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Preface 

 Due to rampant over-exploitation, the biomass of top predator species has declined by as much as 

90% since the 1950s (Myers and Worm 2003). When these stocks have reached commercial exhaustion, 

fisheries have focused on the next lower trophic level, serially depleting marine resources in what has become 

known as “Fishing down food webs” (Pauly et al. 1998). Among commercially exploited fish, all three 

species of bluefin tuna (Pacific, Southern and Atlantic) have undergone some of the most significant declines 

in abundance and geographic range contractions (Worm and Tittensor 2011). As each of these species are 

large, long-lived, and have a high economic value, restricted spawning areas and short spawning periods, they 

are particularly susceptible to over-exploitation (Collette et al. 2011). Although the Atlantic bluefin tuna 

(BFT; Thunnus thynnus) has been targeted by fisheries in the Mediterranean Sea for thousands of years, it has 

only been in these last decades that the exploitation rate has reached far beyond sustainable levels; introducing 

a high risk of fisheries’ decline and stock collapse (MacKenzie et al. 2009).  

 An understanding of the population dynamics, exploitation rates and the influence of environmental 

variables that affect large pelagic fish (e.g. tunas, billfishes and sharks) is crucial for stock management and 

conservation of entire marine ecosystems. In 2006, the International Commission for the Conservation of 

Atlantic Tunas (ICCAT) adopted a 15-year recovery plan for bluefin tuna in the eastern Atlantic and 

Mediterranean (EC N. 644/2007). In addition to the new restrictions placed on fisheries (restricted seasons, 

size limits, banning of search planes) a multidisciplinary monitoring programme was introduced in order to 

increase our understanding of the species' biological traits. Using an array of technologies (satellites tags, 

genetic markers and microchemistry of otoliths) researchers determined that the population structure of BFT 

is likely to be more complex than the current two population management model. A pattern indicative of 

genetic heterogeneity has been detected within the Mediterranean (Carlsson et al. 2004, 2007; Riccioni et al. 

2010); rising suspicions that the basin may contain numerous distinct populations. Population structuring 

studies using of molecular tools should make use of samples with identified origins (ie. young tuna that 

haven't developed the capacity to travel great distances). Several genetic studies that analyzed adult specimens 

have been unable to detect significant differentiation of populations. Monitoring of early life history stages 

can also inform decision makers about the health of the species based upon recruitment and survival rates.  



 

 

PhD objectives 

 In an effort to contribute to the conservation of the species and the development of a more informed 

stock assessment, this PhD project was developed to elucidate a more accurate understanding of BFT 

population structuring and spatial dynamics. The aims of the project were 1) to assess the accuracy of larval 

identification methods, 2) determine the genetic structure of modern BFT populations, 3) assess the self-

recruitment rate in the Gulf of Mexico and Mediterranean spawning areas, 4) estimate the immigration rate of 

BFT to feeding aggregations from the various spawning areas, and 5) develop tools capable of investigating 

the temporal stability of population structuring in the Mediterranean Sea. Funding for the research contained 

in this thesis was by and large provided by ICCAT's Atlantic-wide Research Programme for Bluefin Tuna 

(GBYP) through the Biological and Genetic sampling and analyses consortium and the Data Recovery project 

conducted between 2012 and 2015. 

 In order to establish a baseline of understanding concerning the basic biological traits of BFT, its 

morphological characteristics, geographic distribution and the fisheries that target them are detailed in 

Chapter 1. Current efforts to study BFT spatial dynamics and the tools used for estimating the remaining 

biomass are reviewed. Several inhibitory elements that challenge the development of effective conservation 

and management are also reviewed at length. 

 Misidentification of larvae can lead to uncertainty about the spatial distribution of a species, confusion 

over life history traits and population dynamics, and potentially disguise the collapse or recovery of localized 

spawning areas. Chapter 2 details several weaknesses in modern morphology-based taxonomy including 

demographic decline of expert taxonomists, flawed identification keys, reluctance of the taxonomic 

community to embrace advances in digital communications and a general scarcity of modern user-friendly 

materials. Recent advances in molecular techniques useful for specimen identification and population studies 

are discussed at length. In this same vein, Chapter 3 contains a description of the molecular identification of 

larvae (n=188) collected from three spawning areas in the Mediterranean Sea by different institutions. Several 

techniques were used to analyze the genetic sequences and an extensive comparison of the results is 

presented. The results revealed important differences in the accuracy of the taxonomic identifications carried 



 

 

out by different ichthyoplanktologists following morphology-based methods.  

 Molecular techniques used for wildlife conservation are evolving rapidly and their use by fisheries 

researchers is steadily on the increase. Using a Genotyping-by-Sequencing (a Next Generation Sequencing 

technique) approach a large consortium operating within the GBYP developed a panel of high performance 

SNPs capable of distinguishing populations of BFT. The process by which the 95 Single Nucleotide 

Polymorphisms (SNPs) were selected and technically validated is described in Chapter 4. This tool could be 

used to improve Atlantic BFT stock assessments and management as well as in seafood traceability studies 

and investigations. Chapter 5 details how the SNP panel was used to genotype 752 individuals captured 

between 2007-2013 from fourteen locations throughout the species' range, including several previously 

uncharacterized sites. Given the scale of sampling, this study is the most comprehensive assessment of 

modern bluefin tuna population structuring to date. These efforts were made with the aims to further validate 

the newly developed SNP panel as well as contribute to our understanding of the species' populations 

structuring. The results confirm much of what has already been learned from tagging and otolith studies with 

the exception of evidence suggestive of a small amount of mixing between eastern and western populations. 

 Effective fishery management benefits from the existence of baseline information concerning 

population size and demographics before intense commercial exploitation. Given that BFT have been 

intensively targeted by fisheries for thousands of years, analysis of DNA extracted from historical samples 

recovered from archives, museums and archaeological excavations can help to reveal elements of the past 

necessary for establishing something of a pseudo-baseline (Nielsen et al. 1999). Chapter 6 provides a 

historical description of the relationship between humans and bluefin tuna, the state-of-the-art of historical 

DNA studies, and a description of new protocols developed for ancient DNA analysis. Using novel molecular 

techniques, DNA was extracted from bluefin tuna vertebrae excavated from late iron age and ancient roman 

settlements in coastal Iberia (Portual and Spain, 4th-2nd century BC; n=23) and Byzantine-era Constantinople 

(4th-15th century AD; n=6), as well as vertebrae from the Massimo Sella archive located at the University of 

Bologna (Ionian, Tyrrhenian and Adriatic Seas, early 20th century; n=150). In Chapter 7, I have described 

how a 96 SNP panel was developed to genotype historical and modern samples in order to elucidate changes 



 

 

in population structuring and allele frequencies of loci associated with selective traits. The panel is composed 

of 48 SNPs discovered during the GBS research that was described in the previous chapter (i.e. funded by 

ICCAT GBYP Phase 4). The remaining 48 SNPs were derived from transcriptomic work conducted in 2012 

by the GenoDREAM laboratory (Pintus 2013). In total 269 modern samples and 190 historical samples will 

be genotyped using this panel and unfortunately the results are not available to be reported here (expected in 

July 2015); however, the process by which the project was developed and executed is explained in detail.  

References 

Carlsson, J., McDowell, J.R., Diaz-Jaimes, P., Carlsson, J.E.L., Boles, S.B., Gold, J.R., Graves, J.E. (2004) 
Microsatellite and mitochondrial DNA analyses of Atlantic bluefin tuna (Thunnus thynnus thynnus) 
population structure in the Mediterranean Sea. Mol Ecol 13: 3345-3356.  

Carlsson, J., McDowell, J.R., Carlsson, J.E. Graves, J.E. (2007) Genetic identity of YOY bluefin tuna from 
the eastern and western Atlantic spawning areas. J Hered 98: 23-28. 

Collette, B.B., Carpenter, K.E., Polidoro, B.A., et al. (2011) High value and long life-double jeopardy for 
tunas and billfishes. Science 333(6040): 291-292. 

MacKenzie, B.R., Mosegaard, H., Rosenberg, A.A. (2009). Impending collapse of bluefin tuna in the 
northeast Atlantic and Mediterranean. Conservation Letters 2(1): 26-35. 

Myers, R.A., Worm, B. (2003) Rapid worldwide depletion of predatory fish communities. Nature 423(6937): 
280-283. 

Nielsen, E.E., Hansen, M.M., Loeschcke, V. (1999) Analysis of DNA from old scale samples: technical 
aspects, applications and perspectives for conservation. Hereditas 130: 265-276.  

Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., Torres, F. (1998) Fishing down marine food webs. 
Science 279(5352): 860-863. 

Pintus, E. (2013) Wide-scale population genomics of Atlantic bluefin tuna (Thunnus thynnus) inferred by 
novel high-throughput technology. Unpublished Doctoral dissertation. University of Bologna. 

Riccioni, G., Landi, M., Ferrara, G., et al. (2010) Spatio-temporal population structuring and genetic diversity 
retention in depleted Atlantic bluefin tuna of the Mediterranean Sea. Proc Natl Acad Ser 107(5): 2102-2107. 

Worm, B., Tittensor, D.P. (2011) Range contraction in large pelagic predators. Proc Natl Acad Sci 108(29): 
11942-11947. 

 

 

 



 

 

Table of Contents 
 

Chapter 1. Queen of tunas – An introduction 1 

1.1 The Atlantic bluefin tuna 2 

1.2 Distribution, ecology and movements 4 

1.3 Reproductive biology 12 

1.4 Fisheries 15 

1.5  Conservation and management challenges 16 

1.5.1 The International Commission for the Conservation of Atlantic Tuna 16 

1.5.2 Poor implementation of management plans 17 

1.5.3 Illegal, Unreported and Unregulated fisheries and Flags of Convenience 21 

1.5.4 Sea ranching 23 

1.5.5 Subsidies 25 

1.5.6 Selective fishing practices 25 

1.5.7 The Atlantic-wide research programme for bluefin tuna (GBYP) 26 

References 28 

Appendices 33 

Chapter 2. Troubled taxonomy- A review 38 

2.1 Introduction 40 

2.2 A context for concern 41 

2.3 Potential for errors in BFT larvae identification 45 

2.4 Required modernization of larval taxonomy 52 

2.5 Advances in molecular analysis 53 

2.6 Guide of good practice in BFT larval studies 57 

Acknowledgements 59 

References 60 

Chapter 3. A fish by another name 69 

3.1 Introduction 71 

3.2 Materials and methods 74 

3.2.1 Sample collection 74 

3.2.2 DNA extraction 76 

3.2.3 BLAST and BOLD search engines 77 

3.2.4 Neighbour joining tree analysis 77 



 

 

3.2.5 Assignment by characteristic attribute key 78 

3.3 Results 78 

3.3.1 BLAST assignment 79 

3.3.2 BOLD assignment 80 

3.3.3 Neighbour-joining tree analysis 80 

3.3.4 Character-based assignment 84 

3.4 Discussion 84 

3.4.1 (Mis)Identification of larvae 84 

3.4.2 DNA extractions and use of molecular markers 86 

3.4.3 BLAST and BOLD assignment 87 

3.4.4 Neighbour-joining trees 88 

3.4.5 Character-based assignment 88 

3.5 Conclusion 89 

Acknowledgements 90 

References 91 

Appendix 95 

Chapter 4: Discovery of single nucleotide polymorphisms in the bluefin tuna genome using a genotyping-
by-sequencing approach. 

98 

4.1 Introduction 100 

4.1.1 SNP Discovery and the role of Next Generation Sequencing in fisheries research 103 

4.1.2 Aim of the study 104 

4.2 Materials and Methods 104 

4.2.1 Tissue sampling and DNA extractions 104 

4.2.2 Genotyping-By-Sequencing 106 

4.2.3 De novo SNP discovery 107 

4.2.4 Genotyping-by-Sequencing allele frequency analysis 108 

4.2.4.1 Reference genome assembly 108 

4.2.4.2 Reference-based SNP discovery 108 

4.2.4.3. SNP selection 109 

4.2.5 384 SNP panel validation with 188 individuals 110 

4.3 Results 112 

4.3.1 De novo SNP discovery using the UNEAK pipeline 112 

4.3.2 Genome assembly 115 

4.3.4 SNP genotyping 116 



 

 

4.3.5 Genetic diversity and Hardy-Weinberg Equilibrium 116 

4.3.6 Detection of outlier loci 116 

4.3.7 Populations Genetics 117 

4.3.8 Detection of genetic clusters 119 

4.4 Discussion 120 

4.5 Conclusion 122 

Acknowledgements 123 

References 124 

Appendix 128 

Chapter 5. Assessment of the genetic population structure of modern bluefin tuna using a genotyping-by-
sequencing approach. 

131 

5.1 Introduction 133 

5.2 Materials and Methods 135 

5.2.1 Sample collection 135 

5.2.2 DNA extractions and SNP-typing 137 

5.2.3 Genetic diversity and outlier detection 137 

5.2.4 Population genetic structure 138 

5.2.5 Detection of genetic clusters 138 

5.2.6 Population assignment tests 139 

5.3 Results 139 

5.3.1 SNP genotyping 139 

5.3.2 Genetic diversity and outlier detection 139 

5.3.3 Genetic differentiation 141 

5.3.4 Detection of genetic clusters 142 

5.3.5 Assignment tests 144 

5.4 Discussion 147 

5.5 Conclusion 148 

Acknowledgements 149 

References 150 

Appendices 154 

Chapter 6. Paleogenetics of bluefin tuna 159 

6.1 Introduction 161 

6.1.1 A Historical Context 161 

6.1.2 Analysis of ancient DNA 165 



 

 

6.1.3 Properties of ancient DNA 168 

6.1.4 Mediterranean collections of historical BFT remains 172 

6.1.4.1 Massimo Sella Archive 172 

6.1.4.2 Istanbul, Turkey 172 

6.1.4.3 Iberian Peninsula 174 

6.1.5 Study Aim 175 

6.2 Materials and Methods 175 

6.2.1 Sample collection 175 

6.2.2 DNA extractions 177 

6.2.2.1 Sample preparation 177 

6.2.2.2 Chemical/Enzymatic DNA extraction  178 

6.2.3 Quantification of historical DNA 179 

6.2.4 Species verification 180 

6.3 Results 180 

6.3.1 Quantification of endogenous DNA using qPCR  182 

6.4 Discussion 184 

6.4.1 qPCR quantification of ancient DNA 184 

6.4.2 Species identification 185 

6.5 Conclusion 186 

Acknowledgements 186 

References 187 

Chapter 7. Genotyping of ancient DNA 192 

7.1 Introduction 194 

7.1.1 Basics of Fishery Induced Evolution 195 

7.1.2 Use of historical samples following the PCR revolution 196 

7.1.3 Mitochondrial DNA as a tool in paleogenetics 197 

7.1.4 Microsatellites 197 

7.1.5 Next Generation Sequencing 198 

7.1.6 SNP genotyping 199 

7.1.7 Study aim 202 

7.2 Materials and Methods 201 

7.2.1 Targeted Gene Approach 201 

7.2.2 Genotyping-by-Sequencing SNP loci 202 

7.2.3 Transcriptome derived SNPs 202 



 

 

7.2.4 Comparison of GBS and EST SNPs with published annotated genes 203 

7.2.5 Sample collection 203 

7.3 Results 204 

7.3.1 Targeted Gene Approach for SNP selection 204 

7.3.2 Candidate SNP loci alignments with published annotated genes 205 

7.4 Discussion 207 

7.4.1 Technical considerations 207 

7.4.2 Alternative options for investigations into temporal shifts in allele frequencies 208 

7.4.3 Potential applications 208 

7.4.4 Future Aims 209 

Acknowledgements 209 

References 209 

Appendices 214 

Chapter 8. Summary 220 

Acknowledgements 224 



 

 

 

 

 

 

 

 

 

 

 

 

 



Page | 1  

 

 

 

Chapter 1 

Queen of Tunas 

 

 

 

 In a tiny, humble and impeccably tidy kitchen located down a small side street in Tokyo, Japan, 

Jiro methodically unpackages large chunks of fish that he ordered at the Tsukiji market earlier that 

morning. The smell of steaming rice perfumes the air and the sounds of the beginning day creep through 

the backdoor that stands ajar. An old well-fed cat can be seen lying in a pool of sunlight on the pavement 

outside. Jiro pauses and sensuously runs his fingertips over the soft deep red flesh of the fish to whom he 

owes his livelihood. Certainly his reputation as one of Tokyo's preeminent sushi chefs is largely due to five 

great qualities by which he strives to live his life: 1) A chef must be serious and consistent in his work; 2) 

A chef must always strive to improve their work; 3) Cleanliness. If a restaurant isn't clean, then the food 

isn't going to taste good; 4) Impatience. A sushi chef is an independent composer that shrugs 

collaboration and insists on having things done their way, and; 5) Passion. A sushi chef must be a 

perfectionist. His eyes breathe in the colour and contrast of the pearly striations and magenta almost 

translucent muscle. “Without fish”, he thinks to himself, “we can't do business. However that doesn't 

mean they should catch all the fish to the brink of extinction.” And with that, Jiro hastily places all of the 

fresh fish in the display case and continues with his preparations for the lunch rush. As always, the 

restaurant will be full. 
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1.1 The Atlantic bluefin tuna 

 Ranked among both the fastest and largest bony fishes in the world, the Atlantic bluefin tuna 

(BFT; Thunnus thynnus) has captivated coastal civilizations in the Mediterranean since time immemorial 

(see Chapter 6). Recognized for their immensity, the largest of the species can grow to 700kg and nearly 

4m in length (Fig. 1). Seen in their natural environmental, most humans have observed them from above, 

as immense dark shadows herding their prey into tight bait balls, spraying plumes of silver spray into the 

air as they cut through the water at unfathomable velocities. Once removed from the sea, one is able to 

observe a rainbow of iridescent blues, greens, silver and white that fade from midnight navy blue on the 

dorsal surface to a mottled silver on the ventral surface. This colouration allows the tuna to blend with the 

dark deep waters when seen from above and the bright sunlight when viewed from below. They are 

fusiform in shape, meaning that they are wide in the middle and tapered at both ends. Like all scombrids, 

BFTs have a spiny depressible dorsal fin that can be tucked away into slot on their backs to reduce drag in 

the water during fast burst swimming. Behind this is a second dorsal fin followed by a series of tiny finlets 

that lead to a large, rigid and lunate caudal fin capable of producing powerful thrust. On their ventral side 

another row of finlets run anteriorly to their spiny anal fin. It is believed that the scombrid upper and 

lower finlets function to channel water flow into the vortex created 

by the caudal fin, thereby increasing the efficiency of both 

directional control and swimming velocity (Nauen and Lauder 

2000). Aligned with the deepest section of their body are the BFT's 

pelvic and pectoral fins. BFT are negatively buoyant and require 

their pectoral fins to provide lift while they swim, otherwise they 

would sink. As BFT approach their prey they pull their pectoral 

fins into the grooves along their sides and blast through the water 

like torpedoes. They are a perfection of streamlining and even their 

eyes are completely flush with their bodyline. It is a truly 

formidable hunter with many prey items and only a handful of 

predators (squids, sharks, orcas).  

 Stomach content analysis of BFT caught in the central Mediterranean revealed an array of 91 taxa 

 

Fig.1: K. Fraser with a 679kg BFT caught in 
Nova Scotia, 1979 (Photo courtesy of IGFA). 
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of prey items including 54 teleosts, 20 cephalopods and 13 crustaceans. Among the preferred food items 

were deepwater species like lanternfish (Hygophum benoiti), dragonfish (Chauliodus sloani) and shortfin 

squid (Illex coindetti), which accounted for approximately half of the diet (Battaglia et al. 2012). The 

authors of that study concluded that BFT focus on fauna that migrate vertically throughout the water 

column during the night and larger prey during the day. A similar study in the Gulf of St. Lawrence, 

Canada, revealed a much less diverse diet dominated by teleosts (mostly herring, Clupea harengus, and 

mackerel, Scomber scombrus) as well as several species of crustaceans, two species of bivalve, 

cephalopods, brown algae and a starfish (Pleizier et al. 2012). BFT captured in the Ligurian Sea appear to 

feed on small pelagic fishes and Ligurian krill, Meganyctiphanes norvegica. In fact, one individual of 117 

cm had a stomach felled almost exclusively with krill (Orsi Relini et al. 2010). Finally, stable isotope 

analysis of BFT captured in the Balearic Sea suggests that gelatinous zooplankton constitute a significant 

fraction of their diet, especially young BFT (Cardona et al. 2012). Overall, it appears that BFT are 

generalist predators, changing prey items based on their location, focusing on abundant prey items and 

feeding in both benthic and pelagic habitats. 

 Tunas have a highly specialized vascular system that ensures efficient elimination of wastes and 

circulation of oxygen. A very powerful and large heart pumps blood packed with high concentrations of 

red blood cells, comparable to the hematocrit of diving mammals, creating a blood pressure three times 

higher than most other fishes. They are obligate ram ventilators, meaning that they must constantly swim 

with their mouths open in order to ventilate their gills. The surface area of their gills is extremely high 

relative to other teleosts, allowing them to extract upwards of 50% of the oxygen in the water passing over 

their gills (Joseph et al. 1988). Countercurrent heat exchange networks (or rete mirabilis) located 

throughout their circulatory system allows for the retention of heat in their core which gives their strong 

muscles the ability of rapid bursts of activity that can send them through the water at velocities higher than 

100 km/h. A high mass of anaerobic white muscle provides an additional burst of energy when the tuna is 

already swimming at high speeds for extended periods of time. Their eyes are else fed with the same warm 

blood allowing them the same advanced hunting ability in deep cold waters as surface waters, as oxygen is 

transferred from the blood to the muscles more efficiently at higher temperatures (Bushnell and Holland 

1989). Without eyelids, they spend a life time surveying the sea. These adaptations come at a cost 
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however; large BFT must avoid remaining in warmer waters for extended periods of time as they run the 

risk of overheating (Block et al. 2001; Teo et al. 2007). BFT with surgically implanted archival tags have 

been observed frequenting environments containing a wide range of temperatures (2.8 - 30.6°C) while 

maintaining constant internal temperatures of 25°C through both behavioural and physiological 

thermoregulation mechanisms (Block et al. 2001). 

1.2  Distribution, ecology and movements 

 Burdened with massive oxygen demands, BFT spend their entire lives (up to 32 years) wandering 

the oceans, swimming endlessly without rest. These wanderings can take them far and wide. There are in 

fact three species of bluefin tuna that occupy all of the world's oceans (Fig. 2): the Atlantic (T. thynnus), 

Pacific (Thunnus orientalis) and southern bluefin (Thunnus maccoyii). This work focuses exclusively on 

the Atlantic bluefin tuna whose habitat presently spans the entire North and Central Atlantic Ocean, North 

Sea, Mediterranean, North and Black Seas and the Gulfs of Mexico and St. Lawrence. Fishery, tagging 

and survey data agree that the majority of adults feed in the Atlantic Ocean, Bay of Biscay, North Sea and 

Gulf of St Lawrence during the summer, autumn and winter months. Their movements appear to be 

dictated by the location of their prey, leading some to mid-Atlantic upwelling areas, some to the cold 

coastal waters of the North Sea, Canada, Iceland and Greenland, and others south to warmer waters of the 

Caribbean, Canary Islands and western Africa. In the early spring, these migratory groups of adults follow 

ancient migratory routes that lead them to spawning areas in the Mediterranean Sea and Gulf of Mexico 

(GOM). 

 Interestingly, the Atlantic species is the only bluefin tuna with more than one spawning area. 

Recent studies using an array of technologies including satellite tagging, genetic markers and 

microchemical analyses suggest that the population structure of BFT is much more complex than 

previously believed (Rooker et al. 2008, 2014; Galuardi et al. 2010; Cermeño et al. 2012; Aranda et al. 

2013; Riccioni et al. 2010, 2013; Fraile et al. 2014). It's long been recognized by fishermen, poets, 

philosophers and historians that a group of BFT are resident in the Eastern Mediterranean Sea. Historical 

accounts suggest that this resident group have a north-south migratory route that stretches from the Black 

Sea, through the Sea of Marmara, into the northern Aegean, south to the Ionian Sea and eastwards into the 

Levantine Sea. During the 1960s, the Japanese fishing fleet captured large quantities of BFT off the coast 
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of Brazil and there have long been suspicions that they can be found in the southern Atlantic Ocean, 

particularly in the Gulf of Guinea and as far south as South Africa from January to March (Richards 1976; 

Takeuchi et al. 1999).  

 

 

 

 

 

 

 

 

 

 
Fig. 2: Geographic distribution of three species of bluefin tuna (source: GreenInfo Network in Boustany 2011) 

 After decades of heavy exploitation, the species began showing signs of decline and stocks began 

to rapidly contract. Catches of BFT waned and disappeared from the North Sea in the 1960s, coastal 

waters of Brazil in the 1970s and Black Sea in the early 1980s (Mather et al. 1995; Fromentin and Powers 

2005 MacKenzie and Myers 2007; MacKenzie and Mariani 2012). Worm and Tittensor (2011) estimated 

that in the 50 years following the 1960s, the abundance of BFT in the ocean reduced by more than 70% 

and their geographic range contracted by 53%. A renewed effort to learn more about the species, its 

spawning behaviour, migratory patterns, demographics and reproductive potential began in earnest. 

 Researchers have made use of an array of techniques to deduce the movements of BFT after they 

have been captured. At the beginning of the 20th century, Prof. Massimo Sella, the Director of the Marine 

Biological Station in Rovinj (Croatia), amassed a collection of fishing hooks that had been removed from 

BFT captured in tuna traps in the waters of Italy, Croatia and North Africa (Sella 1930). The materials and 

knots used to make the hooks could be traced to origins in Norway and the Strait of Gibraltar. This was 

likely the first tagging study to give information about the migratory behaviour of BFT after leaving the 

Mediterranean. Similarly, various studies have documented the presence of scars and wounds consistent 
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with cookie cutter shark, Isistius brasiliensis, bites on BFT captured in the Bahamas and the Canary 

Islands as well as Norway and the Mediterranean Sea (Di Natale 2010). Since this species of shark is only 

found in tropical waters south of Cape Hatteras and the Strait of Gibraltar, this information started giving 

biologists an indication of the latitudinal movements of BFT outside of the Mediterranean and GOM in 

the 1970s and 1980s.  Archeologists and historians have also provided fisheries scientists with new 

insights into historical BFT distributions and fisheries. Archeologists have uncovered bones belonging to 

BFT in the northern Black Sea, as far afield as the Sea of Azov (Pantikapaion), a region in which BFT 

haven't been observed for centuries (Morales et al. 2007). Ancient Greek and Roman naturalists like 

Strabo, Aristotle and Appian wrote about angry herds of female tunas spawning in the Maiotis swamps, 

which are now known as the Sea of Azov (Tichii 1917). This comes as no surprise, since the region was 

once rich in shads, anchovies, sprats sardines and mackerels, all of which are favourite prey items of BFT 

(Morales et al. 2007). Much information can be gathered from Aristotle's History of Animals. In that 

seminal text, Aristotle speaks of tuna that spend the summer in the Black Sea, winter in the Aegean and 

migrate through the Sea of Marmara, Dardanelles and Bosporus Strait during the spring. According to 

Aristotle, it was widely believed at the time that BFT could see better out of their right eye and as such 

migrated along the southern shore of the Bosporus when entering the Black Sea and exited by the north 

shore, on the steps of Byzantium. During the 1970s and early 1980s, information concerning the 

distribution of BFT in the Black Sea is confusing and sometimes contradictory. Some authors suggest that 

the species was limited to the western half of the Black Sea (Muus and Dählstrøm 1975), while others 

proposed that they could only be found along the sea's southern shores (Whitehead et al. 1984). This 

archeological and historical information suggests that the retreat from the Black Sea may have begun long 

before their disappearance in the 1980s. 

 Modern tagging technologies employed by wildlife biologists to track the movements of marine 

animals range in capacity for data collection and cost (passive tags, acoustic tags and various electronic 

archival tags). Passive ID tag studies have shown that young and adult BFT display distinct geographical 

and seasonal movement patterns (Mather 1980). Dozens of young BFT (3-44kg) have been documented 

making trans-Atlantic migrations between the mid-Atlantic Bight and the Bay of Biscay (in both 

directions). One exceptional case from 1962 is a single tuna released in the Bahamas and recaptured in 
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Norway less than 2 months later (Rodewald 1967). Records of fish that migrated from the west to the east 

suggest that this migration is intermittent and that the frequency and number of fish that make the journey 

might be influenced by environmental elements, such as westerly winds, which differ on an annual basis 

(Rodewald 1967). According to a review of ID-tagging data, Mather (1980) proposed the following 

generalizations to be applied to BFT populations during the 1950s-1970s: 1) BFT spawned in the western 

Atlantic concentrate in the Mid-Atlantic Bight during their first year. 2) Small fish (3-44kg) feed in coastal 

waters of the Mid-Atlantic Bight during warm months and move offshore during the winter. In years when 

westerly winds are strong, large contingents of BFT cross the Atlantic to the Bay of Biscay. 3) Medium-

sized BFTs (45-130kg) have similar movements as the smaller fish but exaggerated in scale, covering the 

Gulf of Maine and the Grand Banks. These animals spawn in or close to the Gulf Stream in the spring. 4) 

Giant BFT (>130kg) have even more extensive movements, expanding northward in the summer and fall 

into the Gulf of St Lawrence and Newfoundland, and south to Bermuda. In the springtime, giant BFT 

spawn in the GOM, and adjacent parts of the Caribbean and the Atlantic. During the summer they either 

feed off the coast of New England and Canada or cross the Atlantic to Norwegian waters. Mather (1980) 

also offered the following description of the movement of eastern BFT, albeit characterized by the author 

as conjectural and over-simplified: 1) Young-of-the-year (YOY) concentrate off the Atlantic coast of 

Morocco in the fall and approach the coastline in the spring. 2) In their second year, small fish move 

further afield to the Bay of Biscay and southern coast of Morocco and the Canary Islands. 3) Medium BFT 

enter the Mediterranean in May-June for spawning and return to the Atlantic in July-August. Others 

probably spawn sporadically somewhere in the Atlantic. Summers are spent in the Bay of Biscay or off 

the coast of Morocco, while winters are likely spent in the vicinity of the Canary Islands. Giant BFT have 

much the same migration patterns during the spawning season; however, large contingents likely pass 

west of the British Isles and summer off the coast of Norway. The giants that do make this journey arrive 

lean and hungry after traversing the near barren expanse of the open ocean. All available tag and recapture 

data suggest that migrating tuna follow favourable currents across the Atlantic; however, their exact routes 

were unknown until the advent of archival tags. 

 Many studies have used pop-up satellite and archival tags in which BFT were tagged in the north 

western Atlantic (Lutcavage et al. 2012; Block et al. 2001, 2005; Galuardi et al. 2010: Wilson et al. 2011) 
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and the north eastern Atlantic and Mediterranean (De Metrio et al. 2001, 2004, 2005; Block et al. 2005; 

Tudela et al. 2011; Cermeño et al. 2012, 2015; Aranda et al. 2013). All of these studies have confirmed 

that BFT have wide migratory routes that span the Atlantic Ocean. To date none of these tagging studies 

have shown a single individual entering both the GOM and the Mediterranean Sea within its lifetime, 

providing support for the natal homing theory (Rooker et al. 2008a). Individuals that have been observed 

in the GOM forage along the east coast of North America, including the Gulf of St Lawrence, and travel 

as far east as a few hundred miles short of the north western tip of the Iberian peninsula before returning 

to the west. These individuals haven't been observed travelling into the waters of Iceland, Greenland or the 

North Sea. Individuals that have been observed in the western and central Mediterranean can remain 

within the basin for years or enter the Mediterranean from Atlantic foraging areas for the spawning season 

only. BFT that migrate between the Mediterranean and the Atlantic have been observed as far south as the 

Canary Islands and as far north as Iceland, Norway and Greenland. They too forage along the east coast of 

the USA and Canada, entering into the Gulf of St Lawrence and skirting a trajectory tracing a diagonal 

between northern Florida and the Bahamas. Interestingly, no tagging study has ever shown individuals 

from the western and central Mediterranean migrating into the Levantine Sea (east of Greece and the Gulf 

of Sidra). Nor have any studies shown BFT from the Levantine Sea exiting the Mediterranean or travelling 

much further west than Sicily, for that matter. Multiple studies have shown mature individuals avoiding 

both of the known reproductive areas during the spawning season, suggesting that some of the populations 

skip spawning events or additional spawning takes place in the Atlantic Ocean (McGowan and Richards 

1989; Lutcavage et al. 1999; Block et al. 2001; Goldstein et al. 2007; Galuardi et al. 2010; Wilson et al. 

2011). A summary of the discussed tagging studies which amount to the lion's share of studies using 

electronic tags is provided in the Appendix. 

 Over the past three decades researchers have been using the unique properties of a component of 

the inner ear of fish, or otoliths, to extract information about their movements and life-history patterns 

(Campana 2005). Analysis of otolith chemistry can help to define life history variations within 

populations, provide information about the movements and life history traits of single groups of fish, 

retrace an individual's movements through different environments, assess connectivity and mixing of 

groups, and determine parentage and natal origins of fish (Elsdon et al. 2008). The chemical signature of 
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an individual's environment is preserved in the layers of biogenic calcium carbonate (typically aragonite) 

deposited on the protein matrix that make up otoliths. Unlike bone, they are metabolically inert, meaning 

that the annual layers of growth are neither reabsorbed nor reworked as the fish ages (Campana and 

Neilson 1985). Concentrations of several  isotopes (carbon, oxygen, calcium, strontium, sulfur and lead) 

and elements (strontium, barium, manganese, iron and lead) can vary between each layer and can be 

considered as a natural chemical tag or chemical chronology of an individual's entire life (Campana 2005). 

By analyzing each of these layers separately, researchers can trace the movements of fish and determine 

the natal origin of individuals based on the chemical content of the otolith core. 

 Researchers have been applying these methods to the study of otoliths of BFT, determining that 

these structures confirm many of the lessons learned from tagging studies (Rooker et al. 2002; Rooker et 

al. 2003; Rooker et al. 2008a; Rooker et al. 2008B; Rooker et al. 2014; Fraile et al. 2014).  An early 

attempt to use otolith microchemistry as a tool for population assignment of BFTs focused on differences 

in the concentration of several elements (lithium, magnesium, calcium, manganese, strontium and barium) 

between various nursery areas in the Mediterranean Sea (Alboran, Ligurian, and Tyrrhenian Sea) and 

Western Atlantic (New Jersey and Rhode Island; Rooker et al. 2003). Using multivariate analysis, Rooker 

et al. (2003) found significant differences in the otolith microconstituents of second year BFT juveniles 

(fork lengths between 66-70 cm) captured in the Western Atlantic (n = 12) and the Ligurian Sea (n = 8). 

Discriminant analysis, using all six elements, indicated that 71% of these individuals were correctly 

assigned to the nursery sites that were captured in. When each element was analyzed separately, only 

lithium showed significant differences between the two areas. A comparison between second year and 

young-of-the-year (25-42 cm fork length) BFT captured at three nursery areas in the Mediterranean 

(Alboran, Ligurian and Tyrrhenian Seas) showed differentiation between sites; however, two out of three 

sites also showed interannual differentiation between age classes. Classification accuracy for all tests 

ranged between 62% and 85%, suggesting that the technique required additional optimization or both 

nursery areas contain individuals of mixed origin. Due to the low number of individuals analyzed 

(between nine and 15 per site) and interannual variation within sampling sites, this study could hardly be 

considered conclusive. In comparison, an earlier study by some of the same authors investigating the 

population structure of Pacific bluefin tuna, T. orientalis, uncovered much higher levels of distinction 



Page | 10  

 

(assignment accuracy of 100%) between major nursery areas in the Pacific Ocean and marginal seas using 

three elements (Rooker et al. 2001). This difference between resolution of nursery areas for the two 

species is likely due to the fact that Atlantic BFT have at least two major spawning areas and the Pacific 

bluefin tuna has one. 

 A later study analyzing differences in carbon and oxygen isotopes (δ13C or δ18O) and many more 

samples (38-154 individuals per sampling location) was able to achieve much higher levels of confidence 

(Rooker et al. 2008a). For example, the vast majority of adults captured in the Mediterranean Sea and 

GOM showed evidence of natal homing (95.8% and 99.3%, respectively). Smaller fish captured in the 

Mid-Atlantic Bight area were shown to be of mixed origin (44.3% - 57.4% eastern origin). Large fish 

captured in the same area and northwards into the Gulf of Maine and Gulf of St. Lawrence contained an 

increasing proportion of western origin fish (94.8% and 100%, respectively). As such, Rooker et al. 

(2008a) concluded that trans-Atlantic east-west migrations are performed for the most part by young BFT.  

 On the whole, the tagging studies described above indicated that giant BFT exiting the 

Mediterranean after spawning are likely to be heading into the cold waters of the northeast Atlantic, 

Norwegian Sea and North Sea. Since large BFT are more thermally resistant and better suited for foraging 

in colder waters, it may eventually be determined that selection of foraging waters is dependent on both 

water temperature and size/age of BFT.  

 Similar studies using the same technique and many of the same sampling areas showed variable 

influence of δ13C concentrations in determining natal origin of BFT from a variety of age classes (Rooker 

et al. 2008b, 2014; Fraile et al 2014). In one study, δ13C failed to distinguish between individuals caught 

in the Mediterranean and the Western Atlantic all together (Rooker et al. 2008b). Several studies showed 

significant inter-annual variability in otolith chemistry at single sample site that was, for the most part, 

less than the differences found between sites (Rooker et al. 2008b, 2014; Fraile et al 2014). Collectively, 

these studies provide evidence that the feeding aggregations found in the 1) Mid-Atlantic Bight are 

composed of young BFT from both sides of the Atlantic (Rooker et al. 2008b), 2) central north Atlantic, 

on either side of the 45° W management boundary, contain a mix of adults from the east and west (Rooker 

et al. 2014), and 3) Bay of Biscay are juveniles and adults of eastern origin (Fraile et al. 2014). Moreover, 

giant BFT found in the waters of New Brunswick, Prince Edward Island and Nova Scotia within the Gulf 
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of St Lawrence as well as the Atlantic coast of Nova Scotia are almost exclusively of western origin 

(Schloesser et al. 2010). Combined, this data tells a tale of juveniles with more limited migratory 

movements, highly migratory adolescents that remain in relatively warm waters and adults that display 

increased latitudinal movements, entering into colder regions, yet remain closer to spawning areas than the 

younger immature BFT. 

 In 2009, the feeding aggregate in the Bay of Biscay contained a small number of individuals 

(2.7%) of western origin; however, this representation decreased to zero in 2010 and 2011, suggesting that 

the magnitude of transatlantic migrations differs from year to year, confirming the aforementioned 

hypothesis (Rodewald 1967). Close to the Strait of Gibraltar, western immigrants have been captured in 

Moroccan traps but appear to be absent from traps on the north side of the Strait in Spanish and 

Portuguese waters (Rooker et al. 2014). BFT caught in the waters around the Balearic Islands, Sardinia 

and Malta all seem to be of eastern origin, while several individuals appearing to be of western origin have 

been captured near Cyprus (Rooker et al. 2014). According to Rooker et al. (2004), otolith δ18O values 

were significantly higher for YOY captured in the eastern nursery areas (Mediterranean and Bay of 

Biscay) in which the water is both cooler and more saline than the GOM and east coast of the USA. 

Additional sampling in the northern Aegean, Marmara and Black Sea should be conducted in order to 

determine if these western-type BFT caught near Cyprus are not a third group with distinct otolith 

chemistry influenced by the unique physico-chemical characteristics of those water masses where 

spawning and nursery areas were once suspected in the past. 

 Finally, PCBs and organochlorine pesticides have also been used to confirm the general 

conclusions of natal homing and mixing of both stocks in the western Atlantic (Dickhut et al. 2009). Since 

this study used YOY (23-38 cm FL) captured offshore from the mid-Atlantic Bight as a baseline for 

western origin fish, they may have sacrificed some assignment power as this region is known to contain a 

mix of young fish from both spawning areas. Additional calculations are required to compare fish of 

different age and size using this method as these chemicals accumulate in tissues as BFT feed, grow and 

age. The authors suggest that young fish captured in the Mediterranean Sea with western-like 

concentrations of pollutants in their tissues are representative of young BFT that migrate to the western 

Atlantic within their first year, taking on characteristics of those waters and return to the Mediterranean 
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years later for spawning. In this way, this methodology can provide information about BFT movements as 

well as origin. 

  The development of genetic techniques as a means of determining genetic population structuring 

can be viewed as a means to overcome the interannual variation endemic to otolith chemistry studies 

which is subject to environmental variation as well as the prohibitively expensive satellite tagging 

methods and inability to attach large tags to young fish. The use of molecular techniques to achieve these 

ends will be discussed at length in Chapters 5 and 6. 

1.3 Reproductive biology 

 When sexually active, BFT are broadcast spawners that aggregate in favourable waters during the 

spring spawning season (conditions and locations are described in Chapter 2). According to some authors, 

BFT from the western Atlantic reach maturity after 6-10 years while those in the east mature at 4-6 years 

(Baglin 1976, 1982; Corriero et al. 2005; Díaz and Turner 2007). Some confusion persists as to the actual 

definition of maturity; whether it pertains to individuals of a specific size (>110cm), those that are capable 

of producing gametes (vitellogenic oocytes) or individuals that are actively participating in spawning 

events and contributing to recruitment (Corriero et al. 2003). Díaz and Turner (2007) estimated the age of 

maturity for BFT in the western Atlantic using extrapolations from the average length of fish caught by 

Japanese longliners in the GOM between January and June. Using this method loaded with assumptions 

(only mature BFT are present in the GOM during these months, all mature BFT from the west enter the 

GOM for spawning, Japanese longliners catch an unbiased representation of all age classes), they 

estimated that the age of 50% maturity is around 12 years and concluded that the number of BFT reaching 

maturity before the age of 9 is negligible. Not only is this estimate scientifically questionable but it is also 

rather unrealistic to consider that BFT in the west mature a full 5-8 years later than eastern fish. 

Considering that many juvenile and adolescent BFT of both eastern and western origin spend their first 

years feeding together in the western Atlantic, it is unlikely that a difference in maturation rates is a result 

of diet or environmental conditions. This leaves genetic differences as the sole potential cause of life 

history differences; however, genetic differences between the two populations are simply not great enough 

to cause such heterogeneity (see Chapter 5). 

 Gauging maturity based on a gonadosomatic index (GSI), which is the ovary weight as a 
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percentage of total body weight, offers a much more direct analysis of sexual development. Mature 

females should have a GSI ranging between 2.0 and 5.3 and a high proportion of yellow-orange ova that 

are 0.85-1.2 mm in diameter (Baglin 1982). Using both the GSI and histological analysis of ovaries, 

Baglin (1976, 1982) estimated that western BFT begin to mature between the ages of 5 and 6 years. Using 

the same methods, Medina et al. (2002) estimated that BFT begin maturing at 3 years of age. Despite 

reports of regional differences in BFTs, such as higher GSIs in Eastern Atlantic medium sized fish, larger 

ovaries in giant fish from the west (Baglin 1976, 1982) and slight differences in second dorsal fin length 

and number of pectoral fin rays (Rivas and Mather (1976), eastern and western BFT are probably more 

similar than much of the literature suggests. These differences are likely a result of sampling bias more 

than anything else. In fact, a 2014 study using a novel method for assessing sexual maturity, by 

characterization of intra-pituitary gonadotopins, determined that the current paradigm of different maturity 

schedules on either side of the Atlantic is false (Heinisch et al. 2014). 

 As with many other teleost species, female BFT have higher fecundity (number of mature eggs 

that can be released within a single spawning season) at larger sizes (Baglin 1976). For example, BFT 

measuring  205 cm  and 156 kg are capable of releasing 13.6 million eggs, while a female 269 cm in 

length (fork length) and 284 kg can carry as many as 40.6 million eggs (Baglin 1982). Mature eggs 

measuring around 0.47 mm in diameter (dependent on water conditions like salinity and health of female) 

begin to develop when mature BFT enter into spawning areas where sea surface temperatures exceed 

20.5°C (Richards 1976; Medina et al. 2002; Alemany et al. 2010). The ambient sea surface temperature in 

the Gulf of Mexico during the spawning season is normally >25°C, much higher than large BFT are 

accustomed to in the Atlantic Ocean. As a result, the mean body temperature of BFT in the Gulf of 

Mexico during the spawning period (26.7 ± 1.6°C) is roughly 2°C higher than when the fish are feeding in 

the Atlantic Ocean (24.7 ± 2.3°C; Teo et al. 2007). Similar temperatures (22.5 - 24.9°C) are reached in the 

Levantine Sea during spawning events (Karakulak et al. 2004). Tagging of mature adults entering the Gulf 

of Mexico during the spawning period has revealed a unique spawning behaviour described as shallow 

oscillatory diving during the night (Block et al. 2001; Teo et al. 2007). This behaviour may be an attempt 

at thermoregulation, wherein diving into cold deep water (203 ± 76 m) provides the necessary cool down 

from surface waters, while frequently returning to the surface maintains their presence in the spawning 
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aggregation for as long as physiologically possible. Alternatively, rapid and repeated movements through 

depths of varying temperatures while maintaining a higher than average body temperature may have a role 

in stimulating the release of gametes. Given the correct cues, spawning of BFT appears automatic and has 

even been observed in fattening cages in the Mediterranean (Gordoa et al. 2009). Held captive in warm 

surface waters and prevented from diving into deeper waters, these captive BFT are likely spawning in 

response to increased body temperatures. This temperature-dependent impulse to release gametes may 

account for the occurrence of eggs and larvae outside of known spawning areas (Baglin 1976; Richards 

1976; McGowan and Richards 1989). Given higher than average sea temperatures, BFT may be 

stimulated to release gametes in less than favourable bodies of water in the absence of conspecifics. 

Immediately following repeated spawning behaviour, which persists for 2-3 weeks, BFT swim to deep 

waters, as if in an effort to cool down as quickly as possible (Block et al. 2001; Teo et al. 2007). Given 

these observations, rising sea temperatures resulting from climate change will almost certainly have an 

impact on the spawning behaviour and location of BFT. 

 There are seven oocyte developmental stages in the ovaries of BFT: perinucleolar, lipid, early 

vitellogenic, late vitellogenic, migratory nucleus, pre-hydrated and hydrated (Corriero et al. 2003). Within 

spawning areas, several of these developmental stages can be found among the fish captured there, 

indicating that BFT are asynchronous multiple spawners (Medina et al. 2002). In the Gulf of Mexico, BFT 

spawn during April, May and June with a peak occurring in late May and early June, while in the 

Mediterranean it occurs during May, June and July with a peak in the eastern Mediterranean in late May to 

early June followed by a peak in the western Mediterranean in late June to early July (Baglin 1976, 1982; 

Richards 1976; Karakulak et al. 2004; Heinisch et al. 2008; Knapp et al. 2014). 

 Once fertilized, eggs passively float in the water currents and hatch after approximately 30 hours 

(De Metrio et al. 2010). The waters that larvae are born into are usually oligotrophic and after exhausting 

their yolk sac they begin feeding on small plankton after 3 days. By day 25 post-hatching, BFT larvae 

become aggressive predators, consuming large amounts of pelagic larvae of other fish species as well as 

conspecific eggs and larvae (De Metrio et al. 2010). By mid-November, young BFT can grow to be about 

40cm in length, at which point they begin to aggregate, school and move en masse to nursery areas 

(Mather et al. 1995). After one year, BFT grow to be more than 50 cm in length, by their third year they'll 
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have grown to approximately 1 m in length and by eight years they weigh over 100 kg (Restrepo et al. 

2010). Given the opportunity, BFT can live over 30 years of ago and can reach over 3 m in length (Mather 

et al. 1995; Restrepo et al. 2010). 

1.4 Fisheries 

 Exploitation of BFT stocks by pre-industrial civilizations certainly had an impact on our collective 

development; influencing trade routes, organization of labour, politics and the way we regard ownership 

of the sea and coastal lands (see Chapter 6 for further details). It wasn't until after the 1950s that the 

pendulum swung the other way and humans started to have an impact on populations of bluefin tuna. 

Following World War II, rich fishery grounds reopened and the American industrial complex was at a 

state of historical capacity. Tuna canneries were the third largest employers in San Francisco and new tuna 

super trawlers were opening up new areas of exploitation. Devastated by the ravages of war, Japan 

refocused on the sea as source of protein for their impoverished masses and the Pacific bluefin tuna was to 

play a major role. Following market scares associated with bluefin tunas tainted by both mercury and 

radiation (a result of the USA's testing of the H-bomb at Bikini Atoll), Japan's fishing fleets expanded 

beyond the Pacific Ocean and began capturing bluefin tunas in the Atlantic in the 1960s. The expansion of 

the fleet and popularity for fatty tuna meat was the result of the introduction of mechanical refrigeration 

that was then available in homes, restaurants and factory trawlers. In Richard Ellis' Tuna: A love story 

(2008), he credits the moment that the BFT market exploded to the arrival of two Japanese purse seiners 

off eastern Canada and New England in 1971-1972. The Japanese were willing to pay fishermen amounts 

of money for whole bluefin that were, until that time, unheard of. Witnessing the profits to be made, 

European countries started to abandon the traditional, seasonal and fixed method of fishing by tuna traps 

and began modernizing the bluefin fleet in order to exploit offshore stocks year round. Armed with spotter 

planes, gillnets, longlines and purse seiners, a reckless assault on the Mediterranean commenced. In the 

north eastern Atlantic, the Norwegian purse seining fleet expanded rapidly and yielded profits for little 

more than a decade (Miyake et al. 2004). Under pressure from both legitimate and clandestine fisheries, 

historical stocks of ABFT vanished from the North Sea (1960s), coastal waters of Brazil (1970s) and the 

Black Sea (1983) (Mather et al. 1995; Miyake et al. 2004; Fromentin and Powers 2005). In the west, a 

similar pattern of dramatic increases in both fishing capacity and catches was followed by a crash in yields 
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some two decades after the birth of the fishery. The demand for BFT in the sashimi market of Japan has 

greatly increased its value and as a result the rate of exploitation (Ellis 2008; Fonteneau 2009; Fromentin 

2009; Longo 2011). This unyielding appetite for bluefin tunas and the profits to be had from their 

exploitation has led Dr. Barbara Block, one of the world's leading experts in the species, to famously 

crown the species as the “cocaine of the sea”. In 2001, Carl Safina wrote, “On the world markets the 

bluefins (and to some extent bigeye tuna) are “boutique species” commanding excessive prices among a 

few people with excessive appetites for luxury and status-enhancing displays of wealth. For all the 

difficulty with management politics, in no sense can these fisheries be considered as producers of Food for 

the Masses.” 

1.5 Conservation and management challenges 

1.5.1 The International Commission for the Conservation of Atlantic Tuna 

 In 1965, the Food and Agriculture Organization of the United Nations called for a conference of 

plenipotentiaries to prepare and adopt a convention for the purpose of establishing a commission for the 

conservation of tuna and tuna-like fishes in the Atlantic Ocean. At that meeting, which took place in Rio 

de Janeiro during May of 1966, the International Commission for the Conservation of Atlantic Tuna 

(ICCAT) was established by representatives from 17 countries. The commission was ratified in 1966 and 

charged with the responsibility of managing thirty species of large pelagic fishes, including all tunas, 

swordfish, billfish, mackerels, and the shortfin mako and blue shark in the Atlantic Ocean, Gulf of Mexico 

and Mediterranean. ICCAT now consists of 50 contracting parties (CPs), of which the EU is a single 

party. BFT are managed as two stocks separated by the 45ºW meridian: a western stock which consists of 

individuals supposedly spawning in the Gulf of Mexico and foraging in the north western Atlantic and an 

eastern stock with spawning areas in the Mediterranean Sea and foraging waters in the Mediterranean and 

north eastern Atlantic (Block et al. 2005; ICCAT 2009). If population structuring does occur within the 

Mediterranean Sea, as some experts have suggested (Carlsson et al. 2004, 2007; Fromentin 2009; Riccioni 

et al. 2010, 2013), then replenishment of exhausted sub-populations will not follow a scenario consistent 

with the existing stock assessment model. 

 ICCAT's scientific committee, the Standing Committee on Research and Statistics (SCRS), is 

made up of scientists from various countries who compile catch data, produce statistical reports, model 
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population trends and offer advice for management policies. The Commission's managers are then 

expected to use this scientific advice to draft fishing management policies which take the form of 

recommendations to the member nations. Recommendations are passed by a simple majority vote 

consisting of a quorum of 2/3 of the fifty Cps, who each have a single vote. Each CP is responsible for 

implementing, monitoring and enforcing recommendations.   

 In 1981, ICCAT adopted strict catch quota regulations in the Western Atlantic where the fleet 

consists for the most part of vessels from Japan, the USA and Canada. Quota regulations did not appear in 

the eastern Atlantic until 1995. Due to the economic interests at stake and the overcapacity of the 

European fleet it is unsurprising that misreporting and fraud are causing management efforts to fail. In 

2006, ICCAT introduced a multi-annual recovery plan which has contributed to a decreased overall 

harvest of both adult and juvenile fish (ICCAT 2006b). Between 2007 and 2008, the EU implemented a 

short term (6 month) emergency conservation regulation in response to new evidence of damaging fishing 

practices by six EU countries. Stocks are finally showing signs of improvement and WWF has declared 

the BFT's recovery a resounding success (García et al. 2013; ICCAT 2015b). Although, the rate and nature 

of this recovery is still very much uncertain, as the SCRS admits that the quality of data currently provided 

by fishery dependent sources are inadequate to formulate an accurate stock assessment (ICCAT 2013; 

Fromentin et al. 2014). The SCRS is advocating caution until the speed and magnitude of the recovery can 

be confirmed (ICCAT 2015). As such the SCRS was unable to agree upon an upper limit for the Total 

Allowable Catches (TACs) that would not jeopardize the recovery of the stock in their 2015 report to the 

commission. The SCRS did however, suggest a gradual increase in the TACs to a level equal to the most 

precautionary maximum sustainable yield (MSY) but were unable to agree upon a time frame and rate of 

increase. In response, the commission has decided to increase the quota by 20% per year over the next 3 

years, starting in 2015. In essence, this means a 71.5% increase in the eastern Atlantic and Mediterranean 

quota between 2015 and 2017 (Table 1). 

1.5.2 Poor implementation of management plans 

 Despite the presence of ICCAT, BFT stocks continued to plummet throughout the 1980s and 

1990s. Carl Safina (2001) wrote, “The bluefin tuna is emblematic for failure to find the political resolve to 

act toward recovery of severely depleted fish despite having generally reliable scientific information.” 
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Safina is referring to the fact that between 1970 and 1989, ICCAT and its member parties oversaw the 

disappearance of 90% of BFT giants (>8 years) and 50% of medium adults (6-7 years) in the western 

stock (ICCAT 1991). Although the commission was advised by the SCRS at the time to reduce catches to 

as close to zero as possible, they continued to allow an annual quota of 1160-2660 tonnes for scientific 

monitoring during the 1980s, while catches of adult BFT continued to plummet (Fig. 3; Safina 1993).  

Table 1: Science-based TAC recommendations provided by ICCAT SCRS, catch quotas set by ICCAT, yields reported by 
contracting parties, and SCRS estimates of actual yield in metric tonnes by year (ICCAT 1995-2015). 

Year Science-based TAC 
recommended (t) 

Quota set by 
ICCAT (t) 

Reported yield 
(t) 

SCRS estimate 
(t) 

1996 N/A N/A 46,033 >50,000 

1997 N/A N/A 46,983 >50,000 

1998 20,000 N/A 44,700 >50,000 

1999 <25,000 32,000 32,454 >50,000 

2000 <25,000 29,500 33,754 >50,000 

2001 <25,000 32,143 34,557 >50,000 

2003 <26,000 32,000 28,205 >50,000 

2004 <26,000 32,000 32,567 >50,000 

2005 <26,000 32,000 35,845 >50,000 

2006 N/A 32,000 30,647 >50,000 

2007 15,000 29,500 32,398 61,000 

2008 15,000 28,500 23,849 25,760-34,120 

2009 8,500-15,000 19,950 19,751 18,308 

2010 13,500 13,500 11,328 N/A 

2011 12,900-13,500 12,900 9,779 N/A 

2012 12,900-13,500 12,900 11,474 N/A 

2013 12,900-13,500 13,500 13,133 N/A 

2014 12,900-13,500 13,500 N/A N/A 

2015 *23,256 in steps over 2-3 years 16,142 N/A N/A 

2016 *see above 19,296 N/A N/A 

2017 *see above 23,155 N/A N/A 

 
*SCRS scientists were not able to reach a consensus on the number of steps to complete the rebuilding 
plan, or on the management strategies. 
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Fig. 3: Reported catch of BFT in the Western Atlantic from 1950 to 2013 by fishing gear (ICCAT 2015). 

 In the eastern Atlantic and Mediterranean, the Commission set catch quotas well above the levels 

recommended by the SCRS every year between 1999 and 2009 (Table 1). The catches that were reported 

to the commission by the contracting parties during that period were consistently higher than quotas, 

except for 2003 and 2008, which revealed ICCATs lack of enforcement capacity. The SCRS estimated 

that the actual catches, including IUU fishing, were consistently 2 to 3 times higher than the advisable 

limit. The most exaggerated difference between scientifically advised limits (15,000 t) and actual yields 

(~61,000 t) was in 2007, one year after ICCAT published their Recovery Plan (Fig. 4). An independent 

review funded by WWF revealed that EU vessels from France, Spain and Italy (France in particular), in 

collusion with Libya, were largely responsible for the IUU fishing during the early 2000s that led to such 

high catches above and beyond the quotas (WWF 2006). The years of frustrated negotiations and political 

intrigue that paved the way towards reform are detailed in Safina (1993). Many of the negotiations were 

held behind closed doors and involved the influence of both industry and conservation lobbyists. Advice 

from the SCRS certainly showed the way forward and many of the contracting parties were in favour of 

reform; however, several countries consistently sabotaged the process and placed the species on a path 

towards collapse. Some conservationists blamed ICCAT as a whole and crowned the commission with the 

moniker of the International Conspiracy to Catch All Tuna. The way in which many of the member states 

of ICCAT have failed to uphold their responsibilities, while others have actively withheld data and done 

their best to sabotage the conservation process is widely regarded as an “international disgrace”.  
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Fig. 4: Reported catch of BFT in the Eastern Atlantic (ATE) and Mediterranean (MED) from 1950 to 2013 together with an 
estimate of the unreported catch (calculated by the SCRS using fishing capacity and mean catch rates over the previous 
decade; ICCAT 2015). 

 An independent performance review commissioned by ICCAT in 2008 determined that BFT 

attracts 85% of the media coverage and criticism from the international community, despite the fact the 

species accounts for only 7% of the overall tuna caught within the concerned management area (Hurry et 

al. 2008). The authors remarked that the challenges faced by ICCAT are shared by all regional fisheries 

management organizations (RFMOs); however, ICCAT's exceptionally high membership consisting of 50 

contracting parties (over twice as many as all other RFMOs, aside from the WCPFC which has 26) 

exacerbate the issues. When too many politicians gather around a table there is a tendency for them to 

focus more on one another and the process of negotiating for higher allocations than on the science 

leading towards sustainability (O'Leary et al. 2011). The authors concluded that the failure of ICCAT to 

reach its objectives is in a large part due to the lack of compliance from many of the CPs and that many of 

the problems plaguing the commission could be fixed if the CPs fulfilled their responsibilities and adhered 

to the recommendations provided by the commission. According to the report, “ICCAT has developed 

reasonably sound conservation and fisheries management practices, which, if fully implemented and 

complied with by Contracting Parties, Cooperating non-Contracting Parties, Entities and Fishing Entities 

(CPCs), would have been expected to be effective in managing the fisheries under ICCAT’s purview.” 

Moreover, the SCRS appears capable of providing sound advice to the commission, despite the significant 

challenge presented when CPs routinely fail to deliver data, which is often inaccurate, on schedule. This 
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review was performed in 2008 and many improvements have been made since. Quotas have been 

drastically reduced since then, IUU fishing has been addressed and the stock is finally showing signs of 

improvement (García et al. 2013; ICCAT 2015b).  

 The BFT fishery isn't unique in regard to inflation of quotas by CP representatives and fisheries 

ministers in particular. A 2011 study estimated that between 1987 and 2011 politicians chose to increase 

scientifically recommended TACs for 68% of eleven commercial fish species across nine management 

zones (O'Leary et al. 2011). Politicians set TACs lower than scientifically advised in only 14% of cases 

reviewed. On average, politicians set TACs 33% higher than scientifically advised and in one case in the 

Bay of Bay Biscay management area politicians set TACs 1100% higher than advised for hake. There 

wasn't a single case in the 14-year period in which a moratorium advised by scientists was enacted into 

law. The authors concluded that “productive and sustainable fisheries will not be achieved if Fisheries 

Ministers’ cavalier disregard for scientific advice continues”. 

1.5.3 Illegal, Unreported and Unregulated fisheries and Flags of Convenience 

 As previously mentioned, ICCAT has a membership of 50 contracting parties, including several 

countries that do not border on the Atlantic Ocean but obviously have invested interests in the fish that 

live there (The Republic of South Korea, China, Philippines, Japan and Vanuatu). All contracting parties 

have a single vote in the commission, including the EU which is considered as one single contracting 

party. One interesting and concerning case is that of Vanuatu, a small Pacific island nation of 228,000 

residents which also has a vote on the commission. According to the list of vessels longer than 20m in 

length that are registered with ICCAT and authorized to operate in the convention area, there are 20 

vessels that fly the flag of Vanuatu. Upon closer inspection, 14 of these vessels are operated by Japanese 

corporations. In fact only one long lining vessel is owned and operated by a company from Vanuatu. 

Other countries operating vessels with the flag of Vanuatu are Taiwan (3), China (1) and Namibia (1). The 

actual owners of these vessels have addresses in Panama (8), Singapore (3), Seychelles (1), Liberia (2), 

Cook Islands (1), Taiwan (3) and China (1). Moreover, sixteen of these 20 vessels are carriers with 

authorization to receive transhipments from vessels registered in Japan, Taiwan, South Korea, China, 

Belize and the Philippines. The same applies for the 18 vessels flying the flag of Belize of which only two 

are owned and operated by companies based in Belize.  Although none of the Belizean vessels are owned 
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or operated by Japan, three carrier vessels are owned and operated by Chinese corporations and the rest 

are under the yoke of companies in the USA, Estonia, Greece, Spain, Ghana, South Africa, Panama, 

Germany and the Ivory Coast. Seventeen of the 25 vessels flying the flag of Panama are named “Chung 

Kuo No. X” and are owned and operated by companies based in Panama, all of whom have headquarters 

in Taiwan. Registering a vessel in a sovereign state different from the ship's owners in an effort to avoid 

regulations and give the appearance of capacity reduction is a practice known as purchasing Flags of 

Convenience (FOC). If the state issuing the FOC decides to remove a vessel from their registry and revoke 

the privileges of their flag, vessels can obtain a new FOC from another state within 24 hours (Gianni 

2004). In fact many vessels change both the name of their vessel and FOC on a regular basis (known as 

“flag-hopping”) in order to avoid traceability. 

 Japan and Taiwan have long been a challenge in the management of all species of bluefin tuna, in 

Pacific, Atlantic, Indian and Southern Oceans. Mengerink et al. (2010) explains the politics, aggressions 

and tribulations shared by these two tuna nations in entertaining detail. During the early 2000s, Japan and 

Taiwan were both encouraged to reduce their fishing capacity and instead of doing so, they simply 

decorated their vessels with FOCs and moved their fleet abroad. When pressured further, Japan went on 

the offensive and attacked Taiwan's overcapacity and overuse of FOCs. By 2004, 50 out of 51 of Taiwan's 

long-lining tuna vessels with freezer capacity were flying FOCs from countries like Vanuatu, Panama, 

Belize, Cambodia, Bolivia and Georgia. Between 2000 and 2004, Japan publicly circulated reports 

condemning Taiwan for Illegal, Unreported and Unregulated (IUU) fishing practices at several meetings 

of the Western and Central Pacific Fisheries Commission (WCPFC). Several years after Japan's campaign 

to expose Taiwan's illegal operations, it surfaced that Japan was hunting southern bluefin tuna at a rate 3 

times higher than their quota allowed and were actively concealing their catch data from inspectors at the 

same time. The managing director of the Australian Fisheries Management Authority, Richard 

McLoughlin had this to say about this revelation in 2006, "Essentially the Japanese have stolen $2 billion 

worth of fish from the international community [by dint of their own under-reported fishing and their 

import of bluefin from IUU vessels], and have been sitting in meetings for fifteen years saying they are as 

pure as the driven snow” (Scheiber et al. 2007).  

 IUU fishing activities are also occurring within the Atlantic, in recent years and by vessels that 
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have permits to operate there, issued to them by ICCAT. Cross referencing of all vessels contained in the 

ICCAT Record of Vessels with the Greenpeace International Blacklist, a database of fishing vessels and 

companies engaged in Illegal, Unregulated and Unreported (IUU) fishing, produces a list of 8 vessels with 

questionable pasts. One of these is a Taiwanese owned freezer cargo ship (Lung Yuin) using a flag from 

Vanuatu which was inspected in Japan in 2004. The Japanese authorities discovered that the Lung Yuin 

had received trans-shipments of frozen bigeye tuna  25 Taiwanese vessels and three Vanuatu flagged 

fishing boats owned by Taiwanese companies which all gave false information about where the fish had 

been caught. The Lung Yuin also had two log books, one of which was true and the other false. Among 

the 25 Taiwanese longliners that provided false information to the authorities are the Yuh Yeou 236 and 

Shin Yeou 6, both of which are on the list of vessels currently operating with ICCAT permits in the 

Atlantic. Also on the list is a Spanish vessel (Albacora Uno) accused of shark finning in the Marshall 

Islands and illegally discarding a ton of skipjack in 2012, an Italian longliner (Biagio Anna) accused of 

illegally using driftnets in the Tyrrhenian and Ionian Seas in 2006, a trawler from the Russian federation 

(Kapitan Bogomolev) illegally fishing in the waters of Senegal-Guinea Bissau in 2013, a south Korean 

longliner (Oryong 316) accused of not reporting its catches during 2006 and a purse seiner owned by a 

French company and operating out of the Ivory Coast (Solevant) illegally fishing in Liberia and forgery of 

a fishing license in 2012. The fraudulent commercial practice of purchasing FOCs for vessels and 

registering shell companies abroad with the full intent of importing all yields to a corporation's sovereign 

state is known as fish, seafood or food laundering. 

1.5.4 Sea ranching 

 Much of the BFT fishery is now focused on sea ranching, a fishing practice by which schools of 

bluefin tunas are encircled by large purse-like nets and towed to cages to be fattened for several months to 

years before slaughter. Sea ranching operations can now be found along the coasts of nearly all countries 

in the Mediterranean and the Atlantic coasts of Portugal and Morocco. This practice has greatly confused 

stock assessments that rely on accurate estimates of length, weight and age at capture. Thousands of fish 

are moved from purse seine nets to towing or transport cages and then into fattening cages and catches are 

inevitably mixed, combined and confused. The increased popularity of purse seining and greatly reduced 

number of BFT has heralded the decline of the traditional trap fisheries in the Mediterranean, which had 
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maintained a consistent 500 year record of standardized fishing effort. Since tuna ranching activities 

involve live, fast swimming BFT underwater, it is very difficult to estimate the biomass of fish removed 

from the wild and placed into captivity each year. From 1997 to 2004, while reported purse seine catches 

were being reduced, exports of BFT from Mediterranean ranches to Japan increased rapidly until exports 

exceeded catches (Miyake 2005). While a portion of this unaccounted for difference between export and 

catch can be credited to the fattening of fish, it's also suggestive of IUU fish being laundered through the 

growing number of farms (De Stefano and Van der Heijden 2007). It's been estimated that between 2005-

2011, approximately 60% of the eastern BFT catch ended up in tuna fattening farms (Ortiz et al. 2014).  

As such, ICCAT has now requested that a percentage of every transfer from purse seine nets to towing 

cages is sacrificed in order to estimate sizes and weights of the fish captured via extrapolation from a 

random sampling (ICCAT 2010b, 2012b). This of course, would require an estimate of the total number of 

fish contained in the nets. Developing accurate stock assessments in the past were difficult enough but 

now the SCRS is forced to make estimates from random samples of random samples [repetition intended] 

and the complexity of the issues have multiplied. The task has certainly become more challenging for 

observers who are incapable of counting fish in the water, unless they join them. WWF has expressed 

concern for the ease with which the hunters, ranchers and farm stewards will be able to launder IUU fish 

through the burgeoning tuna farm industry (ICCAT 2015b). For several years, ICCAT and members of the 

SCRS have been working on developing a underwater camera monitoring system capable of counting fish 

and estimating their biomass as they pass through the doors connecting cages. Unfortunately a few 

technical issues (imaging system has problems with multiple fish entering the cage at once, accuracy of 

estimates reduces with non-perpendicular orientation of fish in front of camera, reduced water visibility 

influences accuracy of estimates) have slowed the introduction of this technology. Ranching has also 

provided new opportunities fishermen to profit from the capture of smaller BFT because they will 

eventually be fattened to an acceptable market size within the cages (De Stefano and Van der Heijden 

2007). Fromentin and Ravier (2005) suggested that if the fishery avoided the capture of juveniles (>35kg) 

than the fishery could sustain higher levels of exploitation and the stock could be more productive.  

 Not only does tuna ranching threaten the welfare of BFT stocks but it's also an incredibly 

inefficient food production practice from an ecological perspective. Some 20 kg of bait fish are required to 
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produce 1 kg of BFT, which is the highest food conversion ratio (FCR) of any farmed fish in the world 

(Volpe 2005; Longo 2011). Since the rapid expansion of the ranching industry, bait fish stocks have also 

been placed under additional pressure and EU ranches are now forced to import bait fish to feed their 

captive BFT. Europe is injecting millions into subsidies for an industry that is literally converting their 

wild stocks of herring, mackerel, sardines, anchovy and squid into sashimi to feed the Japanese.  

1.5.5 Subsidies 

 The rapid growth of the tuna ranching industry (vessels and fattening cages) has been well-

subsidized by European taxpayers at both the federal and EU level as well as investment companies and 

multi-national super corporations from around the world; Japan in particular (WWF 2004; De Stefano and 

Van der Heijden 2007; Longo 2011). The hypocrisy of EU subsidies, which are intended to reduce fishing 

capacity, made the headlines in 2009 when a European Commissioner admitted that €33.5 million had 

been spent on new purse seiners and modernization of existing vessels between 2000 and 2008 (Pope 

2009). The industry has also been effective in taking advantage of a legal loophole allowing it to garner a 

windfall in subsidies intended for the development of aquaculture in the EU. In essence, tuna ranching is a 

capture fishery masquerading as aquaculture. WWF estimates that between 2000 and 2003, the tuna 

ranching industry has obtained in excess of €19-20 million in public funds for operations in the 

Mediterranean Sea (WWF 2004). Savvy operators can acquire as much as 75% of initial investment costs 

from national and regional government bodies for new ranching operations WWF 2004). These financial 

transfers from the public to the private sector have become a serious threat to sustainable BFT fisheries 

because they distort investment decisions for modernization of fishing fleets and the expansion of 

ranching operations (Sumaila and Huang 2012). 

1.5.6 Selective fishing practices 

 Each fishing gear used to capture BFT is subject to both time and area restrictions. For 

example, in 2015 large-scale pelagic longline vessels over 24 m are permitted to operate in the eastern 

Atlantic and Mediterranean from 1 January to 31 May with the exception of the area delimited by West of 

10°W and North of 42°N, as well as in the Norwegian Economic Zone, where fishing is permitted from 1 

August to 31 January. Purse seining has a much more restricted season which runs from 26 May to 24 

June in the eastern Atlantic and Mediterranean and from 25 June to 31 October in the Norwegian 

Economic Zone. While longlining targets various age classes (as well as numerous species of bycatch, 
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including turtles, sharks and seabirds) over a five month period there are concerns that purse seining, 

which takes the lion's share of the annual quota (Fig. 5), targets a more restricted range of age classes. 

Historical accounts and observations by modern fisheries scientists suggest that age classes don't mix 

completely and that the older larger BFT enter the spawning areas and are followed later by the smaller 

less fecund age classes (Badham 1854). If this is the case, then the quota given to the Spanish purse 

seiners operating in the Mediterranean, which was filled in 23 hours in 2014, is likely to consist of a 

limited variety of fish as they pass through the narrow Strait of Gibraltar. Furthermore, this restricted age 

group is targeted by both purse seiners and longliners during the week of 26 May to 31 May when both 

gear types are in use in the same area. This targeted selection of a restricted age class can have negative 

impacts on the demographics of the species, reduce recruitment rates because of the selective removal of 

large more fecund individuals and confuse stock assessments that rely on accurate age composition 

estimates. 

 

 

 

 

 

 

 

 

 

Fig. 5: Reported catch of BFT in the Eastern Atlantic and Mediterranean from 1950 to 2013 by gear type together with an 
estimate of the unreported catch (ICCAT 2015). 

1.5.7 The Atlantic-wide research programme for bluefin tuna (GBYP) 

 In 2008 the SCRS proposed to the Commission that a programme be developed in which research 

into data mining, aerial surveys, tagging design studies and programme coordination is undertaken. 

Several Contracting Parties agreed to the value of such an endeavour and expressed an interest in 

providing additional funds for its initiation. A Steering Committee containing the SCRS Chair, the ICCAT 

Executive Secretary or his/her Assistant, bluefin tuna rapporteurs, and an outside expert in tuna research 
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was appointed soon thereafter. The adopted name for the programme was the GBYP, or Grande Bluefin 

Tuna Year Programme, which has since become known as “The Atlantic-wide research programme for 

Atlantic tuna”. The programme was initiated during March 2010 with the following three priorities: 

1. Improve basic data collection through data mining (including information from traps, observers, and 

VMS), developing methods to estimate sizes of fish caged, elaborating accurate CPUE indices for 

Mediterranean purse seine fleets, development of fisheries-independent information surveys and 

implementing a large scale scientific conventional tagging programme; 

2. Improve understanding of key biological and ecological processes through electronic tagging 

experiments to determine habitat and migration routes, broad scale biological sampling of live fish and 

dead fish landed (e.g. gonads, liver, otoliths, spines, etc.), histological analyses to determine bluefin tuna 

reproductive state, biological and genetics analyses to investigate mixing and population structure; and 

ecological processes, including predator-prey relationships; 

3. Improve assessment models and provision of scientific advice on stock status through improved 

modelling of key biological processes (including growth and stock-recruitment), further developing stock 

assessment models including mixing among areas, and developing and use of biologically realistic 

operating models for more rigorous management option testing. 

 In order to assist the GBYP participants, ICCAT recommended that the Contracting Parties, 

Cooperating non-Contracting Parties, Entities or Fishing Entities should provide maximum assistance for 

the procurement of permits to operate in relevant maritime areas and the airspace over these areas. The 

GBYP was granted a 20 t research mortality allowance and exempted from size limits, fishing gear 

restrictions and seasonal closures (ICCAT 2011b). During the first year of operations, or Phase 1, efforts 

were focused on aerial surveys, data mining and tagging. In its second year, the GBYP expanded to 

include the “Biological and Genetic sampling and analyses” consortium, which is composed of 13 entities 

and 7 sub-contracting parties from 13 countries and specializes in research focused on otolith 

microchemistry and shape, genetics and growth calibration. Between 2012 and 2014, the consortium 

sampled 8,842 BFT, acquiring 4,165 otoliths, 626 gonads, 6,107 muscle and fin tissue samples for 

research purposes. 
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 Overall, the scientific and economic conditions have been suitable for an ambitious re-analysis of 

the population structure of BFT. The conservation demand, willingness of the industry to embrace new 

scientific endeavours and political support for research all made it possible for the most comprehensive 

genetic survey of BFT populations to date. The following chapters detail three years of research in pursuit 

of novel insights into the population structuring and spatial dynamics of BFT in both space and time. 
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Appendices 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix 1. PSAT trajectories of A) 13 BFT tagged in Barbate (Spain, n=7), Sardinia (Italy, n=2), Corsica (France, n=4) 
and Chalkidiki (Greece, n=1) between 1998 and 1999 during April-November. Days at liberty range between 5 and 246 
(from De Metrio et al. 2001) and B) 19 BFT tagged in northern Cyprus and the Bay of Antalya in the Levantine Sea. 
Deployment (+) and pop-up (•) locations of the satellite tags released 3-67 days at liberty (from De Metrio et al. 2004). C) 
PSAT pop-up locations of 52 BFT tagged in Cyprus, the Levantine Sea, the Aegean, Corsica and Sardinia after 5-300 days. 
The report does not specify date of tagging nor does it provide trajectories between tagging and pop-up locations (from De 
Metrio et al. 2005). All images have been modified using GIMP 2.8.14. 
 
 
 
 

 

 

 

 

 

 

 
 
 
Appendix 2. PSAT trajectory of a single BFT (203 cm CFL at release), tagged in North Carolina, that spent three 
consecutive years in the western Atlantic (1997-2000) prior to a trans-Atlantic crossing into the Mediterranean Sea (Block 
et al. 2001, modified with GIMP 2.8.14). 
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Appendix 3. Left) Positions of PSAT tagged BFT released from 3 locations (arrows) in the USA between 1996 and 2004. 
a) 36 BFT classified as western breeders (219 ± 27 cm CFL at release, median time at large 579 days), b) 26 BFT classified 
as eastern breeders (207 ± 17 cm CFL at release, median time at large 926 days), c) 268 BFT that did not visit the eastern or 
western spawning areas (202 ± 16 cm CFL at release, median time at large 141days). Triangles in all figures represent tag 
pop-up location (from Block et al. 2005, modified with GIMP 2.8.14). Right) PSAT trajectories of 13 BFT tagged in the 
Western Mediterranean during early June (2009-2011) after more than 45 days at liberty (from Aranda et al. 2013, modified 
with GIMP 2.8.14). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix 4. PSAT trajectories of 126 adult BFTs tagged in the NW Atlantic during three different time periods: 
December-January (A,D,G), February-March (B,E,H) and April-June (C,F,I). Red points indicate ambient maximum 
temperatures (SST) between 22-26°C. All images are from Lutcavage et al. (2012) and have been modified with GIMP 
2.8.14. 
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Appendix 5. A) PSAT trajectories of 3 BFT tagged in the Balearic Sea during August and September. BFT were at liberty 
for >30 days (dates of tagging and recovery are featured in figure). B, D, E, F) Trajectories of individual juvenile BFTs tuna 
tagged with archival tags during August 2008 in NE Spain and recovered after 32, 10, 12, and 10 months  at liberty. C) 
PSAT trajectories of 2 BFTs tagged in the Adriatic Sea after 6-8 months at liberty. All images are from Cermeño et al. 
(2012) and have been modified with GIMP 2.8.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Appendix 6. PSAT trajectories of 32 adult BFT tagged offshore from Nova Scotia in 2005 (a, 268±56kg) and 2006 (b, 
227±58kg). Tags remained on fish for 145±28 days in 2005 and 150±76 days in 2006. c, d, e, f) PSAT trajectories of 
individual BFT. All images are from Galuardi et al. (2010) and have been modified with GIMP 2.8.14. 
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Appendix 7. PSAT trajectories of A) four BFT tagged in mid-August 2008 off Mallorca Island, B) four tunas tagged during 
2009 (Blue and Yellow: two adult BFT tagged in mid-August off Mallorca; Red and Black: two adult BFT tagged in early 
September in the Gulf of Lions), C) two BFT tagged in the Adriatic Sea during 2009, and D) a  juvenile tuna tagged with an 
archival tag during August 2008 in the Gulf of Lions and recovered close to the initial position after 391 days at liberty. All 
images are from Tudela et al. (2011) and have been modified with GIMP 2.8.14. 
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Appendix 8. a) Daily positions of 38 BFT tagged with PSAT and archival tags. White circles represent positions of BFT 
tagged in the western Mediterranean (n = 28 pop-up tags + 1 internal tag), yellow circles represent positions of BFT tagged 
in the Adriatic (n = 9 pop-up tags). b) Daily positions of four tagged BFT displaying signs of spawning behaviour in areas 
highlighted in yellow squares. Seasonal Utilization Distributions (UDs) of BFT during the (A) spawning period (i.e. May 15 
to July 15), (B) spring, (C) summer, (D) autumn and (E) winter. All images are from Cermeño et al. (2015) and have been 
modified with GIMP 2.8.14. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
Appendix 9. Pooled geo-locations of BFT tagged with satellite pop up tags off Cape Breton Island (Canada) in A) 2007 and 
B) 2008 (squares and triangles represent the tagging and pop up locations, respectively). PSAT trajectories of individual 
BFT that entered the Gulf of Mexico (C, D), the Mediterranean Sea (F), ir did not visit either one of the two known major 
spawning areas (E). All images are from Wilson et al. (2011) and have been modified with GIMP 2.8.14. 
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Chapter 2  

Troubled taxonomy 

 

 

 Squeezing through a narrow crack in a thin layer of partly digested outer egg membrane, or 

chorion, a small larva enters into the big blue expanse. Large predatory eyes take in the vast body of 

water that spins away into eternity on three sides with crystalline shards of light beaming through the 

ocean's surface that form the rooftop of their new universe overhead. The waters are warm but the black 

depths below promise dangers and radiate cold. Menacing shadows dart about the lonesome tiny figure 

suspended in the blue. Instantly the tiny fish recognizes one of its newborn brethren surveying its new 

world only a few fin thrusts away. Midnight black pupils become fixed and a deep longing penetrates the 

bluefin's fragile awareness. Fraternal love and hunger mix as one in the ebb and flow of turbulent surface 

waters. In the next moment, a surge of water and gaping jaws lined with tiny razor sharp teeth shock the 

bluefin back into the reality of predator and prey and one sibling disappears into the mouth of another. 

Alone and free, the baby bluefin tuna quickly swims into the void. 
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2.1 Introduction 

 Once properly identified, fish eggs and larvae can provide vital information for troubled fisheries, 

like that of BFT, concerning population structuring, spawning seasons and locations, as well as spawning 

stock biomass (SSB) or recruitment trends. Significant relationships between SSB and the abundance of 

eggs and larvae have been observed in several species including small pelagics (anchovy, Pacific and 

Atlantic mackerel; Lockwood et al. 1981; Lasker 1985; Stratoudakis et al. 2006; Lo et al. 2010)  and 

demersal species (rockfish, cod, plaice, sole; Moser et al. 2000; Armstrong et al. 2001). As such, egg and 

larval abundance indices are commonly used to calibrate, improve and validate stock assessment models, 

which are often subject to inaccurate fisheries data (Hsieh et al. 2005). For decades, scientists from 

ICCAT member nations have been using BFT larval indices generated from surveys conducted in the Gulf 

of Mexico to calibrate Virtual Population Analyses for the western stock (Scott et al. 1993; Scott and 

Turner 2003; Ingram et al. 2010). In 2013, the first standardized BFT larval indices for a Mediterranean 

spawning site were published based on larval surveys conducted by the Spanish Institute of Oceanography 

around the Balearic Islands in the western Mediterranean (Ingram et al. 2013). Temporal shifts in BFT 

larvae abundance and condition can provide important information about recruitment success relative to 

short and long term environmental changes (Alemany et al. 2010; Lindo-Atichati et al. 2012; García et al. 

2013a). Larval surveys can also help to determine community assemblage dynamics in order to develop 

additional data for the development of ecosystem-based management approaches (Richardson et al. 2010). 

Surveys of this nature have revealed that highly exploited species exhibit more variability in abundance in 

response to climate change than under-utilized species (Hsieh et al. 2006). In the context of a rapidly 

changing environment and a swollen fishing fleet, our ability to accurately identify and monitor BFT 

throughout its life history is critical for their effective management.  

Clearly, the distribution and quantity of early life stage fishes can provide a wealth of information 

but what happens when eggs and larvae are classified and counted incorrectly? Surveys monitoring the 

abundance of fish eggs collected in the Irish Sea in 2001 were used by ICES to estimate the SSB of cod 

(Gadus morhua), plaice (Pleuronectes platessa) and sole (Solea solea). The resulting estimates far 

exceeded those given by Virtual Population Analysis (Armstrong et al. 2001). Subsequent genetic analysis 

revealed that many of the eggs had been misidentified, leading to large over-estimations of cod SSB (Fox 
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et al. 2005). Elsewhere, inaccurate estimates of egg diameters used to identify sciaenids may have led to 

over-estimations of up to 50% of the SSB of black drums, Pogonias cromis, in Chesapeake Bay (Daniel 

and Graves 1994). A recent study focusing on the ability of researchers from five different laboratories in 

Taiwan to identify larvae determined that the average accuracy of identification was 80.1%, 41.1% and 

13.5% at family, genus and species levels, respectively (Ko et al. 2013). Families containing the most 

misidentified larvae in that study were Sparidae, Scorpaenidae, Scombridae, Serranidae and 

Malacanthidae. Recently, Puncher et al. (2015: Chapter 3) revealed that Atlantic bluefin tuna have been 

misidentified in the Mediterranean Sea. In that study, they showed that more than half of larvae submitted 

by three Mediterranean institutions to an ICCAT funded BFT research project were the wrong species. 

In this review, we explore the events leading up to the misidentification of BFT larvae in the 

Mediterranean and present the argument that additional mistakes are likely to have occurred in the past 

and have a high likelihood of happening again in the future unless corrective measures are taken. In order 

to establish context for our concerns, we first provide a small review of problematic assumptions that have 

been made based upon what we have learned from young fish that have been identified as BFT. This is 

followed by a review of the problems associated with morphology-based taxonomy and its efficacy as a 

primary tool within the framework of large-scale tuna larvae surveys. We critically examine the resources 

available to survey teams and make several suggestions for improvements. Finally, we review the merits 

of morphology-based taxonomy and molecular techniques and highlight the need for a harmonization of 

both methods in order to minimize costs and optimize wildlife conservation and fishery management 

efforts. 

2.2 A Context for Concern 

Larval surveys have confirmed that BFT spawn during May and June in the eastern 

Mediterranean, June and July in the western Mediterranean (Duclerc et al. 1973; Alemany et al. 2006; 

Heinisch et al. 2008), and April to June in the Gulf of Mexico and Florida Straits (Baglin 1976; Richards 

1976; Fig. 1). BFT larvae have also been observed in the Gulf of Guinea during February, March and 

August (Richards 1976), as well as the Black Sea during summer months, until they disappeared from that 

body of water in the 1980s (Vodianitskii and Kazanova 1954; Akyuz and Artuz 1957). Significant 

numbers of BFT larvae have also been identified off the coasts of Turkey (Bay of Mersin) and Tunisia 
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(Oray and Karakulak 2005; Giovanardi and Romanelli 2010; Zarrad et al. 2013; Koched et al. 2013). In 

1983, Piccinetti and Piccinetti Manfrin (1993) identified BFT larvae off the northern coast of Egypt; 

however, their presence in those waters has not been verified since. Some researchers have suggested that 

spawning may also occur in the mid-Atlantic, after tagged adults were found there during spawning 

months (Lutcavage et al. 1999). Of course, this might also be evidence that BFT do not necessarily spawn 

annually (Galuardi et al. 2010). The much restricted BFT fishing season in most parts of the 

Mediterranean Sea is scheduled to take place during these spawning periods (currently 26 May to 24 June; 

ICCAT 2014). Many other fisheries choose to safeguard mature fish from capture until spawning has 

completed (Grüss et al. 2014). Of course, many (not all) of the BFT captured in the Mediterranean Sea are 

there for a few weeks alone, for the sole purpose of reproduction (Aranda et al. 2013) and a great deal of 

revenue would be lost if this season were to be closed. Future BFT conservation efforts may focus on 

protection of spawning areas and seasons, as they have been previously identified by the presence of their 

eggs and larvae. 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 1 Map showing known spawning areas (shaded polygons) of the Atlantic bluefin tuna in the Gulf of Mexico (a), 
Balearic Sea (b), Tyrrhenian Sea (c), Ionian Sea (d) and Levantine Sea (e). Figure was generated using gimp 2.8 (GNU 
Image Manipulation Program 2.8.14). 
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Much of our understanding concerning favourable environmental conditions for spawning of BFT 

comes from research based in the western Mediterranean Sea. Larval surveys in this area have shown that 

changes in relative abundances of different species are directly influenced by hydrodynamics (Alemany et 

al. 2010; Reglero et al. 2012). BFT larvae are most abundant in surface waters ranging between 23-28°C, 

where two water masses collide and create complex hydrodynamic conditions lacking strong, directional 

flows (García et al. 2005a; Reglero et al. 2012; Muhling et al. 2013). As Mediterranean waters are 

generally oligotrophic and do not provide ample food for the high bio-energetic demands of quickly 

developing BFT larvae, spawning typically occurs at the formation of frontal structures, the boundaries of 

anti-cyclonic gyres, and upwelling zones typical of oceanic islands, wherein both food particles and larvae 

are entrained (García et al. 2005a; Aguilar et al. 2009; Mariani et al. 2010; Lindo-Atichati et al. 2012). 

The Balearic Islands in the western Mediterranean are arguably the most productive of BFT spawning 

areas (Alemany 2008; García et al. 2013b). Within these waters, BFT larvae tend to be more abundant in 

areas where incoming Atlantic water masses and resident surface Atlantic waters, already modified by a 

longer stay in the Mediterranean, converge (García et al. 2005a; Alemany et al. 2006, 2010; Reglero et al. 

2012).  The discovery of low nutrient concentrations and reduced primary production in some areas with 

high concentrations of larvae have led some researchers to suggest that predation on non-BFT fish larvae 

and cannibalism plays an important role in the survival and development of BFT recruits. The continual 

spawning of BFT seen over a period of weeks produces sub-cohort overlap, exposing smaller larvae to 

predation by older recruits; a behaviour that appears to be favoured by higher sea temperatures, when 

growth rates increase and size classes become more distinct (Reglero et al. 2011; García et al. 2013a). The 

Tyrrhenian and Ionian Seas also produce high quantities of BFT larvae, particularly off the south eastern 

coast of Sicily (Cape Passero), where the confluence of the Atlantic Ionian Stream and upwellings result 

in a retention area rich in potential prey items (Lafuente et al. 2002; García et al. 2005b). Predictions 

concerning the impacts that climate change and future ocean conditions will have on BFT populations will 

be based on these larval abundance studies. Unfortunately, this research is taking place on a limited 

geographic scale and until additional resources (monetary and human expertise) are allocated elsewhere, 

this will continue to be the case. 

 Our current understanding of BFT spawning in the Mediterranean Sea suggests that the western 
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basin is the most productive source of young bluefin tuna; however, spawning also takes place in the 

central and eastern Mediterranean Sea. Discrepancies in larval survey results from this region have cast 

some doubt on the location, consistency, timing and success of spawning events. For example, a 1994 

larval survey of the entire Mediterranean collected 1160 tuna larvae, including 183 BFT, none of which 

were caught in the Levantine Sea (Piccinetti et al. 1997). These results are not surprisingly, since the 

survey was conducted between 21 June and 7 July, several weeks after the established spawning season 

(Karakulak et al. 2004) and south of Cyprus, instead of in the Bays of Antalya and Mersin, north of the 

island, where BFT larvae are often found (Oray and Karakulak 2005). Japanese surveys have reported low 

densities of BFT larvae in hauls taken in the mid-Levantine Sea around the Herodotus Basin (Tsuji et al. 

1997, Nishida et al. 1998). These larvae may have originated at the periphery of the Rhodes and Léraptra 

anti-cyclonic gyres, which are composed of inflowing Atlantic waters south of the islands of Rhodes and 

Crete, respectively; a hypothesis that fulfils both the hydrodynamic and island proximity requirements for 

BFT spawning (Robinson et al. 1992). Waters exiting these gyres to the south are carried eastward by the 

Mid-Mediterranean Jet Stream and later bifurcate south to the waters of the Herodotus Basin and north to 

the Bay of Antalya. Alternatively, spawning may also be occurring between the island of Cyprus and the 

coastlines of Syria and Lebanon, where a number of smaller seasonal anti-cyclonic gyres form. These 

water masses are carried northward by the Cilician Current along the southern coast of Asia Minor, where 

they can be retained in eddies formed in the Bays of Mersin and Antalya (Robinson et al. 1992, Özsoy et 

al. 1993).   

 BFT larvae are commonly transported over significant distances by both jet stream waters and 

meandering gyres throughout their distribution. Larvae appear to accumulate in retention areas with high 

concentrations of food particles (including conspecific larvae), wherein they develop into juveniles and 

migrate en masse to nursery areas (McGowan and Richards 1989). In the Western Atlantic, seven-day-old 

BFT larvae (>4.0 mm) have been captured off the coast of North Carolina using a mesh size of 0.33m, 

well outside of known spawning areas (McGowan and Richards 1989). Although ocean currents in that 

region are capable of transporting larvae from the Gulf of Mexico and Straits of Florida, approximately 

970 km, the origin of larvae around Cape Hatteras is unknown. The majority of BFT larvae captured in 

that area have been large (4.6 - 6.5 mm), while smaller larvae (<3.5 mm) are noticeably absent among 
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samples. Similarly, the majority (65%) of larvae captured in the northern Levantine Sea have been large 

(5-7 mm, approximately 10 days post hatch), opening up the possibility that their origin may lie in a 

different body of water; although, some smaller larvae (3.1 mm) have also been captured (Oray and 

Karakulak 2005). Moreover, most larval surveys conducted in the Levantine Sea have used nets with a 1 

mm mesh size which are unlikely to retain the entire smaller size fraction of larvae (Oray and Karakulak 

2005). Therefore, it is currently inadvisable to compare the results of larval surveys taking place in the 

eastern Mediterranean with other locations, since they cannot be considered as quantitative hauls. Clearly, 

the execution of additional standardized larval surveys, supported with genetic identification of samples 

and hydrographic modelling, are required in the Levantine Sea to the extent that they have been performed 

elsewhere in the Mediterranean Sea. 

2.3 Potential for errors in BFT larvae identification 

In general, identification of tuna eggs and the larvae of some tuna species using morphological 

characteristics alone is incredibly difficult, requiring an in depth knowledge of taxonomy as well as 

patience and experience. Two of the world’s former leading tuna taxonomists warned that “the young 

stages of fishes of the family Scombridae are among the most difficult to identify to generic levels and 

particularly to the species level” (Richards and Pothoff 1974). Kohno et al. (1982) cautioned that an 

“extensive knowledge of individual, growth-associated, and geographic variations” in patterns of 

melanophores is required to make an accurate identification of Thunnus species. Unique patterns of red 

pigmentation have also been used to distinguish species; however, this type of pigmentation is most 

prominent in larvae caught during the night (Matsumoto et al. 1972) and is lost during formalin fixation 

and ethanol preservation (Richards et al. 1990). Due to the difficulties associated with correctly 

identifying larger larvae (>5 mm) by pigmentation patterns alone, some authors advise using osteological 

characteristics; however the process of clearing, staining and examining is time consuming, unfeasible for 

large surveys and often results in additional loss of samples (Richards et al. 1990). Identification based 

upon morphometrics alone is unfeasible due to body distortions occurring during fixation or rapid growth 

spurts that distend and stretch the body during rapid early development (Matsumoto et al. 1972).  Making 

matters worse, fish larvae are often so damaged during sampling that identification to species level using 

morphological features becomes impossible (Paine et al. 2007). Due to the scarcity of expertise in larval 
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taxonomy, species identification is commonly outsourced to distant laboratories that specialize in the 

sorting of plankton (Scott et al. 1993; Ingram et al. 2010; Matarese et al. 2011; Lindo-Atichati et al. 2012). 

Some researchers have resorted to limiting identification of their captured larvae to lower taxonomic 

levels (Hernandez et al. 2010; Lindo-Atichati et al. 2012), while others have turned to genetics to identify 

to species level (Chow et al. 2003, 2006). 

 The ability of field technicians to identify larvae to species level is limited by the quality of 

materials and tools that they are given to accomplish this challenging task. In some fields of study, 

misidentification of species can reach as high as 90%, which can lead to serious errors concerning 

community composition and population inferences (Vecchione et al. 2000). Decades ago, before recent 

clarification of tuna systematics, Richards (1976), a reputed ichthyoplanktologist warned, “For a group 

like the tunas I am sceptical of reports based on eggs and early larvae unless these young stages have been 

raised to identifiable sizes.” Unfortunately, culturing unknown eggs and larvae until they can be accurately 

identified has proven extremely difficult for some long-range pelagic species, including BFT (Hyde et al. 

2005). Rearing of BFT from eggs through to their juvenile stages has been completed only recently (de la 

Gandara et al. 2010). As a result, most larval surveys rely on a small handful of taxonomic keys, 

illustrations and journal publications for species identification (unless one of the world’s few tuna 

taxonomists or a well-trained technician is onboard to assist with the painstaking task of identifying 

thousands of larvae). When sourcing texts that specialize in BFT systematics, confusion quickly ensues as 

most texts are quite old and use several of 15 synonyms, seven of which were generated by Linnaeus 

alone (Froese and Pauly 2015). A few keys are easily obtained on the internet, while most require a 

personal contact with someone in the industry willing to share digital copies. Obviously since most texts 

are several decades old, there is no standardized formatting or consistency in quality. Several texts that are 

routinely referenced by current larval studies are written in Japanese (Ueyanagi 1966, Yabe 1966), Italian 

(Sanzo 1932a; Scaccini 1975), French (Duclerc et al. 1973) and Spanish (Dicenta 1975).  Some of these 

keys are very old and after several generations of scanning and copying of illustrations, morphological 

features contained therein have become difficult to distinguish.  

 Early taxonomic descriptions of scombrids were often based on misidentified larvae or eggs and 

are thus riddled with errors and confusion (Alemany 2008). The unreliable nature of these guides was 
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identified as early as 1974 by Richards and Pothoff (1974), who called them contradictory and complained 

that they made use of too many different criteria for comprehensive identifications. The authors of some 

of these early works have admitted that errors were made when identifying the larvae that were later used 

to build identification keys (Matsumoto et al. 1972; Richards and Pothoff 1974). Unfortunately, efforts to 

replace these early works with accurate descriptions have yet to take place. As a result, successive 

publications based on these works have carried the errors forward. The origin of these mistakes are the 

pioneer works on tuna larvae in the Mediterranean in which BFT larvae and those of other tuna species 

were misidentified, namely Ehrenbaum (1924) and Sanzo (1932). For example, the larvae identified by 

Ehrenbaum (1924) as T. thynnus were in all likelihood T. alalunga, according to the pigmentation pattern 

of the specimens illustrated in their publication. In short, the illustrated larvae all but lack diagnostic black 

pigmentation in the trunk, except for a few dorsal and/or ventral melanophores on the urostile, a pattern 

that is maintained from hatching to advanced postlarval stages  (Alemany 1997 and references therein) 

and a characteristic that is not shared by any other tuna species inhabiting the Mediterranean Sea. Using 

fertilized eggs captured at sea, Sanzo (1932, 1933) described eggs and early hatched larvae of T. thynnus 

and T. alalunga (at that time Orcynus thynnus and Orcynus germo, respectively), following a comparison 

with mature eggs extracted from the ovaries of captured adult females. However, the continuous row of 

ventral melanophores, preanal ventral pigmentation and few dorsal melanophores in the caudal area 

featured in the resulting drawings and descriptions suggest that Sanzo (1932, 1933) was unintentionally 

working with A. rochei specimens (Alemany 1997 and references therein) and not T. thynnus and T. 

alalunga as intended. Later, Scaccini et al. (1973) confirmed these errors when eggs identified as BFT, 

according to Sanzo’s descriptions, released larvae belonging to other species. In fact, larvae identified by 

Scaccini et al. (1973) as BFT were probably A. rochei, based on a photograph featured in the publication 

of a recently hatched larva. These two erroneous works by Ehrenbaum (1924) and Sanzo (1932) were the 

only references taken into account by Padoa (1956) for describing BFT larvae, in what has become one of 

the most extensively used fish larvae identification guides for the Mediterranean Sea. From these dubious 

origins, drawings and descriptions of early life stage BFT and albacore by Sanzo (1932, 1933) continue to 

resurface in fish larvae identification guides of species inhabiting in the Atlantic Ocean, including 

Fritzsche (1978), Fahay (2007) and Richards (2005).  
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 Confusion between illustrations and descriptions of T. thynnus and T. orientalis has also persisted 

for decades as many of the most relied upon guides predate the separation of the two species (Collette 

1999). For example, Yabe et al. (1966) published an in depth description of T. orientalis and T. maccoyii 

and their distribution in the Pacific Ocean, containing eight detailed illustrations of T. orientalis larvae. 

Jones et al. (1978) then used the illustrations by Yabe et al. (1966) as well as several other drawings of T. 

orientalis by Ueyanagi and Watanabe (1964) and Ueyanagi (1966) for their in depth description of T. 

thynnus. Fahay continued this practice of recycling illustrations in two publications in 1983 and 2007 in 

which they use the same drawings by Yabe et al. (1966). In their 1983 publication, they indicate in a 

footnote that the T. thynnus larvae were “Pacific material”; however, this important detail was omitted 

from their later publication in 2007 (Fahay 1983, 2007). It is unfortunate that this occurred, considering 

that this key was published years after the Thunnus orientalis species designation in 1999. Certainly, these 

mistakes in the pioneer works have confounded many scientists for decades and are undoubtedly the root 

of the issue surrounding BFT misidentifications. 

 During the 1970s several attempts were made to clarify the confusion surrounding the taxonomy 

of early life stage scombrids. In a thorough review, Richards and Pothoff (1974) warned that established 

osteological diagnostic features sometimes contradict conclusions based on pigmentation. Later, Dicenta 

(1975) noted encountering a great amount of difficulty when attempting to differentiate between the eggs 

and larvae of T. thynnus and  A. thazard (the authors likely meant A. rochei). Following the examples 

provided by Sanzo (1932, 1933), Scaccini (1975) claimed that there are no differences to be found in the 

pigmentation of T. thynnus and T. alalunga at sizes smaller than 5 mm. Soon after Kohno et al. (1982) 

identified 191 larvae as T. thynnus and T. alalunga using guides by Scaccini et al. (1975) and Fritzche 

(1978), among others, and determined that the patterns of melanophore distribution were inconsistent 

within each species, concluding that the use of pigments as diagnostic features was limited. Since all of 

these studies were working from the same erroneous guides, it comes as no surprise that new sources of 

confusion, such as intraspecific variation (resulting from A. rochei specimens analyzed as T. thynnus), 

were discovered and propagated. 

 It has now been over two decades since this literature-based discussion fell silent and although 

early life stage scombrid taxonomy has since been resolved, a comprehensive review clarifying the 
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confusion and identifying errors contained in existing identification guides has yet to be published. 

Modern internet-based standards are disappointing in terms of illustrations used, or lack thereof. FishBase 

(Froese and Pauly 2015) features an illustration of a 25-day-old juvenile T. orientalis incorrectly labelled 

as T. thynnus (Miyashita et al. 2001), while ICCAT’s species identification sheets contain a single 

illustration of a juvenile T. thynnus. As Godfray (2002) pointed out, the quantity of “taxonomic 

information available on the web is pitiful, and what is present (typically simple lists) is of little use to 

non-taxonomists”. Tunas are obviously no exception to this generalization and new efforts should be made 

to definitively identify and describe each species different larval morphotypes with the support of genetic 

analyses and/or conclusive rearing experiments. 

 As a first contribution to this effort, we offer a clarification of some of the more contentious 

elements affecting the correct identification of BFT larvae in the Mediterranean. Currently, there are no 

correct and complete descriptions of BFT larval development published, including illustrations of the 

different developmental stages from eggs and yolk sac larvae to advanced post-larvae, based on 

Mediterranean material. Despite the scarcity of descriptive materials, several incomplete yet useful 

references do exist. For example, Alemany (1997) contains an original illustration of Mediterranean BFT 

flexion larvae and the larval stages following yolk sac reabsorption have already been correctly described 

by Dicenta (1975), who pointed out that the most distinctive species specific feature of these larvae is the 

presence of dorsal melanophores located mid-trunk. Despite some differences that may exist between the 

pigmentation pattern of Pacific and Atlantic BFT (Jones et al. 1978; Kohno et al. 1982), the flexion and 

postflexion stages of T. thynnus can be identified using the descriptions of T. orientalis larvae in Ueyanagi 

and Watanabe (1964), Ueyanagi (1966) and Yabe et al. (1966). Moreover, recent rearing experiments 

carried out in the Mediterranean (de la Gándara et al. 2010) have corroborated the observations provided 

by Kaji et al. (1996), confirming that T. orientalis and T. thynnus yolk sac larvae have the same 

pigmentation pattern; namely a very large dorsal melanophore in the middle of the trunk, which extends to 

the primordial fin (Fig. 2a). After the yolk sac has been absorbed, this melanophore becomes smaller and 

migrates to the trunk, giving rise to additional small dorsal melanophores and the typical dorsal 

melanophore pattern of BFT larvae (Fig. 2b,c). This unmistakable pigmentation pattern can also be 

observed in larvae that have been preserved in formalin (Fig. 3).  



Page | 50  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Photographs of Altlantic bluefin (Thunnus thynnus) larvae reared from eggs collected from spawning induction cages 
at El Gorguel (Cartagena, Spain) and cultivated at the larval rearing plant at the Spanish Insitute of Oceanography in 
Mazarrón (de la Gándara et al. 2010). Larval developmental stages represented are: yolk sac (a), 8 days post hatching (b), 
and 14 days ays post hatching (c). Photographs taken by F. de la Gándara and adapted for publication using GNU Image 
Manipulation Program 2.8.14. 
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Fig. 3 Photographs of Altlantic bluefin (Thunnus thynnus) larvae captured in the Balearic Sea and preserved in formalin. 
Approximate age of larvae are: <24h post hatching yolk sac larvae (a), 24h post hatching (b),  48h post hatching (c). All 
photographs were taken by F. Alemany and adapted for publication using GNU Image Manipulation Program 2.8.14. 

 Bullet tuna, A. rochei, are also found in the Mediterranean Sea and have similar conspicuous 

dorsal pigmentation at flexion and preflexion stages; however, this is restricted to a few melanophores in 

the caudal peduncle area which extend anteriorly as the larvae develop (Alemany 1997). Other 

characteristics, such as ventral pigmentation (digestive organs and cleithrum) in Auxis spp. and a much 

more intense black pigmentation of the first dorsal fin in BFT, allow for the discrimination of the two 

species at similar developmental stages. In summary, it is possible to identify scombrid larvae found in the 

Mediterranean Sea based on morphological characters alone, unfortunately overcoming the confusion 
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cultivated in the past is an obstacle that will be difficult to overcome until accurate and complete 

descriptions are published. 

2.4 Required modernization of larval taxonomy 

BFT larval surveying efforts would greatly benefit from a modern revision of outdated taxonomic 

keys and focus should be given to providing new keys and high quality photographs and illustrations 

online in a digital format. Over a decade ago, Godfray (2002) suggested that a revitalization of taxonomy 

is required, advocating that it is ideally suited for Information and Communication Technologies because 

of its information rich nature and large number of meticulously crafted illustrations. Still, for the most 

part, taxonomy simply hasn’t made the technological leap to modern digital communciation tools. One 

may argue that taxonomy, as a science, is being left behind in an age of information that demands a digital 

interface for nearly all tasks performed in modern research. Guerra-García et al. (2008) declared that 

taxonomy is in a crisis, warning that funding for taxonomy is generally inadequate and that expert 

taxonomists are few and in demographic decline. Over a decade ago, Boero (2001) commented on the 

state of decline of taxonomy, remarking that since publication records of researchers are used as a 

performance measure, the dismal if not non-existent impact factors of taxonomic journals are not 

attractive for young researchers trying to establish themselves in their careers. As such, the number of 

professional and amateur taxonomists has undergone a long and persistent decline since the 1950s 

(Hopkins and Freckleton 2002). In 2003, Wilson (2003) estimated that as few as 6,000 biologists were 

working in taxonomy worldwide. The culmination of these numerous pitfalls has slowed the progress of 

species identification and the assessment of global biodiversity; an ethereal obstacle now described as the 

“Taxonomic Impediment”. The disadvantages associated with morphological taxonomy weighed against 

the increasing efficiency of molecular techniques are driving more researchers towards DNA barcoding 

for routine species identification.  

 A heated debate has been raging between advocates of morphological and molecular taxonomy 

since the inception of DNA barcoding. Some opponents of molecular taxonomy have argued that DNA 

barcoding explores a very restricted portion of the genome and this may lead to systematic errors in 

classification. They argue that the use of a single standard sequence is equivalent to classifying organisms 

based upon a single morphological feature (Tautz et al. 2002). Seberg et al. (2003) expressed concerns 
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over a monopolization of information by wealthier nations, warning that an expensive and centralized 

DNA-based taxonomy would add to an existing North-South divide in taxonomy. It could be argued that 

the open-access nature of online sequence databases is acting to decentralize knowledge that was once the 

sole possession of aged taxonomists with years of education unavailable to many. It is for this reason that 

some have claimed that “DNA barcoding promises to entirely democratize the taxonomic process” 

(Packer et al. 2009).  

 Others have suggested that the merits of morphological taxonomy and barcoding can combine to 

improve systematics overall (Stevens et al. 2011; White and Last 2012). DNA barcoding has the potential 

to accelerate species identifications and diversity assessments by increasing the synergy between field 

biologists, reference collections and sequencing facilities (Swartz et al. 2008). A key directive of 

centralized DNA barcoding efforts, such as the Barcode of Life Initiative, is matching known species with 

archived voucher specimens to DNA sequences (Ratnasingham and Hebert 2007). Likewise, 

morphological taxonomists are needed to recognize and describe new species as well as confront the 

daunting task of matching pre-existing descriptions with ever-expanding sequence libraries (Tautz et al. 

2002). Similar efforts must also focus on the taxonomic description of early life stage fishes. Kendall and 

Matarese (1994) estimated that only 10% of the described marine fish species had known larvae and as 

few as 4% had published descriptions of their eggs. Certainly barcoding has a role to play in these efforts. 

2.5 Advances in molecular analysis 

 Several genetic techniques have been used by researchers over the past two decades to identify 

early life stages of fishes and resolve previously unexplored challenges in fisheries science (Daniel and 

Graves 1994; Vandersea et al. 2008; Boley and Heist 2011). The most commonly used molecular 

technique for identification of fish species is the PCR amplification and sequencing of a ~650bp fragment 

of the cytochrome oxidase subunit 1 (CO1) gene located in the mitochondrial genome. The CO1 gene has 

been proposed as the basis for a global bio-identification system for all animals (or Barcode of Life 

Project) for the following reasons: 1) variability of sequences between individuals of the same species is 

negligible when compared to the variation between species, 2) moderate mutation rate, and 3) 

characteristic flanking regions that require a limited number of “universal” primers (Hebert et al. 2003). 

An extension of the Barcode of Life project is the Fish Barcode of Life Initiative (FISH-BOL), which 
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seeks to barcode all of the estimated 32,257 recognized species of fish using the same gene 

(http://www.fishbol.org; Ward et al. 2009). Barcoding by CO1 sequences has been used to identify the 

diversity of reef fish larvae in the Pacific Society Islands (Hubert et al. 2010), Great Barrier Reef (Pegg et 

al. 2006) and Caribbean Sea (Victor et al. 2009; Valdez-Moreno et al. 2010; Baldwin et al. 2011). CO1 

barcodes have also been used to verify the species of difficult to identify larvae of snapper in the Straits of 

Florida (D’Alessandro et al. 2010), mackerel off of south-eastern Australia (Neira and Keane 2008), 

sculpin in the Bering Sea (Matarese et al. 2011), scombrids in the western Atlantic and mid-Pacific (Paine 

et al. 2007, 2008), sandlance in the Yellow, East and Bering Seas (Kim et al. 2010), and entire 

communities of medium-sized pelagic larvae in the Straits of Florida (Richardson et al. 2010). Other genes 

neighbouring the CO1 gene, such as the ATCO region and 16S rRNA gene, have been used to identify 

Thunnus eggs and larvae offshore from the Mariana Islands and Yucatán Peninsula, respectively 

(Kawakami et al. 2010; Muhling et al. 2011); however, molecular barcoding techniques have yet to be 

applied to large-scale larval surveys focusing on Thunnus thynnus. The application of these techniques has 

provided many solutions to long unanswered mysteries; however, with every advance new challenges are 

inevitably encountered.  

 As with many other aspects of working with young tunas, identification of species by CO1 

sequences is not a straightforward enterprise. Due to the similarity between species in the Thunnus genus, 

some researchers have experienced difficulty when identifying unknown samples using genetic distance 

based approaches, like phylogenetic tree construction (Alvarado Bremer et al. 1997; Richards et al. 2006; 

Paine et al. 2007). Viñas and Tudela (2009) were unable to resolve Thunnus orientalis and T. thynnus 

clades using a handful of sequences (n=4-8) and as a result advocated for the use of the mitochondrial 

control region as an alternative marker for the barcoding of tunas. Since the geographic distribution of T. 

orientalis does not overlap with the spawning areas of T. thynnus, the CO1 marker can be used as a 

barcoding marker for tuna larvae collected in the Gulf of Mexico and Mediterranean Sea. By using a 

different analytical approach, Lowenstein et al. (2009) identified seven nucleotides in the CO1 sequence 

that distinguish T. thynnus for T. orientalis and one simple pure characteristic attribute that differentiates 

T. thynnus from all other tunas. As such, the use of individual diagnostic loci to identify species, or 

characteristic attribute keys, has proven effective for differentiation of scombrid species (Lowenstein et al. 

http://www.fishbol.org/
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2009). Barcoding of BFT mitochondrial DNA has also revealed that 2-3.3% of Atlantic BFT share nearly 

identical mtDNA with albacore and Pacific bluefin tunas, due to past hybridization events and subsequent 

introgression of the mitochondrial genome (Viñas et al. 2011; Alvarado Bremer et al. 2005). As such, 

nuclear markers, like the rDNA first internal transcribed spacer (ITS1) region, has been advocated by 

some as a means by which albacore and BFT can be differentiated (Chow and Kishino 1995; Chow et al. 

2006; Paine et al. 2007; Viñas and Tudela 2009). Using the sequencing approach and tools described 

above, identification of unknown scombrid larvae in the Mediterranean Sea is straightforward and 

unambiguous.   

Once a species’ DNA barcode is published, researchers are able to develop a suite of genetic tools 

capable of identifying that species without direct sequencing of DNA. A 33-probe suspension bead array 

has been used to identify 23 different species of California marine fish eggs, including commercially 

relevant species such as Pacific mackerel (S. japonicus), hake (Merluccius productus), Pacific barracuda 

(Sphyraena argentea), white seabass (Atractoscion nobilis), California halibut (Paralichthys californicus), 

and diamond turbot (Hypsopsetta guttulata) (Gleason and Burton 2012). The developers of this method 

have suggested that their DNA probes could be scaled up to simultaneously identify the eggs of as many 

as 100 species. More traditional and economic techniques such as multiplexing of haplotype-specific PCR 

products and electrophoresis have been used to rapidly identify collections of clupeiform larvae captured 

in Senegal (Durand et al. 2010). Similarly, researchers in Hawaii have developed a species-specific set of 

primers that, when combined with electrophoresis, were capable of distinguishing the larvae of six species 

of billfish, two species of dolphinfish and wahoo (Acanthocybium solandri) onboard a research vessel in 

only 3 hours (Hyde et al. 2005). Advances have also been made to simplify the process of distinguishing 

scombrid larvae. For example, Paine et al. (2008) developed a quick molecular diagnostic tool capable of 

differentiating albacore and bluefin tuna using a restriction enzyme (Eagl) to digest amplified fragments of 

ITS1.  

Next Generation Sequencing (NGS) is a rapidly evolving array of technologies now being widely 

employed for fisheries management tasks. SNP panels generated through NGS have been developed in 

order to discriminate species and populations of albacore tuna, Pacific lamprey and blue catfish (Albaina 

et al. 2013; Hess et al. 2014; Li et al. 2014). In Europe and America, SNP panels have been used to 
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distinguish between species and populations of salmon as well as farm raised and wild fish (Amish et al. 

2012; Drywa et al. 2014; Houston et al. 2014; Larson et al. 2014). The expectation is that these panels will 

be used for hatchery and marketplace traceability, improvement of breeding programs and wildlife 

conservation efforts. For example, ICCAT, through the Atlantic-wide Research Programme for Bluefin 

Tuna (GBYP), is currently funding research to develop a high performance array capable of distinguishing 

populations of bluefin tuna. NGS technologies also provide the opportunity to quickly ascertain the 

species composition of entire communities of plankton. Researchers at the Plymouth Marine Laboratory in 

England recently compared the results of a plankton survey in which species were identified via both a 

metagenetic and morphological approach (Lindeque et al. 2013). Using 454 pyrosequencing they 

identified 135 operational taxonomic units (OTUs), over twice the number (58) identified using a 

morphological approach, including rare species and parasites. This approach may not be capable of giving 

an exact number of larvae by species collected in a given sample but it can give a relative abundance of 

each. Fisheries organizations and multi-institutional larval surveys, plagued by sampling and species 

identification bias, have much to gain from this new technology. Although NGS techniques have been 

very expensive in the past, its cost is declining rapidly and new markets are opening up in the developing 

world (Willette et al. 2014).  

NGS can produce millions of barcodes per day, the cost of which is decreasing at a much higher 

rate than predicted by Moore’s Law, according to the statistics kept by the National Human Genome 

Research Institute. Stein et al. (2014) conducted an in depth analysis of the costs associated with the 

sorting and identification of freshwater macroinvertebrates, fish and diatoms using morphology-based 

taxonomy, sequencing and the metagenetic analysis of bulk samples of organisms using the IonTorrent 

PGM™ platform. The cost and time estimates required to obtain results using these separate approaches 

were based on data provided by commercial laboratories in the USA between 2010 and 2012. Their 

estimates did not include the cost of sample collection (common for all approaches) and are comparable to 

what would be paid by a large fishery-based larval survey. They concluded that Sanger sequencing costs 

1.7 - 3.4 times more than a morphology-based taxonomic approach (1200-1700USD per 1000 fish). 

Although the bulk sample NGS approach is incapable of identifying individual fish and provides relative 

abundances of each taxa instead, its cost were comparable or slightly less than the morphology-based 
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approach. The time and costs required for Sanger sequencing includes the same steps as traditional 

methods (sorting of samples, removal of debris, voucher specimen analysis) with additional DNA 

extraction, PCR amplification and sequencing, adding another 5 USD in cost per individual analyzed. 

Despite these additional steps, the Sanger sequencing approach is able to provide results within days or 

weeks of sampling (depending on access to sequencing services), compared to the months required for 

traditional morphology-based identifications. Modern NGS platforms can provide results in 3 - 5 days, as 

it eliminates the time required for sorting of the specimens, and costs between 0.50 – 2 USD per 

individual. However, Stein et al. (2014) believe that Sanger sequencing is more accurate than NGS 

analysis due to shorter sequence lengths and amplification biases.  Researchers are now beginning to use 

aspects of each approach that optimize their resource costs: use of voucher specimens identified by a 

morphology-based approach, NGS techniques to discover new barcoding sites or diagnostic/informative 

loci, followed by Sanger sequencing of low numbers of samples or genotyping of high numbers of 

individuals with microarrays (Shokralla et al. 2014). 

2.6 Guide of good practice in BFT larval studies 

 Due to the unreliable, inconsistent and incomplete nature of catch data provided to tuna fishery 

scientists, managers are increasingly looking to alternative sources of information. If larval and egg 

abundances are to be more widely used by tuna fishery scientists, it is imperative that problems associated 

with sample identification are resolved. Considering that tuna taxonomy has suffered from confusion in 

the past and is in need of modernization it comes as no surprise that an understanding of BFT larval 

dynamics remains incomplete. We recommend an elaboration of high quality drawings of the complete 

developmental series of BFT, accompanied by descriptions based on a high number of individuals from 

throughout the species range in order to account for intraspecies variability. High definition photographs 

should accompany each drawing, to help technicians recognize diagnostic features in more realistic and 

familiar representations of each larval stage. Equipped with these new tools, efforts should be made to 

confirm that spawning is taking place in areas where BFT larvae have been documented only once or have 

been identified by only one group of researchers or technicians. If natal homing is indeed a reproductive 

strategy of BFT, conservation efforts should target remote locations where only a few larvae have been 

captured, so that rare genotypes can be catalogued. BFT originating in these areas are likely to possess 
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specialized adaptations (egg buoyancy, sperm motility and larval growth rates) to unique local 

environmental conditions (temperature, salinity, density, current velocity, nutrient availability etc.) 

(Mackenzie and Mariani 2012), which may prove important for the species' survival in future oceans 

modified by climate change (Hobday et al. 2015). Regardless of the sampling location, nets with 0.33-0.50 

mm mesh size should be employed with a tow velocity of two nautical kilometres per hour in order to 

ensure collection of smaller size fractions of larvae. This would allow a comparison of yields across all 

geographic areas. 

 Advances in NGS and historical DNA analysis are allowing researchers new access to archived 

samples (larvae, scales, otoliths, spines and vertebrae), revealing important ecological and evolutionary 

changes in fish stocks and populations over time (Riccioni et al. 2010, 2013; Cuveliers et al. 2011; 

Poulsen et al. 2011; Seeb et al. 2011). Although molecular sampling techniques have been making great 

advances in reducing impact on voucher specimens in the recent past (Nielsen and Hansen 2008; Gibbon 

et al. 2009), the same cannot be said for the majority of morphological taxonomists that still preserve their 

samples in formalin; an outdated practice that renders genetic analysis very difficult if not impossible 

(Ward et al. 2009). Many BFT larval studies have used formalin as a preservative, which severely limits 

future genetic verification of samples (Piccinetti et al. 1997; García et al. 2002; Koutrakis et al. 2004; 

Alemany et al. 2006; Isari et al. 2008; Alemany et al. 2010; Catalán et al. 2011; Koched et al. 2013). After 

discovering the way in which formalin corrupts the body shape and pigmentation of larvae, Ueyanagi 

(1966; 1969) began preserving their larvae in 70% ethanol. Researchers with the California Cooperative 

Oceanic Fisheries Investigations use a conversion factor of 1.098 to convert from formalin fixed length to 

live length because of formalin-induced shrinkage of larvae (Lo et al. 2010). Admittedly, ethanol also 

distorts diagnostic morphological features; however, because it is non-toxic ethanol is less hazardous for 

field surveys. Therefore, we strongly suggest that future surveys store all collected samples in >70% 

ethanol at -20°C. Ethanol that is either denatured or purified to concentrations >96% should be avoided, 

due to the presence of additional chemicals that hinder DNA preservation and interfere with downstream 

genetic applications. Alternatively, replicate samples collected during survey tows by means of a bongo 

net, or Folsom plankton splitter post-collection, can be preserved in both ethanol and formalin. 

Researchers working with nematodes have found that DESS, a solution containing a few common 
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laboratory chemicals, is capable of preserving morphological features and genetic integrity for extended 

periods of time at room temperature (Yoder et al. 2006). 

 Finally, we suggest that all routine fisheries work involving larvae should make use of 

taxonomists and geneticists in order to ensure both accuracy of results and efficient use of financial 

resources. Genetic barcoding and NGS techniques are legitimate tools that can support species 

identification and play a crucial role in fisheries management efforts.  
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Chapter 3 

A Fish by Another Name 

 

Again the parent's pointed jaws comprest  

By force expell them from their pleasing rest.  

But void of all remorse the Tunnies feed 

On their own spawn, and gulp th' enliven'd seeds 

With strange repast the cruel parents blest  

Devour their eggs, and praise the monstrous feast 

       -Oppian, 2nd century 
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3.1 Introduction 

 Atlantic bluefin tuna (BFT, Thunnus thynnus) are the largest of tunas roaming the world's oceans 

and have fed and fascinated humankind for millennia. Vast herds of BFT ply the cold waters of the North 

Sea and North Atlantic Ocean for prey in the winter, returning to spawning grounds in the Mediterranean 

Sea and Gulf of Mexico in the spring and early summer. Fisheries have long taken advantage of these 

migratory patterns, slaughtering multitudes of tuna by hook, gaff, harpoon and net as they migrated 

through coastal waters to feed Roman legions, burgeoning principalities, fishery empires and modern 

multinational corporations. This unrelenting appetite has recently brought stocks to the brink of collapse. 

Gone are the large BFT that spawned in the Black Sea and swelled the market places of Istanbul up until 

the mid 1980s (Mather et al. 1995; Karakulak et al. 2004). BFT stocks that inspired a revolution in fishing 

gear in the North Sea, sustaining a French, Norwegian, German, Dutch and Danish fleet for several 

decades crashed in 1963 (Mather et al. 1995). In the 1960s, a massive shoal of BFT that appeared off the 

coast of Brazil, was quickly targeted by Japanese long-liners and faded into the annals of history in as 

little as 7 years (Fromentin and Powers 2005; Fromentin et al. 2014a). After many years of decline, the 

fisheries organization responsible for managing BFT stocks, the International Commission for the 

Conservation of Atlantic Tunas (ICCAT), introduced a recovery plan and stocks have started showing 

signs of recovery, although the rate of recovery remains uncertain (Fromentin et al. 2014b; ICCAT 2014). 

 Currently, ICCAT manages BFT stocks as two populations: one which spawns in the Gulf of 

Mexico and forages in the North Western Atlantic (NWA) and a second that spawns in the Mediterranean 

Sea and forages in the Mediterranean and North Eastern Atlantic (NEA) (Block et al. 2005). Despite 

evidence suggesting that these two populations mix, ICCAT divides their ranges along the 45º longitude 

and manages them separately. Novel insights developed from an array of technologies including satellites 

tags, genetics and microchemistry suggest that the population structure of BFT is more complex (Rooker 

et al. 2008, 2014;  Galuardi et al. 2010;  Cermeño et al. 2012; Aranda et al. 2013; Riccioni et al. 2010, 

2013).  If regional population structuring exists, it is paramount for the welfare of the species that it be 

maintained, in order to conserve genetic biodiversity and evolutionary potential. An accurate and 

confident model of the population structure of BFT and the factors that affect their distribution is key to 

their continued viability.  
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 In the past 15 years, several molecular techniques have been used in an effort to develop a more 

accurate vision of BFT population structure and dynamics in line with the results developed by electronic 

tagging campaigns and traditional ecological knowledge (summary and references in ICCAT 2013). 

Unfortunately, the results of these studies have been inconclusive and often contradictory. Due to the 

highly migratory nature of BFT, some research groups investigating the species' genetic population 

structure are now using only young tuna for their research as it is widely assumed that eggs, larvae and 

tuna of less than a few months age do not disperse far from their point of origin.  

 The location and abundance of early life stage fish is also used to improve stock assessments and 

our understanding of BFT spatial dynamics. Indices developed from the abundance of eggs and larvae 

collected from spawning sites have been used over 120 times to adjust and substantiate stock assessments 

of 18 different species within five teleost families throughout the world (Stratoudakis et al. 2006). For 

decades, scientists from ICCAT member nations have been using larval indices generated from surveys 

conducted in the Gulf of Mexico to calibrate Virtual Population Analyses (VPAs) of western Atlantic BFT 

(Scott et al. 1993; Scott and Turner 2003; Ingram et al. 2010). In 2013, the first standardized BFT larval 

indices for a Mediterranean spawning site were published based on larval surveys conducted by the 

Oceanographic Institute of Spain (IEO) around the Balearic Islands in the western Mediterranean (Ingram 

et al. 2013). Temporal shifts in BFT larvae abundance and condition can also provide important 

information about recruitment success, relative to short and long term environmental changes (Alemany et 

al. 2010; Lindo-Atichati et al. 2012; García et al. 2013). Surveys that have monitored the distribution of 

tuna larvae have shown that changes in relative abundances of different species are directly influenced by 

hydrodynamics (García et al. 2005a; Alemany et al. 2006; Aguilar et al. 2009; Alemany et al. 2010; 

Mariani et al. 2010; Reglero et al. 2012; Muhling et al. 2013). In the context of a rapidly changing 

environment, our ability to properly identify and monitor fish species throughout their life history is 

critical for effective wildlife management and conservation efforts (Costa and Carvalho 2007; 

D'Alessandro et al. 2010).  

 Unfortunately, early life stage fishes are often inaccurately identified by inexperienced technicians 

(Vecchione et al. 2000, Ko et al. 2013). These errors can lead to a misunderstanding of the spatial 

distribution of species, confusion over life history traits and population dynamics, inaccurate estimations 
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of recruitment rates, survivorship and stock biomass, and potentially disguise the collapse or recovery of 

localized spawning sites (Armstrong et al. 2001; Fox et al. 2005). The potential causes for 

misidentifications of tuna larvae are several: 1) Identification of tuna eggs and the larvae of some tuna 

species, using morphological characteristics alone, is very challenging, requiring an in depth knowledge of 

taxonomy, patience and experience (Richards and Pothoff 1974; Kohno et al. 1982; Richards 2006), 2) 

samples are often badly damaged during collection or as a result of preservation (Matsumoto et al. 1972; 

Richards et al. 1990; Paine et al. 2007), 3) some tuna identification keys are inaccurate and require 

updating (Puncher et al. unpublished), and 4) expert taxonomists in general are few and in demographic 

decline (Boero 2001; Hopkins and Freckleton 2002; Wilson 2003). 

 Due to the difficulties of identifying tuna larvae researchers occasionally outsource the task to 

distant laboratories such as the Sea Fisheries Institute, Plankton Sorting and Identification Center in 

Poland (Scott et al. 1993; Ingram et al. 2010; Matarese et al. 2011; Lindo-Atichati et al. 2012); however, 

misidentification of larvae has occurred at that facility in the past as well (F. Alemany personal 

communication). Others have simply resorted to assigning scombrids to lower taxonomic levels (Boehlert 

and Mundy 1994; Lindo-Atichati et al. 2012). Advances in molecular techniques and genetic barcoding 

now offer another solution to this problem.  

 There are a variety of ways in which researchers using genetic barcodes analyze their data in order 

to identify their specimens. The most commonly used tools for sequence association in barcoding studies 

are: 1) alignment with voucher sequences from online databases using Basic Local Alignment Search Tool 

(BLAST) tools provided by National Center for Biotechnology Information or the ID system provided by 

the Barcode of Life Database (BOLD), 2) Neighbour-Joining trees, and 3) classification using a molecular 

key of characteristic attributes. The BLAST program uses a heuristic algorithm to identify the sequences 

contained in GenBank that are most similar to the query sequence provided by the user (Altschul et al. 

2009). The ID System by BOLD employs a Hidden Markov Model (HMM) for alignment construction 

and returns only sequence matches that are less than 1% divergent from the query sequence 

(Ratnasingham and Hebert 2007). Neighbour-Joining (NJ) trees are ubiquitous among barcoding 

publications. They use a hierarchical clustering method to construct a phenogram based on a distance 

matrix of similarity between reference and query sequences. These distance matrices can be constructed 
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by various methods which can impact species identification accuracy and measures of confidence. The 

Kimura 2-parameter model (K2P) for NJ trees has become the default model for most fish species 

identification studies; however, researchers have recently been challenging this assumption (Little and 

Stevenson 2007; Zhang et al. 2011; Collins et al. 2012; Srivathsan and Meier 2012; Collins and 

Cruickshank 2013). 

 This study describes how larvae collected from the Strait of Sicily, Western Ionian Sea and 

Levantine Sea were acquired from three different institutions for genomic analysis within ICCAT's 

Atlantic wide research programme for bluefin tuna (GBYP). All larvae had been provisionally identified 

as Thunnus thynnus by technicians using morphology-based methods. Each larva was barcoded using a 

650bp fragment of the CO1 gene and identified to species in an effort to assess the accuracy of 

identification. We have also compared the effectiveness of various methods used for associating sample 

sequences to reference or voucher sequences. We review the overall effectiveness of the Neighbour-

Joining tree approach and compare two methods used for distance matrix construction (p-distance vs. 

K2P). Finally, we develop and assess a character-based key which uses unique genetic characteristics in 

much the same way as taxonomic keys that identify organisms based on diagnostic morphological 

features.  

3.2 Materials and Methods 

3.2.1 Sample collection 

Strait of Sicily  – Larval tows were performed by Istituto per l’Ambiente Marino Costero of the National 

Research Council of Italy (IAMC-CNR) in the waters off Sicily’s southern coast (35°30’N-38°90’N, 

12°38’E-15°10’E; Fig. 1), on board the R/V “Urania”, during 17-21 July 2011 and 5-19 July 2012 using 

two Bongo nets with 40 and 90cm diameters equipped with 1 mm black mesh. Bongo nets were towed 

obliquely from the surface to 100 m and back to the surface at two knots. All larvae were preserved in 

96% ethanol and transported to the laboratory where they were identified to family, genus or species level 

when possible, using various taxonomic keys (Pothoff and Richards 1970; Pothoff 1974; Fahay 1983, 

2007; Kawamura et al. 2003).  A total of 88 larvae with a mean length of 4.9 ± 1.5 mm and provisionally 

identified as tunas were sent to the GenoDREAM laboratory at the University of Bologna for genetic 

barcoding. An additional 4 non-scombrid larvae were also provided as outliers. 



Page | 75  

 

 

Fig. 1: Map of the Mediterranean Sea and surrounding area with three larvae sampling sites: A) Strait of Sicily, B) Ionian 
Sea and C) Levantine Sea. 

Capo Passero, Ionian Sea – OCEANA’s 2008 larval survey aboard the R/V Marviva Med was the first 

BFT larval survey undertaken by an NGO team in the Mediterranean (Aguilar et al. 2009). Larval tows 

were conducted 15 July - 11 August 2008 using a bongo 90 net with a quadrangular mouth opening 

equipped with 500 μm mesh for horizontal surface plankton tows east of Sicily (36°30’N-37°33’N, 

15°35’E-15°59’E; Fig. 1). The net was towed at 2-2.5 knots at the surface for a constant duration of 10 

minutes. Upon removal from the sea, all larvae were immediately preserved in ethanol. All larvae were 

then dispatched to experts at IEO facilities in Palma de Mallorca where they were identified to species by 

experts. A total of 58 larvae identified as T. thynnus were dispatched to the GenoDREAM laboratory in 

November 2013 for genetic analysis. 

Levantine Sea - A larval cruise was conducted by Istanbul University during 20-24 June 2012 along the 

southern coast of Turkey (36°07’N-36°10’N, 33°33’E-33°47’E; Fig. 1). Larvae were collected from 

surface waters using a Bongo net of 90 cm diameter and 1 mm mesh size, towed at 2-2.5 knots for 10 

minutes. All captured larvae were immediately preserved in 96% ethanol and identified to species level 

on-board using microscopes and the taxonomic key by Richards (2005). A total of 38 larvae with a mean 

length of 6.9 ± 1.5 mm were provisionally identified as T. thynnus. These larvae were then bisected and 

the caudal sections were dispatched to GenoDREAM lab for genetic verification.  
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Ethics Statement 

 All larvae used in this study were collected from the Mediterranean Sea using plankton nets and 

sacrificed via immersion in 96% ethanol, according to standard larval survey practices. Permission to 

conduct the larval surveys and all legal permits were granted by the International Commission for the 

Conservation of Atlantic Tuna (ICCAT) and the General Fisheries Commission for the Mediterranean. 

ICCAT is the intergovernmental organization responsible for the management of bluefin tuna  in the 

Atlantic Ocean and Mediterranean Sea and all research was coordinated through their “Atlantic-wide 

research programme for bluefin tuna” (GBYP). ICCAT issued a recommendation (Rec. 11-06) allowing 

the parties involved in this research to collect and sacrifice larvae for the purposes of genetic research as 

well as ship samples from one country to another (Certificate No. ICCAT RMA12-049). 

3.2.2 DNA extraction  

 All 188 scombrid and non-scombrid larvae were digested overnight in a Proteinase K solution and 

genomic DNA was extracted from each and purified using Promega’s Wizard®SV96 Genomic DNA 

Purification kit and vacuum manifold. Fragments of the CO1 gene (~ 650 bp) were amplified (PCR) using 

FishF2 (5’-TCGACTAATCATAAAGATATCGGC- AC-3’) and FishR2 (5’-ACTTCAGGGTGACCGAA 

GAATCAGAA-3’) primers first published by Ward et al. (2005). PCR reactions were performed in 50 µL 

volume consisting of 1x PCR Buffer, 1.0 µM of each primer, 160 µg/mL of BSA, 0.4 mM of dNTPs, 1.5 

mM of MgCl2, 2.5 U/mL of Invitrogen Taq polymerase and ~100 ng of template DNA. PCR conditions 

consisted of 94°C for 3 min, 35 cycles of 30 sec at 94°C, 30 sec at 52°C, and 30 sec at 72°C, with a final 

extension at 72°C for 3 min. Due to the introgression of the mitochondrial genome of T. alalunga into the 

T. thynnus gene pool (Alvarado Bremer 1997; Chow et al. 2006; Paine et al. 2007; Ward et al. 2009; Viñas 

and Tudela 2009), all larvae that were identified as T. alalunga using the CO1 gene were then barcoded 

using sequences from the ITS1 region. DNA extractions from archived tissue samples of adult T. thynnus 

(2) and T. alalunga (2) were used as reference standards for all further analyses. Fragments of the ITS1 

gene (~680bp) were amplified using the ITS1F (5’-TCCGTAGGTGAACCTGCGG-3’) and ITS1R (5’-

CGCTGCGTTCTTCATCG-3’) primers designed by Chow et al. [60]. All other PCR reagents were the 

same as above and conditions were as follows: 94°C for 3 min, 35 cycles of 30 sec at 94°C, 30 sec at 

50°C, and 30 sec at 72°C, with a final extension at 72°C for 3 min. 
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 After receiving all CO1 sequences from Macrogen Europe (Amsterdam, Netherlands), they were 

aligned in MEGA v.6 (Tamura et al. 2013) using the ClustalW algorithm and trimmed to 612bp. 

3.2.3 BLAST and BOLD search engines 

All larval sequences were converted to FASTA format and submitted to a nucleotide BLAST through the 

NCBI website (http://www.ncbi.nlm.nih.gov/). The first five sequence matches with highest similarity to 

database references (max ident) were analyzed for species consistency. Similarly, all sequences were 

submitted to BOLD's Identification System (http://www.boldsystems.org/) for comparison with all species 

level barcode records of animals (148,815 sequences as of 09 Nov 2014). All matches were analyzed 

using the percent similarity score. 

3.2.4 Neighbour joining tree analysis 

 Ten reference sequences from each of thirteen scombrid species were downloaded from BOLD 

(n=122) and GenBank (n=8) (Appendix 1). Sequences were mined from GenBank only when the number 

of sequences on BOLD were insufficient.  Aside from the BFT reference sequences, eight of the species 

occur in the Mediterranean Sea and may have larvae associated with those of BFT (Auxis rochei, Auxis 

thazard, Scomber colias, Scomber scombrus, Euthynnus alletteratus, Katsuwonus pelamis, Sarda sarda, 

T. alalunga,).  The remaining four species are closely related to the other species and were included in 

order to rule out the occurrence of genetic introgression (Scomber japonicus, Thunnus albacares, Thunnus 

maccoyii, Thunnus atlanticus). Reference sequences were sourced from throughout each species’ 

geographic distribution in order to have ample representation of genetic variation. Various phenograms 

(all sequences, only reference sequences, all larvae and reference sequences belonging to Mediterranean 

species) were built using the Neighbour Joining method (Saitou and Nei 1987) with both the Kimura-2-

parameter (K2P) distance model (Kimura 1980)  and p-distances (Nei and Kumar 2000)] for distance 

matrix construction. The statistical support of each node was tested using the bootstrap (Felsenstein 1985) 

analysis with 1000 replications in MEGA6 (Tamura et al. 2013).  Selected trees were modified using 

FigTree (http://tree.bio.ed.ac.uk/software/figtree/). 
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3.2.5 Assignment by characteristic attribute key 

 All variable sites of an alignment containing all reference and larvae sequences were highlighted 

using MEGA6. This simplified alignment was inspected for loci containing unique nucleotides that were 

diagnostic of particular species. The character-based key constructed here differs from those constructed 

by Lowenstein et al. (2009) in that it requires first assignment to genus and then species. In this way we 

have used nucleotides that may not be unique to single species or genera. Rather we are providing a multi-

step assignment tool which uses multiple characteristics, much like a taxonomic key. According to the 

terminology used by Lowenstein et al. (2009), we have selected “pure characteristic attributes” (PCAs), or 

specific nucleotides located at variable sites that are unique to single clades and thus diagnostic for single 

clades. Some of these characteristic attributes stand alone and called “simple CAs” whereas other loci 

should be used in combination and are thus called “compound CAs”. Once the key was constructed all 

larval sequences were assigned to species accordingly. 

3.3 Results 

 DNA extractions from all larve were successfully amplified, sequenced and analyzed. Sequences 

from 84 larvae with photograohic records were uploaded to the Barcode of Life Database (Project: 

MLRV; Accession numbers: MLRV001-15 to MLRV084-15). All other sequences were uploaded directly 

to the GenBank database (KT003822 to KT003924). A few unexpected challenges were encountered 

concerning the reference sequences downloaded from both BOLD and GenBank. One T. thynnus 

reference sequence (BOLD: GBGCA443-10; GenBank: GQ414572) affiliated with the work of Viñas and 

Tudela (2009) corresponds with CO1 sequences of T. alalunga. Within that work, the authors clearly state 

that this sequence belongs to a BFT with introgressed mtDNA from albacore; however, no mention of this 

is associated with the sequences itself in either database. They also describe how two sequences belonging 

to Pacific-like T. thynnus (Atlantic bluefin with introgressed T. orientalis mitochondria) were used and 

published in GenBank (GQ414570 and GQ414573). Both of these sequences were later incorporated into 

the BOLD database (GBGCA445-10 and GBGCA442-10, respectively); however, in both databases 

GQ414570 is identified as T. thynnus, while QQ414573 is identified as T. orientalis. Another sequence 

featured in [61], which they referred to as T. orientalis, has since been uploaded to GenBank (GQ414566) 

and BOLD (GBGCA449-10) under the title of T. thynnus. BOLD and BLAST queries, as well as our CA 
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key, clearly identify this as a T. orientalis sequence. It is likely that the authors have confused sequences 

and their IDs at some point (confirmed by J. Viñas). Finally, a single T. orientalis sequence (GenBank: 

JN097817; BOLD: GBGCA1390-13) uploaded by several researchers from the South Korean National 

Fisheries Research & Development Institute matches those of T. thynnus.  

3.3.1 BLAST assignment 

 For all but two sequences, BLAST provided a species match with an identity similarity higher than 

99% (Table 1). The median value for maximum similarity scores across the type five selected matches for 

each larva was 100%. The remaining two larvae from the Strait of Sicily received identity similarity 

scores of 93% and 95% for sequences belonging to bullet tuna (Auxis rochei, Scombridae) and T. thynnus, 

respectively. Overall, only 42% of larvae were identified as T. thynnus. In fact, nearly as many (39%) 

were identified as bullet tuna.  

Table 1: Species and origin of larvae identified with CO1 and ITS1 markers, neighbour-joining reconstruction and BLAST. 
Species Strait of Sicily Capo Passero Levantine Sea 

Auxis rochei 53 0 21 

Eythynnus alleteratus 2 0 12 

Scomber japonicus 1 0 0 

Thunnus alalunga 11 0 0 

Thunnus thynnus 21 58 0 

Non-scombrid larvae 4 0 5 

Total 92 58 38 

 The larvae collected in the Strait of Sicily were composed of five different scombrid species with 

only 21 identified as T. thynnus. Although the samples from the Levantine Sea contained fewer taxa, none 

of the larvae provided were identified as T. thynnus. All larvae collected from the Ionian Sea, offshore 

from Capo Passero were identified as T. thynnus and received identity similarity scores of 100%. The four 

non-scombrid larvae from Sicily were identified as Chromis sp., picarel (Spicara smaris, 

Centracanthidae), greater weever (Trachinus draco, Trachinidae), and pygmy lanternfish (Lampanyctus 

pusillus, Myctophidae). Five larvae from the Levantine Sea were assigned to two additional outlier taxa: 

brown comber (Serranus hepatus, Serranidae) (2) and common pandora (Pagellus erythrinus, Sparidae) 

(3). All larvae provisionally identified as albacore using CO1 sequences and later barcoded with the ITS1 

gene clustered with T. alalunga standards (data not shown), thereby ruling out the possibility of false 

species identification due to hybridization/mtDNA introgression. 
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3.3.2 BOLD assignment 

 All larvae were identified by BOLD with a confidence score of 99-100%, aside from the two 

individuals discussed above for which a “no match” was returned.  No match was given by BOLD 

because of the program's 1% divergence threshold. All other specimen identifications were equal to those 

provided by BLAST. 

3.3.3 Neighbour-joining tree analysis 

 Neighbour joining tree analysis using CO1 sequences produced well-defined clusters of candidate 

larvae with reference sequences (Fig. 2). All larvae clustered with reference taxa in the same manner as 

the BLAST and BOLD results. Phenograms containing only the larvae and reference sequences for 

species found in Mediterranean Sea showed lowest bootstrap probability (BP) for branch nodes separating 

the true tunas (BFT and albacore) from the other scombrids (BP = 33 - 35) and a clade containing the true 

tunas and E. alletteratus from the other species  (BP = 30 – 34). The node containing the A. rochei 

reference sequences and 74 larvae was the least stable with BPs of 53 – 59. All other nodes had BPs > 80.  

 Phenograms based on distance matrices using p-distances (Fig. 3) had consistently higher BP 

values than those built with K2P distances (Fig. 2). P-distance based phenograms also tended to exclude 

larval sequences from clusters, as is the case with one larva in the Auxis spp. cluster in Fig. 2. When the 

larval sequences were removed from the alignments, all BP values increased (Fig. 3). Predictably, BP 

values for the A. rochei (BP = 39) and T. thynnus (BP = 17) nodes increased most dramatically. When T. 

atlanticus, T. maccoyii, T. obesus and T. albacares reference sequences were included in the alignments, 

the neighbour-joining tree based on p-distances failed to differentiate clusters for each and combined all 

within the same cluster, alongside the T. thynnus and related larvae sequences (BP = 61; Fig. 4). The 

topology of this same clade in the corresponding K2P-based phenogram changed somewhat but the 

composition remained the same, albeit the BP value was much lower (BP = 35). 

 The ITS1 NJ tree constructed from sequences of voucher specimens and larvae identified as T. 

alalunga did not reveal any introgressed BFT. 
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Fig. 2: Neighbour-joining phenograms of Mediterranean scombrid reference sequences clustered with number of unknown 
larvae in parentheses. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test 
(1000 replicates) is shown next to each branch (Felsenstein 1985). All ambiguous positions were removed for each sequence 
pair. There were a total of 612 nucleotide positions in the final dataset. (A) The evolutionary distances were computed using 
the p-distance method (Nei and Kumar 2000) and are in the units of the number of base differences per site. The analysis 
involved 280 nucleotide sequences. (B) The evolutionary distances were computed using the Kimura 2-parameter model 
[64] and are in the units of the number of base differences per site. The analysis involved 280 nucleotide sequences. 
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Fig. 3: Neighbour-joining phenogram of Mediterranean scombrid reference sequences only. The percentage of replicate 
trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) is shown next to the branches 
(Felsenstein 1985). The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances 
used to infer the tree. The evolutionary distances were computed using the p-distance method (Nei and Kumar 2000) and are 
in the units of the number of base differences per site. The analysis involved 91 nucleotide sequences. All ambiguous 
positions were removed for each sequence pair. There were a total of 612 nucleotide positions in the final dataset. 
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Fig. 4: Neighbour-joining phenogram of reference sequences (including non-Mediterranean Thunnus species) clustered with 
number of unknown larvae in parentheses. The percentage of replicate trees in which the associated taxa clustered together 
in the bootstrap test (1000 replicates) is shown next to the branches (Felsenstein 1985). The tree is drawn to scale, with 
branch lengths in the same units as those of the evolutionary distances used to infer the tree. The evolutionary distances 
were computed using the p-distance method (Nei and Kumar 2000) and are in the units of the number of base differences 
per site. The analysis involved 330 nucleotide sequences. All ambiguous positions were removed for each sequence pair. 
There were a total of 612 nucleotide positions in the final dataset. 
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3.3.4 Character-based assignment 

 Construction of a character-based key uncovered 68 nucleotides capable of distinguishing all 

reference taxa. As the primary purpose of our research was the isolation of T. thynnus larvae from the rest 

of the catch, Thunnus spp. sequences were the first to be isolated using four diagnostic nucleotides (Table 

2). Using these nucleotides a total of 90 larvae were identified as members of the Thunnus genus, 

representing less than half of all larvae. Six bases separating T. alalunga reference sequences from the 

other five Thunnus species identified eleven albacore tuna among the larvae. A single thymine located at 

position 231 of our alignment was capable of isolating all T. thynnus references from the other species of 

the same genus. When these criteria were applied to the larvae, a total of seventy-eight larvae were 

identified as bluefin tuna. One outstanding individual was identified as T. maccoyii, T. atlanticus, T. 

albacares or T. obesus using these criteria. Since none of these species can be found in the Mediterranean 

Sea, this is likely an example of genetic introgression. Three bases, found to be discriminatory for the 

Auxis species of the Mediterranean, identified seventy-four larvae among the remaining samples.  All of 

these Auxis candidate larvae were identified as A. rochei using eight bases that were found to discriminate 

between A. rochei and A. thazard reference sequences. Using six diagnostic loci, fourteen Euthynnus 

alletteratus larvae were identified. Eleven characteristic loci set the Scomber spp. apart from the other 

species and ten loci were used to identify a single larva. Six diagnostic bases were found for Katsuwonus 

pelamis and Sarda sarda but none of the larvae analyzed were identified as members of either species. 

Since the character-based identification key was developed for the identification of scombrids only, the 

remaining nine larvae could not be identified. 

3.4 Discussion 

3.4.1 (Mis)Identification of larvae 

 The 11 species identified among the samples are typical of plankton surveys conducted in the 

region and during this sampling season. BFT larvae are commonly associated with larvae of other 

scombrids, having been previously captured with dense concentrations of bullet tuna off the coasts of 

Tunisia (Giovanardi and Romanelli 2010; Koched et al. 2012), Sicily (Aguilar et al. 2009) and the 

Balearic Islands (Alemany et al. 2010).  They have also been found alongside albacore tuna (Aguilar et al. 

2009; Alemany et al. 2010) and Atlantic black skipjack (Euthynnus alletteratus, Scombridae) (Alemany et 
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al. 2010). Among these species, BFT are found in proportionally higher concentrations in deep offshore 

waters beyond shelf breaks (Alemany et al. 2006; Koched et al. 2012). Among these species, BFT are 

found in proportionally higher concentrations in deep offshore waters beyond shelf breaks [25,70]. 

Researchers in Italy (Cuttitta et al. 2004) captured L. pusillus larvae in the Strait of Sicily in June-July 

2000. Larvae of S. hepatus, Chromis chromis (Pomacentridae), P. erythrinus and T. draco have been 

captured in the Aegean during June of 2003-2006 (Isari et al. 2008). Alemany et al. (2006) have 

encountered all the species that we have identified in the Balearic Islands, aside from P. erythrinus and 

Atlantic chub mackerel (Scomber colias, Scombridae). Accurate identification of these samples to species 

level is a testament to the versatility of the genetic marker used and the potential of the ever-expanding 

resources of the Barcode of Life Database. 

Table 2: Characteristic attributes capable of distinguishing scombrids in the Mediterranean Sea. The position of each 
nucleotide is given in relation to 612bp alignment of all sequences. Diagnostic nucleotides at each locus are given in 
parentheses. 

Taxa Diagnostic nucleotides 

Thunnus spp. 327[A], 372[G], 525[T], 540[T] 

Thunnus alalunga  228[T], 273[G], 438[C], 495[T], 606[G], 609[T] 

Thunnus thynnus 231[T] 

T. thynnus, T. albacares, T. 
maccoyii, T. obsesus, T. 
atlanticus 

228[C], 273[A], 495[C], 606[A], 609[C] 

Auxis spp. 393[T], 453[T], 456[C] (all 3 must be part of the package). 

Auxis rochei 225[T], 247[T], 315[C], 336[T], 348[C], 465[A], 468[A], 486[T] 

Auxis thazard 225[C], 247[C], 315[T], 336[C], 348[T], 465[G], 468[G], 486[C] 

Euthynnus alletterratus 303[G], 312[A], 408[G], 426[G], 498[G], 553[T] 

Scomber spp. 
81[T], 127[G], 210[A], 235[C], 249[G], 258[G], 260[C], 351[C], 
393[C], 434[G], 519[T] 

Scomber colias/japonicus 
93[C], 192[T], 225[G], 240[G], 306[C], 312[G], 321[A], 342[T], 
414[C], 423[A], 436[G], 438[A], 561[T], 612[C]  

Scomber scombrus 
67[G], 72[T], 129[C], 240[A], 303[A], 306[A], 321[G], 507[G], 
543[T], 546[T] 

Sarda sarda 216[T], 258[T], 264[C], 279[G], 543[G], 567[T] 

Katsuwonus pelamis 366[T], 378[T], 390[A], 501 [G], 555[G], 582[T] 
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 The high number of correctly identified BFT larvae within the Sicilian samples was expected, 

since large quantities of T. thynnus are typical of the Sicilian Channel, western Ionian and southern 

Tyrrhenian Seas (Sanzo 1932; Piccinetti et al. 1997). To date, BFT larvae have been found in highest 

concentration in Mediterranean waters around Sicily, the Balearic Islands and the southern coast of 

Turkey (Tsuji et al. 1997; García et al. 2005a, b, 2013). It comes as no surprise that all 58 larvae provided 

by the IEO and OCEANA-Marviva project were correctly identified, since their staff are leading experts 

in the field of ichthyoplanktology. However, the fact that no BFT larvae were provided amongst the 38 

larvae received from the Levantine Sea calls into question all previous publications on the subject of BFT 

reproduction in that area. For example, Oray and Karakulak (2005) captured 121 bluefin tuna (T. thynnus), 

94 bullet tuna (A. rochei) and 22 Atlantic black skipjack (E. alletteratus) larvae in the Northern Levantine 

basin during larval surveys conducted in 5-18 June 2004. Their publication established a benchmark in the 

literature by which many assumptions of BFT movements, reproductive behaviour and population 

structuring has been made. However, during that survey, the researchers, capture protocols and larvae 

identification methods were the very same that procured the misidentified larvae discussed herein. The 

possibility that larvae from the Levantine Sea have been misidentified in the past, demands a review of the 

timing, location and extent to which BFT are spawning in the eastern Mediterranean. If BFT spawning 

areas are indeed limited in number, then their accurate identification and subsequent conservation from 

over-exploitation, habitat alteration and pollution is critically important (Hyde et al. 2005). 

3.4.2 DNA extractions and use of molecular markers 

 It is noteworthy that we were able to extract high quality DNA, and identify to species level, 

larvae that had been archived in ethanol at room temperature for over 5 years. This possibility should be 

taken into consideration for all collections containing similarly preserved wildlife specimens. 

Additionally, the molecular markers used were effective at identifying all larvae to species level. The use 

of CO1 for sample identification has been criticized, as it lacks the capacity of discrimination among the 

Neothunnus tribe and the Pacific and Atlantic BFT (Ward et al. 2005; Viñas and Tudela 2009). Since none 

of the members of the Neothunnus tribe or T. orientalis are present in the Mediterranean Sea, this was not 

a concern for our study. Our reconstruction of NJ trees including the additional non-Mediterranean 

Thunnus spp. sequences were also unable to reliably distinguish the members of that genera, aside from T. 
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alalunga which consistently clustered independently from the others. Some of the earliest molecular work 

using a suite of allozymes also found albacore to be most divergent and uncovered very little divergence 

between T. albacares, T. maccoyii and T. orientalis (Elliott and Ward 1995). DNA sequences from the 

mitochondrial control region suggest that BFT is a sister taxa of the southern bluefin tuna and that the 

albacore and Pacific bluefin tuna (PBFT) form a divergent monophyletic clade (Alvarado and Bremmer 

1997). The high number of diagnostic loci contained in our CO1 sequences which discriminate between 

the albacore and the other Thunnus species support this claim. Clearly, the level of divergence between 

species is dependent upon the character used for comparison. For example, the high level of divergence 

between the Pacific and Atlantic bluefin tuna shown when analyzing the mitochondrial control region 

(Alvarado Bremer et al. 1997) vanishes when comparing ITS1 gene sequences (Chow et al. 2006).  This 

could be a result of historical hybridization of the PBFT with albacore which resulted in the transfer of the 

albacore mtDNA genome into the PBFT line (Elliott and Ward 1995).  

 The presence of erroneous or misleading reference sequences in both GenBank and BOLD is both 

troublesome and concerning. Surely, it was not the intention of the founders of these databases that users 

should have to check the origin and associated publications of every sequence. The presence of sequences 

belonging to hybrid organisms in genetic reference databases is confusing and requires additional 

traceability and documentation.   

3.4.3 BLAST and BOLD assignment 

 The results generated by BOLD's global alignments and BLAST's local alignments were 

consistent with one another. The identity similarity threshold used by BOLD prevented the identification 

of two larvae from the Strait of Sicily, whose identity were later confirmed by BLAST, NJ trees and our 

character-based identification key. Lowenstein et al. (2009) complained that BOLD performed poorly 

during their attempts to identify species used in sushi but the database was still in its infancy then and it 

has come a long way since and now contains over 4 million collected from 146 countries. During this 

period of rapid growth, BOLD began featuring sequences mined from GenBank in their Public Data 

Portal. We have found several sequences that are in clear violation of the data standards that were 

established when BOLD was first introduced. The founders of BOLD have clearly stated that sequences 

do not undergo any kind of centralized review and that the quality of data featured in the database is 
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ultimately dependent upon the individuals that have uploaded the data [48]. At the moment, more than half 

of the Thunnus thynnus sequences featured in BOLD have been mined from GenBank. This hybridization 

of these two databases, without BOLD's once lauded traceability standards, threatens to undermine the 

reputation and usefulness of BOLD. 

3.4.4 Neighbour-joining trees 

 The NJ trees accurately identified larvae to species level for taxa with reference sequences 

included in the alignments. Clearly, for this approach to work, query larvae must cluster with voucher 

sequences; an obvious disadvantage when compared to the BLAST and BOLD approaches. The use of NJ 

trees for species identification has recently come under fire from various sources (Little and Stevenson 

2007; Collins and Cruickshank 2013). An entire section focused on NJ trees has been featured in a recent 

publication entitled “The seven deadly sins of DNA barcoding” (Collins and Cruickshank 2013). A major 

disadvantage associated with NJ trees surfaces when individual sequences are assigned to the space 

between two reference clusters. On these occasions researchers are forced to retreat to lower taxonomic 

levels (Paine et al. 2008). By increasing the number of sequences used for each reference taxa, one can 

decrease the frequency of these ambiguous outcomes (Ross et al. 2008). Our results suggest that the 

models used for the assembly of distance matrices are also important for the reduction of ambiguous 

results. Although the K2P model is the most widely used model for NJ tree construction in fish barcoding 

studies, we have found that distance matrices based on p-distance provide higher BP values.  Recent 

critical reviews of NJ tree construction agree that identification of species using NJ trees based on K2P 

distances can be inappropriate to the task and more suitable, less complex models can prove more 

effective (Collins et al. 2012; Srivathsan and Meier 2012). In fact, Collins et al. (2012), wrote that K2P 

“was without exception a poorly approximating model at the species level”. Why the K2P model is so 

widely used in fish barcoding studies is a mystery. Srivathsan and Meier (2012) suggest that the 

widespread use of K2P is a result of its use by early barcoding proponents who wanted to highlight the 

extreme differences between species. Perhaps researchers are simply following the examples of their peers 

or that of BOLD which uses the K2P model for taxa identification trees (Ratnasingham and Hebert 2007).  

3.4.5 Character-based assignment 

 Realizing the faults inherent in the NJ tree approach, some researchers have found that a character-
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based method of specimen identification has proven more appropriate to the task (Richardson et al. 2007; 

Lowenstein et al. 2009). Paine et al. (2007) constructed a character-based key for identification of 

degraded tissue samples using reference sequences from 17 species of the Scombridae common to the 

Western Atlantic Ocean. Our molecular key differs significantly, since the molecular key of Paine et al. 

(2007) begins with position 575 of our alignment, thereby providing only 37 bases for comparison. The 

molecular key of Lowenstein et al. (2009) was generated from alignments shifted only 40 base pair 

positions towards the 3' end of the CO1 sequence. The molecular key of Lowenstein et al. (2009) includes 

Thunnus species only, as they were making efforts to develop a tool for seafood traceability. Interestingly, 

they did not include in their study the skipjack tuna, Katsuwonus pelamis, a globally cosmopolitan fish 

and by far the world's most important tuna fishery in the globe. They, too, discovered the same individual 

nucleotide that distinguishes T. thynnus from all other tunas. Many of the diagnostic loci discovered by 

Lowenstein et al. (2009) no longer function after the inclusion of the Scombrus spp. and Auxis spp. 

sequences. Character-based keys for scombrid species have also been developed for the mitochondrial 

control region and ITS1 (Alvarado-Bremer et al. 1997; Chow et al. 2006).  

3.5 Conclusion 

 Misidentification of early life stage fishes has already occurred in various commercial species, 

leading to inaccurate estimations of spawning stock biomass (Daniel and Graves 1994; Fox et al. 2005). 

We have shown here, for the first time that tuna larvae collected from the Mediterranean Sea have been 

misidentified by larval survey crews. If the larvae and eggs of BFT are to be used to improve stock 

assessments in the future, it is imperative that problems associated with species identification are resolved. 

Fishery independent data, such as larval abundance, are certainly welcome for the betterment of stock 

assessments where traditional fishery data has lost its credibility; however, scientific rigour and quality 

control must also accompany this data or we run the risk of repeating the mistakes of the past. Genetic 

barcoding is a legitimate technique that can support species identification and play a crucial role in 

fisheries management efforts. We suggest that all routine fisheries work involving larvae should make use 

of both morphological taxonomists and geneticists in order to ensure both accuracy of results and efficient 

use of financial resources. We also call upon the few taxonomic world experts to update the identification 

keys associated with fish species of economic and conservation concern, embrace the digital community 
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and pass their knowledge onto new generations through training courses, either in situ or with the various 

Information and Communications Technology platforms now available. Most barcoding efforts are 

dependent on online databases for voucher sequences; therefore, it is crucial that quality standards are 

upheld if the barcoding effort is to retain its legitimacy. Enough doubt has been cast on the inappropriate 

use of NJ trees for specimen identification purposes that they are now regarded by many simply as an 

attractive communication tool; however, they are still being widely used. Conversely and despite nearly 

two decades of use in scombrid identification, character-based keys are still not used as a reliable and 

recognized tool. Perhaps it is the user-friendly automated style of NJ trees that have kept phenograms 

popular, despite their fallibility. Several efforts are being made to automate the generation of character-

based keys and their use as specimen identification tools. The BOLD System now features a Diagnostic 

Characters analysis suite and R has a package (Spider) dedicated to their use (Brown et al. 2012). 

Character-based keys also have potential for translation into microarrays and high throughput NGS 

genotyping platforms. Certainly, standardized high throughput genotyping tests will have profound 

impacts on the future of larvae identification and fisheries surveys. 
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Appendix 1.  Reference sequences used for alignments, phenogram analysis and CA development. Unless 
stated otherwise, all sequences were recovered from BOLD. 
 
Auxis rochei (DSFSF123-09, AB105165.1 [GenBank], AB103468.1 [GenBank], GBGC0053-06, 

GBGC1666-06, GBGC3356-07, GBGC3358-07, GBGC3359-07, GBGC3360-07, GBGC7423-09) 

Auxis thazard (TOBA316-09, FOA810-04, GBGC1669-06, GBGC3350-07, GBGC3351-07, GBGC3354-

07, GBGC3355-07, GBGC7414-09, GBGC7415-09, GBGC7416-09) 

Scomber colias (FCFPS032-06, AB488406.1 [GenBank], FCFPS117-06, FCFPS118-06, GBGC3320-07, 

GBGC3321-07,  GBGC3322-07, GBGC3323-07, GBGC3324-07, DSFSF201-09) 

Scomber japonicus (HQ611117.1 [GenBank], DSFSF202-09, DNATR081-12, MFC235-08, FARG481-

08, FARG482-08, FARG486-08, FMV165-08, RFE268-05, RFE269-05) 

Scomber scombrus (FCFP095-05, FCFPS040-06, FCFPS041-06, FCFPS152-06, FOA796-04, FOA800-

04, SCAFB741-07, SCFAC837-06, SCFAD497-09, GLF063-14 

Euthynnus alletteratus ( AB099716.1 [GenBank], BZLWE263-08, CSFOM035-10, DNATR775-13, 

DNATR775-13, DNATR776-13, DNATR777-13, LIDM537-07, MFSP619-10, MFSP620-10, MXII103-

07) 
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Katsuwonus pelamis (MXII150-07, DSFSF147-09, ANGBF6825-12, ANGBF6832-12, ANGBF6837-12, 

GBGC1667-06, GBGC4959-08, GBGC4960-08, GBGC4961-08, GBGC4962-08) 

Sarda sarda (DNATR075-12, DNATR1220-13, DNATR1221-13, DNATR1223-13, DNATR1239-13, 

CSFOM065-10, MLFPI110, MLFPI227, MLFPI99, MLFP100) 

Thunnus alalunga (FOA868-04, GU256526.1 [GenBank], JN086151.1 [GenBank], CSFOM079-10, 

GBGCA665-10, GBGCA675-10, GBGCA706-10, RFE231-05, RFE233-05, RFE404-05) 

Thunnus albacares (ANGBF6823-12, FOA869-04, FOA870-04, MFC185-08, RFE248-05, RFE250-05, 

SAFC038-11, SCFAC184-05, TZMSC142-05, WLIND461-07) 

Albacore -like Thunnus thynnus (GBGCA443-10) 

Thunnus thynnus (FOA947-05, FOA948-05, FOA945-05, DNATR1723-13, DNATR1724-13, 

GBGC0049-06, GBGC0803-06,  GBGCA446-10, SCFAC660-06, SCFAC661-06) 

Thunnus maccoyii (FJ605741.1 [GenBank], FOA874-04, FOA875-04, FOA876-04, FOA877-04, 

GBGCA176-10, GBGCA678-10, GBGCA679-10, GBGCA720-10, GBGCA731-10) 

Thunnus obesus (SAFC026-11, ANGBF6817-12, ANGBF6820-12, ANGBF6821-12, FCHIL181-06, 

FCHIL182-06, FOA881-04, FOA882-04, GBGCA722-10, GBGCA726-10) 

Thunnus atlanticus (FOA952-05, MEFM1002-06, MEFM1003-06, MEFM1004-06, MEFM1030-06, 

MFSP1883-11, MFSP1884-11, MXII115-07, MXII119-07, TOBA079-09) 

 

 

 

 

 

 

 

 

 



Page | 97  

 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page | 98  

 

 

 

 

Chapter 4 

 

Discovery of single nucleotide 
polymorphisms in the bluefin tuna genome 

using a genotyping-by-sequencing 
approach. 

 

 

 

May 27, 2014 – Inigo Rodriquez entered into the classroom with his head hanging low, avoiding the 

inquisitive stares of his classmates. He silently dropped his bag to the floor beside his desk, nudged his 

chair aside, sat down with a heavy sigh and laid his head down on the desktop. The other students knew 

it wasn't wise to press the obviously morose Inigo and turned their gaze forward. The sunshine from the 

classroom window blinded the little boys sleepy eyes and he was once again sailing across a sea of blue 

by his father's side. After years of anticipation he had finally been invited to set sail with his father and 

uncle on the family's tuna purse seiner. He had worked into the night while his friends played in the 

waning spring sunsets. His father had managed to clear three weeks from his school calendar and the 

whole town had known that Inigo was setting sail to hunt the mighty bluefin with his father, as the 

Rodriguez boys had done for generations. But it hadn't lasted three weeks. Not even 24 hours. After only 

23 chaotic hours of madness, his uncle had received the call over the radio. The quota was caught. 

The sound of his teacher's voice barely registered as thoughts swam in circles in his mind. He blinked 

away a tear of frustration and balled his fists. His teacher carried on, knowing it unwise to interrupt the 

boy's meditation. Inigo didn't care to listen to his teacher as he was occupied with greater matters than 

algebra. Why had the government stopped them from fishing on the first day at sea, when there were 

obviously so many tuna still in the ocean? It just wasn't fair! 
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4.1 Introduction 

 Molecular tools are increasingly used by fisheries researchers to inform management decisions. 

Over the past three decades, various genetic techniques have been used to identify the species of adult fish 

and larvae (fragment length polymorphisms, barcoding, metagenetics) in order to understand species 

distribution, movement and habitat use. These techniques are now being used to investigate various forms 

of seafood fraud such as mislabeling, laundering and falsification of documentation (Lowenstein et al. 

2009; Miller et al. 2012; Nielsen et al. 2012). Genetic population structure studies are able to infer the 

spatial dynamics, migratory movements and kinship of commercially targeted species in order to delineate 

management and conservation units. This kind of work is essential for an accurate understanding of 

mixing rates so that contributions from each stock to annual catches can be accurately estimated for stock 

assessment purposes (Habicht et al. 2010). Determining the origin of individual fish captured at feeding 

aggregations can help to identify habitat use and thus areas and times appropriate for conservation actions. 

Information concerning genetic adaptations and shifts in a species' spatial distribution in response to 

changing environmental parameters can help predict the impacts of climate change (Hoffman and Willi 

2008; Nielsen et al. 2009). Molecular tools are often used for phylogeographic studies that aim to identify 

barriers to the movements of populations and species, providing information about their preferred 

environmental conditions and sensitivity to natural and anthropogenic pressures (Dudgeon et al. 2012). 

Knowledge concerning the distribution of past populations as inferred by these studies can help to predict 

future distributions in response to changing environmental conditions. Genetic diversity can inform 

fisheries managers about a population's genetic effective size, or an estimate of the number of fish in the 

spawning stock that contributed gametes to the sampled cohort. As the number of adults descreases in a 

population, genetic drift and inbreeding increase, resulting in loss of adaptive variation and accumulation 

of detrimental genes (Hutchinson et al. 2003; Poulsen et al. 2006; Dudgeon et al. 2012). This information 

is vital for the assessment of a population's wellbeing and can be used to help maintain a species' adaptive 

potential. Molecular tools are also being used in aquaculture to manage inbreeding, identify stocks, and 

monitor impacts on natural populations (Bekkevold et al. 2006). The accidental release of highly inbred 

aquaculture stock into the wild has reduced the genetic diversity of natural stocks and transferred 

deleterious traits to wild fish (Coughlan et al. 2006). Finally, genetic research has identified that 
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industrialized fishing has had numerous genetic, physical and demographic impacts on commercially 

targeted species (Allendorf et al. 2008). 

 In the past 15 years, several molecular techniques have been exploited in an effort to elucidate a 

more accurate depiction of Thunnus thynnus population structure and spatial dynamics in line with the 

results from electronic tagging campaigns and traditional ecological knowledge. The sophistication and 

resolution of molecular techniques has been constantly evolving and recent results are showing great 

potential for adding clarity to this issue that has interfered with the optimal management of the species 

(see Appendix 1 for a summary of all molecular analyses of BFT to date). PCR amplified sequences from 

the  mitochondrial DNA control region (mtDNA CR) were the first to show evidence of differentiation 

between the western Atlantic and Mediterranean populations (Alvarado Bremer et al. 1999); although, the 

effectiveness of this marker was called into question when a later study was unable to detect differences 

between populations over multiple years (Ely et al. 2002). A third study that followed soon thereafter 

contained an analysis of allele frequencies from 37 allozyme loci and found a single locus that differed 

significantly between the western and eastern groups (Pujolar 2003). As if to validate their previous 

results, Alvarado Bremer et al. (2005) analyzed 607 samples from the western and eastern Atlantic and 

Mediterranean Sea using a 450bp sequence of mtDNA CR and found no significant differences between 

the eastern and western stocks of BFT. Two studies have since shown significant divergence of Gulf of 

Mexico and Mediterranean populations using mtDNA CR sequences and microsatellites (Carlsson et al. 

2007; Boustany et al. 2008). Population geneticists  

use fixation indices to describe the distribution of 

genetic diversity within a species (Box 1). For each of 

these studies the fixation index used to differentiate 

populations (FST) was estimated at between 0.005 and 

0.0129. A review of population genetic parameters for 

57 marine species estimated mean and median FST 

values of 0.062 and 0.02, respectively, for all species combined (Waples 1998). If BFT populations are 

differentiated, then the FST values used to define these differences are lower than the average for marine 

fish. Of course, this is to be expected for a species with ocean-wide migratory patterns, long lifespans, 

Box 1. Illustration representing fixation indices, or 
measures of heterozygosity, used to estimate the 
differentiation of populations (FST), inbreeding 
within sub-populations (FIS), and genetic diversity 
of an entire species (FIT). 
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broadcasting of gametes and repeat spawning isolated to the marine environment.  

 The same pattern of inconsistent results can be seen among the studies that analyzed the genetic 

differences between sampling locations in the Mediterranean. Evidence of genetic structuring within the 

Mediterranean was first published in 2004, when mtDNA CR sequences and microsatellites showed 

genetic divergence of young-of-the-year captured in the Ionian and Tyrrhenian Seas (Carlsson et al. 2004). 

Three years later, this study were repackaged to include additional samples from the Gulf of Mexico and 

the Western Mediterranean and 25 samples from the Ionian Sea were re-assigned to the “eastern 

Mediterranean” (Carlsson et al. 2007). Unsurprisingly, weak signals of population divergence were once 

again found between the eastern and western Mediterranean. In 2010, a study comparing samples 

collected from six locations in the western and central Mediterranean (Adriatic, Tyrrhenian, Ligurian, 

Alboran, Algeria and Sardinia) using eight microsatellites, calculated significant FST values for 25 of the 

28 pairwise comparisons between populations (Riccioni et al. 2010). This analysis included two groups of 

historical samples from 1911 (Tyrrhenian) and 1926 (Adriatic), which were significantly different from all 

other samples, including modern samples from the same location. A similar study in 2013, reanalyzed the 

same data with the addition of 60 individuals from the Levantine Sea (Riccioni et al. 2013). The authors 

found evidence of at least three sub-populations within the Mediterranean that appear to be structured 

along an environmental gradient (salinity and temperature). Conversely, other studies using both 

microsatellites and mtDNA CR sequences have been unable to detect divergence among Mediterranean 

sampling locations (Boustany et al. 2008; Viñas et al. 2011). The first effort to characterize BFT 

populations in the western and eastern Atlantic using single nucleotide polymorphisms (SNPs) produced 

the most significant evidence for differentiation of populations to date (Albaina et al. 2013). In that study, 

17 SNPs revealed significant differentiation of BFT captured in the north west Atlantic and groups in the 

Bay of Biscay (FST= 0.120±0.091, p < 0.01) and the western Mediterranean (FST =0.116±0.078, p < 0.01). 

These FST estimates are an order of magnitude higher than previous estimates using the other approaches. 

Due to the limited number of Western Atlantic samples used in their study (n=15), the results should be 

verified with an increased number of samples.  

 Several important factors can influence the outcome of investigations into genetic structuring of 

BFT populations. As discussed in Chapter 1, several locations from which some of the aforementioned 



Page | 103  

 

studies collected samples, are feeding aggregations that are visited by BFT from both the eastern and 

western stocks. Moreover, genetic divergence has been observed between collections of fish captured 

within months of each other at the same feeding location (Carlsson et al. 2006). Therefore, it is wholly 

inappropriate to make pairwise comparisons using samples from these locations for genetic structure 

analyses, since they cannot be considered populations. Furthermore, considering the highly migratory 

nature of the species, it is also unwise to analyze groups of adult BFT captured outside of spawning 

locations, since they are likely to be of mixed origin. The only studies that can be awarded any credit for 

providing valid information concerning divergence of populations are those that have used larvae and/or 

young-of-the-year. Comparisons should also include samples from multiple years in order to avoid false 

positives for divergence due to sampling bias, temporal variation in the survival of larvae, and sweepstake 

effects (Larson and Julian 1999). Of course, the choice of molecular marker used also appears to have an 

influence on the outcome of population investigations.  

4.1.1 SNP Discovery and the role of Next Generation Sequencing in fisheries research 

 It has been nearly a decade since the first protocol for NGS, or high throughput sequencing, was 

published (Margulies et al., 2005) and its impact on biological studies has been profound. The 

technological advancement that led to a veritable revolution in genetics was a massive scaling up of 

capillary electrophoresis, allowing for millions of simultaneous reactions occurring in parallel. The 

reactions happen rapidly and hundreds of Gigabases can be produced in a single run of short stretches of 

DNA that have been fragmented and assembled into libraries. NGS refers to a number of different 

technologies that rely on either emulsion PCRs (semiconductor sequencing, pyrosequencing and 

sequencing by ligation) or slide-based PCRs (reversible terminator sequencing and ligation sequencing). 

Of course, NGS is well known for the advances that it has allowed in the sequencing of entire genomes; 

however, its capacity to rapidly identify SNPs throughout the genome at both coding and non-coding 

regions has had a major influence on conservation genetics. These tools have allowed for significant 

advances in fisheries research, including fine-scale population structuring, population assignment, kinship 

analysis, local adaptations and estimations of effective populations size (Seeb et al. 2011). 

 SNPs can be discovered by a number of different methods, including Sanger sequencing of 

targeted genes products and expressed tag sequences, shotgun sequencing, and Next Generation 
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Sequencing. At least 80 SNPs are recommended for the detection of low levels of differentiation among 

highly mobile species (Ryman et al. 2011) so they are often assembled into panels containing at least 96 

loci. SNP panels have been used to identify species and populations of albacore tuna, Pacific lamprey, 

salmon, and blue catfish, and distinguish between wild and natural populations of salmon (Habicht et al. 

2010; Albaina et al. 2013; Amish et al. 2012; Drywa et al. 2014; Hess et al. 2014; Houston et al. 2014; 

Larson et al. 2014; Li et al. 2014). In 2011, Molecular Ecology Resources dedicated in entire issue (22 

publications) to the use of SNPs in conservation genetics (mostly fish species). One of the main directives 

of FishPopTrace (Stokstad 2010), an EU funded consortium of 15 research groups, was the use of SNPs in 

research related to fish population analysis, seafood traceability and monitoring, control, and enforcement 

in the fisheries sector. 

4.1.2 Aim of the study 

 The goal of this study was to develop a SNP panel capable of distinguishing groups of young BFT 

within spawning and nursery areas in the western Atlantic and Mediterranean Sea. Since mtDNA CR 

sequences and microsatellites have both provided mixed results in this regard, we hope to add more clarity 

to BFT population structuring using the increased resolution and genome coverage of SNPs. A 

genotyping-by-sequencing approach using the Illumina HiSeq platform will be used for SNP discovery. In 

fisheries related research, these methods have been applied to studies focused on species with relatively 

simple population structuring (limited range, anadromous, single spawning events). This study may 

present particularly unique challenges in that BFT is a highly migratory and long-lived species, with large 

effective population sizes, high genetic diversity and at least two large spawning areas. 

4.2 Materials and Methods 

4.2.1 Tissue sampling and DNA extractions 

 A total of 105 larvae and 450 young-of-the-year (YOY) individuals were captured at various 

spawning areas and adjacent waters in the Mediterranean Sea, Gulf of Mexico and Cape Hatteras from 

2007 to 2012 during the late spring and early summer months (Table 1, Figure 1). All larvae used in this 

study were collected using plankton nets and sacrificed via immersion in 96% ethanol, according to 

standard larval survey practices. In addition to morphological identification, all larvae were barcoded to 

ensure proper species assignment (Chapter 3). All YOY were captured with hand lines and trolling lines. 



Page | 105  

 

Permission to conduct sampling surveys and all legal permits were granted by the International 

Commission for the Conservation of Atlantic Tuna (ICCAT). ICCAT is the intergovernmental 

organization responsible for the management of bluefin tuna in the Atlantic Ocean and Mediterranean Sea 

and all research was coordinated through their “Atlantic-wide research programme for bluefin tuna” 

(GBYP). ICCAT issued a recommendation (Rec. 11-06) allowing the parties involved in this research to 

collect and sacrifice young BFT for the purposes of genetic research as well as ship samples from one 

country to another (Cert. No. ICCAT RMA12-049). 

Table 1: Samples of Atlantic bluefin tuna used for development of a 384 SNP genotyping panel using data generated by 
from Genotyping-by-Sequencing. 

Sampling location Sample code Age class Year N. individuals 

Levantine Sea (LEV) EM-LS11-V Larvae 2011 10 

 EM-LS11-0 Young-of-the-Year 2011 29 

 EM-LS12-0 Young-of-the-Year 2012 40 

 EM-LS12b-0 Young-of-the-Year 2012 21 

Strait of Sicily (STS) CM-SI11-0 Young-of-the-Year 2012 21 

 CM-SI12-V Larvae 2012 21 

 CM-SI12-0 Young-of-the-Year 2012 40 

Balearic Islands (BAL) WM-BA09-0 Young-of-the-Year 2009 41 

 WM-BA10-0 Young-of-the-Year 2010 45 

 WM-BA11-0 Young-of-the-Year 2011 40 

 WM-BA12-0 Young-of-the-Year 2012 40 

Tyrrhenian Sea (TYR) WM-TY11-0 Young-of-the-Year 2011 37 

 WM-TY12-0 Young-of-the-Year 2012 40 

 WM-TY12b-0 Young-of-the-Year 2012 40 

Gulf of Mexico (GOM) WA-GM07-V Larvae 2007 11 

 WA-GM08-V Larvae 2008 14 

 WA-GM09b-V Larvae 2009 25 

 WA-GM09-V Larvae 2009 24 

Cape Hatteras  (CAP) WA-GM08-0 Young-of-the-Year 2008 16 

Total    555 
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 Approximately 20mg of muscle tissue/finclip from each of the 450 YOY and 105 complete or 

partial (caudal fin or eyeball) larvae were digested overnight in a Proteinase K solution. Genomic DNA 

was extracted from all samples and purified using Promega’s Wizard®SV96 Genomic DNA Purification 

kit and vacuum manifold following the manufacturer’s protocols. DNA was eluted with 60μl of distilled 

water heated to 60°C. DNA concentration and purity was measured with a NanoDrop. 

 

 

 

 

 

 

 

 
Fig. 1: Sampling locations (GOM = Gulf of Mexico; CAP = Cape Hatteras; BAL = Balearic Islands; TYR = Tyrrhenian 
Sea; STS = Strait of Sicily; LEV = Levantine Sea). 

4.2.2 Genotyping-By-Sequencing 

 Extracted genomic DNA was digested with the ApeKI, a restriction enzyme which has a 5bp 

recognition site (5'GCWGC - 3'CGWCG). As in Elshire et al. (2011), the following standard Illumina 

sequencing adaptors were ligated to all fragments: 

5'-ACACTCTTTCCCTACACGACGCTCTTCCGATCTxxxx 

5'-CWGyyyyAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

where, ‘‘xxxx’’ and ‘‘yyyy’’ denote the barcode and barcode complement and sequences, respectively. 

The second, or ‘‘common’’, adapter has only an ApeKI-compatible sticky end:  

5'-CWGAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAG 

5'-CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT 
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 The GBS libraries were sequenced on HiSeq2500 (Illumina) 100 bp paired-end module, 

multiplexing 188 individuals on each sequencing lane with barcodes developed within the project, at the 

Genomics Core Facility (KULeuven) in collaboration with BioGenomics. Due to the very large number of 

fragments sequenced and discovered polymorphisms, individuals with less than 500k reads were 

resequenced to achieve a sufficient depth of sequencing for reliable genotype calling. 

4.2.3 De novo SNP discovery 

  As recommended in Elshire et al. (2011), barcodes and low-quality edges were removed from the 

raw Illumina DNA sequence data using the Universal Network Enabled Analysis Kit pipeline (UNEAK, 

Lu et al. 2013), which is an extension of the TASSEL v3.0 program. UNEAK identifies SNPs in the 

absence of reference genomes by clustering similar 64 bp sequences (tags) that differ by a single base pair 

(tag pairs or reciprocal tags). The pipeline also employs a network filter that removes any cluster that 

includes more than one SNP. In this manner, 324,433 SNPs were discovered and among these an average 

of ~50% of SNPs were called per individual from each sampling location. SNPs were filtered according to 

the representation of a minimum number of individuals per sample. All SNPs with less than 70% 

representation among all individuals within each sample were removed, resulting in a dataset containing 

27,316 SNPs. 

 The dataset was then converted to a Genepop file format using PGD Spider (Lischer and Excoffier 

2012), and a basic quality check analysis was performed using the Adegenet package in R (Jombart and 

Ahmed 2011) and GENETIX (Belkhir et al. 1996-2004). An excess of heterozygosity was observed for 

the majority of loci which warranted additional tests and analysis that revealed an insufficient and unequal 

distribution of read coverage. As such, the de novo SNP discovery pipeline was abandoned for reasons 

discussed in the Results and Discussion sections. After recognizing this issue, the data for all individuals 

were pooled within five geographic sampling areas or strata (Gulf of Mexico and Cape Hatteras were 

merged into a western Atlantic stratum) and reanalyzed using pairwise comparisons of the total number of 

reads per allele per locus.  
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4.2.4 Genotyping-by-Sequencing allele frequency analysis 

4.2.4.1 Reference genome assembly 

 A genome reference was assembled using data generated by genome sequencing of a single 

individual captured offshore from the Balearic Islands 

(unpublished data). The genomic library was sequenced  

in 2 × 75-bp paired-end mode on a HiSeq 2000 (Illumina). 

A total of 94,000,207 paired-end reads were produced and 

these were trimmed to 71bp due to bad quality endings. 

ABySS (1.3.7; Simpson et al. 2009) was used to create a  

de novo assembly of the genome. ABySS was run with 

standard parameters, and a k-mer size of 31. This resulted 

in an assembly of 6,309,067 contigs and a genome size of 

944 Mb (additional details provided by AbySS are  

provided in Box 2). As quality control for the assembled genome, the original data was mapped using 

Bowtie2 (version 2.2.0; Langmead and Salzberg 2012) in the local modus.  

4.2.4.2 Reference-based SNP discovery 

 The aforementioned raw paired-end sequence data (Section 2.2) was de-multiplexed using GBSX 

(Herten et al. 2015). GBSX trims barcodes and adaptors, allowing for one sequencing error in the 

barcodes and enzyme restriction site, thereby greatly improving paired end read joining and mapping. 

Reads from re-sequenced individuals that 

were distributed across multiple lanes 

were recombined and overlapping read 

pairs were merged using FLASH (v. 

1.2.7; Magoč and Salzberg 2011). Details 

concerning the reads that were retained 

after this filtration step are featured in 

Box 3. Merged read pairs were then 

pooled according to strata and mapped against the genome reference ad mapped to the reference genome 

Box 2: Summary statistics from the de novo 
assemble genome using AbySS. 

 No. of contigs 6,309,067  

 Total length 944,001,291  

 No. of contigs >= 500 bp 278,295  

 Largest contig size 55660  

 N50 3185  

 N75 1721  

 L50 56,015  

 L75 122,741  

 GC percentage 39.5%  
 

Box 3: Percentage of reads that were retained after FLASH tool 
demultiplex filtration. 

 Strata % of data retained Number of reads  

 Western Atlantic 86.87 146,942,658  

 Balearic Islands 90.09 225,310,444  

 Ligurian Sea 90.36 36,418,929  

 Tyrrhenian Sea 86.88 282,901,496  

 Strait of Sicily 87.36 135,885,940  

 Levantine Sea 91.58 124,845,382  
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(from section 2.4.1) using Bowtie2 (version 2.2.0; Langmead and Salzberg 2012) using the end-to-end 

modus. Merged reads were filtered based on a mapping quality equal to or greater than 20 (or mapped to a 

particular location with 99% certainty). The genomic coordinates and corresponding coverage statistics for 

the targeted regions were retrieved using BEDtools (version 2.17.0; Quinlan and Hall 2010).  Depth of 

coverage for each location in the genome was normalized for each stratum using the following formula: 

Normalized depth location = Location depth x Highest total read number over all strata 
                                                                         Total read number of this stratum 

Locations with a normalized depth of 50 or more, over all strata, were selected for the identification of 

representative SNPs for all strata.  

 SNP calling was performed for all strata, based on the quality filtered mapping, in one run using 

FreeBayes (version 9.9.10; Garrison and Marth 2012). Similar settings to the human genome project SNP 

calling were used: mapping quality >20, and base quality >15. By performing SNP calling simultaneously 

on the mapped data of all strata, SNP information for all candidate positions in all strata were obtained, 

including positions that were homozygous for certain strata.   

4.2.4.3. SNP selection 

 Given that the read data for each locus was pooled by strata it wasn't possible to calculate 

individual allele frequencies. As such, a proxy for allele frequency was developed using the available read 

counts. SNPs were selected for a 384 SNP genotyping panel based upon a delta value (DV), which was 

calculated for each locus using the following formula: 

 

 

  

 A minimum of 18 read counts for each locus per stratum was set as a threshold in order to 

maintain confidence in SNP validity. Preference was given for SNPs that had delta values between 1.0 and 

0.7 (high), 0.7 and 0.6 (mid) and 0.6 and 0.5 (low) (Table 2). Additional SNPs with exceptional read 

coverage were selected to complete the 384 SNP panel. Finally, all SNPs were filtered to ensure 

compliance with the criteria of Fluidigm genotyping design (minimum flanking sequence length of 60 bp 

and <65% GC content). 
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Table 2: Number of SNPs selected for the 384 trial SNP panel in order to differentiate between five strata. 

 WATL 
vs LEV 

WATL 
vs BAL 

WATL 
vs TYR 

WATL 
vs STS 

LEV vs 
BAL 

LEV vs 
STS 

LEV vs 
TYR 

BAL vs 
STS 

TYR vs 
STS 

TYR vs 
BAL 

High 8 4 0 2 1 14 9 9 1 5 

Mid 7 9 0 3 1 19 8 19 1 12 

Low 23 31 3 28 3 29 29 38 14 23 

Total 38 44 3 33 5 62 46 66 16 40 

 Using the SNP flanking regions derived from the aforementioned incomplete reference genome, 

all sequences were then compared with cod (Gadus morhua), sea bass (Dicentrarchus labrax) and general 

teleost sequences available through GenBank using the Basic Local Alignment Search Tool (BLAST, 

Altschul et al. 1997).  

4.2.5 384 SNP panel validation with 188 individuals 

 In an effort to validate the SNPs selected in silico, 188 of the 555 individuals used for the SNP 

discovery process (Table 3) were genotyped using a 384 SNP-typing array. Genotyping was carried out 

with the BiomarkTM HD platform (Fluidigm) and run with ROX as the passive reference dye and FAM 

and HEX SNPtypeTM Assays for specific allele calling. 

Table 3: Sampling details of young BFT samples selected for SNP panel validation. 

Sampling location Sample code Age class Year Stratum N. individuals 

Levantine Sea EM-LS11-0 Young-of-the-Year 2011 LEV 27 

 EM-LS12-0 Young-of-the-Year 2012 LEV 21 

Strait of Sicily CM-SI11-0 Young-of-the-Year 2011 STS 21 

 CM-SI12-0 Young-of-the-Year 2012 STS 27 

Balearic Islands WM-BA11-0 Young-of-the-Year 2011 BAL 24 

Tyrrhenian Sea WM-TY12-0 Young-of-the-Year 2012 TYR 24 

Gulf of Mexico WA-GM07-V Larvae 2007 WATL 2 

 WA-GM08-V Larvae 2008 WATL 8 

 WA-GM09b-V Larvae 2009 WATL 10 

 WA-GM09-V Larvae 2009 WATL 8 

Cape Hatteras  WA-GM08-0 Young-of-the-Year 2008 WATL 16 

Total     188 

 
 A quality check was performed in order to remove SNPs that were non-polymorphic, of low 

quality or failed to amplify. The hierarchical Bayesian method described in Beaumont and Balding (2004), 

implemented in Bayescan software (Foll and Gaggiotti 2008) was used to detect loci with strong support 
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for selection (-log10PO > 1). The Beaumont and Nichols (1996) FDIST approach, implemented in Lositan 

(Antao et al. 2008) using a 0.995 confidence interval was used to identify SNPs showing evidence of 

balancing selection, which were then removed. Using Genepop on the Web v4.2 (Raymond and Rousset 

1995; Rousset 2008), SNPs were analyzed for heterozygosity excess/deficiency using a global test with 

the following Markov chain parameters: 1,000 dememorization steps, 100 batches and 1,000 iterations per 

batch. STRUCTURE software (v2.3.4; Pritchard et al. 2000; Hubisz et al. 2009), a Bayesian model-based 

clustering algorithm, was used to visualize the population structure and estimate the extent of admixture 

by individual and population. For each analysis, a burn-in period of 10k with 50k MCMC reps was 

employed, using the admixture ancestry model, correlated allele frequencies and sampling locations used 

for the LOCPRIOR model. Lambda values were inferred and the number of potential ancestral clusters 

analyzed was equal to the total number of strata. For each value of k the analysis was run 10 times. The 

results showed that the samples collected from the Levantine Sea in 2012 behaved much differently than 

all other populations and were thus removed from further analyses. An analysis of the final SNP dataset 

using BELS software (backward-elimination locus-selection) selected the optimal SNPs for discrimination 

of population structuring (Bromaghin 2008). A total of 59 SNPs were selected for optimization of 

discrimination between the samples collected from the Gulf of Mexico and the Mediterranean Sea. 

Another 48 SNPs were selected for their discriminatory power between sampling locations within the 

Mediterranean, 11 of which had already been selected for trans-Atlantic discrimination. 

 Genotypes for all 188 individuals from the remaining 96 SNPs were then re-analyzed in silico. 

Hardy-Weinberg tests were performed using Genepop on the Web v4.2 (Raymond and Rousset 1995; 

Rousset 2008) fixed with the following default Markov chain parameters: 1000 dememorization, 100 

batches and 1000 iterations per batch. Alpha values were adjusted using the Bonferroni correction. As 

above, outlier loci were identified using Lositan (Antao et al. 2008). Various population structuring 

statistics (FIS, FST, FIT) were calculated with Arlequin v3.5.1.2 (Excoffier et al. 2009). Genetic 

differentiation between samples was estimated by pairwise FST using FSTAT v.2.9.4 (Goudet 1995), 

testing significance with the adjusted nominal level (α=0.05) for multiple comparisons (Bonferroni 

correction). STRUCTURE software (v2.3.4; Pritchard et al. 2000) was used to elucidate patterns of 

population structuring. Throughout all analyses, the admixture model and LOCPRIOR option were 
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selected. Preliminary analysis for the optimal number of ancestral clusters (k) made use of 10k burnins 

and 50k MCMC reps with 20 replicates at each of value of k ranging from 1 to the total number of groups 

analyzed. These results were then analyzed with STRUCTURE harvester and a final range of 3 k values 

was re-analyzed with 500k burnins and 750k MCMC reps. Clustering of groups using the 59 and 96 SNP 

panel was further analyzed using the Adegenet package v1.4-2 in R, which provides Discriminant 

Analysis (DA, defining groups), based upon a dataset of Principal Components (PC, reducing data to 

several dimensions) constructed from multi-locus genotypes (Jombart 2008; Jombart and Ahmed 2011).  

4.3 Results 

4.3.1 De novo SNP discovery using the UNEAK pipeline 

 Comparisons between read coverage by individual and measures of DNA quality and quantity 

(nucleic acid purity, DNA purity and DNA concentration) revealed no significant correlation (Fig. 2). 

Therefore, the DNA extractions used for analysis were satisfactory for the required purpose. However, 

preliminary analyses of allele frequencies continually showed an excessive number of heterozygotes as 

thresholds of read count were increased.  

 Additional analysis of a subset of 22 individuals with more than 2 million reads revealed the same 

results. More detailed analysis of datasets with minimum thresholds of 3, 4 and 5 read counts per SNP 

locus revealed a trend of increasing heterozygosity uncharacteristic of wild populations. The majority of 

loci within the dataset requiring a minimum read count of 3 had observed heterozygosity values around 

0.4 (Fig.3A). When the minimum read count threshold was increased to 4 and 5, values of heterozygosity 

increased at an unexpected rate (Fig.3B,C). Within the 5 minimum read count dataset, the difference 

between expected and observed heterozygosity was overwhelmingly negative for the majority of all loci 

(Fig.3D). 

 Overall observed heterozygosity within each dataset was then plotted alongside the expected 

heterozygosity and the difference between the two (Fig. 4). The data trend shows a deficit of 

heterozygotes at 2 read counts and a steadily increasing frequency of heterozygotes after 4 read counts. 

These uncharacteristic trends that appear to be independent of DNA quality and quantity were suggestive 

of errors in the work pipeline. For this reason, the analysis of individual genotypes was abandoned and an 

alternative approach was developed. 
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Fig. 2: Total read coverage for 384 randomly selected individuals compared to nucleic acid purity (260/230 ratio; A), DNA 
purity (260/280 ratio; B) and DNA concentration (ng/µL; C). 
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Fig. 3: Observed heterozygosity of ~1300 individuals after implementation of minimum read counts/loci/individual filters: 
minimum read counts of 3 (A), 4 (B), 5 (C). SNP loci were eliminated from the analysis if read count thresholds were not 
achieved. Analysis of minimum read count >=3 dataset consited of 1311 individuals, 3204 loci and 39.4% missing 
information; >=4 dataset consisted of 1308 individuals, 917 loci and 37.2% missing information;  >=5 dataset consisted of 
1305 individuals, 399 loci and 32.4% missing information. Calculated differences between observed and expected 
heterozygosity for all loci in the 5 minimum read count dataset (D). 
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Fig. 4: Overall observed (Hobs; blue) and expected (Hexp; red) heterozygosity from four datasets containing individual 
genotypes with 2-5 minimum read counts per loci. The difference between expected and observed heterozygosity (Hexp-
Hobs; purple) is plotted for each dataset. 

4.3.2 Genome assembly 

 GBSX processing resulted in the retention of a much higher percentage of reads (88.9% overall) 

after FLASH tool filtration (Table 4). Merging of read pairs produced longer sequences (up to 180bp) 

which, when mapped against the genome reference, resulted in much improved mapping quality and 

confidence (Table 5). In total 866,121 locations in the dataset passed the mapping and normalized depth 

filtration criteria. SNP calling by FreeBayes resulted in 2,467,103 SNP positions, of which 236,332 

intersected with the >50 coverage mapped locations. After filtering for only biallelic SNPs (among all 

strata), a total of 184,895 SNPs were found to be sufficiently represented among all strata. 

Table 4: Results from the analysis of original data mapped to the assembled genome reference. 

Description % paired-end reads % reads No. of paired-end reads No. of reads 

Pair Aligned concordantly exactly 1 time 68.07 68.07 63,984,850 127,969,700 

Pair Aligned concordantly >1 times 6.09 6.09 5,720,552 11,441,104 

Pair Aligned discordantly 1 time 2.34 2.34 2,203,070 4,406,140 

Not aligned as pair, aligned exactly 1 time - 3.82 - 7,189,521 

Not aligned as pair, aligned >1 times - 18.18 - 34,176,081 

Overall alignment - 98.50 - 185,182,546 

Unique alignment - 74.24 - 139,565,361 
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Table 5: Mapping statistics of reads per strata after combining read pairs using FLASH tools. 

 Total reads Aligned 
0 times 

Aligned 
exactly once 

Aligned more 
than once 

Alignment 
rate 

Reads with Phred 
score > 20 

Western Atlantic 
(WATL) 

146,942,658 4.69% 57.95% 37.36% 95.31% 
72.84% 

107,036,577 

Balearic Islands 
(BAL) 

225,310,444 2.19% 53.67% 44.14% 97.81% 
66.29% 

149,362,671 

Tyrrhenian Sea 
(TYR) 

186,901,496  17.94% 46.17% 35.89% 82.06% 
57.00% 

106,528,635 

Strait of Sicily 
(STS) 

135,885,940 13.44% 51.79% 34.77% 86.56% 
64.02% 

86,989,987 

Levantine Sea 
(LEV) 

124,845,382 3.81% 57.99% 38.20% 96.19% 
71.2% 

88,948,045 

4.3.4 SNP genotyping 

 All 188 individuals were sufficiently genotyped for population structure analysis. From the pool of 

384 SNPs, 77 were non-polymorphic, unrecognized or provided low quality data. Thirteen SNPs had 

minor allele frequencies of less than 10% across all populations. An additional 53 SNPs were removed, 44 

of which showed evidence of balancing selection and nine consistently failed to provide enough data for 

statistical analysis. In total 34% of the in silico discovered SNPs failed the technically validation. Finally, 

33 SNPs were removed as they were found to be outside of Hardy-Weinberg Equilibrium. This left a pool 

of 221 SNPs for which average percentage of missing data per SNP locus was 2.57 ± 3.16% with median 

value of 2.4%. The average percentage of missing data by individual was 2 ± 6% with a median value of 

0%. YOY captured in the Levantine Sea in 2012 were removed from the dataset, as their data proved so 

divergent from all other populations that their inclusion interfered with the analysis. 

4.3.5 Genetic diversity and Hardy-Weinberg Equilibrium 

 The mean heterozygosity across all loci was 0.344 ± 0.155 with the lowest value (0.322 ± 0.200) 

assigned to larvae from the Gulf of Mexico 2008 and the highest value (0.347 ± 0.161) assigned to the 

Levantine Sea 2012 samples. Of the final 221 SNP candidates, all behaved according to the HWE, 

following Bonferroni correction. 

4.3.6 Detection of outlier loci 

 The hierarchical Bayesian method described in Beaumont and Balding (2004), implemented in 

Bayescan software (Foll and Gaggiotti 2008) detected only one SNP showing support for selection (-
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log10PO > 1). Outlier detection using Lositan software revealed a total of 8 candidate loci for positive 

selection and 12 candidate loci for balancing selection (Fig. 5A, B).  After selection of the final 96 SNP 

panel, the analysis was run again with the same settings, revealing 2 candidate loci for positive selection 

and 3 candidate loci for balancing selection had been retained (Fig. 5B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Lositan analysis results for datasets containing 167 individuals and 221 SNPs (A) or 96 SNPs (B). In both figures, 
the lower and upper coloured band represents a threshold inwhich loci are candidates for balancing selection and positive 
selection, respectively. The confidence interval was set at 0.995. 

4.3.7 Populations Genetics 

 Using genotypes from the final 95 SNP panel, the genetic differentiation between all samples was 

significant, with a global FST value of 0.0155 (p-value<0.05). The global FIS was calculated to be 0.0429, 

demonstrating that only 25% of the variation in the dataset is due to between population differences. 

Analysis of the entire dataset with genotypes from all 95 SNPs revealed significant differences between 

the Western Atlantic samples and 3 strata (Balearic, Strait of Sicily 2011, Levantine Sea). The Tyrrhenian 

Sea samples also differed significantly from fish captured in the Balearic Sea and the Strait of Sicily 2011 

(Table 6). Analysis of the dataset with just 48 SNPs that were selected because of discriminatory power 

within the Mediterranean showed that only one significant pairwise difference persisted (Strait of Sicily 
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2011 and the western Atlantic; Table 7). However, when all 167 samples were analyzed with the 59 SNP 

panel designed to differentiate between western Atlantic and Medditerranean populations, every pairwise 

comparison with the western Atlantic was significant (Table 8). FST values ranged between 0.0165 (Strait 

of Sicily 2012) and 0.0369 (Levantine Sea). 

Table 6: Matrix of FST values calculated using 96 SNP genotypes for 167 individuals from 6 samples. FST values are 
provided under the diagonal and indicators of significance (*) and non-significance (NS) are shown above the diagonal. 
Significant FST values are highlighted in yellow. 

 

 W. Atlantic Balearic Sea Tyrrhenian Sea S. Sicily 2011 S. Sicily 2012 Levantine Sea 

W. Atlantic  * NS * NS * 

Balearic Sea 0.0162  * NS NS NS 

Tyrrhenian Sea 0.0161 0.0165  * NS NS 

S. Sicily 2011 0.0218 0.0077 0.0152  NS NS 

S. Sicily 2012 0.009 0.0062 0.0104 0.0091  NS 

Levantine Sea 0.0274 0.0083 0.0216 0.0106 0.0081  
 

Table 7: Matrix of FST values for 167 individuals from 6 samples calculated using a 48 SNP panel designed to discriminate 
between groups of BFT in the Mediterranean Sea. FST values are provided under the diagonal and indicators of significance 
(*) and non-significance (NS) are shown above the diagonal. Significant FST values are highlighted in yellow. 

 W. Atlantic Balearic Sea Tyrrhenian Sea S. Sicily 2011 S. Sicily 2012 Levantine Sea 

W. Atlantic  NS NS * NS NS 

Balearic Sea 0.0152  NS NS NS NS 

Tyrrhenian Sea 0.0044 0.0232  NS NS NS 

S. Sicily 2011 0.0192 0.0154 0.0268  NS NS 

S. Sicily 2012 0.0042 0.0155 0.0169 0.0173  NS 

Levantine Sea 0.0284 0.0157 0.0355 0.0177 0.0188  

 

Table 8:  Matrix of FST values for 167 individuals from 6 samples calculated using a 59 SNP panel designed to discriminate 
between BFT from the Western Atlantic and Mediterranean Sea. FST values are provided under the diagonal and indicators 
of significance (*) and non-significance (NS) are shown above the diagonal. Significant FST values are highlighted in 
yellow. 

 W. Atlantic Balearic Sea Tyrrhenian Sea S. Sicily 2011 S. Sicily 2012 Levantine Sea 

W. Atlantic  * * * * * 

Balearic Sea 0.0229  NS NS NS NS 

Tyrrhenian Sea 0.0256 0.0033  NS NS NS 

S. Sicily 2011 0.028 -0.0022 0.0016  NS NS 

S. Sicily 2012 0.0165 -0.0024 0.001 -0.0033  NS 

Levantine Sea 0.0369 0.0015 0.0105 0.0017 0.0011  
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4.3.8 Detection of genetic clusters 

 Cluster analysis based on the Bayesian algorithm performed in STRUCTURE revealed strong 

differentiation of western Atlantic and Mediterranean samples as well as genetic structuring within the 

Mediterranean Sea (Fig. 6). The 48 SNP subset showed pronounced population structuring within the 

Mediterranean at 3 different levels of assumed ancestral populations. The 59 SNP subset showed 

significant differentiation of the western Atlantic from all samples in the Mediterranean. Results from the 

DAPC analysis were similar, with samples from the western Atlantic differentiated from the 

Mediterranean samples and some amount of structuring between Mediterranean groups (Fig.7). 

 

 

 

 

 

 

 

 

 

 
 
Fig. 6: STRUCTURE analysis of 123 BFT collected from the Mediterranean Sea using a subset of 48 SNPs from the 
validated 96 SNP panel. The model used assumes 2 (A), 3 (B) and 4 (C) ancestral populations (Left). STRUCTURE 
analysis of 167 BFT from the Mediterranean and Western Atlantic using a subset of 59 SNPs from the 96 SNP panel 
developed by the BGSA Genetics Consortium. The model used assumes 2 (A), 3 (B) and 4 (C) ancestral populations 
(Right). 
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Fig. 7: DAPC analysis of 167 BFT collected from the Mediterranean Sea  and western Atlantic using 96 SNPs (A) and a  
subset of 59 SNPs (B). Circles and dots in shades of blue are samples from the western Atlantic and warmer colours are 
associated with the Mediterranean Sea samples. 

4.4 Discussion 

 Several errors were made in the development and analysis of the original GBS dataset. These 

errors were detected when increases in minimum read count thresholds resulted in a constant increase in 

heterozygosity throughout the dataset. By increasing the number of read counts required to define an 

individual genotype, one expects to eliminate heterozygotes that have been incorrectly called as 

homozygotes due to the low detection rate of alternative alleles. In our dataset the average heterozygosity 

by locus increased to 60%, while many loci had heterozgosity values between 90-100% at minimum read 

counts as low as five. Some GBS protocols have advised that loci with mean observed heterozygosity 

>0.75 should be discarded (Nielsen et al. 2011; White et al. 2013). If this advice had been followed, then 

we wouldn't have had a dataset to analyze. 

 We initially suspected that the dataset suffered as a consequence of low sequencing coverage due 

to low quality DNA; however quality control analysis of sequencing coverage and several measures of 

DNA quality and quantity suggested that the two were uncorrrelated. Errors likely began with the use of 

ApeKI as the restriction enzyme (RE) during the preparation of sequencing libraries. In the years that have 

passed since the begnining of this project, several studies have shown that ApeKI library preparations 

couple with Illumina sequencing results in low, biased error prone coverage of genome sequences. Shortly 

after encountering issues in our dataset, a study was published claiming that, “The GBS protocol generally 

provides low coverage if the enzyme ApeKI is used” (Lu et al. 2013). That same year another study 

published results from an analysis of the performance of three restriction enzymes (ApeKI, PstI and 
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EcoT22I) which determined that ApeKI was the worst performing RE relative to the others (De Donato et 

al. 2013). The fundamental difference was credited to ApeKI's five base pair cut site (GC[A/T]GC), 

compared to the six base pairs targeted by the other REs. Not only is ApeKI shorter than the other REs 

(enabling it to attach to the genome more frequently) but it also contains an ambiguous base which can 

increase the number of candidate attachment sites. Digestion using ApeKI results in a high number of 

missing data, irrespective of the quality of data that one begins with (De Donato et al. 2013). Even for 

samples with high depth coverage, researchers can expect to have ~30% missing data for any given 

individual in a dataset (Beissenger et al. 2013).  

 A great deal of bias can be introduced to the dataset during the sequencing of GBS libraries. Since 

the ApeKI cut site targets sections of DNA heavy in GC content, 

genomic regions rich in the nucleotides are heavily fragmented 

resulting in some genomic regions being over- or 

underrepresented (Minoche et al. 2011). A 2013 study found that 

GBS had a non-uniform distribution of sequence reads in that cut 

site adjacent sequence fragments are left virtually unsequenced 

while other portions have read depth >1000x the mean 

(Beissenger et al. 2013). Box 4 shows the results of a study 

comparing the theoretical distribution of reads per sequence 

versus the realized distribution of reads when using ApeKI 

combined with the Illumina platform (Beissenger et al. 2013). The authors of that study determined that 

the median number of reads per sequence fragment was zero, substantially less than expected (~40). 

 Using ApeKI for DNA digeston results in the production of many short and repetitive fragments of 

DNA (De Donato et al. 2013), which can easily be incorrectly aligned, resulting in paralogs that appear as 

heterozygous loci. Heterozygotes can be incorrectly identified as homozygotes even among regions with 

high read coverage (Lu et al. 2013). Minoche et al. (2011) has analyzed the origin of sequencing errors 

generated by the Illumina platform by comparing de novo and reference-based assembly of sequences 

produced by GBS. They found that errors generated by Illumina HiSeq platforms are typically A-C and G-

T conversions, as the fluorophores attached to these bases are excited by the same laser and the emission 

Box 4: Observed and theoretical 
frequency distribution of the number 
of times that optimally sized ApeKI 
fragments were sequenced (from 
Beissinger et al. 2013). 
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spectra may not be perfectly separated (Minoche et al. 2011). Errors in Illumina generated sequences are 

far more likely to be substitutions (99.5% of errors), rather than insertions and deletions, with the majority 

of incorrect base calls occurring after guanine and before adenine and thymine (Minoche et al. 2011).   

 Recent GBS studies have used alternative REs with longer base pair cut sites (PstI, EcoT22I) for 

studies of wild non-model species (Alcaide et al. 2014; Kort et al. 2014; Li et al. 2014). In fact, the 

majority of GBS studies that have used ApeKI as RE have focused on SNP discovery in highly 

domesticated agricultural crops (Elshire et al. 2011; Morris et al. 2013; Sonah et al. 2013; Reddy et all. 

2014). Ironically, the GBS protocol using ApeKI was first introduced as a robust and simple NGS 

approach for high diversity species in a study that focused on highly inbred populations of maize and 

barley (Elshire et al. 2011). ApeKI is simply an inappropriate choice of RE for wild, non-model, genetic 

diverse species with large effective population sizes. 

 The data was greatly improved by the development of a genome reference which allowed for the 

improvement of SNP discovery due to the rough template that it provided for assembly and alignment. 

The trimming algorithm executed by the GBSX programme (Herten et al. 2015) greatly improved the 

quality of merged reads and increased the overall length of fragment that could be aligned with the 

genome reference. Both of these improvements to the protocol overcame the ambiguities and daunting 

challenges of de novo SNP discovery. For considerably lower library construction and sequencing efforts, 

pooling of genotype data from NGS sequenced individuals can allow for accurate estimations of 

population allele frequencies with similar accuracy to individual-based analyses (Gautier et al. 2013). 

Since we chose to pool all of the GBS data, due to the weaknesses described above, individual allele 

frequencies were lost and the resulting analysis focused on read counts instead. Admittedly, this could 

have introduced some bias into the SNP discovery process; however, the results seem to speak for 

themselves. Technical validation of in silico discovered SNPs showed a 75% conversion rate to functional 

SNP arrays. 

4.5 Conclusion 

 This study outlines several shortcomings of the GBS approach when analysing a non-model 

species with high genetic diversity and effective population sizes. By digesting our DNA with the ApeKI 

restriction enzyme, sequencing with the Illumina platform, and analyzing the resulting data with the 
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UNEAK pipeline, we have effectively written a protocol for errors to be avoided when using NGS 

technology. Despite these technical challenges, we managed to salvage the data achieve the intended goal 

of developing a high throughput genotyping panel. The 96 SNP panel developed in this chapter was used 

to genotype an additional 556 BFT. The details of that exercise are explained in Chapter 5. 
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Appendix1: Summary of all BFT genetic population structuring studies to date. Numbers in parentheses reflect the number of samples 

Year Marker Sample size Resultp Reference 
1999 mtDNA CR Mediterranean Sea and western Atlantic 

Ocean (140) 
 

Allele frequency revealed no differentiation within Mediterranean (p = 0.3721) 
Allele frequencies revealed differentiation of pooled MED and W. Atlantic (p = 0.0428)  

Alvarado-Bremer JR, Naseri I, Ely B 
(1999) Col Vol Sci Pap ICCAT 
49:127–129 

2002 mtDNA CR Western Mediterranean 1990 (31), 1992 
(32), 1993 (37), 1998 (38) 
Atlantic Large Adults 1994 (34) 
Atlantic Small Adults 1994 (38) 

No differentiation Ely B, Stoner DS, Bremer A.J, Dean 
JM, Addis P, Cau A and Quattro JM 
(2002) Mar Biotech 4: 583-588. 

2002 ldhA nuclear 
gene 

Western Mediterranean 1990 (31), 1992 
(32), 1993 (37), 1998 (38) 
Atlantic Large Adults 1994 (34) 
Atlantic Small Adults 1994 (38) 

Differentiation of MED 1998 and all other strata 
No other differentiation of other strata combinations 

Ely B, Stoner DS, Bremer A.J, Dean 
JM, Addis P, Cau A and Quattro JM 
(2002) Mar Biotech 4: 583-588. 

2003 37 allozyme loci NW Atlantic 1996 (39) 
NE Atlantic 1994 (49) 
Western Mediterranean (601) 
Central Mediterranean (133) 

No differentiation within MED 
No differentiation of E Atlantic and MED 
Significant allele frequency differences for SOD-1 enzyme between pooled E Atlantic / MED 
and pooled W estern Atlantic 

Pujolar JM, Roldán MI and Pla C 
(2003) Mar Biol 143: 613-621. 

2004 9 microsatellites 
 

Young of the Year only  
Balearic 1998 (74) 
Balearic 1999 (60) 
Tyrrhenian 1998 (28) 
Tyrrhenian 1999 (33) 
Tyrrhenian 2002 (63) 
Ionian 1998 (9) 
Ionian 1999 (16) 

No temporal differentiation within WMED (FST = −0.0013, p = 0.735) 
No differentiation between Balearic and Tyrrhenian (FCT = 0.0013, p = 0.196) 
No temporal differentiation between Baleriac, Tyrrhenian and Ionian (FSC = −0.002, p = 0.883) 
Differentiation of Balearic, Tyrrhenian and Ionian Sea (FCT = 0.0032, P =0.019) 
No differentiation of temporally pooled Balearic and Tyrrhenian (FST=0.0007, p = 0.226) 
No differentiation of temporally pooled Balearic and Ionian (FST=0.0046, p = 0.103) 
Differentiation of temporally pooled Ionian and Tyrrhenian (FST=0.0087, p = 0.015) 
Differentiation of temporally pooled Balearic, Ionian and Tyrrhenian (FST=0.0023, p = 0.038) 

Carlsson J, McDowell JR, Diaz-
Jaimes P, Carlsson JEL, Boles SB, 
Gold JR and Graves J E (2004)  Mol 
Ecol 13: 3345-3356. 

2004 mtDNA CR 
(868bp) 

Young of the Year only  
Balearic (24) 
Ionian (23) 
Tyrrhenian (22) 

Differentiation of Ionian, Balearic and Tyrrhenian (ФST= 0.0239, P = 0.0314) 

No differentiatioan of  Balearic and Ionian Seas (ФST=0.0085, P=0.25) 

No differentiation of Balearic and  Tyrrhenian Seas (ФST= 0.0270, P=0.053) 

Differentiation of Ionian and Tyrrhenian Seas (ФST=0.0366, P = 0.03) 

Carlsson J, McDowell JR, Diaz-
Jaimes P, Carlsson JEL, Boles SB, 
Gold JR and Graves J E (2004) Mol 
Ecol 13: 3345-3356. 

2005 mtDNA CR 
(450bp) 

Western Atlantic (50) 
Eastern Atlantic (24) 
Mediterranean (Gulf of Mersin, Aegean Sea, 
Ionian Sea, Libyan coast, Tyrrhenian Sea, 
Tunisian coast, Ligurian Sea, Gulf of 
Valencia) (323) 
Total n=607* 
*Additional samples from Ely et al. (2002) 

No differentiation of Atlantic and MED (ФST = 0.002, P = 0.245) Alvarado Bremer JR, Viñas J, Mejuto 
J, Ely B and Pla C (2005) Mol Phylo 
Evol 36: 169-187. 
 

2006 8 microsatellites Iceland EEZ (800) Differentiation of pooled early season (1999+2002) and pooled late season ABFT (1999+2002) 
(FCT=0.00154, P= 0.000) 
No differentiation between alternative temporal or spatial combinations 

Carlsson J, McDowell JR, Carlsson, 
JEL, Ólafsdóttir D and Graves JE 
(2006) ICES J Mar Sci 63: 1111e1117 
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2007 8 microsatellites  Gulf of Mexico Larvae 2003 (40)  
WMED YOY 1998-2002 (255)  
EMED YOY 1998-2002 (25) 

Global differentiation (FST= 0.0059, p = 0.0005) 
Differentiation of WMED and GOM (FST= 0.0048, p = 0.0260) 
Differentiation of WMED and EMED (FST = 0.0067, p = 0.0279) 
Differentiation of GOM and EMED (FST= 0.0117, p = 0.0236) 

Carlsson J, McDowell JR, Carlsson, 
J.E and Graves JE (2007) J Heredity 
98: 23-28. 

2007 mtDNA CR 
 

Gulf of Mexico Larvae 2003 (40)  
WMED YOY 1998-2002 (255)  
EMED YOY 1998-2002 (25) 

Global differentiation (ФST= 0.0129, p = 0.0139) 

Differentiation of WMED and GOM (ФST = 0.0104, p = 0.0359) 

Differentiation of WMED and EMED (ФST = 0.0174, p = 0.0482) 

No difference of GOM and EMED (ФST = 0.0134, p = 0.1105) 

Carlsson J, McDowell JR, Carlsson, 
JE, Graves JE (2007) J Hered 98: 23-
28. 

2008 mtDNA CR 
 

Gulf of Mexico 1995-2005 (61) 
Western Mediterranean 1997-2004 (47) 
Eastern Mediterranean 1997-2003 (62) 
Range of size classes 

Differentiation of GOM and MED  

(ФST = 0.01116, p = 0.03029) 

No significant differentiation of GOM and WMED (ФST= 0.01223, p = 0.06554) 

No significant differentiation of GOM and EMED (ФST= 0.00699, p = 0.12019) 

No significant differentiation of WMED and EMED (ФST= -0.00419, p = 0.6504) 

Boustany AM, Reeb CA and Block 
BA (2008) Mar Biol 156: 13-24. 

2010 8 microsatellites Adriatic 2003-2005 (73) 
S. Tyrrhenian 2007 (39) 
Ligurian 1999-2000 (36) 
SW Sardinia 2005 (29) 
Algeria 2006 (39) 
Alboran 2005 (40) 
Historical Adriatic 1926-1927 (69) 
Historical Tyrrhenian 1911 (39) 

Global FST contemporary (FST = 0.014, P < 0.0001) 
Differentiation of historical samples (FST = 0.020, P < 0.0001) 
Differentiation among all pairwise comparisons except contemporary populations of Algeria and 
S Tyrrhenian, Ligurian and SW Sardinia, and Adriatic and Ligurian. 

Riccioni G, Landi M, Ferrara G, 
Milano I, Cariani A, Zane L, Sella M, 
Barbujani G and Tinti F (2010) Proc 
Natl Acad Sci 107: 2102–2107. 

2011 7 microsatellites Turkey 2008 (48) 
Balearics 2008 (48) 
 

No differentiation of EMED and WMED (FST = 0.002, P = 0.2) Viñas J, Gordoa A, Fernández-
Cebrián R, Pla C, Vahdet Ü and 
Araguas RM (2011) Rev Fish Biol 
Fish 21: 527-541. 

2011 mtDNA CR 
 

Turkey 2008 (48) 
Balearics 2008 (48) 
*Augmented by samples from Ely et al. 
(2002) and Bremmer et al. (2005) 
Total MED of known origin = 516 (1990-
2010) 

No global differentiation (ФST = -0.004, P = 0.618) 

No differentiation of EMED and WMED (n = 426) (ФST = 0.002, P = 0.135) 

No temporal differentiation across all 516 samples (ФST = 0.004, P =0.111) 

Viñas J, Gordoa A, Fernández-
Cebrián R, Pla C, Vahdet Ü and 
Araguas RM (2011) Rev Fish Biol 
Fish 21: 527-541. 

2013 17 SNPs Bay of Biscay (46) 
Balearic Sea (46) 
NW Atlantic (Virginia) (15) 

Differentiation of NW Atlantic, Bay of Biscay and Mediterranean Sea  
FST  = 0.029±0.024, P < 0.05 
He

 
= 0.272 ± 0.178 

FIS

 
= 0.096 ± 0.133 

BB–NWA: FST= 0.120±0.091, P < 0.01 
MED–NWA: FST =0.116±0.078, P < 0.01 
BB-MED: FST  = 0.004±0.007, P>0.01 

Albaina A, Iriondo M, Velado I, 
Laconcha U, Zarraonaindia I, 
Arrizabalaga H, Pardo MA, 
Lutcavage M, Grant WS and Estonba 
A (2013) Animal Genetics. doi: 
10.1111/age.12051 
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Chapter 5: Assessment of the genetic population 

structure of modern bluefin tuna using a 

genotyping-by-sequencing approach. 

 
 
 

When buxom spring's luxuriant airs inspire 
The softer wish, and blow the genial fire, 

The tunnies, rushing from th'Atlantic Deep, 
In Midland seas with us their nuptials keep. 

Them first Iberia's hardy sons detain, 
Skill'd in the labours of the bloody plain; 

Next, near the Rodan's Mouth, the swain that boasts 
Maffilia's Pleasures, and Phocean Coasts. 
Next Æetna's Isle, and rich Etruria's soil 

Dismiss their tillers to the wat'ry toil. 
To wider deeps beyond the Tuscan shore 

The shoal disperses, and the sport's no more. 
Prodigious draughts enrich experienced swains,  
When am'rous tunnies lead their vernal trains,  

 Some likely coast of fit extent they find.  
With mossy caves and verdant herbage lin'd ;  

Steep be the shore, and gentle be the wind.  
A faithful spy some neighboring mount ascends,  

And gives the timely signal to his friends.  
With watchful look the coming shoal defies, 

Recounts their numbers, and remarks their size.  
Nets, like a city, to the floods descend, 

Their gates, their bulwarks, and their streets extend.  
Distinguisht by their families and years  

With swift advance the marshall'd troop repairs,  
Crowds unsuspicious thro the fatal way,  

And loads the closing net with copious prey. 

 

              - Oppian's Halieuticks, 2nd century C.E. 
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5.1 Introduction 

 Currently, ICCAT manages the Atlantic bluefin tuna stocks (BFT) as if they were compsed of two 

populations: one which spawns in the Gulf of Mexico and forages in the North Western Atlantic and a second 

that spawns in the Mediterranean Sea and forages in the Mediterranean and North Eastern Atlantic (Block et 

al. 2005). Several tagging and otolith studies have demonstrated that these two populations mix extensively 

and form large feeding aggregations in the Atlantic Ocean, particularly in the vicinity of the Mid-Atlantic 

Bight (see Chapter 1). Despite this mixing, spawning seems to occur in isolation and some evidence suggests 

that the two populations appear to have developed pronounced differences in life history traits and physical 

characteristics (Waples 1998; Fromentin and Powers 2005; Heinisch et al. 2008). It has been a widely held 

assumption among ICCAT's Standing Committee on Research and Statistics that BFT from the north eastern 

Atlantic and Mediterranean Sea mature after approximately 4 years (~110cm/35kg), while those from the 

north western Atlantic aren't mature until they reach 8 years of age (~200cm/150kg; Fromentin and Powers 

2005). However, this assumption is increasingly criticized and recently, at the 2015 ICCAT BFT Data 

Preparatory Meeting (Madrid, 2-6 March 2015) several committee members expressed doubts about its 

validity. Regardless of these doubts, the theory of isolated spawning occurring in the Gulf of Mexico and the 

Mediterranean is well established and it is rarely called into question, if ever. Now, managers are asking for a 

genetic tool that can be used to identify the origin of individuals in order to detect seafood fraud as well as 

monitor rates of mixing and recruitment. 

 Recent evidence from an array of technologies including satellites tags, genetic markers and 

microchemical analysis of otoliths suggest that the population structure of BFT is even more complex than the 

current two population management model (reviewed in Chapter 1). The eastern BFT may actually consist of 

a nomadic population that spawns in the western Mediterranean and forages in the Atlantic Ocean and another 

population that remains within the Mediterranean, spawning in isolation in the Levantine Sea (Fromentin 

2009). Historical accounts of fish migrations in the Mediterranean refer to large herds of BFT in the vicinity 

of the Black Sea at the end of the summer when modern adult BFT are expected to be feeding outside of the 

Mediterranean Sea in the Atlantic Ocean (Badham 1854). Moreover, Aristotle wrote about the meat of BFT 

caught near Constantinople being much more enjoyable in the fall, after the annual plague of parasitic gadflies 



Page | 134  

 

(probably copepods) abates (Aristotle 350 BCE). BFT in the western and eastern basins of the Mediterranean 

Sea also show geographic differences in life history traits. It is well known that BFT spawn in the eastern 

Mediterranean in late May, in the central Mediterranean in June and as late as July in the western 

Mediterranean. A geographic gradient of sea surface temperatures is likely responsible for this chronological 

cascade of spawning, as the Mediterranean warms up earlier in the east than the west (Heinisch et al. 2008). A 

temporal difference in spawning times would reinforce the separation of populations if BFT are indeed 

returning to the locations of their natal origin for spawning (Rooker et al. 2008). If BFT in the Mediterranean 

Sea are indeed two separate populations spawning in isolation, molecular tools should be able to detect 

genetic differences between the two. These differences may already be reflected in the phenotypes of BFT 

captured throughout the Mediterranean. A survey of adult fish captured in the western and eastern 

Mediterranean between May and July of 2003-2005 revealed that approximately 95% of fish caught in the 

west were large fish (>100kg) while 40% of the eastern BFT could be considered small (<100kg; Heinisch et 

al. 2008). Differences in physical characteristics may simply reflect the species' phenotypic plasticity or 

selective habitat use by different demographic groups. Alternatively, they may be the expression of genetic 

adaptations to localized environmental conditions (temperature, salinity and water circulation; Reeb 2010). 

Several studies have demonstrated weak signals of populations structuring within the Mediterranean Sea 

(Carlsson et al. 2004, 2005; Riccioni et al. 2010, 2013; see Chapter 4 for review); however, these studies can 

be criticized for not having adequate sample sizes and a lack of representation from the eastern Mediterranean 

(Levantine Sea). Moreover, similar studies using the same techniques and markers have been unable to detect 

differentiation of populations within the Mediterranean (Boustany et al. 2008; Viñas et al. 2008). As such, the 

issue clearly remains unresolved. 

 As described in Chapter 4, a 96 SNP genotyping panel was developed and technically validated. Here 

we use the same SNP panel for the genotyping of an additional 556 BFT, bringing the total number of 

genotyped individuals up to 723. This represents the most ambitious number of samples to be analyzed since 

Pujolar et al. (2003) and Carlsson et al. (2006) who each genotyped 800 and 822 individuals, respectively. 

This study is also the most geographically comprehensive genetic analysis of BFT, with samples coming from 

as far away as Libya, Turkey, the Gulf of Mexico and the Gulf of St. Lawrence. Samples were collected over 
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a six year period with several samples captured at the same geographic location over mutliple years, thereby 

allowing for an analysis of inter-annual genetic variation. This ambitious project allowed for a rigorous 

assessment of the genotyping panel and contributed to a more complete understanding of the spatial dynamics 

of the species. An accurate understanding of the population structure of BFT and the factors that affect their 

distribution is essential for the development of management plans capable of ensuring the conservation of the 

species. 

5.2 Materials and Methods 

5.2.1 Sample collection 

 A total of 731 Atlantic bluefin tuna (BFT, Thunnus thynnus) from different age classes were captured 

in 14 different gepgraphical locations throughout the species' range (Table 1; Fig. 1, Appendix 1). All larvae 

were collected using plankton nets and sacrificed via immersion in 96% ethanol, according to standard larval 

survey practices. Beside morphological identification, all larvae specimens were barcoded as described in 

Chapter 3 to ensure proper species assignment.  

 

Fig. 1. Sampling locations of Atlantic bluefin tuna (medium and large adults, young-of-the-year, and larvae) genotyped (GOM = 
Gulf of Mexico; CAP = Cape Hatteras; NWAtl = North West Atlantic; CNAtl = Central North Atlantic; CIS = Canary Islands; 
PTL = South Portugal; MRC = North West Morocco; WM = Western Mediterranean or Balearic Islands, Tyrrhenian, Ligurian; 
CM = Central Mediterranean or Sicily, Malta, Gulf of Syrta; EM = Eastern Mediterranean or Levantine Sea). See Appendix 1 
for a detailed map of Mediterranean Sea sampling locations. 
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 All YOY were captured with handlines and trolling lines. Adults were captured by long line and purse 

seine. Permission to conduct sampling surveys and all legal permits were granted by ICCAT. All research was 

coordinated through the “Atlantic-wide research programme for bluefin tuna” (GBYP) and ICCAT issued a 

recommendation (Rec. 11-06) allowing the parties involved in this research to collect and sacrifice young 

Atlantic BFT for the purposes of genetic research and transport samples from one country to another (Cert. 

No. ICCAT RMA12-049). 

Table 1: Samples genotyped with the selected 96 SNP panel. Integers in parentheses in N. Individuals column represents 
samples that were eventually removed from the analysis due to low genotyping success (<70%SNPs genotyped). Samples used 
for SNP development are indicated with an asterisk. 

Sampling location Geographic region Sample code Age class Year N. individuals 

Gulf of Mexico GOM WA-GM07-V* Larvae 2007 2 

 GOM WA-GM08-V* Larvae 2008 8 

 GOM WA-GM09b-V* Larvae 2009 10 

 GOM WA-GM09-V* Larvae 2009 8 

 GOM WA-GM10-V Larvae 2010 40 (4) 

Cape Hatteras  CAP WA-CH08-0* Young-of-the-Year 2008 16 

Gulf of St. Lawrence NWAtl WA-GSL13-L Large Adult 2013 23 (1) 

Central North Atlantic CNAtl CNAT12-M Medium Adult 2012 24 

 CNAtl CNAT12-L Large Adult 2012 47 (1) 

Canary Islands CIS EA-CI13-L Large Adult 2013 24 

Morocco MRC EA-MO12-L Large Adult 2012 24 

 MRC EA-MO13-L Large Adult 2013 19 

Portugal PTL EA-PO11-L Large Adult 2011 23 

Balearic Sea BAL WM-BA11-0* Young-of-the-Year 2011 24 

 BAL WM-BA12-V Larvae 2012 40 

 BAL WM-BA13-0 Young-of-the-Year 2013 34 

Ligurian Sea LIG WM-LI13-0 Young-of-the-Year 2013 33 

Tyrrhenian Sea TYR WM-TY12-0* Young-of-the-Year 2012 24 

 TYR WM-TY13-0 Young-of-the-Year 2013 40 

Malta MLT CM-MA13-0 Young-of-the-Year 2013 40 

Strait of Sicily STS CM-SI08-V Larvae 2008 25 (2) 

 STS CM-SI11-0* Young-of-the-Year 2012 21 

 STS CM-SI12-0* Young-of-the-Year 2012 27 

 STS CM-SI13-0 Young-of-the-Year 2013 40 

Gulf of Syrta SRT CM-SY12-M Medium Adult 2012 24 

 SRT CM-SY12-L Large Adult 2012 24 

Levantine Sea LEV EM-LS11-0* Young-of-the-Year 2011 27 

 LEV EM-LS13-0 Young-of-the-Year 2013 40 

 Total    731 (8) 
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5.2.2 DNA extractions and SNP-typing 

 Approximately 20mg of muscle tissue/finclip from post-larval BFT and complete or partial (caudal fin 

or eyeball) larvae were digested overnight in a Proteinase K solution. Genomic DNA was extracted from all 

individuals and purified using Promega’s Wizard®SV96 Genomic DNA Purification kit and vacuum 

manifold following the manufacturers’ protocols. DNA was eluted with 60 μL of distilled water heated to 

60°C. 

SNP-typing was carried out with the BiomarkTM HD platform (Fluidigm) and run with ROX as the passive 

reference dye and FAM and HEX SNPtypeTM Assays for specific allele calling. 

 Basic quality control analysis was performed on the raw data using summary statistics produced with 

Arlequin v3.5.2 (Excoffier and Lischer 2010). Individuals with low genotyping coverage (<70% SNPs 

genotyped) and loci with an excess of missing data (>10%) were removed from the analysis. SNPs with minor 

allele frequencies (MAF) of less than 0.01 among all samples were removed from the dataset. 

5.2.3 Genetic diversity and outlier detection 

 BFT captured in the Gulf of Mexico between 2007 and 2009 were pooled for all calculations, due to 

the limited number of larvae in each sample. Values of expected and observed heterozygosity were calculated 

in Genetix v. 4.05 (Belkhir et al. 1996-2004). The inbreeding coefficient (FIS; Weir and Cockerham 1984) was 

calculated for each sample using Arlequin v3.5. 2. All loci were checked for departure from HWE across the 

entire dataset and among each sample separately, using Genepop on the Web v.4.2. (Raymond and Rousset 

1995; Rousset 2008) computing a locus by locus test for Hardy Weinberg equilibrium, performed with one 

million Markov chain steps and 100k dememorization steps. 

 Identification of loci under selection was performed using Arlequin v3.5.2 with the following settings: 

finite island model, 100 simulated demes per group, 20000 coalescent simulations performed. Outlier loci 

were again identified using the Beaumont and Nichols (1996) FDIST approach, implemented in Lositan 

(Antao et al. 2008) with a 0.995 confidence interval. Sequences of all identified outlier loci were submitted to 

BLAST alignments (Altschul et al. 1990) against all sequences contained in the NCBI database using the 

blastn algorithm. 

 After optimization of panel of SNPs to be used for analysis, loci selected for intra-Mediterranean and 
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trans-Atlantic discrimination of groups (see Chapter 4) were divided into SNP panels containing 43 and 46 

loci, respectively. 

5.2.3 Population genetic structure 

 The genetic heterogeneity and differentiation of YOY and larvae samples was estimated in Arlequin 

3.5.2, using several analyses of molecular variance (AMOVA) in order to examine multiple levels of variance 

in the dataset. The following population structuring scenarios were explored by assigning samples to various a 

priori arbitrary groups: 1) Western Atlantic (GOM, CAP) vs. Mediterranean, 2) Western Mediterranean 

(BAL) vs. Central West Mediterranean (TYR, LIG) vs. Central Mediterranean (STS, MLT) vs. Eastern 

Mediterranean (LEV), 3) Temporal replicated pooled by geographic region (see Table 1), and 4) All samples 

analyzed separately. Additional analyses were performed using genotypes generated by the 46 and 43 SNP 

sub-panels for tran-Atlantic and intra-Mediterranean differentiation. All AMOVAs were performed with 1000 

permutations and a significance level of 0.05. Pairwise comparisons between samples were executed using 

FSTAT v.2.9.4 (Goudet 1995), testing for significance with the adjusted nominal level (α=0.05) for multiple 

comparisons (Bonferroni correction).  

5.2.4 Detection of genetic clusters 

 Genetic admixture and population structuring was investigated using STRUCTURE v2.3.4 (Pritchard 

et al. 2000), a software that employs a Bayesian model-based clustering method. During all STRUCTURE 

simulations, the LOCPRIOR model was used because of the low FST values provided by population 

differentiation analysis. STRUCTURE provides an option to use geographic sampling locations as prior 

information to assist with the clustering of groups in datasets that have genuine population structure but the 

signal is too weak for standard structure models to detect (Pritchard et al. 2010). The LOCPRIOR model is 

suitable when one is assuming that the sampling locations may be informative about ancestry (Hubisz et al. 

2009). STRUCTURE analysis was conducted with the following settings: 10k Burn In, 50k Reps, Admixture 

Model, LOCPRIOR using the geographical regions defined in Table 1 and lambda inferred for each run. A 

plot of the mean likelihood L(K) and variance per K value from all STRUCTURE analyses was obtained 

using Structure Harvester (Earl and von Holdt 2012) and used to infer the optimal K value or number of 

ancestral clusters. Individual clustering was further assessed using the Adegenet package v1.4-2 in R, which 
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provides a newly dedicated tool Discriminant Analysis of Principal Components (DAPC) that perform 

Discriminant Analysis (DA, defining groups), based upon a dataset of Principal Components (PC, reducing 

data to several dimensions) constructed from multi-locus genotypes (Jombart 2008; Jombart and Ahmed 

2011). 

5.2.5 Population assignment tests 

 Individuals from two datasets containing 1) young and 2) adult BFT were assigned to the most likely 

spawning areas of origin using Geneclass2 software (Piry et al. 2004), considering as reference for assignment 

individuals divided in two broad classes: the Western Atlantic and the Mediterranean. In an effort to avoid 

upward bias of assignment scores, an additional unbiased method for the calculation of assignment scores was 

performed (Anderson 2010). A random selection of 50% of young individuals were selected from each 

sample and pooled by the two geographic regions to serve as assignment references, while the other 50% were 

used as queries. The Rannala and Mountain (1997) criterion was used along with a threshold of 0.05 and a 

minimum threshold of 70% for the scores of assignment was implemented throughout all population 

assignment analyses. 

5.3 Results 

5.3.1 SNP genotyping 

 Eight individuals were removed from the dataset due to low genotyping coverage (Table 1). The 

success rate for genotyping of the remaining 723 individuals across all loci was high (99%). Two loci 

(SNP_010, SNP_329) with high missing data (>10%) and fourteen SNPs had MAF < 0.01 across all 

populations were excluded from calculations. 

5.3.2 Genetic diversity and outlier detection 

 Observed and expected heterozygosity ranged from 0.377 to 0.398 (mean = 0.391 ± 0.007; Table 2) 

and from 0.365 to 0.395 per sample (mean = 0.386 ± 0.010; Table 2), respectively. Seven SNPs significantly 

deviated from HWE (low He) when analyzed among all samples; however when analyzed separately none of 

these loci were consistently divergent from HWE among all samples.  

Calculations of the inbreeding coefficient (Table 2) showed that the sample from Cape Hatteras (n=16) 

deviated from HWE due to a deficit of heterozygotes (FIS = 0.092, p-value = 0.042).  
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Table 2. Summary statistics for 80 SNP loci among eight samples pooled by geographic sampling locations. Number of 
individuals (n), expected heterozygosity (HE) and observed heterozygosity (HO).  

 Pooled Geographic Samples n HE HO FIS P (rand FIS>=Obs FIS) 

 Gulf of Mexico 64 0.385 0.359 0.040 0.080 

 Cape Hatteras 16 0.365 0.340 0.092 0.042 

 Balearic Sea 98 0.395 0.384 0.025 0.139 

 Ligurian Sea 33 0.378 0.368 -0.017 0.674 

 Tyrrhenian Sea 64 0.391 0.379 0.028 0.169 

 Malta 40 0.393 0.378 0.046 0.110 

 Sicily 111 0.389 0.381 0.013 0.287 

 Levantine Sea 67 0.395 0.381 0.033 0.125 

 

 Outlier loci analysis revealed that only two loci (SNP161 and SNP385) are candidates for positive 

selection (FST = 0.057 and 0.117, respectively; Fig. 2). Western Atlantic samples appear to have a higher 

proportion of cytosine (0.451-0.467) at SNP_161, when compared to the samples from the Mediterranean 

(0.176-0.248; Appendix 2). Conversely, at SNP_385 Mediterranean samples have a lower proportion of 

cytosine (0.406-0.667) than samples from the Mediterranean (0.718-0.95). Neither of these loci aligned with 

any published sequences from the NCBI database. 

 

 

 

 

 

 

 

 

 

 
Fig. 2: Comparison of FST and heterozygosity (HE) in 80 polymorphic loci from 723 individuals to identify outliers and potential 
candidates for selection using Lositan. Loci highlighted in yellow are candidates for positive selection, in blue candidates for 
balancing selection and in green are selectively neutral. 
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5.3.3 Genetic differentiation 

 Analysis of the fixation indices of all samples (FIS), pairs of samples (pair-wise FST) and individuals 

(FIT) revealed that the majority of variation in the dataset could be attributed to between individual differences 

(Table 3). Among the different sample groupings analyzed via AMOVA, the only scenario that was provided 

with significant statistical support was that of a population in the Mediterranean and another in the Gulf of 

Mexico (Table 3, AMOVA 1; Table 4, AMOVA 5). The 46 SNP sub-panel provided higher FST values (FST = 

0.013, p = 0.004 ± 0.002) than the full 80 SNP panel (FST = 0.008, p = 0.010 ± 0.004) for the pairwise 

comparison between these two regions. 

Table 3. Results from various AMOVAs using 80 SNP loci and three different populations structuring scenarios. For sample 
codes refer to Table 1.  

AMOVA Groupings % of variation Fixation indices p-value 

AMOVA 1 – All samples, two groups: GOM, CAP vs. all Mediterranean samples 

Among groups 0.75 FCT = 0.008 0.010 ± 0.004 

Among samples within groups 0.56 FSC = 0.006 0.000 ± 0.000 

Among individuals within samples 2.23 FIS = 0.023 0.018 ± 0.004 

Within individuals 96.45 FIT = 0.035 0.004 ± 0.002 

AMOVA 2 – All samples, eight pooled groups: WAGM, WACH, BAL, LIG, TYR, STS, MLT, LEV. 

Among groups -0.08 FCT = -0.001 0.512 ± 0.014 

Among samples within groups 0.85 FSC = 0.009 0.000 ± 0.000 

Among individuals within samples 2.24 FIS = 0.023 0.019 ± 0.004 

Within individuals 96.98 FIT = 0.030 0.001 ± 0.001 

AMOVA 3 – Mediterranean samples only, four groups: (BAL) vs. (TYR, LIG) vs. (STS, MLT) vs. (LEV) 

Among groups -0.28 FCT = -0.002 0.985 ± 0.004 

Among samples within groups 0.80 FSC = 0.008 0.000 ± 0.000 

Among individuals within samples 1.79 FIS = 0.018 0.065 ± 0.010 

Within individuals 97.69 FIT = 0.023 0.020 ± 0.005 
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Table 4. Results from various AMOVAs using two SNP sub-panels designed to elucidate differentiation of western Atlantic and 
Mediterranean samples (46 loci) and sub-groups within the Mediterranean (43 loci). For sample codes refer to Table 1.  

AMOVA Groupings % of variation Fixation indices p-value 

AMOVA 5 – 46 SNP WAtl vs. MED sub-panel: GOM, CAP vs. all Mediterranean samples 

Among groups 1.31 FCT = 0.013 0.004 ± 0.002 

Among samples within groups 0.58 FSC = 0.006 0.000 ± 0.000 

Among individuals within samples 1.99 FIS = 0.020 0.044 ± 0.008 

Within individuals 96.11 FIT = 0.039 0.010 ± 0.003 

AMOVA 6 – 43 SNP MED sub-populations : BAL vs. LIG vs. TYR vs. MLT vs. STS vs. LEV 

Among groups -0.31 FCT = -0.003 0.864 ± 0.012 

Among samples within groups 0.82 FSC = 0.008 0.000 ± 0.000 

Among individuals within samples 1.86 FIS = 0.019 0.079 ± 0.007 

Within individuals 97.63 FIT = 0.024 0.029 ± 0.006 

 

 Pairwise comparisons of all samples showed differences between geographic areas that were not 

persistent between years (Appendix 3). For this reason, multi-year sets of data were combined where sampling 

had taken place in the same areas over multiple years. Young tuna caught during different sampling seasons in 

the Gulf of Mexico and Cape Hatteras showed very little variation between samples, providing further support 

to pool temporal samples in this region in order to increase statistical power (FST = 0.006 – 0.0439; Fig. 3 

A,B). After pooling, Western Atlantic samples significantly differed from all other Mediterranean samples 

(FST = 0.006 – 0.0278; Fig. 3 C,D). The FST matrices using data from the 80 SNP panel also show significant 

differences between samples from the Strait of Sicily and Malta (FST = 0.0057). FST matrices plotting the 

divergence of genotypes from the 46 SNP panel show significant differentiation of the sample from Malta and 

samples from the Strait of Sicily (FST = 0.0068), Balearic (FST = 0.006) and Tyrrhenian Sea (FST = 0.0077). 

5.3.4 Detection of genetic clusters 

 Results from the Bayesian cluster analysis performed with Structure v.2.3.4 showed a distinct 

divergence of the Western Atlantic and Mediterranean samples as well as subtle but temporally stable 

differences among Mediterranean samples (Fig. 4). The results from the DAPC analysis in Adegenet showed 

a weaker degree of differentiation of Western Atlantic samples from the Mediterranean samples, which are 
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completely overlapping, suggesting migration of individuals between geographical areas and interbreeding 

(Fig. 5). 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Pair-wise FST results using young tuna (larvae and young-of-the-year) samples pooled by geographic region. Statistical 
significance of results are indicated as significant (*) or non-significant (NS) after correction for multiple testing (adjusted 
nominal level of 0.05) above the diagonal and FST values are shown below the diagonal. FST values >0.005 and < 0.01 are 
highlighted in light blue.  FST values >0.01 are highlighted in dark blue.Matrices summarize results from pairwise comparisons 
using 80 SNPs (A,C) and 46 SNPs (B,D), as well as pooled (C,D) and unpooled (A,B) western Atlantic samples. For sample 
codes refer to Table 1.  

 
 

 

 

 

 

 

 

 

 

Fig. 5: Discriminant analysis of principal components of 493 young tuna individuals considering 80 SNP (A) and 46 SNP  
panels (B). 
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Fig. 4: STRUCTURE plot of 493 young tuna samples genotyped at 80 SNPs. Individual columns represent the proportion of 
membership from two inferred ancestral clusters. Plot of the mean likelihood L(K) and variance per K value from all 
STRUCTURE analyses, produced by Structure Harvester is inset. 

 

5.3.5 Assignment tests 

 A total of 80.3% of young tuna and 79.1% of adults were assigned to one of the two regions of origin, 

using the reference datasets composed of young tuna genotypes. Results from the direct self assignment of all 

young tunas to the full reference datasets (Appendix 4) were very similar to the unbiased method for 

assignment that used 50% of young tuna as references and the remaining 50% as queries (Table 5). The 

proportion of individuals assigned to the Western Atlantic (16.0%, average score = 87%) and Mediterranean 

Sea (64.3%, average score = 91.6%) using the unbiased method changed little from the results using the full 

self assignment datasets (19.1%, average score = 88.4% and 60.2%, average score = 92.2%, respectively). 

The average scores for assignment of medium and large adult samples to the Western Atlantic and 

Mediterranean were 87% and 92%, respectively (Table 6). Same assignment tests performed using the 46 

SNP sub-panel resulted in an overall decrease in both assigned individuals (n=14) and average assignment 
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score (~1%) and an increase of unassigned individuals. In total, the proportion of adults assigned to the 

Western Atlantic and Mediterranean was 10% and 67.4%, respectively. When the proportion of individuals 

from each sample assigned to the two spawning areas are visualized onto maps (Fig. 6; Fig. 7), rates of 

mixing throughout the range become more obvious. 

 

 

 

 

 

 

 

 

 
Fig. 6: Proportional assignment of 50% of randomly selected larvae and young-of-the-year samples (n=244) to Western Atlantic 
and Mediterranean spawning areas of origin as defined by the genotypes of the remaining 50% of individuals in each sample, 
calculated using GeneClass2. Individuals with an assignment score <70% were considered NOT ASSIGNED. 
 

 

 
 
Fig. 7: Proportional assignment of adult samples (n=230) to Western Atlantic and Mediterranean spawning areas of origin, 

calculated using GeneClass2. 
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Table 5. Proportional assignment of 50% of randomly selected larvae and young-of-the-year samples (n=247) to Western 
Atlantic and Mediterranean spawning areas of origin as defined by the genotypes of the remaining 50% of individuals in each 
sample. Individuals with an assignment score <70% were considered NOT ASSIGNED. 

SAMPLE N 
Proportion Assigned 
to Western Atlantic 

(%) 

Avg. Score 
(%) 

Proportion Assigned 
to Mediterranean 

(%) 

Avg. Score 
(%) 

NOT 
ASSIGNED 

Avg. total 
assignment 
score (%) 

WAGM07V 1 100.0 73.4 0.0 0.0 0 73.4 

WAGM08V 4 75.0 95.7 0.0 0.0 1 85.0 

WAGM09bV 5 80.0 83.9 0.0 0.0 1 79.1 

WAGM09V 4 50.0 84.0 25.0 87.4 1 78.4 

WAGM10V 18 33.3 93.8 33.3 86.0 6 79.3 

WACH080 8 50.0 94.8 50.0 91.9 1 88.6 

WMBA110 12 0.0 0.0 75.0 91.6 3 84.8 

WMBA12V 20 5.0 78.6 85.0 90.3 2 87.1 

WMBA130 17 11.8 85.9 76.5 90.2 2 85.5 

WMLI130 16 6.0 77.1 56.3 94.8 6 81.3 

WMTY120 12 8.0 73.7 66.7 92.3 3 82.9 

WMTY130 20 10.0 92.6 75.0 93.8 3 88.5 

CMMA130 20 20.0 84.0 55.0 90.7 5 80.9 

CMSI08V 11 0.0 0.0 90.9 89.8 1 86.9 

CMSI110 10 10.0 78.6 70.0 92.7 2 84.9 

CMSI120 13 23.0 89.5 53.8 96.3 3 87.0 

CMSI130 20 15.0 76.9 70.0 90.9 3 84.1 

EMLS110 13 0.0 0.0 77.0 97.1 3 88.4 

EMLS130 20 5.0 87.0 85.0 88.9 2 85.6 

Total 244 16.0 87.0 64.3 91.6 48 84.6 

 
 
Table 6. Proportional assignment of adult samples (n=230) to Western Atlantic and Mediterranean spawning areas of origin. 
Individuals with an assignment score <70% were considered NOT ASSIGNED. 

SAMPLE n 
% assigned to Western 

Atlantic 
Avg. score 

% 
% assigned to 
Mediterranean 

Avg. score 
% 

Not  
assigned 

Avg. total 
assignment 

score 
WAGSL13L 22 31.8 77.2 45.4 91.14 5 79.0 

CACA12L 46 15.2 89.0 67.4 90.3 8 84.3 

CACA12M 24 12.5 74.1 58.3 92.3 7 80.8 

EACI13L 24 8.3 86.8 58.3 93.3 8 81.7 

EAMO12L 24 4.2 80.4 70.8 93.7 6 84.6 

EAMO13L 19 5.3 93.0 73.7 91.3 4 85.3 

EAPO11L 23 0.0 0.0 91.3 88.1 2 85.7 

CMSY12L 24 4.2 81.1 79.2 92.4 4 86.5 

CMSY12M 24 4.2 81.5 79.2 91.4 4 86.1 

Total 230 10.0 82.4 69.1 91.3 48 83.8 
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5.4 Discussion 

 Population structuring analyses using young tuna samples (larvae and YOY) showed consistent 

differentiation between Western Atlantic and Mediterranean Sea samples, supporting the generally accepted 

hypothesis of maintained natal homing or spawning group fidelity, and the current paradigm of the 

management policy. The FST values presented here (FST = 0.008 – 0.013) that define the separation of these 

two large areas are similar to the values calculated by previous genetic studies using mtDNA (ФST = 0.011 – 

0.013; Boustany et al. 2008, Carlsson et al. 2007, respectively) and microsatellites (FST = 0.0059; Carlsson et 

al. 2007). Young tuna caught during different sampling seasons in the Gulf of Mexico and Cape Hatteras 

showed very little variation between samples, suggesting that these locations are connected as spawning and 

nursery areas. A higher proportion of individuals assigned to eastern origin in the Cape Hatteras samples 

suggests that there may be trans-Atlantic migration of young fish. These results may not have been detected 

by tagging studies in the past due to the simple difficulty of attaching tags to smaller fish.  

 Results from the Bayesian clustering and pairwise differentiation analyses suggest that there are subtle 

differences among spawning areas within the Mediterranean. The only significant FST value generated by 

pairwise comparisons among pooled samples is between Malta and several other groups from the western and 

central Mediterranean (Strait of Sicily, Tyrrhenian and Balearic Sea). Since the sample from Malta consists of 

a single season, additional sampling is required to determine if this signal is temporally stable. Statistically 

significant FST values detected among single sampling seasons and not others, suggest that some structuring is 

not persistent over time and that differences exist among cohorts. This raises doubts about previous studies 

that have used samples from one year only and should act as a testament for the need for multi-year sampling. 

 Considering the highly migratory nature of the species, the weak signal of differentiation (low yet 

statistically significant FST values) between populations is not surprising. Only a handful of individuals 

migrating between spawning areas each generation can eliminate most genetic evidence of stock structuring 

(Waples 1998). Although this number of migrants is insignificant for stock management purposes, it is 

significant for the delineation of stocks, and can thus interfere with the optimization of management policies 

based on genetic information. The FST values generated here are still relatively low when compared with other 
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taxa; however, these values are consistent with what is to be expected from a highly migratory marine species 

with a larval phase and recently generated populations (Alvarado Bremer et al. 2005). Ward et al. (1994) 

analyzed population differentiation values for 49 species of freshwater fish, 57 species of marine fish and 

seven anadromous species and determined that lowest levels of differentiation occurred among marine 

species. In this regard, the results concerning differentiation within the Mediterranean Sea should not be 

discarded simply because they lack statistical significance. 

 The SNP panel described herein has provided novel insights into the population structuring and spatial 

dynamics of Atlantic Bluefin Tuna. The high proportion of individuals assigned with high assignment scores 

to probable spawning areas of origin serves as a validation of our methods. The high proportion of 

“unassigned” and “cross-assigned” (fish identified as Gulf of Mexico origin found in the Mediterranean Sea 

and vice versa) is likely a result of the low number of individuals used in the reference pool and this should be 

overcome with addition of samples. This could also be attributed to the unexplored possibilities of genetic 

flow and unidentified alternative spawning areas in the Atlantic, however, deeper assessment of the statistical 

power of the developed set of genetic markers has to be properly assessed with simulation studies and 

comparison between different methods. 

 Results showing a high proportion of individuals in the west assigned to eastern origin are similar to 

the results of Rooker et al. (2008) who assigned BFT to origin using otolith micro-constituents. They 

determined that between 35 – 57.4 % of 154 mature BFT captured in the mid-Atlantic Bight were of eastern 

origin. Of the 132 adults they captured in the Mediterranean and analyzed, only ~4% were found to be of 

Western origin (Appendix 5). In Rooker et al. (2014), they too determined that a high fraction of YOY in the 

eastern Mediterranean (Cyprus) were of western origin using carbon and oxygen isotopes (δ13C or δ18O). 

5.5 Conclusion 

 Our SNP panel has provided novel insights into the population structuring and spatial dynamics of 

Atlantic Bluefin Tuna. The proportion of individuals assigned with high assignment scores to probable 

spawning areas of origin was high, serving as an indication of the high performance of the selected SNPs. In 

order to improve the analysis of assignment to Western Atlantic and Mediterranean spawning areas, additional 
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young tuna samples are required from the Gulf of Mexico and adult samples are required from the eastern 

Mediterranean. With further development and increased sampling, our capacity to trace individuals back to a 

Western or Eastern origin is expected to improve. The results from the analysis of young tunas provide further 

evidence of persistent population structuring across broad geographic areas, they can be used to estimate 

mixing rates and, with further statistical development, may lead to traceability tools. Efforts should be made 

in the future to combine analysis using this SNP panel with other techniques being used to investigate 

population structuring of BFT. Using the same individuals for multiple analyses (i.e. microchemical analysis 

of otoliths, different genetic approaches and otolith shape) would allow for reconciliation of inference 

between the different approaches.  
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Appendices 

Appendix 1. Higher resolution details of geographic locations of individuals captured within the Mediterranean Sea genotyped 
using a 96 SNP panel from Figure 2. (PTL = South Portugal; MRC = North West Morocco; BAL = Balearic Islands; LIG = 
Ligurian Sea; TYR = Tyrrhenian Sea; SIC = South Sicily; MLT = Malta; SRT = Gulf of Syrta; LEV = Levantine Sea). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 2. Outlier loci allele frequencies for pooled young tuna 
samples.  

 SNP_161 SNP_385 

 Cytosine Thymine Cytosine Thymine 

Gulf of Mexico 0.451 0.549 0.667 0.333 

Cape Hatteras 0.467 0.533 0.406 0.594 

Balearic Sea 0.224 0.776 0.786 0.214 

Ligurian Sea 0.234 0.766 0.864 0.136 

Tyrrhenian Sea 0.198 0.802 0.722 0.278 

Malta 0.176 0.824 0.95 0.05 

Sicily 0.211 0.789 0.718 0.282 

Levantine Sea 0.205 0.795 0.724 0.276 

Average 0.248 0.752 0.745 0.255 
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Appendix 3. Pair-wise FST results using young tuna (larvae and young-of-the-year) samples. For sample codes refer to Table 1. Statistical significance of pairwise 
comparisions are shown above the diagonal (NS = not significant, * = significant) and FST values are shown below. Statistically significant values have been corrected for 
multiple testing (adjusted nominal level of 0.05). FST values >0.005 and < 0.01 are highlighted in light blue.  FST values >0.01 are highlighted in dark blue. 
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Appendix 4. Proportional self-assignment of larvae and young-of-the-year samples (n=493) to Western Atlantic and 
Mediterranean spawning areas of origin. Individuals with an assignment score <70% were considered NOT ASSIGNED. 

Samples n 
Proportion Assigned to 
Western Atlantic (%) 

Avg. 
score% 

Proportion Assigned 
to Mediterranean 

(%) 

Avg. Score 
% 

NOT 
ASSIGNED 

Avg. total 
assignment 
score (%) 

WAGM07V 2 100 94.0 0.0 0.0 0 94.0 

WAGM08V 8 87.5 96.0 0.0 0.0 1 92.0 

WAGM09b 10 100 86.7 0.0 0.0 0 86.7 

WAGM09V 8 100 94.3 0.0 0.0 0 94.3 

WAGM10V 36 52.8 90.7 11.1 96.3 13 80.1 

WACH080 16 87.5 93.7 0.0 0.0 2 89.2 

WMBA110 24 16.7 82.8 66.7 92.9 4 86.1 

WMBA12V 40 7.5 80.0 77.5 92.9 5 86.7 

WMBA130 34 5.9 80.0 76.4 92.2 6 86.1 

WMLI130 33 3.0 91.4 63.6 91.0 11 81.6 

WMTY120 24 12.5 81.7 54.2 91.9 8 79.7 

WMTY130 40 7.5 77.4 72.5 92.7 8 84.7 

CMMA130 40 7.5 85.7 72.5 92.7 8 86.1 

CMSI08V 23 0.0 0.0 78.3 93.2 5 86.3 

CMSI110 21 4.8 70.9 76.2 91.8 4 85.3 

CMSI120 27 18.5 86.2 55.6 91.6 7 83.0 

CMSI130 40 10.0 79.3 72.5 90.7 7 84.2 

EMLS110 27 3.7 72.4 85.2 94.6 3 90.3 

EMLS130 40 10.0 82.8 67.5 90.2 9 82.5 

Total 493 19.1 88.4 60.2 92.2 102 85.0 

 

 

 



Page | 157  

 

 

 

Appendix 5. Estimates of natal origin for school (S), medium (M), and giant (G) category Atlantic bluefin tuna from spawning 
areas (Mediterranean Sea, Gulf of Mexico) and foraging areas (Gulf of St. Lawrence, Gulf of Maine, Mid-Atlantic Bight). Size 
classes were approximated based on weight or age (actual or derived from length): giant (> 140 kg, > age 10), medium (60-140 
kg, age 5-9) and school (< 60 kg, < age 5) category bluefin tuna. Percent contribution of “western population” and standard 
deviation (SD) around estimated proportion per region and size category: Gulf of Mexico (giant: 99.3% [SD 1.7%], N = 42), 
Mediterranean Sea (giant: 4.2% [SD 3.1%], N = 94; medium: 4.2% [SD 4.4%], N = 38), Gulf of St. Lawrence (giant: 100% [SD 
0.0%], N = 38), Gulf of Maine (giant: 94.8% [SD 5.3%], N = 72), Mid Atlantic Bight (giant: 64.9% [SD 21.9%], N = 12; 
medium: 55.7% [SD 10.4%], N = 56; school: 42.6% [7.2%], N = 86). From Rooker et al. (2008). 
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Chapter 6 – Palaeogenetics  

of bluefin tuna 

Strait of Gibraltar (28,000 BCE) – A lone brown figure stands in bright sunlight surveying a 

churning blue sea, silhouetted against the black iris of Gorham's cave carved into the eroding 

cliffs of Gibraltar. Refelexively, the figure swats at a fly annoying her forehead, careful not to 

smudge the paint decorating her brow. She peers into the darkness of the cave, trying to make out 

the forms of others sleeping at the back of the cave. It was the time of the tuna and the packs of 

massive black and white sea wolves that chase the big fish out of the sea. In the late afternoon the 

family will wake and leave the safety of the cave for the daily walk along the coastline, hoping to 

come across a big bluefin stranded on the beach. They used to enjoy eating fish in the sun but 

now they hide themselves in the cave, dragging what they can scavenge inside. Many things had 

changed since the arrival of the hairless and quick-tempered strangers. Despondently, and in an 

effort to distract herself from the hunger gnawing at her insides the lone figure carves a cross 

into the soft limestone wall. Waiting for nightfall.  
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6.1 Introduction 

6.1.1 A historical context 

 The history of the bluefin tuna and humankind stretches as far back as the Neanderthal (Morales-

Muñiz and Roselló-Izquierdo 2008). In Gorham's Cave at Gibraltar, bluefin tuna remains have been found 

associated with a Neanderthal dwelling (Brown et al. 2011). Prehistoric peoples immortalized their reverie of 

the mighty bluefin in cave paintings on the Egadi Island of Levanzo some four thousand years ago. During the 

5th century BCE, two trading super powers in the Mediterranean, the Carthaginians and Phoenicians stamped 

their coins with images of bluefin tuna (as the Croatians continue to do today). Aristotle, Aeschylus, Pliny the 

Elder, Strabo the Greek, Plutarch and Oppiano all wrote about the bluefin tuna in poetry, legends and 

humanity's earliest natural history texts. The ancient Greeks enjoyed eating thick slices of grilled tuna, they 

consumed it dried, pickled and slated (Levine 2006). During the Iron Age, the Phoenicians managed to enjoy 

bluefin tuna wherever they settled (Morales-Muñiz and Roselló-Izquierdo 2008). The best tuna was refuted to 

come from the entrance of the Hellespont, in the waters surrounding the ancient cities of Troy and Byzantium, 

or modern day Çanakkale and Istanbul (Athenaeus, 3rd century B.C.E.).  

 The ancient bluefin tuna fishery was a successful commercial enterprise with rich merchants 

organizing the hunt and employing the lower class during migratory periods when the bluefins came close to 

shore for brief periods of time. The relics of this booming industry litter the coastlines of the Mediterranean, 

particularly around the Strait of Gibraltar where the remains of fishing factories and scores of amphorae, 

which were used by Iron Age peoples to transport fish products, can be found (summary in Morales-Muñiz 

and Roselló-Izquierdo 2008). Certainly, the bluefin tuna fishery was unique in many regards at the time. 

Capturing such large animals and only during a short time period in the spring would have required a complex 

social organization, requiring groups of people to coordinate for a single time every year. Indeed, the 

necessity or desire for this sort of seasonal social organization for mutual benefit could have represented a 

major milestone in civilizing people of the area. As explained by Morales-Muñiz and Roselló-Izquierdo 

(2008), most fishing operations during the Late Iron Age were small scale and concentrated around estuaries 

where individuals or small family units could take advantage of river currents and narrow water ways. Some 

evidence suggests that the Phoenicians facilitated this shift from small subsistence littoral fisheries to large-
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scale commercial fisheries with an organized work force and factories to process the catch. From the second 

century B.C.E. to the first century C.E. the bluefin tuna fishery thrived in places like Baelo Claudia and Cerro 

del Mar.  

 Bluefin tuna once again achieved widespread notoriety among gastronomers during the early Roman 

Republic who's passion for the fermented fish sauce (garum) bordered on fanaticism. Many parallels can be 

drawn between the acclaim of the fish sauces of ancient Romans and the current popularity of toro sushi, 

which has reached global levels of celebrity and prestige. Both have created thriving corporations of 

fishermen, merchants and middle men, while the commodity itself is reserved for the wealthy alone, due to 

prohibitive costs. As such, imitations abound, only adding to the original's prestige (Badham 1854). The most 

highly valued sauces came from Carthage and Spain where coastal fisheries targeted migratory schools of 

tuna that passed close to the shore. One highly esteemed sauce was made from the decomposed blood and 

entrails of bluefin tuna. Another class of fish sauce took the form of a liqueur that was enjoyed by the rich and 

distributed among wealthy friends as a gift. This was illustrated by 1st century poet Martial, “Of scomber's 

precious blood I send a garum's bottle to my friend; costly and thick, the last that dript, from bleeding gills 

and entrails ript.” In the latter half of the first century, something changed in the kitchens of the Roman 

Empire and demand for the big tuna waned until mackerel became the dominant catch in the third century 

C.E. The preference for smaller fish continued to gain favour into the third century, at which time sardines 

and anchovies became favoured for the manufacture of fish sauces (Morales-Muñiz and Roselló-Izquierdo 

2008). It remains unclear whether these changes in trade were a result of market demand or shifting fish 

community assemblages due to “fishing down of the food web”. 

 At the other end of the Mediterranean Sea, built at the nexus of the east and west, Constantinople 

thrived as a commercial center during the 4th century C.E. and quickly became one of the largest cities in the 

world. Due to its rapid commercial growth, Emperor Theodosius I commissioned the development of the 

Harbour of Eleutherius or Theodosius Harbour between 379-395 C.E. (Muller-Wiener 1998). It was to 

become one of the largest and busiest ports in Byzantium, if not the world and it had no rival for nearly a 

millennium. Through this port flowed the commerce of an empire: grains from Egypt, spices and precious 

stones from India, silk from China, metals from Europe and slaves from throughout the territories of the 
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expanding empire. Between the 5th and 6th century C.E., the city's population grew from 300,000 to some 

half a million inhabitants. Providing this number of people with food was certainly a challenge for the rulers 

of the time. Certainly, the bounty of the sea provided a necessary source of protein for the Byzantines. To the 

west lies the Sea of Marmara, the Dardanelles and the Mediterranean Sea and to the east, the turbulent waters 

of the Bosporus Strait and the Black Sea. These waters teemed with fish and porpoises feeding on the riches 

provided by the collision of the two water bodies. Each year massive herds of bluefin tuna passed by the city 

of Troy, through Hellespont (now Dardanelles) and into the Bosporus Strait on their annual migration to and 

from the Black Sea and the fishery thrived. Fourth century B.C.E. food fan, Archistratus had the following to 

say about the bluefn tuna caught near Byzantium: “Let it come to you from lovely (erateinou) Byzantium if 

you desire the best, yet you will get what is good even if it is caught somewhere near this place here. But it is 

poorer (kheiron) the farther you go from the Hellespont (near Byzantium), and if you journey over the 

glorious courses of the briny Aegean main, it is no longer the same, but utterly belies my earlier praise.” The 

tuna traps that harnessed the annual bounty of migrating tuna were eventually appropriated by the state and 

leased to fishermen, providing substantial revenue for both Constantinople and Rome. This practice was such 

a success that the regulations spread throughout the rest of the empire. By the 9th century CE, a new law was 

required to limit the propagation of tuna traps along the coast and better organize the fishery. Byzantine 

Emperor Leo VI introduced legislation dictating the spacing between traps, the development of factories for 

processing of fish and storage of equipment between seasons and property rights over tuna traps and their 

location in the Bosporus (Bekker-Nielsen and Bernal Casasola 2007; Marzano 2013). This was to become the 

first law to infringe on the public domain, as defined by Justinian Law, and grant private ownership to 

stretches of coastline and sea floor.  

 After the Roman period and into the Middle Ages, coastal communities appear to have abandoned 

hunting in the open seas for large pelagic tunas. The centuries following the collapse of the Western Roman 

Empire were punctuated with invasions, plagues and a constant reshuffling of the centres of power and 

economy. During this turbulent time tuna merchants lost wealthy customers, factories fell into disrepair and 

new borders were drawn across trade routes. Coastal communities returned to unspecialized inshore fishing, 

using the same techniques used by their ancestors centuries earlier. During the 11th century, the tuna traps in 
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Sicily were so lucrative that the fishermen in Trapani were granted a dispensation, from the bishop, allowing 

them to work on Sundays during the trapping season. Moreover, they were threatened with excommunication 

and eternity in hell if they failed to deliver 10% of their profits to the taxman (Maggio 2001). Royalty, Italian 

bankers and the church were all very much invested in the operations of tuna traps during the 15th -18th 

centuries. During the 16th century, images portraying the design and function of beach seines and set tuna 

traps started to appear (Fig. 1; Di Natale 2002). At this time set traps had become common throughout Sicily, 

Sardinia and Napoli in Italy and at Cadíz and Barbate in Spain. Some historians postulate that the use and 

design of set traps had been communicated to Europeans by Arabs as many of the names used to identify trap 

structures and the roles of the various participants in the slaughter are Arabic in origin (Maggio 2001).  

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: One of the first illustrations of a typical “mattanza” or tuna slaughter at Trapani in Sicily painted by 
an anonymous artist in the 17th century. 

 During the 18th century, we have an example of one of the greatest accounts of fishery record keeping 

in the form of a letter written by a monk, addressed to a Duke. In 1757, Martín Sarmiento sent a 

communication to the Duke of Medina Sidonia, in a desperate attempt to explain why the catches of bluefin 

tuna had been in a steady state of decline for several decades (López González and Ruiz Acevedo 2012). 

According to his records, the Duke's operations at Conil and Zahara (north and south of Barbate) had 

averaged a little over 6,000 BFTs per year during the previous five seasons (1752-1756). In contrast, over 

100,000 BFT had been captured in the same locations eleven of the thirteen years between 1558 and 1570. 

The monk Sarmiento suggested that the decline was likely due to overfishing but may also be related to 
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changes in the climate (López González and Ruiz Acevedo 2012). A comparison of this dataset with long 

term climate conditions suggested that the reduction in catches was at least partly influenced by lower 

temperatures during the so-called “Little Ice Age” during 1640 and 1715 (Ganzedo et al. 2009). Moreover, 

metanalysis of historical records detailing the number of bluefin caught in coastal traps in the Mediterranean 

has shown short term (20 and 100 years) fluctuations in abundance (Ravier and Fromentin 2001). War and 

civil unrest resulting from the bubonic plague, typhus, smallpox, and other maladies ravaging the Iberian 

Peninsula during the 17th century would also have had a hug impact on the performance of fishery. Its 

estimated that during this particularly troubling period in Spain's history, 1.25 million of the 8.5 million 

citizens fell victim to the various illnesses (Payne 1973). Regardless of the cause of the decline, catches have 

never recovered to the same levels as the 16th century, despite the steady increase in temperatures. Ganzedo et 

al. (2009) suggested that the continuous levels of intense exploitation since the Industrial Revolution have 

never allowed the stock to recover. If this hypothesis holds any truth, then the current baseline and estimates 

of potential productivity are vastly underestimated.  

 Today, traditional fishing techniques are fading into the past and industrial fisheries threaten the 

survival of the world’s largest tuna species. Effective fishery management benefits from the existence of 

baseline information detailing population size and demographics before the onset of exploitation. 

Unfortunately, due to the long history of human exploitation of BFT, which pre-dates detailed record keeping, 

this is impossible. Analysis of DNA extracted from historical samples recovered from archives, museums and 

archaeological excavations can help to reveal elements of the past necessary for establishing something of a 

pseudo-baseline (Nielsen et al. 1999).  

6.1.2 Analysis of ancient DNA 

 The first museum specimen to be genetically analyzed was the quagga (Equus quagga), a zebra-like 

species that was declared extinct in 1883 (Higuchi et al. 1984). For that study, DNA was extracted from salt 

preserved dried muscle (proteinase k and detergent digestion, phenol extraction and ethanol precipitation), 

DNA fragments were cloned (most of which were <500bp) and a 229 bp fragment of mitochondrial DNA was 

sequenced. When compared with sequences from modern horses, the number of base pair substitutions 

suggested that the quagga and horse shared an ancestor 3-4 mya, confirming the results of fossil record 
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estimates. Of course, Higuchi et al. (1984) found that the DNA preserved in the quagga's tissues was in short 

supply. Aside from the novelty of the methods used, this study did little to expand our knowledge of the 

species; however, its impacts on biological sciences have been considerable. Following this study, many 

studies were quickly published, making use of the well preserved and relatively contaminant free tissues of 

museum specimens (Pääbo 1985, 1989; Hofreiter et al. 2001). Much of the research to date has focused on 

terrestrial taxa because of the availability of samples and a long held belief that DNA is better preserved in 

dry environments. Within 15 years, many extinct taxa were quickly analyzed with the new techniques: 

marsupial wolf, sabre-toothed cat, moa, mammoth, cave bear, blue antelope, giant ground sloth, aurochs, 

mastodon, New Zealand coot, South Island piopio, Steller’s sea cow, Neanderthal, Shasta ground sloth and 

the pig-footed bandicoot (Hofreiter et al. 2001). The stated motivation behind many of these studies was the 

resolution of phylogenetic relationships. The media exposure, scientific capital, public curiousity and interest 

of funding organizations were also valuable acquisitions. As techniques developed, older specimens were 

analyzed, particularly those originating from the permafrost. Specimens from these locations have yielded 

DNA of highest molecular mass, due to the cold preservation of tissues and reduced microbial degradation. 

Among the species studied from these areas are brown bears from 14,000-42,000 years before present (yBP; 

Leonard et al. 2000), cave bears from 26,500-49,000 yBP (Hofreiter et al. 2002), Adélie penguins 6,000 yBP 

(Lambert et al. 2002; Ritchie et al. 2004), woolly mammoths from 28,000-43,000 yBP (Krause et al. 2006; 

Poinar et al. 2006; Römpler et al. 2006) and an early Pleistocene horse from 700,000 yBP (Orlando et al. 

2013). 

  Historical DNA studies have also given us a glance into our own past. Studies focused on the analysis 

of the DNA of ancient modern man and Neanderthals didn't appear until after the methods had been 

developed and optimized by zooarchaeologists. This delay in the development of anthropocentric ancient 

DNA (aDNA) studies is likely due to a hesitation on the part of museum curators to sacrifice relatively rare 

ancient human specimens and in part to the esteem in which we hold the remains of our ancestors. Among the 

many studies that have been published following the first genetic analysis of Neanderthal remains (Krings et 

al. 1997) are explorations into our ancient relationships with neanderthals, the introgression of neanderthal 

genetic material into our own genome and the evolution and migration of modern humans out of Africa 
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(Briggs et al. 2009; Stewart and Stringer 2012; Callaway 2014; Sankararaman et al. 2014). Additional 

publications of note that demonstrate the increasing potential of aDNA research are an analysis of the pre-

Columbian dietary habits of Native Americans 2000 yBP (Poinar et al. 1998; Luciani et al. 2006) and 

characterization of the genome of the bacterial culprit behind the Black Death which ravaged Europe's 

population 660 years ago (Bos et al. 2011). 

 In general, little use has been made of museum specimens in aDNA studies of fish. Many historical 

collections of fishes have used formalin as a preservative, which thoroughly degrades DNA (Miething et al. 

2006; Zimmermann et al., 2008). Although some researchers have managed to make use of formalin 

preserved tissues (Wirgin et al. 1997; Klanten et al. 2003; Chakraborty et al. 2006) most researchers prefer to 

use dried hard tissues like scales, otoliths, spines and vertebrae. The type of tissue, time required for full 

desiccation of said tissue and the conditions in which it is stored, all have a significant influence on the 

quality, quantity and potential use of DNA extracted from historical specimens (Burrell et al. 2014). The 

oldest DNA to be extracted from fish remains has come from bones excavated from temperate archaeological 

sites, with the exception of one case in which DNA was extracted from 1,500 year old (y.o.) catfish pectoral 

spines from the Levantine Sea coast of Turkey (Arndt et al. 2003). From the temperate sites, aDNA has been 

successfully extracted from 9,000 y.o. salmonid vertebrae from Washington state, USA (Butler and Bowers 

1998), 3, 250-41,000 y.o. Salmonid vertebrae from northern Spain (Consuegra et al. 2002), 500,000 y.o. 

whitefish vertebrae from Poland (Brzuzan et al. 2004), 2,000-7,000 y.o. salmonid vertebrae from the Pacific 

coast of Canada (Yang et al. 2004; Moss et al. 2014), and 100-500 y.o. Atlantic cod vertebrae excavated from 

historical fishing sites in Iceland (Ólafsdóttir et al. 2013). Other non-vertebrae extractions that have yielded 

amplifiable DNA have come from 1,000 y.o. jaw bones (os cleithrum) of common bream from northern 

Poland (Ciesielski et al. 2002), and various salmonid bones from 1,100-1,500 yBP excavated from sites along 

the Fraser River in British Columbia, Canada (Speller at al. 2005). All of these studies have taken advantage 

of the unique properties of bone, which is composed of collagen and hydroxyapatite. DNA binds to and is 

stabilized by hydroxyapatite and the degree to which DNA is preserved in bone is a function of the 

crystallinity of this mineral (Götherström et al. 2002). Collagen is associated with higher concentrations of 

DNA in ancient bones and, when present with hydroxyapatite, appears capable of preserving DNA for 
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extremely long periods of time (Götherström et al. 2002).  

 In addition to bones, many aDNA studies of fishes have used scales (Nielsen et al. 1997; Hansen et al. 

2002, 2010; Hauser et al. 2002; Coughlan et al. 2006; Iwamoto et al. 2012) and otoliths (Hutchinson et al. 

2003; Poulsen et al. 2005; Nielsen et al. 2007; Cuveliers et al. 2011; Poulsen et al. 2011; Smith et al. 2011; 

Johsnton et al. 2013; Therkildsen et al. 2013) archived by fisheries scientists in the past (1900s - 1950s). Due 

to the relative youth of fisheries science, these specimens are rarely more than a hundred years old. Previous 

to the present work, only one study has made use of historical BFT DNA (Riccioni et al. 2010). In that study, 

researchers extracted DNA from 219 vertebrae from the Massimo Sella Archive at the University of Bologna 

which is described at length in Section 2.1.7.1. A description of the analysis and conclusions from that study 

are provided in Chapter 7. 

6.1.3 Properties of ancient DNA 

  Although DNA is constantly undergoing degradation and repair in metabolically active cells, it 

begins to rapidly degrade shortly after death (Bär et al. 1988). The decay of an animal begins with autolysis 

and putrefaction, followed by aerobic and bacterial decomposition. High temperatures (35-40°C) and 

humidity also facilitate autolysis (Bär et al. 1988). Two groups of enzymes released during autolysis facilitate 

DNA fragmentation: 1) endonucleases, which shear DNA into shorter fragments, and 2) exonucleases which 

remove nucleotides one at a time from fragment ends. DNA originating in hard tissues are spared some of the 

rapid and extensive degradation of soft tissues (Wandeler et al. 2007). Exposure of the remains to the 

environment and oxidative stressors can result in a loss of nucleotides and fragmentation of DNA. After the 

days immediately following putrefaction of tissues and degradation by microorganisms, DNA can become 

stabilized in hard tissue, after which two chemical processes have the most significant impact on the integrity 

of the molecule. Deamination and depurination are the leading causes for misinterpretation of aDNA 

sequences (Lindahl 1993; Pääbo et al. 2004). Depurination is a chemical process by which purines are 

liberated from the double helix, due to hydrolysis of the unstable DNA glycosyl bond, resulting in 

fragmentation of DNA adjacent to purine residues (Fig. 2; Overballe-Petersen et al. 2012). This is particularly 

common in historical DNA which often has a higher representation of A and G adjacent to the 5' ends of 

recovered DNA fragments (Sawyer et al. 2012). This  
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Fig. 2: Two chemical processes that influence the quality of DNA extracted from historical specimens. 

type of DNA fragmentation occurs in the decades following mortality and does not appear to continue at a 

constant rate among samples that have been preserved under similar conditions (Sawyer et al. 2012). In other 

words, thousand year-old samples can contain longer fragments of DNA than twenty year-old samples, given 

adequate storage conditions. Conversely, pyrimidines (cytosine and thymine) are liberated from the DNA 

double helix at 5% of the rate of purines (Lindahl 1993). Among purines, this appears to occur slightly more 

rapidly with guanine than adenine residues among samples younger than 100 years and for samples 500-2000 

y.o. the two purines occur at approximately the same frequency (Sawyer et al. 2012).  

 In addition to depurination, DNA can also degrade through a process called deamination, which is a 

hydrolytic reaction that converts cytosine into uracil (Fig. 2). At 37°C and pH=7.4, the half life of individual 

cytosine residues is 200 years in single-stranded DNA and 30,000 years in double stranded DNA, due to the 

added protection afforded by the double helix (Federico et al. 1990). Deamination is most commonly detected 

at the 5' and 3' tails of DNA fragments, suggesting that exposed portions of DNA are more susceptible due to 

exposure to water molecules which catalyze the loss of amine residues. Since uracil is nearly chemically 

synonymous with thymine (uracil lacks the 5' methyl group), this can result in erroneous complimentary 

strand assembly during PCR amplification.  

 Degradation of long strands of DNA into short fragments is another one of the major characteristics of 

ancient DNA that determine the way in which it is analyzed. All chemical processes described above 

contribute to the highly fragmentation of ancient DNA (Hofreiter et al. 2001). Surprisingly, time isn't a 

consistent or significant factor in the determination of fragment size of historical DNA (Sawyer et al. 2012). 

For example, 20,000 y.o. mammoth hairs and 6,000 y.o. penguin remains recovered from the permafrost have 
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been measured at 164 bp and 352 bp, respectively (Miller et al. 2008; Ritchie et al. 2004) which cannot be 

analyzed with SNP genotyping arrays which require at least 120bp fragment length. DNA of this quality can, 

however, be analyzed with NGS platforms without requiring the use of restriction enzymes, which can do 

more damage than good (Debruyne et al. 2008). Fragments of this length can be analyzed with the PacBio 

platform which provides high quality data and confident genome assemblies due to the length of fragments 

that can be sequenced. Regardless of the challenges associated with these two examples of DNA, researchers 

have managed to construct genomes for both species (Poinar et al. 2006; Green et al. 2010). 

 DNA is typically of lower concentration in historical specimens due to leaching processes (if 

specimen is buried in sediments) and the chemical process described above. Aside from some examples of 

aDNA studies that have managed to extract high quantities of DNA from well-preserved samples, most efforts 

to extract DNA from ancient tissues yield approximately one nanogram of DNA per milligram of tissue 

(Millar et al. 2008). The amount of DNA that can be extracted from historical specimens determines how they 

can be analyzed (NGS, Sanger sequencing, SNP-typing) and with which platform, if they are to be analyzed 

using NGS technology or SNP-typing. For example, only a few copies of template sequences in DNA 

extractions of low concentration are required for Sanger sequencing of PCR amplified products.  Illumina 

paired-end sequencing requires a minimum of 2-5µg of double stranded DNA with fragment lengths of at 

least 500bp suspended in a buffer solution with DNA concentrations greater than 20ng/µL. Shotgun 

sequencing with the Roche 454 sequencing platform requires at last 1.3µg of template DNA (70-500bp) for 

library construction, after which >500ng of double stranded DNA in TE buffer at a concentration greater than 

50 ng/uL is required. Therefore, careful consideration of the expected quality and quantity of DNA from 

samples is required before proceeding with analysis. Moreover, each of these methods have vastly different 

costs associated with analysis, which is an important factor in project planning. 

 Ancient specimens recovered from archeological digs have literally been saturated in sources of 

exogenous DNA (microbes, scavengers, detritivores) for centuries or millennia. In a study analyzing the 

remains of neanderthals (44,450 ± 550 years old) DNA extractions were found to be composed of 95-99% 

non-primate DNA (Green et al. 2010). Specimens can also be contaminated by the archeologists handling 

them. Samples being processed by aDNA researchers can also become contaminated with the DNA of 
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laboratory staff or other modern DNA being analyzed in the same building via equipment, reagents or 

aerosols in the air. Willerslev and Cooper (2005) warned that microscopic aerosol droplets released from PCR 

tubes can contain over a 250,000 copies of template DNA fragments per microlitre. 

 In 2000, Cooper and Poinar published what they surely hoped would become the ten commandments 

for ancient DNA research in an article entitled “Ancient DNA: do it right or not at all” (Box 1). In that 

publication they appeal to journal editors, reviewers, granting agencies, and researchers to promote and follow 

their strict guidelines for paleogenetics in order to maintain credibility as a recognized area of evolutionary 

research. Surely they had a persuasive argument after it had been revealed that several studies had based their 

results on exogenous DNA or contaminants (Pääbo et al. 2004; Willerslev and Cooper 2005). 

 Adherence to all ten criteria is both time 

consuming and costly and were developed with 

anthropological studies in mind, in so far as 

laboratory technicians can be a source of 

contaminating DNA. Not mentioned in this list 

of precautions are the sample surface 

decontamination measures that are standard for 

any paleogenetic work. Among the methods 

used to clean surfaces of samples and avoid 

contamination of inner tissues are treatment 

with bleach and UV light. Ethanol is used by 

some but only has the capacity to disinfect and 

sterilize surfaces and falls short of destroying 

DNA. Also important is decontamination of all 

reagents, tubes, vials and pipette tips to be used 

in the processing of samples. Autoclaving of these items can only fragment DNA, making it indistinguishable 

from ancient DNA. Bleach is effective in this regard; however, it also causes depurination of exogenous DNA 

which also makes it appear like historical DNA aged over time (García-Garcerà et al. 2011).  

Box 1: Ten requirements for ancient DNA studies as proposed 
by Cooper and Poinar (2000). 

1) Ancient DNA extractions should take place in an isolated 
laboratory reserved for this purpose. 
2) Use negative controls during PCR amplifications. Avoid 
postive controls as they can be a source of contamination. 
3) Report any unexpected results and justify any deviations 
from the norm (phylogenetic, amplicon size). 
4) Results should be reproducible. 
5) Results from sequencing of PCR products should be verified 
by cloning experiments used to determine the relative 
proportions of exogenous and endogenous sequences, damaged 
DNA and numts. 
6) Extractions and sequencing should occur in at least two 
different laboratories, especially for anthropological studies. 
7) Information concerning the quality and quantity of extracted 
DNA should be published alongside results. 
8) Attempts should be made to estimate the initial number of 
extracted DNA templates (i.e. quantitative PCRs). 
9) Associated faunal remains can be used as negative controls. 
10) Multiple primer pairs should be used to verify sequences 
and account for numts. 
*This last point was originally featured as part of #5 but stands 
separate here because the topics are so unrelated. 
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6.1.4 Mediterranean collections of historical BFT remains 

6.1.4.1 Massimo Sella Archive 

 The Massimo Sella archive is a collection of remains (vertebrae, skulls and fins) belonging to some 

5000 fish (Thunnus thynnus, T. alalunga, Euthynnus alletteratus, Sarda sarda, Xiphias gladius) captured in 

the Mediterranean tuna traps during the early decades of the 20th century and collected by Italian professor 

Massimo Sella. Originally housed at the Istituto Italo-Germanico di Biologia Marina/Deutsch-Italienisches 

Institut fu  r Meersbiologie, Rovigno, Italy (now Institute Center for Marine Research, Rovinj, Croatia), the 

collection was moved to a University of Bologna facility in Fano, Italy after the Second World War. The vast 

majority of bones in the collection are Mediterranean bluefin tuna (BFT) caught in tuna traps in Istria 

(Croatia), Messina (Italy) and Zliten (Libya); however, a few vertebrae specimens from Bosporus Strait and 

non-Mediterranean areas are also included. 

6.1.4.2 Istanbul, Turkey 

 Archeological excavations conducted between 2004 and 2013 in the Yenikapi neighbourhood of 

Istanbul have revealed the location of a Byzantine era harbour (Fig. 4). Built by Emperor Theodosius in the 

4th century C.E., it was one of the largest and most important ports in the Roman Empire for nearly eight 

centuries. The city itself thrived until the 13th century, after which point it weakened under the strain of the 

crusades and costly conflicts with the Venetians. Then in the 15th century C.E. the city was taken by the 

Ottoman Empire. At the same time, the Bayrampasa River, the Lykos slowly filled in the harbour with 

sediments and waste from the city until it became useless for the large commercial fleet in the late 12th 

century C.E. (Kadir Eriş et al. 2009). Princess Anna Comnena (1083-1153), a Byzantine historian, wrote 

“Time in its irresistible and ceaseless flow carries along on its flood all created things and drowns them in the 

depths of obscurity”. One must wonder whether her words were inspired by the Lykos River and the slow 

burial of a once bustling and magnificent harbour. The remains of the time were buried in the mud, preserved 

and forgotten until excavations began in 2004.  
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Fig. 4: Marmaray project archeological excavations at Yenikapi (Buket et al. 2009). 

 

 Many animal remains have been uncovered, including 150 vertebrae of Atlantic bluefin tuna, Thunnus 

thynnus, as well as a multitude of swordfish rostra, Xiphias gladius. The rapid inundation of the harbour with 

fine silts has preserved all vertebrae in excellent condition (Fig. 5). Butchery marks and historical accounts of 

the Ancient Greek and Roman tuna fishery (Oppian 177 B.C.E.; Aristotle 350 B.C.E.) in the region suggest 

that the vertebrae belonged to tunas caught in the immediate vicinity (Marmara or Black Sea). After the meat 

was removed from the bone, it was likely sold fresh to a local buyer or preserved in salt or processed into 

garum (fermented fish sauce) and traded abroad. Since a viable population of BFT has been absent from the 

Black Sea since the mid 1980s (Karakulak and Oray 2009), these vertebrae are of particular interest for the 

scientific community. The cause of their disappearance from the Black Sea remains unknown; however, 

hypotheses abound, including eutrophication, overfishing, noise pollution, lack of prey and changing 

environmental conditions (Papaconstantinou and Farrugio 2000; Daskalov 2002; Sara et al. 2007; MacKenzie 

and Mariani 2012).   

 To date, this magnificent collection of BFT bones at the University of Istanbul hasn't been used for 

any research purposes. Due to restrictions imposed by the Ministry of Culture in Turkey, all archeological 
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specimens used for scientific purposes must be subjects of an official research agreement between Istanbul 

University, ICCAT, University of Istanbul and the Turkish Ministry of Culture and as such, only six samples 

were made available at the time of sampling. Since that time a new contract, paired with sufficient funding, 

has been signed with ICCAT and additional sampling of the collection will commence in the summer of 2015. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Thunnus thynnus vertebrae recovered from excavations at Yenikapi, Istanbul, Turkey. Butchery marks (red arrows) and 
gastropod shells (yellow arrow) are indicated.  

6.1.4.3 Iberian Peninsula 

 In the archives of the Faculty of Archeozoology at the Autonomous University of Madrid, Professor 

Arturo Morales watches over a vast collection of animal bones collected from archaeological sites around the 

world (Fig. 6). From this collection, we were able to acquire 30 DNA genetic samples from “giant” tuna 

(~400-500kg) vertebrae captured during the 1985 almadraba (annual tuna slaughter) at Barbate (Spain, n=10), 

vertebrae from medium sized adults (150-200kg) captured by Late Iron Age and republican roman colonists 

(2nd-1st century B.C.E.) in Tavira (Portugal, n=10) and Baelo Claudia (Spain, n=10). The samples collected 

from Tavira had been used by home builders as building materials and were incorporated into the walls of the 

buildings within the small Iberian roman colony. This was done in an effort to provide an organic matrix that 

strengthens instead of weakens architectural structures. Conversely, the bones from Baelo Claudia seemed to 

have been buried in a refuse pile or midden.  
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Figure 6: A) BFT vertebrae from late iron age settlement at Castro Marim with drill holes after powder removal. B) 
Archeological site of ancient Roman fishing town of Baelo Claudia. 

 

6.1.5 Study Aim 

 DNA was extracted from a total of 186 specimens taken from the collections described above, using a 

newly developed aDNA extraction protocol. Performance of this protocol was optimized through a series of 

extractions and evaluations of DNA quality and quantity using various platforms (Gel electrophoresis, 

NanoDrop, QuBit). A proportion of ancient and modern DNA contained in each sample was also estimated 

using a combination of electrophoresis and flow cytometry (Agilent BioAnalyzer). In an effort to prioritize 

future efforts, the concentration of endogenous DNA from a subset of samples from each sampling location 

was estimated using quantitative PCR techniques. Comparisons have been made between the amount of BFT 

DNA contained in each sample and their age and the environmental conditions which the bones have been 

exposed to. The species identity of all samples was verified using newly developed mini-barcodes of the 

following genes: mitochondrial cytochrome oxidase subunit 1 (CO1), mitochondrial control region (CR) and 

nuclear internal transcribed spacer (ITS1).   

6.2 Materials and Methods 

6.2.1 Sample collection 

 Access was granted to three historical collections archived at the Autonomous University of Madrid 

(Spain), University of Bologna (Italy) and Istanbul University (Turkey). From these collections were gathered 

bluefin tuna vertebrae excavated from late iron age and ancient roman settlements in coastal Iberia (Portugal 
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and Spain, 4th-2nd century BC; n=28) and Byzantine-era Constantinople (4th-15th century AD; n=6), as well 

as vertebrae from the Massimo Sella archive located at the University of Bologna (Ionian, Tyrrhenian, 

Adriatic Seas, and Levantine Seas early 20th century; n=152). The approximate geographic origin for each 

group of historical samples is shown in Figure 7 and the number of samples from each location and time 

period is summarized in Table 1.  

 

 

 

 

 

 

 

 

 

 
Figure 7: Locations in the Mediterranean Sea, Atlantic Ocean and Sea of Marmara from which historical bluefin tuna vertebrae 
were located: HIBR = Iberia (Castro Marim, Baelo Claudia, Cadíz in Spain and Tavira in Portugal), HSTY = Tyrrhenian Sea, 
HADR = Adriatic Sea, HCWM = Central Western Mediterranean (Zliten in Libya), HCON = Constantinople/Istanbul. 

 
 
Table 1: Geographic and temporal origin and quantity of historical samples from various locations in the Mediterranean Sea, 
Atlantic Ocean and Black Sea. 

Geographic region 1911-1926  1755  4th - 15th century 1st  century 4th - 2nd century BCE Total 

Adriatic Sea 50 (Istria)     50 

Tyrrhenian Sea  
50 (Pizzo & 

Messina) 
    50 

Ionian Sea 50 (Zliten)     50 

Gibraltar and 
Portugal 

 
2 (La Chanca 

de Conil) 
 10 (Cádiz) 

16 (Baelo Claudia, 
Castro Marim, Tavira) 

28 

Levantine Sea  2 (Istanbul)  6 (Istanbul)   8 

Total 152 2 6 10 16 186 
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6.2.2 DNA extractions 

 Sample preparation (bone surface decontamination, drilling and powder collection) was conducted at 

the location of each collection, using a portable sampling set and UV lamp. Enzymatic and chemical 

extraction of DNA from all samples occurred in Ravenna (Italy) at the Ancient DNA Laboratories at the 

University of Bologna's Environmental Science campus and Department of Cultural Heritage. 

6.2.2.1 Sample preparation 

All bones were sprayed with 1.5 - 2% sodium hypochlorite (diluted commercial bleach) and left to soak 

for up to ten minutes, following published protocols for sterilization of bone surfaces (Kemp and Smith 2005). 

Some of the very old samples were much more porous and absorbent and were therefore exposed to less 

bleach for a shorter duration of time. Following this treatment, bones were rinsed with distilled water, wiped 

clean with paper towel, rinsed with sterilized water and air-dried. Once dry, a thin surface layer was removed 

using sand paper and the surface was once again rinsed with bleach and distilled water. All bones were left to 

dry for a minimum of 15 minutes under UV light (254nm wave length; Fig. 8) and holes were drilled into 

each bone to simultaneously gain access to the internal matrix and produce bone powder. For bones that were 

too small for drilling, surfaces were diligently cleaned and a hand saw was used to bisect the bone, at which 

time the internal matrix of the bone was scraped free and pulverized. 

 

 

 

 

 

 

 

 

Fig. 8: A cleaned vertebra prepared for drilling and bone powder pulverized with a mortar and pestle. 
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6.2.2.2 Chemical/Enzymatic DNA extraction  

 Various protocols for the chemical extraction of DNA from bones were developed and compared in 

order to maximize DNA yields. Through collaboration with Dr. Elisabetta Cilli at the Department of Cultural 

heritage at the University of Bologna, improved protocols were developed. Based on a previously published 

protocol by Dabney et al. (2013), the new protocol uses the physicochemical properties of silica filter columns 

and guanidine to isolate DNA from digested bone lysates. All extractions were performed in a laboratory 

dedicated to historical DNA analysis in which PCR products are forbidden and protective clothing is worn by 

all technicians (Fig. 9). All work surfaces were decontaminated with ethanol and bleach after the processing 

of each specimen. All tools and consumables were sterilized with UV light (254nm) before every extraction, 

with the exception of Qiagen’s MiniEluteTM Spin Column (guaranteed sterile by the manufacturer). A blank 

control (i.e. microtube containing UV sterilized Milli-Q water) accompanied all extractions throughout 

processing to detect cross sample contamination if it were taking place. 

 Approximately 100 mg of bone powder from each sample was split into two equal amounts and 

placed into separate microtubes. After adding 432 µL of EDTA (0.5M, pH 8.0) to each microtube, the 

samples were incubated for 16-24h, in a shaker at 37°C. After 70 µl of Proteinase K was added to each 

microtube, the samples were incubated for an additional 16-24h. The following binding buffer was prepared 

directly before each extraction exercise: guanidine thiocyanate (5M), Tween 20 (0.05%), isopropyl alcohol 

(40% vol/vol), sodium acetate (90mM, pH 5.2) and distilled water. Samples were centrifuged for 3 minutes at 

10,000 rpm and the supernatant was transferred to new microtubes. Then 1004 µL of binding buffer was 

added to each microtube and vortexed. Equal aliquots of solution from each sample duplicate pair were 

transferred to single sample spin columns and centrifuged for 4 min at 14,000 rpm. This was repeated until all 

samples had passed through the columns and supernatant discarded. 750 µL of PE Buffer from the Qiagen 

MiniElute kit was added to each spin column, centrifuged for 2 min at 6,000 rpm, supernatant discarded and 

repeated once. The column was then dry spun for 1 min at 14,000 rpm in order to eliminate any trace ethanol. 

A maximum of 60 µL of pre-heated (60-70°C) distilled water was then added to each column, incubated at 

room temperature for 10 minutes, centrifuged  for 1 minute at 8,000 rpm and again for 2 minutes at 10,000 

rpm. 
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Fig. 9: Researchers wearing protective gear during DNA extractions of historical tuna remains. 

6.2.3 Quantification of historical DNA 

 The concentration of total DNA contained in each extraction was measured using a Qubit® dsDNA 

HS (High Sensitivity) Assay Kit. Four samples were randomly selected and analyzed with the 

Agilent BioAnalyzer High Sensitivity DNA kit. Finally, a subset of randomly selected samples (Table 2) were 

analyzed via several quantitative PCR (qPCR) using a Roche Light Cycler® 480 at the Department of Marine 

Biology at Gent University and an Applied Biosystems® 7500 Real Time PCR system at the Department of 

Cultural Heritage at the University of Bologna. Three species specific primer pairs (Table 3) were developed 

to amplify 81-120bp fragments of DNA from the cytochrome oxidase subunit 1 (CO1), mitochondrial control 

region (CR) and internal transcribed spacer (ITS1) using Primer3 (Koressaar and Remm 2007; Untergrasser et 

al. 2012). The BioLine SensiMix™ SYBR® No-ROX Kit was used according to the manufacturer’s 

instructions, aside from a reduced reaction volume of 20µl to conserve reagents. The qPCR conditions were as 

follows: An initial incubation at 95°C for 10min, then 40 cycles of denaturation at 95°C for 15sec, annealing 

at 60°C for 15sec and extension at 75°C for 15sec, followed by melting curve ramping at 2.2°C/s to a final 

temperature of 97°C. 
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Table 2: Samples from ten different excavation sites and archives analyzed with qPCR. 
Samples     Location Time period 

5    Ionian Sea, Italy 1925-1926 

5    Tyrrhenian Sea, Italy  1911 

2    La Chanca de Conil de la Frontera, Spain (CCF) 1755 

2    Marmaray, Yenikapi, Istanbul, Turkey (Mar) 300-1400 AD 

3    Metro station, Yenikapi, Istanbul, Turkey (Met) 300-1400 AD 

10    Baelo Claudia, Tarifa, Spain (BC) 100-200 BC 

10    Roman Balsa, Tavira, Portugal (T) 200 BC 

2    Palacio de Justicia, Cadìz, Spain (PJ) 300-100 BC 

1    Castro Marim, Portugal 200 BC 

2    Castro Marim, Portugal 400-300 BC 

 
Table 3: Species specific primers used for qPCR and mini-barcoding of historical samples. 

Primer pair 
name 

Genome Sequence TM 
Product  
size (bp) 

TTCOX1 Mitochondrial Forward: 5'- CCCACGAATGAACAACATGA -3' 
Reverse: 5'- CTCCAGCCTCAACTCCTGAA -3' 

60.37 
60.52 

83 

TTCR1 Mitochondrial Forward: 5'- AAATCGTCTAAGCCATACCAAGT -3' 
Reverse: 5'- TGGACTGGATGGTAGGCTCT -3' 

58.31 
59.68 

81 

TTITS2 Nuclear Forward: 5'- GGGGGTTCAATGTCTCC -3' 
Reverse: 5'- TTTACACCGCACAGAGGTTG -3' 

55.93 
59.76 

120 

6.2.4 Species verification  

 In order to verify that all samples to be analyzed in additional downstream applications (Chapter 7) 

once belonged to living BFTs, sequencing of mini-barcodes was carried out. Each sample was PCR amplified 

(conditions described above in 6.2.3) using the aforementioned newly developed mini-barcode primers. 

Sequencing of amplicons was out-sourced to Macrogen Europe and all alignments were conducted at UNIBO. 

Due to the short length of sequences analyzed, unambiguous alignments with standard reference sequences 

was impossible. As such, samples were identified based on characteristic attributes (methods described in 

Chapter 3) shown in Box 2.  

6.3 Results 

 Most vertebrae from the Massimo Sella archive contained sufficient DNA for SNP genotyping 

purposes, as determined by the QuBit spectrophotometer (Table 4). However, samples older than 500 years 

possess concentrations of DNA lower than the threshold that can be quantified in this manner. 
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Table 4: Concentration of DNA extracted from samples from the Massimo Sella archive collected between 1911 -1926. DNA 
has been extracted from 50 vertebrae from each location. 

 Average [DNA] (ng/µl) Maximum [DNA] value Minimum [DNA] value 

Zliten trap samples 5.2 ± 3.24 15.7 0.37 

Istrian trap samples 1.0 ± 1.61 10.3 0.05 

Messina trap samples 5.4 ± 5.78 20.8 0.42 

 Spectrophotometry platforms (i.e. QuBit, NanoDrop) measure a sample's total DNA concentration, 

not the separate proportions of DNA belonging to the specimen (endogenous) and that which can be attributed 

to sources of contamination (exogenous). Preliminary analysis of historical DNA extractions, using the far 

more expensive Agilent BioAnalyzer platform, revealed that a large proportion of the total DNA in a handful 

of extractions consisted of long chains of nucleic acids (Fig. 10, Table 5). Since DNA is expected to fragment 

and degrade with time (exposure to catalytic enzymes, chemical decomposition and digestion by fungi and 

bacteria), longer strands of DNA are likely from exogenous sources.  

Box 2: Locations of primer annealing sites and characteristic attributes for three gene sequences used to 
identify historical fish remains. Forward primers are highlighted in green text, reverse primers are highlighted 
in red text and characteristic attributes are highlighted in grey. Interliner text and dashes indicate  amplified 
sequence. 

Mitochondrial gene: Cytochrome oxidase subunit 1 primers (83bp) 

GCATTCCCACGAATGAACAACATGAGCTTCTGACTCCTTCCCCCTTCTTTCC

TTCTGCTCCTAGCTTCTTC    

            TTCOX1F>---------------------------------------------------------------------------------

--------------------             

AGGAGTTGAGGCTGGAGCCGGAACCGGTTGAACAGTCTACCCTCCCCTTG

CCGGCAACCTAGCCCACG 

-------------------<TTCOX1R 

 

Mitochondrial gene: Control region primers (81bp) 

AATTCAGGCGATTAAACGAGATTTAAGACCTAACATAAATCTAAATCGTCTA

AGCCATACCAAGTCTCCT 

                       TTCR1F>----------------------------

----------- 

CATCTCTGACATCTCGTAAACTTAAGCGCAGTAAGAGCCTACCATCCAGTC

CATTTCTTAATGCATACGGT 

----------------------------------------------------------------------------------<TTCR1R                     

 

Nuclear gene: Internal transcribed spacer primers (120bp) 

AGGGGGGTTCAATGTCTCCCCACCCCGCCTCGGCGGGGTTCGGAGCGCCC

GGGGGTCCTGTCGTCTT 

      TTITS2F>---------------------------------------------------------------------------------------

--------------------- 

CCCCTTTCCAAACCCGACTTGTCTCTGAACGTTGGCAACCTCTGTGCGGTG

TAAAAACCGACAAAAAAG 

-------------------------------------------------------------------------------<TTITS2R 
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Fig. 10: Results from the analysis of four ancient samples from Spain (2 samples from La Chanca de Conil de la Frontera, 1755 
and two samples from Palacio de Justicia, Cadìz, 300-100 BCE) using the Agilent BioAnalyzer. The picture on the left shows 
the length of DNA fragments on the y-axis with concentrations of DNA in columns, expressed as a gradient of colours. The 
picture on the right shows a peak of short fragment DNA (historical DNA; 40-300bp) and much larger peaks of long fragments 
of DNA (modern exogenous DNA; 400-10000bp). 

 
Table 5: Proportion of total DNA belonging to historical sources as measured by the Agilent BioAnalyzer in four historical 
samples (CCF=La Chanca de Conil de la Frontera, 1755; PJ= Palacio de Justicia, Cadìz, 300-100 BCE). 

Sample Time period % of total DNA [aDNA] (pg/µl) Average size (bp) 

PJ48 300-100BC 39% 517.87 103 

PJ114 300-100BC 48% 119.42 74 

CCF86 1755 26% 7338.65 89 

CCF131 1755 29% 1706.42 124 

6.3.1 Quantification of endogenous DNA using qPCR  

 All three nuclear and mitochondrial gene markers performed consistently for all reactions. TTCOX1 

and TTCR1 primer pairs performed identically during the amplification of target fragments, as shown by the 

overlapping standard curves in Fig. 11a. The melting curve of the nuclear marker fragments was more 

scattered than the mitochondrial marker curves (Fig. 11b,c). Amplification of mitochondrial fragments 

occurred sooner and more completely among all samples (Fig. 11d,e,f). Overall, both mitochondrial primer 

pairs appeared to be slightly more efficient than the TTITS2 primers probably because of the longer targetted 

amplicon length and inherently lower concentration of nucler genome DNA.   

 Bones from the twentieth century collection yielded such high concentrations of DNA (mean yield = 

1.8ng/µL) that they were excluded from further comparisons among the more ancient samples. Samples from 
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Istanbul contained the highest concentration of DNA, while samples from Tavira yielded the lowest amount 

of DNA among the bones of ancient origin (Fig. 12). 

 

Fig. 11: Overlapping amplification curves of TTCOX1 (purple and pink) and TTCR1 (green and blue) primer pair standards 
(A). Melting curves of TTITS2 (B) and TTCOX1 (C) primer pair amplicons. Note: TTITS2 amplicons have a more scattered 
distribution around a central peak. Amplification curves of 30 (x2 replicates) historical samples (light red) with 5 (x2 replicates) 
serial dilution standards (dark red) using  TTITS2 (D), TTCOX1 (E) and TTCR1 (1) primer pairs. Note: the range in which the 
majority of amplifications take place for TTITS2 is between 25-45 cycles, TTCOX1 between 26-35 cycles and TTCR1 between 
30-40 cycles.  

 
Fig. 12: qPCR results for 23 samples of ancient origin using three different molecular markers (CO1, mtCR and ITS1). Samples 
are arranged chronologically. Letters in sample names refer to geographic origin: Palacio de Justicia, Cadìz, Spain (PJ), Roman 
Balsa, Tavira, Portugal (T), Baelo Claudia, Tarifa, Spain (BC), Marmaray, Yenikapi, Istanbul, Turkey (Mar), Metro station, 
Yenikapi, Istanbul, Turkey (Met),  La Chanca de Conil de la Frontera, Spain (CCF). 
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6.4 Discussion 

6.4.1 qPCR quantification of ancient DNA 

 The qPCR results were consistent across samples (location and age), thereby validating the approach 

for relative comparisons of DNA yields between sample types. The approach might benefit from an 

adjustment to the way in which the standards were constructed. Campbell and Narum (2009) created their 

standards by amplifying target DNA fragments and inserting these into vectors using restriction enzymes. The 

molecular mass of each plasmid construct was calculated and 1:10 dilutions were prepared. Dilutions were 

then left to evaporate overnight and rehydrated with PCR mix the following day in an effort to reduce the 

impact of imprecise pipetting.  

 Focusing strictly on the Iberian samples, extractions with the highest concentration of DNA are 

perhaps the oldest amongst the collection from Castro Marim. Sample ROM542 is estimated to date back to 

the early roman republic (3rd-2nd century BC) and samples IA504 and IA535 were butchered by Iron Age 

fishermen. Samples with the lowest quantity of DNA are the vertebrae from the Roman settlement of Balsa in 

the Algarve, close to Tavira. Dried tuna vertebrae were incorporated into the building materials of the ancient 

Romans in the Algarve, presumably to add structural integrity as a strong organic brick of sorts. The low 

concentration of DNA in these bones may be a result of the way in which the bones were treated (boiling and 

drying in the hot summer sun) before being cemented into walls and floors. Alternatively, once inside of the 

walls they would have been exposed to extreme temperature variations between very high temperatures 

during the summer as the clay walls heated up during the day and cooled down at night, all of which is 

damaging for DNA. The age of bones clearly appears to have an influence on DNA yield; however, the DNA 

extracted from ancient sources using our new technique is of sufficient quality and quantity to achieve our 

next challenge: high throughput SNP genotyping. Various studies have shown that the degradation of DNA is 

not only a function of a specimen's age but is also significantly dependent on the environment conditions 

(temperature, humidity, pH, microorganisms) to which it has been subjected since the death of the animal 

(Miller et al. 2008; Zimmermann et al. 2008; Sawyer et al. 2012). This certainly seems to be the case with the 

samples analyzed here. 
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 A similar comparative study focused on the preservation of DNA in human teeth (approximately 3000 

years old) recovered from various archeological sites that differed in three factors: exposure to 

microorganims, pH and temperature (Burger et al. 1999). They found that remains extracted from a rather 

damp cave (Lichtenstein Cave, Germany) still contained high concentrations of quality DNA, likely due to the 

low temperatures (8°C) within the cave. In comparison, similar samples recovered from an archaeological site 

exposed to very low amounts of precipitation and higher temperatures (19-35°C) contained much less DNA 

(Shimal, United Arab Emirates).   

 The samples from Istanbul contained a relatively high DNA content. It was assumed that these 

samples would contain a reduced concentration of DNA due to exposure to coastal biogeochemical conditions 

for hundreds of years. However, the bones were buried in sediments that were likely alkaline due to the 

adjacent body of seawater (pH=8.1) and high carbonate content of the sediments owing to the myriad of shells 

found in the same layer of sediments. These conditions are likely responsible for the preservation of the 38 

wooden ships found alongside the tuna bones. 

6.4.2 Species identification 

 Only 40 of the 150 samples from the Massimo Sella archive were identified to as T. thynnus. An 

additional 60 samples were identified as Thunnus spp. and the remaining 50 samples could not be identified 

due to failures to amplify sequences or sub-standard sequencing results. However, since a majority of samples 

were identified as BFT or at least to genus level, were captured in the same area and at the same time, and had 

the same morphological characteristics, it is assumed that all are T. thynnus. Samples from the Istrian trap had 

the highest failure rates, which did not come as a surprise because also have very low concentrations of DNA. 

The colour and lack of dirt and dried tissue on the surface of these samples suggest that they have been treated 

in some way which might have also decreased the concentration of DNA in each sample. 

6.5 Conclusion 

 The techniques developed during this study have potential for future use in both ancient and modern 

(traceability of cooked or canned food products) forensic investigations. Used for archaeological purposes, 

our methods can help to identfy damaged and incomplete animal remains and provide information about 

historical human diets, trade, species distribution and biodiversity. 
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Chapter 7 
Genotyping of ancient DNA 

 
 
 

 

Vext with the puny foe the thunnies leap, 
Flounce on the stream, and toss the mantling deep, 

Ride o'er the foaming seas, with torture rave, 
Bound into air, and dash the smoking wave. 
Oft with imprudent haste they fly the main 

And seek in death a kind release from pain, 
Vault on some ship, or to the shore repair, 

And gasp away their hated lives in air.  
- John Jones, trans. Opp.(from Prose Halieutics) 
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7.1 Introduction 

7.1.1 Basics of Fishery Induced Evolution 

 Prior to having the genetic evidence of fisheries-induced evolution (FIE), fisheries scientists had proof 

that artificial selection by humans was capable of causing longlasting changes to species (Kuparinen and 

Merilä 2007; Allendorf et al. 2008; Allendorf and Hard 2009). Artificial selection of fishes occurs when 

fisheries harvest a specific fraction of a population based upon particular traits such as size, age, or sex. This 

selection can occur as a result of fishing gear (mesh size, gear type), areas and habitats targeted and timing of 

harvest. Changes exhibited by populations subject to fisheries induced evolution (FIE) are maturation at 

younger ages, reduced size at maturity, decreased egg volume and larvael size at hatching, 

increased/decreased fecundity, reduced annual growth rate and loss of genetic diversity (Jørgensen et al. 2007; 

Heino and Dieckman 2009; Audzijonyte et al. 2012). An extreme example of rapid FIE documented in a wild 

population was a 10 cm reduction in the age-specific maturation length for North Atlantic cod in only 7 years 

(Olsen et al. 2004). A review focused on fishery induced evolution by Jørgensen et al. (2007), suggested a 

possible range of 15-33% change in annual growth and a 21-22% loss of genetic diversity for some 

commercially exploited species within 13-125 years. They said: “The question is not whether such evolution 

will occur, but how fast fishing practices bring about evolutionary changes and what the consequences will 

be.” Examples of commercial species with traits indicative of FIE are Atlantic cod, many salmonids, 

whitefish, plaice, sole, herring, orange roughy and snapper (Jørgensen et al. (2007).  

 Targeting of large BFT in the Mediterranean Sea may already have caused profound changes to the 

demographics, life history strategies and genetics of the species. The fleet, which is dominated by purse 

seiners, targets the first large schools that enter into the Mediterranean when the season begins in the spring. 

Analysis of the size distribution of migrating BFT entering the Mediterranean has revealed that large fish are 

the first to enter, followed by smaller adults and juveniles (Badham 1854). A comparative morphometric 

study of modern BFT and vertebrae excavated from ancient Roman settlements in Iberia has revealed a 30% 

reduction in growth rates (Morales and Roselló 2007). More recently, fisheries pressure has been linked to 

demographic changes in the north eastern Atlantic BFT population(s), such as decreased age at maturity, 

reduced proportion of older stock and a reduced number of repeat spawners (Mackenzie et al. 2009 ). The 
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probability that the genetics of BFT has been altered in response to fisheries pressure is high; however, 

evidence of these changes has yet to surface. 

 Modern evolutionary changes in commerical species in response to fisheries pressure have the 

potential to cause negative irreversible impacts on stock biomass, demography and economic yield. Beyond 

the single species perspective, FIE can also impact trophic dynamics, competitive interactions, and 

community composition among other ecological relationships (Jørgensen et al. 2007). Demographic changes 

can increase instability of yields, leading to reduced catches or overestimations of stock size and increased 

quotas. These changes can reduce a species' resilience and confuse stock assessments. Evolution appears to 

have a real-time economic impact and as a result, evolutionary impact assessments have been proposed as a 

means by which changes in the utility of a stock, resulting from FIE, can be evaluated (Jørgensen et al. 2007).  

 Ancient DNA research has accomplished much in the past three decades with the number of 

publications increasing exponentially covering subjects linked with archaeology, anthropology, evolutionary 

biology, conservation, and climate research (Hagelberg et al. 2015). Fisheries' researchers have caught the 

aDNA bug as well, recognizing that through the genetic analysis of historical samples (scales, otoliths, and 

vertebrae) we're now capable of elucidating the impact of humankind on fish species, since the beginning of 

commercial-scale exploitation. Comparisons between genetic information collected from existing populations 

and historical samples from museums and archives has led to new reveations concerning the loss of genetic 

variation and the distribution of species and populations over time (Roy et al.1994; Taylor et al.1994; 

Vallianatos et al. 2002; Burrell et al. 2015). 

7.1.2 Use of historical samples following the PCR Revolution 

 The first study to provide genetic infromation derived from museum samples was that of Higuchi et 

al. (1984) who directly sequenced a 229 bp fragment of cloned mitchondrial DNA. This was followed soon 

after by a study that cloned a short fragment of DNA from an Egytpian mummy (Pääbo 1985). When a 

protocol for the polymerase chain reaction (PCR) was published in the late 1980s it revolutionized biology 

and opened up a universe of opportunities for the study of historical samples (Saiki et al. 1985; Mullis and 

Faloona 1987). In short, PCRs make use of the enzyme DNA polymerase to amplify millions of copies of a 

chosen template of DNA through multiple temperature cycles (denaturation of DNA at 94-96°C, annealing of 
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primers to template DNA at 3-5°C lower than the melting temperature of the primers and elongatin or 

assembly of a complementary strand of DNA using deoxynucleotide triphosphate building blocks). This 

simple recipe, that earned Kary Banks Mullis the Nobel Prize, allows for the replication of small amounts of 

DNA by several magnitudes of order. Unfortunately, the use of PCRs in aDNA studies isn't a simple and 

straightforward solution for low concentrations of template DNA. Shortly after death, crosslinks begin to form 

within and between DNA molecules through condensation reactions that bind the sugar and primary amino-

groups in nucleic acids (Pääbo et al. 2004). These crosslinks, called Maillard products, inhibit PCR 

amplification of DNA, even when present in abundance (Willerslev and Cooper 2005). Maillard products can 

be elminated if DNA extractions are treated with N-phenacylthiazolium bromide (Poinar et al. 1998). PCRs 

also introduced the potential for amplification of contaminants; a problem made clear when authors started 

releasing studies containing breakthroughs in the analysis of million-year-old plant materials, amber preserved 

insects and dinosaur bones, all of which have been discredited since (reviewed in Willerslev and Cooper 

2005). Despite these early errors, palaeogenetics has become a respected and widely used method for 

investigating processes of evolution and changes in population genetics. 

7.1.3 Mitochondrial DNA as a tool in paleogenetics   

 The earliest investigations into FIE using genetic tools focused on mitochondrial DNA (mtDNA), 

because of the relative ease with which genotypes can be obtained due to the abundance of copies per cell, 

reduced size and haploidy of the mitchondrial genome (Millar et al. 2008). The purpose of the majority of 

studies that have focused on sequencing of historical mtDNA has been for the identification of damaged 

ancient remains. While this research hasn't provided a great deal of information regarding evolution of 

species, they have served to clarify the distribution of historical populations, human patterns of resource use 

and ancient trade routes. For example, short fragments (119-250 bp) of mitochondrial DNA have been used to 

ascertain the distribution of several salmon species in the North East Pacific from 1100-9000 yBP (Yang et al. 

2004; Butler and Bowers 1998; Speller at al. 2005; Moss et al. 2014). In central Poland, short fragments of 

102bp were used to identify 500,000 year old whitefish bones (Brzuzan et al. 2004) and in the north of Poland 

1,000 year old sea bream bones were identified using DNA fragments of 172 bp (Ciesielski et al. 2002). In the 

Levantine Sea, sequencing of DNA extracted from ancient catfish pectoral spines (1,500 yBP) confirmed 
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commercial trade of the species between Egypt and ancient Anatolia (modern day Turkey; Arndt et al. 2003). 

Short sequences of mitochdrial DNA have also been used to estimate temporal changes in the genetic 

diversity and populations sizes of Atlantic cod in Iceland (Ólafsdóttir et al. 2009), salmon in northern Spain 

(Consuegra et al. 2002), and brown trout in Denmark (Hansen et al. 2002).  

7.1.4 Microsatellites 

 Hypervariable microsatellites, or short tandem repeats, in the nuclear genome have been used in 

several ichthyological studies exploring temporal changes in population structuring and effective population 

sizes using collections of historical and modern specimens. Microsatellites have been used to measure the 

impacts of restocking on salmon populations in Denmark (Nielsen et al. 1997), show genetic loss in New 

Zealand snapper after decades of heavy exploitation (Hauser et al. 2002), reveal genetic adaptation of Atlantic 

cod to increasing sea surface temperatures (Nielsen et al. 2007), and uncover evidence of extirpated hiistorical 

populations of salmon in the Columbia River basin (Iwamoto et al. 2012). They have provided evidence of 

depressed genetic integrity and decreases in effective population sizes of heavily exploited populations of 

North Sea cod, brown trout and sole during the past century (Hansen et al. 2002; Hutchinson et al. 2003; 

Poulsen et al. 2005; Cuveliers et al. 2011). Microsatellites have also been used to demonstrate that 

hybridization of wild trout with aquaculture farm escapees results in depressed fitness and reduced genetic 

diversity in wild populations (Coughlan et al. 2006; Hansen et al. 2010). 

 Two aDNA studies have been published that have utilized the the Massimo Sella vertebrae: Landi et 

al. (2007) and Riccioni et al. (2010). Both studies used a limited number of microsatellite loci and were able 

to elucidate a weak population structure. According to both studies the genetic diversity of the species remains 

virtually unchanged from the past 90 years, despite a reduction of biomass of >70% and a 46% contraction in 

their geographic range (Worm and Tittensor 2011). Riccioni et al. (2010) focused on 8 microsatellite loci 

which revealed no significant differences in allelic richness and gene diversity across contemporary and 

historical samples. They found weak signatures of population differentiation among modern (Fst = 0.014, P < 

0.0001) and two historical samples (FST = 0.020, P < 0.0001); although there remained no significant 

evidence of genetic structuring when Bayesian tools were employed. From the limited number of sites 

analyzed, they described a heterozygote deficit that could indicate either a Wahlund effect or a pronounced 
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variation in reproductive success. Taking these results into consideration, researchers were left with the 

following conclusions: 1) Data derived from the historical Libyan samples suggest that spatiotemporal shifts 

in BFT population structure and dynamics have occurred in the Mediterranean, 2) there is a weak signal of 

genetic structuring within the Mediterranean Sea, 3) the genetic markers used to date are likely to weak to 

demonstrate these genetic dynamics and, 4) a more robust sampling design using advanced techniques and 

higher performing genetic markers are required to address these questions (Cannas et al. 2012).  

 Admittedly, mtDNA and microsatellite studies have made a great deal of valuable insights in the field 

of evolutionary genetics in the past two decades; however they both suffer from several limitations. Inferences 

made from mtDNA are limited because the target genetic material is inherited from a single parent while 

microsatellite loci suffer from null alleles and a variable mutation rate that make inference difficult (Wandeler 

et al. 2007). Both are susceptible to homoplasy which poses severe limitations. Conversely, Single Nucleotide 

Polymorphisms (SNPs) are abundant throughout the genome and their evolution can be described by simple 

mutation models (Morin et al. 2004).  

7.1.5 Next Generation Sequencing 

 In a review by Knapp and Hofreiter (2010), Next Generation Sequencing (NGS) was credited with 

revolutionizing all fields of genetics and no other field has profited from its advent more than ancient DNA 

research, a field which they describe as now being at the centre of evolutionary biology. Since its inception 

the technology has developed at an alarmingly rapid pace and its sequencing capabilities are beyond what 

could have been imagined just years ago. That being said, NGS protocols cannot be applied directly to aDNA 

studies, due to the inherently low concentration of template DNA in historical samples. Most NGS protocols 

require multiple filtration steps during library preparation which greatly reduces DNA yields by as much as 

99% (Maricic and Paabo 2009). As such, specialized protocols have been developed for aDNA research using 

NGS techniques. Shotgun sequencing executed with NGS platforms can be credited with many of the 

advances in palaeogenomics, as it has been used for the reconstruction of the genomes of many extinct and 

non-model species. The higher number of copies and short length of the mitchondrial genome increases the 

likelihood of completing the entire sequence using high throughput platforms; however, the number of genes 

contained in the genome is limited and thus offer limited scope for evolutionary inference. 
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 Shotgun sequencing exectured on NGS platforms begins with random shearing of extracted DNA into 

short fragments which are then sequenced. The resulting sequences are then joined together by aligning them 

in silico where their sequences overlap, leading to the assembly of longer fragments in a bridge-like fashion. 

Thresholds ensure that alignments are legitimate by requiring a minimum number of reads per base. This 

method requires high quality, relatively pure and abundant endogenous DNA. Shearing already fragmented 

aDNA results in a surplus of short fragments which can be highly similar with many other short fragments 

from different regions of the genome (repeats). Incorrectly aligning these short repeat fragments results in a 

confused and erroneous genome full of artificial sequences (artefacts or paralogs). All the same, Knapp and 

Hofreiter (2010) counted 16 ancient DNA studies that used next generation shotgun sequencing partly or 

exclusively for sequence data collection between 2006 and 2010 for various taxa. Researchers can overcome 

low template concentrations via PCR target enrichment; however, this results in a reduced spectrum of 

analysis. Pre-amplification of target sequences in aDNA studies can also be problematic if low amounts of 

exogenous or damaged DNA are amplified in the first cycles of PCR. A single erroneous sequence can be 

amplified millions of times, becoming indistinguishable from the endogenous target DNA. Hybridization 

capture approaches (like primer extension capture) can overcome some of the difficulties associated with 

PCRs and focus more on the enrichment of endogenous DNA (Noonan et al. 2006; Briggs et al. 2009). In this 

approach, target DNA hybridizes with specialized probes that are either immobilized on microarrays or 

capture beads. Combinations of these techniques have led to the sequencing of complete mitochondrial 

genomes from the following extinct species: New Zealand moa (Cooper et al. 2001), mammoth (Krause et al. 

2006), Neanderthal (Green et al. 2008), cave bear (Krause et al. 2008), woolly rhinoceros (Willerslev et al. 

2009), auroch (Edwards et al. 2010), and Tasmanian tiger (Miller et al. 2008). 

7.1.6 SNP genotyping 

 The process by which SNPs are discovered, validated and incorporated into genotyping arrays has 

been described in chapters 4 and 5. Due to the nature of SNP arrays and microsatellite sequences, poor quality 

samples are genotyped with a higher success rate using the SNP array approach. A minimum of 1000 starting 

copies of template DNA have been advised for successful genotyping of microsatellites while as few as 50 

copies are required for genotyping of SNPs (Campbell and Narum 2009). A 2012 study attempted to genotype  
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60 herring bones recovered from various archaeological sites in British Columbia, Canada (100-3,800 yBP) 

using mitochondrial DNA, microsatellites and SNPs (Speller et al. 2012). The authors found that the mtDNA 

marker had limited power for population discrimination and microsatellites provided low quality data because 

of allele drop-out and stuttering. The SNP assay, however, provided low error rates and high discriminatory 

power, thereby motivating the authors to conclude that SNPs were the most effective approach for the analysis 

of genetic population structuring in aDNA studies. In addition to higher versatility with DNA of varying 

quality and quantity, the potential of SNP genoytping platforms for high throughout processing is impressive. 

In 2011, Smith et al. (2011) conservatively estimated that a single researcher was, at that time, capable of 

generating up to 72,960 genotypes in a single day (760 samples genotyped with 96 SNP loci). 

 SNP genotyping panels have been used in aDNA studies to ascertain temporal changes in the 

population structuring of Atlantic cod (Poulsen et al. 2011) and herring (Speller et al. 2012). Researchers have 

also used SNPs to determine how populations of Atlantic cod (Poulsen et al. 2011; Therkildsen et al. 2013), 

Atlantic herring (Limborg et al. 2012) and Pacific chum salmon (Seeb et al. 2011) have been influenced by 

temporal changes in environmental conditions. 

7.1.7 Study aim 

 A SNP panel is developed for the genotyping of a collection of modern (n=269) and historical 

(n=186) BFT samples (described in Chapter 6) in order to ascertain whether the population structure and 

spatial dynamics of the species in the Mediterrranean Sea has changed over time. If significant differences in 

geographic and/or temporal allele frequencies are revealed, then they will be compared with fishery time 

series data and environmental parameters in order to determine whether selective responses to a changing 

environment and industrial fisheries have occurred. Due to the absence of an extant population of BFT in the 

Black Sea region, the historical samples from the Black Sea region are of particular interest in this study. 

There is a strong possibility that the BFT of the Black Sea were spawning in isolation, since their migratory 

movements were likely determined by the distribution of their prey which migrated into the warming waters 

of the Black Sea in the spring, returned to the Mediterranean Sea in autumn. Aristotle recorded this migratory 

behaviour in 350 BCE and his observations have been verified by 20th century marine scientists (Akyuz and 

Artuz 1957; Mather et al. 1995, Karakulak and Oray 2009). This would place the local population in the Black 
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Sea during the spawning season, far from all other spawning groups. If spawning was taking place in the 

Black Sea, then adaptations to the local hydrographic conditions would have been required. During the 

spawning season, salinity, density and temperature are lower in the Black Sea than all other BFT spawning 

areas (Mackenzie and Mariani 2012). Unless physical adaptations provided increased egg buoyancy 

(increased size, decreased dry weight and thinner chorions with fewer lamellae), the eggs of BFT would 

quickly sink into the Black Sea's hypoxic waters below 100m (Mackenzie and Mariani 2012). Additional 

adaptations would have been required of the sperm, unfertilized eggs and developing embryo and larvae. A 

genetic record of these adaptations could be recovered from the Byzantine-era bones uncovered in Istanbul 

and might still be traced to the remaining descendants of this isolated tribe, if any have survived. Information 

concerning the distribution of the remaining Black Sea BFT can provide information about population 

structuring, migratory behaviour, genetic diversity and adaptive potential. By comparing the genetic code of 

modern and ancient BFT we can shed light on the evolution of the species genome in response to nearly two 

millennia of fisheries pressure, a changing climate and pollution of the sea. 

 The SNPs selected for the genotyping panel were developed using 1) a Targeted Gene Approach, 2) 

Genotyping-by-Sequencing SNP discovery, and 3) Transcriptome SNP discovery. The SNPs that were 

discovered using the GBS approach (Chapter 4) will provide information concerning the temporal continuity 

of genetic population structuring, while SNPs derived from the targeted gene approach and transcriptomics 

are associated with genes that may hold selective or evolutionary significance.  

7.2 Materials and Methods 

7.2.1 Targeted Gene Approach 

 An array of primers were designed to amplify regions of DNA that are likely to be associated with 

genes subject to selective pressures, such as those that influence metabolism, growth and immune response 

(myosin, heat shock protein, interleukin factor, hemoglobin, methylmercury binding protein). Several genes 

already had primer sequences published for T. thynnus or sister taxa, while others had to be designed using 

previously published sequences of Atlantic or Pacific BFT and Primer 3 v. 0.4.0 software (Koressaar and 

Remm 2007; Untergrasser et al. 2012; Appendix 1). Gradient PCRs were conducted for all primer pairs, in 

order to determine the optimal annealing temperature for each.  PCR reactions were performed in 25 µL 
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volume consisting of 1x PCR Buffer, 1.0 µM of each primer, 160 µg/mL of BSA, 0.4 mM of dNTPs, 1.5 mM 

of MgCl2, 2.5 U/mL of Invitrogen Taq polymerase and ~100 ng of template DNA. Gradient PCR conditions 

consisted of 94°C for 3 min, 35 cycles of 30 sec at 94°C, 30 sec at 12 different temperatures (full range of 

10°C with a median temperature 5°C below the lowest primer's melting temperature), and 30 sec at 72°C, 

with a final extension at 72°C for 3 min. Once PCR conditions were optimized for a handful of primer pairs,  

DNA fragments were amplified using a group of 77 modern samples from 5 different locations in the species' 

geographic distribution (Table 1). The PCR products of the three most successful gene amplifications (heat 

shock protein 70, interleukin factor region 1 and 2) have been sequenced, aligned and analyzed for SNP loci 

using Mega v. 6 (Tamura et al. 2013). 

Table 1: Samples used in the search for SNPs in a targeted gene amplification approach. 

Geographic Origin Age Class Year of Capture No. of Samples 

Strait of Sicily Young-of-the-Year 2012 14 

Balearic Sea Young-of-the-Year 2011 10 

Tyrrhenian Sea Young-of-the-Year 2012 10 

Levantine Sea Young-of-the-Year 2011 2 

Levantine Sea Medium Adult 2011 10 

Levantine Sea Large Adult 2011 16 

Gulf of Mexico Larvae 2007 2 

Gulf of Mexico Young-of-the-Year 2008 13 

   Total: 77 

7.2.2 Genotyping-by-Sequencing SNP loci 

 The process by which SNPs were discovered using Genotyping-by-Sequencing techniques is the topic 

of Chapter 4. The performance criteria by which each of these SNPs were evaluated and subsequently used 

for the selection of loci for the current temporal investigation are explained in Chapter 5. 

7.2.3 Transcriptome derived SNPs 

 In 2012, researchers at the GenMAP laboratory at the University of Bologna with funding through 

ICCAT GBYP Phase 2 used combined approach of transcriptome sequencing and shallow genome sequencing 

to discover SNPs within the BFT genome (Pintus 2013). In that study, the reseachers used GS FLEX 

Titanium sequencing technology to obtain >1 million cDNA sequences from ten BFT from different 
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geographic locations. Concurrently, the Illumina HiSeq2000 was used to generate 833 million reads from four 

BFT which were used to construct a partial reference genome consisting of 500,000 contigs via de novo 

assembly. The cDNA reads were then mapped to the reference and the best 4000 contigs were selected for in 

silico SNP discovery, based on number of reads (minimum 10) and sequence length (>200bp). From these 

384 candidate SNPs were selected based on strict quality criteria. Following validation of the selected SNPs, 

919 individuals from 23 populations throughout the species' range were genotyped with all 384 SNPs using 

Illumina Golden Gate assays. Some 287 SNPs and 848 individuals proved to be satisfactory for use in genetic 

structuring analysis. Various statistical analyses revealed extremely low and non-significant levels of genetic 

differentiation among bluefin tuna population samples.  

7.2.4 Comparison of GBS and EST SNPs with published annotated genes 

 All 220 validated SNPs decribed in Chapter 4 along with the 384 transcriptome-derived SNPs 

described above were submitted to BLAST alignments (Altschul et al. 1990) with several selected reference 

sequence libraries. Sequences contained in these libraries were publicly available annotated gene sequences 

for Atlantic cod (Gadus morhua; Star et al. 2011), sea bass (Dicentrarchus labrax; Tine et al. 2014), BFT 

(Chini et al. 2008; Gardner et al. 2012), and an umbrella set of sequences containing data from all other 

teleosts. Query matches with referencee sequences were only recognized if alignment coverage was > 80% 

and identity scores >80%.  Several SNPs highly discriminatory SNPs were selected for additional 

investigation regarding the nature of their impact on gene expression. The flanking region sequences of these 

loci were aligned with sequences from other teleost species and translated into the corresponding amino acid 

sequences in an effort to determine whether base substitutions resulted in changes to the amino acid sequence. 

7.2.5 Sample collection 

 All 186 historical samples from which DNA was extracted (described in Chapter 6) will be genotyped 

using the 96 SNP panel described here and compared with 269 modern samples collected from the same  

geographic locations or adjacent areas (Appendix 1, Fig. 1). Two additional groups of samples have been 

added to the analysis in order to complete geographic coverage (Balearic Sea) and include at least one group 

from outside of the Mediterranean Sea (Bay of Biscay). DNA extractions have been outsourced to the 
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University of the Basque Country (UPV/EHU) where they will undego DNA extraction in plate format with 

Macherey-Nagel Nucleospin kits, quantification (spectrophotometry) and normalization. 

Fig 1: Geographic origins of modern and historical samples to be genotyped using a 96 SNP panel. Historical samples: HIBR = 
Iberia (Castro Marim, Baelo Claudia, Tavira), HSTY = Tyrrhenian Sea, HADR = Adriatic Sea, HCWM = Central Western 
Mediterranean (Zliten, Libya)), HCON = Constantinople. Modern samples: BIS = Bay of Biscay, GIB = Strait of Gibraltar, BAL 
= Balearic Sea, TYR = Tyrrhenian Sea, SIC = Strait of Sicily, ADR = Adriatic Sea, LEV = Levantine Sea. 

7.3 Results 

7.3.1 Targeted Gene Approach for SNP selection 

 Only half of the eighteen primer pairs provided successful PCR amplifications. Details concerning the  

primers that provided satisfactory amplicons are featured in Table 2. Primer pairs that consistently produced 

multiple bands and smears were TTHSP27, TTMER1, TTMER2, TTMER3, TTMER4, TTIL1, TTTNF1, 

TTTNF3, TTMYO. Additional amplifications and sequencing of three gene loci (TTIL2, TTIL3 and 

TTHSP70; example of gels in Fig. 2) were conducted in order to provide an adequate number of sequences for 

comparative alignments. A total of 66, 42, and 28 individuals were successfully sequenced with TTHSP70 

(501bp) TTIL2 (622bp), and TTIL3 (594bp) primer pairs. Alignments of TTHSP70 and TTIL2 sequences 

revealed too many variable sites for suitable construction of SNP probes (minimum of 60bp on either side of 

SNP). The TTIL3 alignment was less variable and provided no evidence of geographic differences. 
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Table 2: Primers developed to amplify targeted genes associated with selective traits. 

Primer Pair Name Optimized Annealing Temp. Comments 

TTNKATP 64.0 Single band at high temp. Two bands at low temp. 

TTHSP70 63.7 Clear consistent amplification. 

TTTNF2 63.8 Clear consistent amplification. 

TTTNF4 65.0 Three bands at low temp. Persistent primer dimers. 

TTTNF5 56.0 Clear consistent amplification. 

TTHEM 59.1 Multipe bands. Requires additional optimization. 

TTMER5 58.2 Multiple bands. Requires additional optimization. 

TTIL2 59.0 Clear consistent amplification. 

TTIL3 57.3 Clear consistent amplification. 

 

 

Fig. 2: Examples of electrophoresis gels showing successful amplification of targeted genes from ABFT samples collected 
throughout the species range. Images A and C are are gels containing stained amplicons of interleukin factor region 1 and 2, and 
image B is a gel of heat shock protein 70 amplicons. Unlabelled columns are molecular weight ladders and each gel contains 
two columns with negative controls (-). 

7.3.2 Candidate SNP loci alignments with published annotated genes 

 Of the 604 candidate loci queried, 10 matched with published BFT sequences (Appendix 2), 51 with 

seabass sequences (Appendix 3), 12 with Atlantic cod annotated genes (Appendix 4) and 30 with annotated 

gene sequences of other teleosts (Appendix 5). The vast majority of “other teleost” matches correspnded with 
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well studied species like Takifugu rubripes, Poecilia formosa, Larimichthys crocea, Stegastes partitus, 

Oreochromis niloticus, Oryzias latipes, Maylandia zebra, and Haplochromis burtoni. Figure 3 is a Venny 

diagram illustrating the distribution of all candidate loci – reference sequence matches. All 68 SNPs that were 

matched with annotated genes were added to 28 highly discriminatory SNPs to complete the 96 SNP panel.  

 

 

 

 

 

 

 

Fig. 3: Venny diagram (Oliveros 2007) of the distribution of 68 published sequences from various teleost species that aligned 
with EST and GBS derived SNP containing oligonucleotides. 

 
 During the development of the GBS-derived 384 SNP panel (Chapter 4), SNPs were selected based 

on extreme differences in pooled allele frequency differences across populations. One particular locus 

(SNP_150) was a strong candidate (Table 3) for the SNP panel and upon closer analysis during the work 

detailed in this chapter, was shown to align with the myosin VIIB gene. The expressed product of this gene is 

an actin-based motor molecule with ATPase activity that plays an important role in intracellular movements. 

In humans it is expressed in the eye and inner ear, the olfactory epithelium, brain, choroid plexus, intestine, 

liver, kidney, adrenal gland, and testes (Chen et al. 2001). While guanine was the dominant nucleotide 

expressed in the Levantine Sea samples (60%), adenine was by far the dominant allele for samples captured in 

the Strait of Sicily and the Tyrrhenian Sea (92% and 93%, respectively). After the validation of a high 

performance 96 SNP panel, SNP_150 continued to show significant differences in allele frequency across 

sampling sites (Table 4). Nucleotide and amino acid sequences of the myosin VIIB gene from various other 

teleost species were aligned with the flanking sequence of SNP_150. Substitution of the reference allele (A) 

with the alternative allele (G) results in a non-synonymous base substitution.  
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Table 3: Allele frequency of SNP associated with the Myosin VIIB gene sequence (SNP_150) from 555 samples pooled by 
 geographic area from GBS SNP discovery by BGSA Genetics Consortium during GBYP Phase 4. 

Pop SNP read count Allele A frequency 

Western Atlantic 205 0.77 

Balearic Islands 816 0.55 

Ligurian Sea 39 1.00 

Tyrrhenian Sea 268 0.93 

Strait of Sicily 188 0.92 

Levantine Sea 498 0.40 

 
Table 4: Allele frequency of SNPs associated with the Myosin VIIB gene from 167 samples pooled by sampling location from 
GBS SNP discovery by the BGSA Genetics Consortium during GBYP Phase 4 - 96 SNP panel validation. 

Population Year  A G 

Cape Hatteras 2008 Young-of-the-Year 0.588  0.412 

Gulf of Mexico 2008 Larvae 0.688 0.312 

Gulf of Mexico 2009 Larvae 0.500 0.500 

Strait of Sicily 2011 Young-of-the-Year 0.857 0.143 

Strait of Sicily 2012 Young-of-the-Year 0.542 0.458 

Levantine Sea 2011 Young-of-the-Year 0.654 0.346 

Balearic Islands 2011 Young-of-the-Year 0.604 0.396 

 

7.4 Discussion 

7.4.1 Technical considerations 

 It's difficult to anticipate the outcome of the genotyping of efforts currently underway (July 2015) 

using the selected SNP panel described in this chapter.  However, since all SNPs have been validated and 

used to genotype modern tuna samples in the past two years as part of other projects, it can be expected that 

the success rate will be high. As described in Chapter 6, the historical samples to be genotyped are of varying 

concentration and quality. Undoubtedly these factors will play a role in the number of samples that are 

successfully genotyped. According to Sawyer et al. (2012), it should be expected that thymine residues will 

have replaced cytosine at the 5' end of some of the historical DNA fragments. However, since all SNPs are 

located 60 bp from fragments ends, according to the requirements of the Fluidigm genoytping platform, this 

should not cause errors with SNP genotyping but may present a problem with the binding of damaged 
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fragments to probes. As such, we may expect to see reduced efficiency in older samples, not as a consequence 

of reduced DNA concentration, but rather reduced binding efficienty due to errors in the 5' end fragments. 

This may prove to be a significant problem for specimens that have been exposed to heat or cleaning agents 

(Sawyer et al. 2012), as may be the case with the samples from the Adriatic Sea. 

7.4.2 Alternative options for investigations into temporal shifts in allele frequencies 

 Briggs et al. (2009) developed a technique called Primer extension capture (PEC) which they have 

used to capture targeted fragments of DNA in contaminated historical samples. Basically, a species specific 5' 

biotinylated oligonucleotide primer is allowed to bind to the target fragment during a single Taq DNA 

polymerase extensions. Excess primers are removed from the mix using spin column purification. The target 

fragment and primer duplex are then allowed to bind to magnetic beads which are then washed of all other 

elements within the solution (other DNA and reagents). Finally the target DNA is eluted from the beads and 

the result is pure target DNA which can be used for a number of downstream applications (amplification and 

sequencing, 454 emulsion sequencing etc.). This protocol was used to isolate neanderthal DNA from 38,000-

70,000 year old remains.  

7.4.3 Potential applications 

 If the historical samples from the Black Sea prove to be genetically unique from the other historical 

and modern samples, then further investigation is certainly warranted. The BFT bones excavated from the 

Yenikapi site may eventually reveal the nature of local adaptations to conditions in the Black Sea suggested 

by Mackenzie and Mariani (2012). These revelations will be required for any efforts to restock the Black Sea 

with spawning BFT, if isolated spawning was indeed taking place there in the past. Attempts can be made to 

screen individuals from the modern stock for these traits or genetically modify BFT at the various culturing 

facilities in Japan, Spain, Italy and Israel (de la Gandara et al. 2010). 

  If the residential group of BFT in the eastern Mediterranean proves to be descended from a unique 

Black Sea population, then this should be reflected in future conservation efforts. Results of this nature would 

justify additional genetic sampling, a more comprehensive tagging campaign in the Sea of Marmara and 

Aegean Sea and modelling experiments to determine the impacts of different management initiatives.  
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7.4.4 Future Aims 

 Manufacture of the final genotyping SNP panel will be completed by Fluidigm in May 2015 and all 

samples are expected to be genotyped shortly thereafter. We expect to have the final deliverable for this 

project completed by the end of June 2015. Beyond the preliminary results expected from this short contract, 

it will take some time to fully exploit the potential of all of the expected results from this ambitious project. 
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Appendices 
 
Appendix 1: Samples to be genotyped using a high performance 96 SNP panel containing loci associated with population structuring and selective traits. 

Geographic region Modern samples 1911-1926  1755  4
th

-15
th

 century  1
st
 century 4

th
-2

nd
 century BCE Total 

Adriatic Sea 40 (2011) 50 (Istria, Croatia)     90 

Tyrrhenian Sea  40 (2011) 
50 (Pizzo and 

Messina, Italy) 
    90 

Strait of Sicily / 

Ionian Sea 
40 (2012) 50 (Zliten, Libya)     90 

Gibraltar / Portugal 40 (2011)  
2 (Cádiz, 

Spain) 
 10 (Cádiz, Spain) 

16 (Baelo Claudia, 

Castrom Marim, Tavira) 
68 

Levantine Sea  29 (2011) 2 (Istanbul, Turkey)  6 (Istanbul, Turkey)   37 

Balearic Sea 40 (2011)      40 

Total 269 152 2 6 10 16 455 
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Appendix 1: Primers used to amplify portions of targeted genes associated with selective traits. Asterisk denotes new primers that were 
designed using previously publshed sequences and Primer 3 software (Koressaar and Remm 2007; Untergrasser et al. 2012). 

Name Gene Sequence Species Reference 

TTNKATP Na+/K+ ATP-ase F: 5'- GAGCAYTTCATCCACATCCATCAC -3' 
R: 5'- ATCTGGTTGTCRAACCAC -3' 

Thunnus 
orientalis 

Mladineo  and 
Block (2009) 

TTMYO Myoglobin F: 5'- AATCAGACGGGATATATTAC -3'  
R: 5'- TTTTAAAGCAACAGAGAG -3' 

Thunnus 
thynnus 

Marcinek et al. 
(2001) 

TTHSP27 Heat shock protein 27 F: 5'- ACCACGCCACTTTTGTTTTC -3' 
R: 5'- CAGCAG CCATGACAGAGAGA-3' 

Thunnus 
orientalis 

*Ojima and 
Oohara (2008) 

TTHSP70 Heat shock protein 70 F: 5'- CGACCAGGGCAACAGGAC -3' 
R: 5'- GGTCAGGATGGACACGTCGAAGG -3' 

Thunnus 
orientalis 

Mladineo  and 
Block (2009) 

TTTNF1 Tumour necrosis factor 
alpha, Section 1 

F: 5'- CGACTGGAGCACGAGGACACTGA -3' 
R: 5'- CAACAAGGAGAGCAGTAGCAGCCG -3' 

Thunnus 
thynnus 

*Lepen Pleic et 
al. (2014) 

TTTNF2 Tumour necrosis factor 
alpha, Section 2 

F: 5'- GCTGGAGTGGAGAGTTGAT -3' 
R: 5'- GCTGTCAACGATACGCTACGTAACG -3' 

Thunnus 
thynnus 

*Lepen Pleic et 
al. (2014) 

TTTNF3 Tumour necrosis factor 
alpha, Section 3 

F: 5'- GAGAGAAGTATCACCACAGAGCG -3' 
R: 5'- TGGCTGTAGACGAAGTAGAGGC -3' 

Thunnus 
thynnus 

*Lepen Pleic et 
al. (2014) 

TTTNF4 Tumour necrosis factor 
alpha, Section 4 

F: 5'- TCTTGGTGCCGTGTTTCAG -3' 
R: 5'- CTTCGTATCCTCTCAATTAGTATCACAGC -3' 

Thunnus 
thynnus 

*Lepen Pleic et 
al. (2014) 

TTTNF5 Tumour necrosis factor 
alpha, Section 5 

F: 5'- CCAGGCRGCCATCCATTTAGAAG -3' 
R: 5'- TTTCCCGCTCCCTGCTCGTCG -3' 

Thunnus 
thynnus 

*Lepen Pleic et 
al. (2014) 

TTHEM Beta chain hemoglobin F: 5'- TCATTGAGGAGACAAACCACA -3' 
R: 5'- TCAAGAGCCATCATGGTTGA -3' 

Thunnus 
thynnus 

*Yokoyama et 
al. (2004) 

TTMER1 Methylmercury binding 
protein, Section 1 

F: 5'- ACGGATCGTGAAAACCAGTC -3' 
R: 5'- GCTTTGTGTC CAGCATCTCA-3' 

Thunnus 
thynnus 

*GenBank: 
DM189309.1 

TTMER2  Methylmercury binding 
protein, Section 2 

F: 5'- GGTCTGCTGGGTTTACTGGA -3' 
R: 5'- TCAAGATCGTCCACTT GCTG -3'  

Thunnus 
thynnus 

*GenBank: 
DM189309.1 

TTMER3  Methylmercury binding 
protein, Section 3 

F: 5'- CCAGGCAGAGGAAGACAAAG -3' 
R: 5'- ACTCACCATTCTCCGTCTGG -3' 

Thunnus 
thynnus 

*GenBank: 
DM189309.1 

TTMER4 Methylmercury binding 
protein, Section 4 

F: 5'- GCTCTTGTTTCCCAGCTGAC -3' 
R: 5'- GCAAGCTTCCTGTCAACCTC-3' 

Thunnus 
thynnus 

*GenBank: 
DM189309.1 

TTMER5 Methylmercury binding 
protein, Section 5 

F: 5'- TGACGATGCTGTCAGAGGAC -3' 
R: 5'- GATCACGGCTCTTTGCTCTC -3' 

Thunnus 
thynnus 

*GenBank: 
DM189309.1 

TTIL1  Interleukin 1 beta, 
Section 1 

F: 5'- GCTGGGATAACCAACCAAAC -3' 
R: 5'- GTCCAGCAAGATGTTGAGCA -3' 

Thunnus 
thynnus 

*Lepen Pleic et 
al. (2014) 

TTIL2 Interleukin 1 beta, 
Section 2 

F: 5'- GCACCGAGTTCAGAGATGAAA -3' 
R: 5'- ATTAAGAGTTTTACCTCCAGATGC -3' 

Thunnus 
thynnus 

*Lepen Pleic et 
al. (2014) 

TTIL3 Interleukin 1 beta, 
Section 3 

F: 5'- TCTATCGCATGCACCACATT -3' 
R: 5'- CACACTCACACAGCGTAAGGA -3' 

Thunnus 
thynnus 

*Lepen Pleic et 
al. (2014) 
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Appendix 2: 10 SNPs that aligned with published bluefin tuna sequences (Chini et al. 2008). 
SNP Reference code Protein description %ident %cover E-value 
SNP_023_EST EG630677 Asparaginyl-tr synthetase 95.28 100 3e-42 
SNP_147_EST EL610929 Elongation factor 1 alpha 95 99.17 6e-47 
SNP_027_EST EL611421 Eukaryotic translation initiation factor subunit g 99.12 93.39 1e-57 
SNP_144_EST EG999382 Gamma-aminobutyric acid receptor-associated 1 91.87 100 3e-33 
SNP_059_EST EC919262 High-mobility group box 1 100 93.39 2e-59 
SNP_220_EST EC919270 Integral membrane protein 2b 100 100 3e-64 
SNP_305_EST EC917824 Myosin regulatory light chain smooth muscle isoform 95.93 100 1e-50 
SNP_163_EST EH000371 Platelet-derived growth factor receptor-like 93.97 94.21 1e-38 
SNP_086_EST EC092247 TGF beta-inducible nuclear protein 1 99.17 100 6e-50 
SNP_125_EST EC918814 Thioredoxin interacting protein 100 100 3e-64 
 
Appendix 3: 51 SNPs that aligned with Dicentrarchus labrax annotated genes. Four genes aligned with more than one SNP-containing 
oligonucleotide. 

SNP Reference code Protein description %ident %cover E-value 

SNP_165_EST LG12:9448943-9449064 Alpha cardiac-like isoform 1  93.44 100 2e-41 
SNP_199_EST LG17:12724116-12724212 Alpha cardiac-like isoform 1  94.85 80.17 6e-36 
SNP_223_EST LG10:1491505-1491623 Amylo-6-4-alpha-glucanotransferase isoform 1  84.03 98.35 3e-16 
SNP_316_EST LG20:4801689-4801801 Betaine-homocysteine s-methyltransferase 1-like  89.38 93.39 8e-32 
SNP_309_EST UN:33920969-33921082 Calumenin isoform x2  85.09 94.21 2e-17 
SNP_210_EST LG17:8208563-8208666 Cation transport regulator-like protein 1  95.19 85.95 4e-40 
SNP_381_EST LG2:5701470-5701587 Cofilin-2  95.76 97.52 2e-48 
SNP_026_EST UN:47791637-47791753 Collagen alpha-1 chain  87.18 96.69 5e-24 
SNP_356_EST LG12:21422927-21423050 Complement factor d-like  89.52 100 8e-32 
SNP_334_EST LG7:27011773-27011876 Cyclic amp-dependent transcription factor atf-4-like  93.33 86.78 1e-33 
SNP_147_EST LG9:21157592-21157711 Elongation factor 1-alpha  97.5 99.17 2e-54 
SNP_283_EST LG10:10016955-10017062 Elongation factor 2  93.52 89.26 9e-38 
SNP_027_EST LG8:11023666-11023786 Eukaryotic translation initiation factor 3 subunit g  93.39 100 2e-44 
SNP_018_EST LG20:18424838-18424949 Fructose-bisphosphatase isozyme 2-like  89.29 92.56 3e-28 
SNP_185_GBS LG6:16013746-16014145 Gamma-tubulin complex component 6  90 100 1e-132 
SNP_226_EST LG8:21804879-21804986 Heat shock protein 25 variant 1  90.74 89.26 1e-30 
SNP_059_EST LG14:17296613-17296730 High mobility group-t  92.37 97.52 6e-39 
SNP_111_EST LG1A:12106316-12106433 Homeobox protein tgif2  83.33 99.17 1e-12 
SNP_014_EST LG6:5722288-5722410 Lactate dehydrogenase-a  92.68 100 4e-40 
SNP_052_EST LG1B:11884835-11884939 Lim domain-binding protein 3-like isoform 2  89.52 86.78 2e-26 
SNP_109_EST LG10:16715626-16715744 M-striated muscle-like isoform 1  91.6 98.35 4e-37 
SNP_319_EST LG13:16731815-16731935 Myeloid leukemia factor 1-like  84.3 100 7e-17 
SNP_087_EST LG22-25:12829639-12829736 Myosin light polypeptide 6  90.82 80.99 3e-31 
SNP_305_EST LG1A:12105077-12105192 Myosin regulatory light chain smooth muscle 

isoform  
93.97 95.87 1e-43 

SNP_280_EST LG1B:12032167-12032287 Myozenin 1  96.69 100 1e-52 
SNP_300_EST LG1B:12030692-12030790 Myozenin 1  91.92 81.82 5e-30 
SNP_195_EST LG4:6467652-6467749 Phosphoglucomutase 1  95.92 80.99 6e-39 
SNP_230_EST LG4:6461135-6461249 Phosphoglucomutase 1  86.09 94.21 4e-18 
SNP_307_EST LG4:6464452-6464568 Phosphoglucomutase 1  90.6 96.69 1e-33 
SNP_081_EST LG13:15806738-15806834 Phosphorylase kinase gamma subunit 1  87.63 80.17 3e-19 
SNP_251_EST LG13:15808866-15808980 Phosphorylase kinase gamma subunit 1  87.83 95.04 5e-27 
SNP_163_EST LG2:14697136-14697256 Platelet-derived growth factor receptor-like  91.74 100 6e-39 
SNP_321_EST LG2:14696671-14696785 Platelet-derived growth factor receptor-like  84.35 95.04 1e-15 
SNP_259_EST LG7:10231075-10231184 Polycystin-1 isoform x2  81.51 98.35 6e-11 
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SNP_084_EST LG8:13049346-13049453 Polymerase i and transcript release factor-like  84.26 89.26 7e-14 
SNP_329_EST LG16:4979463-4979579 Proline-rich nuclear receptor coactivator 2  88.24 98.35 8e-26 
SNP_263_GBS LG24:2370971-2371370 Protein FAM171b-like  90 100 1e-132 
SNP_263_EST LG11:15886279-15886382 Protein kinase c inhibitor aswz variant 5  88.46 85.95 5e-24 
SNP_297_EST LG11:22112661-22112778 Reticulon-4-like isoform 1  94.12 98.35 6e-42 
SNP_327_EST UN:30827233-30827353 Ribosomal protein s14  98.35 100 2e-57 
SNP_228_EST LG1A:15592644-15592747 RUVb-like 1-like  85.58 85.95 3e-16 
SNP_021_EST LG17:12874139-12874248 Ryanodine receptor 3-like  86.73 93.39 2e-20 
SNP_345_EST LG14:23358400-23358517 Sarcoglycan delta  90.83 97.52 8e-29 
SNP_070_EST LG14:26383715-26383831 Smoothelin-like protein 2-like  89.74 96.69 3e-31 
SNP_143_EST LG6:9865641-9865761 Synemin isoform x1  85.95 100 1e-21 
SNP_292_EST LG18-21:6432507-6432628 T-complex protein 1 subunit epsilon  91.8 100 4e-37 
SNP_125_EST LG9:3159022-3159137 Thioredoxin-interacting protein  89.66 95.87 1e-30 
SNP_253_EST LG17:12286073-12286189 Trifunctional enzyme subunit mitochondrial  92.31 96.69 6e-39 
SNP_119_EST LG9:13694258-13694378 Vacuolar protein sorting-associated protein 28 

homolog  
91.74 100 1e-39 

SNP_160_EST LG18-21:11024585-11024705 Very-long-chain -3-hydroxyacyl 90.08 97.52 2e-29 
SNP_031_EST LG15:12489701-12489817 Xin actin-binding repeat-containing protein 2-like  88.03 96.69 2e-26 

 
 
 
Appendix 4: 12 SNPs that aligned with Gadus morhua genes. 
SNP Reference code Protein description %ident %cover E-Value 
SNP_023_EST ENSGMOP00000013477 Asparaginyl-tRNA synthetase 90 99.17 9e-16 
SNP_100_EST ENSGMOP00000016108 Calponin 1, basic, smooth muscle 91.67 89.26 3e-13 
SNP_026_EST ENSGMOP00000004553 Collagen, type VI, alpha 82.5 99.17 2e-15 
SNP_356_EST ENSGMOP00000005890 Complement factor D (adipsin) 82.5 96.69 3e-15 
SNP_191_EST ENSGMOP00000018264 COP9 constitutive photomorphogenic homolog subunit 5 100 84.3 2e-13 
SNP_147_EST ENSGMOP00000012846 Elongation factor 1 alpha 90 99.17 7e-16 
SNP_283_EST ENSGMOP00000012542 Eukaryotic translation elongation factor2  82.5 99.17 5e-14 
SNP_027_EST ENSGMOP00000003671 Eukaryotic translation initiation factor 3, subunit G 100 99.17 8e-17 
SNP_018_EST ENSGMOP00000015427 Fructose-1,6-bisphosphatase 2  89.19 91.74 3e-15 
SNP_253_EST ENSGMOP00000019175 Hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA 

thiolase/enoyl-CoA hydratase (trifunctional protein), beta 
subunit 

95 99.17 2e-18 

SNP_365_EST ENSGMOP00000015062 Keratin 23 (histone deacetylase inducible 94.59 91.74 1e-13 
SNP_276_GBS ENSGMOP00000011833 Solute carrier family 5 (sodium/myo-inositol 

cotransporter), member 3  
87.22 99.75 1e-56 
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Appendix 5: 30 SNPs that aligned with teleost genes.  
SNP Reference code Protein Description %ident %cover E-value 
SNP_023_EST B5X340_SALSA Asparaginyl-tRNA synthetase, cytoplasmic 92.5 99.17 5e-15 
SNP_183_EST V9HXV7_SPAAU Betaine homocysteine methyltransferase isoform 3 OS 97.14 86.78 3e-12 
SNP_316_EST V9HZ12_SPAAU Betaine homocysteine methyltransferase isoform 4 92.31 96.69 5e-16 
SNP_100_EST M4A2Z2_XIPMA Calponin 88.89 89.26 4e-12 
SNP_011_EST B3IYI3_SOLSE Calsequestrin 88.57 86.78 2e-11 
SNP_210_EST C1BJW9_OSMMO Cation transport regulator-like protein 1 84.62 96.69 8e-13 
SNP_026_EST W5UTL9_ICTPU Collagen alpha-1(VI) chain 85 99.17 2e-14 
SNP_191_EST C1BF76_ONCMY COP9 signalosome complex subunit 5 100 84.3 5e-12 
SNP_147_EST A0A087XDA8_POEFO Elongation factor 1-alpha 100 99.17 1e-16 
SNP_283_EST Q7ZVM3_DANRE Eukaryotic translation elongation factor 2, like 95 99.17 1e-15 
SNP_027_EST G3PKM0_GASAC Eukaryotic translation initiation factor 3 subunit G 100 99.17 2e-15 
SNP_018_EST B5DGL9_SALSA Fructose-1,6-bisphosphatase 89.19 91.74 1e-13 
SNP_263_EST E3TGF9_ICTPU Histidine triad nucleotide-binding protein 82.86 86.78 2e-09 
SNP_253_EST G1FKK0_EPIBR Hydroxyacyl-Coenzyme A dehydrogenase 97.5 99.17 2e-17 
SNP_220_EST C3KJN1_ANOFI Integral membrane protein 2B 95 99.17 1e-16 
SNP_356_EST Q2Z1R4_ORYLA Kallikrein like protein 85 96.69 4e-15 
SNP_109_EST W5UM88_ICTPU M-protein, striated muscle 82.05 96.69 2e-11 
SNP_150_EST B9V3X3_EPICO Muscle-specific beta 1 integrin binding protein 2 85.71 86.78 2e-11 
SNP_010_EST E1CPX3_THUMA Myoglobin 100 81.82 3e-11 
SNP_123_EST E6ZJ46_DICLA Myomesin-1 82.5 99.17 1e-11 
SNP_185_EST E6ZJ46_DICLA Myomesin-1 91.18 84.3 9e-12 
SNP_091_EST Q98TQ4_9TELE Myosin heavy chain 87.18 96.69 6e-13 
SNP_305_EST B5DGS9_SALSA Myosin regulatory light chain 2, smooth muscle isoform 95 99.17 1e-14 
SNP_280_EST E3TCH3_ICTFU Myozenin-2 82.5 99.17 5e-12 
SNP_307_EST S4S3W7_SPAAU Phosphoglucomutase 1 97.5 99.17 1e-17 
SNP_379_EST W0M2F7_SINCH SET and MYND domain containing protein 1a 85 99.17 4e-15 
SNP_125_EST I7HH00_OPLFA Thioredoxin-interacting protein 97.5 99.17 5e-16 
SNP_155_EST A0JMJ0_DANRE Ttnl protein 83.33 89.26 4e-09 
SNP_365_EST C0LMQ3_SPAAU Type I keratin-like protein (Fragment) 97.3 91.74 8e-13 
SNP_119_EST C1BLI6_OSMMO Vacuolar protein sorting-associated protein 28 homolog 94.29 86.78 3e-11 
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          Tuna Fishing by Salvador Dalí 
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Chapter 8: Summary 

 
 The loud Americans bubbled with enthusiasm, jostled each other about the boat and snapped selfies of 

pouting lips and flexing muscles while the stoic German tourists sat rigid and uncomfortable, surveying the 

sea around Favignana. Salvatore stood at the helm like an ancient statue carved from stone. He'd been 

making this trip out to the tuna traps every spring morning since he was a young fourteen year old. As they 

cleared the cliff wall marking the entrance to the harbour, rays of golden sunshine warmed his leathery skin 

and a cool morning breeze played with his tangled mop of silver hair. Twenty years ago, he and his friends 

would have been hard at work at this hour, singing songs of the hunt and heaving at the heavy nets that 

descended into the deep. Giant tunas, each the size of his turquoise Fiat Cinque Cento, would be desperately 

dashing about the enclosing network of ropes and nets, splashing the fishermen with vengeful blades of water. 

They would fill their boats with thrashing tuna and bathe in their blood. Times were different now and 

Salvatore was exhausted. As they neared the artificial nets that were forever closed and permanently fixed in 

a place where the hunt had never taken place, Salvatore looked overboard into the black eye of a large 

bluefin rolling into the wave of his wake before disappearing into the dark blue waters below. The boat's 

occupants hadn't noticed the mighty fish, they were all too busy taking pictures and searching for birds in the 

sky. They always were. Only he was haunted by the ghosts of the past. 
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 Despite the great amount of economic and political resources investmented in BFT fisheries, there is 

still much to be understood regarding their biology, reproductive behaviour and population structuring.  

Uncertainties concerning these key elements facilitated one of the most notorious stock depletions in the late 

20th century and can be found at all levels of fisheries research, beginning with taxonomic errors that have led 

to the misidentification of larvae. Clearly, this issue must be resolved before conservation and management 

efforts can be optimized. Recent advances in genetics has greatly decreased the cost and improved the 

capabilities of molecular tools to identify unknown specimens. As such, both morphology-based taxonomists 

and conservation geneticists would benefit from closer collaboration. Efforts to resolve the genetic population 

structure of the species have been met with both success and increased uncertainty. BFT are a particularly 

difficult species to study in terms of population genetics, given that they are extremely fecund, long-lived, 

highly migratory, and have overlapping cohorts, high genetic diversity and effective population sizes. 

 The goal of this PhD project was to provide soultions to some of these issues and has managed to do 

so. Although not every task accomplished during the research period was included in the original study plan, 

the entirety of the research forms a cohesive and comprehensive work. Each chapter of this dissertation builds 

upon the lessons of the previous chapter, following a logical path while answering questions of increasing 

complexity. This work begins with a task as fundamental as the proper identification of BFT larvae and 

concludes with the design of a tool for the analysis of evolutionary change. Topics such as fisheries, 

commerce, spatial dynamics, life history strategies and adaptation are given a modern and historical context.  

This dissertation also provides the most comprehensive BFT population structure analysis to date, in 

geographic, temporal and genomic scope. An analysis of the composition of feeding aggregations using 

genetic characteristics has also been provided for the first time. The milestones reached during the study 

period are detailed in Table 1, which highlights both the conclusions and actions taken to resolve each 

challenge.  

 Single nucleotide polymorphisms (SNPs) have been demonstrating a great deal of promise for 

fisheries science in recent years. Since other molecular markers (mtDNA control region and microsatellites) 

have provided mixed results concerning the population structure of BFT, it was expected that the increased 

resolution of SNPs and genome coverage provided by the Genotyping-by-Sequencing technique could 
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provide some clarity to the issue. As such, a high throughout SNP genotyping panel has been developed and 

validated. Overall FST values are comparable with those provided through the analysis of other genetic 

markers. Substantial genetic differences between cohorts were revealed, thereby highlighting the need for 

temporal replicates in genetic structuring investigations.  

Table 1: Milestones reached during the PhD study period. 

CONCLUSIONS ACTIONS TAKEN 

Scombrid larval taxonomy is plagued with 
confusion and requires modernization. 

A review of long trusted taxonomic keys has 
revealed sources of errors. 

Taxonomic confusion has resulted in the 
misidentification of Atlantic bluefin tuna larvae in 

the Mediterranean. 

A molecular identification key based on 
characteristic attributes was developed for the 

identification of scombrids in the Mediterranean. 

The population structure of Atlantic bluefin tuna 
remains uncertain. 

A high throughput SNP panel for population 
assignment was developed. 

Combined with an inappropriate restriction 
enzyme, the Genotyping-by-Sequencing pipeline 
performed poorly when analyzing BFT samples. 

A new work pipeline based on allele read 
frequencies was developed. 

Temporal variation in SNP allele frequencies 
within sampling locations was detected. 

Multiple years of samples were analyzed in an 
effort to eliminate inter-annual variation. 

Young Atlantic bluefin tuna from the Gulf of 
Mexico and the Mediterranean can be 

distinguished from one another. 

 

Composition analysis of adult feeding 
aggregations shows annual variation in 

recruitment from the two spawning areas. 

 

Ancient bones retrieved from archaeological 
excavations contain DNA in low concentrations. 

A new protocol for the extraction of DNA from 
ancient samples was developed. 

DNA extracted from 2000 year-old bones can be 
analyzed using advanced genetic techniques and 

could provide a genetic baseline from thepre-
industrialized era. 

 A genotyping panel containing SNPs from two 
separate projects (transcriptomics and genotyping-

by-sequencing) was designed for evolutionary 
analysis and population structuring studies. 

 

 The data provided by the techniques used for SNP discovery were unsatisfactory at first, until a 

solution was developed, using pooled allele read counts. The SNP panel should continue to be used for the 
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genotyping of samples for several years in order to accurately characterize the inter-annual variation and 

migration rates between areas. The newly developed SNP discovery work pipeline was dependent on the 

genome reference developed during this period. Efforts to construct and annotate a reference genome for BFT 

should continue, as it will provide a road map for all future Next Generation Sequencing studies. The 

approach developed herein can be applied to similar studies focusing on other tuna species. 

 The changing composition of adult feeding aggregations detected during this research should be taken 

into consideration for stock assessment purposes and for the allocation of quotas. A ton of BFT captured in 

Portugal is quite different from one caught in Iceland. Unfortunately, the existing ICCAT management plan 

doesn't recognize that BFT cross the 45th meridian and as such a large proportion of BFT hailing from the 

Gulf of Mexico are harvested in European waters. Moreover, the biomass of BFT caught on the east coast of 

North America can no longer be considered indicative of the health of the western population, since many of 

these fish are migrants from the Mediterranean. The results from this thesis suggest that the composition of 

these feeding aggregations should be assessed using genetic tools, in order to establish a more accurate 

estimate of the recruitment and mortality rates of both populations. 

 Historical collections of bones preserved in favourable conditions have allowed for an expansion of 

temporal genetic analyses. A new protocol for ancient DNA extractions has been described as well as an in 

depth characterization of extracted DNA from several collections. A new panel of SNPs, taking elements from 

two SNP-discovery approaches has been developed for analysis of these samples has been designed and the 

results of this analysis should be available shortly. Unfortunately, because the research conducted within the 

PhD study period requires a great deal of time, the results from this last analysis won't be available for 

publication for several months. 

 Currently, two articles have been published from this work and two more are currently in preparation. 

Due to the continuous nature of the research projects discussed herein, numerous additional manuscripts are 

likely to be written in the coming year before all results are properly communicated to the public. 
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