this is the case then it happens at every compact subset of  is

countable. Because compact subsets are bounded, that we have seen last time. 



So, bounded subsets are countable is what we have to prove of course, every subset   is

bounded below. So, we are only interested in whether it is bounded above or not. 

So, let  be a countable subset of . To see that it is bounded above, considered as subset

of  what we do: take the smallest bound namely least element among all bounds of  in

, and show that it is inside . That is what we plan.  

You know that every subset of  is bounded above by  itself. Hence has a supremum 

makes sense, Put . We claim that this s is less than ,  is not equal to . That is all.

So, how do we do that? Look at the set  which is the union of all the left rays , where 

ranges over . So,  is some scattered countable set. 

So, for each point  in , you fill up all the things missing which are below . So, it is like

saturating the set . everything below them comes inside, so, that is . So, this is a very, very

big set now. So, for all  inside , you take  and take the union. Each  is countable by

the very definition of . But  itself is countable and a countable union of countable sets is

countable. Therefore,  is countable.  

But now it follows that  is equal to . Therefore, if , then it follows that  must be

the entire of . But  is uncountable. (We started with a set  which is uncountable

then construct this , to be the least element such that  is uncountable.) 

In  particular,  this  implies  that  no  sequence  in   converges  to  .  See,  because  the

supremum   of the set of images of  sequence  will  be inside  .  A sequence is  what?

Countable set first of all right? There supremum  will be less than   and then   is an

open  neighbourhood of   which does  not  contain any  member  of  the  sequence.  So,  the

sequence cannot converge to this . So, this fact is useful. 

So, this is an extra thing I am telling already. I have proved that if  is countable, then it is

bounded, bounded inside  . Now, let us prove the converse. Suppose   is bounded in

. If  is in , is an upper bound for , that means this  is contained inside ,

because every thing is less than or equal to . Since  must be inside . But  is a

countable set. So,  is countable. Over. 
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So,  now we come to a  little  more  serious  business  here.  If   and   are  any two

interlaced, increasing sequences in  , (what is the meaning of interlaced? You take  

that will be less than or equal to ,  will be bigger than  and then  will be less than 

and so on. Interlacing can occur in slightly different ways also. If you change the labels there,

you will get the same thing that is all. So, I can define like this also). Then they have the

same supremum. See increasing sequences in , they are countable. So, they are bounded.

This much we have seen already. So the supremum exist. Conclusion here is that they are the

same. So, this is similar to what happens inside real numbers. So, I will leave it to you as an

exercise.  

 is  I-countable. Now, we are talking about topology now.   is I-countable at all

points except . So, how do we show that? Say  belongs to ? If  is , then singleton

 itself is open, therefore,  that itself is a base countable base at . Over. Otherwise, look at

the open interval , where  is less than . Look at all these where  is fixed and  is

varying. They are neighbourhood so . They form a countable family, because there are only

countably many points less than  . It is also a local base at  . Every neighbour of   must

contain an open interval around it. First of all that interval must contain . It may contain

 etc,  has to be there and the lower limit of the interval has to be some

. 

Now, to see that there is no countable local base at  : I said accepted at that point right? So,

why there is no countable local base at . Let us suppose there is one such. Then it follows



that there is a countable set  which I may enumerate as , such that the family 

is a local base at . Half closed intervals, because there is nothing bigger than . 

Now,  you  take  ,  because  a  countable  set  is  bounded  in  ,   exists  and

belongs to  . If  you look at the neighbourhood   of  ,  no element of the family

 is contained in it, because,  is bigger than all . 
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Next  as well as  are not separable. We have seen the I-countability. We will now

see that separability is not possible. Enough to prove that   is  not separable,  because

separability is hereditary. So, we shall prove this one is not separable automatically it follows

that  is not separable. 

So,  why  this  is  true?  Take  any  countable  subset  .  What  happens,  you  will  have  its

supremum . If you take the supremum plus  that will still be inside . But then the non

empty open interval   will not contain any element of  . Therefore,   cannot be

dense.  

So, this is also an easy consequence of (5). viz., every countable set is bounded. Well, let us

stop here. Next time we will see some more serious topology of this ordinals. Thank you.


