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Abstract

Transcriptomic analysis of the immune microenvironment of
non-hematopoietic human tumors

Abstract
Tumors grow within a complex microenvironment composed of immune cells, fibroblasts,
endothelial cells and other non-malignant cells. The study of the composition of tumor
microenvironments has led to classifications with prognostic and theranostic values, as well
as the discovery of treatments modulating the composition and the functional orientation
of the microenvironment. Concurrently, molecular classifications of tumors have proposed
taxonomies within cancers that define groups of patients with different prognoses and are
associated with response to treatments.

Recent evidence suggest that the phenotype of the malignant cell is a critical deter-
minant in the shaping of its microenvironment, suggesting potential correlations between
immune and molecular classifications. The goal of this PhD project was therefore to ana-
lyze the microenvironment of molecularly-classified human tumors.

Colorectal cancer represents a paradigm for tumor immunology, as it is the human
cancer in which it was exemplified that an adaptive immune response can control tumor
growth and metastasis. Conversely, clear-cell renal cell carcinoma represents an exception
in tumor immunology, as an extensive adaptive immune response is associated with more
aggressive diseases.

Molecular transcriptomic classifications were recently proposed for both of these ap-
parently immunologically contrasted cancers. In this work, I propose a methodology that
enables the characterization of the tumor microenvironment using transcriptomic data,
and apply it to describe the immune contexture of molecular subgroups of colorectal and
clear-cell renal cell carcinomas.

These analyses argue in favor of the unification of molecular and immune classifications
of human cancers, challenge our current views of the relationship between the composition
of the tumor microenvironment and patient’s prognosis, and suggest immunotherapeutic
approaches that could benefit subgroups of patients in these two cancers.
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Analyse transcriptomique du microenvironnement
immunitaire des tumeurs humaines non-hématopoïetiques

Résumé
Le microenvironnement des tumeurs est composé de cellules immunitaires, de fibroblastes
et de cellules endothéliales, ainsi que d’autres cellules non-malignes. Son étude a permis
d’établir des classifications qui ont une valeur pronostique et théranostique, ainsi que de
développer des traitements modulant la composition et l’orientation fonctionnelle du mi-
croenvironnement. En parallèle, des classifications moléculaires des tumeurs ont proposé
des taxonomies stratifiant les cancers humains en sous-groupes associés à des différences
de survie des patients et leur réponse aux traitements.

Des études récentes suggèrent que le phénotype de la cellule cancéreuse est un facteur
critique dans le façonnement du microenvironnement tumoral, suggérant un possible con-
sensus entre les classifications immunitaires et moléculaires. Le but de cette thèse était
donc de caractériser le microenvironnement des sous-groupes moléculaires de tumeurs hu-
maines.

Le cancer colorectal a été le premier cancer humain dans lequel il a été mis en évidence
qu’une réponse immunitaire adaptative était associée à un contrôle de la croissance tu-
morale, et représente ainsi un exemple type pour l’immunologie des tumeurs. A l’inverse,
le carcinome du rein à cellules claires est une exception vis-à-vis de l’immunologie des
tumeurs, puisqu’une forte réponse immunitaire adaptative y est associée à des tumeurs
plus agressives.

Des classifications transcriptomiques ont été récemment établies pour ces deux cancers,
qu’à première vue tout oppose sur le plan immunitaire. Dans ce travail, je propose une
méthode permettant l’étude du microenvironnement tumoral à partir de données tran-
scriptomiques, et décris son application à l’étude du contexte immunitaire des cancers
colorectaux et du rein à cellules claires.

Ces analyses suggèrent qu’une unification des classifications moléculaires et immuni-
taires des tumeurs humaines est possible, remettent en cause notre conceptualisation des
liens entre la composition du microenvironnement tumoral et le pronostic du patient, et
évoque des pistes immunothérapeutiques potentiellement adaptées à certains sous-groupes
de patients dans ces cancers.
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Chapter 1

Introduction

In this body of work I describe a comprehensive analysis of the relationship between tumor
infiltration by several immune cell subsets and both molecular characteristics of the tumor
cells and clinical outcome of the patients. I first introduce previously-published relevant
results.

1.1 Introduction to immunology

The immune system comprises a set of organs and circulating cell populations. Its best
known function is to defend the organism against pathogens. It is also implicated in other
processes such as maintenance of tissues’ homeostasis through the clearance of apoptotic
bodies. Its role in preventing the occurrence of cancer has been debated for a long time,
but is now widely accepted. We first present general immunology results that help describe
and interpret the spectrum of immune responses to cancer.

1.1.1 Effectors and modulators of immune responses

Before discussing in more details the relationship between the immune system and cancer, I
first detail the various currently described populations that constitute the immune system,
as well as the molecules that regulate their functions. The main role of the immune system
is to recognize the self from the non-self and eliminate the latter.

1.1.1.1 Regulation of immune cells functions

1.1.1.1.1 Chemokines guide immune cells trafficking
Most immune cells exert their functions locally, either through contact-dependent

mechanisms or by secreting molecules with short ranges of action. In any case, pre-
cise trafficking of immune cells to sites of inflammation or to lymphoid organs is re-
quired. This trafficking is mostly regulated by chemokines. These molecules are specific
for one or several receptors expressed on mobile cells. Sensing of a chemokine gradient
by receptor-expressing cells will lead the movement of the cell towards the direction of
highest chemokine concentration.

1.1.1.1.2 Interleukins orientate the functionality of immune responses
More than thirty types of interleukins have been described in humans. Interleukins

orientate the development of immune cells in primary lymphoid organs. In the periphery,
interleukins mediate the functional orientation of immune cells, triggering proliferative,
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activating, inhibiting or phenotype-polarizing events in cells expressing the corresponding
receptors.

1.1.1.2 Classifications of immune cell subsets

Immune cells can be classified according to their function or to their developmental origin.
These classifications are strongly related, although not entirely redundant. I first present
the functional classification of immune cells, as it eases the conceptualization of immune
responses. I then detail the process of hematopoiesis, as it is a theoretical framework that
heavily influence the methodology we introduce later.

1.1.1.2.1 Functional classification of immune cells
Immune cells have historically been separated functionally into innate and immune

compartments. I present in this section the main characteristics of these two compart-
ments.

1.1.1.2.1.1 Innate immunity
Innate immunity refers to the process of defending the organism against pathogens

(viruses, bacteria, fungi and parasites) in generic ways. Thus, its action begins with
anatomical barriers (such as the skins, gut or respiratory mucosa) which prevent pathogens
from entering the body. If this first line of defense fails, mechanisms aimed at eliminating
pathogens will take place.

1.1.1.2.1.1.A Danger signals
The first role of the innate immune system is to identify situations threatening the

organism. Cells of the innate immune system will recognize intruding pathogens. To
do so, these cells express receptors to molecules known as Pathogen Associated Molec-
ular Patterns (PAMPs). Well-known PAMP-receptor families include Toll-like receptors
and nucleotide olgomerization domain-like receptors. These PAMPs-receptors recognize
non-self molecules commonly expressed by pathogens. For instance, TLR4 recognizes,
among other ligands, Lipopolysaccharide[1], a constituent of the outer membrane of Gram-
negative bacteria. TLR3 recognizes double-stranded RNA[1], which can be found in some
viruses but not in eukaryotic cells. NOD2 recognizes peptidoglycan, a sugar found in
Gram-positive bacteria[1]. Apart from pathogens, cells of the innate immune system can
also sense Danger Associated Molecular Patterns (DAMPs), such as molecules of the self
that are released in extracellular compartements by damaged cells (for instance nuclear
DNA)[2]. The innate immune system also comprises soluble molecules able to recognize
danger signals, such as the complement system. The patterns recognized by the innate im-
mune system are limited to a few tens, but have been selected through the co-evolution of
organisms and pathogens during millions of years, and are therefore able to sense dangers
in many non-physiological situations.

1.1.1.2.1.1.B Effector functions
When danger signals are detected by the innate immune system, a reaction known

as acute inflammation is triggered. Cells sensing danger signals release pro-inflammatory
molecules that lead to the recruitment and the activation of immune cells at the site
of inflammation. These lead to the elimination of pathogens or damaged cells through
phagocytosis, infected cells killing, creation of physical barriers to trap pathogens and
antigen presentation to cells of the adaptive immune system.
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1.1.1.2.1.2 Adaptive immunity
The fundamental diffence between the adaptive and the innate immune system is the

way the pool of recognized molecules is generated. While the innate immune system is
based on a limited and fixed set of patterns, the adaptive immune system is based on
the selection of randomly generated receptors to discriminate between self or non-self
molecules. Molecules that trigger adaptive immune responses are termed antigens.

1.1.1.2.1.2.A Repertoire
During their development, receptors of the cells of the adaptive immune system ex-

press undergo a process known as V(D)J recombination. Briefly, receptors of adaptive
immune cells are stochastichally chosen through random selection of several DNA loci. If
these random rearrangements lead to out-of-frame DNA sequences, the cell will undergo
apoptosis. Otherwise, it will continue its development. At this point, the cell is equipped
with a randomly-generated receptor, which could a priori bind to either self, non-self or
both. To prevent auto-immunity, these cells are presented with peptides derived from the
self, and those whose receptors recognize self antigens with high affinity are eliminated.
Those passing these selection criteria are therefore able to express a receptor that will not
react with self antigens, and will be allowed to circulate within the organism. In the event
of a binding of the receptor carried by this cell to an antigen, the cell bearing this antigen
should therefore be non-self and eliminated.

1.1.1.2.1.2.B Effector functions
Cells of the adaptive immune system become activated when they detect non-self anti-

gens. This activation can lead to the activation of other immune cell subsets, elimination
of infected host cells, inactivation of circulating molecules such as toxins and designation
of targets to other immune cells. A distinctive functional feature of adaptive immunity
is its ability to memorize non-self antigens. Upon antigen-specific activation, a subset of
the effector cell differentiate into long-live Central Memory cells, able to patrol the body
for years and rapidly expand upon antigen re-encounter.

1.1.1.2.2 Immune cells phylogeny
Immune cells all originate from hematopoietic stem cells (HSC), a common progenitor

that is located in the bone marrow. A succession of lineage commitments, a process
known as hematopoiesis, orientates the differentiating immune cell towards its terminal
differentiation stage. The developping immune cell first commit toward the myeloid lineage
or the lymphoid lineage.

Most myeloid cells belong to innate immunity, while most lymphoid cells are related
to adaptive immunity. Myeloid lineage commitment of the HSC gives rise to a Com-
mon Myeloid Progenitor cell (CMP), that can further differentiate into a Megakaryocyte-
erythroid progenitor which give rise to non-immune blood cells (erythrocytes and megakary-
ocytes), or to a Granulocyte/Macrophage Progenitor (GMP) which can develop into
myeloid immune cells. The GMP can differentiate into cells of the granulocytic lineage
(Neutrophils, Basophils, Eosinophils), Mast cells, or into monocytes. Monocytes can then
give rise to macrophages or myeloid dendritic cells.

The lymphoid lineage begins with the commitment of HSC into a Common Lym-
phoid Progenitor (CMP). CMPs can then commit to the B or the T lineage. The origin
of Natural Killer (NK) cells is not fully established but studies support the idea that they
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originate from a common T/NK lineage[3–5]. Innate lymphoid cells, a recently identi-
fied subtype of lymphoid cells that are tied to innate immunity and whose main function
is cytokine production, are believed to originate from the T/NK lineage. The develop-
mental origin of plasmacytoid Dendritic Cells (pDC) is still controversial, as these cells
express lymphoid specific markers and are reported able to arise from both myeloid[6] or
lymphoid[7] progenitors.

1.1.1.2.3 Functions of myeloid cells
We detail in this section the function of myeloid cell subsets during immune responses.

The function of lymphoid cells is developped in the next section. Figure 1.1 graphically
illustrates the main functions of immune and other stromal cells during inflammatory
responses.

Figure 1.1: The crosstalk and effector functions of immune and other stromal cells during
inflammatory responses.

1.1.1.2.3.1 Monocytes

Monocytes are immature myeloid cells which are mostly found in the blood. Upon
stimulation by danger signals and/or cytokines, they differentiate into macrophages or
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myeloid dendritic cells.

1.1.1.2.3.2 Macrophages

Macrophages are effector cells arising from monocytes upon entrance in tissues from
the peripheral blood. Their major function is phagocytosis, which is the internalization of
cells, bacteria or other small bodies, which are then destroyed by acidification, action of
proteases and reactive oxygen species. Macrophages are capable of low levels of antigen
presentation to CD4+ T lymphocytes.

1.1.1.2.3.3 Dendritic cells
Dendritic cells are specialized antigen-presenting cells (APC). Their names come from

the long dendrites that extend from their bodies, which they use to sense surrounding
molecular patterns. Dendritic cells are capable of phagocytosis, which enable them to
present antigens originating from the extracellular milieu to CD4+ T lymphocytes, as well
as to CD8+ T cells through a process known as antigen cross-presentation. Apart from
phagocytosis, dendritic cells are also capable of macropynocytosis, which is the internaliza-
tion of small volumes of extracellular fluids, whose antigenic content is subsequently pro-
cessed and presented. Finally, dendritic cells can express co-stimulatory or co-inhibitory
ligands, as well as a wide spectrum of cytokines, which depends on their state of mat-
uration and the stimuli they received during maturation. These secondary signals will
orientate the functionality of the dendritic cells-stimulated immune cells.

1.1.1.2.3.4 Neutrophils
Neutrophils are large immune cells featuring cytoplasmic granules. These granules

contain cytotoxic molecules which are released upon encountering bacteria. Neutrophils
are capable of phagocytosis, but mostly target bacteria rather than large cellular bodies.
Neutrophils are highly abundant in the peripheral blood, and can rapidly mobilize upon
early inflammatory signals.

1.1.1.2.3.5 Other myeloid cell subsets
Other granular myeloid cells include basophils and eosinophils, whose mains functions

are to defend the organism against parasites. Mast cells are found in tissues and are
characterized by histamine-containing granules. Upon binding of allergens to mast cells-
bound IgE immunoglobulins, they release pro-inflammatory mediators such as histamine,
which is notably associated with allergic reactions.

1.1.1.2.4 Functions of lymphoid cells

1.1.1.2.4.1 T lymphocyte
T lymphocytes are lymphoid cells that differentiate from CMP cells in the bone marrow

and then migrate to the thymus. Inside the thymus, the immature T cells (Thymocytes)
randomly rearrange DNA fragments encoding the T cell receptor molecules leading to a
selection of a randomly generated sequence. This sequence is then translated into proteins
forming the TCR. The TCR is able to sense peptides presented by Major Histocompati-
bility Complex (MHC) molecules. Thymocytes are selected for their capacity to positively
interact with MHC molecules, and negatively selected for reactivity against self antigens.
T cells able to fulfill both of these criteria will leave the thymus and circulate within
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the body. T cells are however functionally heterogeneous, presenting cytotoxic, helper or
suppressive phenotypes.

1.1.1.2.4.1.A Naive and Memory T cells
T lymphocytes leave the thymus in a naive state, marked by expression of the CD45RA

membranous epitope. Upon antigen recognition, naive T cells mature into memory T
cells, marked by a switch of CD45 expression to the CD45RO isoform. CD45 is a tyrosine-
phosphatase which regulates signal transduction in immune cells, although the functions
of each of its six different isoforms is poorly understood[8]. Most of the memory T lym-
phocytes will feature an effector-memory (TEM) CD45RO+CCR7- phenotype and home to
peripheral organs to exert effector function. A subset will feature a central-memory (TCM)
CD45RO+CCR7+ phenotype and home towards lymphoid organs following chemoattrac-
tion by the ligands of CCR7, CCL19 and CCL21, to watch for the re-apparition of their
target antigen[9]. Memory T cells can exert different functions according to their pheno-
types.

1.1.1.2.4.1.B CD4+ Helper T cells
CD4+ T cells are T cells expressing the membrane-bound CD4 co-receptor. This co-

receptor enable them to interact with class II MHC molecules. Class II MHC molecules
are mostly expressed by antigen-presenting cells, and present peptides from the extracel-
lular environment. Upon recognition of class II MHC-bound peptides and in the presence
of co-stimulatory molecules, CD4+ T cells secrete molecules that modulate the function of
surrounding immune cells, hence their ’helper’ denomination. Helper CD4+ T cells come
in a wide variety of functional orientations that we briefly recapitulate.

1.1.1.2.4.1.B.a T helper 1 cells
T helper 1 (Th1) cells foster cellular immune responses. The main cytokines produced

by Th1 cells are IFNg and IL2, which activate CD8+ T cells and NK cells, as well as
macrophages, and promotes CD4+ T cells differentiation to the Th1 subtype. IFNg stim-
ulates IL12 production by dendritic cells which in turn enhances IFNg production. Th1
cells also produce IL2 which foster survival and proliferation of T lymphocytes.

1.1.1.2.4.1.B.b T helper 2 cells
T helper 2 (Th2) cells foster humoral immune responses. They produce the IL4 and

IL13 cytokines which foster the Th2 differentiation of CD4+ T cells, and favors IgE an-
tibody class-switching of B cells which in turns activate basophils and mast cells. Other
Th2-associated cytokines are IL5 which activate eosinophils and IL9 which activates mast
cells and lymphocytes.

1.1.1.2.4.1.B.c Regulatory T cells
Uncontrolled immune reactions can disrupt host’s tissues homeostasis through inflam-

matory reactions, allergy or auto-immunity. In physiological conditions, suppressive sig-
nals are able to weaken immune reactions and avoid immunity-related collateral damage.
Regulatory T cells are CD4+ T cells which produce IL10 and TGFb and therefore suppress
the activity of other lymphocytes and dampen inflammation.

1.1.1.2.4.1.B.d T helper 17 cells
T helper 17 (Th17) cells are induced by IL6, IL21 or IL23 signaling in the presence
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of TGFb. They release IL17A, IL17F, IL22 which have pro-inflammatory properties, and
IL21 to stimulate Th17 differentiation in an autocrine manner.

1.1.1.2.4.1.C CD8+ Cytotoxic T cells
Cytotoxic T cells are T cells expressing the membrane-bound CD8 co-receptor. This

co-receptor enable them to interact with the class I family of MHC molecules. Class
I MHC molecules are expressed in all nucleated cells of the body[10], and apart from
specialized antigen-presenting cells, exclusively present peptides from proteins synthesized
by the cell. Notably, when an infecting virus hijacks the host’s cellular machinery to
translate viral-encoded proteins, viral-derived peptides are presented on the cell membrane
by class I MHC molecules. CD8+ T cells are able to sense class 1 MHC-bound peptides
and therefore recognise intracellular non-self antigens. Upon recognition, CD8+ T cells
secrete cytotoxic molecules (notably granzymes and perforin), leading to the elimination
of the target cell and the release of IFNg which further promotes a Th1 orientation of the
immune response.

1.1.1.2.4.1.D Natural Killer cells
Natural Killer cells (NK cells) are cytotoxic lymphocytes that do not express a variable

receptor and thus are classified as innate immune cells. They are able to exert their
function against antibody-marked targets, as well as on host cells that lost class I MHC
expression. Loss of class I MHC expression can be induced by some viruses to evade CD8+

T cell-mediated elimination, in which case NK cells can intervene. Like CD8+ T cells, they
secrete granzymes and perforin and release IFNg upon activation.

1.1.1.2.4.1.E Other cell subsets of the T/NK lineage
T cells can differentiate into other recently described subsets, such as T helper 9,

which release the pro-inflammatory IL9 cytokine. T follicular helper (Tfh) cells specialize
into supporting B cell follicules in lymphoid organs. Other recently identified lymphoid
subpopulations originate from the T/NK lineage. Tgd cells (T cells with a more limited
TCR repertoire that originates from the g and d loci instead of the a and b loci) which
are thought to be involved in the recognition of lipids presented by the CD1d molecule
in an MHC-independent manner[11]. NKT cells are closely related to Tgd cells in that
they also recognise CD1d-bound lipids, but differ in that they express a TCR originating
from a limited repertoire generated by the ab loci[12]. Innate Lymphoid Cells are cells
that resemble NK cells but instead of exerting cytotoxic activity release cytokines upon
activation.

1.1.1.2.4.2 B lymphocytes
B lymphocytes are the main effectors of the adaptive humoral immunity, through the

production of antibodies. Like T cells, they express a randomly generated receptor by
V(D)J recombination, the B-cell receptor (BCR). Unlike the TCR, the BCR does not
require the presentation of peptides by MHC molecules to exert its function. The BCR
resembles a membrane-bound antibody. B cells are selected against auto-reactivity within
the bone marrow. Upon non-self antigen recognition, B cells release antibodies that can
bind to the recognized antigen. This process can directly neutralize the antigen or mark
its carrier for elimination by other immune cells, such as macrophages or NK cells. Like T
cells, they leave the bone marrow in a naive state. B cells can bind to their target antigens
either directly or through T cell-mediated presentation. Upon recognition, most B cells
differentiate into Plasma cells, terminally differentiated B cells which lose their capacity to
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proliferate but which greatly enhances their capacity to produce and release antibodies. A
fraction of activated B cells differentiate into memory B cells, long-lived cells that rapidly
activate and proliferate upon antigen re-encounter.

1.2 Cancer immunology
Now that I have briefly introduced the mechanisms of actions and cooperation involved
in immune responses, mostly in the context of pathogens encounters, I present how these
mechanisms interact with tumors. I provide evidence for tumor-induced immune reactions
and present the cellular and molecular mediators at play in each situation.

1.2.1 Control of cancer growth through adaptive immunity

A fundamental aspect of cancer immunology is that the immune system, mainly through
its adaptive arm, is able to identify and eliminate host cells undergoing malignant trans-
formations and control tumor growth. Although the idea of a cancer-protecting function
of the immune system was proposed more than a century ago[13], it remained controversial
during the 20th century[14, 15]. This idea is now widely accepted and considered a hall-
mark of cancer[16]. In the following section, I report the results in favor of the acceptation
of an anti-tumor role of the immune system.

In 2004, R. Schreiber and colleagues proposed the 3E theory[17], standing forElimination,
Equilibrium and Escape. The idea behind this theory is that most cells undergoing malig-
nant transformation are recognized by immune cells and eliminated. Sometimes, a tumor
cell manage to proliferate fast enough to compensate for immune-mediated elimination,
the overall tumor size remaining at equilibrium. In the third stage, tumor cells manage
to escape elimination from the immune system and grow uncontrolled. The challenge in
studying how immune cells are able to eliminate cancer cells is that clinically detectable
tumors have, by definition, managed to grow from a single mutated cell to a mass of de-
rived malignant cells, and are therefore at the escape stage. Nevertheless, it was reported
that in colorectal cancer, tumor stage inversely correlated with infiltration by cytotoxic T
cells, suggesting that advanced lesions are less controlled by the immune system[18].

1.2.1.1 Indirect and direct evidence of adaptive immunity-mediated cancer
control

Epidemiological observations in immunodeficient patients indirectly hinted at a protective
role of the adaptive immune system against cancer occurrence. In particular, it was ob-
served in the 1980-1990 decade that patients suffering from HIV/AIDS have higher chances
of developing Kaposi’s sarcoma[19–21], a transforming virus-associated cancer, caused by
HHV8 . Independantly from the host’s immunocompetence, a pool of HHV8 persists in
endothelial cells, whose malignant proliferation cannot be controlled by immunodeficient
patients[22]. Transplant recipients, who receive immunosuppressive therapies to avoid
transplant rejection, have a consistently higher risk of developing this malignancy[23].
Strikingly, transplant recipients are also at higher risk of developing other solid tumors,
such as brain[24] and other central nervous system malignancies[24], thyroid[24], bone[24],
colon[25], lung[25], prostate[25], stomach[25], esophagus[25], pancreas[25], ovary[25], breast[25],
melanoma[24, 25], leukemia[25], hepatobiliary tumors[24, 25], cervical and vulvovaginal
cancers[25], testicular[25], bladder[25], kidney[25], nonmelanoma skin cancers[25], oral cav-
ity cancers[24], as well as non hodgkin-lymphoma[25].

Animal models were then used to study whether immunodeficient animals were at



1.2. Cancer immunology 23

higher risk of developing cancer. Several studies showed an increase in carcinogen-induced
tumors numbers in immunodeficient mice compared to wild-type mice[21, 26]. Impor-
tantly, it was observed that a knock-out of the Rag2 gene, which encodes the Recombina-
tion activating gene 2, is sufficient to induce this effect. Rag2 is necessary for the V(D)J
recombination and therefore for the survival of B and T cells in the periphery, supporting
the idea that the adaptive arm of the immune system is responsible for the control of
tumor occurrence. Direct evidence was later obtained using in-vivo two-photon imaging:
C57BL/6 mice were injected with the syngenic EL4 cell line expressing the exogenous
OVA protein and latter injected with OT-I T cells specific for OVA antigens. In-situ
and in-vivo imaging of the CD8 protein and the activity of CASP3, an apoptosis marker,
showed that the cytotoxic lymphocytes CD8+ T cells were actively killing tumor cells[27].
The authors also noted that the elimination was a slow process, taking on average 6 hours,
and proposed that the amount of tumor-targeting CD8+ T cells could be a limiting factor
in the control of tumor growth.

1.2.1.2 Identification of tumors as non-self

The control of tumor growth by the adaptive immune system is unintuitive. As I presented
earlier, the term ’adaptive’ refers to the fact that this system is able to dynamically discrim-
inate between self and non self. The distinction is clear in the case of invasive pathogens,
but cancer cells are host’s transformed cells and could therefore be thought as belonging to
the self. The malignant transformation of normal cells involves mutations[28] in pathways
controlling cell proliferation, resistance to apoptosis and other fundamental characteris-
tics of cancers[16]. Mutated genes encode proteins that differ from those expressed by the
host’s normal cells and could therefore be considered as non-self, marking the malignant
cell as a target for the adaptive immune system. Peptides capable of eliciting an adaptive
immune response are known as neoantigens or tumor antigens. CD8+ T cells clones spe-
cific for tumor antigens were found against the cyclin-dependant kinase 4 gene CDK4[29]
or mutated b-catenin[30] in melanoma, and the tumor-expressed MHC class II HLA-A2
gene in renal cell carcinoma[31].

Interestingly, host’s non-mutated proteins were also found to be targeted by the adap-
tive immune system. In particular, proteins that are expressed in MHC class I-negative
cells, such as sperm cells or trophoblasts, and aberrantly expressed by cancer cells, are
able to elicit immune responses. The first example identified in human is an epitope of
the MAGEA1[32] testis-restricted protein aberrantly expressed in melanoma. Antigenic
properties were later found in proteins encoded by the MAGE family of antigens and other
germline-specific genes, such as BAGE1, GAGE1, XAGE1B, CTAG2, CTAG1 and SSX2,
in melanoma, but also lung, colorectal, breast and prostate carcinomas[33].

More surprisingly, some proteins constitutively expressed by non-malignant cells were
also found to elicit immune responses. These proteins are usually overexpressed in tumor
cells, leading to a TCR-mediated activation of the corresponding specific lymphocytes[33],
while their expression is too low in normal cells to reach the threshold leading to T cells
activation. Examples of such antigens include the ’prostate-specific antigen’ (PSA) protein
in prostate cancer[34, 35], the HER2/neu antigen[36] encoded by the amplified ERBB2
gene in breast and ovarian cancers, as well as the Melan-A protein in melanoma[37–39].

A more straightforward class of tumor associated antigen are the peptides associated
with carcinogenic viruses. These peptides remain expressed in the transformed cells and
can elicit immune responses, as shown with Human Papilloma Virus (HPV) infection in
head and neck squamous cell carcinoma[40], Epstein-Barr virus in Hodgkin’s lymphoma,
nasopharyngeal carcinoma, NKT lymphoma and Burkitt’s lymphoma[41]. Altogether,
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these examples show that although tumor cells are derived from normal cells, they can
express antigens that can be recognized as non-self.

The recognition of non-self antigens is not sufficient to induce immune responses, as
the sensing of DAMPs or PAMPs is necessary to activate inflammatory cells which can in
turn co-stimulate adaptive immune cells. Examples of tumor-expressed DAMPs include
IL6, which can be expressed by tumor cells, and necrosis-associated molecules such as
proteins of the S100 family[42].

1.2.1.3 Clinical impact of tumor infiltration by adaptive immune cells

Infiltration by adaptive lymphocytes is heterogeneous across tumors of a same malignancy.
Since these cells are able to recognize neoantigens expressed by tumor cells[33] and that
the CD8+ T cell-mediated elimination is slow[27] the amount of CD8+ T cells infiltrating
a tumor can reflect a patient’s immune system’s ability to control tumor growth. Consis-
tently, presence of intratumor T cells were shown to be associated with a good prognosis
in human cancers, including ovarian cancer[43] and glioma[44, 45]. In the last decade, it
was shown that a precise quantification of the density of tumor-infiltrating T cells was as-
sociated with favorable outcome in colorectal cancer[46]. Further analyses first identified
CD8+ cytotoxic T cells[47], then cytotoxic T cells that encountered an antigen (CD8+

TEM cells), as a strong prognostic factor for relapse-free survival in colorectal cancer. It
was also shown that the prognostic value associated with a high density of CD8+ and
TEM cells is independent from the UICC/TNM classification, the current gold-standard
for prognosis prediction in colorectal cancer. These results enabled the development of
the Immunoscore, an immunohistochemistry-based quantification of two immune markers
(CD3 and CD8, or CD8 and CD45RO) in two areas of the tumor (the center as well as the
invasive margin), resulting in a score ranging from 0 (poor prognosis) to 4 (good prognosis).
Patients with a score of 0 have a low infiltration for each marker in all areas, while patients
with a score of 4 have a high infiltration in all areas. The immunoscore is a tool proposed
for the prediction of patient’s prognosis[48–51] and its response to treatments[52, 53].

Consistently with their predictive power in colorectal cancer, infiltrating CD8+ TEM
cells or a corresponding Th1 functional orientation of the tumor microenvironment were
shown to be associated with favorable outcome in most human malignancies[54], including
melanoma, head and neck, breast, bladder, ovarian, oesophageal, prostate, lung, pancre-
atic, cervical, liver, gastric, urothelial and merk cell cancers. The consensus emerging from
these analyses is that the infiltration by adaptive cytotoxic lymphocytes is associated with
favorable outcome.

1.2.1.4 Amplifying immune responses as a therapeutic strategy

Cancer regressions, especially sarcoma regressions, following the injection of immunostim-
ulating agents, have been reported more than a century ago[55]. Specifically, intentionally
causing Erysipelas, an acute infection of the upper dermis by a streptococcus bacteria
suspension, now referenced as Coley’s toxin, was reported to yield durable responses in
about 20% of sarcoma patients. At that time, the mechanism of action was far from being
understood, and Coley proposed that the efficacy of his toxin was due either to a direct
toxicity of the toxin on sarcoma cells, or due to the induced fever, or even that the sarcoma
was composed of bacteria which were overcome by the ones in the toxin[55]. The efficacy
of Coley’s toxin is nowadays believed to rely on multiple immune-related mechanisms, in-
cluding lipopolysaccharide-mediated TLR activation of macrophages, which in turn release
TNFa that induce direct tumor cells death and IL12 which stimulate previously-activated
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T cells[56].
More recent immunostimulatory treatment modalities include administration of hu-

man interferon a (IFNa) and/or interleukin-2 (IL2). IFNa is a cytokine part of the type I
family of interferons. It can trigger cell cycle arrest, differentiation or apoptosis in cancer
cells[57]. In addition to these direct effects, IFNa increases the expression of class I MHC
and chemokine production in tumor cells, resulting the attraction of lymphocytes to the
tumor nest. It enhances NK cells abilities to kill target cells and produce IFNg which
locally activate CD8+ T cells and polarize CD4+ T cells towards a Th1 phenotype[58].
IFNa also enhances APCs abilities to present antigens[59, 60] and to secrete the Th1
cytokine IL12[61]. Most importantly, IFNa directly activates CD8+ T cells by increasing
their production of IFNg[62], their proliferative capacities[63] and their differentiation into
memory T cells[64] and favor their clonal expansion[65, 66]. Clinical indications for IFNa
include melanoma, renal cell carcinoma, hairy cell leukemia, multiple myeloma, chronic
myelo-proliferative syndrome, chronic myeloid leukemia, hemangioma and AIDS-related
Kaposi’s sarcoma[67].

IL2 is a cytokine used in the treatment of metastatic renal cell carcinoma and melanoma[68].
The doses employed in a clinical setting have to be carefully adjusted, as low dose have
an immunosuppressive effect, while high dose can lead to irreversible toxicities[69]. Its
mechanism of action involve activation of CD8+ T cells and NK cells[70, 71] which in turn
reduce tumor vascularization[71].

Some strategies involve the expansion, activation, optionally ex-vivo modifications,
and re-injection of patient’s autologous immune cells. Such strategies are termed adop-
tive cell transfers. Dendritic cells have been widely used in this context. Monocytes are
purified from patient’s peripheral blood, differentiated in-vitro into dendritic cells, which
are then pulsed by patient’s tumor lysates or exogenous cell lines. Dendritic cells are af-
terwards able to migrate to patient’s lymph nodes to generate systemic responses leading
to tumor regressions[72]. Such a treatment protocol, Sipuleucel-T, has been FDA and
EMA-approved for the treatment of metastatic prostate cancer[73, 74].

1.2.2 Tumor outgrowth through pro-inflammatory signals

In addition to "avoiding immnune destruction"[16], enabling "tumor-promoting inflamma-
tion", emerged in the second edition of the "hallmarks of cancer" review[16, 75] as the
other immunity-related item. Inflammation is associated with many carcinogenic events.
For instance, mutation of the RET oncogene in thyrocytes is sufficient to induce papillary
thyroid carcinoma and is accompanied with up-regulation of pro-inflammatory genes[76].
Mutation of RAS oncogenes in an ovarian cancer cell line xenografted in athymic mice is
associated with the production of interleukin-8 (CXCL8) by the tumor cells, resulting in in-
creased angiogenesis[77]. Activating mutation of the IL6-receptor signal transducer gp130
(IL6ST) triggers an inflammatory program in hepatocytes, favoring adenoma formation
which can later develop into hepatocarcinoma[78]. Exogenous conditions can also trigger
inflammatory signals. Infection by Helicobacter pylori is associated with gastric cancer[79–
81] and mucosa-associated lymphoid tissue (MALT) lymphoma[82, 83], viral infection with
Hepatitis-B or Hepatitis-C viruses is associated with the development of hepatocellular
carcinoma[84] and tobacco smoke exposure triggers chronic lung inflammation[85]. It has
been proposed that 15% of all diagnosed cancers are caused by infection[86].

Inflammation is a very broad concept that refers to immune-response promoting con-
ditions and can designate almost every immune cell populations. In the context of tumor
immunology, it usually refers to immune cell populations or cytokines that promote tumor
growth. It is paradoxical as inflammation is associated with the promotion of immune re-
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sponses, including adaptive immune responses. Some authors described adaptive immune
responses as ’good inflammation’ and the pro-tumor signals as ’bad inflammation’[87]. In
this manuscript we use ’inflammation’ to refer to the latter. In the following section, we
detail some of tumor-promoting effects associated with inflammation.

1.2.2.1 Inflammation triggers genetic instability

Inflammation, while being associated with clinically-apparent tumors, can occur either
in early or late stages of carcinogenesis. Pre-existing inflammation can directly promote
carcinogenesis through mutational effects. In particular, reactive oxygen species (ROS),
which are macrophage effector molecules which purpose is to destroy pathogens, have
been shown to directly modify DNA sequences[88]. Inflammatory reactions can also lead
to epigenetic modifications of the DNA, albeit no causal effect on carcinogenesis was
observed[89].

1.2.2.2 Anti-apoptotic signals and proliferative signals

Inflammatory factors, such as IL6, IL1B or IL22, induce inflammatory responses leading to
the activation of transcription factors NF-kB and STAT3 in cancer cells. These pathways
can lead to the expression of anti-apoptotic molecules[90, 91], such as BCL2[87] and BCL-
X (BCL2L1)[92] which promotes survival of malignant B cells in follicular lymphoma[93].
Mutation of STAT3 in non-tumorigenic immortalized fibroblasts is able to enable their
successful xenografting in nude mice[94], and activation of the IL6-STAT3 pathway has
been shown to have pro-carcinogenesis activities in many malignancies[92], including pan-
creatic ductal adenocarcinoma[95] and intraepithelial carcinoma[96], lung[97] and gastric
adenocarcinoma[98]. NF-kB activation inhibits TNF-mediated apoptotis[99]. Inflamma-
tion also triggers proliferation in malignant cells[100], notably by increasing the expression
of the cyclins B, D1 and D2[92, 101, 102].

1.2.2.3 Angiogenic signals

When the tumor reaches a certain size, oxygen supply becomes too limited for it to diffuse
in all the areas of the tumor and hypoxic conditions arise. Inflammation is one of the
mechanisms subverted by tumors to sustain neo-angiogenesis and increase blood supply.
Inflammatory mediators released either by malignant, hematopoietic or other stromal cells
can increase local angiogenesis. For instance, IL1b released by cancer cells simultaneously
triggers angiogenesis and the recruitment of inflammatory cells to the tumor bed in a MYC-
dependent pancreatic b-cell mice cancer model[103], where mast cells in turn can promote
angiogenesis[87, 104]. While tumor cells have been known for a long time to induce local
angiogenesis, the contribution of stromal cells, and in particular innate immune cells, to
neo-angiogenesis is now established[105–110]. Immune-induced angiogenesis is notably
mediated by the release of vascular-endothelial growth factors (VEGF), epidermal growth
factor, fibroblast growth factor 2, TNFa, TGF-b platelet-derived growth factors (PDGF),
placental growth factor, neuropilin-1 and IL8 (CXCL8)[110]. Among innate immune cells,
macrophages are the most abundant in tumors and were shown to control angiogenesis
in a mouse model of breast cancer[105] through their ability to secrete VEGF-A[111].
Inhibition of the colony stimulating factor 1 receptor (CSF1R), which is required for
macrophages differentiation and survival, was shown to inhibit neo-vascularization in a
glioma model[112].
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1.2.2.4 Inflammatory biomarkers as therapeutic targets

Until recently, the prevailing model for macrophage polarization described two types of
macrophage subtypes infiltrating tumors. M1 macrophages differentiate from monocytes
under the influence of Th1 cytokines such as IFNg, have higher phagocytic capacities
than M2 macrophages and stimulate CD8+ T cells and NK cells through cytokine pro-
duction and antigen presentation. On the other hand, M2 macrophages are described as
pro-angiogenic and as suppressors of adaptive immune cells. However, the diversity and
plasticity of macrophage populations is too large to be accurately reflected by this sim-
ple model[113], and authors have since begun to use empirical classifications governed by
the function of the analyzed myeloid cells[114], using the generic name tumor-associated
macrophage (TAM) denomination to indicate tumor-infiltrating macrophages, indepen-
dently of their orientation[115].

In the absence of a consensus on macrophage nomenclature, most studies examining
the relationship between TAMs and cancer-related outcome have been carried out with
the CD68 and CD163 markers, which respectively label macrophages and M2-polarized
macrophages, using enzymatic immunohistochemistry[115, 116]. The majority (about
80%[115, 116]) of studies concluded in an association between high TAMs infiltration
and poor prognosis. Yet subtleties appear, even within a given malignancy. For instance,
in lung non small cell lung cancer (NSCLC), CD68+ IL10+ macrophages were found to be
associated with poor prognosis[117] and half of the CD68+ population was found positive
for IL10 expression in late stage patients[117], while another study in the same tumor type
showed that macrophages infiltrating early stage NSCLC were mostly M1-polarized and
found in higher numbers in long patients with long survival[118].

Another difficulty is that inflammation leads to chemoattraction of many different im-
mune cell types, and macrophage infiltration can be partly correlated with infiltration
by CD8+ T cells, for instance in colorectal cancer[119]. Thus, some authors proposed
multi-marker classifications based on the quantification of multiple infiltrating immune
cells populations. Examples include CD3+ T cells / CD68+ macrophages, associated with
favorable outcome in bladder cancer[120], or classifications based on CD8 (cytotoxic T
cells), CD4 (T helper cells) and CD68 (macrophages) for the stratification of breast can-
cer survival[121].

Numerous studies suggest that modulating inflammation is a potential treatment
modality for the treatment of some cancers. Firstly, prophylactic use of anti-inflammatory
agents such as aspirin has been shown to be associated with a reduction in colorectal
cancer[122–124] incidence, a finding that has then been extended to breast[125], oe-
sophageal, gastric, prostate and lung cancers[126]. Secondly, suppressing inflammatory
signals in highly inflammatory clinically detectable cancers can lead to a halt of tumor
growth[127], potentially synergizing with cytotoxic agents[2].

1.2.3 Tumor escape of the adaptive immune control

DNA instability in tumors, associated with selective pressure from immune-mediated elim-
ination of tumor cells, lead to the emergence of escape mechanisms in tumor cells. These
can either be directly induced by the tumor cells, or through other cell populations of the
microenvironment.
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1.2.3.1 Tumor-cell mediated escape

1.2.3.1.1 Reduction of the immunogenicity of malignant cells

CD8+ T cells are the main effector of anti-tumor immune responses, but their activity
requires the presentation of peptides by target cells by class I MHC molecules. These
molecules are heterodimers consisting of two chains. The a chain is encoded by six different
genes (HLA-A, HLA-B, HLA-C, HLA-D, HLA-E, HLA-F). The product of any of these
genes associates non-covalently with the b2-microglobulin unit, encoded by a single gene,
B2M. Some tumor cells harbour inactivating mutations in the B2M gene, abrogating
expression of any functional class I MHC molecule and inhibiting the activity of CD8+

T cells[128]. In the absence of functional class I MHC molecules, NK cells can sense the
loss of class I MHC expression and exert contact-dependent cytotoxicity. However, tumor-
infiltrating NK cells have been reported to display inhibited phenotypes compared to NK
cells populating non-malignant tissues distant from the tumor. NK cells infiltrating Non-
Small Cell Lung Cancer (NSCLC) tumors were shown to down-regulate the expression of
the activating receptors NKp30, NKp80, CD16, NKG2D and DNAM-1 and consistently to
have lower degranulation and cytotoxic capacities ex-vivo[129], possibly caused by TGF-b
signaling[130]. Similar results have been observed in melanoma[131].

Loss of class I MHC expression is a striking illustration[132] of tumor adaption to im-
mune pressure. However, in most cases, immune escape occurs in a more subtle and slow
way through the selection of peptides with low immunogenicity. Immunogenecity refers
to the capacity of a given peptide to elicit an immune response from the host. It includes
its capacity to be presented by highly allelic-variable class I HLA molecules and to not
chemically resemble non-mutated tolerated self peptides. Mouse models have success-
fully illustrated this phenomenon, as 3-methylcholanthrene (MCA)-induced tumors from
immunocompetent mice have higher xenograft success rates in syngenic fully immunocom-
petent mice compared to those grown in Rag-/- mice lacking adaptive lymphocytes[26].
In human melanoma, vaccination based on the tumor-expressed gp100 peptide induced a
reduction in tumor gp100 expression compared to pre-vaccination samples[133].

1.2.3.1.2 Expression of immunosuppressive molecules

The immune system is a double-edged sword that is efficient in preventing pathogens
from colonizing the body, while autoimmune reactions can lead to damage to host’s tis-
sues. As other immune cells, CD8+ T cells express, either constitutively or after activation,
inhibitory receptors (also known as immune checkpoints) that regulate their activity. Tu-
mors are able to subvert this mechanism and avoid CD8+ T cell-mediated elimination. A
notable example include the expression of PD1 (PDCD1) ligands by tumor cells. PD1 is
an inhibitory receptor expressed by a variety of immune cells, including T cells. It can
bind to either PD-L1 (CD274) or PD-L2 (PDCD1LG2), which results in reduced cytotoxic
capacities[134], proliferative capacities[135, 136] and response to TCR-stimulation[136]. In
physiological conditions, IFNg the major cytokine of the Th1 axis, produced by activated
Th1 and CD8+ cells, has been shown to induce PD-L1 and PD-L2 expression in surround-
ing cells[137, 138]. Immune checkpoints include other molecules such as LAG-3, CTLA4
and TIM-3. Contact-dependent mechanisms can also mediate T cell elimination, such
as Fas-ligand expressed by tumor cells which can bind to Fas expressed by surrounding
lymphocytes, inducing their apoptosis[139, 140], although the importance of this effect is
still debated[141, 142].
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Tumor cells can also release soluble factors that result in the suppression of T cell re-
sponses in the microenvironment. TGF-b and VEGF-A orientate the functionality of sur-
rounding hematopoietic cells towards a suppressive phenotype[143]. Other factors, such as
the anti-inflammatory interleukin IL10, Galectin-1 (LGALS1)[144], gangliosides[145] and
prostaglandin E2 (PGE2)[146, 147] are implicated in the direct inhibition or elimination
of infiltrating T cells.

1.2.3.2 Microenvironment-mediated suppression

Many suppressive pathways involve multiple cell populations from the tumor microen-
vironment. A critical step in the TCR-mediated actiation of T lymphocytes is its inter-
action with an antigen-presenting cell (APC), which usually are dendritic cells, but also
macrophages and some B cell subsets. In addition to presenting class I and class II MHC-
bound peptides to CD4+ and CD8+ T cells respectively (primary activation signal), APCs
deliver so-called secondary activation signals. The secondary signal is antigen aspecific,
but depends on which ligand/receptor couples are engaged between the T cell and the
APC. Various activating or inhibiting receptor families have been described. The type of
signal transduced depends mostly on the activation status of the APC. Notably, dendritic
cells which sensed danger signals through DAMPs will mature and consequently trans-
duce co-stimulatory signals to the T cell. On the other hand, immature dendritic cells
presenting a specific antigen to a T cell will transduce tolerogenic signals, by repressing
the T cell’s ability to respond to future TCR stimulation, apoptosis or differentiation to
a Treg phenotype.

Several studies reported a defective presentation by dendritic cells infiltrating tu-
mors. Firstly, the maturation of monocytes to dendritic cells is dampened in favor of a
macrophage differentiation through the action of IL6 and Macrophage Colony Stimulating
Factor 1 (CSF1)[148]. Secondly, the maturation process of dendritic cells is inhibited[149–
154] by several mechanisms. Molecular mediators of the response to hypoxia pathway such
as VEGF-A have been implicated in impairment of DC maturation through the inhibition
of the inflammatory transcription factor NF-k B[155]. The theory of immunogenic cell
death proposes that activation of DC mostly depends on the type of cell death tumor cells
underwent before their uptake by phagocytes[156]. Markers of immunogenic cell death,
notably translocation of the chaperone calreticulin from the cytosol to the plasma mem-
brane and the release of adenosine triphosphate (ATP) and of high-mobility group box 1
(HMGB1) protein in the extracellular milieu. Mice models have shown that after cancer
cell line injection and clearance due to cytotoxic chemotherapy, and depending on the
type of cell death, subsequent re-challenge using the same cell line will lead to rejection
only in the case of immunogenic cell death in an immunocompetent host[157]. The fact
that myeloid cells, in the tumor microenvironment, exert tolerogenic roles led to the func-
tional definition of myeloid-derived suppressor cells (MDSCs)[143]. Lack of consensual
markers in humans hamper comprehensive analyses of the MDSC populations in human
tumors, and a wide variety of factors have been implicated in their expansion and polar-
ization, including VEGF, GM-CSF, G-CSF, M-CSF, gangliosides, prostaglandins, IFNg,
complement C5a, TGF-b, interleukins IL1b, IL6, IL10, IL12, IL13 and chemokines CCL2,
CXCL5 and CXCL12[143]. However, the mechanisms by which they exert their suppres-
sive functions have been well studied, and notably include the depletion of L-arginine by
the enzyme Arginase 1 which leads to impaired T cell proliferation[158, 159].
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Lymphoid cells, and notably regulatory T cells (Treg) are involved in antigen-specific
suppressive function. Upon TCR activation, Treg release the immunosuppressive cytokine
IL10 which downregulates Th1 cytokines and co-stimulatory molecules on APCs. Treg are
produced under the influence of TGF-b and IL2 stimulation through the IL2 high-affinity
receptor CD122-CD25 heterodimer. Other cytokines, notably VEGF-A, have been shown
to induce regulatory polarization of CD4+ T cells[160].

Hypoxia is in general linked to increased immunosuppression. It directly inhibits T cell
responses, as hypoxic conditions inhibit IL2 and IFNg release after TCR-mediated T cell
activation[161]. In ovarian cancer, tumor cells response to hypoxia was shown to induce
the expression of the chemokine CCL28 which attracts Treg[162]. In mice, hypoxic area
have been shown to favor the M2 polarization of macrophages[163], and VEGF-A signaling
was shown to directly induce T cells expression of PD1 and other immune checkpoints,
notably Tim-3 and CTLA-4[164].

Fibroblasts can also modify T cell responses, through several mechanisms. As ma-
jor producers of the extracellular matrix, they control the trafficking of T cells from the
invasive margin to the tumor stroma[165]. Fibroblasts can directly inhibit TNF and
IFNgmediated anti-tumor immunity[166], hamper dendritic cells maturation[167] and in-
hibit T cell proliferation[168–170]. They have been shown to constitutively express the
immune checkpoint ligand PD-L1[171], and this expression is upregulated upon IFNg
stimulation[138].

1.2.3.3 Immunosuppression as a therapeutic target

Since CD8+ T cells are able to eliminate tumor cells and are limited in this function
by tumor and microenvironment factors, the modulation of inhibitory signals has emerged
as a therapeutic target during the last years. Above all, immune checkpoint molecules
have been successfully targeted by blocking agents. The first inhibitory receptor that was
successfully targeted is CTLA4, an inhibitory co-receptor expressed by T cells and which
binds to CD80 and CD86 on APCs. Ipilimumab[172] and tremelimumab[173] are two fully
humanized monoclonal antibodies specific for CTLA4. Clinical trials began in the early
21th century and clinical responses were observed in around 10% of advanced melanoma
patients, despite reports of high grade autoimmune adverse events in approximately 30%
of them[172, 173]. Further investigations showed that enterocolitis, an auto-immune man-
ifestation occuring in the intestines, was associated with higher response rates in treated
melanoma and renal cell carcinoma patients and clinically manageable by administering
TNFa inhibitors[174]. Tremelimumab showed no survival benefit compared to chemother-
apy in a phase III trial[175], and has not currently received approval. Ipilimumab proved
to confer a survival benefit compared to the melanoma peptide vaccine gp100 in a phase
III trial[176] and is now FDA and EMA-approved.

The second checkpoint pathway that was successfully targeted is the PD1 - PD-L1/L2
axis. Nivolumab, an antibody targeting the receptor PD1 have shown clinical activity, first
in advanced melanoma, renal cell carcinoma , lung and advanced prostate cancer[177],
hodgkin lymphoma[178] and other malignancies[179]. Other antibodies targeting PD1
yielded clinical responses in some hematologic malignancies[180–182]. Compared to ip-
ilimumab, it appears to be associated with less toxicity[183, 184]. Blockade of the lig-
and PD-L1 also led to clinical benefit in advanced melanoma, lung, ovarian, renal cell
carcinoma[185, 186] and metastatic bladder[187] cancers.

Other immune checkpoints, such as LAG3 (T cells-expressed), B7-H3 (CD276, in-
hibitory ligand of unknown receptor) are currently evaluated as therapeutic targets in
clinical trials[184], while others are investigated in preclinical models. The promising re-
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sults of these new therapeutic approaches are likely to result in new therapeutic targets
in the upcoming years. MDSC-mediated suppression is also a candidate for stimula-
tion of anti-tumor immune responses[188–190]. The relationship between hypoxia and
immunosuppression led some authors to propose combination of anti-angiogenic and anti-
checkpoint treatments to evaluate potential synergy[191].

Adoptive transfer strategies that address inhibitory secondary signals include chimeric
antigen receptors (CAR) T cells[192]. These are genetically-engineered T cells, designed
to recognize tumor cells epitopes (for instance CD19 in the case of B cell malignancies),
whose TCR is fused to the endodomain of the T cell activating receptor CD28 and there-
fore bypass inhibitory secondary signals, and whose epitope recognition is independent
of MHC presentation[193]. CAR T cells are able to exert cytotoxicity to cells expressing
their specific antigen, and appear as a successful treatment modality in the context of B
cell malignancies[193].

1.3 Classification of tumors in the era of omic techniques

Tumor classifications have been established and continuously refined by clinicians and
researchers. Their goals are to integrate our knowledge of the biology of each malig-
nancies to ameliorate patient’s management. Accurately predicting the evolution of a
cancer has been of crucial importance since the advent of cytotoxic chemotherapies, to
avoid potentially-damaging unnecessary treatments. More recently, the development of
targeted therapies, drugs that interfere with a particular feature of the tumor biology, has
opened new therapeutic options and simultaneously pushed for a better characterization
of potential responders. In the following section, we recapitulate the evolution of tumor
classifications, with a particular attention on the recent molecular classifications.

1.3.1 Anatomopathological classifications of tumors

1.3.1.1 The origin of the tumor cell: the main determinant of the tumor’s
biology

The most straightforward and currently almost subconsciously accepted way to classify
cancers is according to the organ in which the primary tumor originated. As an illustration,
the World Health Organization/International Agency for Research on Cancer classification
is made of seven books, each covering one or several anatomical compartment ([digestive
system], [breast and female genital organs], [soft tissue and bone], [skin], [urinary and male
genital organs], [head and neck], and [lung, pleura, thymus and heart])[194–200]. Chap-
ters within these books cover cancers of a given organ. This organ-based classification
still stands after centuries of use. We now understand that cancer is a disease caused
by molecular modifications of normal host cells which disrupt the mechanisms controlling
cell proliferation, apoptosis, motility, among other features[16]. Depending on the cellular
identity of the precursor cells, different mutations will lead to either malignant transfor-
mation or no phenotypic modification. The phenotype of the transforming cell is therefore
the most critical factor in our current understanding of cancers biologies.

This classification has strong implications for the therapeutic management and the
prognosis of the patient. Some cancers are highly aggressive and difficult to treat, while
for others the proportion of long term survivors is much higher. For instance, in 2009,
the United-States 5 year survival rates were of 6.5% for pancreatic cancer, 17.5% for liver
cancers, but 87.6% for Hodgkin lymhpoma and 95.6% for testis cancer[201].

Within most malignancies, the current gold-standard for prognosis prediction is the
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Union Internationale Contre le Cancer / TNM (TNM) staging classification, which is based
on the assessment of the size or the depth of the primary tumor (T stage), its spread to
local or distant lymph nodes (N stage) and its metastatic dissemination to distant organs
(M stage)[202]. The TNM classification is able to accurately depict cancer progression
and is therefore strongly associated with prognosis. It is however inapplicable to diffuse
cancers such as leukaemia.

Other anatomopathological examinations of tumor tissues help clinicians predict the
patient’s outcome associated with a given tumor. Notably, the tumor grade is a classifi-
cation based on the appearance of tumor cells. Its definition depends on the malignancy
but recapitulates the agressivity of tumor lesions. One possible grading system is to as-
sess the extent of the differentiation of malignant cells, with low grade tumors resembling
non-malignant well-differentiated surrounding cells, and high grade tumors looking more
anaplastic. In some cancers, such as brain malignancies, the grading system is used instead
of the TNM staging system to assess patient’s prognosis.

1.3.1.2 Molecular classifications of tumors

Anatomopathological classifications of tumors are useful for the evaluation of prognosis,
and can also reflect different tumor biologies within malignancies[203–205]. They are based
on the visual examination of tumor samples either at the macroscopic or the microscopic
scale, but rely on other techniques to describe the mechanisms sustaining carcinogenesis.
During the last couple of decade, the emergence of high-throughput molecular biology
techniques, the so-called omic techniques, enabled the simultaneous quantitative assess-
ment of thousands of molecular entities in tumor samples. Transcriptomics refers to the
quantification of messenger RNAs (mRNA) in a sample, reflecting the activation levels of
genes. Genomics concerns the characterization of DNA sequences, and can be used to as-
sess allelic variability and most importantly tumor-specific mutations or inherited genetic
susceptibility allelic variants. Methylomics measures the amount of methylation per DNA
locus, which reflects epigenetical modifications of the genome. Proteomics simultaneously
measure the amount of thousands of proteins. All of these techniques enable wide spec-
trum analyses, with at least several thousands of characterized targets, and can integrate
prior biological knowledge of context-relevant targets. Their utilization in creating molec-
ular classification of tumors enabled unsupervised taxonomies to emerge, along with their
phenotypical and clinical characteristics.

1.3.1.2.1 Genomic classifications
Observations of chromosomal aberrations in cancer cells first hinted at genetic abnor-

malities as a possible cause for cancer[206]. In the middle of the 20th century, the role of
DNA as the main support of traits heritability was established[207], along with observa-
tions that DNA-damaging agents caused cancer. Shortly after, it was shown that the trans-
fer of cancer genome in non malignant cells enabled their malignant transformation[208,
209]. The characterization of these modifications enabled researchers to better under-
stand the causal events underlying carcinogenesis. Genomic translocations between chro-
mosomes 9 and 22 were reported in chronic myeloid leukaemia[210], and identification
of single-nucleotide mutations in oncogenes were identified in bladder epithelial cells[211,
212].

Mutations stochastically affect cancer cells[213] and can be either advantageous or
deleterious, in the context of the cells’ microenvironment. A Darwinian selection process
is believed to filter out the cells unable to proliferate or survive. Understanding the mu-
tations associated with clinically apparent or benign tumors help understanding which
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disrupted pathways are favoring cancer’s onset. Such genomic events are termed driver
mutations. It can encompass point mutations but also base deletions and insertions, large
chromosomic rearrangements and change in allelic ploidy (amplifications or deletions of
chromosome fragments)[214]. Other genomic events, such as the integration of exogenous
viral sequences, can also lead to cancer. Genomic classifications seek to identify genomic
modifications of the cancer genome compared to the host’s non malignant genome, and
characterize their effect on the tumor cell’s biology.

The number of known driver mutations ranges in the hundreds[28, 214], but the true
number of possible driver events is likely to range in the thousands[214]. Some driver
mutations are highly prevalent in many cancers, such as inactivating mutations in the
TP53 tumor suppressor gene which occurs in approximately 50% of tumors[215]. Others
are rare and specific to one or a few malignancies, such as the APC gene which is fre-
quently mutated in colorectal cancer, and occasionally mutated in papillary thyroid and
adrenocortical cancers[216].

The knowledge of mutated genes in a cancer can help establish molecular classifica-
tion, in particular to develop targeted therapies or predict responders to treatments. For
instance, imatinib is a tyrosine-kinase inhibitor specifically targeting the translocation of
the ABL oncogene in chronic myeloid leukaemia[217]. Trastuzumab, a monoclonal an-
tibody targetting the HER2/neu antigen, targets the product of the amplified ERRB2
gene, a genomic event which occurs in 20 to 30% of breast cancers[218]. Cetuximab, a
monoclonal antibody targeting the EGFR receptor, is unable to induce clinical responses
in KRAS-mutated tumors[219]. Recently-identified mutations provided by genome-wide
association studies could therefore develop into drug targets or biomarkers predictive of
response to treatments.

Such classifications are useful in a clinical setting, but it is difficult to integrate the
whole-genome mutation spectrum into unified taxonomies. Driver mutations occur in
particular pathway which sustain survival, growth and other cancer hallmarks, such as
resistance to immune elimination. Driver mutations can sometimes be exclusive, but this
fact usually indicate dependency of the encoded proteins[220, 221] and therefore biologi-
cal proximity. Creating biologically-relevant classification of tumors requires to be able to
discriminate between passenger and driver mutations, which is difficult as most somatic
mutations in cancers are believed to be passenger[28]. Driver mutations then need to be
sorted according to the pathway they affect, and their effect on the corresponding protein
(inactivation, activation or no effect) characterized. The identification of mutated genes in
cancer nonetheless provides important insights in which pathways are dysregulated during
carcinogenesis as well as potential drug targets.

1.3.1.2.2 Transcriptomic classifications
High-throughput transcriptome characterization became possible with the develop-

ment of DNA microarrays, followed by massively parallel RNA-sequencing methods. Al-
though cancer is above all a genetic disease, the study of the transcriptome has proven
more useful to establish cancer-specific classifications which rely on different biological
processes and can be studied independently. The transcriptome is more straightforward
in terms of interpretation that genomic mutations, as it is difficult to predict the effect
of a mutation through DNA sequence alone. Since mRNAs indicate gene activation, the
simultaneous quantification of tens of thousands of gene products in large human cohorts
and their classification through unsupervised statistical learning techniques enabled re-
searchers to discover classifications strongly associated with genomic events, but which
also gave insights into the biological processes at play. The first classifications were estab-
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lished respectively in breast cancer and B cell lymphoma, in the early 21th century.
Diffuse large B cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin’s

lymphoma. In 1994, a classification of non-Hodgkin’s lymphomas based on morphologi-
cal and molecular parameters was published, but suggested that DLBCL covered distinct
diseases, although no useful subclassification could be established[222]. Using cluster anal-
yses of DNA microarrays on various lymphoma samples and purified normal hematopoietic
cells, A. Alizadeh and colleagues showed that DLBCL was molecularly different from other
lymphomas (chronic lymphoid leukaemia, follicular lymphoma), but also separated into
two molecular subgroups[223]. Comparison of the gene expression profiles to those of non-
malignant samples showed that the first subgroup expressed markers of germinal center
B cells (GC-like), and the second subgroup of activated B cells (activated B). Further
classifications using these two sets of markers separated DLBCL patients into two sub-
groups with clinically different behaviors: GC-like lymphomas are associated with better
prognosis than activated B lymphomas, independently of their International Prognostic
Index, a clinical tool for prognosis prediction based on patient’s age, performance status
and the extent and location of the malignancy[224].

In breast cancer, the study of 65 surgical specimens from 42 different individuals estab-
lished the first molecular transcriptomic classification of a non-hematopoietic cancer[225].
This seminal study, based on the quantification of 8102 genes showed that the molecular
profile of two samples from a single individual were closer to each other than to unre-
lated samples, supporting the idea that transcriptomic profiles could faithfully describe a
patient’s tumor. Clustering analyses of tumor samples revealed four tumor classes. Clus-
tering of the genes according to their co-expression profiles across patients identified gene
sets that were differentially expressed across clusters, including ones related to previously
genomic events such as ERBB2 amplification, or clinical features such as estrogen receptor
(ER) loss of expression. This two-ways clustering enabled the denomination of the four
tumor classes :

basal-like Basal epithelial cells markers, ER negative

ERBB2+ ERBB2 overexpression, low ER expression

Normal-breast-like Markers of adypocytes

epithelial/ER+ Luminal epithelial cells markers, ER positive

This molecular classification, which partially corresponds to previously-identified molec-
ular alterations of breast tumors, later proved useful in a clinical setting, as variations
based on this classification were able to predict patient’s outcome[226] and response to
chemotherapy[227]. Interestingly, the gene sets identified by this analysis identified both
genomic features (for instance ERBB2 overexpression) and microenvironment features
(expression of adypocytes markers, B cells-related genes). This approach, although it is
focused on tumor portraits, still identifies microenvironment-related patterns.

These transcriptomic classifications were later confirmed, refined[228–234], used in pre-
clinical models and to stratify clinical trials[235], and inspired the discovery of clinically
and biologically heterogeneous subgroups in many other malignancies, including colorec-
tal cancer[236–241], renal cell carcinoma[242, 243], glioma[244, 244, 245], liver[246–249],
bladder[250] and prostate[251], acute myeloid leukaemia[252–256], and other cancers[257–
259].
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1.3.1.2.3 Multi-omics classifications
In addition to genomic and transcriptomic characterization of tumors, other high-

dimensional techniques are able to identify tumor molecular subtypes. Notably, the
methylome, proteome and miRNome quantify molecular features that result in modifi-
cations of biological pathways in tumor cells and their microenvironments. Analog of the
techniques, such as clustering algorithms, used for transcriptome-based tumor classifica-
tions have been applied to data obtained from these multiple omic techniques. Notably,
The Cancer Genome Atlas (TCGA) consortium aims at a multi-omic characterization of
major human cancers. Their studies, as well as others, show that other omic classifications
are significantly correlated with those established using transcriptomics[239, 260–273].

1.3.1.3 Molecular classifications of colorectal cancer

In this section, I present genomic and transcriptomic characterizations of colorectal
cancer (CRC).

1.3.1.3.1 The adenoma carcinoma sequence
The prevailing model for CRC carcinogenesis was proposed in 1988 by B. Vogelstein

and colleagues[274], based on the genetic characterization of four genomic events (muta-
tions in genes of the Ras family, deletions in chromosomes 5, 17 and 18) in early adenomas,
advanced adenomas and colorectal carcinomas samples. This model describes the accumu-
lation of genomic events implicated in the progression from benign colorectal adenomas
to malignant carcinomas. The first event is a loss of the APC tumor suppressor gene
function, which controls the b-catenin pathway. Familial adenomatous polyposis (FAP) is
a hereditary condition, most frequently caused by germline inactivation of the APC gene,
leading to the development of many adenomatous polyps in the large intestine. Loss of
the APC-containing 5p21 genetic locus occured only in patients without FAP, indicating
that either germline or somatic loss of FAP was the main factor associated with the de-
velopment of adenomas. Secondly, the authors observed an increase in the incidence of
RAS mutations in both advanced (large) adenomas and in carcinomas compared to early
(small) adenomas, indicating that mutation in the RAS pathway is associated with the
size of adenomas. Thirdly, loss of the 18q chromosome arm, which carries the SMAD4
oncogene and the still debated tumor suppressor DCC, was most prevalent in carcinomas,
followed by advanced adenomas. Finally, loss of the 17p chromosome arm, which notably
hosts the TP53 tumor suppressor gene, was almost exclusively associated with carcinomas.

1.3.1.3.2 Pathways associated with carcinogenesis

Nearly all colorectal tumors feature disregulation of the Wnt/b-catenin pathway[275].
This pathway is important for the migration of colonic stem-cell from the bottom to the
top of the colon crypt. Inactivation of the Wnt/b-catenin pathway lead to a proliferation
of stem cells which remain in an undifferentiated state in the bottom part of the crypt,
leading to the formation of adenomas. The transition from adenomas to carcinoma neces-
sitates the acquisition of other malignant hallmarks.

Inactivation of the APC pathway is not sufficient to permit the growth of the ade-
noma. Advanced adenoma frequently harbor mutations activating cell-cycle pathways.
Notably, mutations in Ras oncogenes (KRAS, NRAS, HRAS) , BRAF, or mutations affect-
ing the PI3K pathway (such as activating mutations of PIK3CA or inactivating mutation
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of PTEN), leading to increased cell proliferation within the pre-malignant lesion[275].
Other frequently disregulated pathways include the TP53 pathway, responsible for

cell-cycle control and sensing of DNA integrity, the TGFb pathway which promotes cell
survival, invasion, metastasis and immunosuppression[275].

1.3.1.3.3 Genomic and epigenetic events associated with carcinogenesis
In colorectal cancer, high genomic instability is reported as the main factor contributing

to the acquisition of these traits. Three major mechanisms have been shown to enable it.

1.3.1.3.3.1 Chromosomal instability

Chromosomal instability (CIN) is observed in up to 85% of colorectal cancers. It is
characterized by frequent loss or gains of whole of chromosomes during cell replications,
which can lead to aneuploidy (inconsistent number of copies of chromosomes), or chromo-
somal fragments amplifications or deletions and loss of heterozygosity. The mechanisms
underlying this phenomenon are still poorly understood, most likely because of its com-
plexity: hundreds of genes have been shown to induce CIN in yeast, while only around ten
have been identified in humans[276]. Most of these include genes related to chromosome
segregation during replication, such as BUB1, BUB1B and AURKA[276, 277], and genes
involved response to DNA damage such as TP53, BRCA1 and BRCA2[276].

1.3.1.3.3.2 CpG-island methylator phenotype

CpG-island methylator phenotype (CIMP) is defined by hypermethylation of the sy-
metrical dinucleotide CpG, and a global DNA hypomethylation. CpG-islands are DNA
sequences where CpG dinucleotides are found in high frequencies, although there is no
consensus the definition of CpG islands[278]. Many human genes harbor a CpG-island
in their promoter region, and methylation of the cysteines of the CpG-island have been
associated with transcriptional silencing of the gene[278]. CIMP is believed to contribute
to carcinogenesis through the methylation of promoters of tumor suppressor genes[279],
and/or by promoting microsatellite instability, another mechanism involved in genomic
instability.

1.3.1.3.3.3 Microsatellite instability

Microsatellite instability (MSI) is caused by a defect in the DNA mismatch repair
(MMR) machinery. MMR is involved in the correction of DNA replication errors. Mi-
crosatellites are short repetitive sequences of DNA, which increase the chance for the DNA-
polymerase to ’stutter’, leading to an increase in replication errors[275]. MSI is therefore
the marker of a dysfunctional MMR system. MSI can be due to germline mutations of
MMR enzymes, such as MLH1, MSH2, MSH6 and PMS2, which causes a condition known
as Lynch syndrome[275, 280], associated with an increased risk of developping colorectal,
gastric, ovarian and other cancers[280]. MSI can also occur in the absence of germline
mutations, notably through epigenetic silencing of MLH1 in CIMP+ tumors[275, 278].

As a result of deficient MMR, MSI+ tumors are hypermutated, with almost 10 times
more non-synonymous mutations per tumor than mutagens-induced lung cancers and
melanoma[28]. MSI occurs in approximately 15% of CRC cases[275].
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1.3.1.4 Transcriptomic subtypes of colorectal cancer

Unsupervised transcriptomic classification of colorectal cancer has been actively studied
during the recent years. Six teams have independently reported molecular subtyping
studies between 2012 and 2014[236–241]. These classifications seem to be mostly consistent
with each others: while the reported number of subtypes vary from 3 to 6, some subgroups,
identified by their respective association with molecular and clinical characteristics, appear
coherent. I will now briefly introduce the commonly identified subgroups.

1.3.1.4.1 MSI-enriched subgroup
A subgroup highly enriched for microsatellite instable tumors has been identified in all

proposed classifications[236–241], and is also highlighted in the TCGA publication[281].
It is reported to have high CIMP phenotype[239–241, 281], consistent the majority of
MSI tumors being sporadic MSI and associated with CIMP. It also highly expresses cell
proliferation-related genes[238, 239, 241], and is enriched in BRAF mutated tumors[238–
241, 281].

It is reported to have high immune infiltration in five studies[236, 237, 239, 241],
including the TCGA study[281], but the precise characterization of this infiltration is am-
biguous: this subgroup was reported to overexpress genes related to antigen processing,
HLA class I and II[236, 239], TLR-signaling, NK cells cytotoxicity and TCR signaling[239],
interferons and interferon-induced transcripts of the IFI family[237, 241], chemokines[237],
immune-system or inflammatory-response related pathways[236, 281].

This subgroup is also associated with favorable clinical outcome in five publications[237–
241] and forms a poor prognosis higher-order group when merged with another subgroup
in one publication[236].

1.3.1.4.2 Mesenchymal subgroup
All six publications identified a subgroup with overexpression of mesenchymal markers[236–

241], colon bottom-crypt signature[237, 239], stem-cell phenotype[237, 239, 241], higher
TGF-b pathway signaling[238–241], serrated-adenoma signature[239, 240], desmoplastic
histology[241], and low cell proliferation[238, 239, 241].

It is associted with poor-prognosis[236–241] and resistance to therapies, both in-vivo
to 5-fluouracil (5FU) chemotherapy[238, 240], Cetuximab (a monoclonal antibody target-
ing the VEGF receptor)[240], and in-vitro to a panel of targeted therapies[236]. It could
however respond to FOLFIRI therapy (a tri-chemotherapy regimen combining folinic acid,
5FU and irinotecan)[237].

Immune infiltration may also be associated with this subgroup, as it has overexpres-
sion of genes related to TLR-signaling and hematopoietic cell lineage[239] or an immune
signature[241] in two publications. Other publications did not however report differentially
expressed genes related to immunity in this subgroup[236, 237].

1.3.1.4.3 Other subgroups
The other reported subgroups are less consensual based on the reported results. Most

studies however report epithelial subgroups with a CIN phenotype[239, 240] and low im-
mune infiltration[239, 241].
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The Colorectal Cancer Subtyping Consortium is currently investigating the primary
data of each reported studies, as well as other datasets, to prove the consistency of the
various approaches and summarize it by proposing a consensual classification[282]. In
addition to the three above-mentioned subtype, it proposes a fourth subtype, enriched for
KRAS and IGFBP2 mutations[282].

1.3.2 Molecular classifications of clear cell Renal Cell Carcinoma

Compared with colorectal cancer, the known sequence of genomic events associated with
the carcinogenesis clear cell Renal Cell Carcinoma (ccRCC) are less understood. It is
dominated by the disruption of the ’cellular response to hypoxia’ pathway, while secondary
events begin to emerge. In parallel, transcriptomic classifications are being proposed,
and may increase our understanding of the heterogeneity of ccRCC in terms of clinical
behavior[283].

1.3.2.1 Genomic events associated with ccRCC carcinogenesis

1.3.2.1.1 Response to hypoxia pathway

The first identified germline mutation predisposing to ccRCC is a loss-of-function muta-
tion of the von Hippel-Lindau (VHL) tumor-suppressor gene[284]. VHL encodes a protein
which associates with products of the TCEB1 (elongin B), TCEB2 (elongin C) and CUL2
(cullin-2) genes to form a protein complex with ubiquitin-ligase activity[285]. In normoxic
conditions, this complex ubiquitinates the hypoxia-inducible factor 1a (HIF1a), leading
to its degradation. HIF1a is a transcription factor mediating the cellular response to hy-
poxia pathway. In hypoxic conditions or when the ubiquitin-ligase complex is inactivated,
HIF1a escapes proteasome-mediated degradation and triggers a transcriptomic program
which fosters glycolysis and production of VEGF which promotes angiogenesis.

VHL inactivation have been reported in around 90% of ccRCC tumors[264, 285]. Most
of these events are recessive loss-of-function mutations, but are associated with a loss of
heterozygosity of the 3p21-3p25 chromosomal loci which contains the VHL gene[264, 285].
Driver genomic events in VHL wild-type ccRCC tumors are still poorly characterized[264],
but a study notably reported recurrent mutations in the elongin B gene TCEB1, mutually
exclusive with VHL mutations[285].

1.3.2.1.2 Chromatin remodeling

Epigenetics appear to also play a role in the carcinogenesis of ccRCC. VHL can be
inactivated through hypermethylation of its promoter instead of a mutation, an event
seen in around 7-15% of ccRCC tumors[264, 284, 285]. A less understood epigenomic
event is the disruption of the chromatin remodeling complex SWI/SNF. Several studies
observed a significant rate of somatic mutations affecting this complex, in genes such as
the PBRM1[264, 285, 286], ARID1A, SMARCA4[264]. It has been proposed that the
SWI/SNF complex could be implicated in heterochromatin conversion of chromosomal
regions, leading to their epigenetic silencing.

SETD2 mutation appears to be selected as a secondary carcinogenic event among VHL-
mutated tumors: SETD2 is located in the same 3p21-3p25 region as VHL[264, 285] and
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therefore affected by frequent LOH, and mutated SETD2 are detected at lower allelic fre-
quencies that VHL mutations, suggesting a subclonal selection of SETD2 among mutated
VHL tumors[285]. SETD2 seems implicated in widespread DNA hypomethylation[264]
and associated with faster relapse[285].

1.3.2.1.3 PI3K-AKT-mTOR pathway

The PI3K-AKT-mTOR pathway, which regulates cell cycle, ranks third in terms of
mutation frequency in ccRCC, with mutations affecting PTEN, PIK3CA, AKT and mTOR
in around one-quarter of tumors[264, 285].

1.3.2.1.4 NF-kB pathway

Some authors suggested that NF-kB, the main transcriptomic factor implicated in
inflammatory transcriptomic programs, but that also regulates cell survival, was over-
activated in VHL-mutated tumors[283]. NF-kB activation was associated with resistance
to TNF-a-mediated apoptosis. NF-kB activation also leads to the production of inflam-
matory cytokines, such as IL6 and CXCL8 (IL8)[283].

1.3.2.2 Transcriptomic classifications of ccRCC

Two studies, other than the one I was involved in and which is presented in the ’Results’
chapter, identified transcriptomic subgroups of ccRCC. The first used a consensus cluster-
ing approach on a discovery cohort of 51 ccRCC samples to identify two subgroups, termed
ccA and ccB. ccA corresponded to 24 samples, ccB to 15 samples, while 12 samples were
unclassified. ccA tumors overexpressed genes related to angiogenesis and metabolism, and
ccB tumors genes related to epithelial-to-mesenchymal transition (EMT), TGFb and Wnt
pathways. No association between subtypes and the rate of VHL mutations or promoter
hypermethylation was found, and no other mutational events were investigated. This
classification was reproduced on an independent set of 177 ccRCC tumors, in which the
relationship with patient survival was investigated. ccA tumors were shown to have a bet-
ter survival rate than ccB tumors, although ccA tumors were enriched for early stage and
early grade patients. After correcting for stage, grade and performance status, the survival
advantage of ccA over ccB patients was not anymore significant, although a trend towards
better prognosis for ccA patients was still present (p=0.089). The authors noted that a
continuous score based on the expression of 177 probesets and used to classify tumors in
the validation set was significantly associated with survival after taking into account the
confounding factors[243]. This first study therefore showed that two molecular subtypes
of ccRCC could be identified and were associated with different prognostic values. It was
latter confirmed on a meta-analysis of 480 publically available ccRCC transcriptomic pro-
files. ccA and ccB clusters were again identified, with ccA being associated with favorable
outcome, and a third minor cluster correlated with VHL wild-type tumors or tumors with
variant histologies. When variant histologies were removed, the analysis was dominated by
signatures related to patient’s sex and batch effects, preventing a deeper classification[242].
In both studies, there is no mention of association between the molecular subtypes and
immune responses.

The multi-omic classification provided by the TCGA study identified four mRNA sub-
groups of ccRCC, termed m1, m2, m3 and m4. Very little details about the pathways
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specifically associated with each clusters are reported, and no mention of immune-related
information is given. m1 is characterized by chromatin remodeling, with higher frequen-
cies of PBRM1 mutations. m3 tumors featured an increased rate of PTEN mutations and
CDKN2A deletions, both genes being related to the regulation of cell cycle. m4 showed an
enrichment in BAP1 mutations, a gene involved in DNA repair, and in the mTOR gene.
Importantly, this study confirmed the clinical impact of the classification established by
Brannon and colleagues[243], by showing that the ccA cluster corresponded to the m1
cluster, while ccB was splitted into m2 and m3 clusters, and with the m1 cluster being
associated with better outcome. The authors of the TCGA study proposed that the m4
cluster correspond to the previously unclassified samples.

1.4 Shaping of the immune contexture by cancer cells
The study of the immune contexture of tumors, which greatly accelerated in the early 21th

century, has led to a better understanding of the interactions between tumor cells and their
microenvironments, which opened promising, albeit recent, therapeutic avenues. In the
meantime, the advent of high throughput molecular biology approaches, has greatly sped
up our understanding of the molecular mechanisms that underlie the carcinogenesis and
the heterogeneity of tumors within and across malignancies. In contrast, our understand-
ing of the genesis of the variety of immune responses is limited. Within a single malignancy,
tumors from different patients feature highly diverse immune responses, as shown by het-
erogeneity in the densities and the phenotypes of the immune and non-immune stromal
cells of the microenvironment. Recent results suggest that the phenotype of the tumor
cells is one of the major determinant of the tumor’s immune contexture. In this section,
I review the current knowledge of tumor immunology in relationship with tumor cell’s
phenotypes in colorectal cancer (CRC) and clear-cell renal cell carcinoma (ccRCC), and
illustrate how these examples invite us to integrate the characterization of the immune
contexture with the knowledge of tumor molecular characteristics.

1.4.1 Colorectal cancer: a canonical example for tumor immunology

Tumor immunology has been extensively studied in colorectal cancer. It is the cancer where
it was established that an immune response characterized with extensive infiltration by
CD8+ T cells and a Th1 immune orientation are associated with favorable outcome. In this
section, I will expand on these findings, comment on the relationship between inflammation
and colorectal cancer’s carcinogenesis, and on the state of immunotherapeutic approaches
this malignancy.

1.4.1.1 Colorectal cancer arises in an inflammatory background

Inflammation is involved in the early stages of colorectal cancer’s carcinogenesis. This
statement is widely accepted for patients suffering from inflammatory-bowel diseases (IBD),
a group of inflammatory conditions which include Crohn’s disease or ulcerative colitis. Pa-
tients suffering from IBD are at increased risk of developping colorectal cancer, in which
inflammation drives carcinogenesis, notably through the activation of the IL6/STAT3
pathway. In this case, cancer arises from flat dysplasic lesions instead of adenomas[287],
with mutation of TP53 occuring early[288] and dysregulation of the Wnt pathway occuring
late in the carcinogenesis[287].

Non IBD-associated colorectal cancer’s carcinogenesis is, on the other hand, mainly
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thought to be a purely genomic and epigenetic event, and the role of inflammation in the
adenoma-carcinoma sequence was at first downplayed[289]. The fact that prophylactic use
of anti-inflammatory drugs such as aspirin[122–124] is associated with a reduced risk of
developing colorectal cancer, and that COX2 inhibitors were shown to reduce the number
of polyps in patients affected by FAP[290] instead suggest that inflammation plays a role
in sustaining carcinogenesis even in early non IBD-associated colorectal cancer.

In the case of adenoma-arising colorectal cancer, the prevailing model is that an in-
flammatory response with a Th1 functional orientation prevails in the adenoma stage,
with production of IFNg and the presence of M1-polarized macrophages as well as mature
dendritic cells. These elements are still present in the carcinoma stage, along with Th17
cells and M2-polarized macrophages that together favor cell survival and proliferation as
well as extracellular-matrix remodelling. Infiltration by inflammatory myeloperoxidase-
positive cells (Neutrophils) increases from normal epithelial colonic tissue to dysplasic
crypt foci and adenoma, and is highest in carcinoma samples[291], reflecting an inflam-
matory gradient.

1.4.1.2 Th1 functional orientation and extensive infiltration by CD8+ T cells
are associated with favorable prognosis in colorectal cancer

Histochemical quantifications of CD45RO+ memory T cells first showed that anato-
mopathologically-classified ’high-risk’ tumors, positive for lymphatic invasion, vascular
emboli or perineural invasion, and tumors from patients with lymph node or distant
metastases, also featured lower infiltration by memory T cells[46]. It was also shown
that tumors from patients who relapsed had a comparatively lower expression of genes re-
lated to a Th1 functional orientation[46]. Expanding on these results, Galon and colleagues
showed that the density of infiltrating CD3+ adaptive T cells, CD45RO++ memory T cells,
potentially-cytotoxic CD8+ T cells or cytotoxic granzyme-B+ T cells were all predictive
of the overall-survival and relapse-free survival of patients in non-metastatic colorectal
cancer, both in the center of the tumor and its invasive margin[47]. This seminal study
showed that the simultaneous analysis of the type (cytotoxic and memory cells), the den-
sity and the location of tumor infiltrating cells could be combined into a single measure
able to predict non-metastatic colorectal cancer patients’ prognoses independently of their
tumors’ stages[48–51].

Other T lymphocytes subsets have been associated with prognosis in colorectal cancer,
such as regulatory T (Treg) and IL17-producing cells. Unlike other tumor types[54, 292],
Treg cells appear to be associated with a favorable prognosis in colorectal cancer[293–295].
This might be due to the fact that Treg cells tamper the inflammation induced by IL17,
which are associated with poor prognosis[296, 297] and tumor growth[298] in colorectal
cancer.

1.4.1.3 Microsatellite instability is associated with immune response

MSI is associated with favorable outcome in colorectal cancer. MSI tumors accu-
mulate mutations that lead to the presentation of non-self antigens by tumor cells, and
indeed have a marked increase in tumor-infiltrating immune cells[18, 293, 299, 300]. Yet,
it appears that the prognostic-value of tumor-infiltrating T lymphocytes densities is in-
dependent of the MSI-status of the tumor[18, 293]. The high rate of mutations in MSI
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tumors could both hint at a better intrinsic control of the tumor growth by the adaptive
immune system and represent a target for immunotherapy[301–303].

1.4.1.4 Until recently, immunotherapy was unsuccessful in colorectal cancer

The only immunotherapeutic drugs currently approved in the treatment of colorectal
cancer are monoclonal antibodies. Although some immunostimulatory effects have been
reported[304], these drugs are mostly believed to antagonize tumor growth through the
inhibition of angiogenesis and survival-signals mediated by VEGF-signaling. Cetuximab,
a monoclonal antibody targeting the EGF receptor, is FDA and EMA-approved for the
treatment of metastatic KRASWT , but most of its therapeutic effects is unlikely to stem
from immuno-stimulatory functions of the antibody. Indeed, patients whose tumors are
mutated for KRAS, a downstream signal-transducer of the EGFR receptor, fail to re-
spond to Cetuximab[219]. Bevacizumab, a monoclonal antibody targeting VEGF-A and
approved for the treatment of metastatic colorectal cancer, is also believed to exert its
efficacy through the inhibition of neo-angiogenesis[305].

Other strategies, including peptide or tumor cells vaccines, ex-vivo dendritic cells acti-
vation and transfer, or cytotoxic lymphocytes adoptive transfers, have been experimented
in humans, but no phase III clinical trial using these strategies demonstrated a clinical
benefit[306]. Currently approved recombinant cytokines IL2 and IFNa, are not indicated
for the treatment of colorectal cancer[306].

Immune checkpoint inhibitors have also been tested for the treatment of CRC, and
initially yielded a poor response rate: only one CRC patient ouf of nineteen enrolled re-
sponded to the anti-PD1 monoclonal antibody Nivolumab in a phase I trial[307, 308], and
none out of eighteen responded to an anti PD-L1 monoclonal antibody in another phase
I trial[185]. The facts that the only colorectal cancer patient who responded had an MSI
tumor phenotype, and that MSI tumors are associated with an increased expression of
checkpoint molecules[302, 303], prompted a clinical trial for Pembrolizumab, another anti-
PD1 antibody, stratified by MSI phenotype. This phase I clinical trial showed a strong
association between the response to Pembrolizumab and the MSI status of the tumors,
with proficient MMR tumors having higher response rates. Consistently, patients with
MSI tumors had an increase progression-free survival and overall-survival following treat-
ment compared to those harboring microsatellite stable tumors[179]. This finding appears
to translate to other tumors where MSI phenotypes exist, such as endometrial, gastric and
small intestine cancers[179].

1.4.2 ccRCC: a counter-example for the paradigms of tumor immunol-
ogy

Clear-cell renal cell carcinoma has been reported as an immunogenic tumor, based on
the fact that like melanoma but unlike colorectal cancer, cytokine-based immunotherapies
(IL2 and IFNa) have been approved for its treatment[309]. Yet, unlike most malignancies[54],
an extensive infiltration by CD8+ T cells is associated with poor prognosis in ccRCC. In
this section, I will present results underlying the singularity of ccRCC for tumor immunol-
ogy.
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1.4.2.1 The immunoscore does not apply to ccRCC

Tumor infiltration by CD8+ T cells is associated with a favorable outcome in most
malignancies[54]. Surprisingly, this rule does not hold true for ccRCC. Several indepen-
dent studies have reported that infiltration by CD8+ T cells was associated with a poor
prognosis[149, 310, 311] or with a non-significant trend towards poor prognosis[312] Consis-
tent correlations with survival were obtained for CD4+ T cells and CD45RO+ T cells[312].
High proportion of CD3+ T cells among tumor-infiltrating lymphocytes is also associated
with a poor prognosis in ccRCC[313], as well a high expression of lymphoid markers[314]
or the expression of IFNg[149] using transcriptomics. In parallel, while most tumors fea-
ture down-regulation of class I MHC, which is believed to mediate escape from CD8+ T
cells-mediated elimination, ccRCC do not feature such a down-regulation, but rather an
up-regulation[315].

On the other hand, it appears that the quantification of proliferating CD8+ T lymphocytes[310]
is associated with favorable prognosis, suggesting that actively proliferating CD8+ T cells,
which are likely antigen-activated, associated with favorable outcome. Consistently, an
analysis of the repertoire of CD8+ T cells infiltrating ccRCC tumors highlighted the poly-
clonality of these cells, indicating little in-situ clonal activation and expansion[316]. The
same study also reported an upregulation of PD1+ and LAG3+ T cells in ccRCC compared
to peripheral blood lymphocytes from the same patients[316], while tumor infiltration by
CD8+ T cells was shown to correlate with infiltration by PD1+ and LAG3+ cells. Al-
together, these result suggest that tumor-infiltrating CD8+ T cells are specific for tumor
antigens but functionally inhibited.

As I presented earlier, ccRCC carcinogenesis is tightly linked to disruption of the
response to hypoxia pathway, through the loss-of-function mutation or promoter hyper-
methylation of the VHL gene[264, 285], or mutations of TCEB1[285], leading to a high
expression of the pro-angiogenic factor VEGF-A by tumor cells. It has been shown that
VEGF-A modulates the expression of immune checkpoint molecules on tumor-infiltrating
T cells[164] and that anti-angiogenic treatments were able to reduce the percentage of
Treg cells in ccRCC tumors in patient’s peripheral blood[317, 318], which correlates with
an increase in Th1[318] cytokines and with response to treatment[317]. It has therefore
been proposed that the high angiogenesis associated with ccRCC carcinogenesis could be
responsible for the apparent lack of efficiency of tumor-infiltrating CD8+ T cells.

1.4.2.2 Immunotherapy has been a successful modality for the treatment of
ccRCC

Spontaneous regressions of ccRCC tumors have been observed and first suggested that
the immune system was able to mediate cancer regressions in ccRCC[319]. At the same
time, clinical trials to evaluate the efficacy of IL2 or IFNa cytokines were ongoing[320–
323], and yielded clinical responses in up to 30% of patients, and durable responses in up
to 7%[324]. However, high dose IL2 therapy induces severe toxicities and its use is there-
fore restricted to patients with high performance status[325]. Moreover, a comprehensive
meta-analysis did not conclude that there was a survival benefit in the overall survival of
patients treated with high dose IL2 monotherapy compared to IFNa monotherapy[326],
nor for low dose IL2 plus IFNa therapy compared to IFNa monotherapy, while IL2 was
associated with higher toxicity[326]. Use of IFNa is also limited by high treatment-related
toxicity, but has been shown to increase patient’s overall survival compared with conven-
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tional treatments such as chemotherapy[327].

IL2 and IFNa have been the main treatments for advanced renal cell carcinoma for al-
most two decades, but have recently been outshadowed by targeted therapies, specifically
those targeting angiogenesis or the mTOR pathway[324]. Although these therapies pro-
vide a progression-free survival benefit over cytokine-based immunotherapies, patients ulti-
mately relapse and die of their diseases[325]. However, the new generation of immunother-
apies, based on immune checkpoint blocking antibodies, has resulted in that a subset of
ccRCC patients responded, and that these responses could be durable[185, 307, 328].
A recent phase II clinical trial with the anti-PD1 antibody Nivolumab showed a clini-
cal activity and acceptable safety profile in patients with metastatic ccRCC refractory
to anti-angiogenic treatments[329]. Ongoing phase III clinical trials comparing checkpoint
blocking antibodies to targeted therapies will tell whether these immunotherapies will yield
similar or better short-term clinical benefits than other targeted therapies, and similar or
better long-term responses as cytokine-based therapies.

1.4.3 The shaping of immune responses by cancer cells

I presented results underlying the fact that the immune system was able to control
tumor growth, and that it could be therapeutically leveraged. I highlighted the critical
role of the phenotype of the cancer’s progenitor cell in conditioning carcinogenesis, and
presented genomic classifications of tumors which help deciphering the critical molecular
events associated with carcinogenesis. Results from tumor immunology in ccRCC and
CRC show that immune contextures vary from one malignancy to the other. I will now
discuss whether these different immune contextures are shaped by tumor cells or by the
surrounding organ’s tissues.

1.4.3.1 Immune responses are conserved during metastasis

Studying the tumor metastasis microenvironment is useful to delineate the impacts of
the surrounding organ and of the malignant cells in shaping their immune contextures.
Remark and colleagues reported immunohistochemical quantifications of tumor infiltrating
CD8+ T cells, DC-Lamp+ mature dendritic cells and NKp46+ NK cells in lung metas-
tases stemming from colorectal cancers or renal cell carcinoma[311]. Despite being resected
from the same organs, the densities of lung metastasis-infiltrating immune cells was dif-
ferent between the two malignancies: the density of DC-Lamp+ cells was higher in CRC
lung metastases compared to ccRCC lung metastases, and the density of NKp46+ cells
lower[311].

For both cancers, immune infiltration was heterogeneous across patients in both lung
metastases and corresponding primary tumors. However, the density of all the quanti-
fied immune cells were highly correlated between primary tumors and their corresponding
metastases, in both cancers[311]. These two results reveal that tumors of different molec-
ular phenotype that evolve within the same surrounding tissue display different immune
contextures, suggesting that the tumor cells influence the density of the infiltrating im-
mune cells.
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1.4.3.2 The prognostic associated with a given immune contexture in the
primary tumor is recapitulated in metastases

I presented evidence of a prognostic association between a high density of tumor in-
filtrating CD8+ T cells in primary CRC and primary ccRCC. However, it is a positive
association in CRC[47] and a negative one in ccRCC[149]. Strikingly, these results were
reproduced in study of Remark and colleagues: infiltration by CD8+ T cells was associ-
ated with favorable outcome in CRC lung metastases and poor outcome in ccRCC lung
metastases[311]. Of note, in lung cancer, like in CRC, CD8+ T cells infiltration is associ-
ated with favorable outcome[330]. Therefore, malignant cells rather than the surrounding
organ condition the prognostic value associated with a high density of a given immune cell
phenotype.

Altogether, these results suggest that there is a strong influence of the malignant
cell’s phenotype on their immune contexture[311, 314, 331–333].

1.5 Correlating immune contextures and tumor’s molecular
phenotypes

I have presented results from both tumor immunology and omic analyses, that led to
classifications of tumors, which are useful to predict prognosis and response to therapies. I
also detailed the similarity of the immune contexture of primary and matched pulmonary
metastases of CRC and ccRCC tumors. In this setting, the density of infiltrating immune
cells was correlated between matched malignant lesions, suggesting that tumor cells in-
fluence the recruitment of adaptive and inflammatory immune cells, possibly through the
release of cytokines or inflammatory factors, as well as the antigenicity and number of
presented neoantigens. The prognostic impact associated with an extensive infiltration by
adaptive immune cells was also consistent between primary and metastatic tumors (posi-
tive for CRC and negative for ccRCC), suggesting that the effect of the immune contexture
on tumor control or promotion depends on the phenotype of the cancer cell rather than
on the surrounding non-malignant tissue. These results suggest that molecular charac-
teristics of tumors (activation of pro-inflammatory or immunosuppressive transcriptomic
programs, expression of highly or poorly immunogenic antigens) influence the densities of
immune cells in the tumor microenvironment, as well as their effect on tumor evolution.
Since transcriptomic classifications aim at identifying ’intrinsic’ tumor phenotypes that
may correspond to different molecular phenotypes of the cancer cells, these classifications
could therefore also identify groups of tumors with different immune contextures. In order
to challenge this hypothesis, I will thus introduce possible approaches to investigate the
relationship between omic and immunological classifications of tumors.

1.5.1 Canonical techniques to study the immune microenvironment

Most researches aiming at quantifying cell populations within the immune microenvi-
ronment are based on immunohistochemistry. This technique can be performed on fixed
samples which are then sectioned in thin slices and mounted on glass slides. Antibodies
specifically targeting proteins of interest (for instance CD8) are then incubated on the
surface of the tissue. Antibodies are usually conjugated to an enzyme which catalyzes a
color-producing reaction, usually a peroxidase. Once antibodies are bound to their epi-
topes, the enzyme’s substrate is added on the tissue slide and subsequently processed by
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the enzyme, producing a color co-localizing with the epitope of interest. The number of
positive cells, extent of positive surface or color intensity can then be quantified, and their
spatial localization observed. Quantification of positive cells can be achieved through eye-
counting using a microscope, or through image-processing softwares. In both cases, the
process is time consuming, requires expertise and access to tissue samples. Moreover, it is
difficult to simultaneously quantify multiple cell populations, as the number of distinct col-
ors that can be used simultaneously is limited. Given the wide number of cell populations
interacting within the tumor microenvironment, a quantitative analysis of multiple cell
populations is difficult. The number of simultaneously-targeted epitopes can be increased
with the use of antibody-bound fluorescent dyes, which is useful to assess patterns of co-
expression of the corresponding proteins within a tissue, but makes the quantification of
positive cells difficult.

Flow-cytometry uses fluorochromes-bound antibodies to target cells suspended in a
liquid media, which is then ran through a cytometer equipped with lasers, each emitting
light at wavelengths matching the distinct fluorochromes’ excitation windows. Fluores-
cence is then measured by detectors and mapped to epitope-specific antibodies based on
the emission wavelength. Other signals, such as the forward light scatter and the side light
scatter are measured and enable cells stratifications depending on their sizes and granu-
larity. This technique enables the quantification of refined cell populations based on the
combination of epitopes expressed, at the cost of the loss of spatial localization. A number
of confounding events (cellular debris, dead or bound cells) restricts this quantification to
be relative to a reference cell populations. One can for instance measure CD8+ T cells
among CD45+ hematopoietic cells, or among CD3+ cells, but this technique is not used
measure absolute numbers of immune cells within a tumor sample. Moreover, it requires
access to fresh tissue samples and therefore cannot be used in retrospective analyses of
tumor cohorts.

1.5.2 Studying the immune microenvironment through gene expression

As transcriptomic classifications reflect differences in carcinogenesis pathways and mu-
tational events, and are able to capture immune-related information[225], it is tempting to
study the microenvironment through transcriptomic data, and directly assess the correla-
tion between the amount of infiltrating immune cells’ densities and cancer molecular sub-
groups. In this section, I will present why such a study is conceptually different from those
performed using immunohistochemistry or immunofluorescence, and review the methods
that have been proposed to tackle this issue.

1.5.2.1 Enrichment analyses

Features (genes) clustering analyses can identify sets of co-expressed genes, and super-
vised analyses identify gene sets differentially expressed between two or more conditions.
These two types of approaches can then be used to identify overrepresented gene sets (for
instance genes that belong to a particular pathway) among a gene cluster or a set of differ-
entially expressed genes. This can be achieved through the use of a hypergeometric test,
or with other statistical methods such as Gene Set Enrichment Analysis (GSEA)[334], or
by ad-hoc analyses that rely on the expertise of researchers to infer the biological signi-
fication of a gene set. Such analyses have been performed to highlight the enrichment
of immune-related genes in molecular classifications[239], or to analyze immune signa-
tures in tumor cohorts[335]. Although the approach is in theory valid, it requires either
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a suitable database for the definition of gene sets or knowledge based on empirically de-
fined pathways. These are, however, highly context-dependent: for instance, the gene set
GO:0050863 regulation of T cell activation is suitable within an experiment that compares
two T cell samples and should reflect a differential activation of T cells within one sample.
In the context of analyzing the tumor microenvironment, it could reflect activation of T
cells, the presence of T cells, or even an upregulation of genes involved in T cell activation
but which are in fact expressed by other cell types. Gene sets from public databases are
highly overlapping, and such analyzes usually return many related pathways as overrepre-
sented, enabling analysts to highlight differential expression of immune-related genes, but
not to perform a deeper characterization of the type of immune response at play.

1.5.2.2 The tumor transcriptome: a convoluted measure of gene expressions

Unlike immunohistochemistry and immunofluorescence, where events are acquired at
a cellular level, transcriptomic measures is performed at the sample level. A tumor sample
is a heterogeneous mixture of malignant and normal populations, including immune and
other stromal cells. A measure of the expression of a gene in a tumor sample is therefore
the sum of the expressions of the gene by all individual cells in the sample. The gene
expression measure is therefore the convolution of each cell populations’ gene expression
profiles and their corresponding proportions in the sample. If we consider a ’perfect’ mea-
sure (with no noise and perfect linearity), then the following model holds :

Let a sample’s transcriptome e be a measure of n features. These can be represented
by a n-dimensional vector e = e1...n = (e1, . . . , en). We can consider that the sample is
composed of a finite number of m distinct cell populations. Let p = p1...m represent each
population’s proportions. p verifies equations (1.1) and (1.2).

m∑
k=1

pk = 1 (1.1)

∀k ∈ 1 . . .m, pk ≥ 0 (1.2)

For a given feature 1 ≤ j ≤ n, and a cell population 1 ≤ k ≤ m, let gj,k be the
measure of the expression of the feature j in population k. Then the sample’s expression
of the feature ej verifies equation (1.3), which states that the measured expression ej is
the weighted average of the expression levels of j in each cell populations gj,k, weighted
by their respective proportions pk.

ej =
m∑

k=1
gj,k × pk (1.3)

Since equation (1.3) holds for any feature j, the sample’s transcriptome e follows
equation (1.4).

e1...n =



e1
e2
e3
. . .
en−1
en


=



g1,1 g1,2 . . . g1,m

g2,1 g2,2 . . . g2,m

g3,1 g3,2 . . . g3,m
...

... . . . ...
gn−1,1 gn−1,2 . . . gn−1,m

gn,1 gn,2 . . . gn,m


×



p1
p2
p3
...

pm−1
pm


(1.4)
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Finally, let s be the number of samples measured (for instance s different tumor sam-
ples). The transcriptomic measure then becomes a n × s matrix (equation (1.5)), whose
ith column (1 ≤ i ≤ s) is the transcriptome of sample i. Each sample verifies equation
(1.4), so the matrix e1...n,1...s verifies equation (1.6)

e1...n,1...s =



e1,1 e1,2 . . . e1,s

e2,1 e2,2 . . . e2,s

e3,1 e3,2 . . . e3,s
...

... . . . ...
en−1,1 en−1,2 . . . en−1,s

en,1 en,2 . . . en,s


(1.5)

e1...n,1...s =



g1,1 g1,2 . . . g1,m

g2,1 g2,2 . . . g2,m

g3,1 g3,2 . . . g3,m
...

... . . . ...
gn−1,1 gn−1,2 . . . gn−1,m

gn,1 gn,2 . . . gn,m


×



p1,1 p1,2 . . . p1,s

p2,1 p2,2 . . . p2,s

p3,1 p3,2 . . . p3,s
...

... . . . ...
pm−1,1 pm−1,2 . . . pm−1,s

pm,1 pm,2 . . . pm,s


(1.6)

where pj,k is the proportion of the cell population j in sample k.

1.5.2.3 Deconvolution approaches

The goal of deconvolution approaches is to estimate the unknown matrix of proportions
p = p1...m,1...s. The matrix e = e1...n,1...s is measured (known). Various approaches have
been proposed to estimate the proportions p, that I will review in this section, with a
particular focus on their scopes (cell populations surveyed and types of analyzable samples)

1.5.2.3.1 Complete deconvolution
The matrix g = g1...n,1...m, whose columns are the transcriptome of each cell popula-

tions, is also unknown. Complete deconvolution algorithms attempt to simtultaneously
estimate both g and p, given e[336]. The first study proposing an algorithm to solve
this problem was published in 2001 by Venet and colleagues[337]. It is the first stating
the above-stated mixture model (equation (1.6)). In their paper, the authors proposed a
method that iteratively estimates e then g to minimize the error |e− g × p|, and applied it
to a measure of 1988 genes across 62 colon cancer samples. Interestingly, their method was
able to identify four cell populations, two of which could be identified as hematopoietic
cells and fibroblasts[337]. The authors however discuss the limitations of their algorithm,
notably the absence of experimental validation and the difficulty in estimating the number
of cell populations k.

Repsilber and colleagues built on the method proposed by Venet et al., notably by
using a least-square non-negative matrix factorization algorithm in the iterative steps,
which enable them to alleviate one of the hypotheses necessary for the applicability of the
previously-proposed model[338]. The authors also tested the predicted proportions against
cytometry-measured proportions in blood samples, and the cell populations-specific ex-
pression profiles against those of FACS-sorted cells from the corresponding blood samples.
They were able to reach a Pearson’s correlation of 0.86 between the predicted and measured
expression profile, and a significant correlation between the proportions of cytometry-
measured and computationally-predicted cell populations.
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No other complete deconvolution method that did not use external information was
otherwise published[336]. Erkkiläe and colleagues implemented a bayesian statistical
framework that requires only the number of distinct cell populations k to perform a
complete deconvolution[339]. In addition, tools have been proposed that relied either
on the external measurement of cellular proportions p to infer the cell populations’ tran-
scriptomic profiles g, or on the measure of the transcriptomic profiles g to estimate the
proportions p. For instance, Kuhn and colleagues, as well as Zhong and colleagues, imple-
mented methods which estimate the proportions based on the expression of user-provided
populations-specific markers, assumed to be expressed in only one cell population, and then
use these proportions to estimate their corresponding gene expression profiles[340, 341].
Ahn et al. as well as Quon et al. used a two-populations model, and a corresponding set
of genes externally-measured for both populations, to first estimate the proportions of the
two populations and then their corresponding transcriptomes[342, 343], with the goal of
ameliorating the measurement of the malignant cell’s transcriptomes.

1.5.2.3.2 Partial deconvolution
Instead of trying to estimate simultaneously both g and p, most published methods

rely on the measurement of cell proportions to estimate population specific expression
profiles[344–346], or measurement of specific expression profiles to estimate proportions[343,
347–353]. I will focus on the latter, as our purpose is to quantify immune cell populations
within a tumor’s microenvironment.

Lu and colleagues[347] were the first to deconvolve cell proportions in the transcriptome
of yeast cultures in different phases of the cell cycle, by using gene expression measure-
ments in yeast cultures synchronized at a given phase of the cell cycle. Shortly after,
the first study applying deconvolution to tumor samples was published[348], aiming at
estimating the proportion of malignant cells and contaminating stroma in a tumor sam-
ple. Wang and colleagues increased the number of cell populations whose proportions are
estimated, in murine mammary gland samples. They notably included immune samples
(CD4+ and CD8+ T cells, B and plasma cells and macrophages) and fibroblasts in their
reference transcriptomic prolifes, along with mammary epithelial cells, as well as brown
and white adipose tissues[349]. Gong et al. showed that such approaches could apply to
next-generation RNAseq data[352].

Studies focusing on estimating immune cells’ proportions mostly focused on blood
samples[350, 351], which is arguably of lower complexity in terms of cellular composi-
tion than solid tissues. Using transcriptomic profiles of purified cell populations, these
studies were able to estimate either the proportions of lymphocytes, neutrophils and
monocytes[351], or 18 different immune cell populations[350].

Finally, a recent study tackled the issue of the estimation of immune cell propor-
tions within tumor tissues[353]. It relies on the expression from the gene signatures of
Abbas et al.[350], or user-provided signatures, then perform a feature selection step fol-
lowed by support vector regression to estimate the proportions of the populations covered
by the signatures[353]. Applied to tumor samples and using user-provided signatures, it
quantifies the relative proportions of immune cells within the hematopoietic contingent of
cells in the tumor microenvironment.
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1.5.2.4 Marker-based approaches

The definition of a transcriptomic marker for a cell population is unclear and varies
from one study to the other. Within partial deconvolution approaches, we presented
studies that used markers of cell populations[350, 353], which in this context are genes
differentially expressed between the populations surveyed. Deconvolution approaches try
to minimize |e− g × p| given e and g, but part of the transcriptome e is sometimes irrel-
evant, as some genes are expressed in none of the cell types of interest or at equal levels
by all of them. Partial deconvolution approaches therefore use a subset of the features
n′ ∈ [1, n]∩N where ∀j ∈ n′, j is a gene differentially expressed among the cell populations
surveyed.

In another type of approaches, markers are thought as genes entirely specific to one
population and not expressed at all in the others, and could therefore directly corre-
late with tumor infiltration by their corresponding immune population. The idea be-
hind marker-based approaches is, formally, to identify the set of genes nspec ∈ [1, n] ∩ N,
so that for all cell populations, the expression of the marker is null except in one, ie
∀j ∈ nspec, ∃!k(j) ∈ [1,m] such as gj,k(j) 6= 0.

Equation (1.5) is then equivalent to (1.7).

e1...nspec,1...s =



g1,1 0 . . . 0
g2,1 0 . . . 0
0 g3,2 . . . 0
...

... . . . ...
0 0 . . . gnspec−1,m

0 0 . . . gnspec,m


×



p1,1 p1,2 . . . p1,s

p2,1 p2,2 . . . p2,s

p3,1 p3,2 . . . p3,s
...

... . . . ...
pm−1,1 pm−1,2 . . . pm−1,s

pm,1 pm,2 . . . pm,s


(1.7)

For a given cell population k0, whose markers are nk0, we have

∀j ∈ nk0 , ej =
m∑

k=1
gj,k × pk = gj,k0 × pk0 (1.8)

ie pk0 ∝ ej , there is a direct proportionality between the proportion of the cell population
k0 and ej , the sample’s expression of j.

The system of equations given in (1.8) is overdetermined, as there are more equa-
tions than variables, and it is therefore unsure whether a solution mathematically exist.
To estimate the proportion of interest, it is however possible to use estimators such as the
mean

(
ej

gj,k0

)
j∈nk0

.

The markers investigated are sometimes proposed on the basis of the knowledge of
immunology[119, 354, 355], but are most often based on empirical data measuring the
level of expression in transcriptomes of purified (FACS-sorted, in-vitro cultured, or mi-
crodissected tissue sections) cell populations[119, 355–360]. Interestingly, in the pioneering
work of Venet et al. on complete deconvolution[337], the authors define a transcriptomic
marker as described above, and show that the existence of markers for each population
surveyed is one of the conditions for their algorithm to be deterministic. However, in the
implementation of their method, they do not use such markers but instead relax their
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definition to genes with a high differential expression[337]. Only one study attempted to
identify ’strong’ markers, with a non-null expression in only one cell population as shown in
equation (1.7)[356]. The other studies based on identification of markers only characterized
’weak’ markers, overexpressed in a given cell population but with potential non-null ex-
pression levels in the others[119, 357–360]. Finally, Abbas et al. and Palmer et al. focused
on blood samples, with little or no control for solid tissues, respectively[356, 358]. Shoe-
maker et al. propose a web-based tool performing enrichment analyses of user-provided
gene sets, which could be applied to the study of tumor molecular subtypes. Yoshihara
et al. use two sets of markers to estimate stromal and immune contaminations in tumors,
making their approach inapplicable for the precise characterization of immune responses
in tumor subtypes[360]. Finally, Bindea et al. proposed list of overexpressed markers for
twenty-six cell populations and two types of colorectal controls[119].

1.5.3 Transcriptomic studies of the tumor microenvironment

In the previous section, I presented methods related to the estimation of immune-cell
infiltration in heterogeneous samples. I this section, I will present the results obtained with
these methods, with unsupervised analyses, or a combination of both, on transcriptomic
cohorts of human colorectal, ccRCC, or in multiple cancers at once.

1.5.3.1 Transcriptomic analyses of the microenvironment in colorectal cancer

1.5.3.1.1 Signatures associated with immune infiltration
Transcriptomic analyses have been performed in the seminal study by Galon and col-

leagues which associates extensive infiltration by CD3+, CD8+ or CD45RO+ T cells in
colorectal tumors’ microenvironments with favorable outcome for the patient[47], using
a quantitative rt-PCR approach on 18 genes related to immunity. Clustering analyses
on this small gene set enabled the identification of a cluster of co-expressed genes asso-
ciated with T cells cytotoxicity and a Th1 functional orientation (GZMB, GNLY, IFNG,
IRF1, CD3Z, CD8A, TBX21), suggesting that this signature represents the infiltration by
CD8+ T cells. Expanding on these results, Mlecnik et al. later identified, using in-silico
gene networks reconstructions, CX3CL1, CXCL9 and CXCL10 as the main cytokines as-
sociated with infiltration by these cells in colorectal cancer[361]. Finally, Coppola et al.
identified a set of twelve cytokines (CCL4, CCL5, CXCL9, CXCL10, CXCL11, CXCL13,
CCL2, CCL3, CCL8, CCL18, CCL19, CCL21) which identifies the presence of tertiary
lymphoid structures in colorectal tumors stroma[361]. Tertiary lymphoid structures are
lymph-node like follicles that emerge at sites of chronic inflammation and their presence
have been associated with favorable outcome in a wide variety of tumors[333]. The signa-
ture proposed by Coppola and colleagues overlaps with the one identified by laser capture
microdissection in lung cancer (which includes CCL19, CCL21, CXCL13)[362].

1.5.3.1.2 Cellular quantifications using transcriptomics
The first study analyzing the microenvironment in colorectal cancer tumors using

transcriptomics was performed by Bindea and colleagues[119]. In this paper, the authors
proposed a list of markers for twenty-six cell populations of the microenvironment. These
markers were then used to perform clustering analyzes, independently of the markers’ as-
sociated cell populations, which stratified patients into two clusters (a third set of patient
was left unclassified). Samples of the cluster 1, highly expressing the proposed mark-
ers of CD8+ T cells and of Th1 lymphocytes, were associated with favorable outcome.
Samples of the cluster 2 highly expressed the proposed markers of NK cells, eosinophils,
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central-memory T cells, TH2, Th17, and regulatory T cells, and were associated with poorer
outcome. The same approach was used by Angelova et al., who added markers for myeloid-
derived suppressor cells based on published immunological knowledge[355]. It identified
genomic features associated with immune infiltration, and notably that microsatellite in-
stability is associated with infiltration by adaptive lymphocytes.

Two studies recently analyzed the microenvironments of colorectal cancer molecular
subgroups, with a particular focus on the poor-prognosis mesenchymal subgroup. Both
studies used gene set enrichment analyses and identified that this subgroup was highly
infiltrated by leukocytes (without further precisions about their phenotypes), endothelial
cells and fibroblasts[363, 364]. Calon et al. proposed that tumor-associated fibroblasts
were actively promoting the metastatic capacities of cancer cells in this subgroup, which
could explain the poor prognosis associated with this subgroup[363]. Isella et al. pro-
posed that expression of fibroblasts markers could identify this subtype and predict poor
response to chemotherapy[364].

1.6 Transcriptomic analyses of the microenvironment in ccRCC
Most transcriptomic studies focusing on kidney cancer attempted to characterize path-
ways differentially expressed between normal kidney and either renal cell carcinoma[365]
or ccRCC[366–369]. All of these agreed on the fact that ccRCC tissues overexpress genes
related to immunity compared with adjacent kidney tissue. Pathways identified included
both lymphocytes-related and inflammation-related pathways[365], antigen-processing and
presentation, NK-cell mediated cytotoxicity and cytokine-cytokine receptor interactions[369],
IFNg-mediated immune response and innate immune response[368], cytokines, TLRs and
T-cells related genes[367]. Tan et al. measured the expression of 681 immune-related
genes and found virtually all of them overexpressed in ccRCC samples compared to ad-
jacent kidney tissues[366]. These pathways suggest an over-infiltration by many different
immune cell types.

One study focused on one particular gene, CD1d, which they report as a marker
common to myeloid cells of the monocytic lineage and B cells. They show that a higher
expression of this gene is associated with higher tumor stage and grade, and predicts a
poor outcome[370]. I presented studies suggesting that high infiltration by CD8+ T cells
is associated with poor outcome in ccRCC. This study suggests that a high infiltration by
other immune cell types could also identify high-risk patients in ccRCC.

1.7 Pan-cancer analyses of the tumor microenvironment
Several studies have recently been published on pan-cancer analyses, two of them fo-
cusing on the tumor microenvironment. Hoadley and colleagues performed a cluster-
ing analyses spanning twelve different malignancies using TCGA data, and highlighted
pathways related to ’T and B lymphocytes’, ’PD1 signaling’, ’CTLA4’ and ’interferon
signaling’[371]. The first three were highly correlated, and the highest expression was
found in ccRCC (KIRC TCGA project), followed by lung adenocarcinoma (LUAD TCGA
project). Colorectal cancer was among the cancers with the lowest expression for these
three pathways[371]. Their result suggest that ccRCC is one of the highest lymphocytes-
infiltrated cancers.

The second study is also based on TCGA data and includes 18 TCGA projects. It
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analyzes the expression of a two-genes score (the mean of log2(GZMA) and log2(PRF1)),
which is proposed to reflect simultaneously the infiltration and the activation of cytotoxic
lymphocytes within tumor samples[354]. Their results also suggest that ccRCC is one
of the most infiltrated malignancies and that colorectal cancer rather poorly infiltrated.
Interestingly, the authors suggest that the number of non-synonymous mutations, as well
as the number of mutations potentially generating epitopes able to bind to the patient’s
HLA molecules, are correlated with their two-genes score. They also propose that the ex-
pression of endogenous retroviruses transcripts, as well as some particular gene mutations,
are associated with the two-genes score.

Finally, Gentles and colleagues applied the CIBERSORT algorithm[353] on 18,000
tumors spanning 39 malignancies to study the prognosis associated with various immune
subsets[372]. Since CIBERSORT only outputs the proportion of immune cells subpopula-
tions relative to a sample’s level of immune infiltration, they could not compare the level
of infiltration across malignancies. They however show a high proportion of myeloid cells
among immune cells in brain cancers compared to other solid tumors. The relative pro-
portions of the surveyed immune cell subpopulations is shown to be similar across other
solid tumors[372]. Their results also support that relative infiltration by Tgd cells is the
best immune marker for favorable outcome, and relative infiltration by neutrophils the
best immune marker for adverse outcome[372]. The association of the relative frequency
of immune cell subpopulations with survival is however cancer-dependent[372].





Chapter 2

Hypotheses, objectives and
strategies

In the introduction, I presented results from both tumor immunology and molecular studies
of tumors. Researches in tumor immunology have shown that in most cancers, adaptive
immune cells can control tumor growth, and consistently that their extensive infiltration
in tumors correlate with favorable outcome. They also showed that inflammation, on
the other hand, fuels tumor growth, notably by inhibiting the activity of the adaptive
immune response and by promoting angiogenesis and tumor cells proliferation. These
results led to a large number of proposed immunological biomarkers to predict patient’s
prognosis or response to therapies. In parallel, omic classifications have delineated tumor
molecular subgroups in many different malignancies, which are able to identify different
carcinogenic mechanisms within a given cancer. These subgroups are associated with
different genomic and epigenetic alterations, and are often informative about patient’s
prognosis and response to treatments.

Little is known about the overlap between immunological and molecular classifications.
Studies that propose molecular stratifications of cancers often report dysregulation of
immunity-related genes in some subgroups, suggesting a consistency between immune
and molecular classifications, although most often only little precision about the type
of inflammatory or adaptive immune mechanisms at play is given. On the other hand,
the analysis of matched primary and metastatic tumors performed by Remark et al.[311],
where the molecular phenotype of the tumor cell is likely to be mostly maintained between
matched samples while the surrounding tissue is different, reveals that the phenotype of
tumor cells critically influence the density of infiltrating immune cells and the prognostic
value associated with a given immune infiltrate.

Thus, we hypothesized that there is a correlation between the molecular phenotypes
of tumors and their immune contextures. To test this hypothesis, we proposed to analyze
the immune contexture of large cohorts of molecularly-classified human tumors. Several
mechanisms could underly this correlation, notably the type of cytokines released by cancer
cells, their antigenicity or the production of molecules regulating their stroma.

The main objective of my PhD project is therefore to correlate immune contextures
and the molecular subtypes of tumors. It serves several translational purposes:

• Firstly, both genomic and immune classifications were shown to predict patient’s
prognosis and response to treatments. A unified genomic and immune classification
could accelerate their conjoint use in the clinic.

• Secondly, several treatments modulate features of the tumor microenvironment,
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notably anti-angiogenic treatments which modulate the tumor vasculature, anti-
checkpoint and cytokine-based immunotherapies which enhance anti-tumor immune
responses, and anti-inflammatory treatments which tame tumor-promoting inflam-
mation. Several studies suggest that cancer-associated fibroblasts also represent
potential therapeutic targets in the tumor microenvironment. Analyzing the tumor
microenvironment of tumor molecular subgroups could therefore hint at the groups
of patients most likely to respond to these microenvironment-targeting therapies.

A secondary objective is to confirm, and investigate why, in clear-cell renal cell car-
cinoma, unlike most other cancers, an extensive infiltration by CD8+ T cells correlate
with poor prognosis. This objective is important for tumor immunology, in order to ame-
liorate our understanding of the interactions between malignant cells and their immune
microenvironment.

2.1 Methodological objective: transcriptomic quantification
of cells populations of the tumor microenvironment

Investigating multiple cell populations and functional mediators of the tumor microenvi-
ronment through classical techniques, such as immunohistochemistry and immunofluores-
cence, in relationship with tumor molecular phenotypes, is extensively time and money
consuming, and requires access to both fresh or frozen tumor tissue to collect nucleic
acids material for molecular analyses, and flash-frozen paraffin-embedded tissues for in-
situ analyses. On the other hand, since the tumor transcriptome holds immune-related
information, and is readily available from public repositories when molecular classifica-
tions are performed and published, I proposed to develop a transcriptomic approach to
quantify immune cells infiltration.

2.2 Methodological objective: transcriptomic analyzis of the
functional orientation of the tumor microenvironment

Since the functional orientation of cells within the microenvironment is mostly modulated
by cytokines and other soluble mediators, I proposed a litterature-based approach to select
genes important in the functional orientation of the tumor microenvironment.

2.3 Main objective: unifying immune and molecular classi-
fications

We set-up collaborations with researchers proposing molecular classifications of ccRCC
and CRC and re-analyzed their data to describe the immune contextures of the identified
tumor subtypes, using the methodology we designed. In-situ analyzes were realized to
confirm the computational predictions.
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2.4 Secondary objective: investigate and explain the prog-
nosis of ccRCC tumors highly infiltrated by CD8+ T
cells

I focused on ccRCC tumors highly infiltrated by cytotoxic lymphocytes and analyzed
other features of their microenvironment. I notably focused on the other cell popula-
tions present in these tumors and on the functional orientation of immune cells in their
microenvironments.
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Results

3.1 Article 1 : the immune contextures of ccCRC molecular
subtypes

3.1.1 Summary of the article

3.1.1.1 Motivation of the study

This article is a collaborative work in which we proposed a transcriptomic classification
of ccRCC tumors along with the description of the respective immune contextures of the
tumor subtypes. The study was motivated by the fact that tyrosine-kinase inhibitors
(TKI), which are drugs that interfere with intracellular signaling pathways and which are
proposed as first-line therapy to advanced ccRCC patients, yield inconsistent responses
across patients, while no biomarkers for the response to these treatments is available.
Additionally, since immune checkpoint-blockade therapies have been recently reported to
induce clinical responses in metastatic ccRCC patients who did not respond to TKI, a
description of the immune contexture of ccRCC molecular subtypes could help identifying
patients who could benefit from checkpoint-blockade immunotherapies.

The study is based on a multi-omic analyses of primary ccRCC tumors of patients
at the metastatic stage, who received at least one cycle of Sunitinib, a multi-targeted
tyrosine-kinase inhibitor, whose targets include VEGF receptors and PDGF receptors.
These receptors transduce angiogenic and proliferative signals. In the absence of an un-
treated control group, the endpoints analyzed were the response to treatment according
to RECIST 1.0 criteria, overall-survival (OS) and progression-free survival (PFS).

Supervised analyses of genomic data failed to identify genomic markers associated
with the primary endpoints, which could be due to the molecular heterogeneity of ccRCC
tumors. A transcriptomic classification of these tumors was therefore performed and an-
alyzed the distribution of Sunitinib-responders across subgroups, as well as the OS and
PFS associated with each subgroup. Since the number of tumors analyzed in this discovery
cohort was modest (53 ccRCC samples), a rt-qPCR classifier was designed and tested on
the discovery cohort and then applied to an independent validation serie of 47 samples.

3.1.1.2 Results: identification and genomic characterization of four molecular
subgroups of ccRCC

Three clustering techniques based on the 1% most variable probesets of the transcriptomic
arrays each identified four tumor clusters, termed ccrcc1-4, with a strong consistency of
the classifications established with each method. These findings confirmed and extended
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previously published classifications that stratified ccRCC into two[243] or three molecular
subgroups[242]. The ccrcc1 subgroup is characterized by lower mutation rates of the VHL
and PBRM1 genes, hypermethylation of CpG-islands, hypermethylation of genes encoding
proteins of the polycomb-group which control cell differentiation and a consistent higher
Fuhrman grade, and overexpression of genes downstream of the MYC transcription fac-
tor which controls cell proliferation. ccrcc2 has the highest VHL mutation rate of the
four subgroups, an intermediate expression of the ’cellular response to hypoxia’ pathway
and lower Fuhrman grade compared with the other subgroups, but otherwise showed little
specific genomic events or disrupted pathways. ccrcc3 is a ’normal-like’ group, whose tran-
scriptome and methylome resemble the one of tumor-distant normal kidney samples, and
has a low activation of hypoxia pathways. Finally, the ccrcc4 subgroup resembles ccrcc1
in terms of genomic amplification events and disrupted pathways, but is characterized by
lower rate of PBRM1 and VHL mutations as well as an overexpression of immunity-related
genes. It also showed recurrent copy-number alterations of the 2p12, 2p22.3 and 8q21.13
genomic loci.

3.1.1.3 Results: association of the molecular subgroups with response to suni-
tinib and prognosis

The classification into four molecular subgroups showed a significant association with re-
sponse rates to Sunitinib treatment, with 70% of responders (complete or partial responses
as evaluated by RECIST 1.0) for ccrcc3 tumors, 53% for cccrcc2, 41% for ccrcc1 and only
20% for ccrcc4 tumors. Consistently, patient survival after treatment was significantly
different across the four subgroups, with patients of the ccrcc2 and ccrcc3 groups having
the best prognosis for both OS and PFS, followed by ccrcc1, while patients in the ccrcc4
subgroup had the worst outcome.

3.1.1.4 Results: high immune infiltration in the ccrcc4 poor-prognosis sub-
group

Pathological examination of tumor tissue sections identified that ccrcc4 tumors were more
inflammatory. Consistently, pathway analyses relying on public gene sets databases identi-
fied an upregulation and hypomethylation of genes involved in ’T-cell activation’, ’Regula-
tion of immune response’ and ’Chemotaxis’ in ccrcc4 tumors. As these results suggested a
high infiltration by immune cells, I used previously-established transcriptomic signatures of
immune cells[119] to identify whether and which immune subpopulations were infiltrating
ccrcc4 tumors. These cell signatures had been designed for colorectal cancer, and I first val-
idated that ccRCC cell lines did not express the genes covered by these signatures. Genes
in the cell signatures of T cells, cytotoxic lymphocytes, B cells, NK cells and macrophages
were found to have a good specificity, and their expression were therefore analyzed in the
transcriptomic profiles of the four groups of tumors. I found that the expression of these
immune signatures were all associated with the molecular classification of tumors, except
for the genes specific for NK cells, suggesting a high infiltration by B, T, CD8+ T cells and
macrophages in ccrcc4 tumors. I then analyzed a list of manually-curated genes related
to immune modulation, and showed that ccrcc4 tumors overexpressed cytokines involved
in the attraction of memory T cells (CXCL9, CXCL10, CXCL11) and a Th1 polarization
of the immune response (IFNG, IL12A, IL12B, TBX21). Tumors of the ccrcc4 subgroup
also overexpressed genes related to inflammation (CCL2, TNF, CSF1). Strikingly, genes
encoding molecules inhibiting adaptive immune responses were overexpressed in ccrcc4
tumors, including PDCD1 (PD1) and its two ligands, TIM3 (HAVCR2), LAG3, as well
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as soluble immunosuppressant such as TGFB1 and IL10. Immunohistochemical analyses
confirmed that this poor-prognosis subgroup was highly infiltrated by CD8+ T cells.

3.1.1.5 Discussion

This article confirms and extends previous transcriptomic classifications of ccRCC. It
has translational relevance, as this stratification of ccRCC is associated with response to
Sunitinib treatment. In particular, patients of the ccrcc4 subgroup poorly responded to
Sunitinib and had the worst prognosis, in terms of both OS and PFS, despite being exten-
sively infiltrated by CD8+ T cells. This subgroup was characterized by a canonical Th1
immune response, which could be counterbalanced by the presence of inflammatory cells
(macrophages) and expression of pro-inflammatory molecules, as well as a high expression
of checkpoint molecules and immunosuppressive soluble factors, which could explain why
CD8+ T cells are not associated with favorable prognosis in ccRCC. The fact that patients
in this subgroup are refractory to Sunitinib but express molecules of the PD1 pathway
suggest that they could respond to antibodies interfering with the PD1 pathway.

3.1.2 Article

This published article is available at http://clincancerres.aacrjournals.org/content/
early/2015/01/10/1078-0432.CCR-14-1128.

3.2 Article 2 : the immune contextures of CRC molecular
subtypes

3.2.1 Summary of the article

This in-preparation article addresses two objectives of my project: the development of a
methodology to analyze the microenvironment of human tumors, and its application to
study the immune microenvironment of CRC molecular subtypes.

3.2.1.1 Objectives and methodology

A large number of independent studies have proposed transcriptomic classifications of CRC
in the past few years[236–241]. The Colorectal Cancer Subtyping Consortium (CRCSC)
is currently proposing a consensus classification based on these independent studies[282],
and their results are currently under evaluation. We retrieved the Consensus Molecular
Subtype (CMS) annotations from the CRCSC and investigated the immune contextures of
each CMS using a transcriptomic approach. The main goal of this study is the investigation
of the correlation between molecular and immune classifications, which provide insights
into potential immunotherapeutic approaches for each patient subgroups.

3.2.1.2 Methodology: Transcriptomic quantification of cell populations in the
tumor microenvironment

To achieve it, I developped and introduce a marker-based transcriptomic quantification
method of tumor infiltrating immune and stromal populations, and a knowledge-based
approach to study their functional orientations. The marker-based approach is based on
the curation of transcriptomes from 1114 immune, 36 endothelial and 50 fibroblastic pure
cell samples, and as control the transcriptome of 745 non-hematopoietic cancer cell lines,

http://clincancerres.aacrjournals.org/content/early/2015/01/10/1078-0432.CCR-14-1128
http://clincancerres.aacrjournals.org/content/early/2015/01/10/1078-0432.CCR-14-1128
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from public repositories. I consistently annotated these samples and normalized them
using fRMA[373, 374], an algorithm which enables the integration of multiple transcrip-
tomic studies into a single dataset. I curated profiles from samples obtained with as many
culture conditions (for instance with or without stimulations) and purification methods
(FACS-sorted or in-vitro differentiated, purified from peripheral blood or from tumors...)
as possible, in order to account for possible phenotypic alterations of the cells in the tumor
microenvironment that could affect markers’ expression.

I first performed unsupervised analyses to investigate whether similarly-labeled tran-
scriptomes displayed consistent gene expression profiles. These analyses showed that the
samples clustered together according to their phenotypic annotation rather than batch
effects. It also showed that non-immune samples (cell lines, fibroblasts and vessels) seg-
regated from hematopoietic samples. Interestingly, hematopoietic samples further seg-
ragated into myeloid and lymphoid lineages, which then separated into monocytic and
granulocytic clusters, and T/NK and B clusters, respectively, as previously observed by
Abbas and colleagues[356]. Unsupervised analyses failed in identifying more refined phe-
notypes, for instance CD4+ T cells from CD8+ T cells, as observed by Palmer et al.[358].
The consistency of these unsupervised classification analyses led me to classify samples
according to their position in the hematopoiesis tree, and then perform a supervised screen
on the complete transcriptome to identify each populations’ universally-expressed mark-
ers.

Unlike previous marker-based studies, I pursued the characterization of ’strong’ mark-
ers, as first defined by Lu et al.[347], ie markers expressed in one and only one cell popula-
tion and not in the others (see equation (1.8)). The transcriptome we curated are produced
using Affymetrix Human Genome U133 Plus 2.0 Arrays, which are single-color cDNA ar-
rays. There is no straightforward method to assess the non-expression of a gene using
this technique, as non-expressed genes are attributed non-null values which correspond
to background noise signals. In my supervised analysis, I chose a set of three statistical
criteria, which together ensure the specific expression of the target probeset by one and
only one cell population.

These markers were experimentally validated using two different approaches. First,
mRNA were extracted from pure immune populations and a colorectal cancer cell line,
and mixed together in varying proportions. These mixtures were hybridized on Affymetrix
Human Genome U133 Plus 2.0 Arrays, and the markers’ expression levels were summa-
rized and compared with the known proportions of the corresponding cell populations in
each mixture. This in-vitro analysis showed a very high correlation between the predicted
and known proportions.

Immunohistochemical quantifications were performed on tissue sections from tran-
scriptomically-characterized tumors for three cell populations (cytotoxic lymphocytes,
macrophages and fibroblasts), which revealed a strong correlation between the two tech-
niques.

3.2.1.3 Methodology: Functional orientation of cell populations in the tumor
microenvironment

Unlike cell-populations’ markers, cytokines and immunomodulatory factors do not neces-
sitate specific expression to infer the functional orientation of tumor-infiltrating immune
cells: indeed, these factors are either soluble or membrane-bound, and it is therefore their
overall quantity in the microenvironment that is relevant. I therefore applied a knowledge-
based approach to study the function of cells in the tumor microenvironment, and curated
gene sets related to inflammation, angiogenesis, immunosuppression and Thelper cells ori-
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entations.

3.2.1.4 Results: immune contextures of each CMS

Four CMS are proposed by the CRCSC:

MSI-like: enrichment in MSI, CIMP and BRAF-mutated tumors, and favorable outcome

Canonical: enrichment in CIN tumors and activation of the Wnt pathway, and intermediate
outcome

Metabolic: enrichment in CIN and KRAS-mutated tumors and dysregulation of metabolic path-
ways, and intermediate outcome

Mesenchymal: overexpression of mesenchymal genes, and poor outcome

The cell signatures revealed that the MSI-like and Mesenchymal subgroups were both
highly infiltrated by immune cells, whereas the Canonical and Metabolic subgroups had
low infiltration by immune cells. MSI-like and Mesenchymal tumors were both highly
infiltrated by cells of the monocytic lineage, which were shown to be macrophages by
immunohistochemistry. MSI-like tumors had the highest expression of genes specific for
cytotoxic lymphocytes, which were shown to be of CD8+ phenotype by immunohisto-
chemical analyses. Mesenchymal tumors had intermediate expression of genes specific for
cytotoxic lymphocytes (CD8+ T cells), and very high expression of genes specific for en-
dothelial cells and fibroblasts. Immunohistochemical analyses revealed prominent stromal
infiltration in Mesenchymal tumors, with a high density of cancer-associated fibroblasts.

Genes encoding functional molecules revealed that the MSI-like subgroup had the
highest expression of genes associated with T cell infiltration[361] and activation[375], Th1
functional orientation[47], that were previously reported as associated with favorable out-
come in CRC, and immune checkpoints, whose expression were previously shown to be
increased in MSI CRC tumors[302, 303]. The Mesenchymal subtype was associated with
highest expression of pro-angiogenic, non-checkpoint immunosuppressive factors (TGFb,
LGALS1), and complement components, as well as intermediate expression of PD1 lig-
ands. The two poorly-infiltrated Canonical and Metabolic subgroups had low expression
of class I MHC molecules, which present antigens to surrounding CD8+ T cells.

Analyses of the transcriptomic profiles of pure cell populations revealed that the genes
found specifically overexpressed in Mesenchymal tumors are mostly overexpressed in fi-
broblasts, endothelial cells and macrophages. Fibroblasts overexpress pro-angiogenic fac-
tors, which can favor the proliferation of surrounding endothelial cells. Endothelial cells
were shown to overexpress inflammatory molecules, which can recruit cells of monocytic
origin. Both fibroblasts and endothelial cells overexpress immunosuppressive factors. Fi-
nally, fibroblasts, endothelial cells and macrophages all produce complement molecules
which together may locally activate the complement cascade and further fuel inflamma-
tion.

3.2.1.5 Discussion

This study revealed, like in ccRCC, a strong association between transcriptomic subgroups
and immune contextures in CRC. Two subgroups were found to be highly infiltrated by
immune cells. The MSI-like subgroup was expected, as it corresponds to a genomic sub-
group previously reported to be highly infiltrated by adaptive immune cells. The functional
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orientation and cellular infiltration found in this subgroup perfectly corresponds to the im-
mune contexture described by the team of J. Galon[18, 46–49, 51, 53, 119, 361], which
is associated with favorable outcome in CRC, consistently with the favorable outcome of
patients harboring MSI-like tumors. The high expression of checkpoint molecules in this
subgroup suggests that it could benefit from checkpoint-blockade immunotherapies, as
previously proposed using in-situ or ex-vivo approaches[302, 303].

The second highly-infiltrated subgroup was unexpected, and despite a higher infiltra-
tion by CD8+ T cells than the Canonical and Metabolic subgroups, is associated with
the worst prognosis. Along with this infiltration by CD8+ T cells, this subgroup features
extensive infiltration by fibroblastic and endothelial cells. Fibroblasts were already shown
to support metastasis in this subgroup[363, 364], but our work suggest that they also
directly favor angiogenesis which in turn promote recruitment of monocytic cells. These
three cellular contingents express different complement molecules which together may per-
mit the local activation of the complement cascade, further promoting inflammation and
angiogenesis. The immune contexture found in this subgroup suggest that these patients
may benefit from anti-inflammatory agents or CAR T cells adoptive transfers, the latter
being specifically designed to overcome the type of immunosuppressive signals found in
Mesenchymal tumors.

3.2.2 Article
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ABSTRACT 

The tumor microenvironment contains many distinct and complexly-interacting cell populations, 

whose composition may predict prognosis and response to therapies. In the present work, using 

1194 samples of purified cell populations, we defined specific and robust transcriptomic markers of 

the immune and stromal cell populations of the tumor microenvironment, and we quantitatively 

validated them in an in-vitro RNA mixture model. Colorectal cancer (CRC) is a heterogeneous disease 

in which distinct molecular subgroups have been described. We report that in three independent 

CRC cohorts (n=1388), CRC molecular subgroups and microenvironmental signatures are highly 

correlated. Out of the four molecular subgroups, two highly expressed immune-specific genes. The 

good-prognosis microsatellite-instable-enriched subgroup (CMS1) is characterized by overexpression 

of genes specific to cytotoxic lymphocytes. In contrast, the poor-prognosis Mesenchymal subgroup 

(CMS4) expresses markers of lymphocytes and of cells of monocytic origin. The Mesenchymal 

subgroup also displays an angiogenic, inflammatory and immunosuppressive signature, a 

coordinated pattern also observed in breast (n=254), ovarian (n=97), lung (n=80) and kidney (n=143) 

cancers. Pathological examination revealed that the Mesenchymal subtype was characterized by a 

high density of fibroblasts that likely produce the chemokines and cytokines which favor tumor-

associated inflammation and support angiogenesis, resulting in a poor prognosis. 

 

INTRODUCTION 

 

The acquisition of genetic modifications during carcinogenesis results in altered cellular 

transcriptomic programs which lead to a variety of tumor cell phenotypes(1). Transcriptomic analysis 

of large cohorts of human cancers enabled to propose classifications which partly correspond to 

genomic or clinically-established parameters and delineate previously unknown heterogeneity(2). 

These stratifications allowed to identify molecular subgroups associated with distinct risks of disease 

progression(3). 

Transcriptomic classifications of Colorectal Cancer (CRC) have recently been reported independently 

by six different laboratories(4-9). An international consortium is proposing a Consensus Molecular 

Subtype (CMS) classification in four subgroups. CMS1 or MSI-like contains most Microsatellite 

Instable (MSI) tumors, with mutations in genes encoding DNA mismatch-repair proteins, resulting in 

high mutational burden. MSI-like is also enriched for tumors with a CpG-Island Methylator 

Phenotype (CIMP) and mutations in the BRAF oncogene. CMS2 or Canonical is a subtype with high 

Chromosomal Instability (CIN) as well as activation of the Wnt and MYC pathways. CMS3 or 

Metabolic is enriched in tumors with KRAS mutations shows a disruption of metabolic pathways. 

Finally, CMS4 or Mesenchymal has a mesenchymal phenotype and frequent CIMP phenotype. 

This classification stratifies CRC into intrinsic subtypes with different prognosis and therapeutic 

responses. It has been well established that the composition of the microenvironment in which the 

malignant cells grow and expand is essential for predicting patient’s prognosis(10, 11) and can be a 

target for cancer therapies(12). Indeed, in most cancers, strong tumor infiltration of memory T cells 

with a Th1 orientation and potentially cytotoxic CD8+ T cells, in primary and in metastatic sites, 

correlates with longer patient’s survival(11). CRC represents a paradigm in this respect. Indeed, our 
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laboratory has demonstrated that patients whose tumors are highly infiltrated by memory T cells, 

particularly cytotoxic CD8+ T lymphocytes, had a better Progression-Free (PFS) and Overall Survival 

(OS)(10, 13-16). We have hypothesized that tumor-associated antigens could locally induce anti-tumor 

adaptive immune responses and have characterized Tertiary Lymphoid Structures (TLS), adjacent to 

the tumor nests, that could be sites where anti-tumor immunity is generated(17). Indeed, we found 

that high T and B cell infiltration and a high expression of genes coding for lymphocyte-attracting 

chemokines, i.e. CX3CL1, CXCL9, CXCL10 for T cells(15) and CXCL13 for B cells(16), as well as genes 

involved in a Th1 orientation (IFNG, TBX21) and cytotoxicity (GZMB, GNLY)(10), are associated with 

favorable prognosis(10, 14, 16). MSI tumors, with their high mutational load and high leukocyte 

infiltration, fall perfectly in this category. It has recently been reported that metastatic CRC tumors 

with this phenotype responded to treatments with PD-1 immune checkpoint-blocking antibodies 

which increases the local immune reaction, potentially against tumor associated antigens(18, 19). The 

Metabolic, KRAS-mutated subtype is known to be resistant to anti-EGFR antibodies(20). Anti-

angiogenic treatments yield inconsistent therapeutic responses, probably due to the lack of 

predictive markers. 

In the era of targeted therapies, particularly immunotherapies which are dependent on the 

composition of the tumor microenvironment, it is essential to establish the immune landscape of all 

CRC tumors. Indeed, since a high immune infiltration is not restricted to MSI tumors, we undertook 

to precisely analyze and quantify the immune, inflammatory, angiogenic and fibroblastic elements in 

the different molecular subtypes, as well as the expression of functional chemokines, cytokines and 

inflammatory mediators in the tumors. For this purpose, we developed robust molecular signatures 

for the corresponding cells, based on 1114 transcriptomic profiles of pure immune cell populations, 

36 profiles of endothelial cells and 50 profiles of fibroblasts. We validated these signatures both in in-

vitro experiments, and by immunohistochemistry on a subset of molecularly classified tumors. In 

these two settings, we found a highly significant correlation between the expression of our gene 

signatures and the presence of the corresponding cell population. We applied these transcriptomic 

signatures to quantify immune and stromal infiltration of the four CMS subtypes of CRC, and discuss 

potential immunotherapeutic approaches which could benefit each subtype.  

 

MATERIAL AND METHODS 

 

Public transcriptomic datasets 

 

The complete lists of selected Gene Expression Profiles (GEP), related type and experimental 

conditions are given in Tables S1, S2 and S3. 

 

Microenvironment purified cells 

We screened the GEO database(21) for GEP of purified samples of human immune cells, fibroblasts 

and endothelial cells hybridized on Affymetrix HG-U133Plus2.0 microarrays. We collected 1194 GEP 

from 80 series, including 1114 immune, 36 endothelial and 50 fibroblast samples. 

 

Pan-cancers tumor cell lines 
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The Affymetrix HG-U133Plus2.0 GEP from the 917 (including 745 non-hematopoietic) tumor cell lines 

from the Cancer Cell Lines Encyclopedia(22) series were selected as tumor controls. 

 

Colorectal tumors samples and subtypes annotations 

The GEP from 1750 colorectal tumor samples were collected. The GSE39582 dataset(fresh frozen 

samples, Affymetrix HG-U133Plus2.0, n=566) was used as a discovery cohort (herein termed CIT 

discovery). Samples from series GSE13067 (n=74), GSE13294 (n=155), GSE17536 (n=177) and 

GSE33113 (n=90) were aggregated as a validation meta-serie (herein termed CIT validation) (fresh 

frozen samples, Affymetrix HG-U133Plus2.0, n=496). Samples from the PETACC3 (ArrayExpress:E-

MTAB-990) serie (n=688, formalin-fixed, paraffin-embedded samples, custom Affymetrix 

microarrays) were used to validate the non-dependency of the results on microarray technology and 

sample processing. The CMS subtype annotation of all tumors analyzed was provided by the 

Colorectal Cancer Subtyping Consortium (CRCSC). CMS-unclassified samples reduced the numbers of 

samples analyzed to 458 for the CIT discovery cohort (81% classified), 404 for the CIT validation 

cohort (81% classified) and 526 for the PETACC3 cohort (76% classified). The total number of CRC 

tumors analyzed was therefore 1388. 

 

Multi-cancers dataset 

The GEP of breast (n=254), colorectal (n=173), kidney (n=144), ovarian (n=97), lung (n=80) and 

endometrial (n=69) were retrieved from expO dataset (GEO:GSE2109). 

 

RNA mixture models 

 

Peripheral immune cells sorting 

Peripheral venous blood was extracted for 3 healthy donor using heparin vacuntainer tubes (BD 

Bioscience). Peripheral blood mononuclear (PBMC) or polymorphonuclear cells (PMN) were isolated 

using Ficoll-Paque PLUS (GE Healthcare Life Sience) or Polymorph Prep (Axis-Shield) density gradient, 

respectively. PBMCs were stained with anti-CD3 FITC (Clone UCHT1), anti-CD14 APC (MΦP9), anti-

CD19 ECD (J3-119) and anti-CD56 PE (B159); and PMNs with anti-CD66b FITC (G10F5), anti-CD19 ECD 

(J3-119), anti-CD3 PE (UCHT1), anti-CD56 PE (B159) and anti-CD14 APC (MΦP9). Cell sorting was 

done in a FACS Aria cytometer (BD Bioscience), and cell purity higher than 97% was always achieved. 

We sorted the following populations: T cells (DAPI-/CD3+/CD14-/CD19-/CD56-), monocytes (DAPI-

/CD3-/CD14+/CD19-/CD56-), B cells (DAPI-/CD3-/CD14-/CD19+/CD56-) and NK cells (DAPI-/CD3-

/CD14-/CD19-/CD56+) on PBMCs, and neutrophils (DAPI-/CD66b+/CD19-/CD3-/CD56-/CD14-) on 

PMNs.  

 

Cell culture  

HCT116 were purchased from ATCC and cultured according to vendor’s instructions.  
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RNA extraction 

Cells were lysed in RLT (QIAGEN)-1% mercaptoethanol buffer, and RNA was purified with a Maxwell 

16 simplyRNA Kit (Promega) according to manufacturer's instructions. Genetic material purity and 

quantity was determined with a 2100 Bioanalyzer Instrument (Agilent Technologies). 

Immunohistochemistry 

Serial 5 μm formalin-fixed paraffin-embedded (FFPE) tissue sections from colorectal cancer were 
stained using autostainerPlus Link 48 (Dako). Antigen retrieval and deparaffinization were carried out 
on a PT-Link (Dako) using the EnVision FLEX Target Retrieval Solutions (Dako). The antibodies used 
are listed in Table S4. Peroxidase activity was detected using diaminobenzidine substrate (Dako). 
Slides stained with anti-CD8 and anti-CD68 were digitalized with a NanoZoomer scanner 
(Hamamatsu) and analyzed with Calopix software (Tribvn, France). The degree of Smooth Muscle 
Actin expression in the tumor stroma was quantified following the next grading system:  (1) scarce 
fibroblasts; (2) 1-3 layers of fibroblast; (3) >3 layers of fibroblasts and fibroblast area <50% of tumor 

area; (4) >3 layers of fibroblasts and fibroblast area >50% of tumor area.  

 

Microarrays hybridization 

Biotinylated double strand cDNA targets were prepared from 10 ng of total RNA using the NuGEN 

Ovation Pico WTA System V2 Kit (Cat # 3302) followed by the NuGEN Encore Biotin Module Kit 

(Cat # 4200) according to manufacturer recommendations. Following fragmentation and labeling, 

4.55 μg of cDNAs were hybridized for 16 hours at 45oC, 60 rpm on Human GeneChip HG-U133 plus 

2.0 arrays (Affymetrix).  The chips were washed and stained in the GeneChip Fluidics Station 450 

(Affymetrix) using the FS450_0004 script and scanned with the GeneChip Scanner 3000 7G 

(Affymetrix) at a resolution of 1.56 µm. Raw data (.CEL Intensity files) were extracted from the 

scanned images using the Affymetrix GeneChip Command Console (AGCC) version 4.0.  

 

Data deposition 

The data produced for validation of the immune signatures have been deposited in NCBI's Gene 

Expression Omnibus(21) and are accessible through GEO Series accession number GSE64385. 

 

Microarrays analysis 

 

GEP normalization 

The GEP from microenvironment purified cells and pan-cancers cell lines were normalized 

independently for each series, using the frozen RMA method on each independent series (fRMA R 

package). The RMA normalized GEP from the CIT CRC discovery series were downloaded directly 

from GEO. The GEP from PETACC3 CRC series were normalized in batch using RMA method (affy R 

package). Each GEP series from the CIT CRC validation meta-series was normalized independently 

using frozen RMA method; then the corresponding matrices were combined into one matrix, further 
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normalized with Combat method(23), using series’ identifiers as batch variables and no covariates. The 

GEP from RNA mixture models were normalized using the RMA method. When mapping probesets to 

HUGO Gene Symbols, the mean across probesets was chosen to represent the gene’s expression 

level.  

 

Supervised screening of microenvironment populations specific markers 

Samples of microenvironment purified cells were labeled according to their reported immune or 

stromal populations, resulting in 43 distinct classes. These populations can be organized in a 

pyramidal graph (Fig S1) with nodes representing populations (classes), and directed edges 

representing relations of inclusion. For instance, the categories “CD8+ T cells”, “NK cells” and “Tγδ 

cells” form the “Cytotoxic lymphocytes” category, which itself is included in the “T/NK lineage” 

category. Of these 43 classes of samples, some correspond to terminal leaves of this pyramid (ex. 

“regulatory T cells”), while some others do correspond to higher level nodes (ex. Peripheral-Blood 

Mononuclear Cells, “PBMC”). We designed 36 meta-categories from these 43 categories (Table 1, 

Table S5). Some of these 43 classes were either too general (ex. “Hematopoietic cells”), or 

represented by too few samples/series (ex. “Eosinophils”), to establish a robust and specific 

signature. Thus, in this pyramid, we selected 9 immunologically and 2 stromal relevant categories 

(Table 1, Fig S1), with enough representative samples available, and retained specific markers only 

for these 11 categories. 

When screening markers of a category, denoted C, (ex. CD8+ T cells), it was compared to a “negative” 

category, denoted C�, containing all other samples, excepted those with a content overlapping that of 

category C (Table S5) (ex. samples of CD3+ T cells were excluded when screening for the Cytotoxic-

lymphocytes class as they contain CD8+ CD3+ T cells mixed with CD4+ CD3+ T cells). To select 

probeset markers, the selection criteria were based on a triplet of probeset-level statistics, the 

positive Area Under the Curve (AUC), the fold-change (FC) and a specific fold-change (sFC), with the 

following definitions: 

(1)  FC = X - X� 

(2)  sFC = (X - X����)/( X���	- X���� ) 

where we denote by X the centroid (i.e. average across all samples) of category C , X� the 

centroid of  C�, X�
 the centroid of any class j composing C�  (j=1..k) , X� min the min value across centroids 

of classes composing C�  (X����= minj∈1..k {X�
} ), X� max the max value across centroids of classes 

composing C�  (X���	= maxj∈1..k {X�
} ). The specific fold-change both accounts for a high expression in C 

compared to  C�   and a low variability within C�. 

For each of the 11 categories of interest, probesets with AUC > 0.97, Fold-Change >2 and FCspec >1.5 

were retained (Table S6). In the rare cases of probesets selected in multiple categories, they were 

removed from both categories. When aggregating probesets to gene symbols, symbols selected in 

multiple categories were removed from both categories. 

 

Computation of single sample metagenes scores 

Given a gene signature (i.e. set of specific markers) of a given category C, we computed a 

corresponding per-sample score, called hereafter a metagene score, using the mean expression of 

the genes from that signature, after row-centering each gene across all samples. 
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Supervised tests of differential expression 

ANOVA tests were used to assess the dependency of genes or metagenes scores to the molecular 

subgroups classification. Student’s t-tests were used to investigate differential expression of genes 

between subgroups or cell line phenotypes. To test for differential level of the metagene scores in a 

given molecular subgroup, Student’s t-tests against the cohort’s median metagene score were used. 

To test for differential level of metagenes between molecular subgroups, pairwise one-tailed t-tests 

with Bonferroni correction were used (Table S7). 

List of immune-related genes 

We curated a list of genes known to encode proteins with immunomodulatory functions (Table S8). 

Representatives of the chemokines, chemokine-receptors, interleukins, interleukins-receptors, TNF 

and TNF-receptors, growth factors, interferons and interferon-receptors, inhibitory receptors and 

their ligands, TLR and class I MHC gene families were included. 

Results 

1-Robust transcriptomic signatures of the tumor-microenvironment cell populations predict the 

proportions of related populations in controlled mixtures 

We focused on three microenvironment cellular contingents: immune cells, endothelial cells and 

fibroblasts. Redundant and overlapping transcriptomic signatures of these populations and of their 

subdivisions have been published based on various statistical frames(24). To define a set of non-

redundant, non-overlapping signatures, based on a unified statistical frame, we collected publicly 

available transcriptomic profiles of tumor cells, immune cells, fibroblasts and endothelial cells from 

80 independent series, leading to a set of 1194 samples, including 1114 immune samples (Table S1). 

The experimental design (including cell purification methods, culture conditions, tissue sources, 

hybridization batches) can introduce biases in the identification procedure of specific gene markers. 

Thus several independent series based on distinct experimental designs were analyzed for each cell 

population (Table 1), in order to select specific gene markers, robustly expressed independently of 

the experimental design.   

Firstly we performed a Principal Component Analysis (PCA) of the genome-wide normalized 

transcriptomic profiles of the immune samples (n=1114), colorectal cancer cell lines (n=55), and 

stromal (fibroblasts and endothelial cells) samples (n=86), in order to assess in a non-supervised way 

whether or not these profiles would show distinct patterns across distinct populations of cells. PCA 

showed a clear separation between non-hematopoietic (cancer cell lines, fibroblasts and endothelial 

cells) and hematopoietic cells (Fig 1A). Among the latter, PCA showed distinct clusters for lymphoid 

cells, cells of monocytic origin, and granulocytes (Fig 1A).  To further study the immune populations, 

PCA was applied separately to lymphoid, monocytic and granulocytic subsets. Among lymphocytes, 

the analysis allowed to discriminate between T and NK cells on the one hand and B cells on the other 

hand (Fig 1B). PCA also separated monocytes from macrophages and myeloid dendritic cells (DC) 

within the monocyte-derived lineage (Fig 1C). Finally, PCA did not clearly discriminate between 

granulocytic populations (Fig 1D). PCA could not separate cytotoxic from non-cytotoxic lymphocytes 

(Fig S2A), nor CD4+ T cells from CD8+ T cells and NK cells (Fig S2B). 
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Since these distinct patterns were reminiscent of splits of the hematopoietic tree, we created 36 

biologically relevant sets of samples corresponding to immune or stromal cell populations (Table 1, 

Table S5). A supervised analysis using stringent statistical criteria (Material and Methods) was 

conducted to retain only genes with high specificity for the corresponding cell populations (Table 1). 

Since some signatures were highly redundant (“B cells lineage” and “B cells”), while others featured a 

suspiciously high number of markers (“Eosinophils”, “Th17”) or simply no markers, we retained 11 

signatures out of the 36 for further analysis. It resulted in the selection of 779 probesets mapping to 

456 unique gene symbols. A heatmap representing the level of expression of the selected markers 

across the different cell populations is illustrated in Fig 1E and the precise signatures are reported in 

Table S6.  To validate our approach, we designed an artificial mixture model composed of RNA 

extracted from five circulating immune cell populations (CD3+ T cells, CD56+ NK cells, CD19+ B cells, 

CD66b+ Neutrophils, CD14+ Monocytes) mixed with RNA extracted from the HCT116 colorectal 

cancer cell line, and hybridized on Affymetrix HG-U133Plus2.0 microarrays. Mixture ratios were 

ordered in two transposed Latin squares (Table S9) to assess the specificity of the tested signatures 

to one and only one cell population. The metagene scores derived from these signatures showed a 

linear relation to the mixture log-proportions, meaning that they were able to almost perfectly 

predict the mixture proportions (Fig 1F).  

For these 11 gene signatures, we analyzed the corresponding GEP in three CRC cohorts, the “CIT 

cohort”(7), the “CIT validation cohort”(7) and PETACC3(9), and the expO pan-cancer cohort (Table S2). 

Within all signatures, except the Granulocytes, a reproducible cluster of highly correlated markers 

was found, supporting that their expression is representative of the corresponding population 

proportion (Fig S3). The markers of granulocytes showed poor pairwise correlations (Fig S3), 

indicating that they may infiltrate tumors in too low numbers to be accurately measured by 

microarray technologies. The high correlation of the Monocytic-lineage and the Myeloid-lineage 

metagenes’ scores (r=0.89, 0.86, 0.80 and 0.71 respectively on CIT, CIT validation, expO and PETACC3 

cohorts) compared to the lower correlation of the Myeloid and Granulocyte metagenes’ scores 

(r=0.38, 0.45, 0.34 and 0.12), suggested that infiltrating granulocytes had a low impact on the overall 

Myeloid signature expression. These results are consistent with a previous report showing that 

granulocytes are rarer than cells of monocytic origin in CRC(16). 

 

2-CRC molecular subgroups show distinct expression patterns of immune and stromal signatures 

In the CIT and CIT validation cohorts, the molecular subgroups showed consistent and distinct 

patterns for the 11 signatures. Tumors of the MSI-like and Mesenchymal subtypes had a high 

expression of lymphoid (Fig 2A,B) as well as myeloid cells-specific genes (Fig 2A,C), thus exhibiting a 

strong immune and inflammatory contexture, whereas tumors of the Canonical and Metabolic 

subtypes had low expression of the lymphocytic and myeloid signatures. Tumors of the MSI-like and 

Mesenchymal subtypes differed in that MSI-like samples exhibited a higher cytotoxic-cells signature 

expression, reflecting high infiltration by activated CD8+ and NK cells. Granulocyte-specific 

transcripts were poorly discriminative (Fig 2A,C). In addition, Mesenchymal samples exhibited a high 

expression of the fibroblastic and endothelial cell-signatures, compatible with highly vascularized and 

inflammatory tumors that have a strong presence of cancer-associated fibroblasts (CAF) in their 

microenvironments (Fig 2A,D).  
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The immune infiltrations in the four subtypes predicted by our gene signatures were confirmed using 

immunohistochemical analyses in a subset of 38 randomly selected tumors from the CIT discovery 

cohort. CD8+ T cells and CD68+ macrophages were quantified within the tumor center. These 

analyses showed a significant correlation between the density of CD8+ cells in the tumor and the 

cytotoxic metagene from transcriptomic analyses (p=2.10-5, r=0.67) and between CD68+ 

macrophages and the monocytic-lineage metagene (p=1.10-5, r=0.68) (Fig S4). We confirmed that the 

MSI-like and the Mesenchymal-like subgroups had higher densities of CD8 T cells and CD68 

macrophages than the Canonical and Metabolic subtypes, validating the transcriptomic predictions 

(Fig 3A, Fig 3B). In addition, we performed smooth-muscle actin (SMA) immunohistochemical 

labeling, which marks the tumor stroma. The Mesenchymal subtype had the highest SMA grading, 

supporting the fact that the transcriptomic fibroblastic signature was reflecting a high presence of 

CAF (Fig 3C, 3D). 

Having analyzed patterns related to microenvironment cell populations, we focused on features 

related to immune cells function and migration. We thus analyzed the expression of genes encoding 

molecules involved in T cell chemotaxis, activation and inhibition, inflammation and complement 

components, angiogenesis as well as major histocompatibility complex 1 (MHC1) molecules (Fig 4, 

Table S8). The 4 consensus molecular subgroups again showed strikingly reproducible data across the 

2 independent cohorts. The MSI-like subtype exhibited a high expression of genes coding for 

chemokines T cells (CXCL9(15), CXCL10(15), CXCL16) or involved in the formation of tumor-adjacent 

Tertiary Lymphoïd Structures CXCL13(25, 26)), as well as the Th1 cytokine IFNG and IL15, all of which 

have been shown to correlate with good prognosis in CRC(10, 14-16). In contrast, the Mesenchymal 

subtype exhibited a high expression of the myeloid chemokine CCL2, complement components 

(C1QA, C1QB, C1QC, C1R, C1S, C3, C3AR1, C5AR1, C7, CFD, CFH, CFI), angiogenic factors (VEGFB, 

VEGFC and PDGFC) and immunosuppressive molecules (TGFB1, TGFB3, LGALS1(27), CXCL12). CD274 

and PDCD1LG2, the genes encoding the PD-1 ligands, were highly expressed in MSI-like tumors but 

also in some tumors of the Mesenchymal group. Strikingly, MHC1 genes, whose products present 

peptides to CD8+ T cells, were poorly expressed in the poorly-infiltrated Canonical subtype. 

We were able to reproduce these results on an independent cohort of 688 CRC samples, whose RNA 

was extracted from paraffin-embedded tissues and hybridized on another microarray platform, 

indicating strong reproducibility (Fig S5). 

3-Mesenchymal tumor cells induce an inflammatory and angiogenic tumor microenvironment 

The poor-prognostic C4 CRC subgroup is characterized by a fibroblastic signature, as well as a high 

expression of the myeloid and endothelial-cells metagenes. We found that the fibroblastic signature 

highly correlated with the endothelial one (p<10-15 on the two cohorts, Pearson’s r = 0.84, 0.84 for 

CIT and CIT validation respectively) and myeloid cells metagene (p<10-15 on the two cohorts, 

pearson’s r=0.6, 0.46 for CIT and CIT validation respectively) (Fig S6A). In contrast, there was no 

correlation between the fibroblastic and cytotoxic-cells signatures (Fig S6A). Correlations between 

the fibroblastic signature and both the endothelial and myeloid cell-signatures were also observed in 

breast, lung and ovary cancers, and confirmed in CRC (Fig S6B), suggesting that the immune 

contexture found in Mesenchymal CRC tumors also exist in these cancers. In kidney cancer the 

correlation between the fibroblast and the myeloid metagenes’ scores was weaker, and it was 

absent in endometrium cancer (Fig S6B). 
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The coordination of these signatures led us to hypothesize that fibroblasts promote angiogenesis and 

inflammatory-cells recruitment in the Mesenchymal CRC tumors’ microenvironment. Since tumor 

samples correspond to a mixture of tumor cells and microenvironment cells, transcriptomic samples 

of pure cell populations were used to investigate the cellular origin of the inflammatory and 

angiogenic signatures of the Mesenchymal molecular subgroup. We first identified the genes 

upregulated in the Mesenchymal subtype compared to each of the other subtypes (Student’s T tests 

against each of the other three subtypes, all p<0.05, Table S8). We then investigated the expression 

of these genes by immune, stromal and malignant cells. B, T and NK lymphocytes, as well as 

colorectal cancer cell lines, each overexpressed only a small subset of these genes. Fibroblasts had 

the highest expression for the pro-angiogenic factors VEGFB, VEGFC and PDGFC, the 

immunosuppressive factors LGALS1, CXCL12, PTGS1, TGFB3 and the complement components C1S, 

C1R, CFH, C7, CFHR2 and can thus promote angiogenesis and immunosuppression. Endothelial cells 

had the highest expression of the myeloid chemoattractant CCL2, the angiogenic factor PDGFB and 

immunosuppressive molecules TGFB1 and TGFB2. Finally, monocytic cells expressed complement 

components (C1QA, C1QC, C3, C3AR1, C5AR1) and chemokines attracting macrophages (CCL19, 

CCL23). Altogether, these results show that fibroblasts can promote angiogenesis, which can 

promote the recruitment of cells of the monocytic lineage, which further promote the recruitment of 

macrophages. Endothelial cells and fibroblasts express immunosuppressive molecules specific to the 

Mesenchymal subtype. Finally, all three populations express complement components which, if 

activated, can locally fuel inflammation. 

 

Discussion  

In the last decade, the interplay between tumors and the immune system has emerged as a critical 

aspect of tumor biology and is strongly associated with the host ability to control tumor growth and 

to respond to therapies. Incorporating precise immune-related information in descriptive cancer-

classification studies or in prospective clinical trials is therefore critical. However, no suitable tool 

was available to interpret transcriptomic immune signatures. In the present work, we define robust 

gene signatures to embrace the heterogeneity of the immune, inflammatory, angiogenic and 

fibroblastic tumor microenvironment and we apply this tool on a previously published molecular 

classification of colorectal cancer.  

Transcriptomic immune signatures were previously published, but did not control for background 

expression by cancer cells(28), or did not address the question of the specificity to one and only one 

cell population of the selected markers(16), nor were they quantitatively validated. In an attempt to 

propose robust and quantitative immune gene signatures, data from 80 published datasets of 

stromal and hematopoietic cells comprising 1194 samples, controlled against 745 solid-cancer cell 

lines from 23 primary sites, were used to select robust markers, expressed in several conditions, and 

to reduce the selection of false positives arising from batch effects or high dimensionality. We 

collected samples representing the main cellular contingents of the microenvironment (tumor, 

immune and endothelial cells and fibroblasts) and are thus the major contributors of a tumor-

sample’s RNA. The expression of the specific markers almost perfectly recapitulated the proportion 

of their corresponding population in a mixture model.  
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The expression of the immune cell-specific signatures, enriched by the analysis of a large array of 

functionally relevant genes, in three CRC cohorts stratified using a previously published molecular 

classification revealed a strong association between the tumor cell phenotype and both the 

composition and the functional orientation of its immune microenvironment. Notably, we 

demonstrate that Mesenchymal tumors are associated with a pro-inflammatory, pro-angiogenic and 

immunosuppressive microenvironment. 

In the three cohorts, two subgroups were characterized by high expression of immune signatures: 

the expected MSI-rich CMS1 group and the unexpected Mesenchymal CMS4 group. Strikingly, while 

the MSI-like group correlated with favorable patient’s prognostic in terms of RFS(7), the Mesenchymal 

subgroup of patients had the worst prognosis in the CIT publication(7). Consistently, the mesenchymal 

subgroup had the worst prognosis in other CRC(4-6, 8, 9) classification studies. We describe for the first 

time a group of CRC tumors with high lymphoid gene expression associated with poor prognosis for 

the patients. This subgroup is characterized by an extensive tumor-infiltration by Cancer Associated 

Fibroblats (CAF) (Fig 2, Fig 3), correlating with high angiogenesis and myeloid-cells infiltration (Fig 2, 

Fig S6A). We hypothesize that this strong inflammatory component hampers the positive value of the 

Th1/CD8+ T cells in these tumors, by repressing the anti-tumor activity of cytotoxic T cells while 

fueling tumor growth, angiogenesis and stroma remodeling. 

Even more importantly, the fibroblastic signature, found in the Mesenchymal tumors extends to 

other cancers than CRC (Fig S6B). It is thus tempting to postulate that similar immune, inflammatory 

and immunosuppressive microenvironments might also be found in these tumors, indicating that 

similar therapies aimed at modifying the tumor-microenvironment could be applied to cohorts of 

cancers of different origins and locations exhibiting a Mesenchymal phenotype. In particular, anti-

angiogenic treatments and/or inhibitors of LGALS1-encoded protein(29) should be tested in 

Mesenchymal CRC and the Mesenchymal-like tumors. The Mesenchymal subgroup also exhibit an 

angiogenic and inflammatory signature which is probably the consequence of their high fibroblastic 

infiltration. Angiogenesis and inflammation are intertwined pathways, which both fuel tumor growth 

through the production of survival and proliferative signals and by favoring blood supply(30). Yet, 

since the Mesenchymal subtype is highly infiltrated by CD8+ T cells, one could expect it to be 

associated with favorable outcome(11). However, an extensive number of studies have shown that 

inflammatory and angiogenic microenvironments were associated to the inhibition of anti-tumor 

cytotoxic T cell immune responses, notably through the inhibition of the maturation of dendritic 

cells(30). Immature dendritic cells deliver inhibitory secondary signals to T cells upon antigen 

presentation, inhibiting their activation. Some immunotherapeutic strategies, such as T cells with a 

Chimeric Antigen Receptor (CAR), are specifically designed to bypass the need of a co-stimulatory 

signal upon antigen recognition(31), and could therefore mediate tumor elimination in this subgroup. 

Moreover, antibodies blocking the pro-inflammatory receptor IL6R were shown to reduce fibroblast-

mediated angiogenesis in a mouse model of CRC(32), supporting the use of anti-inflammatory CAF-

targeting agents in the treatment of Mesenchymal CRC. 

MSI-like is the other “immune-high subgroup” of CRC. This group contains the patients harboring MSI 

tumors, and is known to be associated with a good prognosis, and to feature a strong CD8+ T cell 

infiltration. Strikingly, MSI-like is the group featuring the highest expression of class I MHC genes, as 

well as genes specific for cytotoxic lymphocytes (Fig 2, Table S7) or attracting memory T cells (CXCL9, 

CXCL10), activating T cells (IFNG), supporting proliferation of T and NK cells (IL15) and helping in the 
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formation of Tertiary Lymphoid Structures - TLS - (CXCL13) where anti-tumor adaptive immune 

responses are likely shaped(33)(Fig 4, Table S8). High expression of these genes have been reported to 

be associated with good prognosis in CRC(10, 11, 15, 16). CXCL13 and IL15 have been shown to be 

produced by the tumor cells, whereas IFNG is clearly produced by the infiltrating cells. MSI-like is also 

characterized by a lower expression of the myeloid and endothelial cells signatures (Fig 2) as well as 

angiogenesis inducing genes (Fig 4). It is therefore likely that MSI-like contains highly immunogenic 

tumors, in the context of mild inflammation and angiogenesis, which results in the generation of 

anti-tumor adaptive immune responses educated in tumor-adjacent TLS(34). Effector memory CD8 T 

cells(34) and B cells(35) would then control the growth and metastasis in this subgroup(36), as 

exemplified in NSCLC(37). IFNG produced by infiltrating T cells is known to induce a phenomenon 

called “adaptive resistance” by increasing the expression of the inhibitory checkpoint molecule PD-1 

on T cells(38) and of its ligands CD274 (PD-L1)(38) and PDCD1LG2 (PD-L2)(39) on the tumor cells, which 

may result in inefficient anti-tumor T cell reaction(40). It is striking that MSI-like tumors also shows the 

highest expression of PD-L1 and PD-L2 genes, followed by Mesenchymal tumors (Fig 3, Table S8). 

These results prompt to treat CRC MSI-like patients with agents blocking the PD-1/PD-L1 pathway, 

such as Nivolumab and anti-PDL1. Recent evidence using in-situ immunohistochemical staining of 

immune checkpoints molecules support the use of anti-checkpoint immunotherapies in MSI 

patients(41). Since MSI-like is highly enriched for MSI patients but also includes a group of 

MicroSatellite Stable (MSS) patients(7), the use of molecular classifications might help identify 

responders among MSS patients, and non-responders among MSI patients.  

Tumors of the Canonical and Metabolic subgroups were characterized by poor infiltration by immune 

cells and low class I MHC expression, and are thus most likely poorly immunogenic. They could 

represent targets for bi-specific antibodies targeting a tumor-associated antigens(42), which promote 

tumor-targeting adaptive immune responses. Mutated KRAS, which is highly prevalent in the 

Metabolic subgroup, can represent such a target.  

Since  the transcriptomic classification of CRC is strongly associated to different immune contextures, 

the present work paves the way of novel classifications of cancers, based on the relationships 

between the phenotype of the cancer cell and the corresponding immune and stromal profile of its 

microenvironment, potentially identifying the most appropriate treatments, including anti-

angiogenic drugs and immunotherapies.  

 Our results have important implications in the understanding of tumor immunology, as they 

demonstrate how the phenotype of the cancer cell is associated with immune and stromal patterns. 

Furthermore, they provide potential clinical implications since they allow the identification of 

immunological, angiogenic and inflammatory targets that may be modulated by appropriate 

immunotherapies in each CRC molecular subgroup, such as anti-checkpoint antibodies or anti-

inflammatory agents. 
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Definition and validation of specific transcriptomic signatures of immune and stromal cells 

Principal Components Analysis (PCA) based on the 5% most variable probesets applied to A) 

1114 immune, 50 fibroblast, 36 endothelial and 55 colon cancer cell lines samples B) the subset 

of lymphocytic samples, C) the subset of granulocytic samples, D) the subset of samples of 

monocytic origin. E) Heatmap showing the level of expression of the supervised specific 

signatures among immune cell subpopulations and non-hematopoietic samples. ° : γδ T cells. * :  

Plasmacytoid dendritic cells. + : Eosinophils. ^ : HMC-1 mast cell line. Rows were centered. Red 

denotes a higher expression and blue a lower expression. White denotes an average expression. 

F) Correlations between dilutions of mRNA extracted from purified immune cell populations 

mixed with mRNA extracted from cancer cell lines and the metagene score of the corresponding 

signature. The solid black line represents a least-square linear regression fit. 
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Fig 2 

 

Immune and stromal signatures of the four molecular subgroups of CRC 

A) Heatmap showing the level of the metagene scores of the immune and stromal signatures 

among 2 transcriptomic cohorts of CRC patients, that were classified in 4 molecularly-defined 

CRC subgroups. Distributions of the B) lymphocytic, C) myeloid, D) stromal metagene scores 

across subgroups in the 2 cohorts. * : p <0.05. ** : p<0.001. *** : p<0.0001 compared to the 

cohort’s median using a Student’s t-test. 
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Fig 3 

 

Immunohistochemical characterization of the four CRC subgroups 

A) Distributions of the densities of tumor-infiltrating CD8
+
 T cells in the four subgroups. B) 

Distributions of the densities of tumor-infiltrating CD68
+
 macrophages in the four subgroups. P-

values were assessed using the Kruskall-Wallis test. C) Representative tumor areas of each SMA 

grades. SMA-positive areas are labeled in brown. D) Distributions of each SMA grades in the 

four subgroup. P-value were assessed using Fisher’s exact test. 
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Fig 4 

 

Expression of functionally relevant immune genes among the 4 subgroups in the two cohorts.  

The heatmaps on the left represents the level of expression of the genes. Rows were centered 

and scaled. Red denotes a higher expression and blue a lower expression. The heatmaps on the 

right represents the p-value of a Student’s t-test against the cohort median, for each gene. 
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Fig 5 
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Inflammatory, angiogenic and suppressive molecules overexpressed in Mesenchymal tumors 

are highly expressed by fibroblastic, endothelial and monocytic cells 

Expression of the genes specifically upregulated in Mesenchymal tumors and related to 

inflammation, angiogenesis, immunosuppression and immune cell functional orientations, in 

homogeneous samples of immune, stromal or colorectal cancer cell lines. Black frames indicate 

that the corresponding cell population has the highest expression of the gene. 
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Table 1 

Signature 

Number of 

independent 

datasets 

Number of samples Number of markers 

positive 

class 

negative 

class 
ignored Probesets 

Mapping 

genes 
Unmapped 

probesets 

Non Hematopoietic 13 831 1104 4 119 83 6 

Endothelial cells 7 36 1903 0 166 108 6 

Lymphatics 3 18 1921 0 38 27 6 

HUVECs 4 18 1921 0 20 14 0 

Fibroblasts 5 50 1889 0 175 108 5 

Cancer Cell Lines 1 745 1190 4 30 25 4 

Hematopoietic cells 67 1104 831 4 358 232 29 

Lymphoid lineage 37 497 1438 4 24 17 3 

CD3+ T cells 29 400 1535 4 27 17 3 

CD4+ T cells 22 349 1549 41 11 5 0 

CD8+ T cells 20 282 1602 55 3 1 0 

Tγδ 7 53 1831 55 2 1 0 

Memory T cells 3 31 1560 348 1 1 0 

Regulatory T cells 6 65 1667 207 4 3 1 

Th1 cells 2 15 1713 211 0 0 0 

Th17 cells 1 18 1710 211 121 93 19 

Th2 cells 1 12 1720 207 2 2 0 

B cells lineage 9 62 1873 4 119 38 55 

B cells (excluding Plasma cells) 9 57 1878 4 49 20 12 

Memory B cells 2 8 1886 45 11 5 1 

Naive B cells 2 8 1886 45 10 4 6 

Plasma cells 2 5 1930 4 75 30 36 

NK cells 4 30 1905 4 20 11 5 

T/NK lineage 31 430 1505 4 34 23 1 

Myeloid lineage 33 603 1328 8 111 75 12 

Monocytic lineage 24 253 1678 8 11 8 0 

Granulocytes 14 350 1585 4 116 71 20 

Neutrophils 10 299 1592 48 93 54 13 

Eosinophils 2 7 1884 48 245 131 107 

Myeloid dendritic cells 11 72 1863 4 2 2 0 

Dendritic cells 11 77 1858 4 1 0 1 

Monocytes 11 106 1829 4 6 5 1 

Macrophages 6 75 1860 4 4 3 0 

Cytotoxic lymphocytes 11 97 1787 55 12 7 3 

B lineage or plasmacytoid dendritic cell 9 67 1868 4 123 41 58 

Plasma cell or plasmacytoid dendritic cells 3 10 1925 4 12 7 3 
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The 36 meta-categories that were used in the supervised screen for marker selection.  

Bold font and gray background highlight the 11 signatures selected for further analysis. 
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Supplementary Materials: 

Fig S1 

Pyramidal representation of the inclusion relationships between samples  

Fig S2 

Subsets of the T/NK lineage are not separable using Principal Component Analysis  

Fig S3 

Each signature, except the Granulocytic, includes a reproducible cluster of highly correlated 

genes 

Fig S4 

Results are reproducible on the independent PETACC3 CRC cohort (n=688) 

Fig S5 

Cytotoxic-lymphocytes and monocytic-lineage metagenes predict tumor infiltration by the 

corresponding cell populations 

Fig S6 

The fibroblast metagene score correlates with endothelial and myeloid cells metagene scores 

in CRC and other cancers  

Table S1 
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Immune, and stromal samples used to define the immune metagenes 

Table S2 

Colorectal cancer samples constituting the 3 cohorts analyzed, along with their molecular 

subgroups 

Table S3 

Samples from the Cancer Cell Line Encyclopedia 

Table S4 

Antibodies used for immunohistochemical analyses 

Table S5 

Definition of the purified immune and stromal meta-categories according to the reported 

phenotype of the samples used for microarray analyzes 

Table S6 

Probesets selected to belong to the immune and stromal metagenes 

Table S7 

RNA ratios used in the RNA mixture models 

Table S8 

Molecular subgroup-level statistics on each signature’s metagene score 
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Table S8 

Levels of expression of genes related to inflammation, angiogenesis and immunomodulation 

in CRC cohorts 
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Supplementary Information 

Colorectal cancer cells of mesenchymal type shape an inflammatory, angiogenic and 

immunosuppressive microenvironment 

   

Authors: Etienne Becht, Aurélien de Reyniès, Nicolas A Giraldo, Camilla Pilati, Bénédicte Buttard, 

Laetitia Lacroix, Janick Selves, Catherine Sautès-Fridman, Pierre Laurent-Puig, and Wolf-Herman 

Fridman 
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Fig S1 

 

Pyramidal representation of the inclusion relationships between samples 

A green background indicates that the class was collected as a transcriptomic sample. Yellow 

nodes enable organizing the samples into a pyramidal graph. Nodes or leaves with orange 

frames indicate that the signatures were selected in the set of 11 specific signatures. Frames 

encompassing several nodes and leaves indicate selected meta-categories, and the color 

corresponds to the one use in Fig1ABCD if applicable, and is gray otherwise.  
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Fig S2 

 

Subsets of the T/NK lineage are not separable using Principal Component Analysis 

Principal Components Analysis (PCA) based on the 5% most variable probesets applied on A) 

CD4+ T cells and cytotoxic-lymphocytes B) CD4+ T cells, CD8+ T cells, NK cells.  
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Fig S3 
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Each signature, except the Granulocytic, includes a reproducible cluster of highly correlated 

genes 

For each signature, the Pearson’s correlation distance matrix between probesets is shown in the 

CIT, CIT validation and expO cohorts. Probesets were clustered using hierarchical clustering with 

complete linkage and Pearson’s distance on the CIT cohort (left panels). The same clustering 

order is displayed for the three cohorts. The color code is given at the bottom. 
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Fig S4 

 

Cytotoxic-lymphocytes and monocytic-lineage metagenes predict tumor infiltration by the 

corresponding cell populations 

A) Scatterplot representing the Cytotoxic-lymphocytes metagene expression and the 

corresponding quantification of CD8
+ 

T cells in 38 CRC tumors. B) Scatterplot representing the 
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Monocytic-lineage metagene expression and the corresponding quantification of CD68
+
 

Macrophages cells in 38 CRC tumors. P-values were assessed by Student’s T tests; r corresponds 

to the Pearson’s correlation coefficient. 
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Fig S5 

 

Results are reproducible on the independent PETACC3 CRC cohort (n=688). 

A) Heatmap showing the level of the metagene scores of the immune and stromal signatures in 

the PETACC3 CRC transcriptomic cohort, that was classified according to the 6 molecularly-

defined CRC subgroups. Distributions of the B) lymphocytic, C) myeloid D) and stromal 

metagenes’ scores across subgroups in the 2 cohorts. * : p <0.05. ** : p<0.001. *** : p<0.0001 

compared the the cohort’s median using a Student’s t-test. E) The heatmap on the left 

represents the level of expression of the genes. Rows were centered and scaled. Red denotes a 

higher expression and blue a lower expression. The heatmap on the right represent the p-value 

of a Student’s t-test against the cohort median, for each gene. 
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Fig S6 

 

The fibroblast metagene score correlates with endothelial and myeloid cells metagene scores 

in CRC and other cancers 

Scatterplots representing the relationships between the endothelial cells, myeloid cells and 

cytotoxic cells metagenes scores compared to the fibroblast metagene score A) in the 2 CRC 

cohorts B) across 6 cancers, including CRC, in the expO dataset.  
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3.3 Article 3 : the immune contextures of CRC and ccRCC
molecular subtypes

3.3.1 Summary of the results

This in press article draws a parallel between the analyzes of the immune contextures
of ccRCC and CRC molecular subgroups. It updates our findings in ccRCC presented
in Article 1 by using the gene signatures presented in Article 2, which confirms our
previously-published results.

This paper also reports immune contextures in the six transcriptomic subgroups re-
ported by Marisa et al[239]. The correspondence between the six subgroups of Marisa and
colleagues and the CMS is as follow:

CMS MSI-like Canonical Metabolic Mesenchymal
C1

Marisa C2 C5 C3 C4
C6

The results obtained on this classification are consistent with the ones proposed in
Article 2. In addition, it shows that the C6 ’normal-like’ subgroup proposed by Marisa
et al.[239] but which has no direct equivalent in the CMS classification[282] is highly in-
filtrated by B cells, but not by myeloid cells, which suggests that this subgroup has a
different immune contexture than C1 and C5, although these subgroups are merged in the
CMS classification.

This short paper illustrates the strong association between ccRCC and CRC molecular
subtypes, which prompts to perform similar studies in other malignancies in order to unify
genomic and immune classifications.

3.3.2 Article
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Abstract : Molecular and immune classifications powerfully predict cancer patient’s survival and 

response to therapies. We hereby describe the immune tumor microenvironment of molecular 

subgroups of colorectal and renal cell cancers revealing a strong correlation between tumor subtypes 

and distinct immune profiles. 

Manuscript : During the last decade, two major prognostic classifications of human cancers have 

emerged, respectively based on the phenotype of tumor cells and on the composition of the immune 

infiltrate. The first, molecular classification of cancer, stratifies patients according to genetic 

mutations, translocations, amplifications or deletions of chromosome fragments in malignant cells(1). 

The second, immune classification, stratifies patients according to the location, quality and quantity 

of the tumoral immune infiltrate(2). So far, no correlation between these two classifications had been 

performed. 

The molecular classification has proven to be useful, in many cancer types, to identify groups of 

patients with distinct prognosis and responses to therapies. Thus, patients presenting mutations in 

driver oncogenes can be treated by specific inhibitors such as vemurafenib that targets mutated 

BRAF in melanoma(3) or gefitinib and erlotinib that targets EGFR mutations in lung tumors(4)(5). Acute 

lymphocytic leukemia and chronic lymphoid leukemia patients with a translocation of BCR-ABL genes 

are sensitive to imatinib(6). Amplification of the HER2/neu gene in breast cancer cells results in an 

overexpression of the encoded HER2 protein which is a therapeutic target for the monoclonal 

antibodies trastuzumab and pertuzumab in HER2-positive patients(7). Conversely, patients whose 

colorectal cancer (CRC) are mutated for the KRAS oncogene are resistant to treatment with 

cetuximab, a monoclonal antibody targeting the EGF-Receptor(8). 

Whole-transcriptome analyses of tumor cohorts also define molecular subgroups with prognostic 

and theranostic values. It has been exemplified in a recent publication by our group who analyzed a 

cohort of patients with clear cell Renal Cell Carcinoma (ccRCC)(9) who had developed a metastatic 

disease and were treated with sunitinib, a tyrosine-kinase inhibitor (TKI) targeting VEGFR1, VEGFR2, 
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RET, CKIT, FLT3 and PDGF-RB(10). Transcriptomic analyses were performed on resected primary ccRCC 

tumors from these patients. An unsupervised consensus clustering approach identified 4 robust 

ccRCC subtypes (ccrcc1 to ccrcc4) that were associated with different responses to sunitinib 

treatment(9). ccrcc4 had the lowest response rate to sunitinib and the shortest progression-free 

survival (PFS) and overall survival (OS) than ccrcc2 and ccrcc3 (Figure 1A). ccrcc4, exhibited a stem-

cell polycomb signature and a sarcomatoid differentiation(9). 

Six independent laboratories have reported transcriptomic molecular classifications of 

CRC(11)(12)(12)(12)(13)(13)(13)(14)(14)(14)(15)(15)(15)(16). They all agree on the identification of a 

subgroup with Microsatellite Instability (MSI) associated with longer PFS and OS, as well as on the 

identification of a mesenchymal subgroup, characterized by TGFß activation, stromal cells invasion 

and angiogenesis, and that is associated with the worst prognosis. This classification could also have 

a theranostic value since patients with tumors of the mesenchymal subgroup are more resistant to 

targeted therapies(12), including cetuximab(13) and more recently it has been reported that the CRC 

patient who responded to anti-checkpoint PD-1-targeting antibodies (nivolumab) belonged to the 

MSI subgroup(17). One of these CRC classifications have been reported by some of us, dividing CRC in 

6 subgroups (C1 to C6)(16). C1 displayed chromosomal instability (CIN) with  a significant down 

regulation of immune pathways, C2 comprises the MSI tumors which are known to be highly 

infiltrated by T lymphocytes, C3 was enriched for tumors with KRAS mutations, C4 has an 

upregulation of cancer stem cell like phenotype signatures, C5 features CIN with activation of the 

Wnt pathway and C6 was also CIN but have an expression profile similar to normal tissues(16). As 

expected, patients of the C2 subgroup had the best clinical outcome, in terms of PFS and OS, 

whereas patients from the C4 subgroup had the worst prognosis(16) (Figure 2A). 

In addition, these two molecular classifications of RCC and CRC were shown to correlate with 

immunological and inflammatory signatures(9)(16). For instance, pathway analyses revealed an 

overexpression and hypomethylation of genes involved in immune response and chemotaxis in the 
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ccRCC4 group of tumors. In CRC, the “Hematopoietic cell lineage” pathway was overrepresented in 

C2 and C4, suggesting increased infiltration by immune cells. 

However, in-depth analyses of the composition of the immune microenvironment in relation with 

the molecular subgroups are still lacking. Such analyses appear mandatory since the immune 

classification of cancers is the other major prognostic factor that emerged during the last decade. 

Initiated by the pioneering work of Zhang et al in ovarian cancer(18) and Galon et al in CRC(19) who 

showed that the density of intratumoral T cells, particularly memory CD8+ T cells and a Th1 

orientation was the strongest prognostic factor for PFS and OS, it was extended and confirmed for 

most cancer types and led to the concept of immune contexture which proposes that the density, 

location, functional orientation and local education of memory T cells strongly impacts patients' 

clinical outcome(2). It has allowed the establishment of a standardized, robust and reproducible 

immunoscore which value as a routine laboratory test is being validated in a worldwide 

consortium(20). The immune classification of human tumors also has theranostic value. For instance, 

the presence of CD8+ T cells is necessary, although not always sufficient(21), for response to therapy 

with anti-PD-1 antibodies in melanoma tumors(22). It also represents a theranostic marker for other 

immunotherapies, since high T cell infiltration, in association with the presence of a high number of 

Tertiary Lymphoid Structures(23),  accompanies the potential efficacy of therapeutic vaccines(24) or 

anti-checkpoint antibodies(25). There are, however, exceptions to the beneficial effect of a high 

infiltration by CD8+ T cells, as observed in Head and Neck cancer(26), Hodgkin lymphoma(27), diffuse 

large B-cell lymphoma(28) and ccRCC(2)(29). 

We have revisited the ccRCC case by studying the immune contexture of 135 primary ccRCC(30) and 

51 lung metastases of ccRCC(30)(31). We first reported that a high density of CD8+ T cells in primary as 

well as in metastatic sites was associated with shorter patient's survival(31). Analysis of The Cancer 

Genome Atlas(32) expression data revealed that the expression of most of the genes, associated with 

a CD8+T cell-oriented immune response and including most notably INFg, correlated with a poor 
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prognosis. A more detailed analysis of the immune infiltrates revealed that many CD8+ T cells co-

expressed immune checkpoint inhibitors such as PD-1 and LAG-3, and showed that high densities of 

PD-1 and/or LAG-3 expressing T cells correlated with poor prognosis(30). In some patients, tumor cells 

expressed PD-L1 and PD-L2, while tumor-infiltrating T cells expressed PD-1.  Strikingly, this co-

expression was associated with a higher risk of relapse and death(30). 

In contrast, high densities of CD8 T cells correlated with longer patient’s survival in primary sites(19) as 

well as in liver(33) or lung(31) metastatic sites in CRC. The clear opposite prognostic impacts of the 

CD8+T cell infiltrates between ccRCC and CRC patients were observed both in the primary and the 

metastatic sites, suggesting that the clinical impact of the immune contexture depends on the tumor 

type rather than the tumor site(34). These results prompted us to investigate the correlations 

between the molecular subgroups and the immune infiltrate. To study large cohorts of patients and 

sets of transcriptomic data, we established a robust and selective immunome, defining metagenes 

for all lymphocyte subsets (CD3+, CD4+, CD8+, Th1, Th2, Th17, Treg, NK, Tgd, B cells...) monocyte-

derived cells, mast cells, granulocytes(35) but also endothelial cells and fibroblasts (Becht, submitted). 

The immunome was applied to the ccRCC and CRC molecular subgroup classifications presented 

above(9)(16). 

In the ccRCC cohort, the immunome identified the ccrcc4 subgroup as exhibiting the highest 

expression of genes expressed in T, B cells, cytotoxic cells and myeloid cells whereas the ccrcc1 

subgroup had the lowest expression of immune metagenes (Figure 1B), confirming our previous 

observations(9). Among the genes overexpressed in ccrcc4, in addition to genes involved in Th1 

polarization (IFNg, TBX21), T cell activation (IL12R) and chemotaxis (CXCL9, CXCL10), were genes 

governing T cell inhibition (including PD-1 (PDCD1), LAG3, and TGFß), as well as genes attracting 

(CXCL12) and activating (CSF1) myeloid cells(9)(Figure 1C). Indeed, the ccrcc4 subgroup also exhibited 

an hypomethylation of genes involved in the regulation of T cell activation, regulation of the immune 

response, chemotaxis and caspase cascades involved in apoptosis(9). Finally, immunohistochemical 
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analyses revealed that tumors of the ccrcc4 subgroup had the strongest CD8+ T cells infiltration, 

together with PD-1 expression on their membrane and PD-L1 expression on tumor cells(9). The 

combined analyses of molecular subgroups of ccRCC and immune classifications therefore allowed to 

identify an "immune high" and inflammatory subgroup, likely shaped by the sarcomatoid 

differentiated malignant cells producing chemokines and cytokines regulating the immune 

contexture, and inducing T cell exhaustion (PD-1 expression) and immunosuppression (TGFß). It 

identifies a poor-prognostic cohort, in which tumor-infiltrating lymphocytes express immune 

checkpoint inhibitors (PD-1, LAG-3) whose ligands are expressed by tumor cells. We consequently 

proposed that the ccrcc4 subgroup identifies patients responding to immune checkpoint modulators 

(9).  

Application of the immunome to the CRC classification published by Marisa et al.(16) identified two 

"immune high" subgroups, as shown in Figure 2B. The expected MSI-enriched "C2" subgroup highly 

expressed T and NK cell metagenes and to a lesser extent the myeloid-cells metagene. It was the 

subgroup with the highest expression of genes involved in Th1 orientation (IFNg), PD-1 and 

chemokines attracting T cells (CXCL9, CXCL10), of IL15, which activates cytotoxic lymphocytes and 

promotes survival of memory CD8+T cells(36), and of genes implicated in the formation of Tertiary 

Lymphoid Structures (CXCL13), confirming previous observation of Bindea et al(35). Surprisingly, C2 

was not the only subgroup characterized by high immune metagenes expression (Figure 2C). The C4 

subgroup, with a stem cell-like transcriptomic profile and expressing markers of epithelial-to-

mesenchymal transition, comprised tumors with high T and NK metagenes expression but in the 

context of high myeloid cells metagene signature, and of endothelial and fibroblastic cells markers 

expression. Some tumors of this subgroup also expressed the PD-1 ligands, CD274 and PDCD1LG2. In 

accordance with high expression of the myeloid cells metagenes, the C4 subgroup also exhibited a 

high expression of genes encoding myeloid cells attracting chemokines (CCL2), angiogenic factors 

(VEGFA, VEGFC, PDGF), and TGFB1 (Figure 2C). These observations are reminiscent of the fact that 

high VEGF gene expression impaired the beneficial clinical impact of high granulysin gene expression 
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in CRC tumors(37). The C1 and C5 subgroups were characterized by low immune and inflammatory 

metagenes expression. It was associated with a low expression of MHC class I genes which may 

explain the low CD8 T lymphocyte infiltration of these subgroups (Figure 2B and 2C). Altogether, the 

combined analysis of cancer molecular subgroups and immune classifications of CRC revealed 

unexpected immune and inflammatory associated heterogeneity in CRC tumors. Whereas the C2/MSI 

subgroup presents a canonical Th1/Memory CD8+ T cells cytotoxic infiltration correlating with good 

prognosis, the C4 subgroup exhibits a strong lymphocyte infiltration associated with myeloid cell 

infiltration, along with angiogenesis and high density of tumor-associated fibroblasts. These last 

three components most likely impair the immune reaction and are partly responsible for the poor 

prognosis of patients from this subgroup. Despite these deleterious elements in the 

microenvironment of C4 tumors, the presence of PD-1 and LAG-3 positive lymphocytes and PD-L1 

expressing cells opens the possibility of targeted immunotherapies for the corresponding group of 

patients. 

These results show similarities at the subgroup level between distinct tumor types such as ccRCC and 

CRC and allow to define new groups of immune high patients associated with distinct prognosis. They 

illustrate the high potential of combining the analyses of cancer molecular subgroups with immune 

classifications to define new groups of patients with similar tumoral and microenvironmental 

signatures, independently of tumor types. By associating the mutational, differentiation or 

methylation status of the tumor cells together with the tumor microenvironments that they shape, 

these molecular and immune based classifications has a high prognostic value and will provide 

targets and markers for targeted therapies. 
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Figure legends: 

Figure 1: correlation between molecular subgroups and immune and inflammatory gene expression 

in ccRCC  

A) Kaplan-Meier curves representing the progression-free survival (left) and overall-survival (right) of 

ccRCC4 patients compared to non-ccRCC4 patients B) Relative expression of immune cell-specific 

markers in the 4 ccRCC subgroups (red : high expression, blue : low expression). Percentages indicate 

the frequency of each subgroups within the cohort. C) Relative expression of functionally-relevant 

immune genes in the 4 ccRCC subgroups (red : high expression, blue : low expression). Dataset : 

ArrayExpress E-MTAB-3269 

 

Figure 2: correlation between molecular subgroups and immune and inflammatory gene expression 

in CRC 

A) Kaplan-Meier curves representing the relapse-free survival (left) and overall-survival (right) of C2, 

C4 and non-C2/C4 patients B) Relative expression of immune cell-specific markers in the 6 CRC 

subgroups (red : high expression, blue : low expression). Percentages indicate the frequency of each 

subgroups within the cohort. C) Relative expression of functionally-relevant immune genes in  6 CRC 

subgroups (red : high expression, blue : low expression). Dataset : Gene Expression Omnibus 

GSE39582 
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Chapter 4

Discussion

In this chapter, I first discuss advantages and drawbacks of the method enabling transcrip-
tomic quantifications of cellular proportions of tumor microenvironments that I proposed.
I subsequently discuss the immune contexture of ccRCC and CRC molecular subgroups,
their relationship to tumor immunology theories and their translational relevance. Finally,
I propose perspectives that could enrich the analyses presented in this manuscript.

4.1 Transcriptomic quantification of cell populations in tu-
mor microenvironments

I introduced several studies dealing with the issue of cellular heterogeneity in transcrip-
tomic samples. I will now discuss the methodology I developed in the context of previously
published methods.

4.1.1 Depth of characterized cell phenotypes

The method I developed enables the quantification of nine immune and two stromal
cell populations of the tumor microenvironment. It includes both broad cell categories
such as ’Myeloid’ and ’Lymphoid’ cells, and more precise phenotypes such as ’T cells’ or
’Granulocytes’. The number of phenotypes characterized is intermediate when compared
to previously-published marker-based approaches[356, 358, 360]. Abbas et al.[356] and
Palmer et al.[358] respectively characterized 6 and 3 cell populations, and their results
only consider blood cells and are thus inapplicable in tumor samples. Yoshiara et al.[360]
proposed a method suitable for the analysis of tumors, but proposes only two signatures,
one for immune cells and one for the tumor stroma, and therefore cannot discriminate
between immune cell subpopulations. Bindea et al.[119] proposed signatures for 28 pop-
ulations, but the number of pure samples analyzed and the statistical criteria used are
not stringent enough to allow specificity of the proposed markers to one and only one cell
population. Also, since microarray technologies can lack sensitivity for lowly expressed
transcripts, it may be difficult to measure infiltration by rare cell populations such as
dendritic cells using this approach. I discussed in Article 2 the depth of characterized
phenotypes, based on the number of identified markers, the number of independent stud-
ies including a given cell population and the relevance of the population characterized by
the gene signature. Unsupervised analyses were also used to identify unsupervised sepa-
rability of homogeneous samples, and revealed that even intermediate-depth populations
such as CD4+ T cells and CD8+ T cells were indistinguishable through these approaches.
It is possible that deconvolution algorithms, that do not necessarily rely on genes with
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binary expression patterns, might be able to quantify more subtle phenotypes than the
approached I proposed. I did however introduce a set of functional molecules that enable
the analysis of the functional orientation of infiltrating immune cells to compensate the
relatively modest depth of the cell phenotypes quantified.

4.1.2 Choice of the approach

Deconvolution approaches use features whose expression levels vary across cell populations,
while marker-based approaches rely on features specifically expressed by one population.
These approaches rely on strong theoretical frameworks, as described in equation (1.4),
that come at the price of hypotheses on the statistical distribution of the variables and
relationship between specific mRNA concentrations and the corresponding gene expres-
sion measures. Different authors have argued in favor of the use of either linear expression
values[338, 342, 343, 350, 351, 353] or logarithmic expression[346] values in these mod-
els. It is unclear whether the object of this debate actually affects the potency of these
methods, as recently published algorithms did not report major output differences using
both scales[353]. A more questionable hypothesis relies in the assumption of linearity
between mRNA concentration and expression measures. Microarray technologies overesti-
mate lowly-expressed genes due to background noise which overcomes the specific signal,
and underestimate highly-expressed genes due to probe saturation (see figure 4.1). These
non-linear effects therefore handicap deconvolution methods based on linear models. The
authors of the CIBERSORT methods for instance reported systematic overestimation of
rare cell subsets[372], which could be due to these phenomenons.

Figure 4.1: Illustration of non-linear effects in DNA microarray measurements

I attempted to implement linear models to deconvolve the proportions of known cell
proportions in the RNA mixture model used in Article 2, Fig 1 and Table S9, but
achieved lower accuracy compared to marker-based quantification, and therefore pursued
with the marker-based approach.

4.1.3 Control samples

No other published studies used controls suitable for pan-cancer analyses. In the ap-
proach I introduced, I used 745 cancer cell lines spanning 24 anatomic locations, therefore
controlling for the non-expression of selected markers by a wide range of cancer cell lines.
Although endothelial cells were included in the populations screened by Bindea et al.[119],
no other marker-based study characterized the transcriptomic markers of fibroblasts.

Despite the large number of cell populations characterized, some cell populations were
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not profiled on Affymetrix Human Genome U133 Plus 2.0 Arrays and therefore could not
be included in our analysis. Such populations include NKT cells and basophils. Mast cells
were represented only by the HMC-1 cell line, a human cell line derived from a patient
with mast cell leukaemia[376]. HMC-1 samples were therefore only used as controls and
could not be used to reliably identify markers specific for mast cells.

Many non-immune cell populations present in tumor microenvironments could also not
be included. Such cells include non-malignant enterocytes, goblet cells and colonic stem
cell that are physiologically present in the colonic crypt, and could therefore contaminate
CRC samples. Transcriptomic profiles of such non-malignant cells are not available for
most organs and were therefore not included in our analysis. These cells can in theory
express some markers that we selected and could potentially disturb the estimated propor-
tions. I however presented ex-vivo validations that argue in favor of reliable quantifications
provided by the proposed gene-signatures (Article 2, Fig 3, Fig S3, Fig S4), that I
develop in the following section.

4.1.4 Experimental validations

Three validation settings were presented and support that the gene signatures identified
accurately measure the proportions of infiltrating cells. We first performed in-vitro mix-
tures of mRNA from five immune populations further diluted in a CRC cell line mRNA.
The proportions introduced in the mixtures were organized in two transposed latin squares
(Article 2, Table S9) to ensure the strict specificity of the selected markers to one and
only one cell population, as this setting reduced the collinearity of the mRNA proportions
between the different cell populations. The amount of mRNA introduced in each mixture
greatly varied, with mRNA proportions spanning five log2 units. In this challenging set-
ting, the summarized gene signatures were very highly correlated to the known proportions
in the mixtures, with Pearson’s correlation coefficients ranging from 0.94 to 0.99.

I then reported the correlation between markers of specific cell populations (Article
2, Fig S3). This analysis is based on the theoretical considerations developed in equation
(1.8), which states that the expression of a feature specific for a given cell population is
proportional to this population’s proportion in a sample. By transitivity, we therefore ex-
pect a high correlation of the markers of a given population with each others. This analysis
also suggest a consistency between unsupervised clustering of features and our supervised
marker-based approach. A high correlation between markers was observed within each sig-
nature, except for the one specific to granulocytes. This result suggests that granulocytes
either infiltrate CRC tumors in too low numbers to be accurately quantified, or that their
mRNA content is damaged before sample fixation, these cells being notoriously instable
as they die upon activation[377]. However, the co-expression patterns of non-granulocytic
cells’ markers are consistent with a high enrichment in marker genes. Selected probesets
that show an overall poor correlation to the other genes of the signature could reflect a
downregulation of the corresponding transcript by the target cell population, an expres-
sion value in tumors below the lower limit of detection of the measurement technique, or
falsely selected probesets.

Finally, we immunohistochemically-characterized the immune microenvironment of
transcriptomically profiled CRC tumors for three markers. For each marker, we observed
a high consistency between the transcriptomic predictions and the corresponding cell in-
filtrations (Article 2, Fig 3, Fig S4).
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4.1.5 Translational applications

In addition to their use for the study of tumor microenvironments, these gene signatures
could be applied in the clinic to quantify immune and stromal cell infiltrations in resected
tumors or tumor biopsies. Since the composition of the immune microenvironment yields
prognostic information[54], and since multiple markers are necessary to accurately predict
prognosis (Article 2) but immunohistochemical quantifications are time-consuming, our
transcriptomic approach could enable a fast and harmonized quantitative characterization
of the microenvironment of clinical samples.

4.2 Immune contextures of CRC and ccRCC molecular sub-
types

In both cancers, we found a high correlation between the expression of immune and stromal
signatures and molecular subgroups. In this section, I discuss the implications of these
findings for tumor immunology and for the clinical management of the patients in these
subgroups.

4.2.1 Tumor immunology and the immune contexture of molecular sub-
groups

I introduced tumor immunology through two major axes, the adaptive anti-tumor immune
response associated with favorable outcome and the pro-tumor inflammation associated
with poor outcome. I will now present how these two axes stratify tumor molecular
subgroups.

4.2.1.1 Immune-low subgroups

In both cancers, poorly infiltrated tumors corresponded to specific transcriptomic sub-
groups. In ccRCC, the ccrcc1, ccrcc2 and ccrcc3 subgroups were poorly infiltrated com-
pared to ccrcc4 (Article 1). In CRC, the Canonical and Metabolic subgroups in the
CMS classification (Article 2), or the C1, C3 and C5 subgroups in the CIT classification
(Article 3) had the lowest infiltration by immune cells. These tumors therefore appear
as immune-ignored, unable to elicit both inflammatory and adaptive immune responses.
The reasons for this immune ignorance or escape are unclear.

A recent study suggested that tumors with a high mutational load were extensively
infiltrated by cytotoxic lymphocytes[354]. The number of mutations is indeed much higher
in MSI tumors compared to non-MSI tumors in CRC, but Mesenchymal CRC tumors have
mutation rates comparable with the ones found in the Canonical and Metabolic tumors,
suggesting that the low number of mutations in immune-low CRC tumors is not sufficient
to explain their low immune infiltration. I reported that class I HLA molecules were
downregulated in immune-low CRC subgroups (Article 2). Lack of expression of class
I MHC molecules could lead to a low activation of CD8+ T cells, preventing their local
proliferation and thus lowering their overall proportion within the tumor microenviron-
ment. A third possibility is that malignant cells in these subgroups do not display danger
signals upon apoptosis, resulting in non-immunogenic cell death and therefore a lack of
local inflammation, resulting in low infiltration by both lymphocytes and myeloid cells.

In ccRCC, the average number of mutations across the four subgroups has not been in-
vestigated, and therefore could account for higher infiltration in ccrcc4. Tumor immune in-
filtration was found lower in ccrcc1-3 when compared to ccrcc4. In these subgroups, meta-
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genes representing T cells and Macrophages infiltrations had an higher expression than
in distant non-malignant kidney tissues, suggesting that even poorly-infiltrated ccRCC
tumors are more infiltrated than normal kidney tissues, as previously reported[365–369].
It is unclear whether the intermediate immune infiltration found in these subgroups is
able to control tumor growth. ccrcc1 and ccrcc2 feature the lowest expression of meta-
genes specific for macrophages, as well as a trend for higher NK cells infiltration than
the poorly-immunogenic ccrcc3 (Article 1, Fig S2). NK cells have been previously as-
sociated with favorable outcome in ccRCC[311], and could mediate anti-tumor functions
in these subgroups , although NK cells infiltrating ccRCC tumors have been reported to
display a dysfunctional phenotype[378–380]. ccrcc1 had the lowest expression of genes
regulating immune cells functions (Article 1, Fig S1), suggesting that these tumors are
the least immunogenic of the four subgroups.

Immunotherapeutic approaches in these subgroups should aim at eliciting an adaptive
immune response in the context of poor tumor cells immunogenicity. Bi-specific antibodies
could represent such a treatment modality. Bi-specific are artificial antibodies engineered
to simultaneously target two distincts epitopes. One epitope is usually a tumor-associated
antigen, and the second is usually a T cell receptor specific epitope on the molecules form-
ing the CD3-signaling complex[381]. These antibodies take advantage of the high affinity
of antibodies which can bind to native, non-processed antigens, and then recruit and acti-
vate effector T cells regardless of their intrinsic specificity. CAR T cells offer an alternative,
notably as they possess the capacity to bind to mutated antigens independently of MHC
presentation[193]. MHC molecules are downregulated in the intermediate prognosis and
poorly immunogenic ccrcc1 subgroup (Article 1, Fig S1), and in the poorly immuno-
genic CRC subgroups (Article 2, Fig 4 and Article 3, Fig 2C), and these tumors may
therefore lack the antigen-presentation machinery. These cells may therefore be able to
mediate tumor elimination despite low class I MHC expression.

4.2.1.2 MSI-like, CD8+
high, Th1-oriented CRC subgroup

I have cited a large corpus of publications supporting that extensive infiltration by CD8+

T cells or a consistent Th1 functional orientation is associated with favorable prognosis
in most malignancies[54], and most notably in CRC[18, 46, 47, 119, 361, 375, 382]. It
is striking that the immune contexture described in these studies perfectly fits with the
one I reported in CRC tumors of the MSI-like transcriptomic subgroup. MSI-like, or the
corresponding C2 subgroup, have the highest tumor infiltration by cytotoxic lymphocytes
(Article 2, Fig 2 and Article 3, Fig 2B), which we showed to correspond to infil-
tration by CD8+ T cells (Article 2, Fig 3A, Fig S4A). This subgroup also have the
highest expression of chemokines attracting memory T lymphocytes (CXCL9, CXCL10,
CXCL11)[18], of Th1 molecules such as IFNg[47], of the IL15 cytokine which activates
T and NK cells[375], and CXCL13 which is associated with formation of Tertiary Lym-
phoid Structures which locally prime adaptive immune responses[119, 333, 383]. The
high consistency between the good-prognosis MSI-like subgroup described in transcrip-
tomic classifications of CRC[236–241, 282] and the tummor-immunology good-prognosis
CD8high/Th1 subgroup is a striking illustration of the relationship between immune and
molecular classifications.

This subgroup has the highest expression of molecules of the PD-1 pathway, consis-
tently with recent publications supporting the use of checkpoint blockade antibodies for
the treatment of these patients[179, 302, 303]. The high number of mutations found in
MSI tumors is consistent with their high infiltration by cytotoxic lymphocytes[354], and
supports the idea that the long relapse-free survival that these patients experience is in
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part due to the control of tumor growth and dissemination by tumor antigens-targeting
cytotoxic T cells. It is therefore likely that MSI tumors of relapsing CRC patients feature
higher expression of molecules implicated in immune-escape mechanisms, and checkpoint-
blockade therapies could therefore mostly benefit relapsing MSI patients.

4.2.1.3 Inflammatory subgroups in CRC and ccRCC

In both cancers, poor-prognosis highly-infiltrated subgroups were identified. In both cases,
in-situ analyses showed a high infiltration by CD8+ T cells (Article 1, Fig S2, Fig S3
and Article 2, Fig 2, Fig 3) contradicting the idea that tumors highly infiltrated by
CD8+ T cells have an inherently better prognosis. It is striking that even in CRC, a
prototypical illustration of this idea, a poor-prognosis subgroup with high CD8+ T cells
infiltration exists.

In RCC, ccRCC4 displayed the highest infiltration by B and T lymphocytes, as well
as macrophages (Article 1, Fig S2 and Article 3, Fig 2B), with a concomitant
Th1 functional orientation (expression of TBX21 and IFNg), T and B cells-attracting
chemokines (CXCL9, CXCL10, CXCL13) (Article 1, Fig S1 and Article 3, Fig 2C)
and should therefore theoretically be associated with favorable outcome. Yet, both sol-
uble (TGFb, IL10) and contact-dependent (PDCD1 [PD1], CD274 [PD-L1], PDCD1LG2
[PD-L2], LAG3, HAVCR2 [TIM3]) inhibitory molecules are highly expressed in this sub-
group and suggest that immunosuppressive mechanisms counteract the cytotoxic/Th1
functional orientation of tumor-infiltrating lymphocytes. TGFb and IL10 are notable
Treg related cytokines, and suggest an additional extensive infiltration by regulatory
T cells in these tumors. Immune checkpoint can further promote immunosuppression
in this subgroup. These tumors are resistant to Sunitinib treatment (Article 1, Fig
3A), but express markers that were previously associated with response to PD1-blocking
antibodies[185, 307, 308], suggesting that the molecular classification proposed in Article
1 might be used as a theranostic tool to predict patient’s response to these treatments.
Pathways related to angiogenesis were found overexpressed in this subgroup (Article 1,
Table 2), although no increase in markers specific for endothelial cells were observed
(Article 3, Fig 1B). ccRCC is however a highly vascularized malignancy[264], and it
is therefore likely that even moderately vascularized ccRCC tumors feature high levels of
angiogenesis. Anti-angiogenic treatments have been shown to synergize with checkpoint-
blockade therapies[164] and to inhibit the proliferation of Treg cells in ccRCC, and it
is thus tempting to experiment treatments regimen combining anti-angiogenic and anti-
checkpoint drugs that could synergistically alleviate both immunosuppressive mechanisms
at play in ccrcc4 tumors and leverage their extensive infiltration by + lymphocytes.

The Mesenchymal subgroup of CRC resembles ccrcc4 in that it is highly infiltrated by
inflammatory cells and highly vascularized (Article 2, Fig 2, Fig 3 and Article 3, Fig
2B). A notable difference is that this immune contexture appears to be mainly initiated
by cancer-associated fibroblasts (CAF) (Article 2, Fig 5), which were not specifically
associated with ccrcc4 in ccRCC (Article 3, Fig 1B). It has been suggested that ccRCC
tumor cells release inflammatory mediators[87, 283] that could shape their microenviron-
ments in the way CAF shape the immune contexture of Mesenchymal CRC tumors. Like
ccrcc4, these tumors highly expressed PD1 ligands and other checkpoint molecules such as
LAG3 and CTLA4 (Article 2, Fig 4 andArticle 3, Fig 2C) and Th1 molecules, albeit at
lower levels than MSI-like CRC tumors. They however specifically expressed suppressive
molecules such as TGFb and LGALS1 and pro-inflammatory molecules such as the CCL2
chemokine or complement molecules. It therefore appears that compared to the MSI-like
subgroup, immunosuppression is mediated, in addition to checkpoint molecules, by high
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inflammation and angiogenesis. Both of these axes should be targeted simultaneously
in order to restore anti-tumor adaptive immune responses in this subgroup. Treatment
strategies could involve combination therapies using anti-angiogenic and anti-checkpoint
agents. CAR T cells, in addition to their ability to sense antigens in an MHC-independent
manner, are also designed to constitutively receive co-stimulatory signals upon antigen-
specific activation[193]. Since antigen-presenting cells feature immature phenotypes in
angiogenic or hypoxic environments, it is likely that immature antigen presenting myeloid
cells participate in immunosuppression by delevering co-inhibitory signals to T cells in this
subgroup. CAR T cells could potentially bypass these co-inhibitory signals to exert direct
anti-tumor functions.

4.2.1.4 Immune classification of tumor subtypes

In light of these analyses, I propose that tumor subtypes distribute along the two axes
of inflammation and adaptive immunity as shown in figure 4.2. This diagram suggests
that multiple markers are necessary to interpret the immune contexture of tumors and
accurately predict prognosis and response to treatments. Analyzing how tumor subtypes
in other cancers distribute in this diagram might enrich our knowledge of the interac-
tions between the immune system and tumors, and help targeting immunotherapeutic
treatments.

Figure 4.2: Transcriptomic subgroups differ in inflammatory and adaptive immune com-
ponents, which correlate with prognosis.

4.3 Perspectives

To conclude this discussion, I propose several approaches to tackle issues raised by our
results.
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4.3.1 Improving the transcriptomic quantification of tumor-infiltrating
immune cells

Microarray technologies are strongly affected by non-linear effects. However, recent gene-
expression measurement techniques, such as Nanostring assays or RNA-sequencing tech-
nologies may possess wider linear dynamic ranges and could therefore benefit from more re-
fined statistical models, which could improve measurement accuracy and permit the quan-
tification of more precise cell phenotypes. RNA-sequencing also provides non-ambiguous
characterization of non-expressed genes, and reproducing our marker-based approach on
this technology might identify more accurate sets of specific genes with binary expression
patterns. Such analyses are however dependent on sample availability. RNA-sequencing
allows the estimation of splice variants, and some of these could be specific for currently
unadressed cell populations.

4.3.2 Phenotypical characterization of tumor-infiltrating immune cells

Our analyses also advocate for finer characterization of the immune contextures of the
transcriptomic subgroups. As molecular subgroups of CRC and ccRCC feature different
infiltration by immune populations, and functional mediators were also differentially ex-
pressed across these subgroups, it is likely that the phenotype of tumor-infiltrating immune
cells differ across the subgroups. Cytometry-based phenotypic analyses on molecularly-
classified fresh tumor samples might provide insights in these regards. It would be partic-
ularly relevant to study the repertoire of T cells in the MSI-like and Mesenchymal CRC
subgroups, to study whether there are differences in the clonality of the tumor-infiltrating
T cells between these subgroups. Lower T cells clonality in Mesenchymal CRC might in-
dicate a lack of tumor-specific adaptive immune reaction. In addition, characterizing the
myeloid compartment would address our hypotheses that macrophages feature a M1 phe-
notype in MSI-like and a M2 phenotype in Menenchymal CRC tumors, and that dendritic
cells feature a mature phenotype in MSI-like and immature phenotype in Mesenchymal
CRC tumors.

4.4 Conclusion
The results reported in this manuscript show that immune classifications correlate with
molecular subtypes in both CRC and ccRCC, and suggest immunotherapeutic approaches
for the various tumor subtypes in these malignancies. Transcriptomic classifications have
been established for a large numbers of cancers. Comprehensively characterizing the im-
mune contexture of tumor subtypes in these other malignancies should result in unified
immune and molecular classifications, and guide the development and the prescription of
both tumor-targeted therapies and microenvironment-targeted therapies.
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