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Abstract
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each estimated by a carefully articulated Bayesian method. Estimation results on
yield curve data for the U.S. and Canada reveal that the conditional correlation
between cross-country bond returns is increasing with time to maturity. Moreover,
the conditional correlation for shorter maturities varies more dramatically, driven
by business cycles asymmetries between the countries. These findings imply that
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against large declines in the domestic bond market, and that the expected gains
from international diversification are maximized when the business cycles of the
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1 Introduction

As global bond markets have been growing and maturing in the last few decades, it has

become common for bond investors to diversify their domestically focused bond portfo-

lios by holding international bonds of various maturities. The gains from such diversifi-

cation are dependent on the conditional correlation between cross-country bond returns.

Recently, Cappiello, Engle, and Sheppard (2006) estimate a reduced form model and

document strong empirical evidence that the conditional correlations between govern-

ment bond return indices of developed countries change over time. Their findings imply

that an internationally diversified portfolio of default-free bonds provides a good hedge

against domestic bond market declines, and that the expected gains from international

diversification are time-varying.

The present study is motivated by the fact that the determinants of bond returns

are not identical across different maturities. As is well-known, the short term bond

yields are determined by relatively high frequency factors (e.g., the target short term

interest rate set by central bankers) while the long term bond yields are influenced by

low-frequency factors. Since the high frequency factors are closely related to the country

specific business cycles and the low frequency factors to the global business cycles, the

conditional correlation between high frequency factors in two countries can be different

from that between low frequency factors. Therefore, the conditional correlation of cross

country bond returns is highly likely to differ across maturities. This suggests that the

gains from diversification are also likely to differ by maturity.

The primary goal of this paper, therefore, is to develop a structural framework within

which it becomes possible to examine whether international diversification gains vary by

maturity, and to determine how these gains change over time in response to changing

economic conditions. The framework we develop is parsimonious and flexible enough

to capture the distinctive features of cross-country yield curve data. The framework is

built upon an arbitrage-free, 2-country international affine term structure model of bond

yields in which common and local factors are allowed and macroeconomic variables, in

particular, inflation and output growth along with latent factors, are incorporated as
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driving factors. In addition, the factor loadings in the short rate specification and the

market price of risk are subject to Markov switching to allow the joint dynamics of

the cross-country term structure of interest rates to structurally shift over time. In

this framework the conditional variance of interest rates, as well as the magnitude and

sign of the conditional correlations among the cross-country bond returns with various

maturities, can vary flexibly over time.

We estimate our model by a Bayesian approach with a tuned MCMC (Markov chain

Monte Carlo) method based on monthly U.S. and Canadian data over the period from

1986:M1 through 2010:12M. The Bayesian approach is particularly relevant because

our model has the structure of a high-dimensional non-linear state space model. Non-

Bayesian state space estimation methodologies could perhaps also be considered but only

if the maximum number of bond yields is small, say three or four. In a multi-country

context, however, the number of yields that must be considered is generally larger. In

our application, for example, we work with six different yields for each country: This

leads, in fact, to a very high-dimensional model that only seems possible to estimate by

the methods we present.

In the empirical analysis, we address the following questions which, so far, have not

been comprehensively addressed:

• What is the generic shape of the dynamic term structure of cross-country con-

ditional correlations? Are the short term bond return correlations, on average,

higher than the long term bond return correlations?

• What are the primary driving forces behind the shape of the term structure of

conditional correlations and its dynamics?

Our empirical findings are new and striking.

• The overall shape of the term structure of correlations is upward sloping and con-

cave. The six-month cross-country correlation is the lowest, around 0.10. In con-

trast, the twenty year correlation is as high as 0.77. Meanwhile, the time-variation

of correlations is decreasing with time to maturity. The six-month correlation
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ranges from -0.120 to 0.174 whereas the range of the 20-year correlation is ex-

tremely tight, from 0.767 to 0.782.

• While the latent factors determine the average level of the conditional correla-

tions, the time variation of the conditional correlations is mostly explained by

macroeconomic factors and business cycle fluctuations.

Our estimates indicate that the expected gains from international diversification have

been significantly affected by business cycles. In other words, global short term bond

markets have coupled and decoupled over time. As a result, an internationally diversified

portfolio of short term bonds provides a good hedge against large declines in the domestic

bond market. Given economic agents’ limited ability to predict turns in business cycle

conditions, one can be better off by holding globally diversified portfolios of short term

bonds especially during periods of poor domestic bond market performance. Meanwhile,

the high conditional correlation between the long term bond returns implies that severe

U.S. or Canada long term bond market declines are contagious to each other, and that

expected gains from the international diversification of long-term bond holdings are

small.

The rest of the paper is organized as follows. In Section 2 we present our two-country

affine term structure model and derive the resulting bond prices. We outline the prior-

posterior analysis of our model in Section 3. Section 4 deals with the empirical analysis

of the real data and Section 5 has concluding comments. Additional details related to

the analysis are given in the Appendix.

2 Model

Over the past decade, the two most significant advances in the modeling of term struc-

ture dynamics are (i) macro-finance and (ii) regime-shift models. In macro-finance term

structure models, macroeconomic factors are incorporated in the modeling of the stochas-

tic discount factor.1 These models have shaped our understanding of the fundamental

1See Ang and Piazzesi (2003), Ang, Dong, and Piazzesi (2007), Rudebusch and Wu (2008), Dong
(2006), Chabi-Yo and Yang (2007) and Chib and Ergashev (2009) among many others.
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driving forces behind bond yield dynamics and have helped improve the overall empirical

goodness-of-fit of arbitrage-free models of the term structure. In regime-shifting term

structure models, which date back to Naik and Lee (1995), on the other hand, the term

structure dynamics depend on exogenous regimes, state dependent transition probabil-

ities and priced regime switching risk.2 These models have been shown to account for

the expectation hypothesis puzzle and the predictability puzzle of the excess returns

on bonds. Models with both these features have also emerged, as in the work of Ang,

Bekaert, and Wei (2008) and Chib and Kang (2012). The methodological contribution

of this paper is to extend the aforementioned modeling frameworks to an international

bond market.

2.1 Model Specification

In a standard single-country affine term structure model without regime shifts the price

of a τ period maturity bond at time t is usually denoted by Pt(τ). Letting ft denote the

vector of factors and Mt,t+1 the stochastic discount factor (SDF), risk-neutral pricing

requires that

Pt(τ) = Et[Mt,t+1Pt+1(τ − 1)|ft]

In this paper, where we consider two countries with each country subject to regime

shifts between two states, we need two additional notations, the country indicator and

the regime indicator. Assume that the world economy is comprised of two countries, a

domestic country, d, and a foreign country f , and let C denote the country indicator

that takes the value d or f . Next, let qCt denote the regime indicator, whereby qdt is the

regime indicator of the domestic country and qft is the regime indicator of the foreign

country. In this context, let PC
t (qCt , τ) denote the price of a τ period zero-coupon bond

at time t in country C and regime qCt . Conditioned on the current value of the factors

and the regimes, the absence of arbitrage in each country now requires that

PC
t (qCt , τ) = E[MC

t,t+1P
C
t (qCt , τ)|qCt , ft] (2.1)

= Et[MC
t,t+1P

C
t (qCt , τ)] (2.2)

2See Bansal and Zhou (2002), Bansal, Tauchen, and Zhou (2004) and Dai, Singleton, and Yang
(2007).
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where MC
t,t+1 is the country-specific nominal pricing kernel and Et is the expectation over

(qCt+1, ft+1) conditioned on (qCt , ft). In pricing bonds with various maturities the economic

agents are allowed to observe the current values of the factors and the regimes (qCt and

ft), as in standard asset pricing models. However, the future factors and regimes are

uncertain although their conditional distribution given the most recent values is known.

Therefore, in order to solve equation (2.1) for the bond price, we specify the stochastic

process of the factors ft and regimes qCt , and model the SDF in terms of the risk-free short

rate and the market price of risk. With these ingredients, the exchange rate dynamics

are endogenously determined.

2.1.1 Regime Process

Following Bansal and Zhou (2002) we suppose that the country-specific regime qCt is

governed independently in each country by a first-order two-state Markov switching

process with transition probability matrix

ΠC =

[
qC11 1− qC11

1− qC22 qC22

]
(2.3)

where Pr[qCt = j|qCt−1 = i] = qCij . As a result, the world economy switches among four

distinct regimes. The regime indicator appears in the short rate process and the market

price of risk for each country. The economic interpretation is that each country can

make transitions between high and low term premium states. The higher spread can

be generated by the more active response of the short rate to the factor shocks or the

higher negative market price of risk.

2.1.2 Factor Process

We have two kinds of continuous state variables that govern the stochastic evolution

of the domestic and foreign securities: observable macroeconomic variables and unob-

servable latent variables. As in a standard two-country affine term structure model, we

suppose that the latent factors in the global bond markets can be decomposed into one

latent common factor cl,t, one domestic local factor, zdl,t, and one foreign local factor zfl,t.

Our choice of the observable macroeconomic factors are the country-specific real GDP

growth rate and the inflation rate, as these variables are known to be intimately related
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to bond markets. Unlike the latent factors, however, these variables do not directly

represent local or common factors because the two economies are likely to be influenced

by both common and local shocks. For this reason, in each country, we decompose the

deviation of the real GDP growth rate at time t from its unconditional mean, gCt , into

a common factor cg,t and idiosyncratic country-specific factors, zdg,t and zfg,t based on a

simple dynamic common factor model specification:[
gdt
gft

]
=

[
1
gc

]
cg,t +

[
zdg,t
zfg,t

]
(2.4)

For identification reasons, under this specification, the factors (cg,t, z
d
g,t, z

f
g,t) are mutually

independent. In the same way, from the demeaned inflation rates (πdt and πft ) we can

also identify one common inflation factor cπ,t and two local inflation factors (zdπ,t or zfπ,t)

as [
πdt
πft

]
=

[
1
πc

]
cπ,t +

[
zdπ,t
zfπ,t

]
(2.5)

It is worth noting that the non-zero gc and πc imply the presence of a common factor

for each macro variable. Basically, there are six sources of factor risk that are priced in

the domestic economy: three common factors and three local factors. It is the same for

the foreign economy. The description of the factors is summarized in Table 1.

common factors in P d
t (domestic bond prices) and P f

t (foreign bond prices)
cgt : common factor in the real GDP growth rate
cπt : common factor in the inflation rate

cl,t : the remaining common factor in P d
t and P f

t unexplained by cgt and cπt

domestic local factor in P d
t

zdg,t : local factor in the real GDP growth rate
zdπ,t : local factor in the inflation rate
zdt : the remaining local factor in P d

t unexplained by zdg,t and zdπ,t

foreign local factor in P f
t

zfg,t : local factor in the real GDP growth rate

zfπ,t : local factor in the inflation rate

zft : the remaining local factor in P f
t unexplained by zfg,t and zfπ,t

Table 1: Common and local driving factors
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In our formulation, the vector of the factors ft includes the nine unobserved compo-

nents:

ft =
(
cl,t zdl,t zfl,t cg,t zdg,t zfg,t cπ,t zdπ,t zfπ,t

)′
which we assume follow a Gaussian vector autoregressive process with regime switching

conditional variance

ft = µ + G (ft−1 − µ) + ηt (2.6)

where

ηt ∼ iidN (0,Ω = ΛΓΛ′)

and

Λ = diag
(
σc,l σdl σfl σc,g σdg σfg σc,π σdπ σfπ

)

Γ =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 ρc 0 0
0 0 0 0 1 0 0 ρd 0
0 0 0 0 0 1 0 0 ρf
0 0 0 ρc 0 0 1 0 0
0 0 0 0 ρd 0 0 1 0
0 0 0 0 0 ρf 0 0 1


In this formulation, Γ is the correlation matrix of the factor shocks, ηt.

In our setup, the factor volatility, Λ, is assumed to be constant. The zero restrictions

on the Γ matrix indicate that the six macro factors are independent of the three latent

factors. This assumption enables us to decompose the conditional correlation between

cross-country interest rates into the latent factor correlation and the macro factor cor-

relation, so that we can examine their relative importance in accounting for the short

rate and long rate conditional correlation dynamics. Our model of Γ implies that the

common macro factors can be correlated. This is necessary because the common output

and inflation factors are likely to be jointly determined by the global aggregate demand

and supply innovations such as global financial crises or oil price shocks. Finally, the

country-specific macro factors ((zdg,t,z
d
π,t) and (zfg,t,z

f
π,t)) are also possibly correlated since

each can be affected by local aggregate shocks.
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On the other hand, models with correlated square root processes are able to exhibit

only non negative conditional correlation between cross-country bond yields and display

a certain type of heteroscedastic variation, while models with Gaussian factor processes

without Markov switching can generate negative conditional correlations among factors,

but not time-varying conditional variance.

2.1.3 Stochastic Discount Factor

We complete our modeling by making assumptions about the SDF. For this, we specify

the risk-free short rate process, the market price of the risk and the functional form

of the SDF for each country. We first suppose that the short rate in each country is a

regime-specific affine function of the vector of nine unobserved continuous state variables

rCqCt ,t
= δC + βC′qCt (ft − µ) , C ∈ {d, f} (2.7)

where

βdqdt
=

[
βd
1,qdt

βd
2,qdt

0 βd
4,qdt

βd
5,qdt

0 βd
7,qdt

βd
8,qdt

0
]′

and βf
qft

=
[
βf
1,qft

0 βf
3,qft

βf
4,qft

0 βf
6,qft

βf
7,qft

0 βf
9,qft

]′
The loadings on the foreign local factors are constrained to be zero, so that the domestic

short rate is unaffected by the foreign country-specific factors, and vice versa. That is,

the short rate of each country responds to the common factors and the corresponding

local factors. We allow for the response of the short rate, βCqCt , to change over time

according to the regime process, qCt . This is essential to accommodate the possible

changes in the response of the short rate to the underlying factors because the short

rate is mostly determined by the monetary authorities in the short run and because the

monetary policy has switched between active and less active regimes, as is well-known.

Hence, each economy at time t is either in a more active or less active regime of the

short rate, in essence capturing the time varying conditional correlation of yields and

long term risk premium.

Next, we model γC
qCt ,t

, a 9 × 1 vector, the market prices of factor risk in country C

associated with the latent and macro factor shocks, as

γCqCt+1,t
= λCqCt+1

+ Φ (ft − µ) , C ∈ {d, f} (2.8)
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where

λdqdt
=

[
λd
1,qdt

λd
2,qdt

0 λd
4,qdt

λd
5,qdt

0 λd
7,qdt

λd
8,qdt

0
]′

(2.9)

λf
qft

=
[
λf
1,qft

0 λf
3,qft

λf
4,qft

0 λf
6,qft

λf
7,qft

0 λf
9,qft

]′
(2.10)

and diag(Φ) =
[
φ1 0 0 φ4 0 0 φ7 0 0

]′
(2.11)

As in Dai et al. (2007), the price of factor risk is assumed to be affine in the factors,

which helps detect the time-varying risk premium within regimes. The average market

price of risk (λC
qCt

) is also subject to regime shifts.

The impact of the factors on the market price of risk is measured by Φ. This makes

the market price of risk time-varying within regimes while most previous studies con-

strain Φ to be zero. As Equation (2.11) indicates, we impose the restriction that the

common factors have identical effects on both market prices of risk. Under this re-

striction, the model-implied exchange rate changes, as we discuss shortly, are a linear

function of the lagged common factors. Then, we are able to express the resulting econo-

metric model as a linear state space model conditioned on the regimes. Otherwise, the

exchange rate changes are a quadratic function of the lagged common and local factors,

which makes the calculation of the likelihood very difficult. We use
(
λCqCt ,Φ

)
to indicate

the factor-risk parameters. We follow the approach of Ang et al. (2008) in letting the

price of risk depend on qCt+1 rather than qCt . This implies that in a general equilibrium

setting the consumption process depends on the realization of the regimes at time t+ 1.

For a thorough discussion, see Dai et al. (2007) and Ang et al. (2008).

Finally, given the short rate process and the market price of risk, we specify the

country-specific nominal pricing kernels
(
MC

t,t+1

)
. We assume complete markets and

thus the pricing kernels with minimum variance are uniquely given by

MC
t,t+1 = exp{−rCqCt ,t −

1

2
γC′qCt+1,t

γCqCt+1,t
− γC′qCt+1,t

εt+1}, C ∈ {d, f} (2.12)

where Γ̃ is the lower-triangular Cholesky decomposition of Γ, L is ΛΓ̃ and εt+1 : 9× 1 is

equal to L−1ηt.
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2.2 Model Solutions for the Bond Prices

Let y
C,(τ)

qCt ,t
denote the bond yield of τ period maturity at time t under regime qCt in

country C. For the feasibility of the solutions, we assume the exponential affine form of

the bond prices

PC
t (qCt , τ) = exp

(
−τyC,(τ)

qCt ,t

)
(2.13)

and y
C,(τ)

qCt ,t
= AC

qCt
(τ)/τ +

(
BC
qCt

(τ)′/τ
)

(ft − µ) (2.14)

= aCqCt
(τ) + bCqCt

(τ)′ (ft − µ)

where C ∈ {d, f}, aC
qCt

(τ) = AC
qCt

(τ)/τ , and bC
qCt

(τ) = BC
qCt

(τ)′/τ .

Following Bansal and Zhou (2002) and Chib and Kang (2012), we obtain the solutions

by using the law of iterated expectations and the method of undetermined coefficients.

This approach gives the following recursive system for the unknown coefficient matrices

AC
qCt =i(τ + 1) =

2∑
j=1

ΠC
ij

(
δC1,i + AC

j (τ)−BC
j (τ)′LλCj −

1

2
BC
j (τ)′ΩBC

j (τ)

)
(2.15)

and BC
qCt =i(τ + 1) =

2∑
j=1

ΠC
ij

(
βC2,i + (G− LΦ)′BC

j (τ)
)

with ΠC
ij = (i, j) element of ΠC ,

where c ∈ {d, f} and τ runs over the positive integers. These recursions are initialized

by the no-arbitrage condition when τ = 0, i.e., AC
qCt

(0) = 0 and BC
qCt

(0) = 03×1 for all

qCt . One can see that the resulting intercept and the factor loadings are determined by

the weighted average of the two possible regime realizations in the next period where

the weights are given by the transition probabilities. This is because agents consider the

possibility of a regime shift in the next period.

In summary, a regime exogenously occurs at the beginning of period t. This realiza-

tion is governed by the regime in the previous period and the transition probabilities.

Then given the regime at time t, the corresponding model parameters are taken from

the full collection of model parameters. These determine the ft conditioned on ft−1 as

in (2.6), and the functions AC
qCt

(τ) and BC
qCt

(τ) according to the recursions in (2.15).

Finally, from (2.14), aC
qCt

(τ), bC
qCt

(τ), and ft determine the yields of all maturities.
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2.3 Term Structure of Correlations

Recent studies have found strong empirical evidence that the conditional correlations

among cross-country interest rates are time-varying and switch signs (Ahn, Baek, and

Gallant (2011) and Cappiello et al. (2006)). This implies that global bond markets

couple and decouple over time. As we show next, our structural framework, with regime

shifts and macroeconomic factors, is general enough to capture these sign-switches in

conditional correlations.

Since the correlation involves the states in both countries, we begin our discussion

by aggregating the regime indicators as follows:

st = 1 if (qdt , q
f
t ) = (1, 1)

st = 2 if (qdt , q
f
t ) = (2, 1)

st = 3 if (qdt , q
f
t ) = (1, 2)

st = 4 if (qdt , q
f
t ) = (2, 2)

The aggregate regime indicator st is a four-state Markov process governed by the tran-

sition probability

Π = Πf ⊗ Πd,

Let exr
C,(τ)
st+1,t+1 denote the one-period excess return of a τ -period bond at time t, which

is defined by

lnPC
t+1(st+1, τ − 1)− lnPC

t (st, τ)− rCst,t

Then the one-period ahead cross-country conditional correlation between the bond re-

turns with τ period maturity is given by

Corst,t
(
exr

d,(τ)
st+1,t+1, exr

f,(τ)
st+1,t+1

)
=

Covst,t
(
exr

d,(τ)
st+1,t+1, exr

f,(τ)
st+1,t+1

)
SDst,t

(
exr

d,(τ)
st+1,t+1

)
SDst,t

(
exr

f,(τ)
st+1,t+1

) (2.16)

where

Covst=i,t
(
exr

d,(τ)
st+1,t+1, exr

f,(τ)
st+1,t+1

)
(2.17)

= (τ − 1)2
4∑
j=1

Πij

(
bfst+1=j

(τ − 1)′Ωbdst+1=j
(τ − 1)

)
and SDst=i,t

(
exr

C,(τ)
st+1,t+1

)
(2.18)
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= (τ − 1)

√√√√ 4∑
j=1

Πij

(
bCst+1=j

(τ − 1)′ΩbCst+1=j
(τ − 1)

)
Equation (2.16) states that given st and ft, the conditional correlation at time t+1 is

regime-dependent and so time-varying. The covariance between the cross-country bond

returns is computed as in Equation (2.17) as the covariance between ad
qdt

(τ) and af
qft

(τ)

is zero because of the assumption of independence between the country-specific regimes.

A necessary condition to generate the sign-switching correlation is that the product

of the factor loadings, bfst+1
(τ − 1) and bdst+1

(τ − 1) for some regimes st+1 must take a

negative value. The cross-country correlation of the short term bond returns is mainly

determined by the factor loadings on the short rates. Meanwhile, the relative magnitude

of the persistence of the global and local factors plays an important role in determining

the correlation of the long term bond returns. If the persistence of the global factors is

high, then the factor loadings on the common factors are relatively large and thus the

correlation tends to converge to one as the maturity increases. In contrast, if the local

factors are more persistent, the correlation shrinks to zero because the local factors of

the two countries are mutually independent. It should be noted that bdst+1=1(τ − 1) =

bdst+1=3(τ − 1), bdst+1=2(τ − 1) = bdst+1=2(τ − 1), bfst+1=1(τ − 1) = bfst+1=2(τ − 1), and

bfst+1=3(τ − 1) = bfst+1=4(τ − 1).

The principal objective of this paper is to identify the driving nature of time-varying

conditional correlation generation. In particular, we are interested in examining the

relative importance of the latent and macro factors. For this we decompose the covari-

ance term in Equation (2.16) to the portions due to the common latent factor and the

common macro factors:

Covst=i,t
(
exr

d,(τ)
st+1,t+1, exr

f,(τ)
st+1,t+1

)
/ (τ − 1)2 (2.19)

= bd1,st+1
(τ − 1)bf1,st+1

(τ − 1)V arst=i,t (cl,t+1)

+Covst=i,t
(
bd4,st+1

(τ − 1)cg,t+1 + bd7,st+1
(τ − 1)cπ,t+1,b

f
4,st+1

(τ − 1)cg,t+1 + bf7,st+1
(τ − 1)cπ,t+1

)
where bdi,st+1

(τ − 1) and bfi,st+1
(τ − 1) are the ith element of bdst+1

(τ − 1) and bfst+1
(τ − 1),

respectively.
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2.4 Exchange Rate and Exchange Risk Premium

The absence of arbitrage across the two countries uniquely and endogenously determines

the exchange rate X(t), i.e. the number of domestic currency units per one unit of foreign

currency.
X(t + 1)

X(t)
=
Md

t,t+1

M f
t,t+1

(2.20)

The corresponding exchange rate return under complete markets must equal the differ-

ence in the log SDFs:

xt+1 = lnX(t + 1)− lnX(t) (2.21)

=
(
rf
qft ,t
− rdqdt ,t

)
+

(
1

2
γf ′
qft+1,t

γf
qft+1,t
− 1

2
γd′qdt+!,t

γdqdt+!,t

)
+

(
γf ′
qft+1,t
− γd′qdt+1,t

)
εt+1

Note that any of the three quantities Md
t,t+1, M

f
t,t+1, and Xt can be inferred from the

others. Two important features emerge from (2.21). First, in a risk-averse world the

expected exchange rate returns on holding foreign currency depend on a risk premia

differential across countries, not just the interest rate differential (i.e. forward premium),

(rf
qft ,t
−rd

qdt ,t
). Thus, the uncovered interest rate parity does not hold.3 More importantly,

the exchange rate return or the depreciation rate, xt+1 is subject to regime shifts in both

conditional mean and volatility. It should be emphasized that the difference in the

market price of risk is responsible for both conditional volatility and the exchange risk

premia (1
2
γf ′
qft+1,t

γf
qft+1,t

− 1
2
γd′
qdt+1,t

γd
qdt+1,t

), and that the innovations to both common and

local factors cause unexpected changes in the exchange rate.

In our setup we assume a flexible exchange rate system as opposed to a fixed ex-

change rate system. Therefore the shocks from the foreign country are absorbed into

the exchange rate. Consequently, in each period the exchange rate is adjusted to reflect

3Although the exchange rate is completely determined by the dynamics of the two country-specific
pricing kernels, the implied dynamics are different from the observed data. Empirically, most of the
exchange rate return is not only unexplained by the interest rate differential between the two countries,
but also note that the observed exchange rate volatility is much higher than the model-implied volatility.
As in Brandt and Santa-Clara (2002), we assume that the incomplete market is useful to account for the
excess volatility of exchange rate. However, it provides additional information from the term structure
of interest rates to explain the exchange rate dynamics. Thus, in this paper, we do not consider the
exchange rate in our empirical work.

13



the differentials in the short rate and the market price of risks caused by the asymmetric

regime and factor shocks.

Given the parameterizations of λd
qdt

, λf
qft

and Φ the exchange risk premium can be

rewritten as

0.5×
(
λf ′
qft
λf
qft
− λd′qdt λ

d
qdt

)
+
(
λf ′
qft
− λd′qdt

)
Φ (ft−1 − µ)

This is an affine function of one-period lagged global factors and their impact on the

exchange risk premium is mainly determined by the differential of the regime-specific

parameters in the market prices of factor risks across two countries, λf
qft

and λd
qdt

. This

implies that the risks for holding foreign bonds are compensated through the exchange

rate, and the exchange rate compensates not only for the interest rate differential, but

also for the difference in the market price of risks between the two bond markets as

Ahn (2004) points out. One distinguishing feature of our model is that the dynamics

of the exchange rate changes are regime-dependent, which implies that the data for the

exchange rate changes can possibly help identify the regimes (qdt , q
f
t ) as well as the

parameters in λd
qdt

, λf
qft

, and Φ, which are usually difficult to estimate.

3 Estimation and Inference

3.1 Data

Our statistical inference is based on the collection of historical yields of treasury bills

with six different maturities, real GDP growth, and inflation, with Canadian dollars

to one U.S. dollar exchange rate for the sample period 1986:Q4 to 2010:QII. Inflation

is calculated as a quarterly decimal change in the GDP deflator. The data for U.S.

zero-coupon bond yields and the exchange rate are available online from the Board of

Governors of the Federal Reserve System (Gurkaynak, Sack, and Wright (2007)), and the

Canadian zero-coupon bond yields are obtained from the bank of Canada. Real GDP

growth and inflation are from the Saint Louis Fed for the U.S. and from the OECD for

Canada. Our estimation of the model over the post great moderation avoids confounding

the parameters, factors and regimes with the major oil price shocks during the 1970s

and with the Volcker disinflation period in the early 1980s.
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3.2 Prior-Posterior Analysis

The set of maturities {τ1, τ2, .., τ6} in quarters are {1, 2, 4, 8, 20, 40}. The observable

quantities are stacked as follows:

yt =
[
ydt (τ1) · · · ydt (τ6) yft (τ1) · · · yft (τ6) xt gdt gft πdt πft

]′
Let Sn = {st}t=0,1,..,n denote the sequence of the unobserved regime indicators, Fn =

{f t}t=1,..,n the sequence of the factors, y = {yt}t=0,1,..,n the full set of observables (date

set), and θ the collection of the model parameters including the initial factors (f0).

Our econometric inference on (θ,Sn,Fn) is based on a Bayesian MCMC simulation

method. The posterior distribution that we would like to simulate is given by

π(θ,Sn,Fn|y) ∝ f(y|θ,Sn,Fn)p(Fn|θ,Sn)p(Sn|θ)π(θ) (3.1)

where f(y|θ,Sn,Fn) is the distribution of the data given the regime indicators, the

factors and the parameters, p(Fn|θ,Sn) is the density of the factors given by the Equation

(2.6) and p(Sn|θ) is the density of the Markov switching process conditioned on the

transition probabilities. π(θ) is the prior density of θ, which is discussed in Appendix

A. Further, the model comparison between the switching and non-switching models is

based on the marginal likelihood criterion.

3.2.1 Joint Distribution of the Yields and Macroeconomic Variables

For the complete likelihood (f(y|θ,Sn,Fn)) and the likelihood (f(y|θ)) inference we now

express the resulting econometric model in state space form, conditioned on the discrete

states and the model parameters. We begin with the transition equation describing the

evolution of the common and local factors over time. As in Equation (2.6) these follow

a VAR(1) process. The depreciation rate xt is determined by the lagged factors (ft−1)

and the current factor shocks (ηt) as one can see from Equation (2.21). Therefore, ft−1
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and ηt as well as ft should appear in the measurement equation. Letting

f̄t =
(

f ′t f ′t−1 η′t
)′
, µ̄ =

(
µ′ µ′ 01×9

)′
η̄t =

(
η′t 01×9 01×9

)′
, Ω̄ =

[
Ω 09×18

018×9 018×18

]
Ḡ=

 G 09×9 09×9
I9 09×9 09×9

09×9 09×9 09×9

 and T̄ =

 I9 09×9 09×9
09×9 09×9 09×9
I9 09×9 09×9


the transition equation is specified as

f̄t = µ̄ + Ḡ
(
f̄t−1 − µ̄

)
+ T̄ η̄t (3.2)

Next, we construct the measurement equation to define the relationship between the

observations and the unobserved factors as the model implies. The observations are the

country-specific yield curve, depreciation rate and the macroeconomic fundamentals.

Their dynamics are driven by the exogenous continuous state variables f̄t conditioned on

the regimes, which can be found in Equations (2.14), (2.21), (2.4) and (2.5). The vector

of the observable quantities yt can be expressed as a linear function of f̄t

yt = āst + b̄st
(
f̄t − µ̄

)
+ et (3.3)

where the intercept term āst : 17×1 and the factor loadings b̄st : 17×17 are, respectively[
ad
qdt

(τ1) · · · ad
qdt

(τ6) af
qft

(τ1) · · · af
qft

(τ6)
(
rft−1 − rdt−1

)
+ 0.5

(
λf ′
qft
λf
qft
− λd′

qdt
λd
qdt

)
01×4

]′
and 

bd
qdt

(τ1)′ 01×9 01×9
...

...
...

bd
qdt

(τ6)′ 01×9 01×9

bf
qft

(τ1)′ 01×9 01×9
...

...
...

bf
qft

(τ6)′ 01×9 01×9

01×9

(
λf ′
qft
− λd′

qdt

)
Φ

(
λf ′
qft
− λd′

qdt

)
L−1

0 0 0 1 1 0 0 0 0 01×9 01×9

0 0 0 gc 0 1 0 0 0
...

...

0 0 0 0 0 0 1 1 0
...

...
0 0 0 0 0 0 πc 0 1 01×9 01×9


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We assume that all yields are priced with errors eCit(i = 1, 2, .., 6 and C = d, f)

following Chib and Ergashev (2009) and Dong (2006). Even after taking into account

the shocks to the factors, the regime switching conditional mean of the exchange rate

changes can explain only a small portion of the variation of xt. For this we introduce

an additional measurement error ext to account for the empirical fact that exchange

rate volatilities are much higher than interest rate volatilities, as discussed in Anderson,

Hammond, and Ramezani (2010) and Brandt and Santa-Clara (2002)4. As a result, the

vector of the measurement errors et : 17× 1 is given by[
ed1t · · · ed6t ef1t · · · ef6t ext 0 0 0 0

]′ ∼ iidN (0,Σ)

with

diag(Σ) =
[
σ2,d
1 σ2,d

2 · · · σ2,d
6 σ2,f

1 σ2,f
2 · · · σ2,f

6 σ2,x 0 0 0 0
]′

3.2.2 MCMC sampling

Given the joint dynamics of the observations and the prior density we are able to simulate

(θ,Fn,Sn) sequentially from the posterior distribution. In the first step, we simulate

θ given the data and the most recent value of Sn. For this we rely on the TaRB-

MH (tailored randomized block Metropolis-Hastings) method proposed by Chib and

Ramamurthy (2010). The use of this sampling method is relevant in high dimensional

non-linear problems. As is well-known, in affine term structure models the likelihood

surface tends to be irregular. The local-modality problem becomes more severe in our

cross-country model. The key feature of the TaRB-MH method is the implementation

of stochastic optimization and the randomizing blocking scheme. The parameters in

θ are grouped into multiple sub-blocks at the beginning of an MCMC iteration. The

number of blocks and their components are randomly determined. Each of these sub-

blocks is then sampled in sequence by drawing a value from a tailored proposal density

constructed for that particular block as Chib and Greenberg (1995) suggest. The first

and second moments of the proposal density are chosen by a suitably designed version

4In order to reconcile the low volatility of interest rates with the high volatility of exchange rates
these papers use an incomplete market approach. In this approach we introduce an extra diffusion
process that is orthogonal to the domestic and foreign pricing kernels and assets.
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of the simulated annealing algorithm. As a result, MCMC sampling is very efficient in

terms of the typical MCMC performance metrics and not sensitive to the starting value.

For more technical details, we refer the reader to Chib and Ramamurthy (2010) or Chib

and Kang (2012).

In the second step we sample Fn conditioned on (y,θ,Sn) using the Carter and

Kohn algorithm. Finally, Sn is simulated according to the method of Chib (1996). The

technical details can be found in Appendix B.

4 Results

4.1 Model Comparison

In order to evaluate our model, we first consider whether our four-regime model (M4)

improves on the corresponding single regime model (M1). In addition, we compare the

proposed model with other candidate models: a model with non-switching average mar-

ket price of risk (M2) and a model with non-switching short rate factor loadings (M3).

This comparison helps us to learn not only which of the multi-regime specifications best

describes the data, but also whether regime shifts occur in either the market price of

risk or the short rate equation. Note that under model M3, the factor loadings bCst(τ)

are regime-independent and thus the conditional correlation becomes constant over time

whereas the intercept term aCst(τ) is regime-specific. On the other hand, model M2 is

relatively less flexible in estimating the exchange risk premium because of the restriction

that λC
qCt =1

= λC
qCt =2

although the conditional correlation can change over time.

Within the Bayesian context, these models are compared in terms of the marginal

likelihood m(y|Md) and ratios of marginal likelihoods (Bayes factors). Following Chib

(1995), an estimate of the log marginal likelihood can be calculated from the following

fundamental identity

ln m̂(y|Md) = ln f(y|θ∗,Md) + ln π (θ∗,Md)− ln π̂(θ∗|y,Md) (4.1)

where d = 1, 2, 3, and 4 and θ∗ is a high density point in the support of the parameter

space. The first term on the right hand side of this expression is the likelihood ordinate.
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Note that the regime and the factor are both unobserved state variables and so should be

integrated out for likelihood inference. Unfortunately, there is no direct way of calculat-

ing the likelihood value. We estimate it by simulation using the particle filtering method

(Chib, Nardari, and Shephard (2002))5. The second term is the prior ordinate, which

is readily available. The third term, the posterior ordinate, π(θ∗|y,Md), is estimated

from a marginal-conditional decomposition (Chib (1995)). The specific implementation

in this context requires the technique of Chib and Jeliazkov (2001) as modified by Chib

and Ramamurthy (2010) for the case of randomized blocks.

Model lnL lnML n.s.e.

No switching model (M1) -938.8 -1183.2 0.253

2-Regime model with λC
qCt =1

= λC
qCt =2

(M2) -920.2 -1169.2 0.382

2-Regime model with βC
qCt =1

= βC
qCt =2

(M3) -942.1 -1176.6 0.327

4-Regime (M4) -911.9 -1162.1 0.339

Table 2: Log likelihood (lnL), log marginal likelihood (lnML) and numerical stan-
dard error(n.s.e)

Table 2 reports the results for the marginal likelihood estimation and confirms that

the model with regime switching in both factor loadings and the average market prices

of risks is most supported by the data. The pairwise comparison of the models sup-

ports the importance of incorporating a regime process for the model fitting. Allowing

for regime shifts in the factor loading and the price of risk considerably increases the

likelihood of the model and improves the marginal likelihood. Thus, in the following

subsections, we focus on the estimation results for the four-regime model. In particu-

lar, we examine whether our proposed model is capable of detecting the time-varying

conditional correlation of the cross-country bond returns with the same maturity, and

investigate the driving forces.
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parameter mean S.D. Ineff. parameter mean S.D. Ineff.
G11 0.969 0.021 101.933 ρC 0.258 0.049 124.688
G22 0.903 0.002 136.338 ρd -0.156 0.164 115.784
G33 0.887 0.002 152.097 ρf -0.002 0.153 77.077
G44 0.337 0.084 155.935 φ1 -0.030 0.021 103.754
G55 0.538 0.067 164.038 φ4 -0.259 0.058 139.588
G66 0.502 0.130 106.432 φ7 -0.903 0.420 118.580
G77 0.396 0.130 116.782 gC 0.751 0.231 38.037
G88 0.663 0.085 155.990 πC 2.040 1.018 35.900
G99 0.483 0.096 117.097 σ2,x 4.155 0.457 52.602
σc,g 6.450 1.038 172.296 qd11 0.969 0.008 173.753
σdc,g 3.135 0.494 118.409 qd22 0.963 0.008 171.112

σfc,g 6.859 1.182 51.598 qf11 0.937 0.010 139.967

σc,π 3.268 0.405 135.887 qf22 0.784 0.017 116.076
σdc,π 4.730 0.565 57.924
σfc,π 2.867 0.343 43.971

Table 3: Estimates of G, Ω, ΠC and Φ This table presents the posterior mean and standard
deviation based on 1,000 MCMC draws beyond a burn-in of 2,000.

4.2 Model Parameters

Figures 3 and 4 display the posterior probability of the regimes over time. These figures

indicate that the regime changes have been frequent and drastic over time. Throughout

the sample period the three different aggregate regimes (st=1, 3 and 4) have prevailed.

Tables 3 through 6 provide insights into the identifying forces behind the estimated

two distinct regimes for each country. These tables present the posterior estimates of

the model parameters. In particular, Tables 4 and 5 show that many parameters are

substantially different across regimes. For both countries, the common latent and macro

factors are regime-specific in the short rate equation, and the market price of the common

latent factor risk differs across regimes. Therefore, the variation across regimes in the

impact of the factors on the short rate and the market price of risk plays a critical role

in identifying the regimes for each country.

Theoretically, the long-rate conditional correlation is mainly determined by the cor-

5Chib et al. (2002) propose a particle filter for the stochastic volatility model that is expressed as
a state space model with independent switching. Their particle filtering method has to be modified
before it can be applied to our model with first-order Markov switching parameters. For more technical
details, refer to Fruhwirth-Schnatter (2006).
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qdt = 1 qdt = 2
Parameter mean S.D. Ineff. mean S.D. Ineff.

βd
1,qdt

0.143 0.006 106.517 0.256 0.011 145.546

βd
2,qdt

0.617 0.079 163.358 0.967 0.047 159.534

βd
4,qdt

0.142 0.163 136.497 -0.549 0.079 112.474

βd
5,qdt

-0.455 0.116 149.385 0.161 0.094 139.235

βd
7,qdt

0.477 0.387 135.719 -0.592 0.382 153.618

βd
8,qdt

-0.280 0.135 139.091 -0.086 0.145 70.250

(a) U.S.

qft = 1 qft = 2
Parameter mean S.D. Ineff. mean S.D. Ineff.

βf
1,qft

0.268 0.011 138.712 0.129 0.022 0.092

βf
3,qft

0.939 0.084 177.761 1.287 0.152 1.117

βf
4,qft

-0.576 0.116 116.579 0.098 0.128 -0.122

βf
6,qft

-0.074 0.078 132.002 -0.089 0.056 -0.180

βf
7,qft

3.235 0.493 124.143 -1.570 0.408 -2.395

βf
9,qft

-0.115 0.050 91.217 -0.018 0.053 -0.091

(b) Canada

Table 4: Estimates of the factor loading in the short rate equation This table presents
the posterior mean and standard deviation based on 5,000 MCMC draws beyond a burn-in of
2,000.

responding factor loadings. The size of the factor loadings is an increasing function of

factor persistence. The more persistent factors not only explain a larger variation of the

long-rate, but also have an impact on the conditional correlation. Figure 1 plots the

dynamics of the common and local factors for the latent and macroeconomic variables.

As can be seen in Figure 1, all nine factors are found to display different degrees of

persistence, and the latent factors look more persistent. Table 3 confirms that the com-

mon latent factor reveals the highest persistence, and thus it has more responsibility in

determining the conditional correlation between long term bond returns than the other

factors. The common latent factor movements are similar to those of the short rates

and less mean-reverting compared to the local latent factors. On the other hand, the

local latent factors seem to capture the corresponding country’s term spread dynamics
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qdt = 1 qdt = 2
Parameter mean S.D. Ineff. mean S.D. Ineff.

λd
1,qdt

-7.680 0.350 174.493 -9.249 0.301 142.029

λd
2,qdt

-0.638 0.653 158.511 -1.891 0.320 145.820

λd
4,qdt

-5.309 2.640 161.957 -1.529 1.429 148.267

λd
5,qdt

-2.068 0.660 89.447 2.260 1.977 83.620

λd
7,qdt

-5.375 1.517 85.524 -6.577 2.168 146.439

λd
8,qdt

-4.923 1.966 128.886 -2.102 3.157 148.437

(a) U.S.

qft = 1 qft = 2
Parameter mean S.D. Ineff. mean S.D. Ineff.

λf
1,qft

-10.106 0.488 169.647 -8.469 0.720 159.411

λf
3,qft

-0.546 0.388 165.431 -1.980 0.296 109.626

λf
4,qft

-4.109 1.277 151.041 -3.519 1.465 141.806

λf
6,qft

-3.849 3.230 148.537 -2.860 2.363 126.400

λf
7,qft

-2.645 1.247 173.600 -4.496 1.850 175.960

λf
9,qft

-2.836 3.059 170.202 -5.738 1.295 89.819

(b) Canada

Table 5: Estimates of average market prices of risk This table presents the posterior
mean and standard deviation based on 5,000 MCMC draws beyond a burn-in of 2,000.

as indicated by Figure 2. It should also be noted that the common and local macro fac-

tors are identified by information contained in the yield curve as well as macroeconomic

data. As a result, our estimates for the common and local macroeconomic factors are

somewhat different from the estimates that are based on macroeconomic data alone.

Table 7 reports the result for the variance decomposition of the yield curve movement

for each country. Table 7 (a) indicates the relative contribution of the macroeconomic

factors compared to the latent factors in generating the cross-country yield curve over

time. For example, the macro factors account for the variation of the U.S. short-term

bond yield by as much as 21.5% in regime 1. Regardless of the country and the regime,

the fraction of the macro factors is decreasing with the maturity. The long-term bond

yield movement is mostly explained by the latent factors. Meanwhile, Table 7 (b) shows
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U.S. Canada
Parameter mean S.D. Ineff. mean S.D. Ineff.

σC∗1 4.005 0.463 34.247 3.559 0.592 16.701
σC∗2 3.160 1.044 6.502 3.839 1.531 10.330
σC∗3 3.168 1.181 32.614 3.065 0.852 8.492
σC∗4 6.980 1.031 30.987 2.567 0.348 18.738
σC∗5 4.091 0.462 24.786 2.445 0.370 52.707
σC∗6 3.070 0.324 14.867 4.714 0.833 80.906

Table 6: Estimates of measurement error variances (Σ) This table presents the posterior
mean and standard deviation based on 5,000 MCMC draws beyond a burn-in of 2,000.

that the contribution of the common factors is increasing with the maturity. The com-

mon factors explain 86% of the variation of the U.S. long-term bond yields. The remain-

ing 14% is explained by the local factors. Similarly, 94% of the variation of the Canadian

long-term bond yields is attributed to the common factors. Consequently, among the

nine driving factors, the common latent factor is the key component in determining the

long-term bond yield.

The results thus far reveal that factors with different degrees of persistence have

different impacts on the bond yields in different regimes through the short rate dynamics

and the market price of risk. In what follows, we analyze the term structure of conditional

correlations in both cross-section and time series. Further, we investigate the relative

importance of the latent and macro factors as the key determinant of the conditional

correlations and the driving nature of their time variation.

4.3 Dynamic Term Structure of Conditional Correlations

Figure 5 plots the time series of the conditional correlation between the cross-country

returns with the same maturity. Many interesting features emerge from this figure. We

first note that the conditional correlation is monotonically increasing in the maturity,

which is the cross-sectional characteristic. This is because, as Table 3 indicates, the

common factors are more persistent than the local factors, and consequently the factor

loadings on the common factors are bigger than those on the local factors. The second

distinctive feature is from the time series perspective. The short term bond return
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Figure 1: Common and Local Factors These graphs plot the estimates of the factors.
These graphs are based on 10,000 simulated draws of the posterior simulation.
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(a) Common latent factor, US short rate and Canada short rate
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(b) US-specific latent factor and Term spread
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(c) Canada-specific latent factor and Term spread

Figure 2: Common and Country-specific Latent Factors and Term Spread These
graphs plot the estimates of the common and local latent factors along with the observed short
rates and term spread. These graphs are based on 5,000 draws of the posterior simulation.

conditional correlation is more time-varying than the long term bond return conditional

correlation. This means that the regime changes are associated with the short term bond
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U.S. Canada

Maturity qdt = 1 qdt = 2 qft = 1 qft = 2
1Q 0.215 0.245 0.738 0.059
2Q 0.147 0.200 0.632 0.047
4Q 0.074 0.139 0.460 0.044
8Q 0.028 0.079 0.276 0.048
12Q 0.008 0.029 0.106 0.033
20Q 0.001 0.003 0.010 0.004
(a) Contribution of the Macro Factors

U.S. Canada

Maturity qdt = 1 qdt = 2 qft = 1 qft = 2
1Q 0.382 0.378 0.493 0.217
2Q 0.352 0.361 0.541 0.253
4Q 0.337 0.354 0.594 0.324
8Q 0.382 0.391 0.647 0.443
12Q 0.582 0.575 0.786 0.681
20Q 0.865 0.862 0.943 0.930
(b) Contribution of the Common Factors

1

Table 7: Variance decomposition of the yields These tables present the result for the
variance decomposition of the yields based on 5,000 simulated draws of the posterior simulation.
Table (a) displays the contribution from the macroeconomic factors, and table (b) displays the
contribution from the common factors.

returns correlation rather than the long term bond return correlation. In particular,

Figure 6 shows that the negative conditional correlation during the early 2000’s was

substantial because the 95% credibility interval does not contain zero.

Regarding the time-varying conditional correlations, note that the covariance in

Equation (2.16) can be decomposed into the sum of the covariance between the la-

tent factors and the covariance between the macro factors because of the independence

assumption in Equation (2.19). Figure 7 plots the fractions of the conditional corre-

lations explained by the latent and macro factors. The latent factors and the macro

factors have different responsibilities in determining the conditional correlations. The

latent factors determine the overall level of the conditional correlations while it has little

time variation. As discussed earlier, this is because the latent factors are more persistent

than the macro factors, but regime shifts in the factor loadings are not noticeable. In
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contrast, Figure 7(b) suggests that the conditional correlations seem to fluctuate ac-

cording to the country-specific regime switching effect of the macro factors on the bond

returns although the size of the conditional correlation between the long term bond re-

turns explained by the macro factors is relatively small. The time variation of the short

term bond return correlation is markedly observed during the early 2000s recession, as

its sign was switching.

One natural question is what drove such sign-switching conditional correlation dy-

namics. They seem to have been caused by the business cycle asymmetry between

Canada and the United States. After unprecedented expansion in the 1990s, the U.S.

economy went into a recession between 2001 and 2003. For this reason, the Federal Re-

serve Bank (FRB) lowered the federal fund rate starting in 2001:Q3. The target interest

rate declined continuously: 3.07% in 2001:Q3, 1.82% in 2001:Q4 and 1.25% in 2003:Q3.

In contrast, Canada has enjoyed a prolonged expansionary period since the late 1990s

(Kose and Cardarelli (2004)). The Bank of Canada increased the key interest rate from

2.00% to 3.20% during 2001:Q4 through 2003:Q2. Such opposite short-rate movements

in the process of monetary policy implementation during the asymmetric cross-country

business cycle period seem to cause the occasional negative correlation.

Our estimation results for the model parameters capture such asymmetric reaction

of the cross-country short rates to the macroeconomic fundamentals. As seen in Table

4, during the U.S. recession the economy was occupied by regime st = 3 (i.e. qdt = 1 and

qft = 2). The response of the U.S. short rate to the common output factor was relatively

active because βd4,qdt =1(= 0.142) is much higher than βd4,qdt =2(= −0.549). Meanwhile,

the short rate in Canada was affected little by the the common output factor and the

response to the common inflation factor was even negative (i.e. βf
7,qft =1

= −1.570). In

short, these asymmetric responses to the common macro factors during the asymmetric

business cycle period between the countries generated different conditional correlations

in different periods.
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4.4 Exchange Rate Risk

Finally Figure 8 (a) exhibits the sign-switching property of the exchange risk premium.

Combined with the fact that the domestic and foreign average market prices of risks

are subject to change according to the country–specific regime processes, this implies

that the difference in the market prices of risks between the countries is substantial at

each time point as Table 5 indicates. The figure also displays that the exchange risk

premium and forward premium have means that are distinguishable from zero, and both

are highly autocorrelated. However, they are much less volatile than the depreciation

rates, as Figure 8 (b) shows.

5 Conclusion

By proposing and estimating an arbitrage-free cross-country affine term structure model

with regime shifts, we analyze the dynamic term structure of conditional correlations

between cross-country bond returns. In particular, we identify the driving forces behind

the time-varying conditional correlations of the cross-country government bond returns.

Our Bayesian analysis based on the U.S. and Canada yield curve data indicates that

the conditional correlations, especially the short-end ones, have varied substantially over

time with their signs switching. More importantly, their time-variation is mostly driven

by regime changes in the effect of the macro factors rather than the latent factors on

the yield curve. These regime changes seem to be associated with the cross-country

business cycle asymmetry between the two countries, i.e., the country-specific shifts in

macroeconomic fundamentals.

Our findings have important implications for international diversification gains from

investors’ point of view. The expected gains from international diversification are higher

for the globally diversified portfolios of short term bonds than for long term bonds. They

are maximized when the business cycles of the countries are in opposite stages. On the

other hand, holding an internationally diversified portfolio of long term bonds provides

little protection against domestic bond market declines. Nevertheless, the long-term

gains from international diversification still remain attractive as long as the conditional
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correlations are less than one.

The focus of this paper is to investigate the implication of regime changes for time-

varying cross-country correlations, i.e., how their dynamics are generated, as well as

also the role of each set of factors, macro and latent, in determining their cross-sectional

relationship across time to maturity and their time-series dynamics. The time variation

of the cross-country correlations is driven entirely by shifts in regimes in the loadings

and the market prices of risk associated with factors in this paper. As such, their repro-

duced time-series dynamics are characterized by seemingly discrete moves rather than

continuous moves. In contrast, in the extant literature, such dynamics are driven ei-

ther by the stochastic process of factors (international affine term structure model with

square-root process) or a nonlinear relationship between Gaussian factors and the short

rate (international quadratic term structure model). Whereas the existing models are

designed to produce short-term volatile variation in cross-country conditional correla-

tions, our model draws the long-term variation in correlations coupled with short-term

persistency. Thus the suggested mechanisms by which time-varying correlations are gen-

erated in the two approaches are complementary, and we expect that merging the two

alternatives will result in a more flexible specification for conditional correlations. We

leave this issue to future research.

A Prior Distribution

The prior distribution on the parameter vector θ is specified as follows. The transition

probabilities in ΠC have a beta prior distribution beta(ᾱ, β̄). Next, because some of the

volatility parameters in Λst and Σ are liable to be small, we follow Chib and Ergashev

(2009) and reparameterize them as

σd∗1 = 50× σd1 , σd∗2 = 300× σd2 , σd∗3 = 200× σd3 , σd∗4 = 100× σd4 , σd∗5 = 25× σd5
σd∗6 = 10× σd6 , σf∗1 = 50× σf1 , σf∗2 = 200× σf2 , σf∗3 = 125× σf3 , σf∗4 = 40× σf4
σf∗5 = 20× σf5 , σf∗6 = 20× σf6 , σx∗ = 0.3× σx, σ∗c,g = 5× σc,g, σd∗g = 2× σdg
σf∗g = 3× σfg , σ∗c,π = 10× σc,π, σd∗π = 5× σdπ, σf∗π = 1× σfπ

These rescaled coefficients are assumed to have an inverse gamma prior distribution

IG(v̄, d̄). The correlation coefficients in Γ and the diagonal elements in G have a uniform
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prior Unif(ā, b̄). The other parameters have a normal prior distribution, N (µ̄, σ̄). To

choose the prior parameters we rely on the simulation-based method following Chib and

Ergashev (2009). For the factor shock volatility and the market price of risk parameters,

the prior distribution is set to generate a positive term premium on average for all coun-

tries. We also allow the parameters to vary considerably. However, we must normalize

the labels for the country-specific regimes by imposing some restrictions. According to

our computational experience, the common latent factor plays the most important role

in fitting the cross-country yield curve as it detects the common level factor. Hence the

regime identifying restrictions are imposed on the corresponding parameters, βC
1,qCt

and

λC
1,qCt

. Specifically, we impose the restrictions that βd
1,qdt =2

> βd
1,qdt =1

and λd
1,qdt =1

> λd
1,qdt =2

for country d, and βf
1,qft =1

> βf
1,qft =2

and λf
1,qft =2

> λf
1,qft =1

for country f. It is important

to note that our prior is quite symmetric across regimes in order to avoid the case that

the regimes are identified by our prior information. To identify the unobserved factors

we denote the (i, i) element of G by Gii and assume that |Gii| < 1, βd
1,qdt =1

> 0, µ = 09×1

and σc,l = σdl = σfl = 1. The resulting prior parameters for each model parameter are

reported in Table (8).

Through the prior the parameters are constrained to lie in the set R = R1∪R2∪R3

where

R1 = {θ|βd1,qdt =1 > 0, |Gii| < 1}

R2 = {θ|βd1,qdt =2 > βd1,qdt =1 and λd1,qdt =1 > λd1,qdt =2}

and R3 = {θ|βf
1,qft =1

> βf
1,qft =2

and λf
1,qft =2

> λf
1,qft =1

}.

Finally, the initial factors f0 are treated as additional parameters to be sampled and their

prior is normally distributed with unconditional mean µ and variance V0 as implied by

the prior distribution of ft in Equation (2.6).

B MCMC Sampling

This section discusses the sampling procedure from the posterior distribution of (θ, Sn,

Fn). It can be summarized as follows.
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Algorithm: MCMC sampling

Step 1 Initialize (θ,Sn,Fn) and fix n0 (the burn-in) and n1 (the MCMC sample size)

Step 2 Sample θ conditioned on (y,Sn)

Step 3 Sample Fn conditioned on (y,θ,Sn)

Step 4 Sample Sn conditioned on (y,θ,Fn)

Step 5 Repeat Steps 2-4, discard the draws from the first n0 iterations and save the

subsequent n1 draws.

The full details of each of these steps are as follows.

B.1 Sampling θ

Integrating out Fn, we sample θ conditioned on Sn using the TaRB-MH algorithm.

Specifically, in the jth iteration, we have hj sub-blocks of θ

θ1, θ2, . ., θhj

The parameters in the standard deviation of the pricing errors Σ, factor shock volatility Λ

and the transition probabilities, Π, form three fixed blocks (θ1 , θ2 and θ3), and the

others are randomly grouped (θ4, θ5, . ., θhj). Then conditioned on the most current

value of the remaining blocks θ−i, the proposal density for the ith block is constructed

by a student t distribution with 15 degrees of freedom, π (θi|θ−i,y,Sn). The mode

of this proposal density is obtained by a simulated annealing algorithm. If a proposal

value violates any of the constraints in R, it is immediately rejected. Otherwise, it is

probabilistically taken as the next value in the chain as in a standard M-H (Metropolis–

Hastings) algorithm. The sampling of θ is complete when all the sub-blocks

π (θ1|θ−1,y,Sn) , π (θ2|θ−2,y,Sn) , . . . , π
(
θhj |θ−hj ,y,Sn

)
(B.1)

are sequentially updated in blocks. The number of blocks and their components are

both randomly chosen within each MCMC cycle.
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We now explain how to calculate the log of f (y|θ,Sn) integrating out Fn:

ln f (y|θ,Sn) =
n∑
t=1

ln f [yt|It−1, st,st−1, θ] (B.2)

where It is the history of the observations up to time t. First, for given f̄t−1|t−1 and

P̄t−1|t−1, one runs the Kalman filter and obtains the following quantities:

f̄t|t−1 = E[̄ft|It−1,Sn, ft+1,θ] (B.3)

= µ̄ + Ḡ
(
f̄t−1|t−1 − µ̄

)
(B.4)

P̄t|t−1 = Cov[̄ft|It−1,Sn, ft+1,θ] (B.5)

= ḠP̄t−1|t−1Ḡ + T̄ Ω̄T̄ ′ (B.6)

f [yt|It−1, st,θ] = N
(
yt|āst + b̄st

(
f̄t|t−1 − µ̄

)
, b̄stP̄t|t−1b̄

′
st + Σ

)
Kt = P̄t|t−1b̄

′
st

(
b̄stP̄t|t−1b̄

′
st + Σ

)−1
f̄t|t = E

[
f̄t|It,Sn,θ

]
= f̄t|t−1 + Kt

(
yt − āst − b̄st

(
f̄t|t−1 − µ̄

))
(B.7)

P̄t|t = V
[
f̄t|Yt,Sn,θ

]
=
(
Ik −Ktb̄st

)
P̄t|t−1 (B.8)

At t = 1, f̄0|0 and P̄0|0 are initialized as the unconditional mean and variance under

regime s0. From the outputs of the Kalman filtering, one can calculate the likelihood

density for each data point:

f [yt|It−1, st,θ] = N
(
yt|āst + b̄st

(
f̄t|t−1 − µ̄

)
, b̄stPt|t−1b̄

′
st + Σ

)
(B.9)

, which completes the computation of the conditional likelihood given Sn.

B.2 Simulation of Fn

Following Carter and Kohn (1994) we sample Fn because it is necessary for sampling

Sn. To do that, we first run the Kalman filter algorithm to calculate f̄t|t and P̄t|t for

t = 1, 2, .., n. The last iteration provides us with f̄n|n and P̄n|n, and these can be used to

generate fn from N
(
fn|n,Pn|n

)
where Pn|n is the first 9× 9 sub-block of P̄n|n and G∗ is

the first nine rows of Ḡ. For t = n− 1, n− 2, .., 1,
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f̄t|t,ft+1
= E[̄ft|It,Sn, ft+1,θ] (B.10)

= f̄t|t + P̄t|tG
∗′ (G∗P̄t|tG

∗′ + T̄ Ω̄T̄ ′
)−1 (

ft+1 − µ−G∗
(
f̄t|t − µ̄

))
(B.11)

P̄t|t,ft+1
= Cov[̄ft|It,Sn, ft+1,θ] (B.12)

= P̄t|t − P̄t|tG
∗′ (G∗P̄t|tG

∗′ + T̄ Ω̄T̄ ′
)−1

G∗P̄t|t (B.13)

ft|y,Sn,θ ∼ N9

(
ft|t,ft+1

,Pt|t,ft+1

)
(B.14)

where ft|t,ft+1
is the first nine rows of f̄t|t,ft+1

and Pt|t,ft+1
is the first 9 × 9 sub-block of

P̄t|t,ft+1
.

Next we sample the initial factor f0. Given the prior N9×1 (µ,V0), f0 is updated

conditioned on θ and f1 where f1 is obtained from Equation (B.14) for t = 1. Then

f0|f1,θ∼N9×1

(
f̃0, Ṽ0

)
(B.15)

where

Ṽ0 =
(
V−10 +G′Ω−1G

)−1
and f̃0 = µ + Ṽ0G

′Ω−1(f1 − µ)

B.3 Simulation of Sn

Let ỹt ãst and b̃st indicate the first 17 rows of ỹt ãst and b̃st , respectively. Then the

joint density of (ỹt, f t) is given by

f (ỹt, f t|θ) =
∑
st

p
[
st|It−1,θ

]
f
[
ỹt, ft|It−1, st, θ

]
(B.16)

where

p
[
st,st−1|It−1,θ

]
= p [st|st−1,θ] p

[
st−1|It−1,θ

]
(B.17)

p
[
st|It−1,θ

]
=

∑
st−1

p
[
st,st−1|It−1,θ

]
(B.18)

f
[
yt, ft|It−1, st,θ

]
= f

[
yt|It−1, st, ft,θ

]
× f

[
ft|It−1, st,θ

]
(B.19)

f̃t =
(

(ft − µ) (ft−1 − µ) (ft − µ−G (ft−1 − µ))
)′

(B.20)

f
[
yt|It−1, st, ft,θ

]
= N

(
yt|ãst + b̃st f̃t,Σ

)
(B.21)
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and f
[
ft|It−1, st,θ

]
= N (ft|µ+ G (ft−1 − µ) ,Ω) (B.22)

In this step one samples the states from p[Sn|In,θ] where In is the history of the

outcomes of the observations and the factors up to time n. This is done according to the

method of Chib (1996) by sampling Sn in a single block from the output of one forward

and one backward pass through the data.

The forward recursion is initialized at t = 0 by setting Pr[s0|I0,θ] to be the un-

conditional probability. Then one first obtains Pr[st = j|It,θ] for all j = 1, 2, .., 4 and

t = 1, 2, .., n by calculating

Pr[st = j|It,θ] (B.23)

=
p
[
ỹt, ft|It−1, st = j,θ

]
Pr[st = j|It−1,θ]

p [ỹt, ft|It−1,θ]

This can be done by Equation (B.17)-(B.22).

In the backward pass, one simulates Sn by the method of composition. One samples

sn from Pr[sn|In,θ]. In this sampling step, sn can take any value in {1, 2, .., 4}. Then

for t = 1, 2, .., n− 1 we sequentially calculate

Pr[st = j|It, st+1 = k, St+2,θ] = Pr[st = j|It, st+1 = k,θ] (B.24)

=
Pr[st+1 = k|st = j] Pr[st = j|It,θ]∑4
j=1 Pr[st+1 = k|st = j] Pr[st = j|It,θ]

where St+1 = {st+1, .., sn} denotes the set of simulated states from the earlier steps.

A value, st, is drawn from this distribution, which takes one of the values {1,2,..,4}

conditioned on st+1 = k.
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(a) st = 1 (qdt = 1, qft = 1)
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(b) st = 2 (qdt = 2, qft = 1)
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(c) st = 3 (qdt = 1, qft = 2)
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(d) st = 4 (qdt = 2, qft = 2)

Figure 3: Probabilities of Aggregated Regimes (st) These graphs plot the estimates of
the probabilities of regimes. These graphs are based on 5,000 draws of the posterior simulation.
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(a) U.S.: Posterior Probability of qdt = 1
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(b) Canada: Posterior Probability of qft = 1

Figure 4: Probabilities of Regimes (qdt , q
f
t ) These graphs plot the estimates of the prob-

abilities of country-specific regimes. These graphs are based on 5,000 draws of the posterior
simulation.
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(a) 2-Dimensional plot
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(b) 3-Dimensional plot

Figure 5: Term Structure of the Conditional Correlations These graphs plot the esti-
mates of the term structure of the conditional correlations. These graphs are based on 10,000
simulated draws of the posterior simulation. Graph (a) displays the time series of the corre-
lations for the four different maturities, and graphs (b) displays the three-dimensional plot for
the term structure of the conditional correlations.
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Figure 6: The posterior quantiles of the conditional correlation between the cross-
country 2-quarter bond returns over time These graphs plot the estimates of the dynamic
conditional correlation of cross-country 2-quarter bond returns. These graphs are based on
10,000 simulated draws of the posterior simulation. The dotted red lines are 97.5% and 2.5%
quantiles and the solid blue line is the median.
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(b) The fraction of the macro factors

Figure 7: The Decomposition of the Term Structure of the Conditional Correla-
tions These graphs plot the estimates of the probabilities of regimes. These graphs are based on
10,000 simulated draws of the posterior simulation. Graph (a) displays the contribution from
the latent factors, and graphs (b) displays the contribution from the macro factors of the term
structure of the conditional correlations.
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(a) Exchange rate risk premium and forward premium
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(b) Expected depreciation rate and actual depreciation rate

Figure 8: Exchange Risk Premium This graph plots the estimates of the exchange risk
premium. These graphs are based on 10,000 simulated draws of the posterior simulation.

43



Parameters density support α β
qd11 beta (0,1) 40 4
qd22 beta (0,1) 40 4

qf11 beta (0,1) 40 4

qf22 beta (0,1) 40 4
(a) beta prior

Parameters density support v d
σc,g inverse gamma (0,∞) 54 260
σdc,g inverse gamma (0,∞) 54 260
σfc,g inverse gamma (0,∞) 54 260
σc,π inverse gamma (0,∞) 54 260
σdc,π inverse gamma (0,∞) 54 260
σfc,π inverse gamma (0,∞) 54 260
σC∗i inverse gamma (0,∞) 54 260
0.5× σx inverse gamma (0,∞) 54 260

(b) inverse gamma prior

Parameters density support a b
Gii(i = 1, 2.., 9) uniform (0,1) 0 1
ρc uniform (-1,1) -1 1
ρd uniform (-1,1) -1 1
ρf uniform (-1,1) -1 1

(c) uniform prior

Parameters density support mean s.e.
βd
i,qdt

normal (−∞,+∞) 0.50 1.00

βf
j,qft

normal (−∞,+∞) 0.50 1.00

λd
i,qdt

normal (−∞,+∞) -1.00 0.25

λf
j,qft

normal (−∞,+∞) -1.00 0.25

φ1 normal (−∞,+∞) 0.00 1.00
φ4 normal (−∞,+∞) 0.00 1.00
φ7 normal (−∞,+∞) 0.00 1.00
gC normal (−∞,+∞) 1.00 1.00
πC normal (−∞,+∞) 1.00 1.00

(d) normal prior

Table 8: Prior distributions
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