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Welcome to this MOOC on LASERS. In the last couple of lectures, we discussed the basic

properties of an optical resonator namely, the resonance frequencies, free spectral range and

the spectral response of the resonator. 

We also looked at various parameters which characterize the loss in the resonator because

loss in the resonator is very important. It determines, as we have seen, the line width of the

cavity resonances. So, today we will take up Spherical Mirror Resonators, spherical mirror

resonators.
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A spherical mirror resonator comprises of two spherical mirrors here M 1 and M 2 are two

spherical mirrors of Radius of Curvature RoC, RoC radius of curvature R 1 and R 2 and the

mirror separated by a distance L. So, R 1 and R 2 are the RoCs of the mirrors, L is the

separation between them.

Now, why spherical mirror resonators? The diffraction divergence of a finite beam which is

confined to the resonator is always there is a finite diffraction divergence which is

compensated by the focusing effect of the spherical mirrors. So, what it means is whenever

you have a finite beam of a finite width, then as the beam propagates there is a inevitable

diffraction.

Every finite beam diffracts and unless you have a mirror for example, if we have a concave

mirror here which focuses; so, this is diffracting now if the concave mirror focuses it back,



then it compensates for the diffraction divergence. So, that is what is shown here in the

spherical mirror resonator.

A finite beam which is confined to the resonator as it propagates from one mirror to the other

mirror it spreads, it diverges. But, the other end being a concave mirror it has a focusing

effect and then it sends back it focuses it back and this going back and forth of the beam

continues with a certain fixed beam dimensions.

This is not the case to appreciate this; this is not the case if we consider plane mirror

resonators. As we know in plane mirror resonators if a finite beam starts from this end of the

mirror let me just change the color alright. If the finite beam starts from this end of the mirror

then it will diffract as it goes to the other end it widens.

Now, when it propagates back then it further widens. So, it further widens like this and then

when it propagates back it further widens and now you see that a part of the beam is outside

the mirror. So, this is the mirror extent of the mirror outside the extent of the mirror and, this

part forms loss from the resonator and this is called the diffraction loss.

In a plane mirror resonator, there is diffraction divergence and therefore, there is diffraction

loss. So, diffraction loss this is called diffraction loss. In a spherical mirror resonator because

of the focusing effect of the concave mirrors, we have compensation for the diffraction

divergence and therefore, it results in very low propagation loss. This is why we go for

spherical mirror resonators.
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Further the transverse modes of a resonator. We will discuss this transverse modes in detail,

but right now transverse modes refer to transverse field distributions. We have seen so far

longitudinal modes, which are the resonance frequencies, which are determined by the length

of the resonate.

Now, transverse modes represent the field distributions of the propagation beam, the allowed

field distributions of the propagation propagating beam. As the beam goes back and forth

there are certain specific field distributions which will propagate as they go back and forth

without change in the field distribution, they are called transverse modes. We will see this in

more detail a little later.

So, transverse modes referred to transverse field distributions of the propagating beams in the

resonator. In a plane mirror resonator because there are finite diffraction losses, we do not



have an analytical expression for the field distribution, which is going back and forth. I have

qualitatively shown a field distribution here. So, this is the field distribution. 

So, what is plotted is amplitude of the electric field of the beam in the transverse direction.

So, the beam propagates back and forth. So, the beam goes back and forth, there are certain

field distributions which then subsequently evolve and remain steady, but we do not have any

analytical expressions or the field distributions inside a plane mirror resonator, although we

can obtain them numerically. So, numerical fields can be obtained for plane mirror

resonators.

In the case of spherical mirror resonator the Hermite-Gauss field distributions form modes of

the resonator and if the resonator has a cylindrical symmetry that is symmetric about a

cylindrical symmetry then Laguerre-Gauss field distributions also form modes of the

resonator. So, these are family of modes, we will discuss this a little later.

But, the main point is both this family Hermite-Gauss which comprises of Hermite

polynomials and Gaussian field; a product of Hermite polynomials and Gaussian field, a

product of Laguerre polynomials and Gaussian field gives the field distributions. The

fundamental mode in both these families is the Gaussian mode or the Gaussian beam of the

resonator. 

The Gaussian mode of the resonator is the fundamental member of these two families and in

many applications we would like to have the Gaussian mode of the resonator and we will

discuss this Gaussian mode subsequently with little bit more detail. Now, the two primary

reasons is one the diffraction loss is very high and in the case of plane mirror resonators

whereas, in spherical mirror resonators the diffraction loss is low. 

Therefore, low propagation loss we are interested in low loss because we would like to have

very sharp cavity resonances. The second reason is that the field distributions have analytical

expressions and the fundamental mode is a Gaussian mode in a spherical mirror resonator.
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So, these are the two primary reasons why we go for spherical mirror resonators. The

Gaussian beam of a spherical mirror resonator is again illustrated here. So, what is shown is a

spherical mirror resonator one of the mirrors is assumed 100 percent reflecting which means

the reflectivity R 1. So, R 1 here is the reflectivity; R 1 is equal to 1, which means 100

percent reflection and R 2 is 0.9 which means 90 percent reflection which means 10 percent

is the transmission. 

So, 10 percent transmission and 90 percent back reflection. So, that is the meaning of R 2 is

equal to 0.9. So, the beam is building up inside and every time 10 percent of the energy goes

out in the form of an output beam. The field distribution the transverse field distribution

across this mode is Gaussian. So, the Gaussian beam of a resonator is illustrated here it has a



Gaussian field distribution Gaussian as suppose you are familiar e to the power minus r

square by W square. 

So, this is and there can be an amplitude factor A. So, if you have a field psi is equal to A into

e to the power of minus r square by W square, this is representation of the Gaussian. It is a

bell shaped curve because at r is equal to 0 this function has maximum. So, as you can see r is

equal to 0 is here. So, it is maximum on the axis and the beam is propagating. 

As the beam propagates there is a finite spread of course, and that is why the beam is

spreading and therefore, the peak amplitude is decreasing, but the energy content which is

given by the area under this curve here is the same whether it is this one or you consider this

the total area under the curve remains same, but the beam spreads W of z represents the width

of the beam.

The width is defined. So, if we show in terms of plot the function as a function of R, then it is

maximum on the axis and let say this is 1, then where it drops down to 1 by e. So, at R is

equal to W, please see at R is equal to W this term becomes e to the power minus 1 or 1 by e.

So, where the field drops down to 1 by e of it is maximum value is called the spot size, this is

W. So, that is W of z because the beam is spreading W is changing with z, z is the

propagation direction. 

The second important characteristic of the Gaussian beam is the radius of curvature R of z of

the wave front. So, this is radius of curvature of the wave front. So, we will discuss these in

more detail radius of curvature of the wave front, wave front is surface of constant phase

wave front. So, both R of z and W of z evolve as the beam propagates in the z-direction we

will discuss more details about the Gaussian beam as we go further.
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Now, some of the common types of spherical mirror resonator. So, we will follow in this ray

optics approach. So, here the beam is confined means when a ray is confined to the resonator,

then we call that the resonator is stable or the beam is confined to the resonator. So, this will

again become clear.

So, what is shown I have taken some common resonators: 1st – Symmetric Confocal

Resonator. What it means is it comprises of two identical mirrors of radius of curvature R

mirror M 1 and M 2 separated by a distance which is also equal to radius of curvature. Now,

if we have a mirror of radius of curvature R, then the focal point is at R by 2. So, this is the

focal point. It is F is equal to R by 2.

The focus, the distance from the pole to the focal point F is equal to R by 2 and therefore, if

the total separation is R. And, if this is the midpoint, then both the mirrors have their focus



over lapping or that is why it is called confocal; confocal means focal point coinciding, hence

the name confocal resonator.

So, this is F actually and therefore, in this type of a resonator if you have a parallel beam of

light which travels like this so, let me show a parallel ray travelling towards the other mirror

then by definition of focal point the ray will get reflected and pass through the focus here.

And the ray which is coming from the focus to the second mirror will be rendered parallel

here. Now, again the parallel ray which reaches here passes through the focus and then it

reaches the other mirror. In other words, we see that in two round trips ray paths are retraced

after two round trips retraced. Please see we started a ray from here this parallel ray to the

other mirror.

After one round trip; round trip means from this mirror back to this mirror it comes here and

then from here again it goes parallel because it has come from the focal point. So, it has come

from the focus therefore, it is rendered parallel. So, after one round trip the ray has reached

here. Now, again it goes back and reaches the original point. In other words, in two round

trips the ray retraces it is original point.

Another type of ray is also shown here for example, a ray which goes from here to the point O

here; what is the distance? This is the radius of curvature and therefore, the ray which reaches

here will be reflected satisfying the law of reflection that is theta 1 is equal so, theta i here is

equal to theta r reflected angle. So, it comes here.

Now, any ray which is coming from the radius of curvature please see this is the focal point

of this mirror, this is the point corresponding to the radius of curvature that is center of

curvature C. So, this is F and there is a C, which is here center of curvature and a ray which

comes from the center of curvature is always normal, it is normal to the mirror.

So, a ray which comes; so, if this is C, the center of curvature, then any ray which comes to

the mirror will be at 90 degrees and therefore, it will be reflected back along the same path.



So, the ray which comes from here is reflected back along the same path here it satisfies the

law of reflection and then it comes back here.

Again, note that after two round trips the ray has come back. So, if the ray has started from

here, then it reaches here then comes down to this point, from here it retraces back. So, after

two round trips the ray reaches, its original point. So, in both the ray paths which I have

shown after two round trips the ray reproduces or retraces it is path. So, you can draw several

types of rays. So, this is for a symmetric confocal resonator.
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The 2nd resonator a common type of resonator shown is Symmetric Concentric Resonator.

Now, as the name indicates here is C that is the center of curvature of this mirror as well as

this mirror. They are coinciding, hence the name concentric. So, two spherical mirrors with a

separation equal to twice the radius of curvature. 



So, this is center of curvature therefore, up to this it is R. So, this is R and this is also R. So,

the total separation is 2R. So, that is a concentric resonator. So, you can see the ray path. So,

if a ray path starts from here passing through the center, it will be incident normally on the

second mirror and reflected back.

So, any ray that you take you will see that in one round trip, the ray comes back to its original

path original point and that is what it is written here. Ray paths are retraced after each round

trip. Right now I am explaining this qualitatively from the physics that we know the school

level physics that we know and school level optics that we know, ray optics that we know.

But, we will see, we will write mathematical expressions and the mathematical expressions

will show that the rays will retrace their path after two round trips, or four round trips, or one

round trip in different types of resonator ok. So next what is shown is, a plane mirror-concave

mirror resonator. 

We have one plane mirror and one concave mirror. So, note that the ray which travels parallel

from the plane mirror at the separation here is equal to the focal length. This separation is

focal length and therefore, the ray goes to the focus where it undergoes reflection by the plane

mirror and then comes to the spherical mirror again.

Now, anything which comes from the focal point will be rendered parallel and what is

incident parallel on the plane mirror will be reflected back. So, please see the ray starts from

here a typical ray, it after one round trip it reaches here. It continues from here for the second

round trip, it comes here and then it reaches here after two round trips. Round trip refers to

from this mirror back to this mirror. The path need not be straight line path, the path can be

anything.

Now, after the second round trip, now it again is reflected normally back to the second mirror

and from there it is focused to the focal point, from there again it undergoes reflection and

then rendered parallel. So, the ray which starts from here in this case you see that after four



round trips it comes back to it is original point. So, the ray paths are retraced after four round

trips. So, I have shown three different types of resonators.
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So, let us look at some other types of resonators where the ray does not come back. So, for

example, if we have one of the mirrors as the plane mirror and then the other one as a convex

mirror you will see that whatever ray that you consider it will not retrace. It will go because of

the divergence given by the convex mirror any ray which is incident will finally, eventually it

will go out of the resonator.

And, therefore, we say that such resonators are unstable resonators; unstable resonator here

means we will work out the mathematical expressions for this as I said. But, right now

unstable resonator means where rays cannot be confined optical rays are not confined to the



resonator. And, stable resonators in simple term are those resonators where rays can get

trapped. Once they are trapped they can build up inside the resonator, alright.

One more resonator which is shown here comprising of two convex mirrors and obviously, it

is an unstable resonator because both the mirrors are diverging mirrors. So, naturally any ray

will subsequently go out of the resonator. We will see later on that it is possible to have stable

resonator with the one convex and one concave mirror.

With two concave mirrors obviously, we have discussed several concentric, confocal all are

two concave mirror resonators. We have seen that two convex mirrors form unstable

resonator, but if appropriate radius of curvatures are chosen we will show later that having

one convex mirror and one concave mirror we can form stable resonators or the rays can

remain confined for a long time, alright.
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In this part to study the spherical mirror resonators, we will use matrix optics. So, matrix

optics approach to trace ray paths. Now, matrix optics is valid under paraxial approximation.

What is this paraxial approximation? Now, paraxial rays means rays, so, para-axial. So, it is

close to the axis rays which are close to the axis that is the literal meaning of paraxial rays;

that means, rays which make small angles with the axis.

When the rays are travelling, so, this is the axis of the resonator then if the rays make very

small angles, then these can be considered as paraxial rays. Such rays will travel back and

forth close to the axis. Now, if the ray angle is very small then we can use such an

approximation as we will see tan theta nearly equal to sin theta equal to theta. So, this is the

approximation that will be used by assuming that we are treating paraxial rays.

Now, how good is this assumption? For example, what is shown here is typical beam

parameters of a practical laser. If we take a, helium neon laser a practical He-Ne laser

helium-neon laser, then the length of the laser tube is generally 20 to 30 centimeters and the

beam diameter at the width is of the order of 0.2 millimeter we will take actual numbers and

see that indeed this is the kind of numbers that we will get.

And, the output beam divergence typically is 1 milli radian and the beam diameter here is

approximately 1 mm. The divergence angle is typically 1 milli radian for a practical laser. 

You can see the data sheets of practical commercially available lasers and you will see that

the divergence angle is of the order of 1 milli radian, which means 0.057 degrees. So, indeed

the theta is very small and therefore, the use of paraxial approximation is perfectly valid in

such situations.
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So, the ray transfer matrices we have to determine the ray transfer matrices of an optical

system. An optical system here we refer to it shown as a black box here. So, you have an

optical system which may comprise of many many optical component for example, the

optical system here shown may comprise of several optical components.

For example, if you take a microscope objective, microscope objective typically this may

have two, three or four lenses and those zoom lenses and if you have seen those zoom lenses

which are fitted to a camera that may have several components optical component inside the

zoom lens and that is what is shown. So, we call it as optical system.

Now, tracing rays through the optical system can be done using the ray transfer matrix and if

the ray transfer matrix for each component can be determined, then the product of these

matrices will give you the ray transfer matrix for the whole system. That is the way that rays



can be traced if I get the ray transfer matrix I call this as RTM for the whole system, which

comprises of several optical components because all these matrices are 2 by 2 matrices.

Therefore, the product of these matrices will also be a 2 by 2 matrix. So, these are 2 by 2

matrices. The matrix links the input parameters of the ray to the output parameters. A ray is

characterized by two coordinates input and output. At the input it is characterized by a

displacement y i is a displacement from the axis of the optical system and theta i is the angle

that it makes with the horizontal.

So, if you have a ray which is like this for example, then this will be the displacement y i and

the angle that it would make would be this theta. So, this is y and this is theta. Now, we will

see the sign convention because y which is a displacement which is below the axis will be

negative and the displacements above the axis will be positive, we will discuss about this.

But, right now every ray which is entering the optical system is characterized by a

displacement y i and theta i. And accordingly at the output there will be a corresponding y o

and theta o. And, the y o, theta o is linked or related to y i theta i through a 2 by 2 matrix

which is the A B C D matrix. 

And this A B C D matrix is called the ray transfer matrix, ray transfer matrix. It actually gives

you the coordinates when the ray is transferred through the optical system, hence the name

ray transfer matrix. This will become very clear as we take some examples of the ray transfer

matrices.
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Now, if we consider straight go to the optical resonator our problem is optical resonator not

zoom length. So, the optical resonator comprises of two mirrors separated by a distance L.

Now, if a ray starts from here, let us say the ray starts from a point P here. It has a

displacement initial displacement y 0 and an angle that it makes with the horizontal theta 0.

The ray is allowed to go at a particular direction. We can also of course, consider a ray which

travels like this.

You could also propagate rays like this. So, from this from every given point on the mirror

you could propagate rays at different angles some of them will eventually go out of the

resonators some of them will remain trapped inside. If you can find some rays which are

trapped inside the resonator or confined to the resonator, then we call the resonator a stable

resonator.



So, coming back to the initial ray here with a displacement of y 0 and theta 0, it moves to the

other mirror therefore, the ray has propagated in free space here or in a medium if there is a

medium through a distance L. It undergoes reflection here at this point it undergoes reflection

at the spherical mirror of radius of curvature R 2. Let us say R 1 is the radius of curvature of

this mirror and R 2 is the radius of curvature of the second mirror.

And, from here again it propagates to the second mirror that is propagating through a distance

L, horizontal distance L. This distance is of course, higher than the horizontal separation and

it undergoes a reflection at mirror M 1 and then again propagates back. Now, in one round

trip therefore, we had one length propagation in free space, one reflection at a spherical

mirror, then propagating back in free space and then reflection at another spherical mirror and

then propagating.

So, one round trip comprises of two propagation lens and two reflections at the spherical

mirrors. So, that is what I have written here that for the resonator one round trip comprises of

propagation through L, reflection at mirror M 2 here reflection, propagation through L back to

the mirror M 1, reflection at mirror M 1.

And, each of the above component these are called four component of propagation can be

represented by a 2 by 2 matrix and to get the final coordinates y 1 and theta 1. The y 1 and

theta 1 is related to y 0 into theta 0 through the ray transfer matrix A B C D. Once you know

A B C D you can calculate y 1 theta 1.

If you know y 1 theta 1 you can calculate y 2 theta 2 and so on. In other words, you can trace

a given ray a starting ray through the resonator any number of times back and forth and find

out whether the ray always remains confined or does it eventually leave after a few round

trips. So, the RTM of the resonator is the product of all the four. So, they are all the 2 by 2

means all the in this case four four 2 by 2 matrices corresponding to these four operations 1,

2, 3.
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So, let us look at the 2 by 2 component matrices first propagation through a distance L. So,

this is the first one, propagation through if we look back the first one is propagation through a

distance L. Please see, it is not propagating through the mirror, it is from mirror M 1 to M 2,

the mirror could be spherical mirror or plane mirror.

So, the first component says propagation from this plane this is actually plane of the mirror M

1 and plane of the mirror M 2. This is not plane mirror but, plane of the mirror M 1 and M 2.

So, from M 1 to M 2 it propagates through free space. Let us say y in is the initial

displacement the starting point from here is y in, is the height from the axis of the resonator

and it is propagating at a angle by making an angle theta in.

Then, when it reaches the other end, we know that if this is a homogenous medium it will

travel in a straight line with a new displacement y out which is different from y in because it



is travelling at an angle. If it were travelling parallel to the axis then we would have had y in

is equal to y out, but in general if it is travelling with theta not equal to 0 then y out will be

different from y in. What is the relation?

So, we what is our objective? Our objective is to determine y out or after one propagation y

out and theta 1 to the input which is y in and theta in. So, this is our objective. We want to

find this. Now, first point is theta out is equal to theta in when it comes from here up to this

point there is no change in the angle with respect to the horizontal. So, first point is theta out

is equal to theta in.

Now, y out is more, now how much is y out? So, you can find out y out. So, y out is equal to

if this is L, then L tan theta in. So, L into tan theta in is this height. So, this height is L into

tan theta in plus the original height which is y in. So, y out is equal to L tan theta in plus y in,

but we are considering paraxial approximation. Therefore, tan theta in is nearly equal to theta

in and therefore, we write this as L theta in plus y in.

And, immediately now, we have both the equations relating theta out and y out to theta in and

y in and the matrix is here y out is equal to 1 L and 0 1 theta in. So, theta out is equal to this

row into this column product which is simply theta in, y out is equal to product of this row

into this column which is y in plus L into theta in. So, this is true.

So, this is not for just plane mirrors this is only propagation through a distance L. So, it could

be spherical mirrors with a ray starting from below the axis and going above the axis,

everywhere you will see that this matrix will represent will relate propagation through the

change in coordinates after propagating through a distance L.
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The sign convention is shown here. If the ray as I already mentioned, so, this is a lens which

is shown for example. A ray which is incident in the lower half, so, this is the position of the

ray will have a negative displacement. So, the displacement is considered or measured from

the axis of the system.

So, this ray as a, is negative and if the ray is incident from top, then the displacement is

positive. It could be a ray which goes like this then also the displacement will be this. So, this

is positive. So, where it hits the optical component or the ray transfer matrix of the

component that you need you consider that as your displacement and if it happens to be in the

upper half then it is positive and if it happens to be in the lower half, then it is negative.

The second point is for concave mirror the radius of curvature is negative R is less than 0 and

for convex mirrors the radius of curvature R is greater than 0, one other point. So, this is



about the displacement. The second point about the angles if the angle is upward if a ray is

moving upward, which means it makes an angle which is positive with respect to the

horizontal then that angle is positive.

If a ray is travelling downward then it makes an angle which is negative with respect to the

horizontal and then we have to designate that angle as negative. So, let me show it here for

example. So, if we are considering a ray which is travelling downward like this, then of

course, if it was at this point then this is the height, but the angle this angle theta will be

negative because if the ray is moving downward with respect to the axis.

And, if any ray which is whether it need not cross the axis even if the ray is travelling like this

for example, here in the upper half, then the angle here will be positive because now the ray is

moving upward whether it is in the upper half or lower half that does not matter as far as the

angle is concerned.

It is only whether the ray is moving upward or downward. Whether it is in the upper half or in

the lower half then the displacement y will be different. If the displacement that we are

considering is in the upper half that is above the axis of the system optical axis of the system

then the displacement is positive and if it is below as shown here, then it is negative.
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Now, let us go to the second component namely reflection at a plane mirror. So, the 1st one

that we have seen is here for propagation through a distance L we are looking at propagation

between mirrors. Now, let us consider reflection by a mirror. So, first plane mirror. It is

illustrated here. So, this may not be the axis, axis may be here.

So, at any point the ray is incident at a point P here, let us say on the mirror. Then the

displacement is here. So, this is the displacement which is positive. After reflection angle of

incidence is equal to angle of reflection and therefore, theta in is equal to theta out. Please see

that both the angles are positive. This ray is also going up and this ray is also going up and at

the point of reflection theta in y in is equal to y out.

We are finding the ray transfer matrix for the operation of reflection. Therefore, we are

considering y only at the point of reflection. Therefore, at that point y in is equal to y out and



theta in is equal to theta out and therefore, immediately the relation is an identity matrix y out

is equal to y in and theta out is equal to theta in ok.

Next, refraction at an interface: so, this is sometimes important because we will see later on

that there are laser resonators, where you have the laser rod or active medium, which is a rod

of a certain refractive index n. Then, when the ray goes back and forth or beam goes back and

forth, then it will encounter a interface and that is why we are looking at interface between

two medium n 1 and n 2.

So, if you have an interface between a medium of refractive index n 1 and n 2, then what is

the relation what is the ray transfer matrix corresponding to the transfer of ray across this

interface. So, at this point y in is equal to y out because we are finding the ray transfer matrix

for the operation at the interface only. Therefore, y in at that point is equal to y out.

However, theta in and theta out are related through the Snell’s law which is n 1 sin theta in is

equal to n 2 sin theta out and because sin theta is nearly equal to theta, we write theta in is

equal to n 2 by n 1 into theta out. So, y in is equal to y out, theta in is equal to n 2 by n 1 into

theta out. And, therefore, immediately we can write the ray transfer matrix for this operation;

the operation is refraction at an interface. We are not looking at propagation only at the point

where the refraction takes place.
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Now, let us go further reflection at a spherical mirror. So, again the geometry of the problem

is shown here. So, a ray which is coming from some arbitrary ray which is incident at an

angle theta in; so, theta in is the angle the ray makes when it is incident on the mirror at some

point P, let us say some point P. And, after reflection the ray goes here making angle of

incident is equal to angle of reflection this angle theta will be equal to the this angle theta.

Now, when it makes the angle this is with respect to the line joining the center of curvatures;

C is the center of curvature because with respect to center of curvature this angle theta will be

equal to the angle theta here. So, we call theta c, let theta c be the angle the line here

connecting the center of curvature makes theta c.

Then in this geometry we can see that theta c will be equal to sum of these two angles, that is

theta in plus theta, theta c is equal to theta in plus and therefore, theta in is equal to theta c



minus theta. Similarly, theta out; so, theta out here will be equal to this angle plus this angle.

So, this angle is also theta, this is also theta, this is also theta.

And, therefore, theta out is equal to theta c plus theta these two angles and therefore, if we

add theta in and theta out so, theta in plus theta out, then this theta cancels and we have theta

out plus theta in is equal to twice theta c. Now, twice theta c here this is the angle.

So, theta c is nearly equal to tan theta c because here of course, we have shown the angles as

big, but please remember all angles considered are very small angles. So, tan theta c and tan

theta c will be equal to the distance R and this height here and because the angle is very small

this distance is the same as this distance and therefore, we can write tan theta c is equal to y

out that is this height divided by R. So, y out by R.

R is actually the separation from C to O, O is the pole here O, but the separation here is very

very small because theta c is very small. And, therefore, theta c is approximately equal to y

out by R and therefore, we can write 2 theta c is equal to 2 tan theta c is equal to 2 into y out

by R and y out is equal to y in and therefore, we can write minus twice y in by R.

Now, this minus sign has come because we have considered a concave mirror. So, the

negative sign has been introduced because R is negative and therefore, we have minus theta

out. Please note again that theta out is the angle that the ray makes when it goes down and

therefore, this is also negative.

Here the ray was going up, therefore, theta in is positive now the ray is going down therefore,

theta out is negative. And, therefore, we have written minus theta out. So, we are writing this

expression theta in to be taken to the other side. Now, minus theta out is equal to minus theta

in; this minus is because we have taken theta in to the other side. 

And minus twice y in by R or all the minus signs will go and we have theta out is equal to

theta in plus twice 2 by R into y in. Thus therefore, the RTM - Ray Transfer Matrix for

reflection at a spherical mirror is 1 0 1 0 because y out is equal to y in.



So, y in is equal to y out. Therefore, it is the identity row. So, we have y out by y in sorry,

theta out, theta out is equal to the ray transfer matrix into y in theta in. So, y out is equal to y

in which means this is 1 0 and theta out is equal to theta in. So, theta in therefore, this must be

1, 2 by R. So, y 2 by R into y in so, this row multiplied by this column 2 by R into y in theta

in.

So, this is the RTM for reflection at a spherical mirror this is very important. So, now, we

have got in a spherical mirror resonator. Reflection at two spherical mirrors, so, we know the

RTMs propagation through a distance L we know the RTMs and therefore, we can determine

the ray transfer matrix for one complete round trip.

(Refer Slide Time: 49:59)

And, therefore, the RTM for the optical resonator for one complete round trip is given here

that y 1 theta 1 is equal to. So, we start with y 0, theta 0 this is our starting point y 0 theta 0.



This first it gets multiplied on the left side by the matrix for this propagation and then it

reaches the other end gets multiplied by this matrix for reflection at mirror M 2 of radius of

curvature R 2.

It propagates back, gets multiplied by this matrix and then gets reflected here and gets

multiplied by this matrix. And, the product matrix is called the A B C D matrix for the optical

resonator. This A B C D matrix is the ray transfer matrix for the given spherical mirror

resonator.

(Refer Slide Time: 51:03)

So, if we multiply this then here is the product matrix. So, this component so, this element is

A. So, it is written here this is identified as A, the second element which is here is identified

as B. So, that is what is written B and this is C what you have is C. So, this is C and the last

element is D. 



So, this is designated that A B C D matrix for this spherical mirror resonator has components

A, B, C and D. Given a resonator, which means you know the radius of curvature R 1 and R 2

and the separation L. So, given a resonator you can determine the A B C D matrix for the

resonator because all the components A, B, C, D contain only R 1, R 2 and L. 

So, given a resonator the ray transfer matrix can be determined. Now, with this, in the next

lecture we will consider the Ray Transfer Matrices of a spherical mirror resonator and we will

find out under what conditions a ray will be confined mathematically not by qualitative

explanations, ok.

Thank you. 


