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Welcome to this lecture. This is the final lecture of week 2. Before we proceed, we first recall

what we have already covered in this week. We have looked at a way of measuring sizes of sets

or way of identifying which events are more likely to occur in a random experiment. This we are

doing via measures or in particular for random experiments via probability measures. We see the

associated value, the size of the sets or size of the events and make the decision whether some

events are more likely to occur. So, in this way, we have constructed the measures as countably

additive non-negative set functions on -fields.σ

Now, we have also looked at many examples of -fields. In these examples, we have looked atσ

the measures that we can define on top of them. And we have also looked at many of these

algebraic properties and continuity properties of these set functions, of these measures. In this

lecture, we are going to look at a slightly different way of constructing measures. So, so far we

have seen examples, explicit examples of measures, but now, in this lecture, we are going to

consider a way of constructing these measures.

So, the main difficulty arises in constructing examples is the verification of countable additivity.

As you can guess, what you need to check is the, is that given any arbitrary sequence with

pairwise disjoint sets, we need to see that the sizes add up and give you the size of the union.

Now, this is not really trivial to verify in general spaces. And that is why we need some

additional results which will help us verify this countable additivity property. This is what we are

going to discuss in this lecture. So, let us move on to the slides.



(Refer Slide Time: 2:28)

So, we are going to continue this discussion on continuity properties of measures and we are

going to see that this is the property that will help us construct measures via these additivity

properties. So, recall first that we have shown that are non-negative countably additive set

function that is a measure is finitely additive. What do I mean by that? So, I take arbitrary finite

number of sets which should be pairwise disjoint, then the union, the size of the𝐴
1
,  𝐴

2
,  .  .  .,  𝐴

𝑛

union should be the sum of the individual sizes.

Now, this was finite additivity and we are saying that this follows from countable additivity. In

practice, finite additivity is easier to verify. So, this is our starting point of the discussion.
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Now, in the next result, what we are going to discuss is that, we are going to talk about a

continuity notion for finitely additive set functions. Now, we will take such set functions and we

are going to show that that is countably additive. In all of these discussions, we are going to

concentrate on non-negative set functions because that will help us in constructions of measures.

So, we are going to start off with finitely additive set functions, verify certain continuity

properties and we are going to claim that these are countably additive. So, this is the procedure.

(Refer Slide Time: 3:58)



Now, this result can be actually be proved on a field. So, you can look at non-negative finitely

additive set functions on fields. So, we have to clarify what do we mean by finding relativity on

fields and so on. But what we are saying is that you do not need to start off with the -field, youσ

can start off with a field and do these verifications. So, to do this, what do we need to recall first

is the notion of countable additivity of an arbitrary set function on some collection, which in

particular could be a field. So, this was discussed earlier in note 2.

(Refer Slide Time: 4:31)

So, let be our set function defined on a field. Now, what we need to verify for countableµ

additivity is that you are going to take arbitrary sequences Ans which has, which are pairwise



disjoint. And then you are going to look at the measure of the complete union, the countable

union and you are going to claim that that is equal to the sum of the individual sizes. But since

you are dealing with a field, since we are working with our field, what we need to assume is that

this sequence has this additional property that this countable union is also in the field.

Now, this is the property, this is the restriction that we impose on the sequence rather than the

field, because fields do not support countable unions. Arbitrarily, if you arbitrarily choose these

sets, then the countable union need not be in the field. So, for this verification, what you do, you

are going to choose those sequences with pairwise disjoint sets and the union being in the field

for only those sequences you are going to make this verification. If you have this, then you are

going to say that this , this set function is countably additive on the field .µ ℱ

Now, earlier, we made this definition for general collection. We are just recalling it from, for our

setup, which is a field. We have just recall that same definition that was made earlier. Now, in

addition to countable additivity, we are also have to look at the corresponding notion involving

finite number of operations, which is finite additivity. So, we are going to say that the set

function on our field is finitely additive if for all positive integers and pairwise disjoint setsµ ℱ

, so you are going to choose some positive integer and then you are going to𝐴
1
,  𝐴

2
,  .  .  .,  𝐴

𝑛
𝑛

choose that many pairwise disjoint sets from the field.𝐴
1
,  𝐴

2
,  .  .  .,  𝐴

𝑛

If you get such things, then by the structure of the field, they are finite union is already inside the

field. So, you do not have to make this additional assumption of this union, whether it is there or

not, it is already there by the structure of the field. So, you can talk about . is definedµ
𝑛=1

∞

⋃ 𝐴
𝑛( ) µ

on the field. So, you can talk about . So, that is your left hand side. But you want toµ
𝑛=1

∞

⋃ 𝐴
𝑛( )

claim that that size can be obtained as adding up the individual sizes of the sets.

So, if you have this property for all possible n and all possible sets in the field, then you are

going to say that this set function that you are going to consider is finitely additive. So, that is the

only distinction between finitely additive and countably additive set functions that in countably

additive set functions on fields, you have to ensure that you are working with sequences with

union in the field. So, that is an additional assumption that you impose. But for finite additivity,



the finite unions are already in the field. So, you do not have to impose those additional

restrictions. It is already there for you.

(Refer Slide Time: 7:35)

So, with these two notions at hand, we now introduce another terminology, which will help us in

explaining the results better. What is this terminology? We are going to talk about set function

being a measure on a field. So, so far, we have defined a measure on -fields. So on top ofσ σ

-fields, we talked about this non-negative countability additive set functions on -fields.σ

Now, since we already discussed a notion of countable activity on a field, it is reasonable to

define this notion of a measure on a field. So, what we are going to do, we are going to just

follow the same idea that we are going to take this collection, which is a field, , then we areℱ

going to refer to any countably additive set function or non-negative countably additive set

function to be a measure on the field.

So, here again, just to highlight, we are talking about non-negative values, but is also∞

included. So, sizes of the sets could be . Again, you are talking about non-negative countably∞

additive set functions on a field and those we are going to call as measures on the field .ℱ



(Refer Slide Time: 8:55)

Now, as done for measures on -fields, we are going to discuss this property that measure of theσ

empty set is 0 or not. Now, we obtained this property for measures on -fields by assuming thatσ

there exists at least one set for which the measure is finite. If you make the same assumption for

these set functions on a field, then you again end up with the same property. So, remember, in

your definition of a measure on a field, this example is still valid that where do you associate

infinite mass to all the sets that is still a valid example.

If you want to remove that, if you want to get rid of that what you need to do, you need to ensure

that there exists at least one set which has finite mass. So, these discussions was done for

measures on -fields. We are making the similar discussion now for the fields case, measures onσ

fields.

So, what we are going to do? We are going to look at exercise 7 and exercise 8. Exercise 7 is for

finitely additive set functions and exercise 8 is for countably additive non-negative set functions,

which we just called as a measure. So, this is the only basic difference between exercise 7 and

exercise 8. But the same result follows that you assume that there exists a set A in the field with

the measure of the set being finite, then using the exact same structure of the argument, using the

exact same argument, you can show that the measure of the empty set must be 0.

So, again here, you can take a finitely additive non-negative set function or you can take a

countably additive non-negative set function. So, then in the second case, which is countably



additive non-negative set function, we called it a measure on the field. So, again, so for these two

cases, in exercise 7 and in exercise 8, if you make that assumption for the existence of such a

special set, you can immediately show by the same argument that measure of the empty set is 0.

(Refer Slide Time: 10:59)

But then we are going to make this as part of our hypothesis implicitly, because we want to avoid

that example where every set gets attached to infinite mass. So, we do not want to look at such a

thing, because it is not physically relevant. So, in these type of exercises we are requiring this

familiar assumption for the existence of a set with finite mass. So, now, this was discussed earlier

in note 6 and 8 for measures on -fields.σ



Now, for similar reasons, we are going to ensure the same, we are going to make the same

assumption for measures on fields also and also for finitely additive non-negative set functions

on fields. So, in both of these cases, we are going to assume that there exists a set with finite

mass, and therefore, exercise 7 and 8 remains valid. And then we are going to end up with the

fact that measure of the empty set is 0.

But then just to clarify once more, in all subsequent discussions, this will be part of our

hypothesis implicitly, but, to be clear, this does not follow from the definition of a finitely

additive set function on a field or it does not follow from the definition of a measure on a field.

We are making this assumption in addition to whatever we have already defined and we are

going to make this part of the hypothesis implicitly.

(Refer Slide Time: 12:34)

Now, as discussed for measures on -fields, you can show that a countably additive set functionσ

which is a measure, non-negative of course, which is a measure, you can show that it is finitely

additive. Here you are going to use the fact that measure of the empty set is 0. So, again, as

discussed earlier, for measures on -fields, it will again follow the same structure of theσ

argument and you can show that a measure on a field is finitely additive.

But then, once you have that, you can now ask are all finitely additive set functions non-negative

on a field are all these also countably additive? So, exercise 9 says that all countably additive

non-negative set functions, all measures on fields are finitely additive. You are asking the



converse question, given a non-negative finitely additive set function, is it true that it is also

countably additive.

So, exercise 10 is going to tell you that it is not true. And you are supposed to figure out an

example of such a thing. You are going to figure it out, you should figure out example of a

non-negative set function, which is finitely additive, but not countably additive. Try to find this.

It is an important example, which will help you clarify the difference between finitely additive

and countably additive set functions.

(Refer Slide Time: 14:07)



But now, we come to the main result of this lecture. As before, we are saying that we are going

to work with fields and you are going to work with finitely additive set functions non-negative

on the field. Now, we are going to claim that with some additional continuity assumptions, we

are going to, we can claim that it is also countably additive. So, this is some additional condition

together with the finitely additiveness which will help us prove countable additiveness.

So, just on its own finitely additivity, finite additivity does not imply countable additivity, but

with some appropriate sufficient condition, in terms of some continuity assumptions, will help us

show that it is also countably additive. So, this is the discussion in theorem 1 which is the main

result of this lecture.

So, let us see this. For measures, we already had this property. Now, we are starting off with

finite additiveness. So, we do not have countable additivity which was used to prove this

continuity assumption. So, now, from finite additivity, we are adding this as part of the

hypothesis now, some certain continuity assumptions, which is continuity from below for this

finitely additive set function. So, we are saying that should increase to . If you haveµ(𝐴
𝑛
) µ(𝐴)

that, then you call that your set function is continuous from below at each .µ 𝐴

Now, if this is your part of your hypothesis, then we claim if this is your part of, this is the part of

hypothesis that it is continuous from below at each set, then you are going to claim that isµ

countably additive on the field and therefore, this finitely additive set function which is

continuous from below at each set will become a measure on our field. So, together with finite



additivity and continuity from below you can claim countable additivity and thereby you get a

measure on a field.

There is a similar related assumption, but it is in terms of continuity from above. So, now again

you are taking this finitely additive set function and assume that it is continuous from above at

the empty set. So, what do I mean by that? So, you are going to choose sequences in the field

again, which decrease and decrease to the empty set that is very important. So, decreasing means

that their countable intersection becomes the empty set, but these sets be decreasing. For those

sets, what you need is or the should be 0, because or for all finitely additive setµ(𝐴
𝑛
) µ(ϕ) = 0

functions as discussed in the above exercises.

So, if you have this property, then you call that your finitely additive set function is continuous

from above at the empty set. So, now with this as part of your hypothesis, you are going to claim

that it is also implies countable additivity. So, together with finite additivity, continuous from

above at the empty set, this property will imply countable additivity, and thereby, you will get a

measure on a field, on the field .ℱ

So, these are two sufficient conditions that will help us prove that our finitely additive set

function is also countably additive. Of course, once this becomes a measure, then you can

immediately try to go by the earlier arguments and try to see that these continuity properties are

really required. So, please check this that whether these conditions are also necessary or not. This

is just helping you understand the topic better.

But now, what we are going to do is to prove this theorem that a finitely additive set function

together with any one of these continuity assumptions will imply countable additivity. Let us

start with part 1, which is continuity from below at each set.
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So, how does this help? So take an arbitrary set in , call it , and choose a sequence ofℱ 𝐴

pairwise disjoint sets in your such that the union is A. Here, what you can do is that you canℱ

also look at these , some finite unions, and then we will get these examples of s𝐵
𝑛

=
𝑖=1

𝑛

⋃ 𝐴
𝑖

𝐵
𝑛

which increased to . Now, you are going to use the continuity from below at this set , which is𝐴 𝐴

part of the hypothesis, and use the finite additivity. So, what you are going to do?



So, we are going to say that as s increase to the set A, then So that is why𝐵
𝑛

µ(𝐴) = 𝑙𝑖𝑚 µ(𝐵
𝑛
).

the continuity property that is assumed, but then look at , that is nothing but these s areµ(𝐵
𝑛
) 𝐵

𝑛

now pairwise disjoint union of these sets Ai, so, therefore, what you get is that limit of this finite

summation becomes this. So, this is using finite additivity. But then, once you take this limit of

these non-negative terms, sum of these non-negative terms, you end up with this summation, as

expected.

So, therefore, you get countable additiveness with any arbitrary pairwise disjoint sets. So, this is

what helps us in proving this countable additiveness. To prove the countable additivity, you are

going to start with these pairwise disjoint sets. And then you look at this union, then these s𝐵
𝑛
'

will increase to this set and ’s, since ‘s are increasing then using continuity property from𝐴 𝐵
𝑛

𝐵
𝑛

below at the set A, you are going to repeatedly apply this hypothesis end up with the property of

countable additivity.

(Refer Slide Time: 20:07)



And for part 2, we are going to take these same s, s as above, meaning, so this should be𝐴
𝑛

𝐵
𝑛

part I. So, this correction will be made in the notes. So, what do I mean by this? So, again, you

are going to choose this sequence of pairwise disjoint sets and take this complete union, this

countable union call it and take these s as this finite union which is of course a pairwise𝐴 𝐵
𝑛

disjoint union of these sets up to .𝐴
𝑖

𝑖 = 𝑛

So, take these same sets and you want to verify countable additivity once more. But now, first

apply the finite additivity of the set function for the set . So, since s are subsets of A, then𝐴 𝐵
𝑛

you get the remainder part as , so this is . So, this is simply using the finite𝐴\𝐵
𝑛

𝐴⋂ 𝐵
𝑛

𝑐

additivity. But then, look at the term. Since are finite disjoint union . so this willµ(𝐵
𝑛
) 𝐵

𝑛
𝑖=1

𝑛

⋃ 𝐴
𝑛

split by finite additivity. So, you have we applied finite additivity twice.

Now, look at . Since increase to the set , meaning will decrease to the𝐴\𝐵
𝑛

𝐵
𝑛

𝐴 𝐴\𝐵
𝑛

𝐴⋂ 𝐵
𝑛

𝑐

empty set. So, therefore, by this continuity from above at the empty set, here we use that

hypothesis. We get that . So, this is where we use the hypothesis
𝑛 ∞
lim
→

µ(𝐴\𝐵
𝑛
) = µ(ϕ) = 0



that it is continuous from above at the empty set. Here we are applying it to the decreasing

sequence .𝐴\𝐵
𝑛

Now, look at the original result that we obtained from finite additivity. So, this was, the isµ(𝐴)

the addition of these two terms. Now, you have proved that on the right hand side, the second

term that term has a limit which is 0. You have proved that. But note that the left handµ(𝐴\𝐵
𝑛
)

side is independent of n.

Therefore, what you are going to do is to let in this relation and what will happen you are𝑛 → ∞

going to get that . Since you already know thatµ(𝐴) =
𝑛 ∞
lim
→

(µ(𝐵
𝑛
) + µ(𝐴\𝐵

𝑛
))

by the continuity from above at the empty set, then you are simply ending
𝑛 ∞
lim
→

µ(𝐴\𝐵
𝑛
) = 0

up with the limit of s.µ(𝐵
𝑛
)

But what are s? Again, by the finite additivity we have already know that summation iµ(𝐵
𝑛
)

from 1 to this is the size of the individual sets. So, now, if you let here, all you will get∞ 𝑛 → ∞

is the series and that will tell you that is exactly called to this summation of the individualµ(𝐴)

sizes. So, that proves that is again countably additive.µ

So, in both these properties, we are taking a sequence of pairwise disjoint sets, looking at the

union and we are showing that it is the, this countable union of the individual sizes. And to do

that, we are just making use of that structure of these sets which increase to the union. So, that𝐵
𝑛

is what we are using.

So, for part 2, we do not need to look at arbitrary sets, but we just have to ensure continuity from

above at the empty set. For the part 1 we need to have this continuity property for any set ,𝐴

because you are going to show this for arbitrarily approximations from below. So, that is what is

happening. So, there you have these two properties, one is continuity from below at every set or

continuity from above at the empty set.

If you have that for any finite additive set function, then together with this structure on the fields,

you have been able to construct or you have been able to show that this finitely additive set

function is a countably additive set function thereby becoming a measure on the field.
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Now, what are these applications of this result? First, since a -field already a field, this aboveσ

result which is actually proof for a field is applicable to any -fields. So, therefore, this theoremσ

we can apply it to -fields and finitely additive set functions on -fields. So, remember this. Weσ σ

can apply this above theorem to finitely additive set functions on -fields. So, together with theseσ

appropriate continuity assumptions, we can construct, we can show these finitely additive set

functions on a -field becomes a measure on a -field. So, that is the content here.σ σ

(Refer Slide Time: 25:04)



But then how do you really apply it or use this to construct examples of measures. So, in

practice, what we are going to do is this. It is often easier to verify finite additivity, because it

deals with finite number of operations. You just have to look at pairwise disjoint sets and then

add up the sizes of the sets and see it matches with the size of the union. Finite additivity is

usually easier to verify.

Now, what this theorem 1 and this note 17 tells you that you can take this finitely additive set

functions on -fields, check the appropriate continuity assumption, if you have that, then as partσ

of the conclusion of the theorem, you get that this set function is also countably additive. So,

therefore, you get a measure. So, this is a way of construction of measures. So, this is what the

content of note 19 is.

So, in later lectures, what we do, we are going to use this idea that we will take, first, we will

take finitely additive set functions on -fields. We are going to check if that is continuous, in thisσ

sense, one of these appropriate sufficient conditions. And then we are going to claim that it is

countably additive and thereby it will become a measure and it will allow you to construct

measures. So, that is the content of this theorem.

We are now going to discuss some important results for probability measures. And this result

allows us to construct events with probability 0 from sequences of events. So, you are going to

take -fields, you are going to consider probability measures on top of that. So, this can comeσ



from some appropriate random experiment. So, you are going to look at these collections of

results so it becomes a -field.σ

Now, we are going to look at certain specific type of sequences, certain specific type of

sequences of events from the random experiment. And with some appropriate assumptions on the

sequences, we are going to show that we can construct certain sets with probability 0.

(Refer Slide Time: 27:13)

So, this is a very important construction, which allows you to construct sets or events with

measure 0, probability 0. The sets need not be empty, but their probability may be 0. So, these

are impossible events in terms of the probability that you will consider. So, these are non-empty

sets, but their probability is still 0. So, this can happen. Now, what we are going to construct are

these sets which has probability 0 from sets with small mass, not necessarily 0 mass, but small

mass, so that is what is the content of this result, which is called the Borel-Cantelli lemma first

half.

So, there is a second half of these results which deals with independence of events and which is

not part of this course. So, we are only going to see this first half part in this course. Here, what

we are saying is that we are going to take some specific type of sequences from any probability

space. And with some appropriate sufficient conditions, we can construct some very specific sets

with measure 0, probability 0. So, what is this? So, take s to be a sequence in your -field{𝐴
𝑛
} σ

with the condition that sum of the probabilities, sum of the probability of the events is finite.



So, here, you have to be careful. These Ans need not be pairwise disjoint. So, this summation

condition that is there, this summation need not be the probability of the union of the sets An. So,

this is some arbitrary sequence. But with this condition that sum of the probabilities makes sense,

finite, so this sum is finite. So, that is what you require as a sufficient condition here. Then you

claim that the , so that is a genuine set that is in your -field, we have discussed this𝑙𝑖𝑚 𝑠𝑢𝑝 𝐴
𝑛

σ

in week one. So, the probability of that should be 0.

So, that is what the Borel-Cantelli lemma first half tells you that with sequences where the

probabilities are summable, you get that the probability of the limit superior of the sets is 0. So,

how do you show this?

(Refer Slide Time: 29:23)



So, you start with the series that is given to you. So, the sum of the probabilities this is finite. So,

in particular, what does it tell you? It tells you that the tail probabilities, the tail terms, the

remainder terms, after a certain stage onwards that contribution will be 0, if you let . So, if𝑘 → ∞

you are going to look at some terms from onwards that summation should go to 0 as .𝑘 𝑘 → ∞

So, that is another way of saying that this series will converge that the partial sum of the first 𝑘

terms will convert, so the remainder should contribute 0 in the limit. So, that is another way of

stating the convergence.



Now, look at the limit superior and recall the definition. So, what is this, this is . So,
𝑘=1

∞

⋂
𝑚=𝑘

∞

⋃ 𝐴
𝑚

first you will look at this union and then look at intersections of those. But then, if you look at

this outer intersection, you can immediately claim that for each k your is a subset of𝑙𝑖𝑚 𝑠𝑢𝑝 𝐴
𝑛

this countable union from k to . So, if you are going to look at this inner unions for each fix set∞

k, then limit superior is a subset of that that is just by definition.

But now to claim that limits superior An has probability 0, we are going to look at the probability

of this union. So, that is the attempt, that is the procedure that we are going to follow. So, let us

look at that. But since you are having a probability measure, in particular, this is a measure. So,

you have this monotonicity condition. So, is contained in . So, therefore,𝑙𝑖𝑚 𝑠𝑢𝑝 𝐴
𝑛

𝑛=𝑘

∞

⋃  𝐴
𝑛

. But these sets need not be pairwise disjoint.ℙ(𝑙𝑖𝑚 𝑠𝑢𝑝 𝐴
𝑛
) ≤ ℙ(

𝑛=𝑘

∞

⋃  𝐴
𝑛
) 𝐴

𝑛

So for that we had proved this countable additivity property that it is actually given by a

inequality. This was discussed earlier in a previous lecture. So, there we had discussed this

algebraic property that for arbitrary sequence of sets, the union, the size of the union is

dominated from above by this summation. So, this is what we had proved earlier in algebraic

properties of measures. So, that is what we are applying here.

So, probability of the limit superior of the Ans is dominated from above by theℙ(𝑙𝑖𝑚 𝑠𝑢𝑝 𝐴
𝑛
)

probability of the union and that is further dominated by . But then, this is true for
𝑚=𝑘

∞

∑ ℙ(𝐴
𝑚

)

each k. Since limit superior An is contained in these unions for each k, so you have this upper

bound for each k. So, that is our first observation. But then you apply the fact for the

convergence, you apply this fact, that limit as of this summation is 0.𝑘 → ∞

So, therefore, if you apply limit as in , this relation on both sides, your left hand side𝑘 → ∞ *

does not depend on k, but the right hand side depends on k and goes to 0. So, therefore, what you

end up with is this relation that probability of limsup is less or equal to 0. But since probability is

a measure and in fact this probability cannot be negative, so the only possible value is probability

of limsup must be 0.



So, that is what proves that the probability of limsup must be 0. So, here we have used the

convergence of the series, the finiteness of the series, and claim that the tail contributions are 0.

And we have estimated the probability of the limit superior by the tail probabilities and since the

tail probabilities, some of the tail probabilities go to 0, we get the property that probability of

limsup is 0.

So, again, Borel-Cantelli lemma first half allows you to construct possibly non-empty sets, which

is limit superior, very explicit set, from arbitrary sequence where the probabilities are summable.

So, that is the sufficient condition that will allow you to construct these probabilities 0 sets which

need not be empty and this has very important applications, which we shall see later on.

So, we stop here and we are going to continue these discussions in week three lectures. So, there

we are going to start new topics involving certain functions. So, we stop here.


