
Infrastructural Security
for Virtualized Grid

Computing

Dissertation

zur Erlangung des Doktorgrades der Naturwissenschaften
(Dr. rer. nat.)

dem Fachbereich Mathematik und Informatik
der Philipps-Universität Marburg

vorgelegt von

Matthias Schmidt

aus Lich

Marburg, im Juni 2011

Vom Fachbereich Mathematik und Informatik der
Philipps-Universität Marburg als Dissertation am

8. Juni 2011

angenommen.

1. Gutachter: Prof. Dr. Bernd Freisleben, Philipps-Universität Marburg
2. Gutachter: Prof. Dr. Matthew Smith, Leibniz Universität Hannover

Tag der mündlichen Prüfung am 26. September 2011.

Acknowledgments

At first, I want to express my sincere and utmost gratitude to my wife, Angela.
Without you, I would not be where I’m now. Your continuous love and your
support made it possible for me to finish this thesis. Furthermore, I have to
thank my parents. Without their everlasting support and encouragement, it
would not be possible for me to study computer science.

At the University of Marburg I would like to thank my advisor, Prof. Dr.
Bernd Freisleben for supervising this thesis, his invaluable guidance and our
good discussions.

Furthermore, I would like to thank my colleagues and students past and present
at the Distributed Systems Group who were invaluable in the realization of
the projects in this thesis. In alphabetical order I would like to thank Lars
Baumgärtner, David Böck, Kay Dörnemann, Tim Dörnemann, Sascha Fahl,
Niels Fallenbeck, Pablo Graubner, Rene Greuel, Marian Harbach, Katharina
Haselhorst, Ernst Juhnke, Matthias Leinweber, Christian Schridde, Roland
Schwarzkopf and last, but not least, Mechthild Kessler. I’m especially grateful
to my two office mates, Niels and Roland, for creating an enjoyable work envi-
ronment. Prof. Dr. Matthew Smith deserves special thanks, as he was the one
who guided me in my first years and showed me the ropes in research.

Doing research and writing a thesis without the proper environment is impossi-
ble – special thanks to Dr. Thomas Gebhardt from the local computing center
for his valuable support and his patience when I managed to crash a grid node,
again.

Finally, I would like to thank Justin C. Sherrill and Annie McWhertor for
proofreading (parts of) this thesis.

During writing my thesis, I was supported by the German Ministry of Research
and Education (bmbf) as part of the D-Grid and hpc projects.

–iii–

Abstract

The goal of the grid computing paradigm is to make computer power as easy
to access as an electrical power grid. Unlike the power grid, the computer grid
uses remote resources located at a service provider. Malicious users can abuse
the provided resources, which not only affects their own systems but also those
of the provider and others.

Resources are utilized in an environment where sensitive programs and data
from competitors are processed on shared resources, creating again the poten-
tial for misuse. This is one of the main security issues, since in a business
environment competitors distrust each other, and the fear of industrial espi-
onage is always present. Currently, human trust is the strategy used to deal
with these threats. The relationship between grid users and resource providers
ranges from highly trusted to highly untrusted [125]. This wide trust rela-
tionship occurs because grid computing itself changed from a research topic
with few users to a widely deployed product that included early commercial
adoption. The traditional open research communities have very low security
requirements, while in contrast, business customers often operate on sensitive
data that represents intellectual property; thus, their security demands are very
high. In traditional grid computing, most users share the same resources con-
currently. Consequently, information regarding other users and their jobs can
usually be acquired quite easily. This includes, for example, that a user can see
which processes are running on another users system. For business users, this is
unacceptable since even the meta-data of their jobs is classified [124]. As a con-
sequence, most commercial customers are not convinced that their intellectual
property in the form of software and data is protected in the grid.

This thesis proposes a novel infrastructural security solution that advances the
concept of virtualized grid computing. The work started back in 2007 and led to
the development of the xge, a virtual grid management software. The xge itself
uses operating system virtualization to provide a virtualized landscape. Users
jobs are no longer executed in a shared manner; they are executed within special
sandboxed environments. To satisfy the requirements of a traditional grid setup,
the solution can be coupled with an installed scheduler and grid middleware on
the grid head node. To protect the prominent grid head node, a novel dual-
laned demilitarized zone is introduced to make attacks more difficult. In a
traditional grid setup, the head node and the computing nodes are installed in
the same network, so a successful attack could also endanger the user’s software

–v–

and data. While the zone complicates attacks, it is, as all security solutions, not
a perfect solution. Therefore, a network intrusion detection system is enhanced
with grid specific signatures. A novel software called Fence is introduced that
supports end-to-end encryption, which means that all data remains encrypted
until it reaches its final destination. It transfers data securely between the user’s
computer, the head node and the nodes within the shielded, internal network.
A lightweight kernel rootkit detection system assures that only trusted kernel
modules can be loaded. It is no longer possible to load untrusted modules such
as kernel rootkits. Furthermore, a malware scanner for virtualized grids scans
for signs of malware in all running virtual machines. Using virtual machine
introspection, that scanner remains invisible for most types of malware and has
full access to all system calls on the monitored system. To speed up detection,
the load is distributed to multiple detection engines simultaneously. To enable
multi-site service-oriented grid applications, the novel concept of public virtual
nodes is presented. This is a virtualized grid node with a public ip address
shielded by a set of dynamic firewalls. It is possible to create a set of connected,
public nodes, either present on one or more remote grid sites. A special web
service allows users to modify their own rule set in both directions and in a
controlled manner.

The main contribution of this thesis is the presentation of solutions that con-
vey the security of grid computing infrastructures. This includes the xge, a
software that transforms a traditional grid into a virtualized grid. Design and
implementation details including experimental evaluations are given for all ap-
proaches. Nearly all parts of the software are available as open source software.
A summary of the contributions and an outlook to future work conclude this
thesis.

vi

Zusammenfassung

Ein Grid soll einem Benutzer Ressourcen so einfach zu Verfüng stellen, wie
das Stromnetz: Ein Gerät wird an die Steckdose angeschlossen und sofort
danach mit Strom versorgt. Im Gegensatz zu einer Steckdose nutzt Grid Com-
puting allerdings entfernte Ressourcen, die bei einem Provider installiert sind.
Diese können durch böswillige Nutzer missbraucht werden, die damit nicht nur
ihre eigenen Installationen sondern auch die von anderen Benutzern und dem
Provider gefährden.

Ressourcen im Grid Computing werden gemeinsam benutzt, d.h. Daten und
Programme von konkurrierenden Nutzern oder Unternehmen sind auf der sel-
ben physischen Ressource gespeichert. Diese gemeinsame Nutzung stellt eines
der Hauptprobleme dar, da Unternehmen sich im Allgemeinen gegenseitig mis-
strauen und die Gefahr durch Industriespionage omnipräsent ist. Die aktuelle
Strategie, um mit diesen Problemen umzugehen, basiert auf dem Vertrauen des
Nutzers gegenüber anderen Nutzern und dem Administrator. Diese Entwick-
lung resultiert aus der Tatsache, dass sich das Grid von einer rein akademischen
Spielwiese hin zu einem anerkannten Produkt mit ersten kommerziellen Anwen-
dern entwickelt hat [125]. Im Gegensatz zu kommerziellen Anwendern haben
akademische Nutzer meist niedrigere Sicherheitsanforderungen, da Quelldaten
und Ergebnisse frei zur Verfügung stehen. Kommerzielle Daten und Anwendun-
gen beinhalten in der Regel geistiges Eigentum, das besonderem Schutz bedarf.
In der gemeinsamen Nutzung von Ressourcen im traditionellen Grid Comput-
ing liegt also eines der Hauptprobleme, welches die kommerzielle Verbreitung
erschwert. Informationen über andere Benutzer und deren Jobs können auf
solchen Systemen einfach erlangt werden. In den einfachsten Fällen stellt die
bloße Kenntnis, dass ein Konkurrent auf demselben System rechnet, einen In-
formationsvorsprung dar, der nicht akzeptabel ist, da sogenannte Meta-Daten
meist vertraulich sind [124]. Es kann konstatiert werden, dass ein wirksamer
Schutz von sensitiven Inhalten im Grid nicht ausreichend vorhanden ist.

Diese Arbeit stellt neue Infrastruktur-Mechanismen vor, die das Konzept von
virtuellen Grids weiter voran bringen. Die Arbeiten dafür begannen 2007 und
haben zur Entwicklung der xge geführt. Die xge ist eine Software zum Erzeu-
gen und Verwalten von virtuellen Grid-Umgebungen. Jobs von Benutzern
werden nicht länger nativ, sondern in virtuellen Maschinen ausgeführt. Um
die Software einfach in ein bestehendes Grid einzubinden, kann die xge die
Entscheidungen eines bereits installierten Schedulers nutzen und mit der Grid-

–vii–

Middleware auf der Grid-Headnode zusammenarbeiten. Eine neue Grid-fähige,
zweigleisige, demilitarisierte Zone schützt die Grid-Headnode vor direkten An-
griffen aus dem Internet. Zudem sind die Headnode und die Rechenknoten
voneinander isoliert und nicht, wie in einem traditionellen Grid-Umfeld, im
selben Netzwerk installiert. Obwohl die demilitarisierte Zone Angriffe erschw-
ert, bietet sie, wie alle Sicherheitslösungen, keinen hundertprozentigen Schutz.
Daher ist ein Network Intrusion Detection System um Grid-spezifische Signa-
turen erweitert worden, damit Angriffe auf Grid-Komponenten verhindert und
aufgezeichnet werden können. Um die Daten der Benutzer über die demili-
tarisierte Zone hinaus zu schützen, ist eine Lösung namens Fence entwickelt
worden, die die Daten verschlüsselt vom Rechner des Benutzers in das interne
Grid-Netzwerk überträgt. Fence arbeitet dabei mit allen beteiligten Kompo-
nenten, inklusive dem Scheduler, zusammen. Ein System verhindert, dass un-
sichere Kernel-Module und somit auch Kernel-Rootkits zur Laufzeit geladen
werden können. Um die Sicherheit der virtuellen Maschinen zu gewährleisten
wird ein Malware-Scanner eingesetzt. Dieser nutzt die spezielle Technik der Vir-
tual Machine Introspection um alle laufenden Programme zu überwachen und
dabei selber unsichtbar und, für die meiste Malware, unangreifbar zu bleiben.
Um die Erkennung zu beschleunigen, können mehrere Erkennungsinstanzen im
Grid parallel betrieben werden. Das neue Konzept der öffentlichen, virtuellen
Grid-Knoten wird ebenfalls im Kontext dieser Arbeit vorgestellt. Dies ist eine
Menge von Grid-Knoten, die aus dem Internet erreichbar und durch dynamische
Firewalls geschützt sind. Die Knoten können sich sowohl in einem, als auch in
mehreren Rechenzentren befinden. Ein spezieller Web-Service erlaubt es dem
Benutzer eigene Firewall-Regeln für seine virtuellen Maschinen zu spezifizieren,
ohne damit die Gesamtumgebung zu gefährden.

Das Hauptergebnis der Arbeit sind Lösungen, die dazu beitragen die Sicher-
heit von Grid-Infrastrukturen auf unterschiedlichen Ebenen zu erhöhen. Alle
Ansätze werden detailliert mit Design, Implementierung und Evaluation be-
schrieben und sind als Open-Source-Software frei verfügbar. Eine Zusammen-
fassung und ein Ausblick auf kommende Forschung schließen die Arbeit ab.

viii

Contents

Abstract vi

Contents xii

1 Introduction 1

1.1 Project Framework . 2

1.1.1 Engineering Applications 2

1.1.2 Financial Business Grid 3

1.1.3 Plasma Technology Grid 4

1.1.4 Intelligent System Management for Large Computer Sys-
tems . 4

1.2 Contributions of this Thesis . 4

1.3 Organization of this Thesis . 7

2 Fundamentals 9

2.1 Introduction . 9

2.2 Grid Computing . 9

2.2.1 The Globus Toolkit . 11

2.2.1.1 Globus Toolkit Architecture 11

2.2.1.2 Grid Resource Allocation and Management . . . 12

2.2.2 Grid Security Infrastructure 13

2.3 Virtualization . 15

2.3.1 Application and Desktop Virtualization 15

2.3.2 Network and Storage Virtualization 15

2.3.3 Server and Machine Virtualization 16

2.3.4 System-Level or Operating System Virtualization 16

2.3.5 Xen Virtual Machine Monitor 16

2.3.6 Live Migration . 17

2.3.7 Libvirt Virtualization API 18

2.4 Cloud Computing . 19

2.4.1 Architecture . 19

2.4.2 Deployment Models . 20

2.4.3 Security Risks . 21

2.5 Summary . 21

3 Security for Virtualized Grid Computing Environments 23

3.1 Introduction . 23

3.2 Introduction to Job Execution . 24

–ix–

Contents

3.3 Analysis of the Job Execution Workflow 25

3.3.1 Terminology . 26

3.3.2 Analysis of the Head Node Communication and Storage . 27

3.3.3 Analysis of the Host . 28

3.3.4 Analysis of the Job Execution 29

3.3.5 Analysis of Multi-Site Computing 31

3.4 Methods for Infrastructural Security in Virtualized Grids 33

3.4.1 Virtualized Grid Computing 34

3.4.2 Grid Enabled Demilitarized Zone 35

3.4.3 Lightweight Kernel Rootkit Prevention 36

3.4.4 Malware Detection for Virtualized Grids 36

3.4.5 Dynamic Firewalls . 37

3.5 Summary . 38

4 Host Security 39

4.1 Introduction . 39

4.2 Lightweight Kernel Rootkit Prevention 39

4.2.1 Introduction . 39

4.2.2 Related Work . 40

4.2.3 Design . 43

4.2.4 Implementation . 50

4.2.4.1 Management System Call 50

4.2.4.2 List Management 53

4.2.4.3 Kernel Module Loading Process 53

4.2.5 Evaluation . 55

4.2.6 Summary . 57

4.3 Malware Detection in Virtualized Grids 57

4.3.1 Introduction . 57

4.3.2 Related Work . 58

4.3.3 Design . 60

4.3.3.1 Architecture . 60

4.3.3.2 Operating System Kernel Sensor 62

4.3.3.3 Backend Proxy 63

4.3.3.4 Scan Engine and Executable Analysis 63

4.3.4 Implementation . 63

4.3.4.1 Operating System Kernel Modifications 64

4.3.4.2 Kernel-Userland Communication 66

4.3.4.3 Operating System Kernel Sensor 66

4.3.4.4 Backend Proxy and Anti-virus Engine Connection 66

4.3.5 Evaluation . 68

4.4 Summary . 70

5 Network Security 73

5.1 Introduction . 73

5.2 Virtualized Grid Computing . 74

5.2.1 Introduction . 74

5.2.2 Related Work . 74

x

Contents

5.2.3 Design . 78
5.2.3.1 Image Creation Station 79
5.2.3.2 Architecture . 80
5.2.3.3 Hybrid Mode of Operation 81
5.2.3.4 Job Management 84
5.2.3.5 Virtual Machine Management 84
5.2.3.6 Disk Image Distribution 94

5.2.4 Implementation . 101
5.2.4.1 Core Components 101
5.2.4.2 LXGEd . 103
5.2.4.3 Job Management 104
5.2.4.4 Job Manager . 106
5.2.4.5 Virtual Machine Management 107
5.2.4.6 Backend Connection 111
5.2.4.7 Placeholder Virtual Machines 114
5.2.4.8 Remote Interfaces 114
5.2.4.9 Efficient Virtual Disk Image Deployment 115
5.2.4.10 Avoiding Retransmission Overhead 121
5.2.4.11 Storage Synchronization 122

5.2.5 Evaluation . 123
5.2.5.1 Execution Time 124
5.2.5.2 XGE Internals 125
5.2.5.3 Scheduler Performance 125

5.2.6 Summary . 130
5.3 Grid Demilitarized Zone . 130

5.3.1 Introduction . 130
5.3.2 Related Work . 131
5.3.3 Design . 135

5.3.3.1 Architecture of the Demilitarized Zone 136
5.3.3.2 End-to-End Encryption 138
5.3.3.3 Optimizing Security Configurations 143
5.3.3.4 Grid-enabled Intrusion Detection 146

5.3.4 Implementation . 146
5.3.4.1 Border Network 147
5.3.4.2 Internal Network 147
5.3.4.3 End-to-End Encryption with Fence 148
5.3.4.4 Connection to the Globus Toolkit 148
5.3.4.5 DMZ Head Node Client 150
5.3.4.6 Cluster Head Node Daemon 151
5.3.4.7 DMZ Head Node Daemon 151
5.3.4.8 Grid Enabled Intrusion Detection System 153

5.3.5 Evaluation . 155
5.3.6 Summary . 160

5.4 Dynamic Firewalls for Grid Computing 160
5.4.1 Introduction . 160
5.4.2 Related Work . 161
5.4.3 Design . 163

xi

Contents

5.4.3.1 Secure Infrastructure Communication 164
5.4.3.2 Dynamic Network Security 167
5.4.3.3 Inter-Virtual Machine Communication 170
5.4.3.4 Network Security Web Service 171

5.4.4 Implementation . 171
5.4.4.1 Rule Set Generation 171
5.4.4.2 Deployment, Execution and Removal 173
5.4.4.3 Packet Filtering 174

5.4.5 Evaluation . 174
5.5 Summary . 177

6 Experimental Results 179
6.1 Introduction . 179
6.2 Efficient Transfer of Virtual Machines 179

6.2.1 Distribution Methods . 179
6.2.2 Virtual Disk Encryption 181
6.2.3 Multi-Layered Virtual Machines 182

6.3 Storage Synchronization . 185
6.4 Summary . 191

7 Conclusions 193
7.1 Summary . 193
7.2 Future Work . 194

7.2.1 Virtual Machine Lifecycle Management 195
7.2.2 Robustness and Scalability 195
7.2.3 Energy-efficient Virtual Machine Management 195
7.2.4 Intrusion Detection . 195
7.2.5 Malware and Rootkit Prevention 195
7.2.6 Complex Event Processing 196

List of Figures 197

List of Tables 201

Bibliography 205

Curriculum Vitae 223

xii

“The only truly secure system is one that is powered off,
cast in a block of concrete and sealed in a lead-lined room
with armed guards.”

Gene Spafford (1956–)

1
Introduction

About a decade ago, Ian Foster presented a three point checklist to define what a
grid is [44]. He wrote that grid computing is about coordinating resources that
are not subject to centralized control, using standard, open, general-purpose
protocols and interfaces and finally, about delivering nontrivial qualities of ser-
vices. Based on this checklist, grid computing evolved in the following years
from research to a mature paradigm that attracted academic as well as indus-
trial users. However, the number of the former was significantly higher than
the number of the latter because there is a difference in the trust relationship.
Academic users use the grid mostly to compute research task such as calcula-
tions or simulations. In general, the input data, the results and possibly the
application itself was collected or developed by means of public funding, which
means they might have to be made available to the public. Commercial users
use the grid for the same tasks, however their data and applications mostly
represent intellectual property. While grid computing offers a number of elabo-
rate security technologies, some of them are too weak to protect these assets on
the infrastructure layer. One example is the use of shared resources: jobs are
executed simultaneously on the same physical resource, allowing that one job
is able to gather information about another job. If the job is a malicious one,
it could further extend its privileges by exploiting a software’s vulnerability.
Among others, these stated problems hinder a wider commercial adoption and
implementation of grid computing.

Years later, a new computing paradigm appeared and resolved many of the un-
resolved grid problems: cloud computing. While it took some time to develop
a thorough definition of cloud computing, today it is accepted that it is about
offering different types of services. This includes applications (called software
as a service), computing platforms (called platform as a service) and finally, raw

–1–

Chapter 1. Introduction

computing resources (called infrastructure as a service). Usually, the last point
is realized by using operating system virtualization. Although cloud computing
sounds similar to grid computing, it is also a new kind of business model: com-
puting resources are bundled into services and offered on-demand. Customers
no longer have to own their own resources, they can rent resources and pay only
for their actual usage.

This thesis addresses various aspects of infrastructure security problems present
in the grid computing paradigm. Its aim is to introduce a new security infras-
tructure for grids, which makes grids more attractive to commercial customers
while lowering the initial burden of joining a given grid. Some parts of the
existing infrastructure were already adopted by cloud computing; thus, several
of the approaches protect both worlds: grids and clouds. Securing the com-
puting resources and the network between them represents the main focus of
this thesis. In order to strengthen host security, two approaches were designed
and implemented to prevent kernel rootkits and malware binaries. Issues dealt
with in terms of network security include a novel virtualized grid environment, a
grid enabled demilitarized zone, and secure, multi-site computing with dynamic
firewalls.

1.1 Project Framework

The following section introduces four projects and corresponding applications
which illustrate the need for a secure computing infrastructure. Three of the
projects are part of the German D-Grid Initiative [26] and funded by the Ger-
man Ministry for Education and Research (Bundesministerium für Bildung und
Forschung - bmbf) [11]. The remaining project, TIMaCS, deals with the design
of system management tools needed for large computing systems. This project
is also funded by the bmbf, hpc initiative.

1.1.1 Engineering Applications

By using grid technology, the In-Grid [60] community is able to combine ex-
pertise in the areas of modeling, simulation and optimization, which enables
all parties to use distributed resources efficiently. Thus, In-Grid provides a
grid environment for applications in the field of engineering. The project was
part of the first generation of D-Grid community projects (D-Grid I) and was
positioned at the interface between industrial and scientific use.

Six typical applications (interactive visualization, foundry technologies, metal
forming technologies, groundwater flow and transport, turbine simulation and
fluid-structure interaction) are considered showcases in order to cover the three
central areas of computationally intensive engineering applications, including
coupled multi-scale problems, coupled multi-discipline problems, and distributed
simulation-based optimization.

2

1.1. Project Framework

One of the test applications simulates transient turbulence in fluids. Conduct-
ing these simulations requires a high amount of computing power, especially
processing power. Turbulence studies are well tailored for distributing comput-
ing environments such as grids and clouds, since transitional Reynolds numbers
can be ideally computed on a single cpu core. Dörnemann et al. [33], who
explored the resource characteristics of the application, state that “answering
whether turbulence is a persistent phenomenon requires to study the charac-
teristic lifetime of turbulent structures as a function of both flow velocity and
domain size. Since the characteristic lifetime even for fixed parameters has to
be statistically based on an ensemble of many independent simulations gener-
ating the required data, that study requires an enormous amount of cpu time
which is contrasted by very low memory and interconnection speed require-
ments.” Figure 1.1 depicts the typical turbulent state on the chaotic saddle.
For more information regarding the complexity involved, the reader is referred
to the work done by Schneider et al. [119] and Hof et al. [57].

Figure 1.1: Typical turbulent state on the chaotic saddle.

Both the software and the data need protection in this scenario. Simulation
software is often developed by small and medium enterprises and might repre-
sent years of work. Further, the input data is also highly valuable, a competing
company can gain considerable benefits if it is able to steal the data from the
grid.

1.1.2 Financial Business Grid

Increasing competition in the German banking sector is leading to increased
pressure for restructuring and further automation in IT-related business pro-
cesses in banks and financial services providers. The Financial Business Grid
(FinGrid) project aims to identify suitable services and processes in the fi-
nancial service sector and to develop grid-based systems that enable financial

3

Chapter 1. Introduction

service providers to reorganize their processes efficiently and to realize applica-
tions that have been impossible so far in terms of computational requirements.
The project will develop different prototypes that will be used to demonstrate
the feasibility of our concepts in terms of security, accounting, monitoring and
pricing [41].

Since the financial sector works with sensitive data, e.g. names and account
balances of private and business customers, strong security mechanisms are
needed. Both the aforementioned prototypes and the customers data must be
protected.

1.1.3 Plasma Technology Grid

The plasma technology grid (PT-Grid) aims at offering an online consulting
tool for plasma technology applications. The project consists of four main
partners that want to bring their modeling tools into the grid. This ranges
from academic, open source applications up to commercial tools like ansys
(Fluent, cfx) and cfd-ace. The infrastructure is based on established grid
technologies, guarantees accounting and billing and should offer an industry-
ready security architecture. Thus, the used software, the input data as well as
the results represent intellectual property and need special protection [105].

1.1.4 Intelligent System Management for Large Computer Systems

The aim of the TIMaCS project is to build a monitoring framework that is able
to deal with the complexity of new, upcoming computer systems, especially ones
with several peta-flops. While current monitoring solutions are able to moni-
tor smaller resources, they might not be usable on future-generation systems.
TIMaCS tries to overcome this limitation by developing a fast and scalable
messaging infrastructure. Attached to the communication bus is a decision en-
gine that is able to start predefined actions in case of an error. Regression test
aim at taking preventions actions before an error occurs. Finally, operating
system virtualization is used to partition the available cluster into one or more
separated virtual clusters [153].

In order to protect the integrity and confidentiality of computations running on
backend cluster resources, the TIMaCS project takes advantage of operating
system virtualization. Computations take place in sandboxed environments,
which provide security to the user as well as to the infrastructure provider.

1.2 Contributions of this Thesis

4

1.2. Contributions of this Thesis

The research contributions of this thesis are:

• This thesis proposes a novel solution that advances the concept of vir-
tualized grid computing. The work started back in 2007 and led to the
development of the xge, a virtual grid management software that can be
used in grid and cloud computing environments. In a grid setup, the xge
provides virtual grid landscapes based on scheduling decisions provided
by external schedulers such as Torque [22]. Thus, the traditional shared
resource model is replaced with a virtualized model, where all executions
happen within a sandboxed container. If used in a cloud environment, the
xge acts as a software platform for the implementation of a private cloud,
i.e. it provides infrastructure as a service. The xge is released under an
open source license and available online.1

Currently, the xge is installed on nodes of the Phillips-University of Mar-
burg, Regionales Rechenzentrum für Niedersachsen (rrzn) at the Uni-
versity of Hannover, cfx Berlin GmbH and Höchleistungsrechenzentrum
(hlrs) at the University of Stuttgart.

• A novel dual-laned demilitarized zone is introduced to raise the burden
for attacks on the grid head node. Previously, the head node was installed
in the same network as the backend computing nodes, so a possible com-
promise of the head node could also affect the nodes. The demilitarized
zone separates the head node from the remaining part of an installa-
tion. Furthermore, a cryptographically secured communication channel
between the head node and the xge on the backend network is developed.
To detect the attacks that could not be prevented, a network intrusion
detection system is modified to recognize grid signatures.

• While the current grid security mechanisms are sufficient to secure job
data between the user and the head node, they are not able to secure the
data after it was processed by the head node. A novel software called
Fence is introduced that supports end-to-end encryption, which means
that all data remains encrypted until it reaches its final destination.

• Since it is not possible to protect a system from all possible attacks, this
thesis presents two mechanisms to mitigate the outcome of a compromise.
An efficient and lightweight solution assures that only trusted kernel mod-
ules can be loaded. It is no longer possible to load untrusted modules such
as kernel rootkits. Furthermore, a malware scanner for virtualized grids
is developed that works with live system call introspection, and thus can
detect known as well as yet unknown malware.

• To enable multi-site service-oriented grid applications, the novel concept
of public virtual nodes is presented. This is a virtualized grid node with a
public ip address shielded by a set of dynamic firewalls. Additionally an

1http://mage.uni-marburg.de/trac/xge/

5

http://mage.uni-marburg.de/trac/xge/

Chapter 1. Introduction

encrypted, on-demand virtual private network encapsulates multiple vir-
tual nodes, which, for example, run remote instances of a service-oriented
application, in a private network. Furthermore, all virtual machines are
also guarded by special firewall rules to prevent internal attacks from
malicious users.

The following papers were published during the course of the work on this
thesis:

1. Matthias Schmidt, Matthew Smith, Niels Fallenbeck, Hans-Joachim Picht,
and Bernd Freisleben. Building a Demilitarized Zone with Data Encryp-
tion for Grid Environments. In Proceedings of First International Con-
ference on Networks for Grid Applications, pp. 8–16, ACM press, 2007.

2. Matthew Smith, Matthias Schmidt, Niels Fallenbeck, Christian Schridde,
and Bernd Freisleben. Optimising Security Configurations with Service
Level Agreements. In Proceedings of the 7th International Conference
on Optimization: Techniques and Applications (ICOTA7), pp. 367–368.
ICOTA, 2007.

3. Matthew Smith, Matthias Schmidt, Niels Fallenbeck, Tim Dörnemann,
Christian Schridde, and Bernd Freisleben. Security for On-Demand Grid
Computing. In Journal of Future Generation Computer Systems, pp.
315–325, Elsevier, 2008.

4. Roland Schwarzkopf, Matthias Schmidt, Niels Fallenbeck, Bernd Freis-
leben. Multi-Layered Virtual Machines for Security Updates in Grid
Environments. In: Proceedings of 35th Euromicro Conference on Internet
Technologies, Quality of Service and Applications (ITQSA), pp. 563–570,
IEEE press, 2009

5. Matthias Schmidt, Niels Fallenbeck, Matthew Smith, Bernd Freisleben.
Secure Service-Oriented Grid Computing with Public Virtual Worker Nodes.
In: Proceedings of 35th Euromicro Conference on Internet Technologies,
Quality of Service and Applications (ITQSA), pp. 555–562, IEEE press,
2009

6. Matthias Schmidt, Niels Fallenbeck, Kay Dörnemann, Roland Schwarz-
kopf, Tobias Pontz, Manfred Grauer, Bernd Freisleben. Aufbau einer
virtualisierten Cluster-Umgebung. In: Grid Computing in der Finanzin-
dustrie, Books on Demand, Norderstedt, pp. 119–131, Oliver Hinz, Roman
Beck, Bernd Skiera, Wolfgang König, 2009

7. Matthias Schmidt, Niels Fallenbeck, Roland Schwarzkopf, Bernd Freis-
leben Virtualized Cluster Computing. In Research Report High-Perfor-
mance Computing in Hessen, pp. 148–149, 2010

6

1.3. Organization of this Thesis

8. Matthias Schmidt, Niels Fallenbeck, Matthew Smith, Bernd Freisleben.
Efficient Distribution of Virtual Machines for Cloud Computing. In:
Proceedings of the 18th Euromicro Conference on Parallel, Distributed
and Network-based Processing (PDP 2010), pp. 567–574, IEEE Press,
2010

9. Niels Fallenbeck, Matthias Schmidt, Roland Schwarzkopf, Bernd Freis-
leben. Inter-Site Virtual Machine Image Transfer in Grids and Clouds.
In Proceedings of the 2nd International ICST Conference on Cloud Com-
puting (CloudComp 2010), Springer LNICST, 2010

10. Eugen Volk, Jochen Buchholz, Stefan Wesner, Daniela Koudela, Matthias
Schmidt, Niels Fallenbeck, Roland Schwarzkopf, Bernd Freisleben, Götz
Isenmann, Jürgen Schwitalla, Marc Lohrer, Erich Focht, Andreas Jeut-
ter. Towards Intelligent Management of Very Large Computing Systems.
In Proceedings of Competence in High Performance Computing CiHPC,
Springer, 2010

11. Matthias Schmidt, Sascha Fahl, Roland Schwarzkopf, Bernd Freisleben.
TrustBox: A Security Architecture for Preventing Data Breaches. In:
Proceedings of the 19th Euromicro Conference on Parallel, Distributed
and Network-based Processing (PDP), pp. 635–639, IEEE press, 2011

12. Katharina Haselhorst, Matthias Schmidt, Roland Schwarzkopf, Niels Fal-
lenbeck, Bernd Freisleben. Efficient Storage Synchronization for Live
Migration in Cloud Infrastructures. In Proceedings of the 19th Euromicro
Conference on Parallel, Distributed and Network-based Processing (PDP),
pp. 511–518, IEEE press, 2011

13. Matthias Schmidt, Lars Baumgärtner, Pablo Graubner, David Böck, Bernd
Freisleben. Malware Detection and Kernel Rootkit Prevention in Cloud
Computing Environments. In Proceedings of the 19th Euromicro Confer-
ence on Parallel, Distributed and Network-based Processing (PDP), pp.
603–610, IEEE press, 2011

14. Pablo Graubner, Matthias Schmidt, Bernd Freisleben. Energy-efficient
Management of Virtual Machines in Eucalyptus. In Proceedings of the 4th
IEEE International Conference on Cloud Computing (IEEE CLOUD),
IEEE press, 2011

15. Roland Schwarzkopf, Matthias Schmidt, Christian Strack, Bernd Freis-
leben. Checking Running and Dormant Virtual Machines for the Neces-
sity of Security Updates in Cloud Environments. In Proceedings of the
3rd IEEE International Conference on Cloud Computing Technology and
Science (IEEE CloudCom), pp. to appear, IEEE press, 2011

1.3 Organization of this Thesis

The rest of the thesis is organized as follows:

7

Chapter 1. Introduction

Chapter 2 introduces topics that lay out the fundamentals for this thesis. This
includes grid computing, virtualization and cloud computing.

Chapter 3 presents an analysis of the job submission workflow and exposes a
number of security issues for both host and network. Based on the analysis the
solutions presented in this thesis will be presented.

Chapter 4 presents solutions that solve the host related issues. The design,
implementation and evaluation of a lightweight kernel rootkit prevention mech-
anism and a malware detection engine in virtualized grids is presented.

Approaches that address network security issues are presented in Chapter 5.
This includes an approach for virtualized grids including dynamic firewalls and
a grid-enabled demilitarized zone. The chapter includes the design, implemen-
tation and experimental evaluations.

Chapter 6 presents experimental results not directly related to one specific
solution. This includes a survey on efficient distribution of virtual machine disk
images including encryption and multi-layer images. Elaborate measurements
about efficient storage synchronization conclude the chapter.

Finally, Chapter 7 concludes the thesis and discusses future work.

8

“You don’t live in a world all your own. Your brothers are here, too.”

Albert Schweitzer (1875–1965)

2
Fundamentals

2.1 Introduction

This chapter presents an introduction to the topics that lay out the funda-
mentals for this thesis. It covers grid and cloud computing, virtualization and
several components used for development.

The introduction of fundamental concepts starts with an overview of grid com-
puting in Section 2.2. This includes a short introduction to the Globus Toolkit,
the de-facto middleware, its architecture and the way how to submit compute
jobs. Furthermore, insights of the Grid Security Infrastructure are given.

A technology heavily used in this thesis is virtualization, which is introduced in
Section 2.3. After presenting the basic characteristics of the different types of
virtualization, a detailed view of the Xen Virtual Machine Monitor is presented.
The section concludes with insights on virtual machine live migration and the
libvirt api.

Cloud computing is introduced in Section 2.4. Since it consists of three different
layers, all three including a detailed description are described.

2.2 Grid Computing

Grid computing aims at providing resources (e.g., compute power, data) as
easily as electricity is provided through the power grid. It is quite difficult to
find an exact definition for grid computing. Many existing cluster or distributed

–9–

Chapter 2. Fundamentals

computing projects call themselves grid computing projects. One of the pioneers
of grid computing, Ian Foster, created a three point checklist [44] that further
defines the term:

I suggest that the essence of the definitions above can be captured
in a simple checklist, according to which a grid is a system that:

1) . . . coordinates resources that are not subject to centralized con-
trol . . . (A grid integrates and coordinates resources and users that
live within different control domains – for example, the user’s desk-
top vs. central computing; different administrative units of the same
company; or different companies; and addresses the issues of secu-
rity, policy, payment, membership, and so forth that arise in these
settings. Otherwise, we are dealing with a local management sys-
tem.)

2) . . . using standard, open, general-purpose protocols and interfaces
. . . (A grid is built from multi-purpose protocols and interfaces that
address such fundamental issues as authentication, authorization,
resource discovery, and resource access. As I discuss further be-
low, it is important that these protocols and interfaces be standard
and open. Otherwise, we are dealing with an application- specific
system.)

3) . . . to deliver nontrivial qualities of service. (A grid allows its
constituent resources to be used in a coordinated fashion to deliver
various qualities of service, relating for example to response time,
throughput, availability, and security, and/or co-allocation of multi-
ple resource types to meet complex user demands, so that the utility
of the combined system is significantly greater than that of the sum
of its parts.)

This three points describe the motivational goals of a grid. A grid controls
resources used to solve problems in a virtual organization (vo). A virtual
organization is either an individual or an organization willing to share their
resources with others [43]. A resource could be compute power, software or
storage. Service level agreements define how a member of a virtual organization
can access the resources. Furthermore, proper accounting and billing is needed
to satisfy all attending parties.

Current existing distributed computing paradigms only solve some of the points
mentioned above. While it is possible to exchange data and information, there
is no integrated solution to manage and control resources. This gap is filled by
grid computing. Researchers around the globe invented a number of protocols,
tools and services to build virtual organizations during the last years. This
ranges from security mechanisms, status and information protocols up to new
applications. Due to the dynamic resource allocation, grid computing enhances
the previous distributed computing in various ways. Unlike the traditional way,

10

2.2. Grid Computing

current grid systems expose the local compute resources to a larger number of
users via the Internet, using grid middlewares such as Globus [149], gLite [103]
or unicore [42].

2.2.1 The Globus Toolkit

The Globus Toolkit [149] (often called GT4) consists of a set of components
used to build a distributed system. The set contains web services, libraries and
tools to build custom extensions. Globus is operated by the Globus Alliance
consisting of academic institutes, US government agencies and companies like
ibm and Microsoft. The toolkit is released as open source, so it is easy to find
bugs or to contribute new software.

2.2.1.1 Globus Toolkit Architecture

The Globus architecture is divided in two parts: a server part offering services
and the appropriate client part. Various libraries exist to write own services,
either in C, Java or Python.

Globus Security is handled by the first component of Globus (as seen in the first
column in Figure 2.1). This topic is covered in a separate section, see below.

Data transfer and replication is managed by the second Globus component
(column two in Figure 2.1). Gridftp [1] is a protocol similar to the traditional
file transfer protocol (ftp) designed to exchange large amounts of data. It was
not sufficient to reuse ftp as it lacks supports for concurrent transfers, quality
of service parameters and security. Gridftp is coupled to the grid security
infrastructure, thus all connections are encrypted and authenticated. Globus
offers a built-in server and a client, but it also offers a set of development tools
to build own clients. Replicas, distributed copies of data, are managed by the
Replica Location Service (rls). It keeps track of all data and enables users
to search for distributed data. Users and services can register data after they
uploaded it into the grid. rls is decentralized, i.e. the registry is distributed
between multiple servers. Nevertheless, a centralized solution with only one
server is also possible.

Creation, management and deletion of compute jobs is handled by the Exe-
cution Management (third column). A distinction is drawn between real web
services and pre web services. Pre web services are a set of Unix tools to execute
jobs. A further description can be found in Section 2.2.1.2.

The Information Services as seen in the fourth column can be used to control
and search resources. Using the Monitoring and Discovery System (mds) a
user can find out which resources are part of a virtual organization. Part of the
mds are the mphIndex- and the Trigger service. Collecting information (e.g.,
processor load, virtual memory usage, number of jobs) is the job of the index

11

Chapter 2. Fundamentals

Community
Authorization

Delegation

Authentication
Authorization

Pre-WS
Authentication
Authorization

Credential
Management

Data
Replication

OGSA-DAI

RFT

GridFTP

Replica
Location

Community
Scheduler
Framework

Grid
Telecontrol

Protocol

Workspace
Management

GRAM

Pre-WS
GRAM

WebMDS

Index

Trigger

MDS2

Python
WS Core

C
WS Core

Java
WS Core

C Common
Libraries

XIO

W
S

C
om

po
ne

nt
s

N
on

-W
S

C
om

po
ne

nt
s

Security Data
Management

Execution
Management

Information
Services

Common
Runtime

Figure 2.1: Globus Toolkit 4: Components. Source: [149]

service. All information is available to the user over an interface. Triggering
actions upon specific conditions (e.g., limited hard disk space) is done by the
trigger service. Finally, Webmds offers a web site with all collected information.

The cores, written in C, Java and Python are the central components of Globus
(fifth column). Using this cores it is possible for a grid developer to write his
or her own web and wsrf (Web Service Resource Framework) services in the
programming language of one of the cores.

2.2.1.2 Grid Resource Allocation and Management

Globus uses the Grid Resource Allocation and Management (gram) interface
to initialize, execute and monitor jobs. While it is possible to execute jobs
directly, gram is used when reliable execution, monitoring, credential checking
and communication with different batch schedulers are required.

After a user launches a job via gram, he or she receives an Endpoint Reference
(epr). It is needed to query the job state after launch or to delete the job. gram

12

2.2. Grid Computing

itself is not a scheduler (like e.g. Torque, pbs or sge), it is only a communication
proxy between Globus and the real scheduler.

Users can launch jobs directly on the command line:

1 $ globusrun-ws -submit -c -- /bin/uname -a
2 Submitting job...Done.
3 Job ID: uuid:63802811-6fb1-412e-a65a-e3af47e662dd
4 Termination time: 02/24/2011 10:53 GMT
5 Current job state: Active
6 Current job state: CleanUp
7 Current job state: Done
8 Destroying job...Done.

Listing 2.1: Sample job submission via Globus command line utilities

While this is useful for debugging, it is often desirable to specify additional
information like environment variables or resource requirements. This can be
achieved using a rsl file, which is a xml file. By sticking to the rsl schema it
is possible to describe a job in all details.

1 <job>
2 <executable>/bin/uname</executable>
3 <directory>/tmp/</directory>
4

5 <argument>-a</argument>
6

7 <environment>
8 <name>SHELL</name>
9 <value>/bin/sh</value>

10 </environment>
11

12 <stdin>/dev/null</stdin>
13 <stdout>${GLOBUS_USER_HOME}/uname.stdout</stdout>
14 <stderr>${GLOBUS_USER_HOME}/uname.stderr</stderr>
15

16 <count>1</count>
17 </job>

Listing 2.2: rsl description of a sample job

gram remains active during the job execution. This enables the user to query
the job state or to send a signal. gram is tightly coupled to two other compo-
nents of Globus, the Reliable File Transfer (rft) service and Gridftp. Both
handle the transfer of job input and result data before and after the execution,
i.e. if a job is executed on multiple nodes Gridftp can be used to to transfer
the job data in advance.

2.2.2 Grid Security Infrastructure

The Grid Security Infrastructure (gsi), formerly known as Globus Security In-
frastructure, offers basic security mechanisms. It focuses on three main topics:

13

Chapter 2. Fundamentals

authentication, authorization and confidentiality. An overview is shown in Fig-
ure 2.2. The two diagrams on the left hand side show message-level security
(with certificates and classical authentication) and the remaining one on the
right hand side shows transport-level security (only using certificates).

WS-Security
WS-SecureConversation

X509 End Entity
Certificates

SAML and grid-mapfile

X509 Proxy Certificates/
WS Trust

SOAP

TLS

X509 End Entity
Certificates

SAML and grid-mapfile

X509 Proxy Certificates/
WS Trust

SOAP

WS-Security

Username
Password

grid-mapfile

SOAP

Message-level Security with
X.509 Credentials

Message-level Security with
Usernames and Passwords

Transport-level Security with
X.509 Credentials

Authorization

Authentication

Delegation

Message
Protection

Message
format

Figure 2.2: Grid Security Infrastructure overview. Source: [149]

Authentication is achieved using certificates. Every user owns a certificate
signed by a trusted certificate authority (ca). The ca can be either a so-
called simpleca (self-signed ca created by the local Globus administrator) or
a real one with a proper registration authority (this is common in academic
and industrial grids). Globus can create proxy certificates on demand to enable
long running jobs. Without using proxy certificates, a user would have to enter
his or her certificate password every time it is forwarded to another Globus
component (e.g., from Gridftp to gram). As this is not feasible, a proxy
certificate is used. A proxy is derived from the user’s certificate and consists
of a new certificate and a private key. It is signed by the owner, rather than a
ca. Proxies have limited lifetimes meaning that the proxy should no longer be
accepted by others after the lifetime expired. To support simple grid services,
Globus can authenticate a user by his or her user name and a password. While
this enables easy debugging and rapid prototyping, one cannot use advanced
features such as delegation.

Authorization administers the permissions of a user. The simplest solution is
to use a grid-mapfile. This plain text file contains a mapping between the
users distinguished certificate name (dn) and the local Unix user account. Thus,
authorization is delegated to the underlying operating system. Furthermore,
gsi can use access control lists for services and the Security Assertion Markup
Language (saml) protocol.

Confidentiality, authentication and integrity checking on the transport layer is
done using the Transport Layer Security (tls) protocol. Since Globus needs
certificates to run properly, these certificates are also used to tls authentication.
Additionally, soap messages can be secured with the WSSecureConversation
specification.

14

2.3. Virtualization

GRAM Security

gram also requires a proper certificate (or a proxy certificate) prior to job
execution. Furthermore, it relies on the grid-mapfile to map grid users to local
Unix accounts.

2.3 Virtualization

Virtualization is the logical separation between services and the underlying
physical resources. It is possible to run entire operating systems, applications,
or services independent of the underlying system. Virtualization also provides
the ability to run the mentioned services on different physical platforms, e.g. it
is possible to execute PowerPC binaries on the Intel architecture. For detailed
information the reader is referred to the book by von Hagen [166].

2.3.1 Application and Desktop Virtualization

The most prominent example for the application level virtualization is the Java
programming language. Bytecode produced by the Java compiler runs on the
Java virtual machine. Thus, it does not matter if the source and target platform
differ, i.e. the bytecode was compiled on a 64-bit machine while it is executed on
a 32-bit machine. Consequently, application virtualization describes the process
of compiling source code into machine-independent byte code.

The ability to display a desktop from one computer on another computer is
called desktop virtualization. Prominent examples are Virtual Network Com-
puting (vnc), thin clients such as Microsoft’s Remote Desktop and associated
Terminal Server products.

2.3.2 Network and Storage Virtualization

Sometimes it is desirable to wrap the underlying, physical network and provide
a logical view to the system and/or user. Adding an encrypted layer to the
network protects the data from malicious users. Furthermore, an encrypted
connection hides the intermediate router as it is presented as a one-to-one con-
nection to the user. Enterprise level concepts such as Virtual Private Networks
(vpns) allow companies to logically connection physically separated sites.

Just like network virtualization, storage virtualization is a logical abstraction
of physical storage and known since many years. As the name suggests, logical
volume managers as used in Linux or bsd are a prominent example. A raid
over one or more disks is also a known example.

15

Chapter 2. Fundamentals

2.3.3 Server and Machine Virtualization

The ability to run a whole operating systems inside a container is called server
virtualization or machine virtualization. The container is named virtual ma-
chine. Full-virtualization allows the operating system to run unmodified (as in
source code changes) because all physical hardware is abstracted. Contrary, a
technique called para-virtualization allows faster execution of the virtual ma-
chine’s instructions, but it also requires modifications to the operating sys-
tem kernel. Applications benefit from this type of virtualization as they can
run unmodified and have a entire software stack (e.g., libraries, dependencies)
available. Xen is an example for para-virtualization and Virtualbox for full
virtualization.

2.3.4 System-Level or Operating System Virtualization

System-level virtualization allows to run multiple, logically distinct system en-
vironments on a single instance of an operating system kernel. It is based on
the change root concept available on all Unix systems. Virtualization solutions
such as Freebsd’s chroot jails, Solaris Zones, and Virtuozzo are all examples of
system-level virtualization.

2.3.5 Xen Virtual Machine Monitor

The Xen hypervisor was first created by Keir Fraser and Ian Pratt as part of
the Xenoserver research project at Cambridge University in the late 1990s. In
2003 Barham et al. [8] presented the Xen Virtual Machine Monitor (vmm). In-
stead of using full virtualization, they use a concept called para-virtualization.
Although full virtualization offers a number of benefits, it also has several draw-
backs, especially when used with the Intel x86 architecture. Robin et al. [110]
presented a detailed study about the virtualizability of all 250 Intel Pentium
processor instructions. Seventeen instructions did not meet the requirements
needed by a secure vmm. Several virtualization solutions, like the VMWare gsx
Server [162], circumvent these problems in return of higher costs and reduced
performance.

Para-virtualization attempts to avoid the drawbacks of full virtualization by
presenting a vmm that is similar, but not equal to the underlying hardware.
The approach promises higher performance, but it requires modifications to
the guest operating system. This prevents that proprietary operating systems
(source code is not publicly available) cannot run as Xen guest operating system
without special hardware support. In the beginning it was not possible to run
Microsoft Windows in a Xen virtual machine, nowadays it is possible, because
all new processors have special hardware instructions, like Intel Virtualization
Technology (Intel vt) [157] or amd Virtualization (amd-V) Technology [3].

16

2.3. Virtualization

Architecture

A Xen system consists of three components: the hypervisor, the kernel and
userland applications. Usually, an operating system kernel runs in the proces-
sor’s Ring 0. Under Xen, instead, a kernel runs in Ring 1 (on 32 bit hardware)
as shown in Figure 2.3. Running in Ring 1 means that the kernel still can access
memory allocated to applications that run in Ring 3, but it is protected from
other kernels or applications. The hypervisor itself runs in Ring 0 and is thus
protected from the former mentioned.

1.7. The Xen Architecture 17

and 2, so they wouldn’t be missed. Unfortunately, the virtualization community
was among those affected.

! " # $! " # $

%&'()* +&,&)(,'-&.(/*0

123*,)(45, 6*,7*. 833.(9&'(574 :7-4*0

Figure 1.3: Ring usage in native and paravirtualized systems

In the absence of rings 1 and 2, it was necessary to modify Xen to put the
operating system in ring 3, along with the applications. Figure 1.4 shows the
difference between the two approaches. This approach is also taken by Xen on
other platforms, such as IA64, which only have two protection rings. x86-64 also
removed segment-based memory protection. This means that Xen has to rely on
the paging protection mechanisms to isolate itself from guests.

From the perspective of a paravirtualized kernel, there are quite a few differ-
ences between running in Xen and running on the metal. The first is the CPU
mode at boot time. All x86 processors since the 8086 have started in real mode.
For the 8086 and 8088, this was the only mode available; a 16-bit mode with ac-
cess to a 20-bit address space and no memory management. Since all subsequent
x86 machines have been expected to be able to run legacy software, including
operating systems, all IBM-compatible PCs have started with the CPU in real
mode. One of the first tasks for a modern operating system is to switch the CPU
into protected mode, which provides some facilities for isolating process memory
states, and allows execution of 32-bit instructions.

Because Xen is responsible for system start, it performs this transition itself. If
it did not, it would not be able to isolate itself from interference by guest operating

Figure 2.3: Ring usage in native and paravirtualized systems. Source: [18]

Guest virtual machines in Xen are called domain U (domU) and run under the
hypervisor’s control. The U stands for unprivileged. Upon system boot, Xen
starts up a privileged domain, called the domain 0 (dom0). The dom0 is just
another domU, but with enhanced privileges. Device drivers are provided by
the operating system running in the dom0, as Xen does not include any device
drivers by itself. Therefore, the dom0’s integrity needs special protection. An
unprivileged domain is not allowed to access the hardware directly, all requests
are routed through the dom0. Nevertheless, it might be useful to grant access to
devices to a domU in certain situations (e.g., direct access to network hardware
gives a tremendous speedup).

2.3.6 Live Migration

Live migration is the task of migrating a virtual machine from one physical node
to another one while it is running. The process includes the virtual disk image’s
transfer, cpu registers, content of virtual memory and some other minor things.
Usually, the disk image is stored on shared storage, hence no transfer is needed.

17

Chapter 2. Fundamentals

Since live migration is used by a component developed during the course this
thesis, a short introduction follows.

One of the first papers describing live migration was written by Clark et al. [21].
They implemented high-performance migration support for Xen, reducing the
downtime of a virtual machine running Quake 3 server to 60 ms. They achieve
this using a pre-copy approach in which pages of memory are iteratively copied
from the source machine to the destination host, all without ever stopping the
execution of the virtual machine being migrated. Their approach finally pauses
the virtual machine, copies any remaining pages to the destination, and resumes
execution there.

Another approach is taken by Hines et al. [56]. Contrary to Clark, they propose
post-copy based live migration for virtual machines. Post-copy migration defers
the transfer of a virtual machine’s memory contents until after its processor
state has been sent to the target host. They facilitate the use of post-copy
with adaptive pre-paging techniques to minimize the number of page faults
across the network. Furthermore, they propose different pre-paging strategies
and quantitatively compare their effectiveness in reducing network-bound page
faults.

2.3.7 Libvirt Virtualization API

Several components developed during the course of this thesis use the libvirt
library. According to the website [29], libvirt is the following:

Libvirt is collection of software that provides a convenient way to
manage virtual machines and other virtualization functionality, such
as storage and network interface management. These software pieces
include an api library, a daemon (libvirtd), and a command line
utility (virsh).

An primary goal of libvirt is to provide a single way to manage mul-
tiple different virtualization providers/hypervisors. For example,
the command ’virsh list –all’ can be used to list the existing virtual
machines for any supported hypervisor (kvm, Xen, VMWare esx,
etc.) No need to learn the hypervisor specific tools!

libvirt offers language bindings for a variety of languages, among others for the
Python programming language, in which most components of this thesis are
written in. The example in Listing 2.3 depicts how to use the library to show
all running virtual machines on a physical host.

1 import libvirt
2 import sys
3

4 conn = libvirt.openReadOnly(None)

18

2.4. Cloud Computing

5 if conn == None:
6 print ’Failed to open connection to the hypervisor’
7 sys.exit(1)
8

9 try:
10 dom0 = conn.lookupByName("Domain-0")
11 except:
12 print ’Failed to find the main domain’
13 sys.exit(1)
14

15 print "Domain 0: id %d running %s" % (dom0.ID(),dom0.OSType())
16 print dom0.info()

Listing 2.3: Libvirt example: show all running virtual machines

2.4 Cloud Computing

Cloud computing evolved in the last years from a niche product to one the
drivers of the it industry. It is an evolutionary design derived from its ancestors
grid [43] and utility computing. Cloud computing offers the same flexibility as
utility computing when renting resources such as cpu power or storage and
the same flexibility as grid computing when a user submits a job. While cloud
computing is a widely used term, there is still no unique definition for it.

2.4.1 Architecture

The most common way to describe cloud computing is to divide it into three
different layers as shown in Figure 2.4.

Infrastructure as a Service

Software as a Service

Platform as a Service

Figure 2.4: Layered cloud computing architecture

Application Layer

The uppermost layer contains the applications running in the cloud. This is also
called the Software as a Service (SaaS) layer. Contrary to classical applications
installed on the local hard disk, cloud enabled applications or services run

19

Chapter 2. Fundamentals

within the cloud. This means that the user has to connect to an application in
order to use its functionality. There are some cloud applications that support
an offline mode, but that’s more exception than rule. Prominent examples are
Google Documents, Microsoft Skydrive Office Web Apps and Exchange Online.

Platform Layer

Also called Platform as a Service (PaaS) this layer delivers a computing plat-
form and a solution stack as a service. Computing platform describes some
kind of application framework that allows software (here cloud services) to run.
A solution framework is a set of libraries and components needed to deliver a
fully functional software solution. Prominent examples are Microsoft Azure or
Google’s App Engine.

Infrastructure Layer

Cloud infrastructure services or often called Infrastructure as a Service (IaaS)
represents the bottom layer of the cloud stack. In most cases, infrastructure here
means virtualized resources, like Xen virtual machines as offered by Amazons
Elastic Compute Cloud (Amazon ec2) [2]. The benefits are obvious: usually an
it company has a fix stock of hardware resources to compute their own tasks
or tasks from their customers. They need to pay all additional costs like power,
cooling and human resources (such as server administrators) on their own. They
might even need need to provision additional resources for peak loads such as
during Christmas time. These additional resources are often unused, because
the overall capacity is to high most of the time. Using remote infrastructure
resources in the cloud it is possible for a company to rent additional power
on-the-fly, i.e. during peak load times such as mentioned above. Once the high
utilization period is over, the resources are returned. Thus, there is no need to
have unused computing power on hold until they are actually used.

Furthermore, the pay-as-you-go idea as empowered by the cloud offers great
flexibility. If research institutions or companies need to get results quickly,
they could easily rent thousands of instances to speed up their computation,
given that their software supports it.

2.4.2 Deployment Models

A cloud is a collection of resources in a datacenter, both software and hard-
ware. If the cloud resources are available to customers, e.g. like Amazon ec2,
it is called a public cloud. Instead, a private cloud refers to resources in a
private datacenter, e.g. owned by a company and not-accessible to the general
public. If a datacenter contains a private and public cloud, interconnected by
standardized technologies, it is called a hybrid cloud [5].

20

2.5. Summary

2.4.3 Security Risks

Contrary to traditional computing paradigms like cluster computing where the
client (here the user) had nearly full control over his or her data, cloud com-
puting lead to less control. Services are no longer provided by an in-house
computing center, they are provided by an external vendor, i.e. it is by default
unknown where the services are executed and where the data is stored. Thus,
cloud computing poses a number of security risks, e.g., abuse of cloud comput-
ing services, malicious insiders, shared technology vulnerabilities, data loss and
leakage, account, service and traffic hijacking and data lock in [161, 84, 13].

2.5 Summary

In this chapter, several topics which lay out the fundamentals for this thesis
were presented. This included an overview of the main computing paradigms
representing the driver for the upcoming approaches, grid computing. Since
virtualization is used by the solutions in this thesis, a detailed introduction
was given. Finally, cloud computing as the successor of grid computing is
introduced.

21

“I want to do it because I want to do it.”

Amelia Earhart (1897–1937)

3
Security for Virtualized Grid Computing

Environments

3.1 Introduction

This chapter outlines the motivation for this thesis. The first section shows the
workflow involved in submitting a job to one or more computing sites. The
workflow represents the starting point for the writing of this thesis. Then, the
workflow is split up into several parts, starting from the initial submission and
continuing on through the point of the actual execution. Each part is then
analyzed for possible security risks. The final section of this chapter introduces
the proposed solution of this thesis.

The focus of this thesis is on securing the infrastructure of grid computing
environments. The term infrastructure refers to the platforms needed to exe-
cute arbitrary services. A service could be either a service that in turn hosts
other services (e.g., a service container) or an application. Infrastructure in
traditional grid computing refers to the physical machines, equipped with an
operating system (Linux in almost all cases), while infrastructure in the context
of cloud computing means a operating system virtualized environment. Fur-
thermore, infrastructure also includes the connection between a set of operating
systems, either real or virtual.

–23–

Chapter 3. Security for Virtualized Grid Computing Environments

3.2 Introduction to Job Execution

The motivation for the components designed within this thesis stems from the
process of how to submit a job to one or more computing sites. A job in the
context of this thesis consists of the following parts:

• Description: Meta-information describing the job in detail, such as re-
source requirements (the desired number of cpu cores to run on, the
amount of virtual memory that is needed), one or more pointers to the
file system where the actual application and dependencies are stored, in-
formation about the submitting user and, finally, environmental variables
needed to run. Depending on the middleware used, the information could
be encoded in xml.

• Credentials: It must be impossible to submit a job without proper cre-
dentials. In the grid context, the term credentials refer to a unique X.509
certificate per-user, signed by a trusted certificate authority (ca). In
the German national D-Grid this could be either the dfn-Verein or the
GridKa in Karlsruhe. In terms of cloud computing, the credentials heav-
ily depend on the used IaaS environment. In the case of Amazon ec2 or
Eucalyptus, the credentials consist of the account number, an access key
and a secret access key.

• Application: An application might be a single instance, non-parallel
binary or a complex, distributed, service-oriented application.

Figure 3.1 outlines a typical scenario common in traditional grid computing.
It presents the path a job follows (shown in green) from the user to a site
where it is executed. In this stage, a job consists of a description and the user’s
credentials. The first step involves the submission of a job to a meta-scheduler.
A meta-scheduler, such as Gridway [58], distributes the load and thus all jobs
to one or more remote sites. The meta-scheduler receives continuous reports
about the current utilization from all participating sites. If one site is heavily
loaded, it chooses another site for execution. Thus, after the job arrives, the
meta-scheduler chooses between one or more grid sites and forwards the job
description accordingly.

The receiver at the site is a software on the so-called head node. In the case of
grid computing, this is a middleware like Globus Toolkit [149], unicore [42] or
gLite [103]. In Figure 3.1 and in the remainder of this thesis, the Globus Toolkit
(often called GT4) represents the connection endpoint. Globus processes the
request and executes it if the request is valid. This decision depends on several
factors. First, the submitting user must be known to the site and his or her
certificate must be valid (valid means signed by a trusted ca and not expired).
Furthermore, the target application must be either installed on all computing
nodes where the actual execution takes places or it must be fetched from a

24

3.3. Analysis of the Job Execution Workflow

SiteUser

Meta Scheduler

Site
node

node

node

node

Head node

node

node

node

node

Head node

submits job
submits job

. . .

Figure 3.1: Job submission and executions initiated by a user. A meta-scheduler
distributes the job to one of the two sites and it is executed on the site’s nodes.

storage location specified in the job description. Execution is declined if one or
more of the requirements are not met.

Prior to the actual execution, the job description is forwarded from the middle-
ware to another component, the job scheduler (also known as batch or cluster
scheduler). The scheduler has information about all registered computing nodes
present on the site. Further, all nodes report continuously to the scheduler. A
report includes meta-level information about the system, such as current cpu,
ram and storage utilization and the number of running jobs. Scheduling deci-
sions are based upon this information, i.e., a new job is likely to be executed
on a less loaded node than on an overloaded node. The execution of the actual
job application is the second-to-last step of the job submission process. Finally,
after the execution is terminated, a report and the results are made available
to the user.

3.3 Analysis of the Job Execution Workflow

In this section, a security analysis of the workflow presented above is shown.
The workflow is split into several parts that are analyzed in detail.

25

Chapter 3. Security for Virtualized Grid Computing Environments

3.3.1 Terminology

Various terms regarding information security are used in a number of different
and sometimes conflicting ways in the literature. This thesis uses the following
definitions (in conformance with the iso/iec 27000 standards on information
security [61, 62, 63]):

• Asset: Anything that has value to an organization. This includes infor-
mation, software, hardware and knowledge.

• Attack: The attempt to destroy, alter, disable, steal or gain unauthorized
access to or make unauthorized use of an asset. An attack might be per-
formed by an individual or a group of individuals. The risk of a successful
attack increases or decreases, depending on the attacker’s motivation.

• Authentication: The act of verifying that an entity is what it claims
to be. A prominent real-world analogy is the proof of identity in a bank,
where a customer shows his or her photo id to the bank teller. In the
context of grid computing, the user has to present valid credentials to a
middleware.

• Authorization: After an entity is successfully authenticated, it must be
determined what additional information the entity is permitted to access
(e.g., read, write, etc).

• Confidentiality: The term used to prevent the disclosure of information
to unauthorized individuals or systems.

• Information Security Risk: The potential that a threat will exploit a
vulnerability of an asset or group of assets and thereby cause the organi-
zation harm.

• Integrity: Data cannot be modified undetectably.

• Threat: Potential cause of an unwanted incident, which may result in
harm to a system or organization. This could be either a human or an
act of nature.

• Vulnerability: A weakness which can be exploited by a threat. This
could a software bug (e.g., a buffer overflow) or a hardware bug (e.g., a
bug in Intel processors leading to Smart Management Bus access [107]).

The following paragraphs describe the steps needed to execute a job on one
or more sites providing computational power. These steps, although relatively
abstract in their description, unveil a number of security risks.

26

3.3. Analysis of the Job Execution Workflow

3.3.2 Analysis of the Head Node Communication and Storage

Figure 3.2 shows the first steps of the job submission process. Only one site
is displayed in the figure, nevertheless this analysis also applies to a multi-site
scenario.

User

Meta Scheduler

Site

Head node

. . .

. . .

submits job

Scheduler

Torque

. . .

Figure 3.2: Detailed view of a job submission process. An appropriate site
is chosen by the meta-scheduler and the middleware acts as the first point of
contact.

Although the figure includes a meta-scheduler, the analysis will omit the sched-
uler as it is only a gateway for communication and decisions between the user
and the real head node. Thus, the head node is the primary endpoint of com-
munication for the user. This is also the case if no meta-scheduler at all is
used. Communication between the user and the head node is secured with the
Grid Security Infrastructure (gsi, see Section 2.2.2 on page 13). gsi includes
encryption of the network traffic with the Secure Socket Layer (ssl) protocol
and proper authentication. Authentication is done by checking if the user’s
X509 certificate is signed by a trusted ca. Authorization is done by checking if
the user’s Distinguished Name (dn) is present in a local, so-called grid mapfile.
This is a mapping between dns and local accounts. Depending on the account
or the group membership, the user gains permission to access specific resources
on the site. Besides the grid users, there might be also local users, i.e., in-house
users who access the compute nodes directly and circumvent the head node.

After the authentication and authorization steps are completed successfully, the
input data (if not already present) is transferred to the head node. A common
way to do this is to specify a Gridftp location in the job description and let
the middleware fetch the data automatically. Thus, the job description and the
job data are the assets involved in this step. While gsi is sufficient for securing

27

Chapter 3. Security for Virtualized Grid Computing Environments

both on the wire, the data still remains unencrypted on the head node’s (or
any other node’s) hard disk.

This poses a major security risk and presents the head node as a primary attack
target. Furthermore, the middleware installed even increases this problem. Like
most complex it systems, these middleware solutions exhibit a number security
problems [148, 147, 53, 145], which open the entire system to attack. Unfortu-
nately, these security holes not only expose users to attack, but also existing
local users who, up until now, have worked in a local and secure environment.
This changing nature of grid and cluster computing and the new threats arising
thereof is further discussed in articles by Smith et al. [125, 124].

As a result, large computing sites are an attractive target for intruders since
they offer standardized access to a large number of machines, which can be
misused in various ways. The considerable computing power can be used to
break passwords and the large storage capacity is perfect for storing and sharing
illegal software and data. The generous bandwidth of the Internet connection
is ideal for launching Denial-of-Service (DoS) attacks or for hosting file sharing
services, to name just a few attacks. However, more critical than these resource
attacks are the attacks on customer data. If a resource provider can not ensure
the end-to-end integrity and safety of customer data, widespread industrial
adoption of technologies like grid will not be possible.

Summary

While gsi takes care of shielding the user’s assets on the wire, it does not
prevent the middleware on the head node from storing them without encryption.
Furthermore, a middleware’s complexity exposes the head node to a number
of attacks. To summarize, a more sophisticated solution is needed to raise the
barrier for possible attacks and to make the head node itself and the user’s
assets secure.

3.3.3 Analysis of the Host

The last section illustrates possible vulnerabilities that can occur during the first
step of the job execution workflow, especially with the head node. Consequently,
this section focuses on possible host vulnerabilities. Host refers to either the
head node or any other node. Host security involves countless ways to attack
a system. Since it is impossible to incorporate all of these into this work, this
thesis presents two possible scenarios of attack.

The head node as a primary target is likely to be compromised if no additional
precautions are taken (some will be described in the context of this thesis).
Assuming that a node has been compromised, supplementary mechanisms are
needed to mitigate the outcome of the intrusion. To persistently retain the

28

3.3. Analysis of the Job Execution Workflow

control of the attacked system, attackers typically install malware in order to
recover full control after rebooting the computing system. This kind of attack
is commonly discussed as a strong intrusion attack, while temporary attacks
between two operating system startups are referred to as weak intrusion attacks
[15]. The software toolkits that are installed within a strong intrusion attack
are commonly called rootkits.

Besides preventing an attacker from maintaining access to the system (even
after the security leak is repaired), it is also important to ensure that no mal-
ware binaries remain on the host. Malware refers to a wide range of malicious
software, such as Trojan horses (used to spy on user’s passwords), worms or
viruses. Furthermore, they also apply to non-compromised nodes as well. It
is desirable for a site administrator to know which applications are currently
running on his or her system.

Summary

The head node in particular, as well as all other nodes, represent a target for
a possible attacker. Since it is impossible to implement unbreakable security
mechanisms, it is important to install mechanisms that mitigate the outcome of
a possible compromise. A compromise could result in the installation of a kernel
rootkit or malware binaries. In addition to preventing a successful compromise,
it is also important to prevent malware from being installed to a given system
(either intentionally or unintentionally).

3.3.4 Analysis of the Job Execution

After the middleware processes the incoming information about a job, it hands
over the job to the local scheduler. Based on internal algorithms, the scheduler
choses a number of nodes and executes the application. Here, a node means a
physical machine with an operating system, such as Linux.

Thus, the execution takes place on the actual system together with other run-
ning jobs (if any). Running applications are represented by one or more op-
erating system processes. Consequently, all processes have meta-information,
e.g. a process id, used resources and executed application. Since multiple job
applications can run on the same node, it is possible for a malicious application
to gather information about another running application. This includes the
mentioned meta-data. Further, in the case of a misconfiguration, this might
include the application data as well.

Figure 3.3 shows an example of how multiple jobs are executed on the same
node. A new job (shown in green) is processed on the head node and three
instances are executed on two nodes. Three other jobs instances (red and
blue) are running at the same time as the green job. A malicious red or blue

29

Chapter 3. Security for Virtualized Grid Computing Environments

Site

Grid Head node

node

node

node

nodeScheduler

Torque

Figure 3.3: Multiple job applications executed on shared resources without any
shielding.

application could gather information about the green job. In terms of assets,
the most important parts of a job are the application itself, the input data and
the results. Both crash test model data of a new prototype car or a custom
fluid simulation suite represent intellectual property worth substantial amounts
of money; thus they need to be protected. A customer will not install his or
her own software containing intellectual property on remote resources if the
provider cannot guarantee the security. Naturally, most customers are more
concerned with the security of their own application and spend less time on the
actual operating system.

Job Application Installation

Another issue that arises is the installation and maintenance of the job appli-
cation itself. This can be done in a number of ways. If the software does not
require root access to be installed and the user has a local login, the user can
log on to each site and manually install the software in his or her user account.
If the user does not have login right (which is quite often the case), the user
is forced to copy the application’s source code onto the site using Gridftp and
then configure and compile the software using batch commands submitted as
grid jobs via ws-gram [45]. This is a painstaking way to install software since
each batch command (i.e. ./configure && make && make install) is submitted
as a grid job and scheduled by the cluster scheduler. Outputs from the com-
mands can be returned as the result of the given job or can be fetched with
Gridftp. Anyone who has installed moderately complex software on foreign
machines can imagine the difficulties involved in installing software in this way,
as it can take many iterations to meet all library dependencies.

The state of the art grid fares even worse when software is used that is not
available in source code and/or requires root privileges to install (any software

30

3.3. Analysis of the Job Execution Workflow

supplied as a Debian or RedHat package requires root permissions to install
since the package managers require root permissions to run). In these cases,
the users cannot install the software on their own, rather the administrators of
the local site must be asked to do it for them. This is an administrative hassle,
not to mention the security nightmare involved in granting any unknown user
software root privileges; thus, this will never happen. The installation process
is made even more complicated if the application should offer custom service-
oriented interfaces, for these custom services need to be hosted by the grid
middleware and as such should require administrative rights to be installed and
run with the same rights as the rest of the grid middleware.

Summary

Shared job execution as found in traditional grid computing poses a number of
security vulnerabilities. A malicious application could gather the meta-data of
other applications running on the same resource. Since job input data as well
as the results both represent intellectual assets worth substantial amounts of
money, it is important to protect them. Besides the issue with data protection,
the use of shared resources also includes the hassles of how to install an appli-
cation on one or more sites. If the installation is left to the user, this might lead
to installation experiments, which could result in an enormous amount of soft-
ware, possibly containing unknown security vulnerabilities. If an administrator
installs software provided by the users, this might lead to possible security risks
as the software could be either vulnerable or malicious.

3.3.5 Analysis of Multi-Site Computing

Multi-site computing as already seen in Figure 3.1 is one of the big advantages
of grid computing. A meta-scheduler decides about on which site the job is
executed. While this might not guarantee the fastest execution, it prevents
over-utilization of one site and under-utilization of another.

However, the fact that grid nodes are usually not accessible from the Internet
and thus cannot host service-oriented applications hinders the adoption in the
business sector, which is greatly interested in the service-oriented computing
paradigm. Most grid nodes are kept in private networks, because grid comput-
ing evolved from cluster computing, which does not have the need for public
nodes. Simply making the nodes of the grid-backend clusters public is not a
viable option, since public nodes would clash with the requirements of the tra-
ditional batch-job oriented grid and cluster use. Batch-job and service-oriented
computing paradigms clash because submitting batch jobs only requires a pub-
licly accessible head node, while the computing nodes can be operated in a
private network, reducing the risk of an external attack. Service-oriented grid
applications, on the other hand, require a more complex and dynamic setup

31

Chapter 3. Security for Virtualized Grid Computing Environments

with accessible compute nodes, which would also endanger all other users on
those resources.

If the nodes are accessible to the public via the Internet, new threats arise:

• Internal attacks against other users: A malicious user could try to
remotely compromise other nodes in order to gain sensitive data or corrupt
the work of other users. This can be achieved by exploiting software
vulnerabilities. To cope with this threat, users must be carefully shielded
from each other.

• Internal attacks against the infrastructure: This includes attempts
to corrupt parts of the infrastructure or attacks against particular ma-
chines (e.g. the head node).

• External attacks against the computing or infrastructure nodes.
Giving all nodes publicly accessible ip addresses also means that the nodes
can be accessed from everywhere in the world. This includes valid con-
nection requests from trusted users and infrastructure services as well
as malicious connection requests trying to compromise the node or gain
access to sensitive data.

A Sample Multi-Site Application

A sample application that demonstrates the communication requirements of
fine-grained service-oriented applications is a multimedia analysis application
that runs face and text detection algorithms on confidential video material.
The application consists of several grid services that pre-process and analyze
large video files. An input video is split into several smaller parts to facilitate
parallel execution of the analysis processes. The analysis consists of a face
detection algorithm that includes several other algorithms. Every frame of a
video snippet is analyzed to find shapes that look like faces. Every face that
appears and the length of its appearance are stored, making it is possible, for
example, to determine the total time that different characters appear in the
material. Depending on the result of a frame’s analysis, some deeper analysis
might be needed. For instance, if a face was detected, a face recognition service
can be called. A video splitter service splits the video into many parts. A face
detection service is then run on multiple nodes. Depending on the results of the
face detection run, a deeper analysis is performed. Finally, the partial results
of all nodes are collected and merged using a result merger service. For more
information on the video analysis algorithm, the reader is referred to Ewerth et
al. [37].

All connected resources of the presented application are fully accessible if no
firewalling technology is used. The classical approach to solving this problem is
an all-or-nothing approach that denies or allows all users access to a resource.
An Internet connection (if any) is provided by an externally accessible head

32

3.4. Methods for Infrastructural Security in Virtualized Grids

node. The same applies to node access. In most cases, users are not allowed
to log into any of the nodes. This widely used scenario hinders the use of
the full service-oriented grid potential. A multi-site, parallel application where
all running instances need to share data would not run due to the network
restrictions.

Summary

Being able to execute an application on multiple remote sites is one of the big
advantages of multi-site grid computing. Nevertheless, this is not possible on
most of the sites because the nodes are kept private and not accessible to the
outside world. Once this changes, proper mechanisms to shield the nodes as well
as the data need to be in place. While this section focuses on grid computing,
network security is also an issue for cloud computing.

3.4 Methods for Infrastructural Security in Virtualized Grids

The following sections outline the approaches that will be presented in this
thesis. Since this thesis focuses on infrastructure security, a number of security
risks related to other areas of grid computing have been omitted. This includes,
for example, vulnerabilities of services or service containers. Furthermore, the
security analysis is derived from the presented job workflow common in the
German D-Grid. While this workflow is very similar to workflows used by
other academic or commercial grids, it might contain singularities. Several of
the technologies used in this thesis are widely known and mature, e.g. operating
system virtualization and firewalls and in combination form the novel concept
of virtualized grid computing.

Trusted Computing Base

A system’s trusted computing base (tcb) consists of hardware and software
components that are critical to its security. Vulnerabilities inside the tcb are
an information security risk, which could lead to an attack that itself jeopar-
dizes the security properties of the entire system. The following approaches are
based on the standard assumptions made in most other virtualization security
architectures [49, 50]. The bios, the initial boot loader, and the virtualization
hypervisor are all part of the trusted computing base. Since this thesis focuses
on infrastructural security, it does not deal with attacks against the tcb.

33

Chapter 3. Security for Virtualized Grid Computing Environments

3.4.1 Virtualized Grid Computing

One of the basic building blocks of a grid environment is a computational cluster
consisting of a number of nodes on which job applications are executed. One of
the main problems is the shared use of the node’s operating system, since it is
easy to attack other users within the same operating system once on procures
the higher level of privileges needed to install software. An efficient solution
for sharing grid computing resources on a single physical machine is to use
virtualization.

Xen operating system virtualization provides independent, secure virtual ma-
chines in which a modified Linux kernel forms the basis for an essentially un-
modified system and application installation on top of it. Several of these
so-called domain U instances usually run parallel on a single physical machine,
protected from each other and under the control of a domain 0 master operating
system instance that can create, suspend and terminate domain U instances on
demand. The only instance gaining access to the providing system’s hardware
like peripheral devices or physical disks is domain 0 (which only the administra-
tor of the system can configure); cpus, network and disk devices are virtualized
for domain U domains and thus controllable by domain 0.

Resources

Virtualization Component

node node node

node node node

node node node

node node node

Management Component

Pool of
VM Images

S
h
a
re

d
S
to

ra
ge

Figure 3.4: xge connected to backend resources on shared storage

This thesis proposes a novel solution that conveys the concept of virtualized
grid computing. Therefore, the xge, an open source virtual machine manager,
was developed. It can run either as a stand-alone application (see Figure 3.4
and 3.5), coupled to an installed resource manager (Torque) or serve as a back-

34

3.4. Methods for Infrastructural Security in Virtualized Grids

end for a web service enabled frontend like Virtual Workspaces. The computing
nodes of the xge run an administrator controlled Xen domain 0 in which user
specific Xen domainU images are started when a job is to be executed. The
use of virtual computing nodes per user gives the user unprecedented adminis-
trative rights. The user can install custom libraries and software autonomously
without the cluster administrator’s assistance. Since adding a virtualization
layer introduces a certain overhead, several mechanisms are presented to over-
come this limitation. This includes efficient mechanisms for virtual machine
disk image distribution and efficient storage synchronization.

3.4.2 Grid Enabled Demilitarized Zone

When looking at a traditional grid infrastructure, a major drawback of the
prominent head node running the middleware became obvious. Being the first
point of contact for the legal users, it also is the primary target for attackers.
Once the system is successfully compromised, the attacker has access to all
nodes, to the user’s accounting logs and a variety of other information.

Grid Site

node

submits job

Dual laned Grid DMZ

Grid IDS

monitors

node
Xen Grid Engine

Scheduler

Torque

node node

Grid Head node

Inner Firewall

Pool of
VM Images

submit

Border Firewall

submit

Figure 3.5: Grid dmz shielding the head node as well as the internal network
with all resources

As a solution, this thesis introduces a dual-laned grid enabled demilitarized zone
(dmz) (see Figure 3.5). The head node is now located inside a dmz and thus
completely separate from the backend resources. Communication between the
middleware and the virtualization manager (represented by the scheduler and
the xge) on the backend is guarded by cryptographic protocols. Furthermore,
only one port remains as communication interface. This greatly reduces the
surface open to attack, as designing a small, secure server on the backend is
easier than keeping a complex middleware, like the Globus Toolkit, safe.

35

Chapter 3. Security for Virtualized Grid Computing Environments

Grid Enabled Intrusion Detection System

Intrusion Detection Systems (ids) are a well known technique for detecting
intrusions, either via network (nids) or directly on the host (hids). Most open
source or commercial nids do not take the recent evolutions of grid computing
into account, i.e. they only recognize classic attack patterns such as remote
exploitations or flooding attacks on well-known software. Within the context
of this thesis, several extensions were developed to detect attacks on different
grid computing components.

3.4.3 Lightweight Kernel Rootkit Prevention

A common way for a malicious user to retain control over a compromised system
is to install a rootkit. Rootkits are available in multiple variants, ranging from
simple ones such as a library-based rootkit, which allows an unprivileged user
to gain extended privileges by using a manipulated library, to complex ones like
kernel rootkits. Kernel rootkits are usually complex in design and implemen-
tation, but due to their nature, they run with the highest access possible, i.e.,
access to the privileged kernel space. The provided functionality ranges from
being able to grant extended privileges to arbitrary processes or to give users
remote backdoor access.

In this thesis, an effective and lightweight approach used to prevent kernel
rootkits from being installed is presented while allowing an administrator to
still be able to load trusted loadable kernel modules.

3.4.4 Malware Detection for Virtualized Grids

node node

job submit

network

Kernel Agent

Scan Proxy

BE BE

introspects

live
syscall
report

. . .

.

Figure 3.6: Multiple virtual machines introspected by a kernel agent that re-
ports continuously over a middleware to various anti-virus/-maleware backends

36

3.4. Methods for Infrastructural Security in Virtualized Grids

Providing virtual machines and thus privileged access within these machines
introduces new potential threats that create the need for a new malware detec-
tion system. Providers need ways to ensure the security of their infrastructure
and the customer’s systems. Having a flexible grid infrastructure also opens
new possibilities to scale up and distribute malware detection software among
several systems. Most end-host security solutions negatively and significantly
impacts a computer’s performance due to huge signature-sets or complex detec-
tion algorithms. A large virtual infrastructure can be beneficial here to decrease
the slowdown by offloading it to dedicated machines.

This thesis presents an intrusion detection system for virtualized grids to rec-
ognize running malware. An overview is shown in Figure 3.6. It is designed to
run on virtual machine instances with a backend grid that distributes malware
scanning operations between several backends. A flexible framework for a dis-
tributed security solution with a minimal overall resource footprint on the end
host is presented. To detect well-known as well as yet unknown malware, a tra-
ditional signature check is performed and the prerequisites for a live system-call
tracer are presented.

3.4.5 Dynamic Firewalls

submit job

XGE XGE

Site Site

User

Communication

Meta Scheduler

Grid Headnode Grid Headnode

NS
WS

Figure 3.7: Multi-site virtual private network, including the users own computer
and the computing nodes of his or her actual job

Data transfer security risks are a serious problem in grid computing environ-
ments. Due to exploited vulnerabilities, a malicious user could sniff data in
transit between nodes. Encrypted data might prevent the attacker from gain-
ing knowledge about the content, but it still reveals that there is a transfer

37

Chapter 3. Security for Virtualized Grid Computing Environments

at all which lasts a certain amount of time and consumes a specific amount of
bandwidth. Since this is a leak of meta-data security it should clearly avoided.

Dynamic firewalls that guard virtual machines can mitigate the danger of such
breaches in security. The approach presented in this thesis encapsulates virtual
machines belonging to the same job or user into a virtual group guarded by
firewalls. This is shown in Figure 3.8. A secure by default setting assures that
only permitted traffic can leave or enter the virtual group. Communication
between machines from different groups is not possible unless explicitly desired.
To enforce the filtering and to prevent that the installed firewall is subverted
by the users, they are installed outside the virtual machines.

As shown in Figure 3.7, the dynamic firewalls also allow multi-site virtual pri-
vate networks (vpn) to be built. This vpn encapsulates the user’s own com-
puter and all computing nodes that belong to his or her actual job. Encryption
ensures that no other party can sniff the traffic.

node node

Hypervisor Hypervisor

network

Figure 3.8: Every virtual machine is guarded by a dynamic firewall installed on
the administrative domain

3.5 Summary

This chapter presents the workflow involved in submitting a job to a computing
site. This workflow is split into several parts that are analyzed for security risks.
Based on this analysis, the results of this thesis have been presented.

38

“The city’s central computer told you? R2D2, you know better than to
trust a strange computer!”

C3PO

4
Host Security

4.1 Introduction

In the previous chapter, a security analysis of the job submission procedure
was conducted. In this chapter, several solutions for host security, including
implementation details, experimental results and evaluation, are presented. An
effective and lightweight solution prevents kernel rootkits from being loaded
while allowing an administrator to still be able to load trusted loadable kernel
modules. Furthermore, a prototypical malware detection engine for virtualized
grids is presented. Besides being able to use classical anti-virus engines, the
solution further monitors the system call stream of all running executables.
This enables the detection of yet unknown malware binaries.

4.2 Lightweight Kernel Rootkit Prevention

4.2.1 Introduction

External and internal intrusions are the most serious threats in computer sys-
tems that are connected to a network. Attackers can exploit software bugs in
core components on a target system to gain superuser privileges, allowing the
attacker to take control of the attacked system. The rise of virtualized grid en-
vironmental aggravates the stated problem, i.e. customers have access to their
own virtual appliances that run on shared physical resources. The former as
well as the latter are targets for a possible attacker. Since it is impossible to im-

–39–

Chapter 4. Host Security

plement unbreakable security mechanisms, it is important to install mechanisms
which mitigate the outcomes of a possible compromise.

There are various types of rootkits available, e.g. application level rootkits that
replace the original binaries with a fake binary containing a Trojan horse or
library rootkits that replace valid library functions with malicious ones. One
of the most sophisticated rootkits is the kernel rootkit. It replaces or adds
additional functions or device drivers in the kernel space of an operating system.
Kernel modules in general enable upgrades to specified parts of a kernel to
strengthen the modularity of the operating system. There are two classes of
kernel modules: permanent kernel modules, which are loaded when a system
is booted and cannot be removed once they are running, and loadable kernel
modules, which can be loaded and unloaded when the system is running.

Many kernel rootkits are designed as loadable modules or device drivers, as this
is the easiest way to add new functions to the core system. Thus, monitoring the
loading process of kernel modules is indispensable to ensure that no malicious
modules are loaded. The following section presents a number of approaches
that deal with rootkit prevention and executable monitoring in general.

Parts of this section have been published in [113, 114].

4.2.2 Related Work

Kroah-Hartman [76] has proposed signing executables with a fingerprint, which
would be stored in an additional section of the commonly used executable link-
age format (elf) [154]. Furthermore, the technique of asymmetric cryptography
is used to protect the fingerprint from malware modifications: A private key is
used to encrypt the fingerprint stored in the elf section, while the kernel linker
decrypts the signature in order to compare it with the signature of the loaded
file. A general problem is the kernel-level implementation of an asymmetric
cryptography algorithm. Most current operating systems do not have no such
implementation.

A similar way of implementing rootkit prevention is used by Catuogno et al.
[15]. They implemented a verification mechanism based on encrypted signa-
tures stored in an additional section of an executable as well. In contrast to
Kroah-Hartman, they did not address dynamically loadable kernel modules but
executables in general. This is why they assumed that the support of dynami-
cally loadable kernel modules should be disabled. While this solves the problem
of loading a kernel rootkit, it significantly reduces the functionality of the sys-
tem. It is no longer possible to reload devices drivers for example. Furthermore,
their approach is not able to handle signed code inside a shared object that is
loaded with the dlopen system call. Since this system call is widely used, it
represents a major limitation of this approach.

Spinellis [138] describes an unusual form of executable verification. His solution

40

4.2. Lightweight Kernel Rootkit Prevention

“is based on having the client’s software respond to queries about itself” and
thus is based on reflection. A trusted entity, the server, periodically requests
information from the software to be verified, the client. This could be a memory
location or predictable processor state. The hashed information is evaluated,
and the server can check if the client was tampered. Unfortunately, this ap-
proach is a theoretical one and no implementation is provided. Furthermore, it
is unlikely to satisfy all assumptions made in the paper in a modern system.

The work by Kruegel et al. [78] focuses on detecting kernel rootkits through
static analysis of loadable kernel module binaries. More precisely, the use of
behavioral specifications and symbolic execution allows one to determine if the
module being loaded includes evidence of malicious intent. The idea for this
detection approach is based on the observation that the runtime behavior of
normal kernel modules differs remarkably from the behavior of kernel rootkits.
For example, a normal module seldom writes directly to kernel memory (ex-
cept for some device drivers), while a kernel rootkit usually writes directly to
kernel memory to alter important system management data structures. Cur-
rently, implementation of this approach is only prototypical and the authors
state that “our tool is currently available as a user program only. In order to
provide automatic protection from rootkits, it would be necessary to integrate
our analyzer into the kernel’s module loading infrastructure.”

An approach that works towards developing a tamper-resistant kernel rootkit
detector is presented by Quynh and Takefuji [106]. They put xenkimono,
which is implemented in a form of a daemon process, into a Xen domain 0
and let it inspect the kernels of other domain Us to detect potential rootkits.
xenkimono can map the kernel memory of any guest domain and does all the
processing, such as reading or writing, on the mapped memory. They perform
integrity checking of the kernel memory and monitor critical system processes
and network interfaces. If the detector finds any suspicious activity, it can stop
the monitored domain U as well as notify the administrator. While Quynh and
Takefuji try to detect kernel rootkits, the approach that will be presented in
the following prevents kernel rootkits from being loaded.

Van Doorn et al. [160] describe the design and implementation of signed exe-
cutables for the Linux operating system. Specifically, they sign binaries in the
Executable and Linking Format (elf). A signature is added to an binary by
storing it in a new elf segment. The signature is extracted once the binary is
loaded and the elf format manager in the kernel verifies the signature. This
choice implies that every interpreter should be modified in order to verify the
signature. In order to avoid verification of the binaries at each execution, a
caching exists that is based on a whitelist. While this approach protects the
system from executing untrusted executables, it does not prevent an attacker
from loading a kernel rootkit.

A Linux kernel module named DigSig, which helps system administrators to
control ELF binary execution, is presented by Apvrille et al. [4]. If an ELF
binary is to be loaded into executable memory regions, DigSig searches the

41

Chapter 4. Host Security

file for a signature section. If the section is available and contains a valid
signature, loading is permitted, otherwise refused. The main disadvantage of
DigSig is the assumption that the root account has not been compromised. In
case the latter happens, an attacker could either modify the loader process and
disable the loading protection or change the key pair (which would require a
complete resign run of all executables and libraries, of course). Furthermore,
the approach does to take kernel rootkits into account.

Wurster and van Oorschot [173] also propose the use of signatures to protect
binaries. While most approaches only allow an administrator to sign binaries
once, their approach takes software updates into account, i.e. it is still possible
to verify a binary after it has been modified. This is achieved by a set of kernel
and binary modifications. Like other approaches, a new elf segment with a
signature is added to every file. When the kernel receives a request to overwrite
a file on the system, it first checks the current file on the system. If it is signed,
the kernel verifies that the new file can also be verified by a public key contained
in the currently installed version of the file. If the signature is verified, then the
update is approved; otherwise, it is denied. In line with the previous approaches
presented, this approach does not take kernel modules into account.

In the Netbsd operating system, the Veriexec (verified execution) kernel sub-
system allows users to monitor files and to prevent their removal, read/write
access or execution, if necessary [151]. It implements four levels of strictness: A
learning mode for configuration matters, intrusion detection and intrusion pre-
vention mode, as well as a lockdown mode. However, Veriexec does not protect
the kernel from modifications by dynamically loaded modules.

Riley et al. [109] present nickle, a Virtual Machine Monitor (vmm) based
system that transparently prevents unauthorized kernel code execution for un-
modified commodity (guest) operating systems. nickle is based on memory
shadowing, i.e. the trusted vmm maintains a shadow physical memory for a run-
ning virtual machine and performs real-time kernel code authentication; thus,
only authenticated kernel code will be stored in the shadow memory. Fur-
thermore, nickle transparently routes kernel instruction fetches that originate
from the guest system to the shadow memory at runtime. This guarantees
that only the authenticated kernel code will be executed, initially hindering the
kernel rootkit’s attempt to strike. nickle and the approach presented in this
chapter achieve the same goal, kernel rootkit prevention; however, the latter
is a lightweight mechanism that is easy to deploy while the former is a quite
complex process dealing with shadow memory.

Limbo, a kernel rootkit identification system for Microsoft Windows, was pre-
sented by Wilhelm and Chiueh [170]. It checks the legitimacy of kernel modules
based on its binary content and run-time behavior before they are loaded into
the operating system. The corresponding feature set of a kernel module is
obtained using sample execution and the classification uses Naive Bayes. Cur-
rently, there no implementation publicly available and the one in the paper,
including the training emulator, targets Microsoft Windows.

42

4.2. Lightweight Kernel Rootkit Prevention

Petroni et al. [101] present Copilot, a prototype based on a pci card that de-
tects harmful modifications to Linux kernels. Its aim is to detect cases where an
attacker applies a kernel rootkit to an already compromised operating system
kernel. Therefore, it retrieves parts of host’s virtual memory for examination
through Direct Memory Access (dma) without the knowledge or intervention of
the host kernel. An admin station (i.e., a monitoring machine) connects to the
card via independent communication. The detection strategy is based on md5
hashes of the host kernel’s text, the text of any loaded kernel modules, and the
contents of some of the host kernel’s critical data structures. Similar to Copilot
is the approach presented by Zhang et al. [176], as they use a separate hardware
device: the ibm 4758 pci Cryptographic Coprocessor. Specifically, the authors
describe a method for kernel protection that consists of identifying invariants
within kernel data structures and then monitoring for deviations. Although
both approaches are a big step towards creating a tamper-proof operating sys-
tem kernel, they are quite impractical: they require external hardware and they
also need special support from the operating system. Thus, these approaches
are hard to deploy on a large scale.

4.2.3 Design

Deduced from the related work, a kernel rootkit prevention solution must meet
the following requirements:

• The approach should follow the common principle: keep it simple stupid.
While complicated solutions could provide more features, they also pro-
vide more attack surface. Almost all software products contain bugs and
security related software is no exception; hence, the solution should be
secure, simple and effective.

• It is always possible to prevent kernel rootkits from being loaded by com-
piling a fat operating system kernel, i.e. all required modules are compiled
statically into the kernel and loadable modules are denied access entirely.
In general, this solution is unacceptable because loadable modules do not
only contain devices drives, they could also host the code for network pro-
tocols, Quality-of-Service algorithms or symmetric ciphers. Since loading
these valid modules does not interrupt the usual work, it should be pos-
sible to reload them on demand.

The solution presented in the following section introduces the concept of using
authorized kernel modules to prevent rootkit installations via corrupted kernel
modules. For this purpose, the operating system kernel is modified to load only
previously cryptographically authorized kernel modules.

At first, a short introduction of loadable kernel modules is given. Then, some
sample attacks are shown before the design of the solution is presented.

43

Chapter 4. Host Security

Kernel Modification During Runtime

The bsd Kernel works like a service for user processes. There are three ways to
call the kernel: hardware interrupts, hardware traps and software traps. User-
level processes usually call kernel service routines through system calls, which
are a form of software traps. System calls are implemented by setting a flag,
which is checked whenever a process is preparing to exit the kernel. If the flag is
set, the kernel will not be exited and the software interrupt code is run. System
calls are stored in a system call table. It stores necessary information about each
system call, such as the number of arguments and the implementing functions.
The kernel is methodically divided into a top half and a bottom half. The latter
contains hardware interrupt routines; the former runs in a privileged mode in
which kernel data and user process context are accessible. User processes are
not permitted to read and write the kernel memory; however, the kernel is
allowed to read and write the data of a user process freely.

Kernel modules enable upgrades to specified parts of a kernel in order to
strengthen modularity of the operating system. There are two classes of ker-
nel modules: permanent kernel modules, which are loaded when a system is
booted and cannot be removed once they are running and loadable kernel
modules, which can be loaded and unloaded when the system is running. In
bsd, kldload respectively kldunload utility uses the kernel linker to load
or unload a kernel module at run time. In Linux, this can be done by using
modprobe.

In earlier versions of bsd-derived systems, kernel code could not be changed
and was completely protected from user changes at run time. The only way
to interact with a running kernel was via system calls, which were defined at
the time the kernel was built. Today, this is circumvented using kernel mod-
ules. However, this raises a security problem: Every user that can acquire root
privileges is able to modify the kernel and thus read or write arbitrary memory
locations, including the one he or she should not read, such as encryption keys.

How To Attack a Kernel During Runtime

Assuming an attacker gained root privileges on the attacked system (e.g. through
a weak intrusion attack), there are two basic ways to infiltrate an operating sys-
tem kernel.

The first way is to modify the kernel code via direct modifications of the ker-
nel memory, called runtime memory kernel patching. The attacker overrides a
specific code line in the kernel space either with nops (no operation code) to
avoid a command being executed (calling a method) or with a jump-argument
that leads to a code block created by the attacker (see Figure 4.1). The mal-
loc function is used to allocate memory which is then filled with a malicious
function.

44

4.2. Lightweight Kernel Rootkit Prevention

Kernel Space

Kernel Space

. . .

MOV DL,31h

JMP M2

MOV DL,30h

LOOP M3

INC BL

JNC M1

. . .

Kernel Space

. . .

MOV DL,31h

JMP M2

MOV DL,30h

LOOP M3

INC BL

JNC M1

. . .

JMP M2 JMP MY_ADDR

. . .

MY_ADDR:

Malicous ASM code

JMP M2

jumpbecomes

Figure 4.1: Runtime kernel memory patching

The second way is hooking system calls. The attacker has to write a kernel mod-
ule that acts like a man-in-the-middle between the user and the system call (as
shown in Figure 4.2). It catches a specific system call, executes a malicious code
and delegates the system call to its correct destination afterwards. Usually, the
user will not notice any difference to a normal system call. Nevertheless, longer
execution time or changes in the system call table are indicators for system call
hooks [73]. System call hooks can be used for many issues: as a key logger that
logs all characters entered into the terminal or to hide malicious processes by
removing the according entry in the list of all processes. To summarize, it is
possible to alter nearly every aspect of a system by patching the kernel memory
or hooking a system call.

user process

hook function

system call

delegate
system call

normal
way

catch system call

Figure 4.2: Hooking a system call

Listing 4.1 shows a fraction of kernel code that could be used by a kernel
rootkit. In order to replace the close system call with a malicious one, the
system call table is hooked (line 34) during the module loading process. As
soon as the rootkit is unloaded (which is usually not the case), the original
table entry is restored (line 36). To obtain root permissions, the attacker has

45

Chapter 4. Host Security

to provide a magic value (which is 31337 in this case [line 1]) as file descriptor,
i.e. he or she has to call close(31337) from a userland application. As soon
as the kernel detects that magic value, it sets the user and group id of the
calling process to zero, i.e. the process runs with root permissions now (lines 9
through 11). To detect that the rootkit is actually running, the attacker could
use the file descriptor 31338. In this case, the kernel returns 42 (line 14 - 15),
usually an invalid return code. If any other file descriptor is used (e.g., by
all other processes), the original behavior is carried out (lines 17 through 20),
consequently the rootkit remains undetected.

1 #define ACCESS 31337
2 [...]
3 static int
4 evil_close(struct thread *td, struct close_args *uap)
5 {
6 int ret = 0;
7

8 switch(uap->fd) {
9 case ACCESS:

10 td->td_ucred->cr_uid = 0;
11 td->td_ucred->cr_gid = 0;
12 ret = 0;
13 break;
14 case ACCESS + 1:
15 return (42);
16 break;
17 default:
18 close(td, uap);
19 return (td->td_retval[0]);
20 break;
21 }
22

23 return (ret);
24 }
25

26 [...]
27

28 static int
29 evil_init(struct module *module, int command, void *init_arg) {
30 int returncode = 0;
31

32 switch(command) {
33 case MOD_LOAD:
34 sysent[SYS_close].sy_call = (sy_call_t *)evil_close;
35 case MOD_UNLOAD:
36 sysent[SYS_close].sy_call = (sy_call_t *)close;
37 break;
38

39 default:
40 returncode = EOPNOTSUPP;
41 break;
42 }
43

44 return(returncode);
45 }
46 [...]

46

4.2. Lightweight Kernel Rootkit Prevention

Listing 4.1: Fraction of kernel rootkit code that hooks the system call table and
is able to provide root permissions to the calling process

One of the well known kernel rootkits is adore [141] and its successor adore-ng
[140]. It was written for Linux and bsd derived systems and allows an attacker
to hide network connections, files and processes. By using the mechanism de-
veloped during the course of this thesis, it is no longer possible to load this
rootkit.

Secure Levels

Many kernel rootkits are designed as loadable modules or device drivers since
this is the easiest way to add new functionality to the core system. Thus,
monitoring the loading process of kernel modules is indispensable to ensure
that no malicious modules are loaded.

There are various ways to disable dynamic kernel module loading:

• In Linux, it is possible to disable kernel module loading completely. While
configuring a kernel, the administrator can set the modules option to
no and thus disable the entire kernel loading and processing mechanism.
While this completely prevents kernel rootkits from loading, it also affects
all legal modules.

• The technique of multiple secure levels is used in various bsd derived
Unix operating systems. Any superuser is able to increase the secure
level. On the other hand, the only way to lower the secure level is via the
init-process, a prototype user process that is only loaded during system
startup, so the system has to be restarted. For example, Freebsd [91],
a widely used Unix branch, runs with four different levels of security
(compare Table 4.1).

Thus, it is possible to disable dynamic module loading either by disabling mod-
ules or via a higher secure level. In this case, one has to take the good with the
bad. On the one hand, this avoids critical actions such as arbitrary changes of
kernel memory through user programs (which, in fact, is performed by loading
a kernel module). On the other hand, the concepts are very restrictive and force
users to compile and install the whole kernel instead of merely linking a single
file. This step makes a reboot of the modified system necessary and interrupts
running applications. Actually, for several applications (e.g. all mission critical
applications), this is not a suitable solution.

47

Chapter 4. Host Security

Value Restrictions

-1 Permanently insecure mode, must be compiled into the kernel.

0 Insecure Mode, immutable and append-only flags may be turned
off. All devices can be read or written.

1 Secure Mode, immutable and append-only flags cannot be
changed. Disks for mounted file systems and kernel memory
(/dev/mem and /dev/kmem) are read-only. Kernel modules may
not be loaded or unloaded.

2 Highly secure mode: Same as secure mode, plus disks may not
be opened for writing.

Table 4.1: Securelevel restrictions

Enhanced Kernel Module Loading Process

Instead of completely disabling kernel module loading, the bsd secure level
concept was enhanced. It allows module loading before raising the secure level.

The following subsection describes the process of kernel rootkit prevention by
loading only authorized kernel modules. The state of the secure level is de-
scribed by two states. If the secure level is lower or equal than 0 (which is the
default for single user mode), it is called insecure mode; if the secure level is
set to 1 or higher, it is called secure mode. Furthermore, adding a module to
the internal list is called mark/unmark as authorized.

To prevent kernel rootkits, a distinction between safe and unsafe kernel modules
must be made. In secure mode, it is only possible to (un-)load authorized
kernel modules. It is not possible to load other modules, especially any kind
of malware. All authorized modules are kept in a list that resides in read-only
kernel memory. The latter is needed to prevent that an attacker could simply
modify the list to mask a rootkit as an authorized module. Each entry of the
list contains the following information:

• A human-readable description of the kernel module

• A unique cryptographic hash of the kernel module

• Some internal kernel structures to indicate whether the kernel module is
currently loaded

The implementation uses a generated sha-256 hash to provide a unique key
for each module. To authorize kernel modules, a userland program has been
developed to add or remove kernel modules to the aforementioned list through
a system call. This system call refuses execution if it is called without root
privileges. Optionally, all dependent modules could be added as well. Any

48

4.2. Lightweight Kernel Rootkit Prevention

operations on the list can only be made while the system is in insecure mode.
A convenient moment would be the initial system setup before it is actually
connected to an external network. While the system is running in insecure
mode, the userland program is able to mark/unmark modules as authorized.
The list, in which the marks are stored, uses transient storage, i.e. the list is
initially empty the time when the system is started.

not loaded &

not authorized

not loaded,

but authorized

loaded, but

not authorized

loaded &

authorized

mark as authorized

mark as not

authorized

mark as not

authorized

m
a
rk

 a
s
 l
o
a

d
e
d

m
a
rk

 a
s
 n

o
t
lo

a
d
e
d

m
a
rk

 a
s
 n

o
t
lo

a
d
e
d

m
a
rk

 a
s
 l
o
a

d
e
d

Insecure Mode

S
e
c
u

re
 M

o
d

e

mark as authorized

Figure 4.3: Authorized module loading state transition diagram

Figure 4.3 shows the possible modifications of a list entry. By default, a kernel
module is not loaded and not authorized. In insecure mode, a user can mark
a module as authorized and is thus able to load it later when the system is in
secure mode. All kernel modules that are loaded during the boot process (e.g.
the acpi subsystem or device drivers) are not authorized. Consequently, they
have to be authorized before the system is switched to secure more. Otherwise,
they would work as expected, but unloading would not be possible (which might
not be necessary, especially if it is a core component). Once the system is in
secure mode, only authorized kernel modules can be loaded.

The main features of this process are encapsulated in the dynamic module
loading process to check whether a module is marked as authorized or not.
To provide this feature, the internal list includes modules and their state. To
authorize a module, an authorization function has to open the module file, hash
its content and search for matching hashes in the list. If the authorized-flag

49

Chapter 4. Host Security

of the corresponding list entry is set, the module is allowed to be loaded. The
unloading process is handled by another function that checks if the module is
already loaded. Consequently, there is no need to hash the module again. Every
loaded module is equipped with a unique pointer that represents the module.
This pointer is used to find the correct module in the list and to decide whether
to unload or not. Finally, unloaded modules must be marked as not loaded in
the list.

4.2.4 Implementation

This section describes the implementation of the Trusted Kernel Modules con-
cept. Like the operating system kernel (which is the DragonFlybsd Kernel,
Version 2.5.0), all parts of kernel rootkit prevention have been written in the
C programming language. This section focuses on the functions added to the
operating system kernel and omits the userland client. While the client plays
an important role, its implementation is straight forward.

4.2.4.1 Management System Call

All main communication between userland tools and the kernel is handled by
a newly introduced system call. The fix system call number SYS vml manage is
created by the global syscalls.master template and refers to the new vml manage
function. Parts of this function are shown in Listing 4.2. To ensure that the
function cannot be used when module loading is disabled, the appropriate cre-
dentials are checked and an error about missing permissions is returned (lines 7
through 8). If the user requests to add a new module entry to the internal list,
the identifier and the key are both copied from user space to kernel space into
allocated buffers (the actual allocation code is omitted here). Finally, another
function is called to mark the modules as trusted ones (lines 11 through 18).
The opposing action is to remove a trusted module from the internal list (lines
20 through 25).

1 int
2 vml_manage(struct thread *td, struct vml_manage_args *uap)
3 {
4 char* identifier, key;
5 int len_identifier, len_key;
6

7 if (priv_check(td, PRIV_KLD_LOAD) != 0)
8 return (EPERM);
9

10 if (uap->mode == VML_MODE_INSERT) {
11 len_identifier =
12 imin(strlen(uap->identifier) + 1,MAX_STR_LEN);
13 len_key = imin(strlen(uap->key) + 1,MAX_STR_LEN);
14 [...]
15 copyinstr(uap->identifier, identifier,
16 len_identifier, NULL);

50

4.2. Lightweight Kernel Rootkit Prevention

17 copyinstr(uap->key, key, len_key, NULL);
18 return markAsVerified(identifier, key);
19 }
20 else if (uap->mode == VML_MODE_DELETE) {
21 len_key = imin(strlen(uap->key) + 1,MAX_STR_LEN);
22 [...]
23 copyinstr(uap->key, key, len_key, NULL);
24 return markAsNotVerified(key);
25 }
26 [...]
27

28 return EUNKNOWNMODE;
29 }

Listing 4.2: Parts of the function that manages the trusted module list

Listing 4.3 shows an important and difficult part of the trusted module loading
concept: generating a hash for a module. While generating the hash of a value
is rather simple, loading the data of the module into kernel space is not. The
first task is to open a virtual node, which is identified by the given filename. A
virtual node is an entry in the Virtual File System (vfs), which is an abstract
layer on top of the physical file systems. The function has to open the virtual
node already in this early stage of the loading process. Later on, it is possible
to reuse the provided, convenient functions to read a file from kernel, but, from
the security perspective, this would be too late. Thus, the more complex route
through the vfs layer has to be taken.

The prerequisites for the loading process are checked in lines 3 through 17. A
new nameidata structure is initialized. This structure holds pointers to the
vnode, the file name and several look-up parameters. Since concurrent access
on the nameidata structure could lead to an non-deterministic vfs state (and
finally to meta-data corruption of the original kernel module), the structure is
protected by the global giant lock which ensures exclusive access on single and
multi-core systems. Because the user could provide an incorrect path to the
system call, the function has to assert that it is working with a regular file and
not a directory. Finally, some attributes of the vnode that are needed to access
the data blocks are obtained (lines 15 through 17).

All data blocks of the kernel module are read in a loop until the end of the file
is reached (line 23). The actual read happens through the vfs function from
user space to a buffer in kernel space (lines 34 through 37). Since the read bytes
can be added to the hash algorithm successively, the memory usage is reduced
by reading data piecewise using the same buffer each time. This data can be
used to generate the hash key. By using the sha-256 hash function, the method
finally builds a hash value for the complete kernel module (lines 42 and 51). If
the internal list contains the generated hash key, the module is marked as to
be loaded, otherwise it is not and the appropriate permission denied error is
returned.

1 [...]
2

51

Chapter 4. Host Security

3 NDINIT(&nd, LOOKUP, FOLLOW | MPSAFE, UIO_SYSSPACE, filename, td);
4 flags = FREAD;
5 error = vn_open(&nd, &flags, 0, NULL);
6 vfslocked = NDHASGIANT(&nd);
7 NDFREE(&nd, NDF_ONLY_PNBUF);
8

9 if (nd.ni_vp->v_type != VREG)
10 return NULL;
11 if (nd.ni_dirp == NULL)
12 return NULL;
13

14 struct vattr vap;
15 VOP_GETATTR(nd.ni_vp, &vap, td->td_ucred, td);
16 if(error)
17 return NULL;
18

19 [...]
20

21 length = vap.va_size;
22 int steps = 0;
23 while((steps * BUFFER_SIZE) < length) {
24 offset = BUFFER_SIZE * steps;
25 bytesleft = length - offset;
26 readbytes = 0;
27

28 if (bytesleft < BUFFER_SIZE)
29 readbytes = bytesleft;
30 else
31 readbytes = BUFFER_SIZE;
32

33 int resid = 0;
34 error = vn_rdwr(UIO_READ, nd.ni_vp,
35 (caddr_t) data, readbytes, offset,
36 UIO_SYSSPACE, IO_DIRECT,
37 td->td_ucred, NOCRED, &resid, td);
38

39 if (error)
40 goto mem_free;
41

42 SHA256_Update(&ctx, data, readbytes);
43

44 steps++;
45 }
46

47 [...]
48

49 MALLOC(buf, char *, SHA256_DIGEST_STRING_LENGTH,
50 M_LINKER, M_WAITOK | M_ZERO);
51 SHA256_End(&ctx,buf);
52 [...]

Listing 4.3: An excerpt of the function that reads the module through the vfs
layer from the disk and calculates the hash

52

4.2. Lightweight Kernel Rootkit Prevention

4.2.4.2 List Management

The internal list has to hold any information about a module. For example,
a module can simply be authorized, not loaded, or it can be loaded but not
authorized. Therefore, the list contains one entry per module. The state is
indicated by flags or implied by pointers that are not empty. This is shown in
Listing 4.4. Every generated list entry holds a unique key, specifically a sha-
256 hash (line 4). The longer the resulting hash value is, the more secure the
corresponding algorithm is in reference to brute force attacks. Thus, sha-256 is
a good trade-off in terms of security as well as memory usage and performance.

1 struct list_entry {
2 SLIST_ENTRY(list_entry) next;
3 char *identifier;
4 char *key;
5 linker_file_t lf;
6 int flag;
7 };

Listing 4.4: Structure of the internal list

The identifier is used to hold the human readable description of that entry
(line 3). A linker file pointer points to the corresponding linker file kernel
structure (line 5). If the pointer is not NULL, the module, represented by this
entry, is currently loaded. By doing this, it is possible to map a loaded module to
the generated hash without making changes inside the existing kernel structures.
This is needed for module unloading, where the appropriate functions only have
the linker file pointer as parameter.

This is a convenient way to map a loaded module to the generated hash without
making changes inside the existing kernel structures. To prevent the list from
being altered while system is in a secure state, it sis not possible to call the
functions responsible for marking-and-authorizing a module. After switching
to the secure mode, only authorized modules can be loaded or unloaded; there
is no way to authorize kernel modules retroactively.

4.2.4.3 Kernel Module Loading Process

A userland tool is normally used to load modules during runtime. This utility
directly uses the system call kern kldload, which basically implements dynamic
module loading. Figure 4.4 shows a flowchart of this process. First, the loading
function checks the necessary permissions (root-permissions, insecure-mode).
If this check fails, loading is aborted and the appropriate error (eperm) is
returned. Next, it calls the module linker, which extracts a usable path name
from the given arguments. Then, the main module loading, depending on the
binary format, is performed. These formats are compiled into the kernel and
cannot be changed dynamically. The common format is the Executable and
Linking Format (elf).

53

Chapter 4. Host Security

Kernel

Load Module
(Kernel)

Secure Mode

Secure Mode

Select
Format

Extract pathLoad Module
(Linker)

Load Module File

yes

Module
authorized?

Access denied
yes

no

no

no

yes

Mark as Loaded

Userland

Load Module

no
yes

ELF

COFF

a.out

Figure 4.4: Module loading activity

Trusted Module Loading changed this workflow (changes made drawn in dashed
lines in Figure 4.4). Loading a kernel module is only permitted with authoriza-
tion. This requires that the kernel is already in secure mode. If not, the module
is just marked as loaded. This is accomplished using the commands in Listing
4.5. Prior to adding a new module to the internal list it has to be checked if the
module has already been loaded (lines 2 through 8). If is has not been loaded,
memory for a new list entry is allocated and the entry is added after the lists
head.

1 [...]
2 struct list_entry *cursor;
3 SLIST_FOREACH(cursor, &head, next) {
4 if(strcmp(key, cursor->key) == 0) {
5 cursor->lf = lf;
6 return 0;
7 }
8 }
9

10 [...]
11

12 struct list_entry* entry =
13 malloc(sizeof(struct list_entry), M_TEMP, M_ZERO | M_WAITOK);
14 entry->identifier = NULL;
15 entry->key = key;
16 entry->flag = 0;
17 entry->lf = lf;
18 SLIST_INSERT_HEAD(&head,entry,next);
19

20 [...]

54

4.2. Lightweight Kernel Rootkit Prevention

Listing 4.5: Marking a kernel module as loaded

Authorizing a module within the unloading process is less complex because
the data structures used in the unloading process contain a file pointer that
is also registered in the internal list if the module is loaded. If the module is
authorized, it is unloaded. Otherwise, unloading is not permitted.

4.2.5 Evaluation

200 400 600 800 1000 1200 1400 1600 1800 2000

Number of kernel modules

5

10

15

20

25

30

35

Ti
m

e
(in

 s
) t

o
lo

ad
 a

ll
m

od
ul

es

Insecure mode
Secure mode
Default mode

Figure 4.5: Time needed to load up to 2000 kernel modules

This section focuses on the performance and a qualitative evaluation of the de-
veloped lightweight kernel rootkit prevention system. All tests were performed
on two 2.53 GHz Intel Core2Duo CPU, 4 GB ram, connected with Gigabit
Ethernet and running DragonFlybsd Kernel, Version 2.5.0.

To measure the module loading overhead, a script was written that cascades
module (un-)loading. Since the main overhead is due to hashing the modules,
a proper average module size has to be chosen to achieve realistic results. By
examining the standard kernel directory, it seems evident that the average size
of the kernel modules is 64 KB. In order to be account for some variations in
size, 100 KB sized kernel modules were used for testing. Modules were loaded
between 250 and 2000 times to be able to measure the correct overhead time.

As shown in Figure 4.5, there is an overhead in every measurement. The module
hashing causes the overhead during every module load. Loading modules in
either secure or insecure mode (with enabled kernel protection) takes more
time than loading modules in the default mode (no protection and a stock

55

Chapter 4. Host Security

200 400 600 800 1000 1200 1400 1600 1800 2000

Number of kernel modules

5

10

15

20

25

Ti
m

e
(in

 s
) t

o
un

lo
ad

 a
ll

m
od

ul
es

Insecure mode
Secure mode
Default mode

Figure 4.6: Time needed to unload up to 2000 kernel modules

kernel). This is due to the fact that the kernel rootkit prevention technique
has to iterate over the internal list to validate a module. Thus, it involves an
additional linear effort. Nevertheless, time is not a critical factor in module
loading and the average number of loaded modules should be much lower than
in the conducted tests.

In the case of 250 loaded modules in the generic kernel, it takes a module 0.016
seconds on average to load. In a kernel with rootkit prevention, it takes 0.02
seconds on average. This is more than 1.25 times longer, but still not a large
delay. If the system is running in secure mode, loading a module will consume
more time because there is one additional list iteration involved in the loading
process. Generic kernels are not even able to load modules during secure mode.
The measured overhead for module unloading is shown in Figure 4.6. Unlike
the loading process, the unloading process is not very time consuming. There
is no noteworthy time difference regardless which kernel mode is used.

For the sake of completeness, Figure 4.7 shows the time, in seconds, needed
to mark up to 2000 kernel modules as authorized including the time needed
to execute the vml manage system call, calculate the checksum and store the
result in the internal list. Obviously, the time needed to mark modules increases
with the number of modules. The previous measurements exposed an overhead
both in the loading and the unloading process. Nevertheless, the overhead
is insignificant as kernel modules are only loaded once ans do not affect the
system’s runtime performance.

56

4.3. Malware Detection in Virtualized Grids

200 400 600 800 1000 1200 1400 1600 1800 2000

Number of kernel modules

2

4

6

8

10

12

14

16

Ti
m

e
(in

 s
ec

on
ds

)

Modules

Figure 4.7: Time needed to mark up to 2000 kernel modules as authorized

4.2.6 Summary

While the detection rate of malware and anti-virus scanners has steadily im-
proved within the last few years, it is still not a fool-proof solution against
recent exploits like zero-day exploits. Many successful attacks lead to the in-
stallation of a kernel rootkit to gain permanent control of the target machine
and make it possible to get access at later times and misuse the machines as
an attack platforms. Consequently, the proposed solution is a lightweight and
effective way to prevent loading kernel rootkits all together. Only authorized
and thus trusted kernel modules are allowed to load during runtime; loading
unauthorized modules is no longer possible.

4.3 Malware Detection in Virtualized Grids

4.3.1 Introduction

Potential threats targeting virtualized grid infrastructures create the need for
a new malware detection system, as providers need ways to ensure the security
of their infrastructure and the systems of their customers.

While threats apply to a greater extent to infrastructural machines, such as
critical servers (e.g. dns, dhcp), a grid provider should also be interested in
keeping the virtual machines of its customers safe. Most vendors provide virtual
machines with full root access, meaning that a user can do basically whatever
he or she wants, including destroying the whole machine. Since virtualized

57

Chapter 4. Host Security

grid computing as well as cloud computing is about pay-as-you-go, this should
not harm the vendor. Nevertheless, if a user (intentionally or unintentionally)
executes malware, this could also affect the provider, e.g. a Spam malware could
abuse the outgoing bandwidth and send mass-spam mails. Thus, while granting
root permissions to its customers, a provider should still be able to inspect the
applications running inside its customers’ virtual machines. Furthermore, he
or she should be able to take countermeasures if he or she detects a security
violation, such as running malware binaries.

Having a flexible virtualized grid infrastructure also opens new possibilities
to scale up and distribute malware detection software among several systems.
Most end-host security solutions have a major, negative performance impact on
the computer caused by huge signature sets or complex detection algorithms.
Using virtual grid infrastructures can be beneficial here to decrease the slow-
down and offload it to dedicated machines.

Parts of this section have been published in [113, 114].

4.3.2 Related Work

The following section introduces approaches that cover malware detection in
virtualized grid and cloud computing environments.

The Automatic Malware Signature Discovery System (amsds) [174] has been
developed by Yan and Wu. Increasing numbers of zero-day malware take more
and more time to analyze and requires signatures to be written; thus it is neces-
sary to provide automatic signature generators. Moreover, the increasing size of
signature databases and analysis techniques increase the processor and mem-
ory footprint on computers with anti-virus solutions. This can be countered
by anti-virus software as a cloud service, which places the workload of analysis
and signature maintenance on dedicated machines. amsds has a small detection
engine with a reduced signature set. This set of signatures can match a great
share of malicious software through special treatment and preprocessing of the
binary. A file is only sent to the cloud anti-virus service for scanning with tradi-
tional anti-virus solutions if the much smaller amsds signatures cannot detect
a suspicious file. Automatic signature generation is very effective and space-
saving compared to classic signature generation. But these signatures can only
detect binary executables loaded from either a disk or a network. A binary that
is already running on a system, such as a service infected through an exploit,
is not covered by this approach.

Laureano et al. [80] have implemented kernel introspection mechanisms into
User-Mode-Linux. The authors gather information about the running system
by inspecting the flow of the system calls made. Their ids runs in two different
modes: a mode for learning the regular behavior of a system and a so-called
monitoring mode where anything unusual generates an alarm and suspicious
processes are denied access to specific system calls. The approach simply reports

58

4.3. Malware Detection in Virtualized Grids

the system calls, there is no fine-grained behavior analysis. Ignoring the system
call parameters might lead to a significant increase in false alarms, since it can
make a huge difference whether an open system call accesses a password file or
just a new temporary file.

Oberheide et al. [95] suggest that each node run a lightweight process to acquire
executables that enter a system, send them into the network for analysis, and
then run or quarantine them based on a threat report returned by a network
service. While their evaluations show that they have a fairly high detection rate
(using a couple of standard detection engines), they only scan executables as
a whole and thus are not able to detect yet unknown malware. The presented
behavior should definitely be part of every malware detection system, but it
should only accompany other, more sophisticated solutions.

Ether [32], which was developed at the Georgia Institute of Technology in At-
lanta, represents a new solution to analyze malware transparently. Ether uses
hardware virtualization to stay outside of the target operating system, i.e. there
are no detectable components. Actual implementation is based upon the Xen
hypervisor and Intel’s vt hardware virtualization extensions. Information is
gathered in the hypervisor and processed in domain 0. Guest operating sys-
tems, such as Windows, run unmodified in the domain U’s. Ether seems like a
mature product for malware analysis and worth a consideration. Nevertheless,
Ether requires hardware virtualization extensions, which are not available on
legacy hardware.

Garfinkel and Rosenblum [49] have described a virtual machine introspection
based on an architecture that incorperates the isolation, inspection and inter-
position properties of vmms. Virtual machine introspection (vmi) describes a
family of techniques that enables a virtual machine service to understand and
modify states and events within the guest system. Besides this passive mon-
itoring technique, active monitoring of virtual machine-based idses has been
implemented as well [50]. Although they are facing the gap between the vmm’s
view of data/events and the guest software’s view (which is called semantic
gap), their modifications of the guest operating systems are detectable.

Payne et al. [99] present XenAccess, a monitoring library for operating systems
running on Xen, incorporating virtual memory introspection and virtual disk
monitoring. It enables monitoring applications to safely access the memory
state and disk activity. Since the current version of the approach that will be
presented in the following is based on the bsd operating system, XenAccess is
not useable. Nevertheless, in a future version, based on Xen, it is definitely one
of the candidates for virtual machine introspection to chose form.

Cloudav [96] is a software stack developed by Oberheide et al. It is meant to
counter the problems that single anti-virus solutions face nowadays with the
increase of different malware and new exploitation techniques. Instead of hav-
ing just one anti-virus solution per host, Cloudav uses multiple, heterogeneous
detection engines. This approach is called N-version protection. The implemen-

59

Chapter 4. Host Security

tation of the Cloudav system is limited to standard executables, leaving out
live code injection and shared libraries. The solution proposed in this thesis
also analyzes the behavior of processes during runtime.

4.3.3 Design

Following the related work, requirements for a malware detection engine in
virtualized grids can be derived:

• Instead of using a single anti-virus engine, a grid based system should run
multiple anti-virus engines simultaneously. This increases the chances of
detecting malware significantly, as one engine might not have the signa-
tures for all kinds of malware. Additional detection engines can easily be
integrated into the service and multiple engines speed up the process of
scanning executables.

• A grid-based system lowers the complexity of host-based monitoring soft-
ware. Clients no longer need to continually update their local signature
database, reducing administrative costs. Simplifying the client software
also decreases the chance that it could contain exploitable vulnerabilities
[79, 25].

• In general, anti-virus engines scan for traces of known signatures in files
(not necessary executables). While this is certainly effective, it does not
help to protect against yet unknown zero-day malware. Consequently,
a grid-based system should pursue classic anti-virus detection as well as
novel ways, such as live system call analysis.

• Traditionally, most malware ran in the user’s security context, i.e. it could
not influence any installed detection engines. However, recent evolutions
in malware [71, 64] have shown that this assumption is no longer true.
In order to prevent malware from influencing the detection process, mon-
itoring the system from outside rather than from within is unavoidable.
Thus, a grid-based scanner should use techniques like virtual machine
introspection [50].

Derived from these requirements a malware detection engine for virtualized
grids was developed, which will be presented in the following.

4.3.3.1 Architecture

Contrary to a classic anti-virus setup, a grid-specific design of a malware de-
tection engine should run in a distributed manner and display some special
requirements to ensure the security of the service provider’s infrastructure as

60

4.3. Malware Detection in Virtualized Grids

well as the customer’s security. The communication paths and different soft-
ware modules of the proposed design are shown in Figure 4.8. Any program
run by the user is executed in a virtual machine. The kernel of this machine
then passes all relevant information to a KernelAgent. The KernelAgent gath-
ers all information by the virtual machines running on the grid resource and
then relays them to the ScanProxy. The ScanProxy provides a front-end to
the grid security analyzer services. At this stage, the proxy has to distribute
the information to the different services, such as classic anti-virus software or
behavior-based analysis solutions.

node node

job submit

network

Kernel Agent

Scan Proxy

BE BE

introspects

live
syscall
report

. . .

.

Figure 4.8: Malware scanner architecture

The kernel module is the primary sensor that sits directly in the running virtu-
alized kernel of the guest machine. To avoid any security issues by the way of
the kernel module, it has very limited functionality. Its main task is to function
as a logging relay and to submit any interesting activities to the KernelAgent
for further processing.

Process Life Cycle, System Calls

Monitoring a process with respect to its system calls throughout its lifecycle
can be a valuable source of information when looking for common patterns in
malware behavior. By relaying this information live, not only encrypted exe-
cutable images and obfuscation, but also in-memory injected malware through
an exploit can be analyzed. System calls make it easy to spot specific file ac-
cesses or socket operations, such as transmitting data back to an attacker. The
relevant information includes the system call, its parameters, return values and
the program that made the call.

61

Chapter 4. Host Security

Obtain Executables

The kernel module should intercept any executable before it is running and
submit it to its host agent. This is the way classic anti-virus hooks grab an
executable before loading it into their scan engine. They check every executable
through static analysis. Applying static binary analysis might not always be
the best way to ensure security, especially when confronted with unknown, new
malware. Nevertheless, it still should be part of any malware detection solution.
Using this approach, it is easy to take advantage of all the existing anti-virus
software. A requirement for any executable analysis is the binary image of the
file itself, and for identification purposes, the filename must also be transmitted.
Since executables can easily exceed the maximum size of a tcp packet and the
integrity must be ensured, transmitting it over tcp is a must.

Contrary to classic anti-virus solutions, no installation within the disk image
is necessary, which means the additional security provided by the operating
systems is completely transparent to the customer. Moreover, the customer
has full control over his or her virtual machine. No matter what the customer
does with the image, he or she cannot break or deactivate the malware detection
system.

4.3.3.2 Operating System Kernel Sensor

This part collects all the data from the virtual machine kernels running on the
host system. This information should then be relayed to the ScanProxy. Since
there is no other logic involved in this piece of software other than the config-
uration of what has to be sent to whom, there is almost no need to touch an
installed system. To increase performance, methods of caching messages and
later on responses are implemented. This is especially interesting for classi-
cal executable image analysis. While starting-up several virtual machines, the
same executable is run several times. These are often called binaries and in-
clude, for example, system services. Submitting and analyzing the executable at
every initiation/run costs cpu time and also increases network traffic. This can
slow down the start-up time in a feedback-based intrusion prevention system
significantly.

Since both groups of information (binary and system call related) have different
requirements, splitting up the KernelAgent into two separate servers makes
sense. One is a tcp-based system call forwarder, the other one should receive
binaries and forward them. The binary executable relay must not save any
executables to the hard disk. Otherwise, there is a chance of an infection
happening on the host system in the event that a malware is installed.

62

4.3. Malware Detection in Virtualized Grids

4.3.3.3 Backend Proxy

This component gathers all available information from the hosts and distributes
it among the registered scan engines. For each incoming packet containing a
system call, one or more receiving scan engines can be used. The proxy then
forwards the packet to the registered receivers. It could also act as a global log
and caching proxy for the entire virtualized grid. Because every new scan engine
is a system call analyzer or a classical anti-virus scanner, it can be enlisted here
once or even several times for redundancy purposes. The proxy does not need
to have much more logic than the above to keep the system as easy to manage
and as immunized as possible. The more complex a code is, the more open a
system is to failure through attacks.

4.3.3.4 Scan Engine and Executable Analysis

Considering the previously described framework, several possible scanning back-
ends can be implemented. They can generally be categorized as process-behavior-
based or executable-binary-based, such as a classical anti-virus solution, e.g.
Clamav [19]. Every incoming executable has to be placed in a separate con-
tainer on the hard disk and then analyzed. The received binaries must not be
executed, otherwise the security of the scanning computer can be compromised
in the event of an infection. By registering several different anti-virus scanners
with wrappers, an increased level of security can be achieved. This helps to
minimize the vulnerability window that exists between the discovery of a new
malware and the release of the signatures by the anti-virus vendors for their
products.

To process events such as systems calls, a backend like the software of Wagener
et al. [167] can be used with minor modifications. The underlying concept of
their approach is that even new malware shares common behavioral similarities
to already existing malware. By finding these similarities in behavior graphs,
even yet unknown malware can be detected automatically. While Wagener et al.
perform system call analysis ahead of time in a secure execution environment,
modifications should easily be possible to enable on-the-fly detection.

4.3.4 Implementation

Like the operating system kernel (which is the DragonFlybsd Kernel, Version
2.5.0), the kernel part of the malware detection module has been written in the
C programming language. The userland programs are written in Python.

63

Chapter 4. Host Security

4.3.4.1 Operating System Kernel Modifications

To tap into the relevant parts of the kernel, some static hooks are installed.
These hooks redirect or copy valuable information from kernel functions, such as
execve, to an extra function that passes this information on to the KernelAgent.

Obtaining Process Related Information

Getting all process-related information requires the addition of several hooks
to the virtual machine kernel. A hook is installed in the function that adds
new processes to the kernel’s process list and assigns a new PID to them. The
list is a linked-list used to keep a global list of all running processes. Another
hook that is called at the end of a process lifetime works in a similar fashion.
This routine is called by the kernel’s exit1 function to remove a process from
the global list of running processes and add it to the list of dead processes.
This list is an in-kernel linked-list containing all processes in the zombie state.
This means that they are about to be removed from memory and are finished
executing.

The system call hook is called from within the virtual machine’s syscall2 func-
tion. It is executed immediately after the real system call has been processed.
Getting called after the execution of the system call has the advantage that
some parameters that are passed on empty to the kernel and are filled during
execution; thus, their contents can be inspected. This is, for example, the case
with the open system call that has a buffer as its parameter for reading bytes
from a file descriptor.

Listing 4.6 shows the kernel function that traces a system call and sends the
gathered information to the KernelAgent. Basic information such as pid, system
call type, name and return code can be extracted from the Lightweight Process
(lwp) associated with the real userland process (lines 7 through 12). The chal-
lenging part here is determining the parameters (lines 19 through 34). They
are passed to the system call function without providing any type-information
other than a memory reference. For the kernel, there is no need to know this
type-information since the corresponding system call knows what type its pa-
rameters should have. As part of the approach, an extra file holds a list of all
system calls and their parameter types. Additionally, the error code as returned
by the actual system call is provided for analysis purposes. This has the ad-
vantage that the data flow can be recorded, such as the returned file descriptor
from an open call and later on any read system calls to this file descriptor.
Finally, the structure is sent to the KernelAgent (line 38).

1 [...]
2 void
3 vsyscalltracer(struct lwp *lp, int code, int narg,
4 register_t args[], int retcode)
5 {

64

4.3. Malware Detection in Virtualized Grids

6 struct vsyscalldata vsd;
7 vsd.type = VSD_SYSCALL;
8 vsd.code = code;
9 vsd.retcode = retcode;

10 vsd.pid = lp->lwp_proc->p_pid;
11 memset(vsd.name, 0, 1024);
12 snprintf(vsd.name,1024, "%s", lp->lwp_proc->p_comm);
13

14 int i = 0, len=0;
15 char buf[VSD_MAXPARAMLEN];
16 char tbuf[VSD_MAXPARAMLEN];
17

18 memset(vsd.params, 0, VSD_MAXPARAMLEN);
19 while(i < 10 && syscalltypes[code][i] != 0) {
20 memset(buf, 0, VSD_MAXPARAMLEN);
21

22 if (syscalltypes[code][i] == STR) {
23 copyinstr(args[i], tbuf, 1024, &len);
24 snprintf(buf,VSD_MAXPARAMLEN,"|p%i:%s",i,tbuf);
25 } else if (typesizes[syscalltypes[code][i]] == 4) {
26 int t = (int) args[i];
27 snprintf(buf, VSD_MAXPARAMLEN,"|p%i:%i", i, t);
28 } else {
29 snprintf(buf, VSD_MAXPARAMLEN,"|p%i:%i", i,
30 syscalltypes[code][i]);
31 }
32 i++;
33 snprintf(vsd.params, VSD_MAXPARAMLEN,"%s%s",vsd.params, buf);
34 }
35 if (i==0)
36 snprintf(vsd.params, VSD_MAXPARAMLEN, "||");
37

38 send_vsd(vsd);
39 }

Listing 4.6: Kernel function that traces system calls

Obtaining Executables

The binary loader hook is placed in the virtual machine’s kern execve function,
which is the actual place of execution and not the system calls’ first entry point,
sys execve. To avoid unnecessary calls to the logging hook, it is only called
after exec check permissions has been successfully returned. After this call,
it is certain that the executable is valid and has the appropriate permissions.
Logging takes place before the first page of the executable gets mapped into
the memory and is executed. In a feedback-based intrusion detection system, it
would still be possible to stop the execution at this stage, should the binary be
infected with malware. The whole binary is then submitted to the KernelAgent
using tcp.

65

Chapter 4. Host Security

4.3.4.2 Kernel-Userland Communication

To keep the protocol overhead as small as possible and be as responsive as
necessary, a simple protocol is implemented by using udp in the kernel. Ap-
proaches based on tcp would have brought up some additional delays, which
is a problem when monitoring real-time events such as system calls.

Listing 4.7 shows the static structure that will be passed to the sending function
(send vsd()). This structure holds name and parameters of the system call
as well as information about the process.

1 struct vsyscalldata {
2 char name[1024];
3 char params[VSD_MAXPARAMLEN+1];
4 int type;
5 int pid;
6 int code;
7 int retcode;
8 };

Listing 4.7: vsyscall data structure

4.3.4.3 Operating System Kernel Sensor

The KernelAgent ’s main task is to collect the data from all virtual kernels run-
ning on the machine and forward it to its ScanProxy. This part is implemented
using the Python programming language. Whenever a new packet is received,
a background thread is started to process the received packet. This implies
that it is parsed and then the whole packet is sent forward to the configured
ScanProxy.

4.3.4.4 Backend Proxy and Anti-virus Engine Connection

This software module is similar to the KernelAgent on the receiving part. In-
stead of one configured receiver for relaying, like in the KernelAgent, there is a
list of receivers. This list can be configured for each entry to relay only specific
types of traffic (e.g. only newproc, endproc and syscall) or any traffic for
a catchall or logging daemon. Due to this fine-grained configurability, the in-
coming packets must be inspected and checked against the list of receivers to
ensure that every receiver obtains only events for which is has subscribed.

A tcp variant of the ScanProxy has also been written for scanning executable
files with an anti-virus software such as Clamav. Just as within the udp Scan-
Proxy, a list of receivers/backends can be configured. All incoming binaries are
relayed to them. The ScanProxy only keeps the executable’s data in memory;
nothing gets written to the hard disk. This backend checks incoming binary
files with Clamav for known viruses. Incoming files are received over tcp con-

66

4.3. Malware Detection in Virtualized Grids

nections to ensure that the received binaries are in order and complete. As in
the KernelAgent and the ScanProxy, the name of the executable is also submit-
ted. Every received binary is saved in a temporary quarantine folder, where it
is scanned. After scanning is complete, the file is deleted to ensure security of
the backend system.

Example System Call Stream

The following section presents a sample output of ktrace1 showing a malware
binary. Like strace under Linux, ktrace shows all system calls of a bsd binary
during execution. Listing 4.8 shows a shortened system call dump of malware
that steals the Unix password file (/etc/passwd), sends it over a udp chan-
nel through the network and creates a copy of the command shell with setuid
permissions.

A udp network socket is opened in line 2. An open system call is performed
to get a file handle for reading the password file (line 4). Then, the file is read
block by block and transferred using the socket (lines 7 though 13). Finally,
the file handle is closed. In order to retain control, a copy of the command shell
is placed into the temporary directory (lines 15 through 30). Most system calls
are generated by the copy process, but the call in line 27 sets the setuid bit
of the copy, i.e. the shell will be executed on behalf of the owner, which is the
superuser.

1 [...]
2 CALL socket(PF_INET,SOCK_DGRAM,0)
3 RET socket 3
4 CALL open(0x804888f,O_RDONLY,<unused>0)
5 NAMI "/etc/passwd"
6 RET open 4
7 CALL read(0x4,0xbfbff554,0x100)
8 CALL sendto(0x3,0xbfbff554,0x58,0,0xbfbff544,0x10)
9 RET 4

10 [...]
11 CALL read(0x4,0xbfbff554,0x100)
12 GIO fd 4 read 0 bytes
13 RET read 0
14 CALL close(0x4)
15 RET close 0
16 CALL sigaction(SIGINT,0xbfbfed10,0xbfbfecf8)
17 RET sigaction 0
18 CALL sigaction(SIGQUIT,0xbfbfed10,0xbfbfece0)
19 RET sigaction 0
20 CALL sigprocmask(SIG_BLOCK,0xbfbfecd0,0xbfbfecc0)
21 RET sigprocmask 0
22 CALL fork
23 RET fork 49122/0xbfe2
24 CALL wait4(0xbfe2,0xbfbfed28,<invalid>0,0)
25 RET wait4 49122/0xbfe2
26 [...]

1http://leaf.dragonflybsd.org/cgi/web-man?command=ktrace

67

http://leaf.dragonflybsd.org/cgi/web-man?command=ktrace

Chapter 4. Host Security

27 CALL chmod(0x80488b5,S_ISUID|S_IRUSR|S_IWUSR|S_IXUSR|S_IRGRP|
28 S_IXGRP|S_IROTH|S_IXOTH)
29 NAMI "/tmp/suidshellcopy"
30 [...]
31 CALL exit(0)
32 [...]

Listing 4.8: ktrace dump of a malware binary stealing the password file

4.3.5 Evaluation

The performance and a qualitative evaluation of the developed malware detec-
tion system is presented in this section. All tests were performed on two 2.53
GHz Intel Core2Duo cpu, 4 GB ram running DragonFly bsd, Kernel Version
2.5.0, connected with switched Gigabit Ethernet network.

Since the main modifications to the virtual machine kernel occurred in the
process and system call handling code, measuring performance impact is best
done by spawning several processes and by performing rapid system calls; thus,
data or process intensive tasks are not relevant for the benchmark.

0

0.1

0.2

0.3

0.4

Host VM VM Tracer

0.262

0.255

0.029 0.083
0.040.035T

im
e
 (
in

 s
e
c
o

n
d

s)

Sys User

Figure 4.9: Comparing host, virtual machine and modified virtual machine
speed

A test case that queries the kernel for network, user and other arbitrary infor-
mation is executed 50 times, and the average run time is calculated. The results
of the benchmark are presented in Figure 4.9. The lower bars, named sys, indi-
cate the time spent executing system calls on behalf of the executed program.
The upper bars, named user, represent the time spent doing calculations, it-
erations or general actions in userland. The diagram clearly shows that the
host operating system easily outperforms the virtualized kernels. Even though
the time spent executing system calls is nearly identical between host and the
virtual machine kernel, the time spent in userland is much more compared to

68

4.3. Malware Detection in Virtualized Grids

the time when running on the host directly. Enabling the tracer functionality
of the virtual machine kernel doubles the time spent in the kernel, but the
userland portion stays constant. Since the in-kernel time for system calls is so
low compared to the total execution time (0.06 seconds), this impact on the
performance can be ignored.

Another experiment measured the time needed to intercept a 8 KB binary in a
running virtual machine with the KernelAgent, transfer it over the network and
scan it with the Clamav engine. Over 350 trials were conducted to get a robust
mean, which is 0.5 seconds. The measured overhead of 0.5 seconds before the
actual execution starts is negligible in the described grid environment, as most
jobs will be long-running computational jobs. Furthermore, the use of caching
techniques will even reduce the overhead, as every (unchanged) binary is only
scanned once.

0

0.05

0.1

0.15

0.2

0.25

0.3

58KB 685KB 1.2MB 2.4MB

0.228

0.111

0.062

0.002

Transfer times

Time in seconds

Figure 4.10: Transfer times for various binaries from the KernelAgent to the
antivirus backend

Figure 4.10 shows the times needed to transfer various binaries of different
sizes over the developed middleware between KernelAgent and the ScanProxy.
Multiple measurements were conducted with different binary sizes representing
different types of malware (the average file size of the standard system binaries
is about 1.2 MB). For Binary 1 (58 KB), the average time is 0.001 seconds, for
Binary 2 (685 KB), the average time is 0.06 seconds, for Binary 3 (1.2 MB), the
average time is 0.1 seconds, and for the biggest binary (2.4 MB), the average
time is 0.2 seconds. Thus, the transfer time increases with the size of the binary.

Figure 4.11 shows the time needed to send an executable from the kernel to
the KernelAgent. In the first measurement (leftmost bar), there was no Ker-
nelAgent running and thus the kernel waits until the connection times out,
which takes 0.34 seconds on average. The second process (bar in the middle)
sends the binary prior to execution and blocks until transmission is completed,
which takes 3.8 seconds on average. In the third process (rightmost bar), a

69

Chapter 4. Host Security

worker thread is created that sends the binary file in the background. This
way, execution can proceed without waiting for the file to be sent, which is
time consuming. In average, this takes 0.88 seconds. An interesting fact is that
sending a binary with an extra thread takes about twice as long as waiting
for the timeout because the KernelAgent is not running. The increased speed
of multi-threading can be seen when comparing its time with a version where
execution starts only after transmission of the binary file is completed. The
non-multithreading version takes about four times as long.

0

1

2

3

4

No server Single-Thread Multi-Threaded

0.513

3.158

0.262 0.3680.647
0.083

T
im

e
 (
se

c
o

n
d

s)

Sys User

Figure 4.11: Benchmark comparing speed of a modified kernel without running
TCP receiver for binaries, single-threaded and multi-threaded transmission

Currently, copying data inside the operating system kernel is done by using
static memory instead of dynamic memory allocated with kmalloc. While static
memory is less flexible, allocation is faster and the chances of undetected mem-
ory leaks are low, compared to dynamic memory. Figure 4.12 shows the time
needed to pass around data with static and dynamic allocated memory. While
the former action takes 0.282 seconds on average, the latter takes 0.307 seconds
on average. As a consequence, all operations that need are called frequently
and whose performance is critical should avoid dynamic memory allocation, if
possible.

The presented experiments evaluated several aspects of the grid-based malware
detection system. While it introduces some performance penalties, it increases
the security of the monitored systems.

4.4 Summary

In this chapter, an approach for combined malware detection and rootkit pre-
vention in virtualized grid computing environments was presented. All running
binaries are intercepted by a small, in-kernel agent and submitted to one or
more backend units where the actual classification process occurs. Furthermore,
live-scanning of all binary system calls is performed to detect yet unknown ex-
ploits or malware. Due to the in-kernel nature of the agent, it is completely

70

4.4. Summary

0

0.1

0.2

0.3

0.4

Static allocation Dynamic Allocation

0.234
0.237

0.073
0.045

T
im

e
 (
in

 s
e
c
o

n
d

s)

Sys User

Figure 4.12: Time needed to pass data in the kernel using static and dynamically
allocated memory

transparent to the user as well as to malicious binaries trying to detect any
countermeasures. The distributed architecture utilizes existing grid resources
and the connection of different analysis engines. Furthermore, lightweight mod-
ifications to the module loading process of the operating system kernel prevent
that attacker from loading kernel rootkits. While the presented approaches are
developed in the context of virtualized grids, they can also be used in cloud
computing environments.

71

“If, ten years from now, when you are doing something quick and dirty, you
suddenly visualize that I am looking over your shoulders and say to yourself,
“Dijkstra would not have liked this”, that would be enough immortality for
me.”

Edsger W. Dijkstra (1930–2002)

5
Network Security

5.1 Introduction

In this chapter, network security solutions for grids are presented, including
implementation details, experimental results and evaluation. At first, a novel
architecture for virtualized grids is introduced. While jobs in traditional grid
computing use shared resources, the presented solution encapsulates jobs in
virtual execution environments. Since adding a virtualization layer poses new
challenges, several mechanisms are presented to address them. This includes
efficient mechanisms for virtual machine disk image distribution and effective
storage synchronization. Since is is impossible to protect a prominent node,
like the grid head node, from all possible attacks, mechanisms are needed that
make it more difficult for a possible attacker to access the system. Therefore,
a novel grid demilitarized zone that guards the grid head node is presented.
The introduction of a demilitarized zone also created the need for a software
that allows job resources to be transported to the backend computing resources
securely. This is done by a novel set of components that tightly fits into a grid
environment. Furthermore, the security of the demilitarized zone is extended
through a Network Intrusion Detection System to detect several grid-specific
attacks, especially Denial-of-Service attacks against the Globus Toolkit 4, i.e.
the grid middleware used. Finally, this chapter presents the concept of public
nodes. While it is common in clouds that virtual machines within nodes can be
reached from the Internet, it is unknown in grids. Dynamic firewalls guard the
virtual machines belonging to a job from internal and external attacks. In order
to provide a certain degree of freedom to the user, a web service is available
that allows secure, fine-grained configuration of the firewall settings.

–73–

Chapter 5. Network Security

5.2 Virtualized Grid Computing

5.2.1 Introduction

As stated in Section 3.3.4, shared use of computing resources is one of the
major problems of traditional grid computing. Jobs running on the same node
could interfere with each other: A legal job could use too many resources or
fill up a temporary file system (e.g., /tmp), which might also affect other jobs.
Furthermore, a malicious job could try to gather information about another
job. In order to mitigate such situations, there is a need for a clear separation
between different user’s jobs.

The following section presents a number of projects that attempt to achieve this
goal. Based on the related work, the requirements for the proposed solution are
defined. Then, the design for the proposed solution is presented and evaluated
via a number of experiments.

Parts of this section have been published in [118, 127, 126, 116, 121, 115, 39,
117, 163].

5.2.2 Related Work

Grid Computing and Virtual Machines

This sections presents related work that addresses the use of virtual machines
as execution environments within the context of grid computing.

Figueiredo et al. [40] presented a case study about grid computing on virtual
machines. They outlined the benefits to grid computing by using operating sys-
tem virtualization, especially in terms of security, usability and legacy support.
While this paper outlined the road towards virtualized grid computing, their
solution does not work with a scheduler that has already been installed on a
system. Because this is a requirement of the German D-Grid, the solution is
not acceptable.

VMPlant [77] is a grid service for automated configuration and creation of
virtual machines based on VMware, which can be cloned and dynamically in-
stantiated to provide homogeneous execution environments within distributed
grid resources. This work focuses on defining a framework for virtual machine
management and the representing software requirements through a directed
acyclic graph. In line with the previous approach, VMPlant does not work
with a scheduler that has already been installed on a system.

VSched [85], which is included into Virtuoso, is a system for distributed com-
puting using virtual machines to mix batch and interactive virtual machines on

74

5.2. Virtualized Grid Computing

the same hardware. Implemented as a user-level program, it schedules virtual
machines created by VMware gsx Server [162]. VSched is designed to execute
processes within virtual machines during idle times. Processes are executed
while users are not producing a high cpu load, e.g. while only using a word
processor or surfing the web. VSched focused on implementing a user-level
scheduler and thus is not prepared for the use in high-performance computing
environments, such as the German D-Grid.

The Globus team presented VirtualWorkspaces, an approach to distributed vir-
tual machines in grids [177, 68, 66, 48]. The project uses Xen virtualization
technology to dynamically create and deploy virtual machines. Unfortunately,
this project was in an early stage and allowed the creation of just one virtual
machine per job. Furthermore, a user has to trigger the Virtual Workspace
service manually to get a virtualized execution environment. The project has
been abandoned today and merged with the Nimbus project, which is presented
in the following.

Keahey et al. [67] presented the idea of using virtual environments in grid
computing. Their work resulted in the development of the Nimbus project
[94]. It allows the dynamic creation of virtual machines in which grid jobs are
executed, and therefore uses Xen virtualization technology. In contrast to the
solution that was developed during the course of this thesis, Nimbus offers an
on-demand set-up mechanism that provides virtual clusters, but it cannot be
used in traditional cluster scenarios, in which a scheduler decides where jobs
will be executed.

Kiyanclar et al. [72] presented Maestro-vc, a paravirtualized execution envi-
ronment for secure on-demand cluster computing. Maestro is similar to the
VirtualWorkspaces project presented above. A gateway receives an xml re-
quest from a number of clients describing a number of virtual machines. A
global scheduler is in charge of building the virtual cluster. While Maestro
demonstrates a good number of features needed for virtualized grid computing,
it still lacks some details. There is neither support for multi-site grid computing
nor for personalized vpn connections to the submitting user. Furthermore, it
does not deal with live migrations of virtual machines.

The challenges of system-level virtualization for High Performance Computing
are presented by Valle et al. [159]. They speak about different topics, such as
an ideal hypervisor, possible virtual system environments, fault tolerance, I/O,
storage, resource management and administration. Their work raises interesting
questions about the use of virtualization in grid and cloud environments and
outlines a number of requirements that have to be fulfilled.

Engelmann et al. [34] conducted a study on how to use virtualization to provide
management and utilization of high performance computing systems. Their ap-
proach uses a platform virtualization to execute virtual machines. Furthermore,
they state that techniques are used “in order to provide a powerful abstraction
for portability, isolation, and customization of the entire software suite of a hpc

75

Chapter 5. Network Security

system.” In line with the approaches presented above, no implementation was
provided that is able to work in an existing grid computing environment using
an already installed scheduler.

Könning et al. [74] described the development efforts in providing a virtualized
environment concept and prototype for scientific application development and
deployment. Virtualized Environments can be specified in xml and consist of
a number of system files in a chroot environment unique to each individual
user. chroot was chosen by the authors since it has a negligible overhead.
Nevertheless, chroot is not an optimal solution for a secure environment since
it is possible to escape from a chroot jail if no additional protection (such as
kernel hardening patches) are present.

OpenNebula, was developed by Sotomayor et al. [132, 136] to enable efficient
scheduling in virtualized environments. It uses leasing, and not jobs, as the
fundamental resource provisioning abstraction. OpenNebula is able to build a
private, a public or a hybrid cloud computing environment. In cluster or grid
computing environments, job resources (in terms of compute nodes or virtual
machines) are provided by the batch scheduler. It is not possible for a user to
choose his or her own resources. Therefore, it is not easily possible to integrate
OpenNebula in a classic grid computing setup using an existing scheduler.

The authors of OpenNebula also present Haizea [135, 133, 134], a resource lease
manager that can act as a scheduling backend for OpenNebula, providing leasing
capabilities not found in other cloud systems, such as advance reservations and
resource preemption, which are particularly relevant for private clouds. Haizea
seems like a promising solution that bridges the gap between grids and clouds
and is similar to the combination of solutions that will be presented in this
thesis.

Smith [123] presented an approach towards service-oriented on-demand grid
computing. He used operating system virtualization to shield users’ jobs from
each other. The Business Process Execution Language (bpel) is used to in-
tegrate the system into existing business workflows. Furthermore, a server
rotation mechanism protects the grid head node from unknown stealth attacks
by refreshing the head node transparently using virtual machine disk images.
An intrusion detection system using a streaming database system is presented
to detect attacks, which could not be prevented.

Virtual Disk Image Distribution

Related work and discussion on the topic of efficient distribution of virtual
machine disk images is presented in the following.

Sapuntzakis et al. [112] show how to move the state of a running computer across
a network quickly, including the state in its disks, memory, cpu registers and
i/o devices. The authors use several techniques to migrate a VMWare virtual

76

5.2. Virtualized Grid Computing

machine from one node to another. The paper focuses on distribution over
slow links (the primary example is a 384 kps dsl link). To achieve this goal, a
self-made cow layer is used that is connected to the VMWare gsx Server. This
layer attaches a bitmap to every cow disk. If a block is written/freed on one of
the disks, the associated bitmap entry changes. Thus, instead of transmitting
the entire cow disk, only the bitmap file is transferred and compared against
an older, already existing version, and only the blocks that have changed since
the last update are transmitted. To speed up the transfer over low-bandwidth
links, only a hash instead of the data itself is transferred. If the receiver has the
data matching the hash on local storage, it uses this data. If not, it requests the
data from the server. As the authors state in the paper, the presented approach
is not intended for high-bandwidth environments. Nevertheless, their approach
presents a number of good inspirations related to disk image distribution.

Nelson et al. [93] describe the design and implementation of a system that uses
virtual machine technology to provide fast, transparent application migration.
The system is called VMMotion and is part of the VMWare VirtualCenter
product. The actual migration involves severals steps: the selected virtual
machines’s memory is pre-copied to the destination, while the original machine
continues running. Then, the virtual machine is suspended and transferred to
the destination. The destination takes over control and resumes the suspended
machine. Finally, the remaining memory state is copied. The actual transfer
process happens over scsi storage. All virtual machines are attached to a
Storage Area Network (san); thus, the scsi disk can be reconnected to the
destination machine. Due to the fact that VMWare is not usable on most
academic grid sites, this approach is not feasible.

Kozuch et al. [75] present an approach called Internet Suspend/Resume (isr).
isr is a hypothetical capability of suspending a machine on one Internet site,
traveling to another and resuming it there. To achieve this, the authors use
VMWare and distributed file systems (nfs). All virtual machines are stored
on a shared folder, which itself is shared with all participating machines. Upon
suspension, the machine is shut down and saved on the disk. This disk can now
be used to resume the machine on a remote destination. While this scenario is
feasible for closed environments, it is not feasible for grid computing. Due to
the fact that the disk image could be accessed by others, this could lead to a
potential information leak. The authors also present some thoughts on further
improvement, especially in the area of image deployment. Their thoughts served
as an inspiration for the work done in this thesis.

Wolinsky et al. [171] describe a system of virtual machine-based sandboxes
deployed in wide-area overlays of virtual workstations (wows). They feature
a dhcp-based virtual ip address allocation, a self-configured virtual network
supporting peer-to-peer nat traversal, stacked file systems, IPSec-based host
authentication, and end-to-end encryption of communication channels. The
authors assume that almost all of the work done in the area of disk image
distribution has been performed in conjunction with virtual machine migration.

77

Chapter 5. Network Security

This means that an application or the operating system as a whole is migrated
over a network. All important operating system aspects (i.e., saving the state of
the cpu, network, memory, etc.) are covered by migration. Thus, distributing
the disk image over the network is only part of a complex procedure and not
covered in detail.

5.2.3 Design

Based on the related work presented in the last section, the following require-
ments for a virtualized grid management software can be derived:

• It is important to chose a mature virtualization hypervisor. Since operat-
ing system virtualization technology is used to achieve isolation between
jobs on the same node, it has to be known as fool proof. Furthermore, as
performance is important for grid computing, it is not an option to use
non-accelerated solutions. Non-accelerated means that there is operating
system kernel support for, e.g., fast memory and i/o access.

• Since the setting for nearly all software developed during the course of this
thesis is the German national D-Grid, a number of requirements have
to be fulfilled. Among others, this includes effortless interaction with
the installed grid middleware, such as the Globus toolkit. Implementing
one’s own client to submit (grid) jobs is not acceptable, as it could lead
to confusion on part of the user.

• While implementing a fully-featured scheduler capable of virtualization
is advantageous because there is no hassle in dealing with foreign code
and concentrating on the work of virtualization, it has the disadvantage
that implementing a scheduling logic that supports advanced features like
node reservation or backfilling is a very demanding task and could shift
the focus away from the virtualization and security work. Thus, a grid
virtualization solution should utilize the decisions of a scheduler that has
already been installed.

• In order to boot, every non-diskless virtual machine needs a disk image
(aka virtual machine disk image) that contains the root file system. Thus,
the approach has to make sure that the disk image is distributed to a node
prior to the actual boot process. Apart from the time of raw disk image
distribution, the network load caused by the distribution process itself is
a critical factor. A simple and incomplete distribution method could lead
to significant traffic on the core network components, possibly leading to
long-lasting transfers, congestion or, in the worst case, packet loss.

78

5.2. Virtualized Grid Computing

5.2.3.1 Image Creation Station

Using a virtualized grid creates the need for a software that provides virtual
machine images on demand. While the software that will be presented in the
following can use virtual machine images from most image creation software, it
is mostly used together with the Image Creation Station (ics). It is a software
developed at the Distributed Systems Group at the University of Marburg,
mainly by Niels Fallenbeck. For further information the reader is referred to
the following papers: [126, 39].

Motivation

One of the biggest changes for on-demand grid computing compared to tra-
ditional grid computing is the requirement that users must be able to install
custom software with root privileges autonomously (and preferably without the
hassle of a job-based installation procedure). To satisfy this requirement, a soft-
ware installation process based on virtualization technology is introduced. A
user receives a private virtual environment which looks and behaves exactly like
a node of the grid to be used. The user has root access and can install software
in the same way as software is installed on a local machine. This functionality
is provided by an Image Creation Station (ics) developed for this purpose.

Virtual Machine Creation

The ics consists of two parts: a front end and a back end. The front end is
a website that allows the user to define some basic parameters for the virtual
machine. The website is accessed in a protected manner using a X.509 user
certificate. The identity of the X.509 certificate is also used to imprint the
created virtual machine to the user. The configuration options a user has
include: which architecture the image should use (32 or 64bit) and how big
the virtual machine’s disk image should be and what name should be used to
identify the image (a user can have several images at the same time).

Once the user has selected the required options, an image can be created and
then booted. Once the image is finished, it is booted using a dynamic ip address.
Since this takes a couple of minutes, a notification email is sent containing
the dynamically chosen location of the image and the login information. The
ics accepts a gpg public key with which the email can be protected. If a
Globus installation is added to the nodes, the same X.509 certificate used for
the website can be used to log onto the image. Alternatively, a ssh public key
can be passed to the ics during the image creation process, and the ics will
configure the image to accept ssh login authentication for the corresponding
private key.

Once the user is logged in, software can be installed with root privileges in

79

Chapter 5. Network Security

the traditional way, which greatly eases the installation process compared to
the traditional grid installation techniques. A user can make any modifications
to the operating system configuration and installation, any required shared li-
braries and third-party software. This also paves the way for more fine grained
service-oriented applications, since a service hosting environment can be in-
stalled on the worker nodes without endangering other users. Figure 5.1 shows
the ics front end.

Figure 5.1: Image Creation Station

A user can create several (different) images giving each image a separate name.
The ics deploys the images to the cluster and provides the image-to-user-
mapping which is later used by the xge to select the correct virtual machine.

5.2.3.2 Architecture

A new software for managing virtual machines in grids was designed derived
from the requirements: the xge Version 2. The aim of the first version, also
developed at the University of Marburg back in 2006 [38], was to interrupt long-
running serial compute jobs in favor to massively parallel jobs. The version
described below shares, besides the name, no components with the old version.

The xge is divided into several parts, which are all independent threads en-
suring maximum concurrent operation. This partitioning was an early decision
in the design process as deployment and execution speeds are important. If

80

5.2. Virtualized Grid Computing

node

Job
ManagerWatchdog

Image
Manager

Backend

VNodes
Manager

DB Manager

Job VM
ManagerJob

Connection
Handler

Image
DaemonLXGEd

Distribution

User

Scheduler

Torque submits submits

creates

uses

usesqueriesqueries

submits
queries

uses

uses

starts

uses uses

starts

Job Server

Grid Headnode

queries

Figure 5.2: The architecture of the xge. The figure shows all modules and their
relationship to each other.

the initial time for the stated two processes take too long, an impatient user
could abort the operation entirely. This, in turn, leads to increased load on all
resources, as all of the users’ virtual machines would need to be stopped and
the nodes would need to be brought back into a consistent state. Nevertheless,
the highly multi-threaded architecture needs proper synchronization to avoid
leaving the system in an inconsistent state.

The architecture is shown in Figure 5.2. A new request is submitted by either a
local scheduler or directly by a user. Depending on the submitter, another xge
module is in charge: either the Watchdog or the ConnectionHandler (see Section
5.2.3.3). A number of different modules manage the jobs: Job, JobManager
and JobServer (see Section 5.2.3.4). All operations related to virtualization are
handled by the JobVMManager, the VNodesManager and the Backend (see
Section 5.2.3.5). The DBManager is connected to a database and is queried
by nearly all modules (see Section 5.2.3.5). Disk image distribution is operated
by the Distribution module, the ImageManager and two remote components
installed on each node, LXGEd and the Image Daemon (see Section 5.2.3.6).

5.2.3.3 Hybrid Mode of Operation

The xge supports a hybrid model of operation that is driven by the user or
the scheduler. While the former is especially useful for creating virtual clusters
on-demand, the latter is compatible with an existing scheduler (e.g., Torque or
the Sun Grid Engine).

81

Chapter 5. Network Security

Placeholder Virtual Machines

To make the xge transparent to a scheduler, the scheduler should not realize
that it is operating on virtual machines, as it would then see nodes appearing
and disappearing. This would break the scheduler’s ability to properly sched-
ule jobs because the nodes allocated to the job queues are constantly changing
(when nodes disappear for a while, the scheduler believes the nodes have crashed
and cannot be used for further jobs; thus, it reschedules everything). To pre-
vent this from happening, the xge uses placeholder virtual machines that are
registered with the job queues. Every placeholder virtual machine contains
a scheduler daemon (e.g., Torque’s pbs mom or sge’s sgeexecd) which lets
the scheduler know about a number of nodes and makes scheduling decisions.
When a job is scheduled, the placeholder virtual machine exchanged with the
user virtual machine transparently, so that the scheduler does not notice any
change.

Scheduler Interface

The following execution flow is performed when a job is submitted to the
scheduling system: (1) A job is submitted to the scheduler. (2) Based on its
scheduling configuration and the given constraints (required number of cpus,
ram, etc.), the scheduler decides on which nodes the job will be executed. (3)
Before the scheduler notifies the execution daemons on the chosen nodes, it is
interrupted and hands control over to the xge. (4) The xge shuts down all
placeholder virtual machines on the chosen hosts and starts the users’ own vir-
tual machines. (5) When all virtual machines are up and running, the xge runs
the user specific firewall configuration scripts and then hands back the control
to the scheduler. (6) The scheduler continues as normal and executes the job.
(7) After execution, a pre-defined epilogue script is called, which activates the
cleanup procedure of the xge. (8) All virtual machines belonging to the job are
shut down, and the xge boots up the placeholder virtual machines. When all
placeholder virtual machines are back, the control is passed back to the epilogue
script, which terminates itself.

To fulfill the steps described above, the xge needs requires some additional
information:

• The most important information is a list of virtual machines chosen for
job execution.

• For proper identification and for account and billing purposes, the user
name is also needed. If an id is provided, the xge uses that id for outside
communication. In general, most schedulers use their own unique naming
scheme for jobs, as does the xge. Since a mapping between the scheduler’s
id and the xge’s own id is useful for communication with third-party soft-

82

5.2. Virtualized Grid Computing

ware (e.g., the installed grid middleware), an internal mapping between
both is generated and maintained.

• If the submitter specified some kind of resource requirements (number of
virtual cpus, amount of virtual memory, number of network interfaces,
etc.), this information is given to the xge.

• By default, the xge is bound to one of the scheduler’s dedicated queues.
This ensures that only jobs that are ready for virtualization are processed
by the xge. Furthermore, it allows the administrator of a grid site to run
virtualized and non-virtualized jobs simultaneously.

• The xge also saves any names that the scheduler provides for jobs, which
may or may not be the same as their ids

The scheduler writes all of the information to a plain text once it is finished
with its scheduling decision. This text file is stored in a subdirectory, known
to both the scheduler and the xge. Listing 5.1 shows a job description file
generated by Torque.

1 [job]
2 name = 162.int12909
3 id = 162.int12909
4 queue = vqeue
5 script = testjob.sh
6 user = matthias
7 memory = 1024
8 hosts = node001c0 node002c3 node002c4

Listing 5.1: Job description file as provided by a scheduler

This file is read by the Watchdog daemon, which continuously monitors the
shared job directory. Once it finds a new entry, it checks if the job is already
known. This might be the case if the xge was restarted (either deliberately
or because it crashed). If the job is already known, the Watchdog ignores it.
Otherwise a new Job object is created and registered with the JobManager, and
further processing takes place. It also extracts the aforementioned information
and saves it into the job’s attributes.

User Interface

While the Watchdog communicates with the scheduler, the ConnectionHandler
communicates with the user’s client. It is a separate thread within the xge and
hosts a xml-rpc server. Hence, all clients have to speak xml-rpc and imple-
ment the interface. As direct requests do not belong to a job, there is no need
to register a job object in the JobManager. The ConnectionHandler directly
uses the functions provided by the VNodesManager, which will be explained
later.

83

Chapter 5. Network Security

5.2.3.4 Job Management

As already mentioned, the Watchdog registers new jobs with the JobManager.
A job is precisely described by a set of attributes with the values originating
from the scheduler. Besides the provided values, there are attributes specific to
the xge:

• Every job is identified by a Universally Unique Identifier (uuid) [81]. This
guarantees unique identification during runtime. Even after the runtime,
the id stays unique, as a timestamp is used during the generation process.

• A creation and a completion timestamp, which can be used for account
and billing.

While the JobManager handles jobs, the JobServer module handles possible
machine-to-machine communication. Thus, it runs as a separate thread and is
also able to spawn new worker threads on-demand. Furthermore, it is equipped
with a network interface which listens on a predefined tcp port. The decision to
enhance the JobManager with the JobServer was due to the fact that it knows
everything another machine would like to know and it is independent from the
remaining system. Even if malicious network packets crash the JobServer, the
core system that deals with job handling could still work and could finish all
operations until the JobServer is restored.

To provide a unique interface to either clients and machines, all network com-
munication is handled in xml. A client sends a request to the interface and
the xge sends the correct answer or an error. The possible queries from the
client to the job manager range from simple status calls about a certain job
to complex status reports, which include detailed information about, e.g., the
number of virtual cpus, several timestamps needed for accounting and billing,
the disk space used and network traffic statistics of all virtual machines, and the
cpu time consumed. To handle multi-site applications across network bound-
aries, a permanent communication channel between all running xges is needed,
which is established between the respective JobServer modules. The purpose
of the channel is to exchange information that needs to be present on all of
the xges involved. Strong cryptography and authentication ensures that this
information stays confidential and cannot be intercepted by malicious entities.

5.2.3.5 Virtual Machine Management

The virtual machine management part of the xge is completely separate from
the job management part. It does not know anything about jobs or how to
create, manage or delete them. It operates with the Backend on a lower level
and provides a public interface. This interface is used by the job management
and the ConnectionHandler.

84

5.2. Virtualized Grid Computing

Every single virtual machine is described by an object called vm. It has a
number of attributes that save information about the name of the virtual ma-
chine, the path to the disk image, the amount of virtual memory, the number
of virtual cpus, the mac address and multiple fields for consumed resources
(e.g., cpu time used and transferred network packets). If a virtual machine
belongs to a job, its vm object is created by the JobVMManager ; otherwise the
ConnectionHandler creates it.

Core Components

The VNodesManager is the core component responsible for virtual machine
management. By using the Backend module interface, it is able to convey
hypervisor operations such as boot, shutdown, destroy and migrate virtual ma-
chines.

On the initial start-up, the VNodesManager has to connect to the aforemen-
tioned Backend, which itself is connected to all nodes, to gather information
about virtual machines that are already running on the system. If there were
machines that the xge was not aware of, they could be destroyed. This would
be especially fatal if these were regular machines and not placeholders. The
state of all running machines is saved into the internal database.

Figure 5.3 shows a simplified view of the stacked architecture that is involved in
virtual machine operations. The virtual machine, represented by a vm object,
is processed by the VNodesManager, which itself uses an interface provided
by the Backend module. Interaction with the hypervisor occurs through the
libvirt library. Remote communication between nodes occurs through the libvirt
daemon, which runs on all nodes. This daemon uses the local hypervisor’s
operations to start, stop, etc. virtual machines.

XGE

Operating System
libvirt

VNodesManager
Backend

VM object
node

Operating System
libvirt

Hypervisor

VM 1 VM 2

Figure 5.3: Stacked architecture for virtual machine handling

Start Virtual Machines

The last step prior to job execution is to boot all virtual machines that belong
to the users job. As this process consumes a certain amount of time (between

85

Chapter 5. Network Security

5-30 seconds depending on the node’s performance), it is executed for all nodes
simultaneously. Synchronization ensures that neither the scheduler nor the user
is triggered until all virtual machines are properly booted. An early notifica-
tion could let the originator execute an application on a non-existent virtual
machine. Synchronization happens by polling the state of the virtual machine:
if the machine is either running or blocked, it is alive. At first, checking for
a blocked state seems cumbersome; however, that is how Xen, for example,
denotes that a virtual machine is running.

If the xge operates in scheduler mode, it has to shutdown a running placeholder
machine first. Since the scheduler is interrupted during the xge’s operations,
it will not notice that the placeholder is exchanged with the user’s real ma-
chine. Shutting down a great number of placeholder machines could take some
time and hence slow down the job workflow. Even worse, if the shutdown pro-
cess (and the following start-up process) takes too long, the scheduler assumes
that the job submission failed and cancels the job. That works even though
the scheduler is interrupted because the monitoring logic runs in a separate
thread. Therefore, the placeholder images are designed for minimalistic virtual
machines, consisting only of a kernel, an initial ramdisk, and the scheduler’s
execution daemon (more details in Section 5.2.4.7 on page 114). Using such an
embedded combination has the advantage that the whole operating system is
stored on a memory disk and not on the hard disk. Accordingly, the xge can
destroy (i.e., pull the plug) the placeholder, which takes only a fraction of a
second.

Once the placeholder is gone, the user’s virtual machine begins the boot process.
Low level operations are carried out by the Backend via the libvirt. If the boot
process fails, the xge aborts the process and reports an error back to the
requester. Now, it is important to bring the system back to a consistent state.
Since the placeholder is down, the scheduler’s execution daemon is also down.
After a timeout, the scheduler believes that the node has crashed and thus
reschedules everything. In order to avoid this situation, the xge has to restore
the placeholder.

Once a virtual machine is booted, it automatically retrieves an ip address from
a dhcp server. Due to a static mapping between ip and mac addresses, it is
easily possible for an administrator to identify a running virtual machine. This
could come in handy if an unexpected error occurs or if there are suspicious
packets on the network. The ip address contains the number of worker nodes as
well as the cpu core on which the machine is running. The same information is
encoded into the mac address. A sample address for a virtual machine could be
172.16.8.110 with the mac 1A:00:00:00:08:6E. The range of the network here is
172.16.0.0/16 where the third byte encodes the cpu core and the fourth byte,
the number of the worker node. Since the local nodes have four cpu cores, the
network consists of four subnets (172.16.8.0/24 through 172.16.11.0/24). The
example would be decoded to a machine running on the first cpu core on node
110.

86

5.2. Virtualized Grid Computing

Stop Virtual Machines

Shutting down a virtual machine is similar to the process of starting it up, only
in reversed order. Once a shutdown request is requested either by the user
or the scheduler, the xge has to check if there really is a machine running.
In general, this check is always positive, but due to administrators actions or
system failures, it could be negative. If there is no machine running, the xge
reports a warning and skips further actions. In order to restore a consistent
state, the xge has to restart a placeholder. However, this only occurs when
there is a scheduler involved, as starting a placeholder in a non-scheduler driven
environment could lead to occupied nodes.

Prior to the actual shutdown, all information gathered during the virtual ma-
chine’s lifetime is written into the database. Among others, this includes cpu
time consumed, maximum amount of virtual memory used and network traffic
statistics. All of this information is held by the hypervisor during runtime and
disappears after shutdown; hence, they have to be copied to persistent storage
for accounting and billing purposes.

Virtual Machine Migration

In virtualized grid computing environments where many virtual machines run
dynamically (i.e. they are created and destroyed over time) on clusters of physi-
cal hosts, the possibility of migrating virtual machines between differed hosts is
an essential feature. It enables dynamic load balancing, energy efficient machine
utilization, and eases maintenance. An important property of the employed mi-
gration mechanism is transparency for the virtual machines: a user should not
notice that his or her virtual machine is being migrated, and the virtual ma-
chine’s operation should continue seamlessly during the migration process.

Most current live migration implementations (e.g., the Xen migration facility)
do not take disk storage (including swap space on a disk) into account. Disk
storage is assumed to be located on a shared medium that can be accessed by
both the source and the destination host involved in a live migration.

This leads to several problems:

• Disk access over a network always introduces a decrease in performance
compared to local disk access.

• The virtual machine depends on a shared storage facility and a functioning
network connection to work properly.

• Each virtual machine instance needs its own working copy of a disk image
due to local modifications, although in a virtualized grid environment
many virtual machines might share the same basic image.

87

Chapter 5. Network Security

A solution that is better suited to the requirements of a virtualized grid envi-
ronment should allow a virtual machine to access its disk storage locally during
normal operation. This implies that a live storage migration that only affects
the virtual machine performance negatively during a migration process is needed
in addition to the migration of main memory and cpu state. Furthermore, it
is desirable to share basic disk images between virtual machines to reduce the
number of copies.

The following subsection describes the approach built into the xge to satisfy
the the requirements stated above.

Usually, each computing node needs persistent storage to operate, containing
user data, a custom software stack, etc. All of the data written during a virtual
machine’s lifetime in a virtualized grid environment is temporary because it is
disregarded after shutdown. Thus, the virtual machine’s disk space is divided
into two parts: a basic part containing the base operating system and a writable
part containing all new data written during virtual machine operation. Live
migration is simplified if the base part is never altered, i.e. it can be copied to
the destination host without losing any updates issued by the virtual machine
during migration; only the writable part has to be considered.

However, a write operation not only writes new data to a disk but might
also modify or delete existing data from the basic part. For example, the file
/etc/mtab will be altered upon each mount call. Hence, the two parts need
to be merged in some way. These requirements are met perfectly by a union
file system, as implemented, for example, by aufs or unionfs (which has been
deprecated). Previous work [121] showed that a union file system can be used
as a root file system.

There are several possible ways to create a layered root file system:

• The simplest way is to use a temporary in-memory file system (tmpfs) as
a writable layer (see Figure 5.4(a)). The main advantage of this approach
is that the setup is transparent to live migration: since all data resides in
main memory, it is transferred to the destination host during the normal
memory copy process without taking any special measures. A positive
side effect from the virtual machine’s point of view is the increased i/o
performance for disk accesses. For this setup to work properly, a suffi-
ciently large amount of ram needs to be allocated to the virtual machine.
However, there are two kinds of workloads that are not suited for this
approach: memory intensive workloads requiring a very large amount of
ram and workloads that write a great deal of data to a disk (and possibly
never - or at least only rarely occasions - access it again).

• Another possibility is to use a real disk image as a writable layer (see
Figure 5.4(b)). It is better suited for workloads that produce a great deal
of disk output. Whatever is written to the disk does not clutter up the
main memory.

88

5.2. Virtualized Grid Computing

• A hybrid approach is a further possibility: instead of using a disk image
as a writable layer, a large tmpfs is provided in conjunction with a large
swap partition (that resides on disk). Figure 5.4(c) illustrates the resulting
setup. This has the advantage of supporting workloads that use a great
deal of memory and disk-intensive capabilities. All data written to the
writable layer and not accessed again for some time will be swapped out
to a disk; thus, the main memory does not fill up with unused file system
content.

The challenge with the last two approaches is that they are not transparent to
live migration. Current virtual machine hypervisor implementations like Xen
do not support live migration of virtual machines with local persistent storage
but assume shared storage (including any swap space) that is accessible from
both the source and the destination host. However, for performance reasons, it
is desirable that a virtual machine has local access to its disk images. Hence, a
mechanism is needed to transfer the disk images seamlessly to a new host, as
presented below.

virtual memory

writeable layer

read-only base layer on
disk

(a) tmpfs as a writable
layer

read-only base layer on
disk

writeable layer on disk

(b) Disk image as a
writable layer

virtual memory swap space on disk

writeable layer

read-only base layer on
disk

(c) tmpfs as a writable layer
with swap space on disk

Figure 5.4: Multilayer Disk Images

Disk Image Synchronization

Using local persistent storage poses some challenges when performing live mi-
gration of virtual machines. The main problem involves transferring a consistent
disk state to the destination host while the virtual machine keeps running and
thus is altering the disk state. Hence, the task is divided into two parts: copying
the data and tracking changes (and somehow sending them to the destination
host).

The proposed synchronization mechanism works as follows: at the beginning
of the migration process, the source host starts to copy the disk image to the
destination. At the same time, all subsequent disk writes from the virtual
machine to be migrated are trapped and issued synchronously to the local
and the remote disk image. Synchronously means that the acknowledgment
of the disk write is delayed until the remote host has confirmed it. Once the
background copy operation is finished, the normal live migration process begins;
during the entire live migration process, the two disk images operate in the
synchronized mode. After the virtual machine is resumed on the destination

89

Chapter 5. Network Security

host, the disk images are decoupled, which means they are no longer dependent
on the source host.

To perform the actual synchronization, the drbd [86] kernel module is used;
it is integrated into the mainline Linux kernel since release 2.6.33. drbd is
designed for high availability clusters that mirror a disk from the primary host
to a secondary backup host and thus act as a network-based raid-1. Figure 5.5
shows the design of the module. It presents itself to the kernel as a disk driver
and hence allows a maximum of flexibility: it does not pose restrictions on the
file system used above or on the underlying disk driver managing the actual
disk accesses. And it is transparent to the kernel block device facilities, which
means that buffering and disk scheduling are left to the kernel as usual. The
module can operate in two modes: standalone and synchronized. In standalone
mode, all disk accesses are simply passed to the underlying disk driver. In
synchronized mode, disk writes are both passed to the underlying disk driver
and sent to the backup machine via a tcp connection. Disk reads are served
locally.

Figure 5.5: drbd module overview. Source: [86]

Although designed for a high availability setup where disks are mirrored across
the network during normal operation, the drbd module can be integrated into
the live migration process for migrating local persistent storage. The source
host plays the role of the primary server, and the destination host plays the
role of the secondary server. During normal operation, the source host runs
in standalone mode; hence writes are performed only on its local disk, and
there is no dependence on other hosts. During live migration, the drbd driver
is put into synchronized mode, which causes all disk writes to be performed
synchronously on both hosts while the entire disk is synchronized in the back-
ground. Once the migration is finished and the virtual machine is resumed on
the destination host, the drbd driver on the destination host is put into stan-

90

5.2. Virtualized Grid Computing

dalone mode and the source host is disconnected, removing all dependencies
between the two physical hosts.

The properties of this approach are as follows:

• There is nearly no performance overhead during normal operation of a
virtual machine because all disk writes are performed locally.

• The solution is reliable. If a migration fails, the virtual machine can keep
running on the source host. Due to the synchronous writes on both hosts,
the virtual machine has a consistent disk state on the destination host
after a successful migration.

• There are no residual dependencies. Once the virtual machine is resumed
on the destination host, no dependency on the source hosts remains. In
particular, no disk writes are ever issued on an inconsistent disk (such as,
for example, in the approach of Luo et al. [87]).

• The total migration time is increased compared to a memory-only mi-
gration. The additional time grows linearly with disk size. The total
migration time can be reduced as follows:

– If a layered files system is used (as described above), the size of the
writable layer can be kept small, reducing the amount of data to
synchronize. The read-only layer can be fetched from a separate
image pool simultaneously or might even already be cached at the
destination host so that no extra copy process is needed.

– drbd allows for checksum-based synchronization, which means that
only blocks that differ on source and destination are transferred.
If sparse image files are used on both sides, all unused blocks are
implicitly zero-filled and are hence identical on both sides, reducing
the total amount of data to copy.

• Background disk synchronization and the transfer of the main memory
are performed sequentially, so that they do not affect each other in a
counterproductive way. Since both tasks generate network traffic, the
memory dirtying rate would exceed the transfer rate (due to the parallel
disk synchronization) much faster, resulting in the abort of the iterative
copy phase and thus a longer downtime of the virtual machine. Further-
more, disk synchronization usually takes much longer than copying the
memory; hence, an exact timing would be difficult.

• No additional virtual machine downtime is introduced because the virtual
machine can be resumed without any further delay once the live migration
process of the virtualization system in use has finished. In contrast, the
approach of Bradford et al. [12] delays all disk I/O of the virtual machine
until the remaining writes are applied to the disk on the destination host.
This can cause an additional delay for write-intensive workloads.

91

Chapter 5. Network Security

• Write-intensive workloads are implicitly throttled by the synchronous na-
ture of the disk writes, such that the disk write rate never exceeds the
network transfer rate, which would render any disk synchronization mech-
anism useless. Bradford et al. [12] employ explicit write throttling when-
ever the write rate exceeds a predefined threshold. Luo et al. [87] actively
stop their pre-copy phase if the disk dirty rate is higher than the transfer
rate, resulting in a much longer post-copy phase where the destination
host still depends on the source host and the virtual machine runs with
decreased performance.

• The amount of bandwidth consumed by background synchronization can
be dynamically configured in the drbd driver. This enables the adminis-
trator to find an appropriate trade-off between total migration time and
performance degradation of the virtual machine due to high network con-
sumption.

• Synchronization is completely transparent to the running virtual machine.

• The approach is independent of a special virtualization environment; thus,
it can be used with any hypervisor that supports live migration.

Backend

All low level virtual machine operations in the xge are done using an interface
provided by the Backend module, which itself is connected to the libvirt library.

On initial startup, connections to the libvirt daemons running on all nodes are
opened. These connections are simple tcp connections, either encrypted, using
ssh [30] or tls [31], or unencrypted. By default, the xge uses ssh. In order to
send commands to remote machines, the xge instructs libvirt to forward them
to the daemons. There is only one connection per node, which will be closed
upon shutdown to avoid zombie processes and connections.

The interface provided by the Backend offers functions to e.g. start, stop and
migrate virtual machines. In order to avoid errors, there is always a require-
ments check prior to the actual libvirt call. Due to its simple design, this module
can easily be extended with more functionality.

Database

Persistent storage within the xge is realized using a database. In order to be
independent of a specific Database Management System (dbms) such as Mysql
[98] or Postgresql [102], sqlite [139] is used. sqlite is a small, lightweight
database that stores all databases in a binary-encoded text file.

Figure 5.6 shows all database tables and connections. The primary table is the
vnodes table that contains information about each virtual machine present in

92

5.2. Virtualized Grid Computing

mac text
hostname text

Virtual machine

vnodes

physact text
physhome text

state integer
isph integer

disk text
job integer

mac text
hostname text

Physical nodes

physicalMachines

job text
hostname text

Virtual machine history

vnodeshistory

usedmem integer
maxmem integer

cputime integer
vcpus integer

rx_packets integer
rx_bytes integer

tx_packets integer
tx_bytes integer

id text
uuid text

Jobs

jobs

user text
name text

status integer
script text

stoptime integer
starttime integer

queue text
memory integer

job text
hostname text

Job accounting

jobvms

usedmem integer
maxmem integer

cputime integer
vcpus integer

rx_packets integer
rx_bytes integer

tx_packets integer
tx_bytes integer

Figure 5.6: Database tables

the system including the unique host name (the primary key). Among other
entries, it also contains the home’s host name and the actual node. Here,
home node means the node where the virtual machine was started for the first
time. Keeping this host name is important as the machine could be migrated to
another node. In order to start a placeholder machine after shutdown, the xge
has to know the original host name. The actual host name is changed every
time a machine is migrated. Both fields refer to the physicalMachines table
that contains the unique host name; hence, it is the primary key for all nodes,
including their mac address.

Jobs are saved into the jobs table, which contains identification and various
statistical fields. Since every job has to be unique within the system, the uuid
field is used as primary key. In order to save accounting information, a jobvms
table exists. As soon as a job is finished this table is filled with the consolidated
values from a virtual machine that belongs to it. Thus, the host and the job
name are the primary keys. The vnodeshistory table is temporary and contains
account information about a particular virtual machine. It is filled every time
a machine is migrated or shut down. The contents of this table are used to
assemble the final accounting report.

All database operations are handled by the DBManager module. It creates the
whole database, including the table layout on the first startup, and offers an
interface to other modules to query, update or delete database values.

93

Chapter 5. Network Security

5.2.3.6 Disk Image Distribution

Prior to being able to boot the virtual machines, the (virtual machine) disk im-
ages need to be present on the machines. This section presents several methods
for distributing virtual machine images from one node with the source of a set
of selected nodes as the destination.

Network File System

The traditional way to distribute a number of disk images in a virtualized
grid site would be to use the Network File System (nfs) [14]. nfs is well-
established and provides a simple way, for both the administrator as well as
the user, to make files available remotely. The central nfs server stores the
disk images and the nodes retrieve copies on-demand. This leads to multiple
point-to-point transfers. Furthermore, when multi-gigabyte files are accessed
by a large number of nodes simultaneously, nfs shows erratic behavior. This
leads to a number of crashes during tests. To avoid this behavior, the nodes
would need to synchronize their transfers, so as not to interfere with each other.
Further common problems with nfs such as stale nfs file handles (which can,
for instance, be caused by a re-exportation of the nfs exports), can lead to
stalling virtual machines or even nodes. Finally, nfs is not well suited for
use in a multi-site computing scenario. Exporting nfs outside a local network
is complicated and is difficult to secure. For these reasons, a simple unicast
deployment algorithm was developed to serve as a benchmark instead of nfs.

Unicast Distribution

A straightforward method for distributing virtual machine images is sequen-
tially copying them to the destination nodes. The benefits of this method are
that it is fairly simple to understand and implement and it works in multi-
site scenarios; however, its drawbacks include long transfer times and network
congestion.

Binary Tree Distribution

To avoid network congestion and to allow parallel transfers, a binary tree-based
distribution method can used. In this method, all computing nodes are arranged
in a balanced binary tree with the source node as its root (see Figure 5.7). The
balanced tree property guarantees that the depth of the leaves differs by at most
by one. Since a balanced tree has a height of log2(n) with n being the number
of nodes, the transmission time is O(t · log2n), where t is the time needed to
transfer a virtual machine image from source to destination.

94

5.2. Virtualized Grid Computing

All transfers are synchronized to avoid that a transfer on a child node starts
before the data from the parent is available. Correct synchronization can be
achieved by either synchronizing every level of the tree or by synchronizing every
node. Whereas the first method is easier to implement, the second method
guarantees a higher throughput and thus lower transmission times.

node 5

node 1 node 2

node 3 node 4 node 6

node 7 node 8

Root
Pool of
Images

Figure 5.7: Binary tree distribution

This method reduces the time needed to transfer a virtual disk image to all
nodes as compared to the unicast distribution method. The method can be
used for multi-site computing if either all nodes are located inside the same
subnet (e.g., if two remote sites are connected with a Virtual Private Network
(vpn) or if the nodes have public ip addresses ([2]).

The binary tree is in fact a Fibonacci tree. A special feature of the Fibonacci
tree is that it is rebalanced using rotations after insertions or deletions. Thus, if
the distribution of a virtual machine image is interrupted due to a node failure,
the tree needs to be rebalanced to guarantee a seamless transfer. Besides re-
balancing, there are some further actions involved to resume the transfer to all
nodes that are now rebalanced. It is possible for a node to have a different
parent after re-balancing, so the transmission for that node must be restarted.
The child nodes of that node stall automatically until they have sufficient data
to continue the transmission.

Peer-to-Peer Distribution

Another method is to use peer-to-peer (P2P) technologies for disk image trans-
fer. The BitTorrent protocol [10] was chosen. Bram Cohen designed the pro-
tocol in April 2001 and released a first implementation on 2 July 2001. The
protocol allows users to distribute large amounts of data between multiple,

95

Chapter 5. Network Security

network-connected machines without congesting the network compared to stan-
dard file distribution.

BitTorrent was designed as a protocol for fast, efficient and decentralized distri-
bution of files over a network. Every recipient downloading a file supplies this
file (or at least parts of it) to newer recipients also downloading the file. This
reduces the overall costs in terms of network traffic, hardware costs and overall
time needed to download the whole file.

The node hosting the source file starts a tracker that coordinates the file’s dis-
tribution. Furthermore, a file (a so-called torrent file) containing meta-data
about the source file tracker’s (url) is generated and must be distributed to all
clients (either active with a push mechanism or passive with all clients down-
loading the torrent file from a web server). Clients, also called peers, connect to
the tracker that tells them from which other peers pieces of the file are available
for download. A peer that shares parts or the entire file is called a seeder. Us-
ing this technique, sharing files between multiple peers benefits from high speed
downloads and reduced transmission times compared to other techniques. An
overview of all described components is shown in Figure 5.8.

Initial
Seeders

peer peer

peer peer

peer peer

tracker

Figure 5.8: Distributed file sharing between multiple peers including a tracker

To distributed data over BitTorrent the seeder has to generate a torrent file
containing meta-data information about the files to be shared and about one or
more trackers. The file contains, among other entries, the following information
[23]:

• The url of the tracker

• The suggested name for the file

• The piece length. All files are split into fixed-size pieces which are all
the same length, except for the last on which might be truncated. Most
commonly its 256 KB.

96

5.2. Virtualized Grid Computing

• The length of the file.

The tracker coordinates the file’s distribution. New peers connect to the tracker
which informs them about all other peers which store parts of the requested
file. Thus a client requesting a file acts simultaneously as a consumer and as
a seeder (peer-to-peer). This reduces the load on a single server as its equally
distributed after a certain time and it reduces the overall download time.

Due to its distributed nature, BitTorrent perfectly fulfills the needs of multi-
site computing. It can be used to distribute disk images between two dedicated
virtual machine image pool nodes on remote sites if the networks where the
actual compute nodes reside are private or not connected in a vpn. The dis-
tribution from the pool node to the compute nodes can also be accomplished
by BitTorrent or another suitable protocol. If the network setup permits it, a
direct virtual machine image transfer to the compute nodes is desired to save
additional local distribution time on each site.

To distribute a virtual machine image to the compute nodes, a torrent file
containing the url of the tracker needs to be generated. The tracker in this
case is the source node hosting the disk images. Furthermore, a seeder for the
disk image needs to be started on the source node. To begin with the actual
distribution process, BitTorrent clients are started remotely on all compute
nodes. They connect to the tracker, load and seed the virtual machine image
immediately. After the process is finished, all nodes carry the complete and
correct virtual machine image. The distribution of two virtual machine images
is illustrated in Figure 5.9.

Initial
Seeders

Pool of
Virtual Machine

Images

node node

node node

node node

Figure 5.9: Distribution of two disk images via BitTorrent

97

Chapter 5. Network Security

Multicast

The distribution of virtual machine images via multicast is the most efficient
method in the local area network environment. The design of the multicast
module can be kept simple if no ordering guarantees are given by the master
node. Ensuring reliability in this case is delegated to both the sender and the
receivers. The former can handle data reliability by tuning either the number of
redundant packets (increasing the cpu load) or by tuning the stripe size, i.e., the
number of packets sent in a block (this could decrease the cpu load but increase
the loss of data). ip-based multicast can also be used to transfer the data. It
is supported by most networking hardware out of the box. Modern hardware
can handle multicast transfers even better, i.e. it is possible to distribute the
multicast packets only over selected links according to their multicast group
membership. This is accomplished if the switches support igmp Snooping or
the Cisco Group Management Protocol (cgmp). The switches can inspect the
Internet Group Management Protocol (igmp) packets and adjust their switching
tables accordingly. This transfer method is likely to be scalable to large-scale
installations, e.g. the ones used by modern infrastructure providers, since the
hardware used is capable of scaling to thousands of hosts and multicast groups.

Multi-Site Transfer

Although multicast is an ideal method for transferring data within a local
area network, it is not the preferred method for transferring data over network
boundaries since routing multicast packets between networks might require spe-
cial protocol support at the network core, such as the Distance Vector Multi-
cast Routing Protocol (dvmrp). Furthermore, it could be possible that data is
shared between two private, physically separated desktop grids or clouds within
the same organization, but the network policy forbids that data is transferred
via multicast over the network backbone connecting the two.

It is also possible to use a combination of two methods when performing multi-
site computing. If the nodes in a private site are not directly accessible because
they do not have public ip addresses, it is not possible to use e.g. BitTorrent
directly. Here, it is possible to transfer the disk images or only selected layers
to publicly accessible pool nodes to cache the data there and transfer it locally
via multicast afterwards.

Encrypted vs. Unencrypted Transfer

If private data (whether it is sensitive data or not) is transferred over an insecure
link or over network boundaries, it should be encrypted. However, encryption
involves additional costs: the cryptographic computations produce cpu load
on both the sender and receiver, and the average transfer rate is reduced. Un-

98

5.2. Virtualized Grid Computing

encrypted transfers are favorable if the data itself is public and nobody cares
if it is stolen. Furthermore, if the network is isolated from the outside world
(which is common in high performance computing setups today), the increased
transfer rate is a benefit compared to an encrypted transfer.

Avoiding Retransmission Overhead

To avoid the retransmission of a virtual machine image that is already present
and to avoid the need for huge amounts of disk space at the destination nodes,
an approach based on copy-on-write (cow) layers is proposed. A layered file
system is a virtual file system built from more than one individual file system
(layer) using a cow solution like UnionFS [158]. A virtual machine image is
realized by a cow virtual disk consisting of three or more layers. At first, only
a base layer is present. This layer contains a complete installation of a Linux
operating system. On top of the base layer, a site layer is placed. It contains
all modifications needed to run this virtual machine image on a particular site,
such as a local or a remote site like Amazon’s ec2 service. Special configuration
information depending on the infrastructure, as in ldap settings, name servers,
and nfs server, are stored in the site layer. The third layer is the user layer that
contains all modifications made by the user. The size of this layer ranges from
small (only a basic software stack with special libraries and e.g. mpi programs is
installed) to very large (a complex, proprietary application with a license server
is installed).

user layer

(a)

user layer

base layer base layer base layer

vendor layer vendor layer

(b) (c)

VM VM

VM

Figure 5.10: Usage scenarios for a layered virtual machine

There are different usage scenarios for layered virtual machine images, as shown
in Figure 5.10. The user may set up the user layer of a virtual machine com-
pletely on his or her own, leading to a two-layered image (a). Alternatively, a
software vendor (or one of its sales partners) may provide a layer containing
one of its products (b). Even in this case, the user may set up a custom layer
on top of the vendor layer, containing extensions or other required tools (c).
Moreover, other usage scenarios might be possible and should be supported.

Usually, a large number of similar jobs are submitted to a site, where each job
represents a part of the problem to be solved. A simulation process is typically

99

Chapter 5. Network Security

divided into numerous independent tasks that will be executed concurrently on
many compute nodes. These jobs are executed in multiple instances of the vir-
tual machine, and they are most likely executed consecutively. Retransmitting
the user layer again every time is contradicting to the whole idea of image dis-
tribution compared to the use of nfs. Thus, the user layer (as well as the base
and possible vendor layers) should be cached locally on the individual nodes.
To ensure that a cached layer is in a working state when it is used to form a
root file system, it is best to make sure that it is not changed with respect to
its original state. This can only be achieved by prohibiting write access to the
layer during runtime.

Using cow virtual disks has several advantages. The base layer remains nearly
the same over a long period of time. An update, for example, is only necessary
if security or errata patches have to be installed. This allows us to store the
base layer on the compute nodes and avoid expensive retransmissions. It also
removes the need for a large amount of disk space because the large base layer
is cached. Updates to the site layer are also quite rare; thus, it can also be
stored on the compute nodes. Only the user layer changes often, as users tend
to install new software, re-install existing software or change settings. Thus,
most of the time, the user layer is the only part of a virtual machine image
that needs to be retransmitted, leading to significant savings in the overhead
for retransmission.

Integration

All of the mechanisms presented are integrated into the xge. Multicast and
binary tree are not enabled by default; rather the disk image distribution is done
with BitTorrent. Unicast or sequential distribution is available as a fallback if
there is no BitTorrent compatible infrastructure.

The BitTorrent distribution is explained here in greater detail. A daemon, the
image daemon, runs in the background on all nodes and waits for commands
from the xge, specifically the ImageManager. It runs as separate thread and
triggers the distribution process. Therefore, it sends a fetch request to all
imaged’s. A submodule of the imaged, the TorrentClient, downloads the disk
image. Nodes that already have the disk image serve as seeders and help to
expedite the process. Once the distribution is finished, the sending nodes stop
seeding.

Since a user’s virtual machine can run multiple times on one node, the disk
image also has to be present multiple times. As it is a waste of bandwidth to
repeatedly download an disk image to a node, the xge implements a caching
strategy. Therefore, a disk image is only downloaded once and then duplicated
with local copy operations. By using read-only disk images (with a writable
copy-on-write layer on top), the need for local copies vanishes. Here, it is

100

5.2. Virtualized Grid Computing

sufficient to create a symbolic link. As there is absolutely no write access on
the disk image, the hypervisor boots it.

5.2.4 Implementation

The xge is completely written in the Python programming language [47] and
currently has more than 8000 lines of code. By using the libvirt library [29], the
xge can work with multiple operating system virtualization backends without
having to extend or change the code. Currently the xge is well tested with the
Xen Virtual Machine Monitor and the Kernel Virtual Machine (kvm).

5.2.4.1 Core Components

The xge consists of a number of core components that handle all the low-level
work and build the connection between all other non-core modules.

Depending on the initial connection, different parts are responsible. If the xge
is used with a job scheduler, the Watchdog takes over. Otherwise, if the xge
is directly controlled by a user via the client interface, the ConnectionHandler
takes over.

Initial xge start-up is managed by the main class that makes sure that all re-
quirements needed to operate are met. To identify problems during the initial
start-up, the logging component is initialized at first. Now the lxged is started
on every registered node. This daemon (explained in detail in Section 5.2.4.2 on
page 103) opens up a permanent connection to the xge to e.g. retrieve remote
commands. If the administrator wants to distribute the virtual machine hard
disk image with BitTorrent, an instance of the imaged (see Section 5.2.4.9 on
page 118) is also launched on all nodes. It handles all BitTorrent-related com-
munication between the xge, the corresponding node and the tracker. Finally,
the VNodesManager (see Section 5.2.4.5 on page 107) and the Watchdog are
started. This step concludes the start-up phase.

Watchdog

Communication between the xge and a job scheduler occurs through a shared
directory on a common file system. After the scheduler successfully processes
a job (and decides on which nodes the job will be executed), it creates a new
sub-directory within this shared directory. This is by default /opt/xge/jobs.
Within this directory, the scheduler creates a file named job.conf containing the
job configuration details.

The Watchdog continuously monitors this directory for new job directories
dropped by the scheduler. Once it detects a new one, it tries to registers a

101

Chapter 5. Network Security

job within the xge. If the xge is restarted (either deliberately or because it
crashes), the Watchdog can detect known job directories. These jobs are ig-
nored and not processed again. Unknown jobs are then registered, i.e. a new
job object is created. This process is explained in detail below.

ConnectionHandler

Given that the xge is not controlled by a scheduler, the ConnectionHandler
processes requests issued by a client. To be independent from the given infras-
tructure, local as well as remote communication with the ConnectionHandler
is possible. Therefore, it runs as a separate thread implementing a xml-rpc
server. The server itself is also able to start child threads to handle multiple
connections at once. ip address and port of the server are defined by the local
administrator.

The ConnectionHandler exposes a number of functions to the client, such as
starting and stoping virtual machines as well as placeholder machines, or mi-
grating a virtual machine from one node to another. Furthermore, it is possible
to request a variety of status information from all known virtual machines.
While this is interesting for the user, it is also important for other services,
such as accounting and billing services.

Any error triggered by the ConnectionHandler (and thus, initially by the user)
is caught, handled and delegated back to the client. This enables the client to
catch the exceptions and notify the user appropriately. This is shown in Listing
5.2. The call to start-up a virtual machine is shown in lines 10 and 11. If any
exceptions occur, they are caught and sent back to the client.

1 [...]
2

3 @staticmethod
4 def startVM(name, diskImagePath, mem, cpus):
5 if mem <= 0:
6 mem = config.memory
7 if cpus <= 0:
8 cpus = 1
9 try:

10 VNodesManager().startVM(VM(name, image=diskImagePath,
11 disk=diskImagePath, memory=mem, mac=None, vcpus=cpus))
12 except (VMException, XgeException), e:
13 raise xmlrpclib.Fault(1,’%s:%s’ % (e.__class__.__name__,e))
14

15 [...]

Listing 5.2: Part of the ConnectionHandler that starts a virtual machine,
catches and forwards possible exceptions back to the requester

To retain knowledge about all internal processes and to provide information to
users and other services, the xge saves a number of data in a database, here
sqlite [139]. While sqlite is very flexible, it also has a reduced instruction set

102

5.2. Virtualized Grid Computing

and lacks the performance of mature databases. Since the xge is not a high-
performance component, these two drawbacks are negligible. The DBManager
handles all database operations within the xge.

1 class DBWorker(threading.Thread):
2 def __init__(self, dbname, queue):
3 self.requests = queue
4 self.dbname = dbname
5 threading.Thread.__init__(self)
6

7 def run(self):
8 self.conn = sqlite3.connect(self.dbname)
9 self.cur = self.conn.cursor()

10 while True:
11 (what, tuple, event, result) = self.requests.get()
12 self.cur.execute(what,tuple)
13 self.conn.commit()
14 result.extend(self.cur.fetchall())
15 event.set()
16

17 [...]
18

19 def executeWrapper(self, what, tuple=()):
20 result = []
21 event = threading.Event()
22 self._requests.put((what,tuple,event,result))
23 event.wait()
24 return result
25

26 [...]

Listing 5.3: Database worker class, which handles concurrent access to the
sqlite database

Due to the fact that the Python sqlite connection is unable to handle concur-
rent requests and because database queries need to be issued from many threads
in different contexts during regular xge operation, it is necessary to open and
close the database connection for each request. Therefore, a worker had to be
implemented to wrap the actual database interface (see Listing 5.3). Initially
the DBWorker receives a queue object from the DBManager that holds sql
requests, results and events. The queue module is already thread safe, which
ensures that the xge code does not have to deal with concurrency issues here.

Every thread that wants to connect to the database has to use a number of
functions provided by the DBManager. These functions access the database
through a wrapper method (line 19 - 24). Query requests are transferred to the
DBWorker using a producer-consumer setup.

5.2.4.2 LXGEd

lxged consists of two components: a daemon running on each registered node
and a client integrated into the xge. Communication between the two compo-

103

Chapter 5. Network Security

nents occurs using xml-rpc. Exceptions are forward between the daemon and
the client, ensuring that possible failures can be processed.

One of the important functions of the lxged is to copy hard disk images when
sequential deployment is used. The responsible code on the daemon is shown in
Listing 5.4. The disk image sPath on the source node will be copied to dPath
on the destination node (line 4). If read only disk images are used and the disk
image is already present on the destination node, creating a symbolic link is
sufficient since this saves time and bandwidth. Writeable disk images cannot be
linked; this, a real remote copy is necessary. This is done using the rsync [155]
program because it is able to copy sparse files efficiently. A sparse file occupies
only the actual disk space consumed on disk. It is limited by its maximum size
recorded in its inode. For example, a 10 GB sparse file occupies only 500 MB on
the system if this is the number of actual used blocks. Most programs used to
transfer files between remote machines (this also applies to most programs for
local copies) are not able to cope with sparse files. Thus, using such a program
would result in a 10 GB file on the remote disk. The opposite is true for rsync,
which detects sparse files and transfers only the effectively used blocks.

1 [...]
2

3 @staticmethod
4 def copyLocalFile(sPath, dPath, doLink=False):
5 ret = 0
6 if doLink:
7 try:
8 os.symlink(sPath, dPath)
9 except OSError, e:

10 raise xmlrpclib.Fault(1, ’%s:%s’ % (e.__class__.__name__,
e))

11 else:
12 cmd = [’rsync’, ’-aPqS’, sPath, ’-e’, ’ssh’, ’root@localhost:

’+dPath]
13 try:
14 ret = subprocess.call(cmd)
15 except (OSError, ValueError), e:
16 raise xmlrpclib.Fault(1, ’%s:%s’ % (e.__class__.__name__,

e))
17

18 [...]

Listing 5.4: Method in the Lxged used to copy virtual machine hard disk
images between client and daemon node

5.2.4.3 Job Management

After the Watchdog daemon recognizes a new job given by the scheduler, a Job
object is created. This object contains all information about a job and can be
used to communicate to the attached methods. To describe all aspects of a job,

104

5.2. Virtualized Grid Computing

the object inherits from the JobInformation class. This class holds a variety of
information that is important to both the user and the xge.

Listing 5.5 shows some attributes of the JobInformation class. A uuid gener-
ated by the xge is used to identify a job uniquely. Furthermore, a job could
contain an id. This is is either the same as the uuid or the id provided by the
scheduler. In the latter case, a xge job could be identified with a scheduler id.
This might be handy for accounting and billing services. A job has a specific
state, encoded by an integer:

Waiting (0) : The job is queued in the xges internal structures and waits
until all of its virtual machines are started.

Running (1) : All of the job’s virtual machines are booted and the scheduler
has started the execution of the application.

Finished (2) : Execution is complete and all virtual machines are down.

Error (3) : An error has occurred. The exact failure is reported to the user
and the xge tries to correct a possible unsafe system state (e.g., one half
of the users virtual machines run, the other half refused to boot).

To be able to identify the submitting user’s home directory, the xge also records
the user name. This is necessary because the xge saves a status and error log
file in every users’ home directory.

1 class JobInformation(object):
2 def __init__(self, uuid, tid):
3 """ UUID of the job """
4 self.uuid = uuid
5 """ ID related to traffic shaping """
6 self.tid = tid
7 """ ID of the Job (set to UUID if not overwritten) """
8 self.id = uuid
9 """ Network UUID (set by the calling instance) """

10 self.nuuid = ’’
11 """ List of associated hosts """
12 self.hosts = []
13 """ List of associated VMs """
14 self.vms = []
15 """ Job status (0=waiting, 1=running,
16 2=finished, 3=error) """
17 self.status = 0
18 """ Creation timestamp """
19 self.timestamp = 0
20 """ Stop timestamp """
21 self.stoptime = 0
22 """ Name of the job """
23 self.name = ""
24 """ Owner of the job """
25 self.user = ""
26 """ Maximum of memory allowed for VMs """
27 self.memory = 0

105

Chapter 5. Network Security

28 """ Queue of the job """
29 self.queue = ""
30 """ Script """
31 self.script = ""
32 [...]

Listing 5.5: Abstract of the JobInformation class describing vital details about
a xge job

5.2.4.4 Job Manager

A central component of the xge that manages jobs is the JobManager. It can
create new jobs, delete old ones or manage a variety of aspects associated with
jobs. Therefore, a global list containing all jobs is used.

Listing 5.6 shows a method used to register new jobs. Since concurrent access
from multiple threads is possible, entries within this method must be synchro-
nized (line 3). Given that the job is already in the internal list, it is not added
again and the method returns (lines 4 through 7). To gain information about
the job, the job configuration file created by the scheduler is parsed. In the
event of an error, the job state is set to Error, a notification is sent to the
scheduler and an error is returned to the caller (lines 9 through 16). If no pars-
ing error occurs, the job is appended to the internal list, a message handler is
created and finally, the job is started (lines 18 through 22).

1 [...]
2 def registerJob(self, job):
3 self.__jobLock.acquire()
4 for i in self.__jobList:
5 if str(job.name) == str(i.name):
6 self.__jobLock.release()
7 return False
8

9 if job.parseConfig() < 0:
10 job.status = 3
11 try:
12 notifyResourceManager(self, "running")
13 except XgeException:
14 pass
15 self.__jobLock.release()
16 return False
17

18 job.addMessageHandler()
19 self.__jobList.append(job)
20 job.startJob()
21 self.__jobLock.release()
22 return True
23

24 [...]

Listing 5.6: Method to register a job in the xge

106

5.2. Virtualized Grid Computing

5.2.4.5 Virtual Machine Management

A virtual machine is described by a VM object. This object contains attributes
for the number of virtual cpus, the maximum amount of virtual memory and
the path to the hard disk image. Virtual machines can be bound to a job
or created on-demand upon a user’s request. In the former case, the virtual
machines are bound to a job object, in the latter case the vm objects are
created directly by the VNodesManager.

The VNodesManager is the core component for virtual machine management.
Through its backend bindings, it is able to execute virtual machine operations,
e.g. start, stop or migrate. Initially, the VNodesManager connects to the oper-
ating system virtualization backend chosen by the administrator. This happens
using the libvirt library. Only one backend can used at a time. Listing 5.7 shows
how a connection to either kvm (line 4) or Xen (line 7) is set up.

1 [...]
2

3 # initialize the backend with xen as default
4 if self.c.backend == "kvm":
5 self._backend =
6 Backend(self.physicalMachines, self.virtualMachines,
7 "qemu+ssh://")
8 else:
9 self._backend =

10 Backend(self.physicalMachines, self.virtualMachines,
11 "xen+ssh://")
12

13 [...]

Listing 5.7: Initialization of the backend connection in the VNodesManager

If no backend connection is possible (e.g., because the wrong operating system
kernel is in use), the xge stops immediately.

Start Virtual Machines

One or more virtual machines can be started either through a job or directly
via a client. The former case involves the JobVMManager. Nevertheless, the
communication with the backend is handled by the VNodesManager in both
cases. The JobVMManager’s primary task is to check if all required dependen-
cies for starting the virtual machine are met and to distribute the hard disk
images to the nodes.

Listing 5.8 shows how a virtual machine named vm is started with the VNodes-
Manager. Start-up is only possible if the virtual machine is registered and the
if the calling thread can obtain a lock (lines 4 through 5). If not, the caller
is blocked and has to wait until the current operating thread finishes its work.

107

Chapter 5. Network Security

Locking is necessary here because multiple xge threads could try to access the
vm object.

The control flow is now divided into two parts (lines 8 and 24). If the ad-
ministrator enabled placeholder images, the method has to check if the virtual
machine is indeed a running placeholder image. If it is, the placeholder is de-
stroyed. If not, another virtual machine is already running and no new machine
should be started. Finally, starting is delegated to the backend (lines 14 through
18) and the machine’s description is written to the database.

1 [...]
2 def startVM(self, vm, event=None, uuid=None):
3 vnode = vm.name
4 self._checkName(vnode)
5 self._locks[vnode].acquire()
6 _node = self._dbm.getNode(vnode)
7

8 if self.c.ignorepl == 0:
9 if _node["state"] == 2 and _node["isph"] != 1:

10 self._locks[vnode].release()
11 raise VMException("VM is occupied")
12

13 try:
14 if _node["state"] == 2:
15 self.destroyVM(vnode)
16 vm.mac = _node["mac"]
17 self._backend.startVM(vm,
18 _node["physicalmachineact"],ph=False,event=event)
19 self._dbm.updateNode(vnode,
20 {"state":1,"isph":0,"job":uuid,"disk":vm.image})
21 except XgeException:
22 self._locks[vnode].release()
23 raise
24 else:
25 if _node["state"] == 2:
26 self._locks[vnode].release()
27 raise VMException("VM is occupied")
28 try:
29 vm.mac = _node["mac"]
30 self._backend.startVM(vm,
31 _node["physicalmachineact"],ph=False,event=event)
32 self._dbm.updateNode(vnode,
33 {"state":1,"isph":0,"job":uuid,"disk":vm.image})
34 except XgeException:
35 self._locks[vnode].release()
36 raise
37

38 [...]

Listing 5.8: Method used to start a virtual machine in the VNodesManager

108

5.2. Virtualized Grid Computing

Shut down Virtual Machines

One or more virtual machines are shut down once the execution is finished and
the scheduler has informed the xge about that step, or if the user requests, the
termination. Listing 5.9 shows the code responsible for the shutdown. If the
virtual machine vm is not marked as running, no action needs to be taken (lines
9 through 11).

If the virtual machine belongs to a job and is not a placeholder, a set of status
information is saved in the database (lines 13 through 20). The actual shut
down command is sent to the backend and, if placeholder images are activated,
such a placeholder virtual machine is started (line 26 - 28).

1 [...]
2

3 def shutdownVM(self, vm, event=None, restore=True):
4 vnode = vm.name
5 self._checkName(vnode)
6 self._locks[vnode].acquire()
7 _node = self._dbm.getNode(vnode)
8

9 if _node["state"] != 2:
10 self._locks[vnode].release()
11 return
12 try:
13 if self.c.ignorepl == 0:
14 if not _node["job"] is None and _node["isph"] == 0:
15 self._dbm.insertNodeHistory(
16 self.generateHistoryEntry(vnode, _node["job"]))
17 else:
18 if not _node["job"] is None:
19 self._dbm.insertNodeHistory(
20 self.generateHistoryEntry(vnode, _node["job"]))
21

22 physicalMachine = _node["physicalmachineact"]
23 self._backend.shutdownVM(vnode, physicalMachine, event)
24 self._dbm.updateState(vnode, 3)
25

26 if self.c.ignorepl == 0:
27 if restore:
28 thread.start_new_thread(self.startPH, (vnode,))
29 except XgeException:
30 self._locks[vnode].release()
31 raise
32

33 [...]

Listing 5.9: Method used to stop a virtual machine in the VNodesManager

109

Chapter 5. Network Security

Virtual Machine Migration

Migrating a virtual machine is shown in Listing 5.10. A virtual machine called
vnode is migrated from its current physical location to a new node called
destination. As with the process used to start a virtual machine, the method
checks a number of requirements and the calling thread has to obtain a lock
(lines 3 through 11). Due to migrations, the node of a virtual machine changes
often; thus, the method has to retrieve the current node name from the database
(line 12). All operations on virtual machines save the current node in the
database. If the virtual machine is already running on the destination node,
the migration is aborted (lines 14 through 16).

Prior to the actual migration process, the hard disk image has to be transferred
to the destination node. Otherwise the hypervisor refuses to migrate. A disk
image transfer is not needed only if the disk image is stored on shared storage
(line 26). Otherwise, the disk image is transferred either with BitTorrent (lines
27 and 28) or with the sequential copy method (line 30). Once the transfer is
finished, a call to start the migration is given to the backend code and the new
node is saved in the database.

Finally, a variety of status information (for further details, see Section 5.2.4.3
on page 104) is saved in the database (lines 38 and 39). This is necessary as the
hypervisor and thus the backend change during a migration. The old backend
invalidates all status information after the migration and the new backend starts
counting from zero. To enable proper accounting, the xge needs to keep track
of all status information even during migrations.

1 [...]
2 def migrateVM(self, vnode, destination):
3 self._checkName(vnode)
4 self._checkDom0(destination)
5 self._locks[vnode].acquire()
6 _node = self._dbm.getNode(vnode)
7 _state = _node["state"]
8

9 if _state != 2:
10 self._locks[vnode].release()
11 raise VMException()
12 _act = _node["physicalmachineact"]
13

14 if _act == destination:
15 self._locks[vnode].release()
16 raise VMException()
17 try:
18

19 disk = _node["disk"]
20 history = None
21

22 if _node["isph"] == 0:
23 if disk is None:
24 raise XgeException()
25

110

5.2. Virtualized Grid Computing

26 if self.c.useshared == 0:
27 if self.c.depmode == "bittorrent":
28 ImageManager().deployTorrent(disk, [destination])
29 else:
30 DeploySequential(disk, {destination:[vnode]})
31

32 if not _node["job"] is None:
33 history =
34 self.generateHistoryEntry(vnode, _node["job"])
35

36 self._backend.migrateVM(vnode, _act, destination)
37 self._dbm.updatePhysicalMachine(vnode, destination)
38 if not history is None:
39 self._dbm.insertNodeHistory(history)
40

41 self._locks[vnode].release()
42 except XgeException:
43 self._locks[vnode].release()
44 raise
45

46 [...]

Listing 5.10: Method used to migrate a virtual machine in the VNodesManager

5.2.4.6 Backend Connection

The Backend class is responsible for all communication with the underlying
hypervisor. While the first version of the xge implemented its own functions
to communicate with the hypervisor, the recent version uses the libvirt library
developed by RedHat. Consult Section 2.3.7 on page 18 for further details
about libvirt.

One instance of the libvirt daemon runs on every node. This daemon sends
commands to the local hypervisor (such as start or shutdown) and receives re-
sponses. All libvirt daemons are permanently connected to the xge backend
with a tcp based connection protocol. These connections remain open until
the xge is stopped. It is important to explicitly close them at the end. Oth-
erwise the underlying network connections remain open, leaving the system in
an inconsistent state.

Listing 5.11 shows the code that opens a connection to the libvirt daemon.
An uri is created by looping over the available nodes (lines 4 through 7).
Depending on virtualization software used the uri is different, i.e. to connect
to a Xen node, the uri is xen://hostname, whereas a connection to KVM
requires the following uri: qemu://hostname/system. Line 9 links to the
method shown in lines 23 through 28 that opens the actual connection. After
the connection is set up, the method tries to retrieve the virtual machines that
are already running on each node (lines 11 through 19). This is important if
the xge is used either in a mixed environment, i.e. there are virtual machines
managed by the xge and manually by users, or if the xge crashed and the

111

Chapter 5. Network Security

internal recovery process is in progress. If there is already a virtual machine
running on a node, the xge will not touch it (i.e., replace the machine with a
placeholder or another machine).

1 [...]
2

3 for physicalMachine in physicalMachines:
4 if self._c.backend == "kvm":
5 beUri = uri+str(physicalMachine)+"/system"
6 else:
7 beUri = uri+str(physicalMachine)
8

9 _conn = self.openConnection(beUri)
10 self.connections[physicalMachine] = _conn
11 _domains = self.getDomains(_conn)
12 for d in _domains:
13 _name = d.name()
14 if _name in _tmp:
15 self.domains[_name] = d
16 self._initialDomains[_name] = physicalMachine
17 _tmp.remove(_name)
18 for t in _tmp:
19 self.domains[t] = None
20

21 [...]
22

23 def openConnection(self, uri):
24 try:
25 conn = libvirt.open(uri)
26 return conn
27 except libvirt.libvirtError:
28 raise XgeException("Failed to open backend connection")
29

30 [...]

Listing 5.11: One tcp connection is opened to the libvirt daemon running on
every node

Once the Backend class has an open connection to the libvirt daemons, it is
able to execute commands on behalf of the VNodesManager. Listing 5.8 showed
the code in the VNodesManager used to start a virtual machine; Listing 5.13
shows the actual backend code.

The code tries to start a virtual machine a second and a third time if the
previous attempt fails (line 3). The actual start-up occurs in lines 5 through
10. The virtual machine is started and the calling thread waits in the WaitBoot
method for the event that the machines is booted. Even though the thread is
busy waiting and locks the caller, it is necessary to avoid races with an involved
scheduler. If the method would return immediately after the libvirt daemon is
instructed to start the machine, the xge would notify the scheduler. Assuming
this information is correct, the scheduler would try to launch the executable
within the machine. If the machine is still booting (which takes between 10

112

5.2. Virtualized Grid Computing

and 30 seconds, depending on the hardware), the execution would fail and lead
to the abortion of the entire job.

A similar procedure is needed after a shutdown command. Here, it is also
important to avoid races; thus, the xge waits until a machine is really down.
Since every virtualization software (e.g., Xen or kvm) reports different codes
for, running or finishing to libvirt, the xge can not rely on this information.
This means that although libvirt reports that a machine is down, it is possible
that the machine is still running or in the process of being shut down. Therefore,
the cpu time is checked for a zero value, as this can only occur if the machine
is indeed not running.

If an error occurs (lines 12 through 16), the xge checks the error codes and
raises an exception. If the libvirt daemon reports a critical system error during
the first attempt, the xge tries to re-establish the connection.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <domain type=’xen’>
3 <name>node005c0</name>
4 <uuid>550e8400-e29b-11d4-a716-446655440000</uuid>
5 <os>
6 <type>linux</type>
7 <kernel>/boot/vmlinuz-2.6.32-5-xen-amd64</kernel>
8 <initrd>/boot/initrd-2.6.32-5-xen-amd64</initrd>
9 <cmdline>root=/dev/xvda1 ro selinux=0 3</cmdline>

10 </os>
11 <on_poweroff>destroy</on_poweroff>
12 <on_reboot>restart</on_reboot>
13 <on_crash>restart</on_crash>
14 <memory>1048576</memory>
15 <vcpu>4</vcpu>
16 <device>
17 <disk type = ’file’>
18 <source file=’/images/node005.img’/>
19 <target dev=’xvda1’/>
20 </disk>
21 <interface type=’bridge’>
22 <source bridge=’xenbr0’/>
23 <mac address=’1A:00:00:00:56:05’/>
24 <script path=’/etc/xen/scripts/vif-bridge’/>
25 </interface>
26 </devices>
27 </domain>

Listing 5.12: XML document describing a virtual machine

In order to start a virtual machine, the xge has to create a descriptive xml
document. A sample document describing a Xen virtual machine is shown in
Listing 5.12. Like the xge, libvirt also uses a name and a uuid to identify each
virtual machine (lines 3 through 4). Lines 5 through 10 define the operating
system kernel, which is a Linux kernel with an initial ramdisk in this example.
Depending on the virtualization software, a number of hardware devices can
be configured. In this example, the machine has one hard disk image that is a

113

Chapter 5. Network Security

plain file on the local system (lines 17 through 20). Furthermore, one network
interface is set up. This interface is bound to the local network bridge xenbr0.

1 def startVM(self, vm, physicalMachine, ph=False, event=None):
2 xml = createXML(vm, ph)
3 for i in range(2):
4 try:
5 _dom =
6 self.connections[physicalMachine].createXML(xml,0)
7 if not self.domains[vm.name] is None:
8 self.domains[vm.name].__del__()
9 self.domains[vm.name] = _dom

10 WaitBoot(_dom,event).start()
11 return
12 except libvirt.libvirtError, err:
13 if err.get_error_code() == libvirt.VIR_ERR_SYSTEM_ERROR

and i == 0:
14 self.recover(physicalMachine,vm.name)
15 else:
16 raise VMException("Could not start VM")

Listing 5.13: Backend method used to start a virtual machine

5.2.4.7 Placeholder Virtual Machines

To keep the placeholder virtual machines as small and flexible as possible, they
consist of merely a Linux kernel and a ramdisk, i.e. they are not dependent on
persistent storage. As a consequence, it is possible to destroy a placeholder,
which consumes less time than a regular shutdown. In order to communicate
with the scheduler, an execution daemon (e.g., Torque’s pbs mom or sge’s
sgeexecd) is installed.

5.2.4.8 Remote Interfaces

Two remote interfaces are offered by the xge to communicate with services as
well as users. The first interface, called the JobServer, is only for machine to
machine communication; the ConnectionHandler can be used by client software.

An example of how to use the JobServer would be the connection between a
grid middleware and the xge. While developing this thesis, such an connec-
tion was implemented using the Globus toolkit as middleware. Furthermore,
Globus hosted a service for accounting and billing that collected the following
information from all of a job’s virtual machines:

• Amount of virtual memory used

• Number of virtual cpus

• cpu times consumed

114

5.2. Virtualized Grid Computing

• Bytes and packets transferred

• Bytes and packets received

Based on this record, a report and a bill is created for a potential customer.

The JobServer requires that all messages (the one it receives and the one it
sends) are valid xml. This eases machine-to-machine communication and pro-
vides messages that humans can read in the event that debugging is necessary.

5.2.4.9 Efficient Virtual Disk Image Deployment

In this section, the implementation of different methods for virtual machine
disk image transfer is described. By default, the xge transfers all disk images
with BitTorrent, a peer-to-peer software designed for large data transfers. As
a fallback, unicast or sequential deployment is available. This means that all
disk images are transferred one by one to the nodes. A distribution algorithm
based on a binary tree is also available, but no longer enabled in the default
distribution. Finally, experimental support for multicast is implemented.

Unicast Distribution

Unicast or sequential deployment is the simplest method available in the xge.
While it is naturally the slowest method, it works in almost all network en-
vironments without any additional dependencies (e.g., BitTorrent requires a
configured tracker and multicast might require special network configuration).

Initially, the deployment process is started by the JobVMManager that has a
list of target nodes, which is needed to distribute the disk image to its exact
destinations. Then, a new thread running an instance of the DeploySequential
class is launched. Listing 5.14 shows the code responsible for the distribution.

Prior to the actual distribution, the size and the file system modification times-
tamp of the source disk image is determined. If there is already a disk image on
the remote node and if both values match, distribution is skipped to save time
and bandwidth (lines 22 and 36). While this is not as reliable as computing a
checksum (e.g., a md5 or sha-1 hash), it does indeed save time. Computing a
md5 checksum of a small 1 GB disk image takes about 35 seconds and creates
increased cpu load.

1 [...]
2

3 for physicalMachine in self.hosts:
4 if len(self.hosts[physicalMachine]) == 0:
5 continue
6

7 li = 0
8 rc = {}

115

Chapter 5. Network Security

9 lock = thread.allocate_lock()
10 threads = []
11 for virtualMachine in self.hosts[physicalMachine]:
12 _xged = LXGEdClient(physicalMachine)
13 if li == 0:
14 li += 1
15 retries = 0
16 while retries < 3:
17 retries += 1
18 initialImg = virtualMachine
19 oPath = os.path.join(self.c.rd, virtualMachine)
20 rMTime = _xged.getMTime(oPath)
21 rSize = _xged.getSize(oPath)
22 if rMTime == _imgMTime and rSize == _imgSize:
23 break
24

25 rCopy = CopySequentialRemote(virtualMachine,
26 self.image, oPath, physicalMachine, rc, lock)
27 rCopy.start()
28 rCopy.join()
29

30 rSize = _xged.getSize(oPath)
31 if rSize == _imgSize:
32 break
33 else:
34 dPath = os.path.join(self.c.rd, virtualMachine)
35 rMTime = _xged.getMTime(dPath)
36 if rMTime == _imgMTime:
37 continue
38

39 lCopy = CopySequentialLocal(virtualMachine,
40 oPath, dPath, physicalMachine, rc, lock, self.c.

doLink)
41 lCopy.start()
42 threads.append(lCopy)
43

44 rSize = _xged.getSize(dPath)
45 if rSize == _imgSize:
46 break
47

48 for t in threads:
49 t.join()
50

51 [...]

Listing 5.14: Fragment of the sequential virtual machine hard disk image
distribution code

The xge attempts to transfer a disk image three times (line 16) to circumvent
possible network problems (e.g., network is congested and thus the transfer
times out). Lines 25 through 28 show how the remote copy process is started as
a separate thread. The join statement ensures that the thread is not returned
until the transfer is finished. Finally, the remote size has to be checked against
the known size. If they match, the transfer is successful (lines 30 through 32).

116

5.2. Virtualized Grid Computing

If one virtual machine is scheduled to run multiple times on a node (e.g., 4
instances of one virtual machine run on a node with 4 cpu cores), multiple
remote copies of the disk image would be a waste of time and bandwidth.
Therefore, only one remote copy is created; all other disk images are copied on
the local disk. For read only images, a file system link is sufficient; thus, they
do not have to be copied at all. Lines 33 through 46 show the code which starts
a local copy thread. Since the local copy processes can run simultaneously, the
join occurs later (line 48 through 49).

Binary Tree Distribution

Binary tree distribution is more complex than the unicast distribution method.
A binary tree is generated once the scheduler knows all of the destination
nodes. The root of the tree is always the node carrying the disk image. A
multi-threaded implementation ensures that the copy operations are performed
simultaneously, i.e. the disk image is copied from the first node to its two chil-
dren in the tree. Once a reasonable amount of data (a variable threshold; in
the implementation, it is set to 50 MB) has arrived at the children, a new copy-
thread for every child is spawned. Thus, a continuous flow of data is maintained
through the entire tree.

To ensure that a new copy-thread is started without having any data to trans-
fer, all copy actions are synchronized. A node must not send data until it has
sufficient data to start a transfer. For example, if the network transfer between
two nodes in the tree is interrupted, all children are blocked until the interrup-
tion is resolved. To avoid endless waiting, the copy process is aborted after a
certain interval of time. Depending on the local administrator’s preferences, it
is possible to repeat a transmission or completely cancel the copy process.

Every method runs as separate thread, of course. Furthermore, the methods
have the same caching strategy as mentioned in the theories above. If a disk
image with the same name already exists on the destination node and if the
size and the modification timestamp match, the actual copy is skipped. Local
copies are also created on the hard disk, without it being necessary to start an
additional network transfer.

Peer-to-Peer Distribution

As already mentioned above, the peer-to-peer distribution method is based on
BitTorrent. Is is implemented as a distributed application with a client-server
architecture. A daemon, called the imaged, runs on every registered node and
acts as a server. The client component is the ImageManager that runs as
separate thread within the xge. It sends fetch or seed requests to the image
daemons on the other hosts. xml messages are used as the communication
protocol.

117

Chapter 5. Network Security

The components will be explained in detail in the following sections. Since the
BitTorrent distribution method is the default in the xge, it will be explained
in greater detail compared to the other methods.

ImageManager

The most important of the ImageManager’s process is the one that starts the
distribution. Part of this process is shown in Listing 5.15. A disk image and a
list of nodes are passed to the deployment function, which tries to deploy this
disk image to all of these nodes. First, a number of variables need to be set,
including the seeding nodes, the disk image name, and the destination directory
(lines 2 through 6). Next, the ImageManager fetches the torrent file from the
node carrying the file (line 12). Even if the head node already has the file on its
local file system, it is necessary to fetch a fresh copy since the torrent file might
have changed (e.g. because the disk image was modified in the mean time).
After the file is retrieved, the hash sum (which uniquely defines the torrent) is
extracted for later use (line 18).

1 def deployTorrent(self, image, hosts):
2 seeders = list(set(self.physicalMachines) - set(hosts.keys()))
3 destDir = os.path.join(self.baseDir,os.path.dirname(image))
4 imageName = os.path.basename(image)
5 torrentPath = os.path.join(self.torrentRoot, image + ".torrent")
6 torrentUri = self.torrentHost + ":" + torrentPath
7

8 [...]
9

10 localTorrent = os.path.join(destDir, imageName + ".torrent")
11 try:
12 fetchFile(torrentUri, localTorrent)
13 e = lt.bdecode(open(localTorrent, "rb").read())
14 if e is None:
15 raise XgeException.XgeException("deployment error ")
16

17 info = lt.torrent_info(e)
18 hash = str(info.info_hash())
19 except XgeException:
20 raise XgeException("deployment error")
21

22 [...]

Listing 5.15: First part of the method used to distribute a disk image via
BitTorrent

Listing 5.16 shows the core of the disk image distribution on side of the client.
The code is completely multi-threaded since a single-threaded implementation is
opposite to the design goals of BitTorrent. BitTorrent relies on many hosts that
seed and download data simultaneously. A FetchController thread is started for
each host in lines 8 through 11. To satisfy BitTorrent’s aforementioned design
goals, a number of SeedController threads are started in lines 14 through 16.
These threads send seed requests to all registered nodes. If a node already owns

118

5.2. Virtualized Grid Computing

a complete copy of the disk image, it will continue until the other nodes have
finished downloading. An event-based mechanism is used to stop the seeders
(line 6 and 20).

1 [...]
2

3 fetchThreads = []
4 fetchLock = thread.allocate_lock()
5 fetchResult = [0]
6 stopEvent = threading.Event()
7 id = os.path.join(destDir, imageName)
8 for (host,vnodes) in hosts.items():
9 t = FetchController(host, self.port, vnodes, torrentUri,

10 id, self.imageDir, fetchLock, fetchResult, hash, self
.doLink)

11 t.start()
12 fetchThreads.append(t)
13

14 for host in seeders:
15 t = SeedController(host, self.port, torrentUri, id, stopEvent,

hash)
16 t.start()
17

18 for t in fetchThreads:
19 t.join()
20 stopEvent.set()
21

22 if fetchResult[0] != 0:
23 raise XgeException("deployment error")

Listing 5.16: Second part of the method used to distribute a disk image via
BitTorrent

BitTorrent Client

The TorrentClient uses the library libtorrent-rasterbar [130] to implement the
client part. Listing 5.17 shows the client’s main loop. First, it checks if new
torrents were submitted and starts them (line 3). Once new torrents are sub-
mitted, the loop starts again from the beginning (line 7). Finally, it handles
stop requests (if any) and checks the status of all running torrents (lines 9 -
10).

1 def run(self):
2 while not self.stopped:
3 self.startNewTorrents()
4 if len(self.runningTorrents) == 0:
5 self.waitForNewTorrents()
6 if self.stopped: break
7 continue
8

9 self.handleStopRequests()
10 self.checkStatus()
11 time.sleep(self.interval)
12 self.stopAllTorrents(True)

119

Chapter 5. Network Security

13 self.saveResumeData()

Listing 5.17: BitTorrent client within the imaged

The TorrentClient checks the status of all running torrents regularly. Torrents
progress through different states, as seen in Figure 5.11. First, a torrent is in
the state new. Once the torrent is recognized by the TorrentClient, the state
it set to downloading, or in the event of an error, to error. A torrent keeps
seeding the image after it finished downloading (encoded by the transition to
seeding). Finally, the torrent’s state is set to finished and the torrent is removed
from the session. The sink state stopped occurs only if deliberate termination
is requested.

new

downloading seeding

stopped

finished

error

download
finished

submit torrent

seed time
exceeded

forced
termination

forced
termination

error occured

Figure 5.11: Possible torrent states in the TorrentClient

Multicast

The multicast distribution method is based on udpcast.1 It provides an easy
and seamless way to transfer data via multicast. Every node has a receiving
client installed and the sender is installed on the machine that hosts the disk im-
ages. Once a transmission is started, the sender starts the multicast distribution
and all receivers store the disk image at a predefined location. All distributing
threads are synchronized and shut down once the transfer is complete.

1http://udpcast.linux.lu/

120

http://udpcast.linux.lu/

5.2. Virtualized Grid Computing

Cross-Site Transfer

Depending on the network structure, the xges are either aware of the public ip
addresses of all nodes in multi-site computing environments, or they know at
least the ip addresses of a publicly accessible virtual machine disk image pool
node. By default, the xges assume that the compute nodes are accessible to
the public. Otherwise, it is up to the local administrator of the site to configure
it appropriately. BitTorrent is used when disk images are transferred between
two remote sites and the local distribution.

Encrypted vs. Unencrypted Transfer

Depending on the distribution method, the transfer can be either encrypted
or unencrypted. For example, BitTorrent and Multicast traffic is commonly
unencrypted; thus, additional security mechanisms like ipsec [70] must be put
into place. The binary tree method can be used with unencrypted (to save
bandwidth and cpu overhead in protected network environments) or encrypted
(for use in non-confidential networks) transfer. Authentication is achieved by
using public key cryptography. The source node has a secret key and all des-
tination nodes have the source node’s registered public key. Traffic encryption
is performed using Openssl [97], which itself uses an asymmetric key for the
handshake and a symmetric key for the actual encryption procedure.

5.2.4.10 Avoiding Retransmission Overhead

To avoid the retransmission of a disk image that is already present and to
avoid the need for huge amounts of disk space on the destination nodes, the
implementation is based on copy-on-write (cow) layers.

The presented three-layer cow disk image architecture is based on Advanced
UnionFS [158]. The base layer hosts a Debian gnu/Linux stable-based Linux
distribution with a Xen-capable kernel. All tools needed to ensure seamless
out-of-the-box operation are included, such as the complete Debian package
management, standard compilers and interpreters, and a basic set of libraries
including development headers. The base layer can to run on every infras-
tructure supporting the Xen virtual machine monitor. The site layer contains
several additions needed to run the generic base image on different sites. The
changes to the base layer include special settings, such as name resolution (dns),
ip configuration (dhcp-based, static addresses or peer-to-peer auto configura-
tion), or user management (ldap or nis interfaces). Typically, the site layer is
rather small in size, often between 10 KB or 1 MB.

The user layer contains all the modifications made by the owner. To ensure
that the modifications made by the user will not prevent the virtual machine
image from running (if, say, the user deleted some crucial system files), the

121

Chapter 5. Network Security

base layer as well as the site layer are mounted read-only during execution time.
Furthermore, the site layer overwrites any of the user’s changes to configuration
files that are also touched by the site layer. Of course, this limits the user’s
freedom of image customization, but having limited freedom is better than
having no running virtual machine at all (or ever worse, a virtual machine that
is stuck in the boot process and blocks resources).

5.2.4.11 Storage Synchronization

The synchronization mechanism the uses drbd devices has been implemented
as part of the xge. The controller that handles the synchronization mechanism
has been written in Python. The current implementation works with Xen as
the backend hypervisor, although most of the code does not depend on Xen.

DRBD Device Configuration

A two-node setup consists of a pair of drbd devices that are identified by their
path in the file system. Since the drbd endpoints communicate via two separate
tcp connections, they have to agree on port numbers on both sides. Hence, a
drbd endpoint is identified by host name, port number and path. To reduce
the global configuration overhead, the nodes manage their resources locally (see
next section). The actual device names are abstracted from symbolic links.

drbd devices work in different modes throughout their lifetime. Usually, a
drbd device runs in standalone mode as a pure bypass to the backing block
device. In this mode, disk i/o performs with nearly native speed. In the
pre-migration phase, the drbd device on the source node is connected to the
endpoint on the destination node, and the two of devices run in primary/sec-
ondary mode (only the source node is allowed to write to the device) during the
initial synchronization. Just before the actual migration starts, the devices are
put into primary/primary mode. This is necessary because Xen checks for write
access on all associated block devices before initiating a live migration. From
the devices’ point of view, this mode allows both ends to issue write requests
simultaneously. However, this will never happen in the local setup due to the
nature of a live migration: a virtual machine is always running on a single node
and thus will always access the device through only one endpoint at a time.

Node Setup

Apart from kernel and ram disk, a virtual machine has one or more associated
disk images: a read-only base layer (the user image), a writable disk layer (if
it does not reside in the memory), and, possibly a separate disk image used as
swap partition. Disk images may be physical devices, logical volume manager
(lvm) partitions, or disk images, and the choice is left to the xge configuration.

122

5.2. Virtualized Grid Computing

The virtual machine never alters the base layer; hence, all instances on one
physical host that use the same base image can share a single copy. When
initially necessary, the image is downloaded once (e.g., via BitTorrent) and
cached into a local image pool. All writable disk images are attached to drbd
devices so that all i/o are intercepted by the drbd driver. Each virtual machine
has a directory that contains (symbolic links to) all of its disk images. Due to
the symbolic links, the disk image names can easily be kept consistent within
the cluster (which is important for live migration) without the need for all of
the involved nodes to use the same actual device names (which would impose a
large administrative overhead). The writable disk images are empty, when the
virtual machine is started.

The image daemon (imaged) of the xge is responsible for downloading and
caching base images (the read-only layers) and for managing the drbd devices.

Pre-Migration Process

When the xge node wants to initiate the live migration of a virtual machine
from a source to a destination node, the following tasks are performed.

• The head node contacts the image daemons on both hosts and instructs
them to prepare the migration. The source node responds with the port
numbers used by the drbd devices of the corresponding disk images. The
destination node reserves drbd devices, attaches lvm partitions or disk
images, chooses free ports to use for the synchronization, and sends them
back to the xge.

• The head node communicates the configuration information to both nodes
so that they can update their drbd configuration accordingly and connect
the corresponding drbd endpoints. When the endpoints are connected,
the synchronization starts in primary/secondary mode.

• Once the synchronization is finished, the drbd devices on the destination
node are put into primary mode, and the usual Xen live migration process
is started.

• When the live migration has successfully been completed, the drbd de-
vices on the source node are disconnected so that the drbd devices on the
destination host run in standalone mode (with nearly native I/O speed).
The corresponding resources (devices, ports, disk images) on the source
node are freed.

5.2.5 Evaluation

In the following section, selected measurements of the developed components
are presented in order to evaluate the overhead introduced. The machines used

123

Chapter 5. Network Security

for the tests have a Intel Core 2 Duo cpu with 3.0 GHz, 4gb ram connected
with switched Gigabit Ethernet network and run Debian/gnu Linux 5.0 and
Xen Version 3.2.1.

There have been a number of performance studies of Xen and on the whole
the author had made the same observations. The real overhead for most cpu
intensive applications, including the turbulence simulation, is roughly 5%. For
more detailed performance studies of Xen, consult the following papers: [20,
92, 8, 175, 17].

5.2.5.1 Execution Time

The following experiment quantifies the overhead introduced using operating
system virtualization. The turbulence simulation (compare Section 1.1.1 on
page 2) was executed both in a virtualized and native environment. Both the
host and the virtual machine are assigned 1gb of virtual memory.

21630

21640

21650

21660

21670

21680

21671

21637

T
im

e
 (
in

 s
e
c
o

n
d

s)

Native Virtualized

(a) Execution time

50.039% 49.961%

Native Virtualized

(b) Execution time (percentage)

Figure 5.12: Comparing the turbulence simulation’s execution times in a virtu-
alized and a native environment

Figures 5.12(a) and 5.12(b) show the performance of the turbulence simulation
in a virtual machine compared to the native performance. In total, 6 runs were
performed to procure a robust mean. Execution in the virtual machine was
0.078% (or 34 seconds) slower compared to the native execution. Compared to
the total execution time of over 6 hours, the performance penalty is negligible.

Figure 5.13 shows a comparison between the execution of a test application,
which runs 10 seconds in total, on physical hardware and within a virtual
machine. Here, Torque is used as scheduler and the job is submitted to either
the virtual xge queue and to the native queue. Looking at this figure, it
is obvious that the prologue and epilogue of the xge consume a significant
amount of time. While this might be inappropriate when running short jobs,
it is negligible when launching a long running computation like the turbulence
simulation.

124

5.2. Virtualized Grid Computing

Native

Virtualized

0 22.5 45 67.5 90

10

10

2

2

Time (in seconds)
Torque Prolog Execution Epilog

3633

Figure 5.13: Submitting a test job over Torque in a virtualized and a native
environment

5.2.5.2 XGE Internals

One of the most important measurements concerns the xge’s overhead. There-
fore, a job is executed in a virtual machine with a 2gb disk image. This process
includes the time starting from the actual job submission, detecting and reg-
istering the job, deploying the disk images, stopping the placeholder virtual
machines, starting the user’s own machine, stopping this machine after the
computation and finally, restarting the placeholder again. Figure 5.0(a) shows
the percentage shares for every operation. To procure a robust mean, 500 trials
were performed and the execution time was factored out of the measurement.
Most time is consumed by the deployment and the placeholder restart process.
Distributing the disk images takes 31.9 seconds on average; however, only for
the first time. Since the disk image is unmodified during job execution, it is
cached and there is no need to redistribute it. Although the detection process
(in terms of code) is fast, it takes 1.3 seconds on average because the xge only
checks the shared job directory every 5 seconds.

Table 5.0(b) shows the detailed average time needed for every single step. The
total job handling overhead is 34.4 seconds on average, which is small compared
to the average runtime of grid or cloud jobs.

5.2.5.3 Scheduler Performance

The Linux operating system kernel offers several process- and i/o-schedulers. In
order to improve the performance of an application, the preferably best possible
scheduler should be used, based on runtime characteristics. For example, a cpu
intensive application like the turbulence simulation has other i/o-throughput
characteristics than massive parallel mpi application; there are other require-
ments related to the process response time either. Since the xge uses tailored
virtual machines, it could arrange the machines with an appropriate scheduling
algorithm based on the application running inside. The following measurements
try to clarify the question, if it is useful to set a tailored scheduling algorithm

125

Chapter 5. Network Security

(a) Percentage values

46.4%

0.1%

5.3%

1.6%

44.8%

1.9%

Detect Deploy Stop PH
Start VM Stop VM Restart PH

(b) Detailed values of job sub-
mission times

Operation Average

Detect 1.3323414 s
Deploy vm 31.934740 s

Stop ph 1.1271154 s
Start vm 3.7463749 s
Stop vm 0.0801703 s

Restart ph 33.120271 s

Table 5.1: Job processing within the xge, split in single steps

during virtual machine startup at all. A short introduction of the different
schedulers follows; for more details the reader is referred to Maurer [90].

I/O Scheduler

The Linux kernel implements a number of i/o schedulers, which can be acti-
vated at run time through the sysfs file system module. Alternatively, there is
a parameter to set the default i/o-scheduler at boot time.

Completely Fair Queuing Scheduling is the default since Linux Version
2.6.18 and shares the i/o-bandwidth in a fair manner between the different
processes. cfq replaced the anticipatory scheduler, the default scheduler
since Version 2.5.

Anticipatory Scheduling anticipates process behavior as far as possible; it
uses the locality principle between two or more disk read accesses to
avoid unnecessary seek operations between one or more read- and a write-
operation.

Deadline Scheduling implements a soft realtime scheduler, thus it attempts
to reduce the number of disk seeks and that requests are served within a
certain amount of time.

Noop is a simple first in, first out scheduler. It is only useful if the underlying
hardware has a built-in logic for smart request reordering.

The first measurement uses the kernbench2 benchmark, a cpu throughput
benchmark. It compiles the Linux vanilla kernel using a different number of

2http://freshmeat.net/projects/kernbench/

126

http://freshmeat.net/projects/kernbench/

5.2. Virtualized Grid Computing

simultaneous jobs each run. The default value is four times the number of cpu
cores. During the tests, kernbench compiles the kernel with n threads, where n
ranges from one to 10.

The average benchmark results, running on the physical hardware and a virtual
machine each with two cpu cores, are shown in Figures 5.14(a) and 5.14(b).
While running the benchmark directly on the hardware takes less time (around
44 seconds), there is no real difference between the used i/o schedulers. The
elapsed time is nearly the same both in the physical and the virtual environment.
This effect is even more obvious when looking at the used cpu, since it was
impossible to measure a real difference between the schedulers.

0

70

140

210

280

350

2 CPUs 2 virtual CPUs

317.82

272.2

317.82

273.4

317.82

273.5

317.82

273.3

Elapsed Time (in seconds)

noop anticipatory deadline cfq

(a) Elapsed time in seconds

0

45

90

135

180

2 CPUs 2 virtual CPUs

161.7161.7 161.8161.8 161.7161.7 161.6161.7

Percent CPU

noop anticipatory deadline cfq

(b) Used CPU (in percent)

Figure 5.14: Results of the kernbench benchmark running on two physical and
two virtual cpu cores

The second measurements were conducted using the bonnie++ [24] benchmark.
In order to benchmark the file system and i/o, bonnie reads and writes a file
(2gb in all tests) using different operations. All figures show the the num-
ber of megabytes processed per elapsed second using the four different i/o
schedulers. While Figure 5.15(a) shows the results while reading byte-by-byte,
Figure 5.15(b) shows the results reading block-by-block. The throughput differ-
ence between both tests is as follows: noop 1.6mb/s, cfq 2.7mb/s, anticipatory
3.07mb/s, deadline 3.1mb/s.

Figures 5.16(a) and 5.16(b) show the result of the sequential output bench-
mark, the file is either written byte-by-byte or block-by-block. The throughput
differences are as follows: cfq 0.1mb/s, anticipatory 1.9mb/s, noop 2.1mb/s,
deadline 4.6mb/s.

Looking at these results, it is not obvious which i/o scheduler to use. While
one scheduler achieves good writing results, it reaches worse reading results.

127

Chapter 5. Network Security

26.6

26.9

27.2

27.5

27.8

2 virtual CPUs

26.79

27.28

27.11

27.74
M

B
/s

noop anticipatory deadline cfq

(a) Read byte-by-byte

29

29.5

30

30.5

31

2 virtual CPUs

29.53

30.39

30.18

29.38

M
B

/s

noop anticipatory deadline cfq

(b) Read block-by-block

Figure 5.15: bonnie++ benchmark results: sequential input

24

25

26

27

28

2 virtual CPUs

24.81

27.28

25.71
25.57

M
B

/s

noop anticipatory deadline cfq

(a) Write byte-by-byte

22

22.75

23.5

24.25

25

2 virtual CPUs

24.71

22.68

23.8

23.41M
B

/s

noop anticipatory deadline cfq

(b) Write block-by-block

Figure 5.16: bonnie++ benchmark results: sequential output

Process Scheduler

The process scheduler’s main task is to distribute the available time slice fairly
to the processes; thus, it has to take different priority levels for processes in
account. On one hand, it has to reduce context switches in order to reduce
the overhead of the scheduling algorithm itself; on the other hand, letting tasks
run for too long increases the latency of a process response. The Linux kernel
provides two scheduling classes and five scheduling policies. Scheduling classes
are used to decide which task runs next. The completely fair scheduling class
provides a completely fair scheduling (normal), with two variants (batch,
idle) for less important tasks. The real-time scheduling class provides a round
robin (rr) and a first in, first out mechanism (fifo). In the following, the focus
is on the completely fair scheduling class.

Two parameters in the proc file systems are used to control the behavior of the
scheduler. sched latency ns controls the length of the interval during which a
runnable process should run at least once (default is 20,000,000 nanoseconds)
and sched nr latency controls the number of active tasks that are at most han-

128

5.2. Virtualized Grid Computing

dled in one latency period (default is 4,000,000 nanoseconds). This parameter
is controlled indirectly by sched min granularity.

The following measurements use the hackbench3 test developed by Rusty Rus-
sell, a Linux kernel developer. Its aim is to measure the performance, overhead,
and scalability of the Linux scheduler. It starts a number of client and server
processes listening to network sockets and exchanging 100 messages. Hack-
bench measures the time taken to exchange the messages. This step is repeated
multiple times with an increasing number of processes.

1.92

2.216

2.512

2.808

3.104

3.4

4000000 24000000 44000000 64000000 84000000 104000000 124000000 144000000

E
la

p
se

d
 t

im
e
 (
in

 s
e
c
o

n
d

s)

Length of the interval (in ns) during which a runnable task should run at least once

 Native Virtual

Figure 5.17: Results of hackbech runs varying the scheduler’s granularity set-
tings

2

2.35

2.7

3.05

3.4

20000000 130000000 240000000 350000000 460000000 570000000 680000000 790000000

 E
la

p
se

d
 T

im
e
 (
in

 s
e
c
o

n
d

s)

Number of active processes that are at most handled in one latency period

Native Virtual

Figure 5.18: Results of hackbech runs varying the scheduler’s latency settings

3http://devresources.linuxfoundation.org/craiger/hackbench/

129

http://devresources.linuxfoundation.org/craiger/hackbench/

Chapter 5. Network Security

Figures 5.17 and 5.18 show the results of the hackbench runs while varying both
the scheduler’s latency and granularity parameters. An obvious, but unimpor-
tant observation is that execution takes longer in the virtual machine. Since
hackbench simulates a chat with interprocess communication, smaller execu-
tion times are better. Based on the results, it is obvious that varying both
parameters does not reveal any performance gains.

Summary

In this section, several measurements related to i/o and process scheduling were
presented. Unfortunately, the results revealed that it is unreasonable to chose
a specific scheduler or its parameters for a virtual machine, depending on its
workload.

5.2.6 Summary

A novel virtualized grid environment that offers advanced security mechanisms
to enable users to safely install and use custom software on-demand was pre-
sented. Applications no longer run unprotected on shared resources; they are
embedded into sandboxed environments. Existing components like the grid
middleware and a scheduler were leveraged in order to provide a more efficient
solution. Since the introduction of virtualization to traditional grids disclosed
new issues, the designed software also presents a mechanism for efficient storage
synchronization and integrated solutions for effective disk image distribution.

5.3 Grid Demilitarized Zone

5.3.1 Introduction

The grid computing paradigm aims to provide resources (such as compute clus-
ters, data, access to special appliances and even people) as easily as electricity
is provided through the electrical power grid. This necessitates that the grid
must be easy and transparent to access and use. Unlike traditional cluster
computing in which only a small number of users work in a closed system,
grid computing exposes local clusters to a large number of users via the In-
ternet using open grid middlewares such as Globus, gLite and Unicore. Like
most complex IT systems, these middleware solutions exhibit a number security
problems [148, 147, 53, 145], which open the entire system to attack. Unfor-
tunately, these security holes not only expose grid users to attack, but also
existing cluster users who up until now have worked in a local and secure en-
vironment. This changing nature of grid and cluster computing and the new
threats arising thereof is discussed in Smith et al. [125, 124].

130

5.3. Grid Demilitarized Zone

This leads us to two major requirements that a grid system must fulfill if
widespread integration of existing cluster systems and an industrial adoption
of grid technologies is desired. First, existing cluster environments need to be
isolated from the weaknesses of the grid middleware, the numerous and possibly
unknown, malicious grid users, while at the same time offering their computing
power to the grid. Second, the grid user data must be protected from malicious
users both during transport and during computation on the backend clusters.

The following section describes several approaches that try to enhance security
within grid computing. Because the approaches presented in the related work
are insufficient, a novel grid demilitarized zone is presented in this section.
Finally, the performance of the presented solution and the security overhead is
evaluated.

Parts of this section have been published in [118, 127, 126].

5.3.2 Related Work

Grid and Globus Security

This section presents related work dealing with grid and Globus security in
general.

The Grid Security Infrastructure (gsi) (formerly known as Globus Security
Infrastructure) was presented by Foster et al. [46] to guarantee security of the
data in transit and utilizes Unix security to ensure the safety of data on the
nodes in traditional grid/cluster setups, where the grid head node and the
scheduler head node are within the same network. While gsi is absolutely
sufficient in guaranteeing authentication, confidentiality, and integrity during
the transport of grid user data, it does not prevent attackers from attacking
the Globus Toolkit itself.

Humphrey et al. [59] group the grid activities that need to be secured into four
categories: naming and authentication; secure communication; trust, policy,
and authorization; and enforcement of access control. Authentication can be
achieved using Public Key Infrastructures (pki), which is standard in modern
grids. The same applies to secure communication, where transport encryption
protocols like tls [31] are used by default. Grid level authorization rules are in
the gridmap file, which maps a grid DN to a local user account. This scheme
turned out not to scale to the case where remote administrators need to con-
trol access to local resources. cas [100] and voms [104] solve this problem.
Humphrey’s paper presents a wide range of solutions for the stated grid secu-
rity problems and serves as a good reference. However, it does not deal with
grid middleware security, basic network security, and damage mitigation.

Two grid cases studies are described by Martin and Yau [88]. The first is an

131

Chapter 5. Network Security

overview of the Grid Security Infrastructure, a de facto architecture that has
been adopted by many grid implementations, which deals with the requirements
of authentication and authorization. The second, climateprediction.net, reveals
different security issues that relate to protecting hosts, and to the reliability
of results. Based on the studies, they identify a number of security issues and
mention, among others, the “fat” grid middleware:

It is inevitable that it will contain numerous points of vulnerability.
By its networked and distributed nature it offers a natural large
surface to any would-be attacker: whether their motivation is the
subversion of the resources of the Grid, the theft of the data and
software being used, or an attack upon the integrity of calculations.

They also mention Trusted Computing (tc) [168] technologies, such as the
Trusted Platform Module (tpm) [54]. Nevertheless, they have to admit that
“proposals that use Trusted Computing for grid computing are rare, probably
because the potential has not yet been fully realized”. In conclusion, in order to
enhance the security of the grid head node, including the middleware, additional
security mechanisms are needed.

Johnston et al. [65] present an overview of security considerations for computa-
tional and data grids. In compliance with other authors’ authentication, access
control and confidentiality are mentioned as security considerations. Further-
more, they mention the following assets to be protected: grid resources, com-
puting systems, data, and communication systems.

Grid and Firewalls

The papers in this section cover challenges, obstacles, and approaches in recent
grid firewall research.

Because Globus offers a wide range of remote services, firewalls rules have to be
chosen carefully in order to avoid disturbing legal users. Von Welch [169] ana-
lyzes Globus Versions 3 and 4 with respect to network ports and data streams.
Based on these, a fine-grained firewall configuration can be created, so that
authorized users can work without disruptions, while at the same time blocking
most unwanted traffic. A similar study was done by Baker et al. [6]. In fact, the
DGI of the German D-Grid project recommends a static firewall configuration
[165] with about 25.000 open ports to guarantee communication from a grid
client to the grid middleware without any problems.

Graupner and Reimann [51] present the most comprehensive study on the
Globus Toolkit and firewalls. Regarding creating a demilitarized zone, the au-
thors state: “Another solution is setting up the system under the corporation’s
control, but network-wise in front of the firewall. The main problem with this
solution is that grid resources cannot easily be reached from inside the organi-

132

5.3. Grid Demilitarized Zone

zation since, network-wise, resources are outside the firewall.” Their approach
is to use a ssh tunnel to connect grid resources from hp in Paolo Alto to the
Technical University Dresden. Unfortunately, the authors do not provide any
measurements regarding the overhead of their solution.

Tan et al. [146] present an architecture that facilitates inter-organization com-
munication using existing grid middleware, without compromising the security
policies in place at each of the participating sites. Therefore, they describe on
a theoretical level how to detect and resolve port conflicts and block unwanted
grid applications. They developed and tested a rerouting and multiplexing sys-
tem called Remus and implemented it prototypically into Nimrod/G. While the
paper presents a theoretical overview of grid and firewalling, it lacks a proper
implementation based on standard grid middlewares like Globus.

Using a firewall as a grid site protection mechanism raises several problems. For
example, the Globus Toolkit 4 uses a wide range of ports for communication
with grid clients; thus, it is difficult to configure firewalls properly. Rowland
et al. [111] illustrate that in their work. They use a grid installation in an
environment working with sensitive medical data. A workflow service, which is
installed on a public location in the Internet, coordinates the execution of grid
jobs. Hence, the service can only be reached through a firewall which does not
allows connections from the Internet to the internal network. Since not every
grid middleware can work with such restrictions, the approach is not feasible.

A dynamic firewall called Dyna-Fire has been introduced by Green et al. [52] for
a Globus grid middleware environment. The authors state that “the most secure
resource is one that does not permit any network connections from any external
system. However, this is an impractical solution because it renders the resource
useless in terms of grid computing” before they present their approach. Dyna-
Fire is based on a multi-level authentication, which is based on port knocking.
Furthermore, it supports vo-based security policies. Dyna-Fire is a solution
for enforcing access control on the grid head node. Due it close relationship
to the Globus gatekeeper, it enables fine-grained access control to grid sites.
Nevertheless, it does not protect other nodes close to the grid head node (e.g.,
infrastructure nodes) or the compute nodes.

Vinay Bansal [7] presents an approach for granting different rights to grid
users based on the ws-Security model. The presented component is a mix
between firewall and proxy that analyzes the network traffic and checks the
ws-Credentials to grant or deny firewall traversal. By using a parsing engine,
the proxy can detect web service-based protocols. A whitelist-based approach
(the list contains host names and protocols) is used to determine if the connec-
tion is valid or not. Due to its restriction on web service-based protocols, the
approach is not suitable. The grid head node can be attacked by a number of
other protocols as well. Furthermore, the enormous amount of data in a grid
network could overflow the self-written Java parsing engine.

Volpato and Grimm [164] present an approach to partially overcome the limita-

133

Chapter 5. Network Security

tions in grid computing introduced by firewalls. The first method, based on the
extension of a firewall implementation enables dynamic behavior of the firewall
itself to better adapt to the needs of the grid environment. The second ap-
proach creates a grid demilitarized zone that aims to minimize the interactions
between grid middleware and the cluster network. However, since no virtual-
ization of the nodes is present, the following Globus services need to be allowed
access from the demilitarized zone into the private cluster network: Gridftp
and a login service that transfers the gram calls to the cluster scheduler. It is
also recommended that the grid middleware in the demilitarized zone and the
internal head node share a common file system.

Grid Intrusion Detection Systems

As of today, there are not many mature grid intrusion detection systems. Ex-
isting approaches are presented in the following:

Schulter et al. [120] describe a grid ids, which combines host- and network-ids
to analyze the users’ behavior. A scheduler loads the users’ profiles and starts
one or more analysis processes to detect anomalies. All components interact
closely with a database to update changed profiles regularly. The ids utilizes
stored user behavior to detect anomalous activities. Due to the fact that the
grid head node can not see most of the users’ grid activities in a demilitarized
setup, this approach is not applicable to our scenario.

Fang-Yie Lue et al. [83, 82] also integrate an ids into a grid. Their solution
uses existing grid resources to detect high volume packets, especially distributed
Denial of Service attacks. Instead of standard technologies, they use their own
solution to overcome possible performance bottlenecks. Their approach deals
mainly with the distribution of load for the ids and requires several Globus
nodes to be utilized, which raises the risks of being compromised though a
middleware. Furthermore, it is not clear whether an implementation of the
system is available.

Silva et al. [122] describe a system named Distributed IDS on Grid (DIDSoG),
that aims to join heterogeneous Intrusion Detection System over a grid mid-
dleware. This should be achieved using a two-dimensional hierarchy of sen-
sors, correlators/aggregators, analysers, monitoring services, and countermea-
sure services. The infrastructure should be used to combine the strengths and
reduce the weaknesses of various existing ids systems. However, no ids or grid
systems are used; rather, a GridSim simulation is presented covering the graph
construction. Thus, it is difficult to judge the capabilities of the system.

Kenny and Coghlan [69] present santa-g (Grid-enabled System Area Networks
Trace Analysis), which is a generic template for ad-hoc, non-invasive monitor-
ing with external instruments. They use it and Snort [128] as the basis for
grid-wide intrusion detection. A special sensor monitors the log files created
by Snort and notifies an engine when new log files are detected. This engine

134

5.3. Grid Demilitarized Zone

saves the information into a database and processes incoming sql queries that
request this information. Communication is socket-based and xml is used as
communication protocol. There is also a graphical user interface for the admin-
istrator. Due to its design, santa-g could be used as a distributed intrusion
detection system to monitor multiple grid sites. Although the design of santa-
g looks promising, it is unclear whether an implementation exits. Furthermore,
the system does not deal with specific intrusion signatures for grids.

5.3.3 Design

Based on the related work presented in the last section, it is possible to derive
the following requirements for security measurements of the grid head node:

• Since most grid head nodes are located inside the same network as the
computing resources, a compromise of the former leads to access of the
latter. Therefore, a separation of the grid/internal network into two iso-
lated networks is needed. As this creates new problems, these problems
need to be addressed as well.

• In a standard setup, gsi is responsible for the integrity of the data, but
the assumption is that the grid head node has full access to the cluster.
Data encrypted with the gsi is decrypted by the grid head node, which
could be compromised. As a result, gsi-secured job data stored on the
grid head node is no longer safe or private. To protect grid user data, gsi
encryption must be extended to encompass both the grid and the internal
network.

• Since a grid middleware requires a number of open network ports, a spe-
cialized solution is not feasible. Though a more generic solution could
leave space for attacks, other solutions could interrupt the workflow or
even the whole operation of grid users.

• Grid user data must never be stored in unencrypted form on the grid head
node, and the grid middleware must not be able to decrypt the data, for
it could potentially be compromised.

• Since it is impossible to create countermeasures against all known attacks,
it would be beneficial if there were logs in the event of a successful com-
promise. Therefore, a Network Intrusion Detection (nids) could be used.
Most intrusion detection systems are not able to detect attacks against
grid environments due to grid-specific attacks; thus, new rules have to be
developed.

An important design goal is simple integration into an existing infrastructure.
This is, as prescribed by the German D-Grid, the Globus Toolkit as grid mid-
dleware and Torque as scheduler. Incoming jobs are submitted via the gram

135

Chapter 5. Network Security

interface; therefore, it is important that this interface remains functional and
no modifications on the Globus source should be necessary. Additional modifi-
cations to the source are inappropriate, as the mere amount of code could lead
to new, unintended bugs.

Service Port (TCP)

GRAM 2119, Range 20000 - 25000
WS-GRAM 8443, Range 20000 - 25000
WS-MDS 8443
GridFTP 2811, Range 20000 - 25000
RFT 8443
GSI-SSH 2222

Table 5.2: Globus Toolkit 4 network configuration. Source: [165]

A working group of the German D-Grid reviewed the cooperation between
different grid middlewares, including Globus, and firewalls [165]. In order to
guarantee a seamless workflow between users and grid services, a number of
ports that must not be filtered were identified. The results are shown in Table
5.2. To achieve at least some protection, they recommended letting only certain
ip addresses or ip ranges pass the firewall. To prevent overloading the Globus
Toolkit, they further recommend restricting the number of users who can access
it simultaneously to 20.

Due to the stated firewall restrictions, it is unreasonable to proceed with the
traditional grid network architecture: a shared network with both the grid head
node and the computing nodes. Derived from these requirements, a grid enabled
demilitarized zone was designed, which will be presented in the following. To be
able to analyze attack traces after a successful compromise, the nodes inside the
demilitarized zone are monitored by a grid-capable Network Intrusion Detection
System.

5.3.3.1 Architecture of the Demilitarized Zone

To prevent external intruders from accessing the computing resources by ex-
ploiting weaknesses in the grid middleware, the grid/internal subnet is divided
into two separate subnetworks, the border network and the internal network.

The demilitarized zone guards both networks with a firewall configured to the
specific needs of the network in question. The border firewall filters connections
from the Internet and denies unwanted connections to all machines within the
demilitarized zone. However, since grid middlewares require a large number
of open ports to function correctly and efficiently, and a large number of fluc-
tuating users need to access the grid, the border firewall has to be relatively
open. The grid head node is located in the demilitarized zone. The inner fire-

136

5.3. Grid Demilitarized Zone

Grid SiteDual laned Grid DMZ

Grid IDS

monitors

internal head node
Xen Grid Engine

Scheduler

Torque

Grid Headnode

Inner Firewall
Border Firewall

User

node node node

submit job

create VM

transfer
job data

transfer
resultsreceive

results

fetch
disk image

execute
results

ICS

Figure 5.19: Architectural overview

wall guards the internal network and prevents direct connections to the cluster
subnetwork. To protect the internal network, the inner firewall is very strict
and only allows one specially designed connector to pass through. Moreover,
it does not allow any interactive sessions to pass into the cluster network. The
computing resources reside in the internal network and consist of a cluster head
node and a set of nodes. An architectural overview is presented in Figure 5.19.

Grid Job Submission

The following section describes the steps involved in submitting a grid job
through a firewall, ranging from the initial submission up to the termination.

In order to submit a grid job, the user has different choices. She could use a
simple command line client, a portal (e.g., Gridsphere [150]) or a grid service.
Depending on method used, different actions are triggered within Globus. All
files needed for execution are created by the job manager, be it either a local
or a portal job. If it used grid service invocation, the service also calls gram
and, hence, the job manager.

In the third step, the job manager calls a local daemon that transfer the gener-
ated job files over to another daemon on the internal head node. This is done
step by step for all files belonging to the job.

The daemon on the internal head node accepts the information in the fourth
step. All received data is stored on the local hard disk. Another service located
on the grid head node now transfers all grid job data to the daemon mentioned
in the previous step.

137

Chapter 5. Network Security

Once the transfer is finished, the job manager is notified and sets the job state
from pending to active in Step 6. In the seventh and final step, the job manager
notifies the user. All of the described steps are shown in Figure 5.20.

Inner Firewall

1

3

4

5

6

7

2

4

Grid
Head Node

Internal
Head Node

User

Figure 5.20: Step-by-step processing of a job through the inner firewall

In order to use the virtualized grid enhancements previously described in this
chapter, the user has to create a virtual machine using the Image Creation
Station (ics). The ics provides a software installation process based on virtu-
alization technology. A user receives a private virtual environment that looks
and behaves exactly like a node that belongs to the grid to be used. The user has
root access and can install software in the same way that software is installed
on a local machine.

Since the ics must also allow users to log on from the Internet, it is located
inside a part of the demilitarized zone. Based on the X.509 grid identity, the
user can log onto an individually created disk image and install all required
software. The user only gets to log on to his or her own disk image and thus
can not compromise other disk images in the demilitarized zone. To prevent an
attacker from compromising the grid head node, from there, the ics, a dual-
laned demilitarized zone approach is employed that restricts access to either
the grid head node lane or the ics lane. Thus, if one lane is compromised, the
other lane remains unaffected.

5.3.3.2 End-to-End Encryption

Since jobs are no longer executed in the same realm of the network as the grid
head node, a new encryption scheme is required. When a user submits a job,
the client software (e.g. the Gridsphere portal) generates a 48-byte session key,
which is encrypted with the public key of the xge. This session key is used
to encrypt both the job data and later also the results. Both the job and the
encrypted session key can now be transferred through the insecure demilitarized
zone. Due to its location in the demilitarized zone, the grid head node is

138

5.3. Grid Demilitarized Zone

considered unsafe, so the job data remains encrypted and the corresponding
keys are not available outside of the secure network environment.

Job submission with full encryption is divided into several steps. The steps are
shown in Figure 5.21 and explained in the following:

Border Firewall Inner Firewall

. . .

2
3

4

5

6

7

8

9

13

1

8

9

10

11

12

10

14

User

Grid Head node

node
ICS

Int. Head node

XGE

node

Figure 5.21: All steps required for a end-to-end encryption

1. The user creates a fully-customized virtual machine for execution at the
ics. This machine represents the basis for the upcoming computation.

2. The disk image is transferred to the internal head node. The connection
is initialized from the internal network. This ensures maximum security
because there is no need for an open incoming port towards the cluster
network.

3. The client generates a session key and encrypts the session key with the
xge public key. It then archives and encrypts the job data with the
session key and creates a customized rsl file. The rsl file contains the
name of the archive and the encrypted session key.

4. The job data is copied to the grid head node via Gridftp.

5. A Globus gram call is launched according to the rsl file.

6. Globus hands over the job to a special software that will be described
later, which transfers the new job to the internal head node.

7. The xge parses the job description, decrypts the session key, and decrypts
the data within the virtual machines. Furthermore, the scheduler is now
invoked and schedules the job for execution.

8. After the scheduler calls the xge, it distributes and boots the images
created in Step 1.

9. The job is executed within the virtual machines on behalf of the scheduler.

10. The results are encrypted with the session key, extracted from the ma-
chines and copied back to the internal head node.

139

Chapter 5. Network Security

11. The encrypted results handed over to Fence.

12. The encrypted results are copied back to the grid head node.

13. The user fetches the results with Gridftp.

14. The user decrypts the results.

Job Submission, Transfer and Execution

Since direct communication between the grid head node and the scheduler is no
longer possible, a new mechanism is required to transfer and execute a grid job.
A newly developed software called Fence (short for Fence Head Node Security
Environment) deals with the task of transferring job data to the internal head
node. Fence consists of the following components, which will be explained in
greater detail later on.

• Job manager: Tightly integrated into the Globus Toolkit. One component
is a Scheduler Event Generator (seg). The other one hands over a new
job to the scheduler.

• dmz Head Node Client (dhnc): Provides the communication between the
grid head node and the internal head node.

• Cluster Head Node Daemon (chnd): Represents the interface between the
services on the grid head node and the scheduler on the cluster head node.
Due to its location, the chnd is a critical security component and needs
additional protection.

• dmz Head Node Daemon (dhnd): The second service on the grid head
node. It is a background task, serving requests from the chnd.

All connections between the aforementioned components are encrypted using
the tls protocol, which guarantees confidentiality and authenticity.

Job Manager

In the last stage of processing, Globus hands over the job to the novel job
manager. To use it, a new job must use a specific factory type. In order to
forward the job to the installed scheduler, a number of parameters must be
included:

• The working directory of the job binary

• The absolute path pointing to the binary

140

5.3. Grid Demilitarized Zone

• Command line arguments possible

• Command line variables required

• Additional files needed for execution

• Maximum amount of virtual memory

These parameters are written into two files that the xge and the scheduler
need to launch the grid job. The first one is a shell script containing calls to
the actual binary, the second an xml description of the job.

Since the job manager is integrated into Globus, is has to implement an interface
that consists of the following functions:

• Start a job

• Delete a job

• Request status information about a job

In general, all Globus job managers are written in the Perl programming lan-
guage. Since Globus itself offers no interface for Perl, one has to chose another
way instead. A log file, written by the job manager, is used as gateway between
the two. After handing over a job to a scheduler (or Fence, respectively), the
job manager writes a first entry to the log and sets the job’s state to pending.
Once the data transfer between Fence’s components is finished, another entry
is added that marks the job as active. As soon as the job terminates, the last
entry is written, setting the job to deleted.

Grid head node

Inner Firewall

Globus
internal node

Xen Grid Engine

Job Manager

SEG

Log

dhnd

reads
writes

writes

chnd

notifies

Figure 5.22: Interaction between Globus, the job manager and the xge

While the job manager writes entries to that log, a Scheduler Event Generator
(seg) reads from it. This seg is a small daemon, written in the C programming

141

Chapter 5. Network Security

language and bound to the C interface of Globus. Once it reads a legitimate
entry, it triggers an action. All of the described steps are shown in Figure 5.22

DMZ Head Node Client

The dmz Head Node Client, short dhnc, provides the interface between the job
manager and the internal head node. Its primary task is to notify the software
on the internal head node about a new grid job. In order to provide maximum
security, no job data other than a small and simple info message is sent from
the border network to internal network. Thus, only one port needs to be open.
All further data transfers are initiated from within the internal network.

Cluster Head Node Daemon

The Cluster Head Node Daemon, short chnd, is the counterpart of the dhnc
installed on the internal head node. Besides handling the communication be-
tween the two networks, it is also responsible for interacting with the xge. As
a consequence, the daemon must support a great variety of functions.

After the daemon receives an info message about a new job, it opens up a
connection to the border network and exchanges data. Since the daemon is
bound to the only open port of the internal firewall, additional protection is
needed. First, it must be impossible to connect directly from the Internet to
this port. Second, the runtime environment must be restricted as much as
possible to mitigate the risks after a possible compromise.

In order to support all of the job manager’s functions (start, delete, request
status), the chnd acts as a gateway between the mentioned components and
the xge.

DMZ Head Node Daemon

The dmz Head Node Daemon, short dhnd is running in the background of the
grid head node. Its task is to bind to a network port, accept connections from
its counterpart, the chnd, and transfer the requested data. Since the daemon
only communicates with Fence components, it is independent from the grid
middleware.

Like the chnd, the dhnd offers a possible attack surface since it is bound to
a network port inside the border network. As a result, the process’ runtime
environment is restricted and the process runs as unprivileged user.

142

5.3. Grid Demilitarized Zone

Summary

The last few sections illustrated the design of a grid demilitarized zone that in-
cludes Fence, a software that enables secure data transfers between the border
and the internal network. Figure 5.23 shows an overview of all of the compo-
nents within Fence, including the node on which they are installed.

Globus head node

Globus

Inner Firewall

XGE node

Border Firewall

submit

Xen Grid Engine

Scheduler

Torque

chnd

dhnc

dhnd

job
manager

notifies

notifies

exchange
data

notifies

Figure 5.23: Fence embedded into the demilitarized zone. Furthermore, the
relations between all components are shown.

5.3.3.3 Optimizing Security Configurations

All of the security mechanisms presented introduce a performance overhead in
the overall grid operation. While some of the mechanisms, such as the border
firewall, work on a per site basis and must be coped with by all applications,
others can be configured on a per user or even per job/service call basis:

• Encryption of input data

• Encryption of working data

• Encryption of result data

• Secure ClassLoaders1

• Jailing1

1If sandboxing is implemented for a site, the user has a choice of sandboxing technology. It
is not advisable to let users run their software outside a sandbox if there are also users requiring
the sandbox’s protection. While it should be possible to prevent users from attacking other
sandboxed software using standard operating system security, the risk to other users requiring
sandbox protection is high; thus, sandboxing should be a per site decision. However, what
type of sandbox is used can be left up to the users and depends on the type of software to
be sandboxed and the amount of configuration the users and the administrator are willing to
spend setting up the sandbox. See Smith et al. [125] for a discussion of the different sandboxing
mechanisms and their performance and configuration constraints.

143

Chapter 5. Network Security

• Virtualization1

• Inter-node firewalls

This opens up the opportunity to optimize application performance by selec-
tively downgrading or switching off certain security measures that are not re-
quired by some applications. To better accommodate the different usage sce-
narios, a service-oriented description and configuration mechanism is required
to allow manual as well as automated selection and configuration of security
mechanisms. This allows applications to optimize performance by selectively
turning off certain security mechanisms automatically in an otherwise high se-
curity grid environment.

WS-Agreement Security Description

This section proposes a ws-Agreement compatible approach to describing secu-
rity requirements and capabilities in addition to the traditional ws-Negotiation
attributes such as computational needs, quality-of-service (QoS), and pricing.
Listing 5.18 shows a simplified version of a ws-Agreement scheme for the secu-
rity mechanisms a grid site could offer. This allows the environment to optimize
the security settings for different applications using standardized mechanisms
like ws-Negotiation. When a client wants to submit a job or use a service, he or
she can create an instance using this template to specify his or her fine-grained
security and performance needs. This allows the user to specify in detail which
security mechanisms are required at what strength, thus giving the grid mid-
dleware the possibility to optimize performance based on those requirements.

1 <xsd:complexType name="AgreementTermType">
2 <xsd:sequence>
3 <xsd:element name="parties" type="tns:AgreementPartiesType"/>
4 <xsd:element name="serviceInstanceHandle" type="xsd:anyURI"/>
5 <xsd:element name="dependency" type="xsd:anyURI"
6 minOccurs="0"
7 maxOccurs="unbound"/>
8 <xsd:element name="sandbox" type="tns:SandboxType"/>
9 <xsd:element name="firewall" type="tns:FirewallType"/>

10 <xsd:element name="input_encryption" type="tns:EncryptionType"/>
11 <xsd:element name="result_encryption" type="tns:EncryptionType"/>
12 <xsd:element name="working_encryption" type="tns:EncryptionType"/>
13 </xsd:sequence>
14 </xsd:complexType>
15

16 <xsd:complexType name="AgreementPartiesType">
17 <xsd:sequence>
18 <xsd:element name="client" type="xsd:anyURI"/>
19 <xsd:element name="provider" type="xsd:anyURI"/>
20 </xsd:sequence>
21 </xsd:complexType>
22

23 <xsd:simpleType name="SandboxType">
24 <xsd:restriction base="xsd:string">

144

5.3. Grid Demilitarized Zone

25 <xsd:enumeration value="Java"/>
26 <xsd:enumeration value="Jail"/>
27 <xsd:enumeration value="Xen"/>
28 </xsd:restriction>
29 </xsd:simpleType>
30

31 <xsd:complexType name="FirewallType">
32 <xsd:sequence>
33 <xsd:element name="firewall" type="xsd:boolean"/>
34 <xsd:element name="throughput" type="xsd:int"/>
35 <xsd:element name="ports" type="tns:PortRange"
36 minOccurs="0"
37 maxOccurs="unbound"/>
38 </xsd:sequence>
39 </xsd:complexType>
40

41 <xsd:complexType name="PortRange">
42 <xsd:sequence>
43 <xsd:element name="lower" type="xsd:int"/>
44 <xsd:element name="upper" type="xsd:int"/>
45 </xsd:sequence>
46 </xsd:complexType>
47

48 <xsd:complexType name="EncryptionType">
49 <xsd:sequence>
50 <xsd:element name="algorithm" type="tns:AlgorithmType"/>
51 <xsd:element name="strength" type="xsd:int"/>
52 <xsd:element name="sign" type="xsd:boolean"/>
53 </xsd:sequence>
54 </xsd:complexType>
55

56 <xsd:simpleType name="AlgorithmType">
57 <xsd:restriction base="xsd:string">
58 <xsd:enumeration value="AES"/>
59 </xsd:restriction>
60 </xsd:simpleType>

Listing 5.18: Grid Security Schema

Processing of the Description

The user creates and submits a ws-Agreement file specifying his or his or her
functional requirements (cpu, ram, time to finish, etc.) as well as his or her
security requirements (encryption, sandboxing, required ports, etc). The ws-
Agreement document is processed by the AgreementFactory. Based on the
evaluation whether the job can be executed to the user’s satisfaction, a positive
or negative reply is sent.

If both functional and security requirements are met, no changes are needed and
the job can be optimized according to the required security settings. If, however,
some requirements can not be met, such as number of cpus, or required closed
ports, but the site policy does not allow automatic those ports to be opened
automatically, or the user requires native execution (this is particularly relevant

145

Chapter 5. Network Security

for Infiniband grid applications), but the site policy only allows jobs to be
executed in virtual environments, the user is informed about the restriction
that apply to the given site.

The previous two steps can then be repeated a number of times using ws-
Negotiation until either a mutually acceptable setting is found or the request is
canceled. The ws-Agreement accepted by both parties is stored by the Agree-
mentManager and can be accessed by Globus and xge to facilitate user-centric
system configuration.

5.3.3.4 Grid-enabled Intrusion Detection

While the introduction of the demilitarized zone protects the internal network
from attacks and the new encryption scheme protects the confidentiality and in-
tegrity of grid job data, there is still the danger of Denial-of-Service or unknown
attacks against insecure grid middleware within the demilitarized zone. To face
this threat, a setup that detects possible attacks and takes appropriate coun-
termeasures is needed. To accomplish this task, a standard Network Intrusion
Detection Systems (nids) was extended by grid specific attack signatures.

To detect possible intruders in advance, a nids is installed between the border
firewall and the border network. Most intrusion detection systems are not able
to detect attacks against grid environments due to grid specific attacks; thus,
new rules have to be developed. There are a number of relevant attacks against
a grid:

• Simple Denial-of-Service Attacks: This type is very similar to common
DoS attacks, except that they focus on grid components, such as the
Globus Toolkit, gLite, Unicore, Gridftp, etc.

• Complex Denial-of-Service Attacks: Complex DoS attacks try to misuse
certain components of the grid software. For example, an intruder could
generate numerous false certificates to generate a high load on the grid
aai components.

• Use of exploits: No software component is really free of bugs, so the use
of an exploit against a security vulnerability is always possible.

Grid specific rules and a proof-of-concept attack are described in Section 5.3.4.8
on page 153.

5.3.4 Implementation

This section describes the implementation of the demilitarized zone and the
gsi extension. The design of a network has a certain impact on the security

146

5.3. Grid Demilitarized Zone

of a demilitarized zone. A poorly configured firewall or an ill-designed network
could lead to a number of problems, e.g. unnecessary filtered ports reveal the
existence of a transparent firewall.

5.3.4.1 Border Network

The border network is guarded by both firewalls and builds the demilitarized
zone. All machines are directly connected to the outside network. Currently,
this includes the head node running Globus and the Image Creation Station.
Traffic between the Internet and the demilitarized zone is filtered by the border
firewall. Invalid packets are dropped immediately. This includes:

• External connections that have a private ip address as source address.
This prevents that external packets are masked as internal ones. Of
course, this only applies if Network Address Translation is used.

• Unrouteable packets.

• Various types of network scans such as port or ssh scans. This rule pre-
vents an attacker from gaining knowledge about the network’s structure.
While a good firewall can filter known scans, it is still possible for yet
unknown or advanced scans to pass through the filter.

• Any traffic which is not explicitly permitted.

It is only possible to lock down the border firewall to a certain degree. Too
restrictive rules can disturb the legal operations of complex software such as
Globus.

5.3.4.2 Internal Network

The inner firewall guards the internal network that is a private network ac-
cording to RFC 1918; thus, no direct connection from the Internet is possible.
Internet connectivity for the xge is provided via Network Address Translation
(nat).

Connections initiated by nodes in the internal network are only filtered for
invalid or blocked ports as the internal network is trusted one. Connections
initiated by nodes in the demilitarized zone are blocked. Only one exception is
permitted: connections to the Cluster Head Node Daemon (see Section 5.3.3.2).
Furthermore, these connections are only permitted if they originate from the
demilitarized zone. Stateful inspection is enabled on both firewalls to minimize
load.

147

Chapter 5. Network Security

5.3.4.3 End-to-End Encryption with Fence

The following steps are required for end-to-end encryption.

• Session key generation and job submission: First, the session key is gener-
ated. The software encrypts the job data with this key. Then, the session
key is encrypted with the xge public key and appended to the gram-rsl
file. Finally, a gram call is sent to the Globus machine, and Gridftp is
used to transfer the encrypted job data.

• New job arrives: After a new job arrives at the grid head node, Fence
transfers this job to the cluster head node. All transferred data remains
encrypted at all times.

• New job arrives at the internal head node: After the xge recognizes a
new job, it extracts the session key from the job description and decrypts
the job data with the private key within the corresponding user image.

• Computation finished: After successful computation, the results are en-
crypted within the secure virtual environment and are then handed back
to the grid head node.

The rsl extension field is used to integrate the session keys into Globus and
two new tags were introduced: <inputArchive> and <ID>. On the client-
side, the job data is stored inside a Zip-archive (named by the first tag), which
is encrypted with the session key. The second tag holds the encrypted key.
Encrypting the session key with a public key ensures the secure transfer of the
key over insecure channels and storing the key on untrusted storage, e.g. the
grid head node. The secret key is stored securely on the cluster head node and
is not accessible to any users.

5.3.4.4 Connection to the Globus Toolkit

The connection between Fence and the Globus Toolkit is managed by a newly
developed module. Usually, a Globus module called the job manager is respon-
sible for processing new jobs. New jobs, submitted either directly from the
command line or via gram call a job manager. There is one job manager for
every scheduler of which Globus is aware, e.g. Fork, PBS or Condor. The new
job manager module is an extension of the previous pbs module and the sge
module developed by London E-Science [35]. The final version was optimized
for security.

A job manager consists of two parts, one written in C, the other one written
in Perl. The C part is responsible for the integration into Globus and the Perl
part is the interface to Fence. To use the new module, one has to specify pbs
as job manager or factory type.

148

5.3. Grid Demilitarized Zone

Every job manager is a subclass of Globus::GRAM::JobManager and has to
implement three methods:

submit() is called when a job is forwarded from the job manager to the
scheduler. The method has access to the whole job description (e.g., the
content of the rsl file). Its main purpose is to check if the parameters
for the scheduler call are valid. Invalid parameters could lead to a direct
abortion of the job. Finally, the method submits the job to the scheduler.

poll() queries the state of the job. Among others, this could be active
or failed.

cancel() stops the stop and removes it from the system. A message
informs the user about the details.

The module generates two files: a xml file with the description of the job and
a shell script containing the needed commands to launch the job. The syntax
of the xml file is derived from the Globus gram rsl schema [28] and the job
description is encoded as follows:

<user>: The user who submitted the job via Globus.

<script>: The name of the job script calling the job’s executable.

<files>: This meta tag encodes a number of <file> entries describing
the file needed for job execution.

<maxMemory>: Maximum amount of virtual memory (in megabytes).

<maxCpuTime>: Maximum amount of CPU time (in minutes).

<sessionKey>: This field contains the session key encrypted with the
public key of the xge.

A sample xml file is shown in Listing 5.19. The file job.sh is executed on
behalf of the user testuser (line 3 and 4). Input and output streams are saved in
two files in the users home directory (lines 9 through 11) and the job is bound
to resource requirements (lines 6 and 7).

1 <?xml version=’1.0’?>
2 <job>
3 <script>job.sh</script>
4 <user>matthias</user>
5

6 <maxCpuTime>100000</maxCpuTime>
7 <maxMemory>1024</maxMemory>
8

9 <files>
10 <file>$HOME/input</file>

149

Chapter 5. Network Security

11 <file>$HOME/output</file>
12 </files>
13 </job>

Listing 5.19: Auto-generated xml file describing a job

A shell script is needed to let the scheduler start the job. The script calls the
actual binary and sets possible environment variables.

5.3.4.5 DMZ Head Node Client

The dmz Head Node Client, dhnc for short, establishes the connection between
the job manager and the cluster node. It can be called from either the command
line client or directly from the job manager.

As mentioned in the previous section, several generated files are needed for job
execution. Due to the demilitarized zone, the job manager cannot communicate
directly with the xge node, so another solution is needed. A naive solution
would allow the dhnc to copy the files directly. Due to security considerations,
this method is not acceptable. A direct copy of nodes in the demilitarized zone
requires exact parsing on the internal node. This is necessary to avoid malicious
data from triggering a buffer overflow on the receivers side, for example. To
avoid that issue, a pull strategy is used. The dhnc opens up a connection to the
corresponding service on the internal node and sends a simple info message.
This message is easy to parse so that it cannot be misused. Listing 5.20 shows
an info message being transferred, which informs the daemon running on the
xge node about a new job. A new network socket is opened (lines 2 through 5).
Parameters, such as the ip address, the protocol, and the port, are set in lines
7 through 10. The dhnc either obtains the ip address from the command line
client or it is set by the job manager. Using the socket and the parameters, the
connect system call opens a connection that will be used to transfer the data
(lines 12 through 16). Finally, the info message is constructed and written to
the socket (lines 20 through 24). The info message length is limited to 1024
characters to prevent buffer overflows. Due to the design of an info message,
the string will never hit that limit.

1 [...]
2 if ((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
3 if (flag_q == 0) printf("Cannot open socket\n");
4 return(-1);
5 }
6

7 memset(&addr, 0, sizeof(addr));
8 addr.sin_family = AF_INET;
9 addr.sin_port = htons(CHND_PORT);

10 inet_pton(AF_INET, ip, &addr.sin_addr);
11

12 if (connect(fd, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
13 if (flag_q == 0) printf("Connect to %s failed\n", ip);
14 close(fd);

150

5.3. Grid Demilitarized Zone

15 return(-1);
16 }
17

18 [...]
19

20 snprintf(snd, 1024, "INFO %s\r\n", (char*)string);
21

22 [...]
23

24 len = write(fd, snd, strlen(snd));

Listing 5.20: Code snippet that shows the process of creating and transferring
an info message

After the transfer ends successfully, the connection is closed.

5.3.4.6 Cluster Head Node Daemon

The Cluster Head Node Daemon, chnd for short, is the interface between the
grid head node and the xge on the internal head node. It runs in the back-
ground, is bound to the only port open in the internal firewall, and is written
in the C programming language.

A frequent message arriving at the chnd is the aforementioned info message
reporting that a new job is waiting on the grid head node. In order to avoid
an attacker from exploiting a possible bug, the message is carefully parsed.
Only well-known parts are accepted, all other information is discarded. This is
possible since Globus used a well-defined format for its job ids. The message
is split to extract the job id and the file name. The extracted file is requested
by using the id. Thus, a connection to the dhnd is opened. A get message is
constructed to request a file. This procedure is repeated for all files mentioned
in the job description. If an error occurs, the connection is canceled and the
user is informed.

Due to its prominent location, the runtime environment has to be restricted.
A successful compromise of the chnd could lead to access of the internal head
node. Further details about the restriction of the runtime environment are
described in the next section.

5.3.4.7 DMZ Head Node Daemon

The second service running on the grid head node is the dmz Head Node Dae-
mon, or dhnd. Its a background daemon that answers requests from the chnd
and transfers data to the internal network. It is written in the C programming
language.

The dhnd ’s primary task is to transfer job data. An incoming message from

151

Chapter 5. Network Security

the internal network is split and then parsed for invalid characters. The dhnd
searches for the given file is in the file system and sends it over the established
connection. After a successful transfer, the file is removed from the file system
to avoid the hard disk from filling up. Once all files belonging to a job are
transmitted, the whole directory is removed. If an error occurs, the connection
is aborted.

Runtime Environment Restrictions

Due to the fact that the dhnd is permanently bound to a network port, it
represents a critical service. While the border firewall prevents connections
from the Internet, it cannot prevent connections from the border network. To
increase the difficulty a possible attacker faces when trying to compromise the
system, the run time environment of dhnd is restricted. After start-up, the
working directory is changed to a special directory with the help of the chroot
system call. Now, the process can no longer access files outside of this directory.
In the event of a compromise, no working environment (e.g., a shell and system
utilities) is available. To prevent the attacker from escaping from the working
directory, the process runs with reduced privileges, i.e. it is running as a special
user. It is possible to procure the user id with the initgroups system call
(line 16). Then the user and group id are set for this process (lines 18 - 21). It
is possible to use the setuid system call because the process is started as root.
Theoretically, it is even now still possible to escape from jailed environment.
To avoid that, further modifications of the operating system kernel are needed
(e.g., as with the Openwall [152] or grsecurity [137] kernel hardening patch).
The aforementioned implementation is shown in Listing 5.21

1 int
2 drop_root(char *server_user, char *server_jail)
3 {
4 struct passwd *pw;
5

6 if (!(pw = getpwnam(server_user)))
7 return -1;
8 if (!pw->pw_uid)
9 return -1;

10

11 if (chroot(server_jail))
12 return -1;
13 if (chdir("/"))
14 return -1;
15

16 if (initgroups(server_user, pw->pw_gid))
17 return -1;
18 if (setgid(pw->pw_gid))
19 return -1;
20 if (setuid(pw->pw_uid))
21 return -1;
22

23 return 0;
24 }

152

5.3. Grid Demilitarized Zone

Listing 5.21: Runtime Environment Restrictions

Under Linux, the proc file system shows the current working directory (cwd)
as well as the root directory of a process (root). For an instance of dhnd this
looks as follows:

[...]
lrwxrwxrwx 1 root root 0 2011-01-13 08:10 cwd -> /usr/dhnd
lrwxrwxrwx 1 root root 0 2011-01-13 08:10 exe -> /usr/local/bin/dhnd
lrwxrwxrwx 1 root root 0 2011-01-13 08:10 root -> /usr/dhnd
[...]

The new working and root directory is /usr/dhnd.

5.3.4.8 Grid Enabled Intrusion Detection System

To protect the grid infrastructure, Snort [128] is placed between the border
firewall and the border network as Network Intrusion Detection System. Snort
analyzes all incoming traffic and compares it to its signature database. If a
positive match occurs, an alarm is sounded. Usually, an alert is just an entry
to a special alert log file. However, Snort has multiple ways to contact an
administrator, such as e-mail or sms. To reduce the scan time the signature
database should be as small as possible. As a result, it is not important to
search for smtp attacks if no smtp server is available.

A fraction of an attack log showing an example portscan of the grid head node
running Globus is shown in Listing 5.22. In addition to the grid software, a
finger daemon4 was installed to test the functionality of the nids. finger is a
simple service used to query information about other users and has an inglorious
security history (legacy versions of the daemon contained some severe bugs).
Both the scan and the attempt to execute code were detected by Snort and
logged.

1 [**] [122:1:0] (portscan) TCP Portscan [**]
2 02/20-15:06:12.016821 172.16.1.2 -> 172.16.1.1
3 PROTO255 TTL:0 TOS:0x0 ID:0 IpLen:20 DgmLen:155 DF
4

5 [**] [1:327:8] FINGER remote command pipe execution attempt [**]
6 [Classification: Attempted User Privilege Gain] [Priority: 1]
7 02/20-15:06:31.281091 172.16.1.2:49312 -> 172.16.1.1:79
8 TCP TTL:64 TOS:0x0 ID:11583 IpLen:20 DgmLen:96 DF
9 ***AP*** Seq: 0x9A4F576D Ack: 0x95BF2F6D Win: 0x8218 TcpLen: 32

10 TCP Options (3) => NOP NOP TS: 641186081 607311459

Listing 5.22: Fraction of the snort alert log after a portscan and a break-in
attempt

4http://tools.ietf.org/html/rfc742

153

http://tools.ietf.org/html/rfc742

Chapter 5. Network Security

Grid IDS Signatures

To enhance the security of the installed grid head node, the signature database
was extended with Globus-specific attack signatures. Since Globus offers a wide
range of services (e.g., Gridftp, gsi-ssh, gatekeeper, service container, etc.), it
is impossible to develop signatures for all of them. Furthermore, developing a
new signature for a service requires a new, yet unknown attack. As a result, only
two proof-of-concept attacks and the corresponding signatures were developed
in the course of this thesis: one attack against wsrf, another against Gridftp.

The attack is a simple Denial-of-Service attack; hence, it attempts to overflow
Globus with a enormous amount of connections until the service stalls. Listing
5.23 shows a shell script that uses the netcat tool to open up a connection and
to send 500 bytes of random data. Since the number of parallel connections
is the cause of the problem, the size of the payload is negligible. The script
connects to the web service container port (8443), however it can also be used
to attack Gridftp by simply changing the port number to 2811.

1 #!/bin/sh
2

3 # Network port (here, the WSRF service)
4 port=8443
5 # IP address of the grid head node
6 host=172.16.1.1
7 # Maximum number of packets
8 max=100000
9

10 for ((i=0; i<$max; i++)); do
11 nc $host $port < paket_content
12 done

Listing 5.23: Globus wsrf-Denial of Service

Based on the evaluation of these attacks, new Snort detection rules were created,
which are shown in Listing 5.24.

1 alert tcp $EXTERNAL_NET any -> $HOME_NET 8443 (msg:"Globus WSRF DoS
2 attack"; flow:stateless; flags:S; threshold: type both, track by_src,
3 count 1000,seconds 30; classtype:denial-of-service;)
4

5 alert tcp $EXTERNAL_NET any -> $HOME_NET 2811(msg:"Globus GridFTP DoS
6 attack"; flow:stateless; flags:S; threshold: type both, track by_src,
7 count 1000,seconds 30; classtype:denial-of-service;)

Listing 5.24: New signatures to detect a Globus Denial of Service attack

Since the difference between the two rules is the port number, only the wsrf
signature is explained here:

• alert tcp $EXTERNAL NET any -> $HOME NET 8443: Snort trig-
gers an alarm as soon as a tcp connection to port 8443 is opened from

154

5.3. Grid Demilitarized Zone

the Internet into the border network and once the following conditions
are true:

• msg:Globus GridFTP DoS attack: This message is logged if the
rules fires.

• flow:stateless: In general, a tcp connection that is part of DoS
attack does not perform a correct 3-way handshake; thus, Snort has to
treat all packets as isolated ones.

• flags:S: Since all packets want to open up a connection, the syn flag
has to be set.

• threshold: type both, track by src, count 1000, secon-
ds 30: The rule only fires, if more than a 1000tcp packets arrive within
30 seconds. This high threshold ensures that the normal volume of legal
grid connections observed at our site does not raise a false alarm. The
threshold needs to be adjusted to each site’s expected usage.

• classtype:denial-of-service: The classification tag for DoS at-
tack rules.

Using these rules, Snort can now detect the proof-of-concept attacks (Listing
5.25). If an attack is registered, there are three responses: First, a log entry
is written solely for documentation purposes. Second, the grid and cluster
administrators receive an alert message. Third, the attack is displayed on the
local Webmds, which enables end users to view Globus monitoring information
via a standard web browser interface. The icon for the registered resource
changes from green to red to enable quick visual recognition of which sites are
under attack.

1 [**] [1:9998:0] Globus GridFTP DoS attack [**]
2 [Classification: Detection of a Denial of Service Attack] [Priority:

2]
3 03/16-09:40:24.037370 10.0.1.10:45941 -> 10.0.1.68:2811
4 TCP TTL:64 TOS:0x0 ID:44334 IpLen:20 DgmLen:60 DF
5 ******S* Seq: 0xE8A4D535 Ack: 0x0 Win: 0x16D0 TcpLen: 40
6 TCP Options (5) => MSS: 1460 SackOK TS: 679901211 0 NOP WS: 7

Listing 5.25: Snort detects the attack on the GridFTP service

5.3.5 Evaluation

While the presented features are required for effective security in grid environ-
ments, they create a certain amount of overhead. The transmission time is
extended due to the extra hop via Fence, and encryption and decryption also
consume some time compared to a completely unsecured grid operation.

The test environment consists of 6 machines connected with a switched 100 Mbit
Ethernet network. The firewalls are Pentium III machines with 1 GHz, 512 MB

155

Chapter 5. Network Security

ram and Freebsd installed. The grid head node is a Pentium IV with 3 GHz,
1 GB ram and Debian Linux installed. The same configuration applies to the
client machine. The Cluster head node is a Pentium IV with 1.8 GHz, 512 MB
ram and Solaris 10 installed. There are also 4 Pentium IV with 1.8 GHz,
512 MB ram worker nodes running Debian Linux in a Xen environment. The
nids is a passive component, which does not influence job execution time.

0

50

100

150

200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

T
im

e
 (
se

c
o

n
d

s)

Trials

Encryption Transfer Decryption

Figure 5.24: Time for fully-encrypted job submissions

The most important measurement concerns end-to-end encryption. It intro-
duces improved security, but it also consumes time. To show that the intro-
duced overhead is negligible, two measurements were conducted. The first one
measures the time for an encrypted job from the client to the xge. The second
measurement is the same, except that the data is unencrypted. The execution
time is job dependent and thus factored out of the measurements.

Figure 5.24 shows the times required for the following steps:

1. Start a job on the client side and encrypt the job data with a 48-byte key

2. Transfer the job data via Fence to the xge

3. The xge detects the new job and decrypts the data

The test application is the casting simulation package casts (Computer Aided
Solidification TechnologieS) [36], which is one of the engineering applications

156

5.3. Grid Demilitarized Zone

in the D-Grid. casts is a dedicated software tool developed for the full range
of casting processes. casts calculates transient temperature distributions in
mold, core and alloy, taking into account both latent heat release as a function
of fraction solid, and heat transfer resistance at material interfaces. The typical
data volume for casts is about 290 MB.

0 10 20 30 40 50
Trials

20

40

60

80

100

Ti
m

e
(s

ec
on

ds
)

Figure 5.25: Time required for unencrypted job submissions

50 trials were conducted to get a robust mean, which is about 154 seconds. The
chart is divided into three parts. The bottom part displays the time needed to
encrypt the data. The middle part displays the time needed to transfer the files
via Fence from the grid head node to the internal head node. The upper part
displays the time needed to decrypt the data. The difference between the two
cryptographic processes results from diverse hardware (1.8 GHz cpu vs. 3 GHz
cpu). The small variance in transfer time is due the polling nature of the xge.

The second measurement is exactly the same as the first, except no job data is
encrypted or decrypted. Figure 5.25 shows the time in seconds on the ordinate
and 50 trials on the abscissa. The mean is about 49 seconds. Due to the
watchdog characteristic of the xge, the same variance can be seen here as
already described in the last case.

The difference between the means of the two trials is 105 seconds, so about
twice the time for full end-to-end encryption is needed. Compared with the
time this casts job needs to be completed (about one hour), the extra time
(an additional 105 seconds) is worth the security gained.

To compare the filter overhead introduced by the firewalls, data was transferred
with and without the firewalls. To gain a robust mean, the data was transferred

157

Chapter 5. Network Security

0 20 40 60 80
Transfers

25.5

26

26.5

27
Ti

m
e

(s
ec

on
ds

)

With a firewall
Without a firewall

Figure 5.26: Transfer data chart with/without a firewall

100 times. The volume of the data is the same as above. Figure 5.26 shows the
results of the measurement. The upper curve displays the transfer time through
the firewalls; the lower curve displays the transfer time without firewalls. The
mean of the upper curve is about 26.7 seconds; the mean of the lower curve is
about 25.7 seconds. The resulting difference is very small, so the measurements
indicate that the use of firewalls for a demilitarized zone helps to improve the
security at little cost.

A sample Denial-of-Service attack (described in Section 5.3.4.8 on page 154)
was launched against the Globus Toolkit Version 4.2.1 on the grid head node to
show how vulnerable Globus is to attacks. Hereby, Globus was installed on a
Quad-Core Intel Xeon cpu with 2.27 GHz and 1 gb ram. The interconnection
between the source and the target machine was switched Gigabit Ethernet
network. Overall, the attack lasted over 6 minutes, targeted the Gridftp service
and 100,000,000 packets were sent. In order to keep the monitoring overhead as
small as possible, the load value was measured every 2 seconds; thus, the small
variance in the curve. Figure 5.27(a) shows the system load on the ordinate
and the passed time in seconds on the abscissa. The system reacts faster if
the load is lower. The load increased up to its maximum after the attack was
started (after 382 seconds) and decreased immediately after the attack was
stopped. As a comparison: the usual system load of a server ranges from 1 to
10, so the attacked system is heavily overloaded and barely usable anymore.
Figure 5.27(b) shows the same attack on the system; however, the system is
now installed within the demilitarized zone and guarded by a snort intrusion
detection system with custom grid-specific rules. Snort detects the attack after
about 145 seconds and a custom script is called that blocks the attackers IP
address; thus, the load decreases and normal operation continues.

158

5.3. Grid Demilitarized Zone

0 100 200 300 400 500 600

Time (in seconds)

0

50

100

150

200

250

Sy
st

em
 L

oa
d

System Load Attack stops

(a) Unguarded system

0 100 200 300 400

Time (in seconds)

0

5

10

15

20

Sy
st

em
 L

oa
d

IP address is blockedSnort detects the attack

(b) System guarded by Snort

Figure 5.27: System load of the grid head node during an Denial-of-Service
attack on Gridftp

Due to the increasing load, it is no longer possible to actually work with the
system. Gridftp’s behavior is the root cause of the problem, as it creates
a new child process for every incoming connection. Although there is no data
exchange after the connection is established, the increasing number of processes
is sufficient to bring down the system. Gridftp uses the xinetd superserver,
which restricts the number of parallel connections. While this is indeed a proper
security mechanism, it fails here for process creation, termination, and the
context switches involved simply use too many resources.

159

Chapter 5. Network Security

For comparison purposes, the attack was also launched on the Apache web
server,5 which handled the number of parallel connections without any hassles.
Although the system load increased, it was irreducible compared to Gridftp
because Apache creates a new thread, instead of a child process for every connec-
tion. Since thread creation is quite cheap and lightweight, the systems remains
responsible.

The attacks carried out demonstrate the vulnerability of the grid head node
to Denial-of-Service attacks. If an attacker has access to a variety of resources
(e.g., a botnet), he or she could bring down the head node and thus the entry
point of a grid site. Consequently, the head node needs additional protection
mechanisms like the one presented in this thesis.

5.3.6 Summary

By using the novel dual-lane demilitarized zone, the grid environment was sep-
arated into several zones to protect local resources from grid middleware. The
grid head node and the image creation station are both confined into separate
compartments in the grid demilitarized zone. A new solution, called Fence,
guarantees that job data is encrypted during all stages of transmission and
storage in insecure networks. Extending a Network Intrusion Detection System
according to several grid-specific rules further protects the network.

5.4 Dynamic Firewalls for Grid Computing

5.4.1 Introduction

The relationship between grid users and resource providers changed from highly
trusted to mostly untrusted [124]. This change occurred because grid computing
itself changed from a research topic with few users to a widely deployed product
with commercial adoption. The traditional open research communities have
very low security requirements, while, in contrast, business customers often
operate on sensitive data representing intellectual property; thus, their security
demands are very high. In traditional grid computing, most users share the
same resources concurrently. Consequently, information about other users and
their jobs can usually be accessed quite easily. This includes, for example, the
fact that a user can see the another user’s running processes. For business
users, this is unacceptable since even the meta-data of their jobs is classified
[125]. As a consequence, most commercial customers are not convinced that
their intellectual property in the form of software and data is protected in the
grid.

Using virtual machines to enhance security for job applications already fulfills

5http://httpd.apache.org/

160

http://httpd.apache.org/

5.4. Dynamic Firewalls for Grid Computing

the requirements posed by the industrial partners in the German D-Grid. All
computation takes place inside a shielded environment in which there is no inter-
user communication and no connection to the Internet. However, for service-
oriented grid applications consisting of several grid services that are potentially
executed from different users on multiple sites, using virtual machines without
Internet access or inter-node communication capabilities is not sufficient. Such
an application was described in Section 3.3.5 on page 32.

The basic idea is to virtualize grid resources in order to offer the same freedom
that network access cloud computing offers but in a multi-organizational and
shared use environment, without endangering existing users or resources. This
allows service-oriented applications direct, multi-site access to the computing
nodes, without endangering the resources or other computations running on the
nodes.

Parts of this section have been published in [126, 116, 121, 117].

5.4.2 Related Work

One method of granting access to network resources is to use firewall traversal
techniques. A system that uses such techniques is codo (Cooperative On-
Demand Opening) [131]. codo permits both inbound and outbound network
traffic only for privileged applications. Apart from the fact that these decisions
are made on the application level, the corresponding applications need to be
linked with specific client libraries and require the use of firewall agents. A pro-
gram’s client library interacts with an agent to aquire permission to traverse the
firewall itself. However, using client libraries is unacceptable since commercial
software users are not able to link the application to the required libraries.

Another idea is to use a semantic firewall [144]. Applications present a pro-
file describing their needs to the semantic firewall. The firewall itself also has
access to the policies of the grid community to which the application instance
belongs, and of the domain whose resources it protects. The firewall only al-
lows traffic to pass through if the application requests (from both local and
remote processes) are consistent with the policies, regardless of which ports
and protocols are used. Unfortunately, the applications must present a profile
describing their needs to the semantic firewall, such that an application has to
be aware of the firewall’s existence. Furthermore, it is not clear if there is a
usable implementation available.

Rezmerita et al. [108] propose a new approach called Instant Grid (IG), which
combines various Grid, P2P and vpn approaches, allowing simple deployment
of applications over different administration domains. The paper proposed a
P2P-based middleware which is able to establish encrypted connections between
peers. Since the approach uses non-standard software and techniques, it is not
possible to integrate it into an existing infrastructure. This includes existing

161

Chapter 5. Network Security

grid or virtualization software. Unfortunately, is relationship to grid computing
is not at all clear.

Matthews et al. [89] state that virtualization is an important enabling technol-
ogy for many large private datacenters and cloud computing environments and
propose Virtual Machine Contracts (vmcs). A vmc is a specification of the
requirements and parameters that a virtual machine needs to operate. This
includes network access control criteria or limits on the type and quantity of
network traffic generated by the virtual machine. vmcs offer a flexible way to
specify information about virtual machines. Therefore, it could be desirable to
extending the approach that will be presented in this thesis using vmcs.

Wood et al. [172] argue that current cloud computing services need to further
evolve to fully meet the needs of businesses. Therefore, cloud computing re-
sources should be integrated into an enterprise’s current infrastructure. The
authors propose Virtual Private Clouds (vpcs), a framework used to integrate
virtual private networks into the cloud. A new software called Cloud Man-
ager creates virtual machines and embeds them into a mpls network. So-called
provider edge (pe) routers span the virtual network between the cloud site and
the customer’s own network. While the presented approach interconnects a
cloud site and an enterprise’s network, it relies on its own components to create
the infrastructure, including virtual machines. As a result, it is not possible to
use this approach in a grid context or in a default cloud environment.

Sundararaj and Dinda [142, 143] present vnet, a simple layer 2 virtual network
tool. Using vnet, virtual machines have no network presence at all on a remote
site. Instead, vnet provides a mechanism to project their virtual network cards
onto another network. Therefore, they developed a vnet client, proxy and a
server based on VMWare gsx Server. A virtual machine is connected to the
vnet host which captures outbound and injects inbound Ethernet packets from
the bridge to which the machine is connected. These packets are relayed (either
locally or remotely) between the host and the vnet proxy on the client’s side.
Here, the proxy injects inbound and captures outbound Ethernet packets from
the local network to which client is connected. While the proposed idea is a
good one, due to the restrictions of the German D-Grid (which uses mostly open
source components), it is not possible to use commercial software like gsx.

Tsugawa and Fortes [156] present a virtual network (ViNe) architecture for
grid computing. ViNe is an ip-overlay network on top of the Internet. Routing
between different sites is achieved by placing a dedicated virtual router in every
site’s virtual subnet. Hosts can join this subnet if they have a virtual ip address.
ViNe is similar to the approach presented in the following and represents a step
towards homogeneous multi-site network connections. While ViNe also takes
care of routing packets between different sites, the upcoming approach delegates
routing to the existing infrastructure.

There are several proposals for how to create a secure container in which (un-
trusted) software can be executed. For example, Batheja and Parashar [9] use

162

5.4. Dynamic Firewalls for Grid Computing

JavaSpaces to create a homogenous computing environment in a heterogeneous
hardware landscape. The author’s approach is limited to Java applications.
Since most of the cluster jobs are natively running Unix binaries, this approach
is not suitable.

5.4.3 Design

Based on the related work presented in the last section, the following require-
ments for dynamic firewalling in virtualized grids and can be derived:

• One of the big advantages of grid computing is its ability to use multiple
remote sites for computing. Thus, a virtualization solution should be able
to support jobs running on different sites. This support takes the form
of a virtual private network that encapsulates all virtual machines that
belong to a job.

• Network security on a grid site is important as it might be possible for a
job inside a virtual machine to sniff the traffic of another virtual machine’s
job. Besides sniffing, a malicious job could also launch Denial-of-Service
attacks on other machines or even worse, against critical infrastructure
components. Dynamic firewalls and static routes can mitigate these prob-
lems and should be a part of the proposed solution.

• Simply making the nodes of a computing site public is not a viable op-
tion since public nodes would clash with the requirements of the tradi-
tional batch-job oriented use case. The reason that batch-job and service-
oriented computing paradigms clash is that submitting batch jobs only
requires a publicly accessible head node, while the computing nodes can
be operated in a private network, reducing the risk of an external attack.
Service-oriented grid applications require a more complex and dynamic
setup with accessible cluster nodes, which would also endanger all other
users on those resources.

• The approach must address internal attacks on other users’ virtual ma-
chines. A malicious user could try to remotely compromise other virtual
machines to gain sensitive data or corrupt the work of other users. This
can be achieved by exploiting software vulnerabilities. To cope with this
threat, users must be carefully shielded from each other. By default, no
user should be allowed to connect or reach virtual machines that are op-
erated by another user. However, user-specified exceptions need to be
supported. For example, users from the same virtual organization could
request open access between their nodes.

• Internal attacks against the grid/cluster infrastructure are a serious threat
that must be addressed. This includes attacks to corrupt parts of the in-
frastructure or attacks on particular machines (e.g. the head node). It
must be kept in mind that since users have root access to their virtual

163

Chapter 5. Network Security

machines, they can install privileged software such as dhcp or dns servers
legally. This could enable malicious users to subvert a site’s normal op-
eration and enable inter-user attacks. The security solution must be able
to ensure that such infrastructure services do not propagate beyond the
users’ virtual images and network partitions.

• Giving all nodes publicly accessible ip addresses also means that the nodes
can be accessed from everywhere in the world. This includes valid con-
nection requests from trusted users and infrastructure services as well as
malicious connection requests trying to compromise the node or gain sen-
sitive data. The network security mechanism needs to ensure that users
can access their services on a node, and that the node is guarded from
both internal and external attacks.

• The network security configuration as well as its deployment must be easy,
dynamic and scalable.

Based on the requirements, a dynamic firewalling architecture was designed.
While the approach was tested and implemented with grid-specific tools, it is
also adaptable to a public cloud.

Architecture

An overview over the proposed architecture is shown in Figure 5.28. A user
submits a job to a meta-scheduler instead of to a site-specific head node. The
meta-scheduler distributes the job to a number of chosen sites where an instance
of the Globus Toolkit is installed. Every Globus handles the local scheduling in
conjunction with the xge. At this point, the xges on all sites are invoked and
coordinate the distribution of the virtual machine disk images to the nodes. The
firewall solution, as proposed in the following, as well as inter-virtual machine
communication channels are set up. Once the virtual machines are ready on all
sites, job execution continues. Now, the user is able to communicate with all
of the assigned virtual machines.

5.4.3.1 Secure Infrastructure Communication

An important issue is to ensure secure communication between the virtual ma-
chines and the infrastructure services. This could include access to shared stor-
age (accessible via nfs or Samba), automatic ip address configuration (dhcp)
or host name resolution (dns), as described below.

164

5.4. Dynamic Firewalls for Grid Computing

submit job

XGE XGE

Site Site

User

Communication

Meta Scheduler

Grid Headnode Grid Headnode

NS
WS

Figure 5.28: Inter-Site communication between the user and the virtual ma-
chines on two sites

Access to Shared Storage

If the shared storage is only accessible from local, private ip addresses, devices
with external ip addresses cannot access it. If all virtual machine nodes have
public ip addresses, there are two possible solutions:

• Only allow access from known ip addresses. This is the easiest solution
and would be sufficient in most cases. However, this solution does not offer
flexibility in case of address range changes, new nodes, etc. Furthermore,
it creates additional complexity in multi-site setups.

• Allow access on an application/job basis. Every application run has one or
more virtual machines assigned with dynamically assigned ip address(es).
Based on these addresses, access is granted on the same dynamic basis.
This approach is more complex than the previous solution, but increases
flexibility and scalability.

• Place all virtual machines and the storage server (commonly a nfs server)
inside a dynamic, virtual vlan. A virtual vlan is the same as a physi-
cal vlan, except that so-called virtual switches are used instead of real
ones. The vde switches of the VirtualSquare Project [27], which try
to interconnect different virtualized entities, can be used to achieve this
goal. VirtualSquare even supports an encrypted virtual cable connection
to interconnect the switches.

165

Chapter 5. Network Security

Due to the scalability benefits, the second solution was chosen. The solution
guarantees that all virtual machines running on a particular cluster site only
have access to their assigned storage. Multi-site shared storage is not possible
due to known problems with exporting file systems over network borders. This
drawback can be circumvented with a dynamic Virtual Private Network (vpn)
assigned between all participating sites.

Grid Node IP Address Configuration

Every virtual machine has a dynamically assigned ip address that is fixed for
the duration of a job. After the associated application finishes, the address is
released. On each participating site, a dhcp server is set up to distribute the
ip addresses. To prevent abuse of the service, dhcp requests are not allowed to
pass through the routers guarding the network. Thus, all nodes with a known
mac address can request an ip address. Nodes with unknown mac addresses
will not receive ip addresses. Due to the fact that all users are superusers inside
their virtual machine, they could set a new mac address and try to get another
ip address from the dhcp. In the presented solution this can be prevented
by a fine-grained mac address filter installed in the node’s host domain. The
filter knows the legal mac addresses of the running virtual machines and thus
only allows dhcp requests if the valid mac address is used. A properly chosen
lease time ensures that no connection between the dhcp server and the virtual
machines is necessary once the application has started running. With this setup,
automatic address configuration is guaranteed for nodes on all sites.

There is one official dhcp server on every site that assigns ip addresses to
the virtual machines. These ip addresses are the official ones. If a number of
virtual machines join a job’s private network, a second network interface and
dhcp server are needed. All virtual machines have two network interfaces, yet
only one is used by default; the other one is only activated if the machines joins
a private subnetwork. ip address are granted by either a second dhcp server or
the vpn software itself. Openvpn for example contains a dhcp server that is
only able to grant ip addresses for hosts joining the network. ip addresses are
taken from a private subnet.

One problem arises when using the presented setup: the management hassles
associated with using multiple dhcp servers on several sites. To provide reliable
ip addresses for the virtual machines, all dhcp servers need to be synchronized.
This is accomplished using central resource management the dhcp configura-
tion. This configuration is automatically distributed to all participating sites.
Due to the fact that the number of virtual machines on one site is limited (the
offered resources can only handle a certain number of virtual machines effec-
tively), the distribution interval is not critical. It could run on a daily basis.

If virtual machines can be suspended or resumed while running, they could lose
their dhcp lease and leave their personal firewall rules behind on the nodes.

166

5.4. Dynamic Firewalls for Grid Computing

Currently, suspending virtual machines is not supported by the xge, so this is
not possible. But this is a point that must be addressed in the future. One
could think about a controlled suspend/resume initiated by the xge. Thus, it
could take care of removing all firewall rules and bringing the computing nodes
back to a coherent state. Once the virtual machines resume, they automatically
apply for a new dhcp lease.

Host Name Resolution

Assigning host names to virtual machines is a necessary step to ensure identifi-
cation for users and services (e.g. the resource manager or monitoring software).
Host name resolution is done by a dns resolver installed on each site. After a
virtual machine is started, only connections to the well-known dns resolvers on
the local site are allowed; connections to the dns port on other machines are
forbidden.

5.4.3.2 Dynamic Network Security

The following presents the novel design for guarding the virtual machines and
satisfying the stated challenges.

Rule Set Generation

Network security and protection of the virtual machines is enforced on the node
by dynamic firewall rules. A default xml template is used to create firewall rules
for a particular user’s application. It represents a secure default setting for the
average user, i.e. an uninterrupted workflow is possible without endangering
other components. Based on this template, the user can apply his or her own
rules. The basic template allows access to the ldap, nfs and http services by
default and limits the network speed (this could be a default value or a value
given by a sla.)

1 <fw name="script.sh">
2 <policy name="common" value="DENY" />
3 <policy name="INPUT" value="DENY" />
4 <policy name="OUTPUT" value="DENY" />
5 <policy name="FORWARD" value="DENY" />
6

7 <src>VMs</src>
8

9 <dst>common</dst>
10

11 <set name="common">
12 <host ip="10.0.0.1" proto="tcp" port="22, 2119, 8443" />
13 <host ip="10.0.0.2" proto="tcp" port="22" />
14 </set>
15

167

Chapter 5. Network Security

16 <set name="VMs">
17 <host ip="10.0.0.100" />
18 <host ip="10.0.0.101" />
19 <host ip="10.0.0.102" />
20 <host ip="10.0.0.103" />
21 </set>
22 </fw>

Listing 5.26: Common firewall rule set template

An example template is shown in Listing 5.26. All users can access several of
the head node’s ports (10.0.0.1) from all participating nodes (10.0.0.100/30).
Access involves normal container operations as well as Secure Shell (ssh) Lo-
gin. Additionally, ssh access to 10.0.0.2 is granted. Connections to the user’s
participating virtual machines are permitted, but connections to other nodes
or resources are denied.

Every template starts with an <fw name="" > entry. A template’s attribute
name is initially empty and is replaced with a unique name when the actual
firewall rule set is generated. This step is important because a given rule set
must be explicitly identified. If is is not possible to identify the rule set, it would
be impossible to remove the firewall rules after the computation is finished.
Furthermore, it would generate a mess of firewall rules on all computing nodes.

Every template supports default rules for iptables-chains with the <policy
name="" value="" /> tag. Normally, the default policy for all standard
chains (input, output, forward) is deny all packets. Default policies for
user-defined chains are also supported.

To ease the parsing and the complexity of the template, support for sets is pro-
vided. A set starts with a <set> tag and contains one or more <host> entries.
The host tag supports various attributes. It contains at least an ip address, a
complete ip range or a specific host name. Several protocols (tcp, tcp) and
ports are also supported. A port is either a single port, an enumeration of ports
or a complete port range.

Two tags are special. The <src> tag points to a set representing all virtual
machines in which the current job is executed. In contrast, the <dst> tag
points to a set representing all hosts which can be accessed.

Firewall Actions

To actually protect the network with the generated rules, the xge has to deploy
the script to the node on which the virtual machine is running. Figure 5.29
shows how the firewalls deployed on the host will protect the infrastructure and
shield the users and their virtual machines from each other.

The xge contains a list of virtual machines on which the application is executed.

168

5.4. Dynamic Firewalls for Grid Computing

node node

Hypervisor Hypervisor

network

Figure 5.29: Multiple dynamic firewalls installed on the node

The list is obtained from the local scheduler, which decides on which hosts
(virtual machines and corresponding nodes) the jobs will be executed. The
firewall rules generated are now copied to all of these machines. Afterwards,
the rules are deployed and become active. After the computation is finished,
the xge is also responsible for the removal of the deployed firewall rules. The
xge removes only the rules that belong to a certain application and user by
managing a unique mapping between application, user and firewall rules.

It is indispensable to install the firewall rules on the host machine, rather than
on the virtual machine itself. All users are superusers inside their own virtual
machine, so they could easily remove the rules and thus bypass the protection.
To enforce the protection offered by the installed rules, every connection that
is not explicitly allowed is denied. In a starting state, a virtual machine is
not permitted to open outgoing connections. When the template rules are first
applied, connections to local services are allowed. Furthermore, due to the use
of the Network Security Web Service, users and administrators can define more
targets to which to connect.

Traffic Limitations

To ensure that network connection bandwidth is not misused, the traffic of
virtual machines can be limited. A default rate for all traffic is defined by
the basic template. Furthermore, it is possible to define limits for all types of
connections based on a single port or port ranges, protocols or sets of hosts (e.g.
the virtual machine interconnection rate is higher than the connection to hosts
outside of this set). A user can limit his or her own rate with the web service
(see Section 5.4.3.4). Administrators can limit or raise users’ bandwidth based
on the experience over time.

169

Chapter 5. Network Security

Protection against Denial-of-Service attacks

Besides preventing bandwidth abuse from internal users, Denial-of-Service (DoS)
protection is another threat the solution has to address. However, a complete
and bullet-proof protection against this type of attack is not available. If the
attackers’ bandwidth and the number of attack nodes is high enough, it could
spam nearly every infrastructure with unwanted traffic. To mitigate the Denial-
of-Service risk, some on-by-default countermeasures are put in place:

• Dynamic traffic limitation of icmp messages to broadcast and multicast
destinations from outside connections to prevent the so-called smurf at-
tack [16].

• A limitation of 100 incoming tcp syn-packets per seconds ensures a good
syn flood protection. The protection is bucked-based, so it does not affect
performance if the number of syn-packets is under the given threshold.

• Incoming connections to ports that are likely to get scanned or abused
(e.g. Openssh) are limited.

5.4.3.3 Inter-Virtual Machine Communication

An encrypted connection is set up between all virtual machines. This can be
accomplished with a small overhead, as all virtual machines are equipped with
a ssh public/private key pair by default. This key pair is generated when the
machine is generated and is unique for every virtual machine. After the virtual
machines are deployed to the worker nodes, every virtual machine contains
the same key pair; thus, password-less access between all virtual machines is
possible. Openssh is used to setup an encrypted tunnel. Since Version 4.3,
Openssh can be used to set up virtual private networks. With the built-in
scripting support, a tunnel is set up automatically during start-up or afterwards
by issuing certain commands.

Nevertheless, it is up to an administrator to decide that the communication
between the virtual machines should not be encrypted. This is mainly due to
overhead concerns. Encrypting the communication using a common crypto-
graphic protocol produces cpu load, and the transfer rate is decreased.

Information Exchange

To handle multi-site applications, a permanent communication channel between
all running xges is needed. The purpose of the channel is to exchange informa-
tion that needs to be present on all of the involved xges. Strong cryptography
and authentication ensures that this information stays private and cannot be
intercepted by malicious entities.

170

5.4. Dynamic Firewalls for Grid Computing

5.4.3.4 Network Security Web Service

A special web service was designed that allows users to decide which external
resources they want to reach through specified ports. This is necessary when a
user’s application needs to connect to a remote location to receive data needed
for the appropriate execution of a computing job. After the job starts, the user’s
application may connect, for example, to a license server to receive positive
acknowledgement and start running.

The service affects the firewall of all virtual machines for incoming and outgoing
connections. The newly opened ports can be a security risk, depending on the
software attached to those ports; however, only the user’s own virtual machine
can be reached from the outside network, so other users are not endangered.
If a user decides to open a port, he or she also opens him or herself up to an
attack.

These additions do not decrease the level of network security. All outgoing ports
that can be opened by users and their corresponding protocols are marked. This
ensures that only marked ports can be opened. For example, all users can open
a secure shell connection to an external machine. But users cannot open an
unencrypted remote login session. Only selected users are allowed to open ports
considered potentially dangerous (e.g. common virus or file sharing ports). All
additions to the firewall are assigned to the user’s virtual machine ip addresses.
Thus, if a user requests an open port to reach an outside resource, only he
or she can connect to it. Connections from other users’ virtual machines are
denied.

To add, change or remove firewall rules in a service-oriented manner, a service
running on the head node is provided. Common mechanisms like tls and a
pki are used to apply authentication and authorization on this security critical
service, so users can only set and unset rules for their own virtual machines.
All valid rule set will be transferred into the database by the backend running
on the head node.

5.4.4 Implementation

This section describes the enhancements made to the xge to support dynamic
firewalls for grid and cloud nodes.

5.4.4.1 Rule Set Generation

The firewall rule sets are based upon an xml template defining a number of
default rules for this computing site. Such a template is shown in Listing
5.26 on page 167. A specially written firewall rule set generator, which is
connected to the xge, parses the template and outputs a ready-to-start shell

171

Chapter 5. Network Security

script. Therefore, the Expat xml parser is used. All of the xml file’s entries
are converted to an internal object representation. The representation consists
of one ore more trees representing the firewall rules. Figure 5.30 shows the
tree-based representation of a firewall template.

<fw>

<group> <group>

<host><host>

<dst> <src>

name="VMs"

ip="10.0.0.20/28"proto="tcp" port="22" ip="10.0.0.1"

Figure 5.30: Tree-based representation of a firewall template

To generate the shell script, the trees are traversed in a special order:

1. The first entry represents the default policy tree.

2. The second entry represents the network source and destination hosts.

3. The third entry represents all of the connections allowed to one or more
hosts (including protocol and ports)

During the traversal, every object has a special method that outputs the cor-
responding rule (see Listing 5.27). The rules are all connected to an iptables
chain uniquely named after the username and the job id. This step is necessary
because it is important to match a set of rules to a specific job. The default
policy of all templates is deny, so everything which is not explicitly permitted
is forbidden. All connections originating from one of the hosts in the <src>
tag are allowed. All rules are inserted into a temporary shell script. Finally,
a static, pre-defined number of rules is also added. These rules are standard
techniques to prevent spoofing and a number of other well known attacks.

1 def genSrcRateRule(action, ipt, ip, dev, proto, port, rate):
2 iptable = ipt + " -t mangle -" + action + " POSTROUTING"
3 iptable += " -m physdev --physdev-out " + dev

172

5.4. Dynamic Firewalls for Grid Computing

4 if ip != "":
5 iptable += " --src " + ip
6 if proto != "":
7 iptable += " -p " + proto + " -m " + proto
8 if port != "":
9 iptable += " --dport " + port

10 iptable += " -j CLASSIFY --set-class " + rate
11 return iptable

Listing 5.27: Iptables rule generation

Traffic shaping is accomplished using the Traffic Control (tc) [55] tool for
Linux. tc is part of the iproute2 tool suite and thus part of nearly all Linux
distributions. Listing 5.28 shows a code fragment responsible for creating traffic
shaping rules. Line 2 shows the creation of a qdisk rule with a hierarchical token
bucket filter. A qdisc is a scheduler providing a set of rules to order packets
entering a scheduler’s queue. The default is a simple fifo scheduler. The
default rate from the xml template is assigned to the device in lines 3 through
5. Any further rates given by the template or configured by the user are assigned
at the end (lines 8 through 13).

1 for dev in ["peth1"] + hostdevices:
2 rules.append(tc+" qdisc add dev "+dev+" root handle 1: htb")
3 rules.append(tc+" class add dev "+dev+" parent 1:1"
4 + " classid 1:" + str(job.tid) + "1"
5 + " htb rate " + str(fwrs.defaultrate))
6 classid = 2
7

8 for rate in fwrs.rates:
9 rules.append(tc + " class add dev "

10 + dev + " parent 1:1"
11 + " classid 1:" + str(job.tid) + str(classid)
12 + " htb rate " + str(rate.rate))
13 classid += 1

Listing 5.28: Fragment of the xge traffic shaping code

5.4.4.2 Deployment, Execution and Removal

Before the final rule set is deployed, it needs to be distributed to all participat-
ing xges that themselves distribute the rule set to the associated nodes. All
xges are connected with each other with a tls-secured communication channel.
The final set of rules is copied to all nodes hosting virtual machines. The list
containing the nodes on all sites is available to the xge. All rules are executed;
thus, the virtual machine and the network are protected before the computation
starts. After the computation is finished, all rules that belong to this job are
flushed.

173

Chapter 5. Network Security

5.4.4.3 Packet Filtering

The iptables6 packet filter is used because the Linux operating system is the
most commonly used operating system in such environments today. To match
all packets that originate from one virtual machine, the physdev -module of the
Linux kernel is used. This module allows the traffic to be filtered on the data
link layer, which is needed due to the fact that Xen uses a bridge to connect
the virtual machine to the network.

5.4.5 Evaluation

A number of measurements were conducted to investigate the properties of the
presented proposal. The participating nodes are all amd Dual-Core machines
with 16 GB ram running Debian gnu/Linux. The head node also runs the
Globus Toolkit 4.0.5 and the Xen Grid Engine. The native cluster nodes are
interconnected with switched Gigabit Ethernet network. All virtual machines
have 2 GB ram, one assigned cpu core and a local-loopback mounted hard disk
image. The cross-site connection to other grid sites is a one Gigabit link.

0 100 200 300 400 500

Trials

4

6

8

10

12

14

16

18

20

Ti
m

e
in

 s
ec

on
ds

Figure 5.31: Dynamic firewall deployment time

One of the important measurements is the time needed for rule propagation
and final set up. The entire process includes rule generation for a particular
application, determining all nodes that belong to that application, propagating
the rules, and setting them up to protect the virtual machine. The face detection
application runs on 20 different virtual machines and 30 different rules protect
the virtual machines. 500 trials were conducted to calculate a robust mean.
The results are shown in Figure 5.31. The mean of the results is 6 seconds and

6http://www.netfilter.org/

174

5.4. Dynamic Firewalls for Grid Computing

0 1000 2000 3000 4000 5000 6000

Number of iptables rules

0

20

40

60

80

100

120

140

160

Ti
m

e
in

 s
ec

on
ds

Figure 5.32: iptables rule deployment time

the deployment time is nearly constant over all trials. The small variance is due
to changing load on the xge node. The deployment time can increase if a larger
number or a more complex set of firewall rules is applied. This performance
degradation is based on the performance of iptables.

In Figure 5.32, the time needed to deploy a continuously increasing number of
firewall rules with iptables is measured. Applying a small number of rules, i.e.
between one and 100 (which is the average case for most applications in the
local installation), takes one second on average. Overall, the time needed for
the installation increases exponentially with the number of rules. Since the rule
setup is executed on all nodes in parallel, the additional cost is only counted
once. Flushing the rules does not affect the performance at all. Even with a
high number of rules, it was not possible to measure a real impact.

Besides the time needed to install and deploy the firewall rules, using firewalls
also has an impact. Measurements were taken between virtual machines on dif-
ferent physical nodes on two different academic locations interconnected via the
German Research Network (dfn). As shown in Figure 5.33, there is no draw-
back to use firewalls to shield the virtual machines from each other, even when
the machines are located on different sites. In total, 3600 samples were recorded
during a one-hour-analysis of the network performance using iperf 7 as measure-
ment tool. The ordinate shows the network throughput in MBits per second,
while the abscissa shows the time in seconds. When firewalls were used, an
average network performance of 938.67 MBit/s was reached; when no firewalls
were used, an average performance of 939 MBit/s was reached. A comparison
measurement of the network performance between two physical machines using
no firewalls shows a mean of 940.45 KBit/s. The slight decrease in network per-

7http://dast.nlanr.net/Projects/Iperf/

175

http://dast.nlanr.net/Projects/Iperf/

Chapter 5. Network Security

0 500 1000 1500 2000 2500 3000 3500

Time in seconds

936

938

940

942

944

M
Bi

t/s

Firewall inactive
Firewall active

Figure 5.33: Cross-site measurements with and without firewalls

formance between virtual machines is due to the use of virtualization and the
virtualized network stack. This measurement shows that applying an average
number of rules does not affect the network’s performance.

For the sake of completeness, a number of measurements were conducted with
significantly more rules than are commonly needed for service-oriented applica-
tions. The set of measurements was conducted with a linear growing number of
rules. The results are shown in Figure 5.34. As the number of rules increases,
the maximum throughput decreases. Overall, the throughput is decreased by
about 80 MBits/s when using over 2000 rules.

0 500 1000 1500 2000

Number of rules

840

860

880

900

920

940

M
B

it
/s

Figure 5.34: Maximum throughput with an increasing number of firewall rules

176

5.5. Summary

0

25000

50000

75000

100000

Plain Firewalled

Trials

C
o

m
m

u
n
ic

a
ti
o

n
 t

im
e
 (
m

s)

Figure 5.35: Inter-application communication time (milliseconds) with and
without dynamic firewalls

In the next experiment, measurements were performed with the face detection
application developed by Ewerth et al. [37]. The service’s execution time is
not relevant to the firewall overhead and thus is factored out of the measure-
ment; only the time needed to transfer the application data (enclosed in soap
messages) is measured. Figure 5.35 shows the result. The mean transfer time
without a firewall (left bar) is 79.9 s; the mean transfer time with a firewall
(right bar) is 88.0 s. The resulting difference is about 8 s.

Thus, the measurement indicates that the use of firewalls helps to improve the
security for a negligibly small cost.

5.5 Summary

In this chapter, several solutions for providing network security were presented.
The first includes a software that provides transparent virtualization for grids
and thus protects the users’ applications and data. A novel grid demilitarized
zone breaks up the traditional grid network structures and separates the grid
head node from the backend. Fence, a new software that connects the head
node and the internal node, guarantees that job data is encrypted at all times.
Even if it is stored in possibly compromised storage or transferred over insecure
networks. Dynamic firewalls guard the virtual machines running on the nodes.
While this adds additional network security, it is sometimes beneficial for both
users and administrators to allow users to modify their own rule set in both
directions and in a controlled manner. This can be achieved using a special web
service.

177

“Reason, observation, and experience - the Holy Trinity of Science”

Robert G. Ingersoll (1833–1899)

6
Experimental Results

6.1 Introduction

In the following chapter, selected measurements of the developed components
are presented to evaluate the overhead introduced by the various measures in-
troduced in this work. Contrary to the measurements presented in the previous
chapters, the measurements are not directly related to a specific component.

6.2 Efficient Transfer of Virtual Machines

To evaluate the performance of the presented distribution methods, several
measurements have been performed. The test environment consists of Intel
Xeon 2.5 GHz machines with a total of 80 cores connected with a switched
Gigabit Ethernet network. All machines have 16gb ram and Debian Linux
stable with Xen 3.0.2 installed. The local hard disks have a capacity of 250gb.

6.2.1 Distribution Methods

All distribution mechanisms have advantages and disadvantages. While mul-
ticast and BitTorrent are promising candidates to distribute large amounts of
data to hundreds or thousands of clients, they are not suitable for every sce-
nario. As already mentioned, routing multicast packets between networks is
not possible without additional protocols, and BitTorrent needs a torrent file
for every transfer of a different disk image. This generates an overhead if only

–179–

Chapter 6. Experimental Results

small pieces of data are transferred. On the contrary, the tree-based distribu-
tion method only scales to a certain degree, but it is ready to go and needs no
preliminary work like generating and distributing torrent files. Thus, choosing
the right method depends on the amount of data to distribute and the number
of receiving nodes.

0 20 40 60 80 100
Trials

40

60

80

100

120

140

160

180

200

Se
co

nd
s

Unicast
Binary tree
BitTorrent
Multicast

Figure 6.1: Deployment times for a 1024 mb virtual disk image

In Figures 6.1, 6.2, 6.3 and 6.4 all measurements with unencrypted transfer
are shown. As already stated, the unicast distribution method is the slowest
method to distribute the disk images and is thus not really suitable for practical
use, it only serves as a reference value. The binary tree distribution method
is significantly faster than unicast distribution, but slower than the P2P distri-
bution method based on BitTorrent and the multicast method. Even though
BitTorrent was designed with desktop file sharing in mind, it performed very
well in the structured cluster environment. Multicast is significantly faster than
all other algorithms. In figure 6.4 the results of unicast and the binary tree are
skipped, because they are about three times slower and thus unusable to trans-
fer larger data sizes. The mean values (of 100 measurements) of all transfers
are shown in Table 6.1. The transfer times with different virtual machine image
disk sizes was measured, where 512mb refers to a basic image or layer with few
modifications and 8192mb to a highly customized disk image or layer. Based
on experiments with several users, the average disk image size is about 4gb
and the average user layer size is about 1gb.

In the P2P distribution method, a torrent file needs to be generated for every
distribution process, thus the time needed for the generation of the torrent file
must be added to the actual transfer time. The generation time grows with the
size of the file – generating a torrent file for a 512mb disk image takes less time
than for a 8192mb disk image. As a compromise, the generation time needed
for a 4096mb disk image was measured. 100 trials were conducted to calculate a

180

6.2. Efficient Transfer of Virtual Machines

0 20 40 60 80 100

Trials

100

200

300

400

500

Se
co

nd
s

Unicast
Binary tree
BitTorrent
Multicast

Figure 6.2: Deployment times for a 2048 mb virtual disk image

Image Size Unicast Binary tree BitTorrent Multicast

512 MB 89.4 s 50.0 s 29.0 s 27.9 s
1024 MB 191.1 s 95.7 s 62.3 s 45.5 s
2048 MB 401.0 s 183.8 s 120.9 s 90.6 s
4096 MB 815.2 s 367.4 s 214.3 s 121.8 s
8192 MB 1634.1 s 727.6 s 465.0 s 383.5 s

Table 6.1: Measured mean values of all deployment methods

mean of about 27 seconds. Thus, the complete time needed to transfer a 4096mb
disk image is about 241 seconds (instead of 214 seconds without considering the
generation of the torrent file) on the average. Obviously, this is still better than
the transfer time for a 4096mb disk image (367 seconds) using the binary tree
distribution method.

The jitter that can be seen in the figures is caused by network activity produced
by other users in the test environment. The effect of others users’ activities is,
however, small compared to the jitter effect of the BitTorrent protocol. Thus,
the jitter that can be seen is mainly caused by the BitTorrent protocol itself.

6.2.2 Virtual Disk Encryption

When encrypted transfer over the binary tree is used, encryption, transfer and
decryption are performed in parallel. The encryption methods offered by Bit-
Torrent clients mainly aim to prevent filtering of BitTorrent traffic by isps.
Thus, both the algorithm (rc4) and the bit lengths (60-80) used are not suf-
ficient for confidential data. Thus, for the BitTorrent and multicast cases the

181

Chapter 6. Experimental Results

0 20 40 60 80 100
Trials

200

400

600

800

1000

Se
co

nd
s Unicast

Binary tree
BitTorrent
Multicast

Figure 6.3: Deployment times for a 4096 mb virtual disk image

entire virtual machine is encrypted before transfer, and can only be decrypted
once the entire file has been received, which significantly slows down the ap-
proach.

Figures 6.5 and 6.6 show the times needed to encrypt and decrypt different sized
images, respectively. The size ranges from 512mb to 8gb and the aes algorithm
with 256 bit is used. Encrypting and decrypting a 2048mb disk images takes 62
and 65 seconds on average, respectively. To summarize, these additional times
have to be taken into account when sending an encrypted disk image over the
network and the encryption is not built in the transport protocol (e.g., as in
tls or ssh).

The complete time needed to encrypt a disk image with aes 256, transfer it
with BitTorrent and decrypt it again is depicted in Figure 6.7.

6.2.3 Multi-Layered Virtual Machines

Adding cow layers to virtual machines using UnionFS produces additional costs
when intensive file related tasks are performed. Measurements were conducted
using the bonnie++ [24] benchmark as a well-known testing suite for file systems
to investigate this overhead. The used virtual machines have 1024 mb ram
and a single assigned cpu core. A total of 100 tests was performed. The
average of the results is shown in Figure 6.8. When writing the file block
by block, the non-layered virtual machine outperformed the layered virtual
machine (206277 KB/s vs. 198015 KB/s), thus the cow layer introduces a
slight performance reduction. The character test does not reveal any notable
difference (48775 KB/s vs. 48319 KB/s), whereas in the rewrite test the layered

182

6.2. Efficient Transfer of Virtual Machines

0 20 40 60 80 100
Trials

300

350

400

450

500

550

Se
co
nd
s

BitTorrent
Multicast

Figure 6.4: Deployment times for a 8192 mb virtual disk image

virtual machine had a significantly higher throughput than the non-layered
virtual machine (67951 KB/s vs.’ 33472 KB/s). This is due to the cow cache of
the UnionFS file system. As a conclusion, it can be stated that the introduction
of the additional layers consumes some performance if files are written in large
blocks. Once this step has been performed, the performance benefits from the
effective caching of the layered file system are evident. Due to the fact that most
files of a regular job are written in the user’s home directory that is natively
accessible, the overhead only comes into play in certain, special circumstances.

Without the multi-layered file system, every time the user updates his or her
virtual machine and submits a job, the complete disk image of this machine has
to be copied to the particular nodes (because a virtual machine that was cached
earlier is marked as invalid after a software update). When the multi-layered
file system is used, only the user layer needs to be copied, which is significantly
smaller. The base layer needs to be copied only once, because it is cached
locally at the compute nodes. In case of an update, only the changes are copied
and merged into the corresponding layer. A measurement of the transfer time
in both cases was conducted, comparing a virtual machine with and without a
multi-layered file system.

The base installation consists of 162 packages using about 468 mb, and the
user installs 14 additional packages using about 58 mb. The update includes
3 updated and 1 added package, using about 12 mb plus about 40 mb Debian
Package Manager metadata (package lists, etc). Both virtual machines use a 4
gb sparse disk image containing an ext3 file system. The difference between the
used space within the images and the sizes is caused by file system structures
and the space allocated for files that have been deleted afterwards. Since sparse

183

Chapter 6. Experimental Results

0 50 100 150 200 250 300

Trials

0

100

200

300

400

500

Ti
m

e
(in

 s
ec

on
ds

) 512MB
1024MB
2048MB
4096MB
8192MB

Figure 6.5: Encryption times for different sized images

files are used for the disk images, only the used parts of the image need to be
transferred.

Transfer times
Size (MB) single site multi site

uncompressed compressed

Single disk image 691 40.59 secs 660.83 secs 460.12 secs
Base layer (BL) 666 39.12 secs 636.92 secs 443.47 secs
BL update 72 15.06 secs 106.23 secs 100.11 secs
User layer 67 14.45 secs 101.51 secs 91.58 secs

Table 6.2: Transfer times of virtual machine images and file system layers

Table 6.2 shows the measured time needed to transfer different images from one
compute node to another without compressing the data during the copy process.
The difference between the size of the single disk image and the sum of the sizes
of base and user layer (691mb vs. 733mb) is due to the fact that the base layer
as well as the user layer each contain a package database. Furthermore, the
updated packages are cached within the respective layers, which also adds some
space to the layers. 60 transfer operations were conducted to calculate a robust
mean value. When virtual machine images must be copied between remote sites,
the time needed for the copy operations increases dramatically. The table also
shows the measurements of uncompressed and gzip-compressed data transfer
between compute nodes on two different academic locations connected by the
German Research Network (dfn).

Summing up, without the multi-layered file system the amount of data to be
transferred for the virtual machine including the update is about 1380 mb,
taking about 81, 1330 or 925 seconds (lan, wan, wan compressed). Using the

184

6.3. Storage Synchronization

0 50 100 150 200 250 300

Trials

0

100

200

300

400

500

Ti
m

e
(in

 s
ec

on
ds

)

512MB
1024MB
2048MB
4096MB
8192MB

Figure 6.6: Decryption times for different sized images

presented solution, the amount of data reduces to 140 mb, taking about 34, 212
or 196 seconds when the base image is already cached or 805 mb and 73, 850
or 640 seconds otherwise, although the latter case should be rare. This means
that the use of the multi-layered file system saves up to 90% traffic and 60% –
85% of the time in the scenario.

6.3 Storage Synchronization

This section evaluates the impact of disk synchronization on the total migration
time and on the performance of the virtual machine. All participating physical
nodes are amd Dual-Core machines with 2.2 GHz, 16gb ram running Debian
gnu/Linux. All nodes are interconnected with Gigabit Ethernet.

Figures 6.3 and 6.3 show the synchronization time of an idle disk image for
several disk image sizes via the drbd driver. The left bars represent the tests
with full disk images (randomly filled from /dev/urandom), and the right
bars show the corresponding tests with sparse images (which are observed as
zero-filled images by the synchronization partner). It is evident (especially
from Figure 6.3, which draws the results over a logarithmic scale) that the
synchronization time increases linearly with the disk size. The results also
show that the synchronization time can be reduced by up to 13% when working
with sparse images, where only a small fraction of the image size is actually in
use.

As a core test, the kernel compile benchmark, was used. This test measures the
total time required to build a recent Linux kernel with the default configuration.
The test was chosen because it represents a balanced workload with respect

185

Chapter 6. Experimental Results

512

1024

2048

4096

8192

0 250 500 750 1000 1250 1500

Time (in seconds)

D
is

k
 im

a
g

e
 s

iz
e

Encryption Transfer Decryption

Figure 6.7: Disk image distribution with BitTorrent and data en-/decryption

to stressing the virtual memory system, doing moderate disk i/o as well as
being relatively cpu-intensive. The kernel compilation was done inside a virtual
machine while being live migrated to another host. Six tests with slightly
different setups were performed:

1. 256 mb ram in the virtual machine with a 2 gb disk image attached to a
drbd driver and 1 G ram in the node

2. 256 mb ram in the virtual machine with a 2 gb disk image attached to a
drbd driver and 13 G ram in the node

3. 3 gb ram in the virtual machine with a 2 gb disk image attached to a
drbd driver and 1 gb ram in the node

4. 3 gb ram in the virtual machine with a 2 gb disk image attached to a
drbd driver and 13 gb ram in the node

5. 3 gb ram in the virtual machine with a tmpfs writable layer and 1 gb
ram in the node

6. 3 gb ram in the virtual machine with a tmpfs writable layer and 13 gb
ram in the node

In tests 1-4, the compile output was written to the disk image being synchro-
nized via the drbd module, in tests 5 and 6 the output went to tmpfs. The
duration of the kernel compilation, the synchronization, and the Xen migra-
tion were measured, and all tests were repeated at least 50 times to procure a
robust mean. The kernel compilation tests were also done without migration
as a reference. The tests involving disk synchronization were performed with

186

6.3. Storage Synchronization

0

75

150

225

300

Block write Char. write Rewrite

67.948.3

198

33.448.7

206.3

M
B
/s

Non-layered VM Layered VM

Figure 6.8: Results of the bonnie++ benchmark with layered and unlayered
virtual machines

transfer rates of 5, 10, 20, 40 and 80 MByte/s for the background synchroniza-
tion (a transfer rate configuration of more than 80 MByte/s did not result in a
further increase of synchronization speed). The third proposed possibility for
layering the read-only and the writable layer using a large swap space on disk
was not tested separately because from the synchronization viewpoint, there is
no difference between synchronizing a disk image or a disk containing a swap
partition.

The results of Tests 1-4 are shown in Tables 6.3 and 6.4 and Figure 6.9; Table
6.5 shows the results of Tests 5 and 6, and in Table 6.6, the reference values for
all tests without migration are summarized.

Test 1 Test 2

speed sync migration compile sync migration compile

5 Mbit/s 400.2 s 8.2 s 741.5 s 398.2 s 7.0 s 736.0 s
10 Mbit/s 203.0 s 8.7 s 746.5 s 201.7 s 7.2 s 736.7 s
20 Mbit/s 119.7 s 8.2 s 766.0 s 103.0 s 6.7 s 735.0 s
40 Mbit/s 104.7 s 8.0 s 795.5 s 52.7 s 6.5 s 735.0 s
80 Mbit/s 108.5 s 7.5 s 789.5 s 27.0 s 5.7 s 735.2 s

Table 6.3: Results for live migration with storage synchronization (Tests 1 and
2).

Several observations can be made:

• The total performance degradation in the tests involving disk synchro-
nization compared to the reference values ranges from 0.7% (in Test 4)
to 9% (in Test 1 with maximum bandwidth utilization for background
synchronization). These values are relative to one migration process per

187

Chapter 6. Experimental Results

0 20 40 60 80

Network transfer rate (Mbit/s)
680

700

720

740

760

780

800

820

840

Ke
rn

el
 c

om
pi

le
 ti

m
e

(s
)

test 1 (256M RAM VM/ 1GB RAM dom0)
test 2 (256M RAM VM/ 13GB RAM dom0)
test 3 (3GB RAM VM/ 1GB RAM dom0)
test 4 (3GB RAM VM/ 13GB RAM dom0)

Figure 6.9: Impact of background synchronization limits on virtual machine
performance

Test 3 Test 4

speed sync migration compile sync migration compile

5 Mbit/s 397.5 s 34.3 s 714.4 s 401.7 s 32.7 s 756.5 s
10 Mbit/s 202.0 s 34.4 s 714.2 s 202.6 s 33.0 s 756.4 s
20 Mbit/s 119.3 s 34.1 s 712.9 s 102.7 s 32.7 s 757.1 s
40 Mbit/s 102.4 s 34.0 s 717.8 s 52.7 s 32.8 s 757.2 s
80 Mbit/s 100.3 s 34.3 s 716.8 s 27.3 s 32.7 s 757.5 s

Table 6.4: Results for live migration with storage synchronization (Tests 3 and
4).

kernel compilation. If the values are extrapolated to one migration per
hour, the performance degradation ranges from 0.2% to 1.9%, which are
acceptable values.

• The Xen live migration process itself has little impact on the performance
of the migrating virtual machine, as indicated when comparing the test
results of Tests 5 and 6 (see Table 6.5) to their reference values. Thus,
most of the overhead observed in the other tests can be assumed to be
caused by disk synchronization.

• The migration time does not increase when using a tmpfs as a writable
layer. Hence, the total migration time is reduced by about 90% compared
to using a local disk image (when using a medium value of 20 Mbit/s
for background synchronization). Thus, the tmpfs solution is suitable for
workloads that do not produce large amounts of data.

• The amount of ram allocated to the node dictates an upper bound to

188

6.3. Storage Synchronization

0

7.5

15

22.5

30

64 128 256 512 1024 2048

25.9

13.2

6.7

3.5
1.91.1

29.8

13.6

6.9

3.7
2.11.4S

yn
c
h

ro
n

iz
a
ti
o

n
 t

im
e
 (
in

 s
)

full sparse

Image size in MB

Figure 6.10: Disk synchronization

the transfer rate for background synchronization. In the tests with only
1gb of ram (see Table 6.3, column one and two), the synchronization
time does not decrease between 20 and 80 Mbit/s, which means that the
network bandwidth is higher than the rate at which the incoming data
can be processed at the destination host. In general, the synchronization
time is inversely proportional to the transfer rate in a linear fashion.

• Increasing the transfer rate for background synchronization only has an
observable impact in Test 1, where both the node and the virtual machine
have a small amount of ram. This test case represents the most write-
intensive workload in the sense that the kernel can cache fewer writes
in main memory (both in the node and the virtual machine). In all
other cases, the overhead compared to the non-migrating reference values
is mostly caused by the the synchronous disk writes. Thus, especially
for write-intensive workloads, choosing the transfer rate will always be a
trade-off between the total migration time and the performance impact
on the virtual machine.

• Strangely enough, in all tests with 3gb of ram in the virtual machine, the
duration of the kernel compilation increases considerably when allocating
more memory to the node (e.g from 714 s to 757 s between Tests 3 and 4).
At the time of writing, no reasonable explanation for this phenomenon
could be found; however, since these observations do not affect the area
under test (disk synchronization), they are simply stated as observed.
This topic has to be investigated in more detail in the future.

In normal operation, all of the virtual machine’s disk i/o goes through the

189

Chapter 6. Experimental Results

1

10

100

64 128 256 512 1024 2048

25.9

13.2

6.7

3.5

1.9

1.1

29.8

13.6

6.9

3.7

2.1

1.4

S
yn

c
h

ro
n

iz
a
ti
o

n
 t

im
e
 (
in

 s
)

full sparse

Image size in MB

Figure 6.11: Disk synchronization (logarithmic scale)

node RAM migration time compile time

1 GB 32.40 s 721.00 s
13 GB 32.90 s 765.10 s

Table 6.5: Results for live migration with tmpfs as a writable layer (Tests 5 and
6)

drbd driver running in standalone mode. The bonnie benchmark was used to
measure the driver’s overhead. The bonnie test was performed on a disk image
file mounted through a loopback device and on a lvm partition.

Table 6.7 shows the results. The highest impact on performance can be ob-
served on the write throughput on the disk image file (decreased by 6.7%)
followed by the read throughput on the lvm volume (decreased by 2.4%). The
other two values only differ by around 1% in both directions. Designed for disk
performance tests, the bonnie benchmark represents an unusual workload that
stresses the i/o facilities to a maximum. Hence, average applications running in
a virtual machine will usually have more moderate disk i/o throughput, which,
in turn would mean that the observable overhead due to the drbd driver is
expected to be much lower. Especially when comparing these values to shared
storage solutions1 (which are commonly required for enabling live migration),
the results indicate that the proposed solution is suitable for virtualized grid en-
vironments like the xge. In addition, the performance of shared storage access
is expected to decrease with a number of clients using it simultaneously and

1write throughput on an NFS file system is decreased by approximately 48% in synchronous
mode and 9% in asynchronous mode according to Softpanorama [129]

190

6.4. Summary

Test no. node RAM VM RAM compile time

1 1 GB 256 MB 724.38 s
2 13 GB 256 MB 725.00 s
3 1 GB 3 GB 706.38 s
4 13 GB 3 GB 751.00 s
5 1 GB 3 GB 722.00 s
6 13 GB 3 GB 762.88 s

Table 6.6: Reference values for the kernel compile benchmark without migration

Setup writes in KB/s reads in KB/s

File image 44003 59081
File image standalone 41070 59717

LVM 43781 57027
LVM standalone 43239 55634

Table 6.7: Overhead of the drbd driver in standalone mode

with higher network utilization. The drbd approach presented here allows the
virtual machines to do their i/o locally and thus only introduces performance
penalties during a live migration process.

6.4 Summary

This chapter presented an evaluation that showed that multicast offers the
best performance for disk image distribution. Nevertheless, when transferring
disk images between remote sites, BitTorrent is the method to choose. The
evaluation of the layered file system showed that it saves a considerable amount
of traffic, up to 90%. Finally, the evaluation of the storage synchronization has
shown satisfactory performance for this approach.

191

“It is not for man to rest in absolute contentment.”

Robert Southey (1774–1843)

7
Conclusions

7.1 Summary

In this thesis, a new security infrastructure for virtualized grid computing was
presented. An analysis of the job submission procedure was conducted and
resulted in the identification of four different areas in need of additional pro-
tection: the environment containing the head node, the actual execution of
applications on shared resources, specific issues concerning host security, and
problems that occur in multi-site computing.

Two solutions were presented to enhance the security of a host machine, i.e.
dedicated infrastructure nodes as well as a ordinary computing nodes. An
effective and lightweight mechanism prevents an attacker from loading kernel
rootkits after a successful compromise. Since the module loading function of the
operating system kernel was modified, only authorized modules can be loaded.
Since a kernel rootkit is never authorized, it can no longer be loaded.

Furthermore, a malware scanner for virtualized grids using virtual machine
introspection was presented. It is located within a protected area of the virtual
machine’s kernel; hence, it cannot be disabled by an attacker. The scanner
sends the entire executable to one or more classical anti-virus engines running on
dedicated grid nodes along with the continuous stream of system calls generated
by this executable. This enables the detection of yet unknown malware, making
it possible to look for malware-typical traces in the stream, which are not yet
available as a signature.

A novel virtualized grid concept was introduced that allows execution of grid

–193–

Chapter 7. Conclusions

jobs within virtual environments. This environment protects the data as well
as the application. A malicious process can no longer gather information about
other processes running on the same resource. Within this context, several
of the problems that arose were addressed as well. Different methods were
implemented that speed up the distribution of virtual machine disk images and
hence lead to less network congestion. Further, a new method was implemented
to synchronize data between physical hosts during live migrations. While the
virtualized environment leads to more security for the user as well as for the
provider, it integrates seamlessly into existing infrastructures. This means that
it works together with middlewares already installed on the system and uses
the decisions of that system’s scheduler.

A novel dual-lane grid demilitarized zone was introduced, securing existing se-
tups from attacks that stem from the open grid world. The dual-lane nature
of the demilitarized zone further subdivides the demilitarized zone into sub-
compartments, allowing for secure network-based image creation and job sub-
mission, respectively. The Grid Security Infrastructure was extended to cope
with the new demilitarized zone and the new grid virtualization. Job data is
encrypted during all stages of transmission and storage in insecure networks.
The extension of a Network Intrusion Detection System (nids) using several
grid specific rules further protects the grid network.

An approach to secure multi-site virtual grid computing was presented. Dy-
namic and user adjustable firewalls protect the infrastructure and shield users
from each other. The firewalls are dynamically applied to the host operating
systems to filter the traffic between the users’ virtual machines and the con-
nected network. The decision to let users modify their own rule set in both
directions and in a controlled manner is beneficial for both users and adminis-
trators. Running complex grid applications requiring multi-site interaction is
possible without bothering the grid authorities to open ports on demand.

Overall, this thesis presented selected solutions for host and network security of
grids. While the presented solutions are grid specific, some enhance the security
of cloud computing. All solutions benefit from making use of the advantages
found in virtualization technologies.

7.2 Future Work

There are several areas of future research to be conducted in the area of infras-
tructure security for virtualized grids. This includes extending the techniques
presented in this thesis, which will briefly be discussed here.

194

7.2. Future Work

7.2.1 Virtual Machine Lifecycle Management

Currently, the mechanisms introduced in this thesis deal only with host and
network security of running virtual machines. Since virtual machines rest on a
disk while they are not running, a future area to explore is the security during
the whole life cycle. This includes scanning the suspended virtual disk image
for malware or known vulnerabilities and patching them accordingly. One could
also perform live vulnerability scans in a sandboxed environment to find further
bugs.

7.2.2 Robustness and Scalability

Although all components presented in this thesis are well-tested and already
used by research institutes and commercial partners, further improvement in
terms of robustness and scalability is always desired. This includes tests on
large scale testbeds with hundreds or even thousand of nodes.

7.2.3 Energy-efficient Virtual Machine Management

The virtualization management software is aimed to achieve a trade-off between
security and performance. While these are important goals, energy-conscious
high performance computing is a leading research direction for the future. In
order to save energy, new management algorithms have to be developed that
take advantage of the existing mechanisms such as live migration. A simple, but
effective solution would be to consolidate virtual machines on a small number
of nodes and shut down the remaining, idle nodes.

7.2.4 Intrusion Detection

To be able to detect even more attacks on grids in the future, there is a need for
more precise signatures describing novel attacks. While this thesis focused on a
grid intrusion detection system, there is also potential for special cloud-tailored
signatures. New computing paradigms like Google’s MapReduce or cloud data
flow systems generate unique traffic signatures that are not covered by current
network intrusion detection systems.

7.2.5 Malware and Rootkit Prevention

The lightweight kernel rootkit prevention and the malware scanner are currently
only implemented for bsd derived operating systems. In order to make the
approach available to a wider audience, it is desirable to port the approach to

195

Chapter 7. Conclusions

Xen and/or kvm on Linux and leverage existing technologies, such as XenAccess
[99].

7.2.6 Complex Event Processing

In the future, real-time monitoring of grid and cloud resources will be a crucial
field of research, as the vertical integration of monitoring solutions (i.e., being
able to correlate cross-layer information) leads to more accurate decisions and
actions. Of course, this also applies to the area of cloud-ready malware scan-
ners. Using Complex Event Processing (cep) technologies, it will be possible to
perform complex operations on input data in real-time and thus react on time.

196

List of Figures

1.1 Typical turbulent state on the chaotic saddle. 3

2.1 Globus Toolkit 4: Components. Source: [149] 12

2.2 Grid Security Infrastructure overview. Source: [149] 14

2.3 Ring usage in native and paravirtualized systems. Source: [18] . . 17

2.4 Layered cloud computing architecture 19

3.1 Job submission and executions initiated by a user. A meta-
scheduler distributes the job to one of the two sites and it is
executed on the site’s nodes. 25

3.2 Detailed view of a job submission process. An appropriate site
is chosen by the meta-scheduler and the middleware acts as the
first point of contact. 27

3.3 Multiple job applications executed on shared resources without
any shielding. 30

3.4 xge connected to backend resources on shared storage 34

3.5 Grid dmz shielding the head node as well as the internal network
with all resources . 35

3.6 Multiple virtual machines introspected by a kernel agent that
reports continuously over a middleware to various anti-virus/-
maleware backends . 36

3.7 Multi-site virtual private network, including the users own com-
puter and the computing nodes of his or her actual job 37

3.8 Every virtual machine is guarded by a dynamic firewall installed
on the administrative domain . 38

4.1 Runtime kernel memory patching 45

–197–

List of Figures

4.2 Hooking a system call . 45

4.3 Authorized module loading state transition diagram 49

4.4 Module loading activity . 54

4.5 Time needed to load up to 2000 kernel modules 55

4.6 Time needed to unload up to 2000 kernel modules 56

4.7 Time needed to mark up to 2000 kernel modules as authorized . 57

4.8 Malware scanner architecture . 61

4.9 Comparing host, virtual machine and modified virtual machine
speed . 68

4.10 Transfer times for various binaries from the KernelAgent to the
antivirus backend . 69

4.11 Benchmark comparing speed of a modified kernel without run-
ning TCP receiver for binaries, single-threaded and multi-threaded
transmission . 70

4.12 Time needed to pass data in the kernel using static and dynam-
ically allocated memory . 71

5.1 Image Creation Station . 80

5.2 The architecture of the xge. The figure shows all modules and
their relationship to each other. 81

5.3 Stacked architecture for virtual machine handling 85

5.4 Multilayer Disk Images . 89

5.5 drbd module overview. Source: [86] 90

5.6 Database tables . 93

5.7 Binary tree distribution . 95

5.8 Distributed file sharing between multiple peers including a tracker 96

5.9 Distribution of two disk images via BitTorrent 97

5.10 Usage scenarios for a layered virtual machine 99

5.11 Possible torrent states in the TorrentClient 120

5.12 Comparing the turbulence simulation’s execution times in a vir-
tualized and a native environment 124

198

List of Figures

5.13 Submitting a test job over Torque in a virtualized and a native
environment . 125

5.14 Results of the kernbench benchmark running on two physical and
two virtual cpu cores . 127

5.15 bonnie++ benchmark results: sequential input 128

5.16 bonnie++ benchmark results: sequential output 128

5.17 Results of hackbech runs varying the scheduler’s granularity settings129

5.18 Results of hackbech runs varying the scheduler’s latency settings 129

5.19 Architectural overview . 137

5.20 Step-by-step processing of a job through the inner firewall 138

5.21 All steps required for a end-to-end encryption 139

5.22 Interaction between Globus, the job manager and the xge 141

5.23 Fence embedded into the demilitarized zone. Furthermore, the
relations between all components are shown. 143

5.24 Time for fully-encrypted job submissions 156

5.25 Time required for unencrypted job submissions 157

5.26 Transfer data chart with/without a firewall 158

5.27 System load of the grid head node during an Denial-of-Service
attack on Gridftp . 159

5.28 Inter-Site communication between the user and the virtual ma-
chines on two sites . 165

5.29 Multiple dynamic firewalls installed on the node 169

5.30 Tree-based representation of a firewall template 172

5.31 Dynamic firewall deployment time 174

5.32 iptables rule deployment time . 175

5.33 Cross-site measurements with and without firewalls 176

5.34 Maximum throughput with an increasing number of firewall rules 176

5.35 Inter-application communication time (milliseconds) with and
without dynamic firewalls . 177

199

List of Figures

6.1 Deployment times for a 1024 mb virtual disk image 180

6.2 Deployment times for a 2048 mb virtual disk image 181

6.3 Deployment times for a 4096 mb virtual disk image 182

6.4 Deployment times for a 8192 mb virtual disk image 183

6.5 Encryption times for different sized images 184

6.6 Decryption times for different sized images 185

6.7 Disk image distribution with BitTorrent and data en-/decryption 186

6.8 Results of the bonnie++ benchmark with layered and unlayered
virtual machines . 187

6.9 Impact of background synchronization limits on virtual machine
performance . 188

6.10 Disk synchronization . 189

6.11 Disk synchronization (logarithmic scale) 190

200

List of Tables

4.1 Securelevel restrictions . 48

5.1 Job processing within the xge, split in single steps 126

5.2 Globus Toolkit 4 network configuration. Source: [165] 136

6.1 Measured mean values of all deployment methods 181

6.2 Transfer times of virtual machine images and file system layers . 184

6.3 Results for live migration with storage synchronization (Tests 1
and 2). 187

6.4 Results for live migration with storage synchronization (Tests 3
and 4). 188

6.5 Results for live migration with tmpfs as a writable layer (Tests
5 and 6) . 190

6.6 Reference values for the kernel compile benchmark without mi-
gration . 191

6.7 Overhead of the drbd driver in standalone mode 191

–201–

Listings

2.1 Sample job submission via Globus command line utilities 13

2.2 rsl description of a sample job 13

2.3 Libvirt example: show all running virtual machines 18

4.1 Fraction of kernel rootkit code that hooks the system call table
and is able to provide root permissions to the calling process . . 46

4.2 Parts of the function that manages the trusted module list 50

4.3 An excerpt of the function that reads the module through the
vfs layer from the disk and calculates the hash 51

4.4 Structure of the internal list . 53

4.5 Marking a kernel module as loaded 54

4.6 Kernel function that traces system calls 64

4.7 vsyscall data structure . 66

4.8 ktrace dump of a malware binary stealing the password file . . . 67

5.1 Job description file as provided by a scheduler 83

5.2 Part of the ConnectionHandler that starts a virtual machine,
catches and forwards possible exceptions back to the requester . 102

5.3 Database worker class, which handles concurrent access to the
sqlite database . 103

5.4 Method in the Lxged used to copy virtual machine hard disk
images between client and daemon node 104

5.5 Abstract of the JobInformation class describing vital details about
a xge job . 105

5.6 Method to register a job in the xge 106

–203–

Listings

5.7 Initialization of the backend connection in the VNodesManager . 107

5.8 Method used to start a virtual machine in the VNodesManager . 108

5.9 Method used to stop a virtual machine in the VNodesManager . 109

5.10 Method used to migrate a virtual machine in the VNodesManager110

5.11 One tcp connection is opened to the libvirt daemon running on
every node . 112

5.12 XML document describing a virtual machine 113

5.13 Backend method used to start a virtual machine 114

5.14 Fragment of the sequential virtual machine hard disk image dis-
tribution code . 115

5.15 First part of the method used to distribute a disk image via
BitTorrent . 118

5.16 Second part of the method used to distribute a disk image via
BitTorrent . 119

5.17 BitTorrent client within the imaged 119

5.18 Grid Security Schema . 144

5.19 Auto-generated xml file describing a job 149

5.20 Code snippet that shows the process of creating and transferring
an info message . 150

5.21 Runtime Environment Restrictions 152

5.22 Fraction of the snort alert log after a portscan and a break-in
attempt . 153

5.23 Globus wsrf-Denial of Service 154

5.24 New signatures to detect a Globus Denial of Service attack . . . 154

5.25 Snort detects the attack on the GridFTP service 155

5.26 Common firewall rule set template 167

5.27 Iptables rule generation . 172

5.28 Fragment of the xge traffic shaping code 173

204

Bibliography

Bibliography

[1] W. Allcock, J. Bester, J. Bresnahan, S. Meder, P. Plaszczak, and
S. Tuecke. GridFTP: Protocol Extensions to FTP for the Grid. April
2003.

[2] Amazon Web Services LLC. Amazon Elastic Compute Cloud.
http://aws.amazon.com/ec2/, 2010.

[3] AMD. AMD Virtualization (AMD V) Technology.
http://www.amd.com/virtualization, 2010.

[4] Axelle Apvrille, David Gordon, Serge Hallyn, Makan Pourzandi, and Vin-
cent Roy. Digsig: Run-time Authentication of Binaries at Kernel Level.
Proceedings of the 18th USENIX Conference on System Administration:
LISA, pages 59–66, Jan 2004.

[5] Michael Armbrust, Armando Fox, Rean Griffith, and Aanthony Joseph.
Above the Clouds: A Berkeley View of Cloud Computing. EECS De-
partment University of California Berkeley Tech Rep UCBEECS200928,
53(UCB/EECS-2009-28), Jan 2009.

[6] Mark Baker, Hong Ong, and Garry Smith. A Report on Experiences
Operating the Globus Toolkit through a Firewall. Technical report, Dis-
tributed Systems Group, University of Portsmouth, September 2001.

[7] Vinay Bansal. Policy Based Firewall for GRID Security. Technical report,
Dept. of Computer Science, Duke University, 2004.

[8] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the Art
of Virtualization. In SOSP ’03: Proceedings of the 19th ACM Symposium
on Operating Systems Principles, pages 164–177. ACM Press, 2003.

[9] Jyoti Batheja and Manish Parashar. Adaptive Cluster Computing using
JavaSpaces. In Proceedings of the 3rd IEEE International Conference on
Cluster Computing, pages 323–331, Washington, DC, USA, 2001. IEEE
Computer Society.

[10] BitTorrent Development Team. BitTorrent Website.
http://www.bittorrent.com/, 2011.

[11] BMBF. Bundesministerium für Bildung und Forschung.
http://www.bmbf.de/, 2010.

[12] Robert Bradford, Evangelos Kotsovinos, Anja Feldmann, and Harald
Schöberg. Live Wide-area Migration of Virtual Machines Including Local
Persistent State. In VEE ’07: Proceedings of the 3rd International Con-
ference on Virtual Execution Environments, pages 169–179, New York,
NY, USA, 2007. ACM.

205

Bibliography

[13] Jon Brodkin. Gartner: Seven Cloud-Computing Security Risks.
http://bit.ly/eyjAtB, July 2008.

[14] B. Callaghan, B. Pawlowski, and P. Staubach. NFS Version 3 Protocol
Specification. Request for Comments (RFC) 1813, 1995.

[15] Luigi Catuogno and Ivan Visconti. An Architecture for Kernel-Level Ver-
ification of Executables at Run Time. Computer Journal, 47(5):511–526,
2004.

[16] CERT Advisory CA-1998-01. Smurf IP Denial-of-Service Attacks.
http://www.cert.org/advisories/CA-1998-01.html, 2008.

[17] Ludmila Cherkasova and Rob Gardner. Measuring CPU Overhead for
I/O Processing in the Xen Virtual Machine Monitor. In USENIX Annual
Technical Conference, pages 387–390. USENIX Association, 2005.

[18] David Chisnall. The definitive Guide to the Xen Hypervisor. Prentice
Hall Press, Upper Saddle River, NJ, USA, 2007.

[19] Clam AntiVirus Team. Clam AntiVirus. http://www.clamav.net, 2010.

[20] Bryan Clark, Todd Deshane, Eli Dow, Stephen Evanchik, Matthew Fin-
layson, Jason Herne, and Jeanna Neefe Matthews. Xen and the Art of
Repeated Research. In USENIX Annual Technical Conference, FREENIX
Track, pages 135–144, 2004.

[21] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric
Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. Live Migration
of Virtual Machines. In NSDI’05: Proceedings of the 2nd Symposium on
Networked Systems Design & Implementation, pages 273–286, Berkeley,
CA, USA, 2005. USENIX Association.

[22] Cluster Resources, Inc. TORQUE Resource Manager.
http://www.clusterresources.com/pages/
products/torque-resource-manager.php, September 2010.

[23] Bram Cohen. The BitTorrent Protocol Specification.
http://www.bittorrent.org/beps/bep 0003.html, 2008.

[24] Russel Coker. bonnie++ Benchmark.
http://www.coker.com.au/bonnie++/, 2010.

[25] Symantec Cooperation. Symantec Client Secu-
rity and Symantec AntiVirus Elevation of Privilege.
www.symantec.com/avcenter/security/Content/2006.05.25.html, May
2006.

[26] D-Grid. D-Grid Website, 2010. http://www.d-grid.de/.

206

Bibliography

[27] Renzo Davoli and Michael Goldweber. Virtual Square (V2) in Computer
Science Education. In Proceedings of the 10th Annual SIGCSE Confer-
ence on Innovation and Technology in Computer Science Education, pages
301–305, 2005.

[28] Globus Developers. GT 4.0 WS GRAM: Job Description Schema Doc.
http://www.globus.org/toolkit/docs/4.0/execution/wsgram/schemas/,
2010.

[29] Libvirt Developers. Libvirt - The Virtualization API. http://libvirt.org/,
2010.

[30] The OpenSSH developers. OpenSSH - Secure Shell Login.
http://www.openssh.org, 2011.

[31] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
- Version 1.2. Proposed Standard of the IETF, August 2008.

[32] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. Ether:
Malware Analysis via Hardware Virtualization Extensions. Analysis,
pages 51–62, 2008.

[33] Kay Dörnemann, Tim Dörnemann, Bernd Freisleben, Tobias M. Schnei-
der, and Bruno Eckhardt. A Hybrid Peer-to-Peer and Grid Job Scheduling
System for Teaming Up Desktop Resources with Computer Clusters to
Perform Turbulence Simulations. In Proceedings of 4th IEEE Interna-
tional Conference on e-Science, pages 418–419. IEEE Press, 2008.

[34] Christian Engelmann, Stephen L Scott, Hong Ong, Geoffroy Vallée, and
Thomas Naughton. Configurable Virtualized System Environments for
High Performance Computing. In Proceedings of the 1st Workshop on
System-level Virtualization for High Performance Computing (HPCVirt)
2007, in conjunction with the 2nd ACM SIGOPS European Conference
on Computer Systems (EuroSys), 2007.

[35] The London eScience Centre. Sun Grid Engine Integration with Globus
Toolkit 4. http://www.lesc.ic.ac.uk/pro jects/SGE-GT4.html, February
2007.

[36] Access e.V. Materials, Processes, Casts. http://www.access.rwth-
aachen.de/, 2010.

[37] Ralf Ewerth, Markus Mühling, and Bernd Freisleben. Self-Supervised
Learning of Face Appearances in TV Casts and Movies. In Interna-
tional Journal on Semantic Computing (IJSC), Special Issue on ISM
2006, pages 185–204. World Scientific, 2007.

[38] Niels Fallenbeck, Hans-Joachim Picht, Matthew Smith, and Bernd
Freisleben. Xen and the Art of Cluster Scheduling. In Proceedings of the
2006 ACM/IEEE Conference on Supercomputing, Virtualization Work-
shop, pages 237–244. ACM Press, 2006.

207

Bibliography

[39] Niels Fallenbeck, Matthias Schmidt, Roland Schwarzkopf, and Bernd
Freisleben. Inter-Site Virtual Machine Image Transfer in Grids and
Clouds. In Proceedings of the 2nd International ICST Conference on
Cloud Computing (CloudComp 2010). Springer LNICST, 2010.

[40] Renato Figueiredo, Peter Dinda, and Jose Fortes. A Case for Grid Com-
puting on Virtual Machines. 23rd International Conference on Distributed
Computing Systems, 0:550, Jan 2003.

[41] FinGrid Project. FinGrid Website. http://www.fingrid.de, 2010.

[42] Unicore Forum. Unicore/GS Website. http://www.unicore.eu, 2010.

[43] Ian Foster. The Anatomy of the Grid: Enabling Scalable Virtual Orga-
nizations. First IEEE/ACM International Symposium on Cluster Com-
puting and the Grid, 2001, Jan 2001.

[44] Ian Foster. What is the Grid? A Three Point Checklist. GRID Today,
1(6):32–36, July 2002.

[45] Ian Foster, Carl Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy.
A Distributed Resource Management Architecture that Supports Ad-
vance Reservations and Co-Allocation. In Proceedings of the International
Workshop on Quality of Service, 1999.

[46] Ian Foster, Carl Kesselman, Gene Tsudik, and Steven Tueckee. A Security
Architecture for Computational Grids. In Proceedings of the 5th ACM
Conference on Computer and Communications Security CCS 98, pages
83–92. ACM Press, 1998.

[47] Python Software Foundation. Python Programming Language – Official
Website. http://www.python.org, 2011.

[48] Timothy Freeman and Katarzyna Keahey. Flying Low: Simple Leases
with Workspace Pilot. In Euro-Par 2008 – Parallel Processing, vol-
ume 5168 of Lecture Notes in Computer Science, pages 499–509. Springer
Berlin / Heidelberg, 2008.

[49] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh.
Terra: A Virtual Machine-based Platform for Trusted Computing. ACM
SIGOPS Operating Systems Review, 37(5):193–206, 2003.

[50] Tal Garfinkel and Mendel Rosenblum. A Virtual Machine Introspection
Based Architecture for Intrusion Detection. In In Proceedings of the Net-
work and Distributed Systems Security Symposium, pages 191–206, 2003.

[51] Sven Graupner and Carsten Reimann. Globus Grid and Fire-
walls: Issues and Solutions in a Utility Data Center Environ-
ment. http://www.hpl.hp.com/techreports/2002/HPL-2002-278.pdf, Oc-
tober 2002.

208

Bibliography

[52] Mark Green, Steven Gallo, and Russ Miller. Grid-enabled Virtual Organi-
zation Based Dynamic Firewall. Fifth IEEEACM International Workshop
on Grid Computing, pages 208–216, 2004.

[53] The Grid Security Vulnerability Group. Critical Vulnerability:
OpenPBS/Torque. http://security.fnal.gov/CriticalVuln/openpbs-10-23-
2006.html, October 2006.

[54] Trusted Computing Group. TPM Main Part 1 Design Principles Specifi-
cation. Technical Report Version 1.2, March 2006.

[55] Stephen Hemminger. Linux Iproute2 Utilities.
http://www.linuxfoundation.org/collaborate/
workgroups/networking/iproute2, 2011.

[56] Michael R. Hines, Umesh Deshpande, and Kartik Gopalan. Post-copy
Live Migration of Virtual Machines. SIGOPS Operating Systems Review,
43(3):14–26, 2009.

[57] Björn Hof, Jerry Westerweel, Tobias M Schneider, and Bruno Eckhardt.
Finite Lifetime of Turbulence in Shear Flows. Nature, 443:60–64, 2006.

[58] Eduardo Huedo, Rubén Santiago Montero, and Ignacio Mart́ın Llorente.
A Modular Meta-Scheduling Architecture for Interfacing with Pre-WS
and WS Grid Resource Management Services. Future Generation Com-
puting Systems, 23(3):252–261, 2007.

[59] M Humphrey, M R Thompson, and K R Jackson. Security for Grids.
Proceedings of the IEEE, 93(3):644–652, 2005.

[60] InGrid Project. InGrid Website. http://www.ingrid-info.de, 2010.

[61] International Standard Organization (ISO/OSI). ISO/IEC 27000:2009
Information technology – Security techniques – Information se-
curity management systems - Fundamentals and vocabulary.
http://www.iso27001security.com/, May 2009.

[62] International Standard Organization (ISO/OSI). ISO/IEC 27004:2009
Information technology — Security techniques Information security man-
agement — Measurement. http://www.iso27001security.com/, May 2009.

[63] International Standard Organization (ISO/OSI). ISO/IEC 27005:2008
Information technology – Security techniques – Information security risk
management. http://www.iso27001security.com/, May 2009.

[64] Joanna Rutkowska. Introducing Blue Pill.
http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-
pill.html, June 2006.

[65] W E Johnston, K R Jackson, and S Talwar. Overview of Security Con-
siderations for Computational and Data Grids. Proceedings 10th IEEE

209

Bibliography

International Symposium on High Performance Distributed Computing,
pages 439–440, 2001.

[66] Katarzyna Keahey. Virtual Workspaces: Achieving Quality of Service
and Quality of Life in the Grid. Scientific Programming, Jan 2005.

[67] Katarzyna Keahey, Karl Doering, and Ian Foster. From Sandbox to Play-
ground: Dynamic Virtual Environments in the Grid. GRID ’04: Proceed-
ings of the Fifth IEEE/ACM International Workshop on Grid Computing
(GRID’04), pages 34–42, 2004.

[68] Katarzyna Keahey, Ian Foster, Timothy Freeman, X Zhang, and D Gal-
ron. Virtual Workspaces in the Grid. Lecture Notes in Computer Science,
Jan 2005.

[69] Stuart Kenny and Brian Coghlan. Towards a Grid-wide Intrusion Detec-
tion System. In Peter M. A. Sloot, Alfons G. Hoekstra, Thierry Priol,
Alexander Reinefeld, and Marian Bubak, editors, Advances in Grid Com-
puting - EGC 2005, volume 3470 of Lecture Notes in Computer Science,
pages 275–284. Springer Berlin / Heidelberg, 2005.

[70] S Kent and R Atkinson. RFC 2401: Security Architecture for the Internet
Protocol. http://tools.ietf.org/html/rfc2401, 1998.

[71] Samuel T. King, Peter M. Chen, Yi min Wang, Chad Verbowski, Helen J.
Wang, and Jacob R. Lorch. Subvirt: Implementing Malware with Virtual
Machines. In In IEEE Symposium on Security and Privacy, pages 314–
327, 2006.

[72] Nadir Kiyanclar, Gregory A. Koenig, and William Yurcik. Maestro-VC:
A Paravirtualized Execution Environment for Secure On-Demand Cluster
Computing. In CCGRID ’06: Proceedings of the Sixth IEEE International
Symposium on Cluster Computing and the Grid (CCGRID’06), page 28.
IEEE Computer Society, 2006.

[73] Joseph Kong. Designing BSD Rootkits. An Introduction to Kernel Hack-
ing. No Starch Press, first edition, 2007.

[74] Björn Könning, Christian Engelmann, Stephen L Scott, and G Al Geist.
Virtualized Environments for the Harness High Performance Computing
Workbench. Proceedings of the 16th Euromicro Conference on Paral-
lel, Distributed and Network-Based Processing (PDP ’08), pages 133–140,
2008.

[75] Michael Kozuch and M. Satyanarayanan. Internet Suspend/Resume. In
Proceedings Fourth IEEE Workshop on Mobile Computing Systems and
Applications, pages 40–46, Jan 2002.

[76] Greg Kroah-Hartman. Signed Kernel Modules. Linux Journal, pages
301–308, Jan 2004.

210

Bibliography

[77] Ivan Krsul, Arijit Ganguly, Jian Zhang, Jose A. B. Fortes, and Renato J.
Figueiredo. VMPlants: Providing and Managing Virtual Machine Ex-
ecution Environments for Grid Computing. In Proceedings of the 2004
ACM/IEEE Conference on Supercomputing, page 7. IEEE Computer So-
ciety, 2004.

[78] Christopher Kruegel, William Robertson, and Giovanni Vigna. Detect-
ing Kernel-Level Rootkits Through Binary Analysis. Computer Security
Applications Conference, (6-10):91–100, Jan 2004.

[79] Abhishek Kumar, Vern Paxson, and Nicholas Weaver. Exploiting Un-
derlying Structure for Detailed Reconstruction of an Internet-scale Event,
page 1. ACM Press, 2005.

[80] Marcos Laureano, Carlos Maziero, and Edgard Jamhour. Intrusion De-
tection In Virtual Machine Environments. Proceedings 30th Euromicro
Conference 2004, pages 520–525, 2004.

[81] P. Leach, M. Mealling, and R. Salz. A Universally Unique IDentifier
(UUID) URN Namespace. Request for Comments (RFC) 4122, 2005.

[82] Fang-Yie Leu, Jia-Chun Lin, Ming-Chang Li, and Chao-Tung Yang. A
Performance-Based Grid Intrusion Detection System. In Proceedings of
the 29th Annual International Computer Software and Applications Con-
ference - Volume 01, COMPSAC ’05, pages 525–530, Washington, DC,
USA, 2005. IEEE Computer Society.

[83] Fang-Yie Leu, Jia-Chun Lin, Ming-Chang Li, Chao-Tung Yang, and Po-
Chi Shih. Integrating Grid with Intrusion Detection. In Proceedings of
the 19th International Conference on Advanced Information Networking
and Applications, pages 304–309, 2005.

[84] Terrence V. Lillard, Clint P. Garrison, Craig A. Schiller, and James Steele.
The Future of Cloud Computing. In Digital Forensics for Network, In-
ternet, and Cloud Computing, pages 319 – 339. Syngress, Boston, 2010.

[85] Bin Lin and Peter A. Dinda. VSched: Mixing Batch And Interactive
Virtual Machines Using Periodic Real-time Scheduling. In Proceedings
of the 2005 ACM/IEEE Conference on Supercomputing, page 8. IEEE
Computer Society, 2005.

[86] LINBIT HA-Solutions GmbH. DRBD - Software Development for High
Availability Clusters. http://www.drbd.org/, 2011.

[87] Yingwei Luo, Binbin Zhang, Xiaolin Wang, Zhenlin Wang, Yifeng Sun,
and Haogang Chen. Live and Incremental Whole-system Migration of
Virtual Machines Using Block-Bitmap. In 2008 IEEE International Con-
ference on Cluster Computing, pages 99–106, 2008.

[88] Andrew Martin and Po-Wah Yau. Grid security: Next steps. Information
Security Technical Report, 12(3):113–122, 2007.

211

Bibliography

[89] Jeanna Matthews, Tal Garfinkel, Christofer Hoff, and Jeff Wheeler. Vir-
tual Machine Contracts for Datacenter and Cloud Computing Environ-
ments. In Proceedings of the 1st Workshop on Automated Control for
Datacenters and Clouds, ACDC ’09, pages 25–30, New York, NY, USA,
2009. ACM.

[90] Wolfgang Mauerer. Professional Linux Kernel Architecture. Wiley Pub-
lishing, Inc., Indianapolis, Indiana, 2008.

[91] Marshall McKusick and Geroge Neville-Neil. The Design and Implemen-
tation of the FreeBSD Operating System. Addison-Wesley Publishing
Company, Reading, MA, April 2005.

[92] Aravind Menon, Jose Renato Santos, Yoshio Turner, G. (John) Janakira-
man, and Willy Zwaenepoel. Diagnosing Performance Overheads in the
Xen Virtual Machine Environment. In VEE ’05: Proceedings of the 1st
ACM/USENIX International Conference on Virtual Execution Environ-
ments, pages 13–23, New York, NY, USA, 2005. ACM Press.

[93] Michael Nelson, Beng-Hong Lim, and Greg Hutchins. Fast Transpar-
ent Migration for Virtual Machines. Proceedings of the USENIX Annual
Technical Conference 2005, pages 391–394, Jan 2005.

[94] Nimbus Developers. Nimbus Open Source Toolkit.
http://www.nimbusproject.org/, 2010.

[95] Jon Oberheide, Evan Cooke, and Farnam Jahanian. Rethinking An-
tivirus: Executable Analysis in the Network Cloud. Proceedings of the
2nd USENIX Workshop on Hot topics in Security, Jan 2007.

[96] Jon Oberheide, Evan Cooke, and Farnam Jahanian. CloudAV: N-Version
Antivirus In The Network Cloud, pages 91–106. USENIX Association,
2008.

[97] OpenSSL Project. OpenSSL: The Open Source Toolkit for SSL/TLS.
http://www.openssl.org/, 2011.

[98] Oracle. MySQL: The World’s most popular Open Source Database.
http://www.mysql.com/, 2011.

[99] Bryan D Payne, Martim D P De A Carbone, and Wenke Lee. Secure
and Flexible Monitoring of Virtual Machines. In 23rd Annual Computer
Security Applications Conference ACSAC, pages 385–397. IEEE Press,
2007.

[100] Laura Pearlman, Von Welch, Ian Foster, Carl Kesselman, and Steven
Tuecke. A Community Authorization Service for Group Collaboration.
In Proceedings of the Third International Workshop on Policies for Dis-
tributed Systems and Networks, pages 50–59. Published by the IEEE Com-
puter Society, 2002.

212

http://www.mysql.com/

Bibliography

[101] Nick L. Petroni, Timothy Fraser, Jesus Molina, and William A. Arbaugh.
Copilot - A Coprocessor-based Kernel Runtime Integrity Monitor. In
Proceedings of the 13th Conference on USENIX Security Symposium, vol-
ume 13 of SSYM’04, pages 13–13, Berkeley, CA, USA, 2004. USENIX
Association.

[102] PostgreSQL Global Development Group. PostgresSQL: The World’s most
advanced Open Source Database. http://www.postgresql.org/,
2011.

[103] EGEE Project. gLite – Lightweight Middleware for Grid Computing.
http://glite.cern.ch/, 2010.

[104] European DataGrid Project. Virtual Organization Mem-
bership Service (VOMS). http://edg-wp2.web.cern.ch/edg-
wp2/security/voms/voms.html, 2003.

[105] PT-Grid Project. PT-Grid Website. http://www.pt-grid.de, 2010.

[106] Nguyen Anh Quynh and Yoshiyasu Takefuji. Towards a Tamper-resistant
Kernel Rootkit Detector. Symposium on Applied Computing, pages 276–
283, 2007.

[107] Rafal Wojtczuk and Joanna Rutkowska. Attack-
ing SMM Memory via Intel CPU Cache Poisoning.
http://invisiblethingslab.com/resources/misc09/smm cache fun.pdf,
March 2009.

[108] Ala Rezmerita, Tangui Morlier, Vincent Neri, and Franck Cappello. Pri-
vate Virtual Cluster: Infrastructure and Protocol for Instant Grids. In
Euro-Par 2006 Parallel Processing, volume 4128 of Lecture Notes in Com-
puter Science, pages 393–404. Springer Berlin / Heidelberg, 2006.

[109] Ryan Riley, Xuxian Jiang, and Dongyan Xu. Guest-transparent Preven-
tion of Kernel Rootkits with VMM-based Memory Shadowing. Lecture
Notes in Computer Science including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics, 5230 LNCS:1–20, 2008.

[110] John Scott Robin and Cynthia Irvine. Analysis of the Intel Pentium’s
Ability to Support a Secure Virtual Machine Monitor. Proceedings of the
9th Conference on USENIX Security Symposium, 9:10–10, Jan 2000.

[111] AL Rowland, M Burns, JV Hajnal, and D.L.G. Hill. Using Grid Services
From Behind A Firewall. Imperial College London, 2005.

[112] Constantine P Sapuntzakis, Ramesh Chandra, Ben Pfaff, Jim Chow,
Monica S Lam, and Mendel Rosenblum. Optimizing the Migration of
Virtual Computers. In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, pages 377–390, 2002.

213

http://www.postgresql.org/
http://glite.cern.ch/

Bibliography

[113] Matthias Schmidt, Lars Baumgärtner, Pablo Graubner, David Böck, and
Bernd Freisleben. Malware Detection and Kernel Rootkit Prevention in
Cloud Computing Environments. In Proceedings of the 19th Euromicro
Conference on Parallel, Distributed and Network-based Processing (PDP),
pages 603–610. IEEE press, 2011.

[114] Matthias Schmidt, Sascha Fahl, Roland Schwarzkopf, and Bernd
Freisleben. TrustBox: A Security Architecture for Preventing Data
Breaches. In Proceedings of the 19th Euromicro Conference on Parallel,
Distributed and Network-based Processing (PDP), pages 635–639. IEEE
press, 2011.

[115] Matthias Schmidt, Niels Fallenbeck, Kay Dörnemann, Roland
Schwarzkopf, Tobias Pontz, Manfred Grauer, and Bernd Freisleben. Auf-
bau einer virtualisierten Cluster-Umgebung, pages 119–131. Books on
Demand, 2009.

[116] Matthias Schmidt, Niels Fallenbeck, Matthew Smith, and Bernd
Freisleben. Secure Service-Oriented Grid Computing with Public Virtual
Worker Nodes. In Proceedings of 35th Euromicro Conference on Internet
Technologies, Quality of Service and Applications (ITQSA), pages 555–
562. IEEE press, 2009.

[117] Matthias Schmidt, Niels Fallenbeck, Matthew Smith, and Bernd
Freisleben. Efficient Distribution of Virtual Machines for Cloud Com-
puting. In Proceedings of the 18th Euromicro Conference on Parallel,
Distributed and Network-based Processing (PDP), pages 567–574. IEEE
Press, 2010.

[118] Matthias Schmidt, Matthew Smith, Niels Fallenbeck, Hans-Joachim
Picht, and Bernd Freisleben. Building a Demilitarized Zone with Data
Encryption for Grid Environments. In Proceedings of First International
Conference on Networks for Grid Applications, pages 8–16. ACM Press,
2007.

[119] Tobias M. Schneider, Filippo De Lillo, Jürgen Bührle, Bruno Eckhardt,
Tim Dörnemann, Kay Dörnemann, and Bernd Freisleben. Transient Tur-
bulence in Plane Couette Flow. Physical Review E, pages 15301–15305,
2010.

[120] Alexandre Schulter, Fabio Navarro, Fernando Koch, and Carlos Becker
Westphall. Towards Grid-based Intrusion Detection. In 10th IEEE/IFIP
Network Operations and Management Symposium, pages 1–4, 2006.

[121] Roland Schwarzkopf, Matthias Schmidt, Niels Fallenbeck, and Bernd
Freisleben. Multi-Layered Virtual Machines for Security Updates in Grid
Environments. In Proceedings of 35th Euromicro Conference on Internet
Technologies, Quality of Service and Applications (ITQSA), pages 563–
570. IEEE Press, 2009.

214

Bibliography

[122] Paulo F. Silva, Carlos B. Westphall, Carla M. Westphall, and Marcos D.
Assunção. Composition of a DIDS by Integrating Heterogeneous IDSs on
Grids. In Proceedings of the 4th International Workshop on Middleware
for Grid Computing, MCG ’06, pages 12–18, New York, NY, USA, 2006.
ACM.

[123] Matthew Smith. Security for Service-Oriented On-Demand Grid Com-
puting. PhD thesis, Philipps University of Marburg, 2008.

[124] Matthew Smith, Thomas Friese, Michael Engel, and Bernd Freisleben.
Countering Security Threats in Service-Oriented On-Demand Grid Com-
puting Using Sandboxing and Trusted Computing Techniques. Journal
of Parallel and Distributed Computing, 66(9):1189–1204, 2006.

[125] Matthew Smith, Thomas Friese, Michael Engel, Bernd Freisleben,
G. Koenig, and W. Yurcik. Security Issues in On-Demand Grid and
Cluster Computing. In Sixth IEEE International Symposium on Clus-
ter Computing and the Grid Workshops (CCGRIDW’06), page 24. IEEE
Press, 2006.

[126] Matthew Smith, Matthias Schmidt, Niels Fallenbeck, Tim Dörnemann,
Christian Schridde, and Bernd Freisleben. Secure On-Demand Grid Com-
puting. Journal of Future Generation Computer Systems, pages 315–325,
2008.

[127] Matthew Smith, Matthias Schmidt, Niels Fallenbeck, Christian Schridde,
and Bernd Freisleben. Optimising Security Configurations with Service
Level Agreements. In Proceedings of the 7th International Conference on
Optimization: Techniques and Applications (ICOTA7), pages 367–368.
ICOTA, 2007.

[128] Snort Development Team. Snort Network Intrusion Detection.
http://www.snort.org, August 2010.

[129] Softpanorama - Open Source Software Educational Society. NFS Perfor-
mance Tuning. http://softpanorama.org/Net/Application layer/NFS/
nfs performance tuning.shtml, August 2009.

[130] Rasterbar Software. Libtorrent. http://www.rasterbar.com/products/
libtorrent/, 2011.

[131] Sechang Son, Bill Allcock, and Miron Livny. CODO: Firewall Traversal by
Cooperative On-Demand Opening. In Proceedings of the Fourteenth IEEE
Symposium on High Performance Distributed Computing, pages 233–242,
Jul 2005.

[132] Borja Sotomayor, Katarzyna Keahey, and Ian Foster. Combining Batch
Execution and Leasing Using Virtual Machines. In Proceedings of the 17th
International Symposium on High Performance Distributed Computing,
HPDC ’08, pages 87–96. ACM, 2008.

215

Bibliography

[133] Borja Sotomayor, Kate Keahey, Ian Foster, and Tim Freeman. Enabling
Cost-Effective Resource Leases with Virtual Machines. Hot Topics ses-
sion in ACM/IEEE International Symposium on High Performance Dis-
tributed Computing, pages 16–18, 2007.

[134] Borja Sotomayor, Rubén S Montero, Ignacio M Llorente, and Ian Foster.
Virtual Infrastructure Management in Private and Hybrid Clouds. IEEE
Internet Computing, 13(5):14–22, 2009.

[135] Borja Sotomayor, Rubén Santiago Montero, Ignacio Martin Llorente, and
I Foster. Resource Leasing and the Art of Suspending Virtual Machines.
2009 11th IEEE International Conference on High Performance Comput-
ing and Communications, pages 59–68, 2009.

[136] Borja Sotomayor, Rubén Santiago Montero, Ignacio Mart́ın Llorente, and
Ian Foster. Capacity Leasing in Cloud Systems using the OpenNebula
Engine. Workshop on Cloud Computing and its Applications (CCA08),
2008.

[137] Brad Spengler. GRsecurity. http://www.grsecurity.org, 2010.

[138] Diomidis Spinellis. Reflection as a Mechanism for Software Integrity Veri-
fication. ACM Transactions on Information and System Security, 3(1):51–
62, 2000.

[139] SQLite developers. SQLite Database Engine. http://www.sqlite.
org/, 2011.

[140] Stealth. Adore Next Generation Rootkit.
http://stealth.openwall.net/rootkits/, 2007.

[141] Stealth. Kernel Rootkit Experiences. Phrack Magazine, 0x0b(0x03d),
August 2008.

[142] Ananth I Sundararaj and Peter A Dinda. Towards Virtual Networks for
Virtual Machine Grid Computing, page 14. USENIX Association, 2004.

[143] Ananth I Sundararaj, Ashish Gupta, and Peter A Dinda. Dynamic Topol-
ogy Adaptation of Virtual Networks of Virtual Machines. Proceedings of
the 7th Workshop on Languages, Compilers and Runtime Support for
Scalable Systems LCR 04, pages 1–8, 2004.

[144] Mike Surridge and Colin Upstill. Grid Security: Lessons for Peer-to-Peer
Systems. In P2P ’03: Proceedings of the 3rd International Conference on
Peer-to-Peer Computing, pages 2–6, Washington, DC, USA, 2003. IEEE
Computer Society.

[145] Internet Security Systems. Unicore client keystore information disclosure.
http://xforce.iss.net/xforce/xfdb/30157, November 2006.

216

http://www.sqlite.org/
http://www.sqlite.org/

Bibliography

[146] J Tan, D Abramson, and C Enticott. Bridging Organizational Network
Boundaries on the Grid. Proceedings of the 6th IEEE/ACM International
Workshop on Grid Computing, pages 327–332, 2005.

[147] Globus Security Team. Globus security advisory 2007-02: Gsi-openssh
vulnerability. http://www-unix.globus.org/mail archive/security-
announce/2007/04/msg00000.html, March 2007.

[148] Globus Security Team. Globus security advisory 2007-03:
Nexus vulnerability. http://www.globus.org/mail archive/security-
announce/2007/05/msg00000.html, May 2007.

[149] The Globus Project. The Globus Toolkit 4, 2010. http://www.
globus.org/toolkit/.

[150] The GridSphere Project. The GridSphere Portal Framework.
http://www.gridsphere.org, August 2010.

[151] The NetBSD Guide. NetBSD Veriexec Subsystem.
http://www.netbsd.org/docs/guide/en/chap-veriexec.html, 2010.

[152] The Openwall Project. Linux Kernel Patch From The Openwall Project.
http://www.openwall.com/linux/, August 2010.

[153] TIMaCS Project. TIMaCS Website. http://www.timacs.de, 2010.

[154] TIS Committee. Tool Interface Standard (TIS) Executable and Linking
Format (ELF) Specification, May 1995. Version 1.2.

[155] Andrew Tridgell and Paul Mackerras. The rsync Algorithm. Imagine,
(TR-CS-96-05), 1996.

[156] Mauricio Tsugawa and Jose A. B. Fortes. A Virtual Network (ViNe)
Architecture for Grid Computing. Proceedings 20th IEEE International
Parallel Distributed Processing Symposium, pages 1–10, 2006.

[157] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy Santoni, Fernando Martins,
Andrew Anderson, Steven Bennett, Alain Kagi, Felix Leung, and Larry
Smith. Intel Virtualization Technology. Computer, 38(5):48–56, 2005.

[158] Unionfs Developers. Unionfs: A Stackable Unification File System.
http://www.filesystems.org/project-unionfs.html, June 2008.

[159] Geoffroy Vallée, Thomas Naughton, Christian Engelmann, Hong Ong,
and Stephen L Scott. System-Level Virtualization for High Performance
Computing. Proceedings of the 16th Euromicro Conference on Paral-
lel, Distributed and Network-Based Processing (PDP ’08), pages 636–643,
2008.

[160] Leendert van Doorn, Van Doorn, Gerco Ballintijn, and William A. Ar-
baugh. Signed Executables for Linux. Technical report, Technical Report
CS-TR-4259, University of Maryland, 2001.

217

http://www.globus.org/toolkit/
http://www.globus.org/toolkit/

Bibliography

[161] Dimiter Velev and Plamena Zlateva. Cloud Infrastructure Security. In
Open Research Problems in Network Security, volume 6555 of Lecture
Notes in Computer Science, pages 140–148. Springer LNICST, 2011.

[162] VMWare Inc. VMWare GSX Server.
http://www.vmware.com/products/server/, 2008.

[163] Eugen Volk, Jochen Buchholz, Stefan Wesner, Daniela Koudela, Matthias
Schmidt, Niels Fallenbeck, Roland Schwarzkopf, Bernd Freisleben, Götz
Isenmann, Jürgen Schwitalla, Marc Lohrer, Erich Focht, and Andreas
Jeutter. Towards Intelligent Management of Very Large Computing Sys-
tems. In Proceedings of Competence in High Performance Computing
CiHPC. Springer, 2010.

[164] Gian Luca Volpato and Christian Grimm. Dynamic Firewalls and Service
Deployment Models for Grid Environments. In In Proceedings of the
Cracow Grid Workshop, 2006.

[165] Gian Luca Volpato and Christian Grimm. Recommendations for Static
Firewall Configuration in D-Grid. Technical Report Version 1.4, D-Grid
Integrationsprojekt (DGI), Januar 2007.

[166] William von Hagen. Professional Xen Virtualization. Wrox Press Ltd.,
Birmingham, UK, UK, 2008.

[167] Gerard Wagener, Radu State, and Alexandre Dulaunoy. Malware Be-
haviour Analysis. Journal in Computer Virology, 4:279–287, 2008.

[168] Aaron Weiss. Trusted Computing. netWorker, 10:18–25, September 2006.

[169] Von Welch. Globus Toolkit Firewall Requirements.
http://www.globus.org/toolkit/security/firewalls/Globus-Firewall-
Requirements-9.pdf, October 2006.

[170] Jeffrey Wilhelm and Tzi-Cker Chiueh. A Forced Sampled Execution Ap-
proach to Kernel Rootkit Identification. Lecture Notes in Computer Sci-
ence, 4637:219–235, 2007.

[171] David Wolinsky, Abhishek Agrawal, P Boykin, and Justin Davis. On the
Design of Virtual Machine Sandboxes for Distributed Computing in Wide-
area Overlays of Virtual Workstations. Proceedings of the 2nd Interna-
tional Workshop on Virtualization Technology in Distributed Computing
(VTDC), page 8, Jan 2006.

[172] Timothy Wood, Alexandre Gerber, Alexandre Gerber, Prashant Shenoy,
and Jacobus Van Der Merwe. The Case for Enterprise-Ready Virtual
Private Clouds. In Proceedings of the 2009 Conference on Hot Topics in
Cloud Computing. USENIX, 2009.

218

Bibliography

[173] Glenn Wurster and P.C. van Oorschot. Self-signed Executables: Restrict-
ing Replacement of Program Binaries by Malware. HOTSEC’07: Pro-
ceedings of the 2nd USENIX Workshop on Hot Topics in Security, pages
1–5, Jul 2007.

[174] Wei Yan and Erik Wu. Toward Automatic Discovery of Malware Signature
for Anti-Virus Cloud Computing, volume 4, pages 724–728. Springer
Berlin Heidelberg, 2009.

[175] Lamia Youseff, Richard Wolski, Brent Gorda, and Chandra Krintz. Par-
avirtualization for HPC Systems. ISPA Workshops, pages 474–486, 2006.

[176] Xiaolan Zhang, Leendert van Doorn, Trent Jaeger, Ronald Perez, and
Reiner Sailer. Secure Coprocessor-based Intrusion Detection. In Proceed-
ings of the 10th Workshop on ACM SIGOPS European Workshop, EW
10, pages 239–242, New York, NY, USA, 2002. ACM.

[177] Xuehai Zhang, Katarzyna Keahey, Ian Foster, and Timothy Freeman.
Virtual Cluster Workspaces for Grid Applications. ANL Tech Report
ANL/MCS-P1246-0405, 2005.

219

Erklärung

Ich versichere, daß ich meine Dissertation

Infrastructural Security for Virtualized Grid Computing

selbständig, ohne unerlaubte Hilfe angefertigt und mich dabei keiner anderen
als der von mir ausdrücklich bezeichneten Quellen und Hilfen bedient habe. Die
Dissertation wurde in der jetzigen oder einer ähnlichen Form noch bei keiner
anderen Hochschule eingereicht und hat noch keinen sonstigen Prüfungszwecken
gedient.

Marburg, den 8.6.2011 Matthias Schmidt

–221–

Curriculum Vitae

Personal Data

Name Matthias Schmidt
Contact schmidt@ieee.org

Education

09/2011-today Philipps-Universität Marburg, Postdoc studies
05/2007-09/2011 Philipps-Universität Marburg, Ph.D. studies

Degree: Dr. rer. nat. (equiv to Ph.D.), grade: very good
09/2004-04/2007 Philipps-Universität Marburg, Graduate studies

Degree: Diplom-Informatiker (equiv to masters’s degree), grade:
very good

09/2001-08/2004 Philipps-Universität Marburg, Undergraduate studies
Degree: Vordiplom (equiv to bachelor’s degree), grade: very good

08/1991-06/2000 Gesamtschule Hungen
Degree: A-Level

Work Experience

05/2007-today Philipps-Universität Marburg, Marburg/Lahn
Research Assistant

2003-2006 Philipps-Universität Marburg, Marburg/Lahn
Teaching Assistant incl. research and development

03/2003-05/2003 dev Systemtechnik GmbH, Friedberg
Design and implementation of an ERP system

01/1998-03/2004 Misc companies
IT-Freelancer

–223–

schmidt@ieee.org

