THE ANNALS

MAGAZINE OF NATURAL HISTORY,

INCLUDING

ZOOLOGY, BOTANY, and GEOLOGY.

(belng a continuation of the 'annals' combined with loudon and ciambesworti's ' magazine of natural histury.')

CONDUCTED BY

ALbert C. L. G. GÜNTHER, M.A., M.D., Ph.D., F.R.S., WILLIAM Carruthers, F.R.S., F.L.S., F.G.S., AND

WILLIAM FRANCIS, Ph.D., F.L.S.

VOL. IX.-SIXTH SERIES.

LONDON:
PRINTED AND PUBLISHED BY TAYLOR AND FRANCIS.
sold by stappin, marshall, hamilton, kent, and Co., ld. ;
WHITTAKER AND CO.: BALLLIERE, PARIS:
MACLACHLAN AND STEWART, EDINBURGH :
hodges, figgis, and co., dublin: and asher, berlin. 1892.
"Omnes res creatæ sunt divinæ sapientiæ et potentix testes, divitiæ felicitatis humanæ:-ex harum usu bonitas Creatoris; ex pulchritudine sapientia Domini; ex œconomiâ in conservatione, proportione, renovatione, potentia majestatis elucet. Earum itaque indagatio ab hominibus sibi relictis semper æstimata; à verè eruditis et sapientibus semper exculta; malè doctis et barbaris semper inimica fuit."-Linneus.
"Quel que soit le principe de la vie animale, il ne faut qu'ouvrir les yeux pour voir qu'elle est le chef-d'œuvre de la Toute-puissance, et le but auquel se rapportent toutes ses opérations."-Bruckner, Théoric du Système Animal, Leyden, 1767.
. The sylvan powers
Obey our summons; from their deepest dells
The Dryads come, and throw their garlands wild
And odorous branches at our feet; the Nymphs
That press with nimble step the mountain-thyme
And purple heath-flower come not empty-handed,
But scatter round ten thousand forms minute
Of velvet moss or lichen, torn from rock
Or rifted oak or cavern deep: the Naiads too
Quit their loved native stream, from whose smooth face
They crop the lily, and each sedge and rush That drinks the rippling tide: the frozen poles, Where peril waits the bold adventurer's tread, The burning sands of Borneo and Cayenne, All, all to us unlock their secret stores And pay their cheerful tribute.
J. Taylor, Norwich, 1818.

CONTENTS OF VOL. IX.

[SIXTH SERIES.]

NUMBER XLIX.
Page
I. A new Species of Munna from New Zealand. By Charles Chilton, M.A., B.Sc. (Plates I. \& II.) 1
II. Note upon the Encystment of Eolosoma. By Frank E. Bed- dard, M.A., F.R.S.E.: 12
III. Notes on Longicorn Coleoptera of the Group Cerambycince, with Descriptions of new Genera and Species. By Charles J. Gahan, M.A., Assistant in the Zoological Department, British Museum 19
IV. On some Japanese Species of Paromalus. By George Lewis, F.L.S. 32
V. Descriptions of Two new Genera of Scorpions, with Notes upon some Species of Palamnceus. By R. I. Рососк, of the Natural- History Museum. (Plate III. B.) 38
VI. Description of a new Trap-door Spider from Ceylon. By R. I. Pocock, of the British (Natural History) Museum. (Plate III. A.) 49
VII. Suggested Terms in Crinoid Morphology. By F. A. Bather, M.A. 51
VIII. On the Oviposition and Embryonic Development of the Crocodile. By Dr. A. Voeltzkow, of Majunga, Madagascar 66
IX. On newly-discovered East-African Chameleons, with Remarkson some other Reptiles described by Dr. Steindachner. By G. A.Boulenger,72
X. Description of a new Snake from Nubia. By G. A. Boulenger 74
XI. Descriptions of Three new Gerbilles in the British Museum Collection. By Oldfield Thomas 76
XII. The Mesozoon Salinella. By Johannes Frenzel 79
XIII. Descriptions of Seven new Species of Terrestrial Molluscafrom South Africa. By James Cosmo Melville, M.A., F.L.S.,and John Henry Ponsonby, F.Z.S. (Plates IV. \& VI.)84
Page
XIV. Descriptions of Seventeen new Terrestrial Mollusks fromSouth or Central Africa, in the Collection of Edgar L. Layard, Esq.By James Cosmo Melvill, M.A., F.L.S., and John Henry Pon-sonby, F.Z.S. (Plates IV.-VI.)87
XV. On the Skeleton of a Chimæroid Fish (Ischyodus) from the Oxford Clay of Christian Malford, Wiltshire. By A. Smith Wood- ward, F.G.S. 94
XVI. Descriptions of new Species of Eratina from Tropical South America. By Herbert Druce, F.L.S. \&c. 97
New Book:-Les Coquilles Marines des Côtes de France. Par Arnould Locard 107
A Multicellular Infusorian-like Animal, by Prof. Johannes Frenzel, of Cordova (Argentine Republic); On the Growth of the Shell in Helix aspersa, by M. Moynier de Villepoix 109-111
NUMBER L.
XVII. The Earthworms of the Vienna Museum. By Frana E. Beddard, M.A., F.R.S.E. (Plate VII.) 113
XVIII. The Lysianassides of the 'British Sessile-eyed Crustacea,' Bate and Westwood. By Alfred O. Walker 134
XIX. On the Occurrence of the Genus Equisetum (E. Hemingwayi, Kidston) in the Yorkshire Coal-measures. By Robert Kidston, F.R.S.E., F.G.S. 138
XX. Description of a new Frog from Barma. By G. A. Boulenger. (Plate LX.) 141
XXI. Note on Toxotes microlepis, Gthr., and Toxotes microlepis, Blyth. By G. A. Boulenger 143
XXII. On Strauch's Triton longipes. By G. A. Boulenger. 144
XXIII. Note on the Gibbon of the Island of Hainan (Hylobates hainanus, sp. n.). By Oldfield Thomas 145
XXIV. Diagnosis of a new Subspecies of Hare from the Corea. By Oldfield Thomas 146
XXV. Description of a new Species of Meriones from Palestine. By Oldfield Thomas 147
XXVI. The Polyzoa of the St. Lawrence: a Study of Aretic
Forms. By the Rev. Thomas Hincks, B.A., F.R.S. (Plate VIII.) 149
XXVII. On the Development of Dreissena polymorpha, Pallas.
157
By Dr. Eugen Korschelt
XXVIII. Remarks on Australian Slugs. By C. Hedley, F.L.S., Assistant in Zoology to the Australian Museum 169
XXIX. Descriptions of new Genera and Species of Pyralida con- tained in the British-Museum Collection. By W. Warren, M.A., F.E.S. 172

Pagr
Proceedings of the Geological Society 179-181
Nute on . Ibnomalities in the Crayfish (Astarus furiatilis), by IV: N.Larker, Ph.I.; The ('hromatophores of C'phathumeds, By M.Raphael Dhanchard; On the Nature of the Monement of theChomatophores of Cephahopords, by M. C. Phisalix; On theAnatomy of the Male hexnal Organs of the Honey-Bee, by (i.Komehemikeff, Assistant in the University of Ma-cow, (Wh the"Free-swimminer eprocyst," by M. Braun, of the Kimigstbreri. L'r. Zoological Museum181-187
NUMBER LT.
DXX. Mritish Fossil Crinoids-II, Potryocrimus quinqu-lolus,sp. nos:, Wenlock Limestome: and Note on Fotroperimus pinmulatus.By F. A. Bather, M.A., F.G.S. (1late XI. figs. 1 \&. 2.)189
XXXI. Bitish Fossil Crinoids-TII. Mustiynerimus lorens, nos. gen. et sp., Wenluck Limestone, Dudley. By F゙. A. B.ather, M.A., F.G.S. (Plate XI. fig. 3, and Plate XİL.) 191
XXXII. British Fossil Crinoids.-VIIT. Cyatherevinus: C neines-tubus, Ang., and (. vallatus, sp. nuw. Wenlock Limestone. 18y F. A.lither, M..I., F.G.S. (Plate XIII.)202
XXXIII. On some Spiders from the Andaman Islands collected by E. W. Oates, Esq. By Prof. T'. Thorell 226
XXXIV. An Earthworm from Ecuador (Rhinotrilus ecuadori-(msis). By W. Blaxhand Benham, Dise. (London), AldrichianI emonstrator in Comparative Avatomy in the University of Oxford.(Plate X.)237
XXXV. Description of a new Siluroid Fish from China. By G. A. Boulenger 247
XXXVI. Description of a new Species of Rail from Laysan Island(North Pacitic). By F. W. Froнawk, F.E.S. 247
XXXVII. Description of a new Species of Calyptomena fromNorth-western Borneo. By I. Bowhler Smampr, LL.D., F.L.S.,©c.249
XXXVIII. On some new Nammalia from the East-Indian Arehi-pelago. By Olmfield Thomas2.50
XXXIX. Descriptions of new Species of shells from Mauritins and California. By Edgar A. Smitif 255
XL. Fome Points in the Ilistology of Colenterates. By Dr. Karl Camllo Schaider 200On the Earliest Stages in the Development of Sessile-eyed Crus-tacea, by M. Louis Roule; A new Mode of Respiration in theMyriapoda, by Fi. (i. Sinclair (furmerly F. (i. I Heathente), M.A.,Fellow of the Cambridge Philosophical Society262,263

NUMBER LII.

l’age

NLI. Natural Ilistory Notes from II.M. Indian Marine Survey Steamer 'Investigator,' Commander R. F. Hoskyn, IR.N., com-

XLIII. Observations on the Dentition of Mammals. By Dr. W. Kükentilal
XLIV. The Dentition of Didelphys: a Contribution to the Embryology of the Dentition of Marsupials. Dy Dr. Wi Künaxtan.$\because-\bar{\prime}$
 tained in the British-MLu-em Coll ction. By W. Wharn:s, M.....

1.Es. $2!11$
XLVI. Notes on the Palæozoic Bivalred Entomostraca.No. XXX. On Carboniferous Ostracoda from Mongolia. By T.
 $\because 2$
XLVII. Notes on the Variation of the Geums Arion, Fér. Br Walter E. Collinge, Assistant Demonstrator in Zoology, St. Andrew's University

XIJVIII. Notes on Dr. TV. Kiikenthal's Discoveries in Mammalian Dentition. By Oldfield Thomas

XLIA. On some undescribed Cicadida, with Synonymical Notes. By W. L. Distant.
L. Contributions towards a General History of the Marine Polyzoa, 1880-91.-Appendix. By the lier. Thomas Hincks, 1...., F.R.ら.

New Books:-Catalogue of the Type Fossils in the Woodwardian Museum, Cambridge. By Ifrine Woons, B.A., F.G.s. With a Preface by T. Mchimay llyghes, M.A., F.li.S-Delama Bay: its Natives and Natural Hi-tory: By losb Moxtimo. -La Mlume des Oiseaux : listcire naturello et industrie. P'ar Lacrotx-Dantiard.-L'mateur d'oiseaux de Volière. lar Hıxit Moreat ... 1 -

Note on Mr. Minchin's Paper on Ascetta, by R. r. Lendenteld; Giymnorhynchus reptans, Rud., and its Migration, by M. I. Moniez; On Coral-Recfs of the East-African Coast, by Dr. A. Ortmann, of Strassburg $337-339$

NUM13El: 1,II.

LI. On some new Species of IFisteride. By G. Liewrs, F.L.S.... 341
LII. Natural Ilistory Notes from II.V. Indian Marine Surrey

Page
 of the Indian Museum，and l＇rofessor of Comparative Anatomy in the Medical College of Bengal，and A．Arcock，M．B．，Surgeon I．M．S．，Surgeon－Naturalist to the Survey 35\％
LIII．Remarks on Australian Sluge．By＇T．D．A．Cockrimela， よ゙．Z．ふ．，Institute of Jamatio ：3－1
LIV．On the Scale－like and Flattened ILairs of certain Lepido－ $3:$
LV．On the Ophideres princeps of Cruence and its utter dissimi－larity in Structure and Pattern from the Oplinderes princeps of Bois－duvil．By Anticur G．Butlar，F．L．S．，F．Z．S．，Sc．3.75
LVI．On the Radula of P＇aludestrina Jenkinsi，Smith，and that ofI．ventrosa，Mont．By B．B．Woouwaizd，F．G．S．，F．R．M．S．376
genei，Verany，and Mrancockia euductylota，Gosse）．By F．W．College，Manchester．（Plate XVII．）378
LVIII．On two new Central－African Antelopes obtained by Mr．F．J．Jackson．By Oldfield Thomas 385
LIS．Descriptions of new（ientera and species of I＇ymetide com－tained in the British－Museum（iollection．By W．W＂amman，M．．．．F．E．S．359
LX．（On the Anatomy and Embryolory of the Phadompiulci．Jy
Victor Faussek 397
L．．．I．Description of a Third species of the Genus Nyetophitus． By Oldfinle Thomas 41）．；
Ner Powk：－L＇Evolution Fexulle dans l＇E－pèce humaine．I＇ar lo 1）r．Henar Sicand，Doren de la Faculté les Stienees de Lyon．． 41,On the（ienus Polychersiat of IHibner（a Croup of I＇lusid Moths），by Arthur G．Butler，F．L．S．，F．Z．S．，©c．；Dr．ron Lendenfeldoin the Central Casity in Euplectella，by E．A．Minchin；Onsome Specimens of Dendroclava Duhrnit，Weismann，by Dr．Raffaello Zoia；On the Development of Bythinia tentaculata，by Dr．R．v．Erlanger，of the Heidelberg Zoological Institute；On certain Reproductive Phenomena in Cirrhipedes，by M．A．Gruvel ；On the Embryogeny of Sagitta，by M．S．Jourdain．

$$
407-415
$$

NUMBER LIV．

LXII．Natural History Notes from II．M．Indian Marine surver
 commanding．－serien II．，No．3．On L゙ter：o－estation in Tromon Blecteri．By A．Dicock，M．B．，太urgeon I．M．ふ．，ふurem－Nitura－ list to the Survey．（Plate XLX．）．

LXIII．Description of a new species of Antedon from Mauritius． By F．Jeffrex Bell，M．A．（Plate XVIII．）

L．XIV．Descriptions of new Cenera and species of P？mblider enn－ tained in the British－Museum Collection．By W．Warrfan，M．A．， ほたく
Page
LXV. Notes on Dr. C. Flach: S'monymic: List of the. Eurnman Trichoptery!ida. By the Rev. A. Matturws $4: 1$
LXVI. Descriptions of some now Specian of 1 -iatic siatmmiulor. By F. Monre, F.E.S'. 44-
LXVII. British Schizopoda of the Families Iophorofestrila aml
Euphousiother. By the Rew. ('anon A. M. Nomman, M..... I).C.L., J.R.S., Se. 4.5
LXYII. (ritical observations on Frenzel:- Mesozom Sulinella: a Biological Sketch. By Prof. Stefan Apítiry 465
New Books:- An Elementary Manual of New-Zealand Entomongers.
By (i. V. Mumson, F.E.S.-On the Modifications of Oramioms.
By David Syme 483,483
Some Anatomical Characters of Ifyperotutom rostratus, by M. E..-L. Bouvier; On Self-pollination in Amsomia Taternvemontrmu. by Thomas Meehan 481-486
Index 4:-
PLATES IN VOL. IN.
Plate I.l Muma neozelanica.

IV.
V. New Terrestrial Mollusca.
VI.
VII. Anatomy of some Earthworms.
VIII. New Polyzoa.
IX. Rana Oatesii.
X. Structure of Rhinodrilus ecuadoriensis.
XI.
XII. British Fossil Crinoids.
XIII.
XIV. Psalidopus Huxleyi.-l. spinirentris.
IV. Psalidopus spiniventris.
XVI. Carboniferous Ostracoda.
XVII. Lommotus genei.-DIancockia eulactylota.
XVIII. New Species of Antedon.
XIX. 'Trypon Bleekeri.

THE ANNALS

MAGAZINE OF NITURAL iISTORY.

[SIXTII SERIES.]
" per litori spargite muscum, Naiades, 知 circim vitreos considite fonters: Pollice virgineo teneros hio carpite flores: Floribus et pictum, divæ, replete canistrum. At ros, o Nymphae Craterides, ite sub undas; Ite, recurvato rariat: corallia trunco Vellite muscosis e rupibus, et mihi conchas Ferte, Dex pelagi, et pingui conchylia suceo.' N. Parthenii Gianneflusii Eel. 1.

No. 49. JANUARY 1892.
> I.-A new Species of Mumna from New Zealand. By Charles Chilton, M.A., B.Sc.

[Plates I. \& II.]

Tine genus Munnu was cestablished in 18:39 by Krijyer; but as yet only a comparatively small number of species appear to be known. Beddard, writing in 1886, says that only five species were then known, all of them being inhabitints of the shallow water off the cuasts of Great Britain, Norway, North America, \&c.* IIe adds two species, 1/. maculuta and 15 . pallida, both obtained from shallow water off Kerguelen Land during the 'Challenger' Expedition. Each of his species is remarkable for some point: M. pallicu has the eyes without the appreciable stalks found in other species, and in II. maculata the male has the same form of body as the female and is not narrowed and elongated as in some of the other species of the genus.

I am now able to add another species, found between tidemarks on the coasts of New Zealand. As in N. maculata, the male has the same form of body as the female ; the species appears to differ from the others hitherto described in having. the first pair of thoracic appendages of the male very large

[^0]and of a peculiar shape. As I have an abundance of specimens, I am able to describe the species in greater detail than has heen done for some of the others, and also to give pretty fully the peculiar characters of each sex.

Most of my specimens are from Port Chalmers in Otago Harbour. 'Ther were taken during low tide on the surface of stones and boulders under a mass of decaying Bultemins that had leen washed up on the beach. They were fomet in great numbers and of all sizes, many of the females bearime eges or young. I liave not taken them in the same locality either before or since, althrogh I have several times hunted over the same spot. Inssibly some of them had been washed up, with the Bolt, nims and had afterwarls increased on the beach, thongh, if so, they mu-t have increased very rapilly, as the Poltmins had evidently not been there for more than a fow days. The specimens of the Muna were so numerous on all the stomes near that it scarcely seams possible that they could all have been washed up with the Boltonins. They walked about on the stones somewhat slowly but with perfect ease, and seemer quite at home out of the water. The excessively long hind legs and the very long antennex, which they carried bent back over the body, gave them a very spider-like appearance.

I have since taken a single specimen on sea-weel in a rock-porel in Port Chatmers, and another from a rock-pool at Brighton, on the east coast of Otago.

The new species now to be described agrees chosely with the characters of the gemus as they are given ly the various authors. Aceording to Bedlard the aflinities of Munno are with I'foregomium and its immediate allies, though it alson approaches dura, Jonira, de. in having hiunguiculate thoracic appendages *. This aflinity with the latter senera is fully confirmed by an examination of the mouth-parts and plempoda of the present species, as a comparison of them with these of Iunthe speciose as described by Bovallins \dagger shows that they closely conform to the Asellidan type. Bovallins, however, does not include Munna in his" "Notes on the Family. Asellide" \ddagger.

I shall first give a shom specific diagnosis of the species, and afterwards describe some of its parts in greater detail.

Munna neozelamica, sp. 1n. (Plates I. \& II. figs. 1-1.).)
Male- - Becly narrow-elliptieal, length about two and a half

- Repert on the 'Challengee ' lappoda, part ii. p. - 4.

\ddagger L. c. Band 11, no. 15.
times the greatest breadth. Head not broaker than the first segrient of pereion, deeply notehed on each side for the bases of the antenne, produced anteriorly between the antenna; front margin straight, with rounded upper lip attached. The lateral portion behind the insertion of the anterne with the anterior angle somewhat acute, the posterior angle rounded, somewhat produced, and bearing the moderately-sized eyes. First four segments of the pereion subequal in lenefth, sratmally increasing in width up to the fourth, which is the widest; next three segments subequal and slightly shorter than the preceding, eurving slightly hackwarls at the siles. All the segments having the lateral margins straight or slightly rounded. Pleon as long as the four preceding segments of the thorax, pear-shaped, narrowing posteriorly, extremity rounded.

Antennules with the first two joints stout, others slender, reaching a little beyond the end of the third joint of the antenne. Antenne considerably longer than the body. First pair of legs very large and strong and of peculiar shape, the ischios being very thick and strong and hollowed anteriorly to reccive the distal part of the limb when bent back; carpus expanding distally, mallet-shaped at the end; propodos small and rounded. Succeeding legs of usual shape, the last three pairs longer than the others, about as long as the body.

Female with the body of the same shape as in the male ; differs from the male in the first pair of appendages of the pereion, which are short and imperfectly subchelate; carpus broader than the propodos, having the inner edge armed with six strong spiniform setæ.

Colour brownish, more or less closely covered with darker dots and stellate markings.

Length of body of largest specimens about 3 millim.
Hab. Port Chalmers and Brighton, New Zealand, between tide-marks.

Remarks.-In the shape of the body and in the fact that the male and the female have the body of the same form, this species appears to resemble VIN. maculata, Beddard, but the $^{\text {a }}$ form of the first pair of legs is evidently very different; it also differs in the antemmules and in other points. It seems to be quite different from M. pallida, Beddard.

Detailed Description.

The head (Pl. I. figs. 1 and 3) is broad, about twice as broad as long, and longer than the two succeeding segments
of the pereion; on each side it is deeply notched for the insertion of the antemer ; it is prowned in front between the antenna and has the front margin, to which the unver lip is attached, straight, with the lateral angles well mumded. The lateral portion lechime the bates of the antemes has the anterior angle somewhat acute and the postoring angle produced and rounded and bearing the large eyes, which are thus somewhat pedunculated, though apparently not so much so as in some other species of the genus.

The percion (1'late I. lig. 1) has the first secement a little brater than the heal, rather shorter than the second, the second, third, and fomth suberual in length, widening slightly up to the fourth segment, which is the widest; the fiftli, sixth, and seventh segmonts are progressively shorer and curve backwards at the sides into roundal lobes, which are somewhat gaping laterally.

The pheon (1 late I . fig. 1) is much narower than the perem, som what conical or pear-shaped, matly naronwing posteriorly, with the extremity romded. It usually projects slightly upwards, and the mopoda are barely visible in a dorsal view.
'The antenmutes (inner antenna) (Plate I. figes 2and 3) reach somewhat heyon? the end of the third joint of the peduncle of the outer aitemma. The first or basal joint is the hroatest, being about two thirds as broed as long; the second joint is about as long as the first, but only half as hroad at the base; it expands considerably towards the distal end and bears a few the seta scattered orer the surface; the next two joints are subequal, small, the two together being less than halt the length of the second joint; each is nearly as hoal as long, they are followed by a long slender joint as long as the second and third together; at the extromity of this are two very small joints provided with long "olfactery filaments."

In the passession of the long slender joint at the end of the antemules this species resembles Munna Whitanne, Spence Bate and Westwood *. It is evidently, however, subject to some variation, for I have one specimen in which the right antemule is of the normal shape, as already deseribed, but the left ene has the long fiftin joint only about two thirds as long as that on the right, while the following joint is much larger than usual, being about one half the length of the fifth joint; both of these bear "olfactory filaments," so that dombless the long fifth joint should be looked upon as a modified portion of the flagellum.

[^1]The antenne (Plate I. firs. 1 and 3) are very long, when fully developed being emsiderably longer than the body; in small specimens they are shorter in proportion to the boly. They present nothing remarkable in their character. The first three joints are subequal, short, the fourth and fifth subequal, very long, slender; the flagellum slender, about as long as the whole pertuncle. The antemne are often bent sharply backwards at the end of the thime joint, so that the fourth joint is directed backwards, while the fifth and the flagellum are directed forwards again. There is mo trace of the rudimentary exopoclite found in Jonere, lanthe, and Stenetrium.

The upper lip) (llate I. figs. $4 a$ and $4 b$) is attached to the front marein of the head and is directed forwards and partly downwards. It is nearly semicireular, slightly convex above; in the centre the front margin curves over moterneath, so that when riewed from above the lip appears slightly cmarginate in the centre. When viewed from below it is seen that the midalle portion of the front bears many short seta, those on each side being directed inwards.

The manditiles (I'late I. figs. ja and 5 b) are similar to those of Irenthe. The right mandible has only one cuttingedge, ending in four distinct sharp tecth, next to which come five large pectinated sete, arranged in an oblique line across the end of the mandible. The seta nearest the emd is the broadest and the most pectinaterl, being quite comi)-shaped; the others are longer, but gradually decrease in breadth and in the number and size of the pectinations, the fitth having only a few pectinations towards the end. The molar tuberele is long, rather slender, and has the end obliguely truncate and bearing two or three rather long seta in addition to the usual short thick-set sete which form the grinding-organ at the end.

The left mandible is similar, but has two catting-elges, the end one with five teeth and the inner with four ; then follow four or five pectinated setr, as in the right.

The palp (fig. $\bar{\sigma} 6$), which is the same on each side, consists of three joints, the second being the longest and about laalf as long again as the first ; towards its distal end it bears two stont serrated sete; the third joint is somewhat shorter than the first and bears five or six stout sete on one side towards the distal end ; these are placed at right angles to the joint and are curved and serrated on the concave edge; they increase regularly in length distally, the last one being nearly as long as the joint itself. The third joint is usually bent at right angles to the second.

The lower lip (Plate I. fig. 6) consists of two portions almost completely separated; I have never been able to dissect out the two parts together. Each is sultriangular in outline, the inner margin nearly straight, the outer strongly curved and somewhat sinuous, the distal extremity being acute. The distal half' of the inner margin is fringed with short seta which gradually increase in length distally, the longent being placed at the extremity; the outer margin is free from setr.

The first maxilla is of the usual shape and consists of two lobes, the outer longer than the inner, slender, narrowing towards the extremity, and bearing at the end about ten broad comb-like seta ; the inner lobe is only about half as long as the outer, broadest at the base, bearing at its extremity four or five long curved seta, plumose towards the end, and also two or three finer simple setæ.

The second maxilla is also of the usual shape, consisting of a broad basal portion bearing three subequal plates, the imer forming a prolongation of the base, the outer two being anticulated to it. The two outer plates are similar and subequal, oblong, each bearing at the end four long seta, the three outer very finely pectinated on the immer margin, the inner one shorter than the others and coarsely pectinated, the pectinations being at right angles to the seta. The imner plate bears at its extremity cight to ten seta of various sizes, some stout and pectinated, others fine; there are also some fine slender setæ or hairs on the inner margin.

The maxillipedes (Plate I. fig. 7) are well developed and broad and appear to form a sort of operculum to protect the mouth-parts. The basal joint (coros) is short, transverse, and bears the elliptical epripodite and the large bases. The margin of the epipodite is quite free from seta and quite entire except for a short distance towads the end on the outer side, where it is finely crenate. 'The basos is very large and forms much the largest part of the whole appendage; its imer margin is straight and it is produced distally into a flat plate nearly as large as the basos pmper ; the extremity of this plate bears numerous short pectinated setae. On the inner margin are four stout setie, slightly hooked or enlarged at the end so as to fit into those on the other side and hold the two halves of the maxillipedes together. The "palp," (ondepodite) has the ischios short transverse, the merns is much larger and expands distally, and has both margins, but especially the imer one, frimged with long seter the cerrus is much header than lome, the immer magein rennted and
densely covered with seta, a few being placed also at the outer distal angle ; the proporlos is narrow and about as long as the carpus is broad ; it expands slightly distally, curves inwards, and bears long setae on both margins; the dactylos is less than halt as long as the propodos, and ends in two long stout setæ.

The legs of the first puir (Plates I. and II. firs. $8 a, 8 b, 8 c$, $8(d)$ are very different in shape in the two sexes. It will be convenient to deseribe those of the female first, as they are the more normal in shape. The busos (see fig. 8 a) is subrectangular and about twice as long as broad, the ischios is about as long as the basus but slightly narower, the meros is triangular, expanding distally, the antero-distal angle slightly produced and bearing a single stout seta, a few sete being also present on the posterior margm ; the carpus is also triangular, but is larger and broader and has the postero-distal angle produced, the distal end of the joint being straight but oblique; there are a few fine sete on the anterior margin and the posterior margin is supplied with about six stout spiniform seta and a few fine scattered hairs; the propodos is considerably narrower than the carpus, but of about the same length, the anterior margin is convex and bears several fine seta, there are usually a few also on the posterior margin and at the end, the largest being situated at the romeded posterodistal angle; the dactylos with the claws is as long as the posterior margin of the propodos, it bears a few fine sete, and ends in two distinct claws, the outer one fully twice as large as the inner.

From the figure and description given it would appear that the first pair of legs in the female in this species is not very dissimilar from that of Mumna Kröyeri, Goodsir, as drawn and described by Bate and Westwood, though they state that only the male of that species is known, and their figure would therefore presumably apply to the male.

In the male the first pair of legs are very large and peculiar in shape. The first joint (fig. $8 d$), which might at tirst sight be taken for the coxos (epimeron), but is realiy the basos, is very short and small, and from it arises a very large ischios. This joint is large and subrectangular, not quite twice as long as broad, and the whole joint is filled with a very powerful muscle, which moves the next joint and with it the remainder of the limb. In front the ischios is deeply grooved and receives the distal portion of the limb when bent back; at the base it is the inner portion of the ischios that is produced forwards, while at the distal end the outer portion
is produced forwards and downwards to form the groove, so that when the end of the limb, is hent hack upon the ischins it is protected and held in its place both on the inside and the outside. The meros is flat or hollow above and expants a little distally, its articulation with the ischios is concealel in a viow from the outer side be the prongation of the outer portion of the ischios. The corpons is nearly as wide at the hase as the preceline joint, lout expands distally an I has the end shapert something like a mallet, being producel both alove and below, the lower fontion fimely crenate-the exact form will he laarnt from the tiune more easily than from any verbal deseription. The propmion is attached to the upprir distal comer of the carpus; it is nearly circular in shaps, and bears a small dactylus which embin two claws as in the other legs. The whole limb is, in fully developed mabs, quite free from sete; the ischios and meros are rather thick through from side to side, but the carpus ant propmes are thimer and plate-like.

The whole leg is most triking in apparanee and quite monlike anything else that I have sonen among the loppoda. It most probably forms a grasping-rgan of some kind, thongh it is not casy to see exactly how it is used, and whilegratpingorgans are ustally formed ly mons of the tormimal jpints (propodos and lactylos) in of her species, in this caso thee are small and more or less rudimentary.

In young males the first jair of limlis is much mom like those of the female and quite different from these of the fully developed male. One stage in the development is shown in figure 8 h of Plate II. Thic bonos is of fair size, thoueh unt so hage in propertion to the other joint as in the frmate ; the ischins is mueh larger anel alrealy slows sigens of is: fotume great cxpansion: the remander of the limh is pratedeally the same as in the temate, exeegt that there are fewor spiniform sote on the calpas. A mane alsancel sta-e is shown in figure 8 c of l'late 11 . The inflion is mome enlargel, the merois more edongatal and more like that of the a lult male, the carpus has thegom to thte its bmentiar mall:t shape, the
 disappeared from the whole limb.

It will thas he sem that in thi- orecies, as in many other casc, the yomy mate revmilis the tenale, ant that the fecmian chanacturs of the culut maly are anymied by a gralual development *.

[^2]The Iege of the secend paii (Plate II. fig. 9) are about two thirds the length of the loody and are normal in shape. The coros (epincron) is short, transverse, and clearly separated off from its sergment ; the busos is narrow oblong, slightly constricted proximally, margins free from sete; the ischios is similar in shape but not quite so long; the meros is shorter than the ischins, namrow at the base, and has the antero-distal angle somewhat produced and bearing a seta; there are also two or three fine setee on the posterior margin towards the distal end ; the coitmes is slightly longer than the ischios and meros towether and is rather more than four times as long as hoal, it hears one or two rather stont sete on each margin to wards the distal end ; the moryoctus is considerably longer than the carpos, but is monch narower, being not quite half the width; on the posterior margin towards the distal end is a row of about twelve shont stout seter, and on the anterior margin a fringe of finer hairs, those at the base of the dactylos being the longest ; the dactylos is of the usual shape and bears two distinct claws.

The third and fourth pairs of legs are quite similar to the second, and are of about the same size.

The leys of the , fitthe pair (see Plate II. fig. 10) are similar in general form to the preceding, but are considerably longer. The basos and ischios are subequal in length and longer than the meros, which, however, is more elongated than in the preceding legs; all ilnee joints have the upper (anterior) margin fringed with a number of fine hairs; the corpus is rather broad and is as long as the ischios and meros together, and in addition to a few stiff seter at the distal end has, in the male, the whole upper surface of the joint densely covered with long, irregular, woolly hairs, which are usually clogged with dirt, diatoms, and other extraneons matter ; the propodos is very long and slender, being longer than the meros and carpus together ; the whole upper surface is fringed with irregular fine hairs and the lower margin bears a number of stiff setie; lut these are smaller and do not form such a distinct mow as those described on the second pair of leggs; the dactylos is like that of the second pair of legs, but more elongated.

In the temale the fifth pair of legs is similar to those in the male, lout the carpus does not hear the irregular woolly hairs, and conseguently the stiff setere present are more distinctly seen.

The sixth and secouth puir's of lejs are quite similar to the fifth and of about the same size.

The appendages of the pleon are of small size in accordance with the size of the pleon itself, and they are rather difficult to dissect out satisfactorily; but, so far as I have made them out, they present a fairly close general resemblance to those of Ianthe speciosa as described by Bovallius.

In the male the first pair of appendages (Plate II. figs. 11 b and 11 c) are modified to form an accessory male organ. They consist of two more or less oblong plates fitting closely against one another along the median line; they are widest at the base, where the outer margins are strongly convex; towards the middle they narrow considerably, witening again slightly towards the distal end; the extremity of each part is curved and bordered with about eight short setee. On the underside the surface of the plates is quite flat and the lateral margins are entire (fig. 11 () . On the upper surface near the middle there is on cach side a thin phate projecting upwards, so that a kind of groove is formed between them, the top of it being no doubt closed by the next pair of pleopola fitting on to it above. 'Towards the end the surface is raised on each side into two ridges which converse towards each other as they reach the outer distal angle, thus forming a duct on cach side, which reaches from nearly the centre of the joint to the outer angles (fig. 11 c). The whole apparatus probally serves to pass on the spermatozoa from the genital openings in the seventh segment of the pereion to the "prenial filament" of the second pair of pleopoda. On the under surface the two halves of the organ are separated along their whole length, but on the upper surface they are joined together fiom the base until the begiming of the ducts, only the distal portions therefore being completely separated.

The second pleoporla (Plate II. fig. 12) have the main portion subtriangular, the imner edge nearly straight, outer edge curved and bearing a few short setie towards the sub)acute extremity. This portion, which both Bovallius ant Beddard consider the "protopodite," contains a very powertul muscle, which reaches to the "penial filament" and no doubt acts as an extensor muscle for it. This filament appears to consist of two joints, one directed backwards towards the base of the appendage and the other when at rest lying alongside it, directed in the opposite direction, slightly curved, and ending in a long, very acute extremity, aparenty erooved on the concave side. Beddard considers this " pental filament" to be the "endopodite," a small soft appendage which arises from near its base he considers as the "exopolite,"

The third phenperta (Pl. II. lig. 13) consist of a basal pror-
tion, the protopoctite, which bears an inner, flat, rectangular, branchial plate, the endopodite, which narrows slightly towards the distal end and bears at its extremity three long, delicately plumose sete ; the outer part of the appendage, the exopodite, is not separated at the base from the protopodite; it consists of two joints, the first rectangular, bulging a little distally on the imer side, the second subtriangular, bearing a few small seta at the extremity and three longer ones on the outer margin ; the outer margin of both joints is also closely fringed with very fine short setæ.

The fourth and fitth ple poda I have not been able to separate out quite satisfactorily, but they appear to consist of romeded branchial plates with margins quite free from setæ. Among the other parts I found the appendage represented in figure 14 of Plate II. This I believe to be the exopodite of the fourth pair of pleopoda; it is somewhat similar to the exopodite of the third pair, but narrower and more delicate; the basal portion is long and curves slightly outwards, the whole of its outer margin is finely crenated and fringed with very delicate setw, which project radially outwards at each crenation; the second joint is subtriangular, joined to the first by an oblique articulation; it has the outer margin fringed with fine setæ and bears at the end two very long, delicately plumose seta longer than the joint itself.

In the female the first pair of pleopoda (fig. $11 a$) have been modified to form an oval operculum, which is only slightly longer than the greatest breadth; it consists of a single piece without any suture or other mark showing the different parts of which it is composed; the extrenity, which is nearly straight, bears six or seven very small fine setæ.

The other pleopoda of the female, with the exception of course of the second, appear quite similar to those of the male.

The uropoda (Plate II. fig. 15) are very small, conical, and bear a few small sete. They are the same in both sexes.

Sexual differences.-In no point do we find so much variety as in the characters by which the female differs from the male among the Crustacea. These differences are found sometimes in one part of the body and sometimes in another, and the parts affected are often different in closely allied species. In the present species the female differs from the male in the following points:-(1) In the character of the first pair of legs; (2) in the absence of the woolly hairs found on the carpus of the fifth, sixth, and seventh pairs of legs in the male; (3) in the special modifications of the pleopoda.

EXPLANATION OF PLATES I. \& II.

[111 the figures refer to Numna neozelanica.]
 the appendages only. $\times 19$.
Fig. 2. Antennule, \times 52.
Fig. \& Lateral pantion of the had, showing the revand the incortion of the antenmules and antenne (from a smaller specimen), $\times 5$. 2.
 from below, $\times 52$.
Fig. 5. Mandibles: u, extremity of richt mandhin, x l25: $b, 1$ alp of mandible, $\times 90$.
Fig. 6. Lower lip, \times 5.2.
Fig. 7. Maxillipede, \times 52.
 male, $\times 52 ; c$, of a young male, more developed, $\times 52$; d, of fully developed male, $\times 23$.
Fig. 9. Second pair of legs (of male), $\times 23$.
Fig. 10. Fifth pair of legs (of male), $\times 23$.
 of male, forming male organ, from below, $x 52$; c, extremity of the same, from above, showing ducts \&c., $\times 5$. .
Fig. 12. Second pleopoda of male, $\times 52$.
Fig. 13. Third pleopoda, $\times 5$. .
Fig. 14. Exopodite of fourth pleopoda (\%), $\times 52$.
Fig. 15. Uropoda, \times © 0

> II- Note upon the Encystment of Eolosoma. By Frank E. Beddard, M.A., F.R.S.E.

The observations to lie recomble in the present mate were made upoil material kindly supplied to me hy Mr. U. H. Latter, Science Master it Charterhonse. Knowing my interest in this group of Worms, Mr. Latter was son gral as to forward me three tuhes containing olecaying plants from an aquarium, among which were a laree number of specimens of one of the species of _ Eivlusoma with mat vil-ghubules in the integument. Two or the imlividuals wore foum in every sample of the water from these hules examinel with the microserne; they wer of varying sizes, some being twice or even thrice the lualk of whers: repmoluction lov femmation was not goneng ou with any vigur-a fact possibly the t. the commencement of the colif weather; mor, on the iother hand, were there any infleations whateres of sxxal matury. With the cessatim of the aee xual methat of repmetretion ome would perhaps expect to new with owne intication of the acguirement of swxal orgas-; but mo such indication was wherrable in any of the indivintals which I submitted to

have been described by d'Udekem *, Maggi \dagger, and, later, by Stole \dagger. Štole's paper is fuller; there is no statement in d'Udekem's paper of the time of year at which sexual propagation takes place. Magesi speaks of autumn without particularizing the exact month. It is quite evident, however, that Maggi saw sexually mature individuals (see fig. 9, tav. ii. of his memoir).

Fir. . 2.

IFig. 1 .

Fig. 1.-A Aolosoma within the cyst.
Fig. 2.-The worm making its way out of the ruptured cyst.
In spite of the absence of any trace of genital organs in the Eolosoma the water contained numerous peculiar bodies (woodeut, fig. 1) which I believed at first to be developing embryos; I may, indeed, very possibly be mistaken in believing as I do now that they are not developing embryos.

* "Notice sur les organes génitaux des Rolosoma et des Chatogaster," Bull. Acad. Roy. Belg. t. xii. (2e sér.) p. 469.
\dagger "Intorno al genere Eolosoma," Mem. Soc. Ital. Sci. Nat. vol. i.
\ddagger "O pohlarnick orgauech rodu Eolosomea a jejich poméru luu organum exkrečnim," SB. Böhm. Ges. 1889, p. 183.

The only author who has seen, described, and figured the developing embryo of Aerlosoma is Margi *. "The erge," he remarks (ilid. p. 15), "up to the complete formation of the embryo is always covered by a very resistant membrane, which may be compared to an egg-shell." The ovum when deposited has no longer a spherical form, but is oblong, formed of an outer membrane (the "egg-shell"), with an inmer vitelline membrane, which surnumds the gramular contents. As the embryo develops out of the orum the red oil-globules appear, and at a comparatively carly stage. The embryo can and does move frecly about in the cavity of the shell. When hatched the sete are only just visible. The figures illustrating this description (tav. ii. fig. 11, A-F) show a progressive increase in size of the whole ovom, which is, when fully mature, very minute. The drawing of the embryo just before hatching measures a little more than 1 inch in length, and is magnified 700 times.

Maggi speaks of the whole structure as an ezg. Vejdovsky \dagger, however, says " Nach Magei sind die abgesetzten Cocons von Eolosoma elliptisch, durchsichtig, und die Embryonalentwicklung, \&c." IIe regards them as cocons, and the resistant membrane figured and described by Margi as the chitinous wall of the cocoon. It is rather surprising that Maggi did not arrive at the same conclusion, since he correctly deseribed the clitellum, which is known to be the organ concerned with the formation of the cocoon. Possibly, however, the difference in shape which the supposed cosoon of Eulosoma exhibits as compared with those of other Oliencheta, led Maggi to the view that the membrane in question does not represent a cocoon. In all Oligochata, so far as is known at present without a single exception, the coconn, which varies in form, is invariably prolonged at either cond into a longer or shorter process, particularly long in Crimtritus. Otherwise the cysts of EEolesoma might well be supposel to be cocons, even though they contain, acoording to Magzi, but a single embryo; for the Enchytreida and Naidomerpha, the nearest allies of Lolosoma, deposit only one ovum in each capsule. This fact was tirst discovered by the industrious investigator Jules d’Udekem \ddagger, and afterwards confirmed by Vejdorsky \S and sitole $\|$. In the figure of the coeoon of

* Unless there is any statement made in Stolc's paper.
\dagger 'System und Morph. d. Oligochaeten,' p. 19.
I "Nouvelle Classification des Imelides setiques abranches," Bull. Acad. Roy. Belg. t. xxii.
§ 'Monographie d. Enchytraeiden.'
|| "Prisperly lin Studin Naidomorph.," SB. Bühm. Ges. 1887.

Enchytrous given by d'Udekem (on p. 9 of separate copy of his nemoir already quoted) the two processes at either end of the cocoon are extremely rudimentary. In another memoir * published about this same time, dealing principally with the cmbryology of Lumbricus, a figure is also given of the cocoon of Enchytrous gullou-it is evidently from the same drawing as that which furnished the figure already referred to. The cocoon and contents are thins (on p. 49) described:-"Il n'y en a jamais qu'un seul [reuf] dans une capsule; celle-ci est sensiblement sphérique et enveloppe completement l'œuf; senlement il y a denx points opposés où on rencontre une légère protubérance."

With these illustrations and deseriptions before him one could not be blamed for regarding the structures figured by Maggi as cocoons, from the drawings of which the "protuberances" had been omitted, since their slight development rendered them inconspicnous, and therefore easily passed over. The only difficulty in the way of making this comparison would be the increase of size in the cocoon-a fact not readily intelligible on the hypothesis of its being a cocoon.

In every drop of water which I examined from the source already mentioned there were not only specimens of Eolosoma Ehrenbergii crawling about, but very numerous round capsules, containing what lonked at first like developing embryos of EDolosoma.

These capsules seemed to be occasionally attached to fragments of weeds \&c.; but I fancy that they were merely lying upon these bodies, and had no real comexion with them. In any case there was no observable means of attachment, and they were as commonly found lying freely in the water at the bottom of the vessel in which they were placed.

Each capsule contained a single Eolosoma, which appeared to be always bent once upon itself, the tail lying close to the head. The capsules were nearly invariably perfectly spherical, but sometimes more irregular in form or oval; otherwise they recall Maggi's figure (fig. 11, F), where the "embryo" is represented as being coiled in a position very similar to that which I found. These capsules are quite visible to the naked eye, their average size being about that of Volvor globator. They are in every case perfectly motion-less-that is to say, there was no motion of translation; the worms inside were, however, in active movement - not crawling about within the cysts, but showing active contractions of the body and movement of the alimentary canal, the

* "Développement du Lombric terrestre," Mém. cour. et Mém. d. sar., etc., Acad. Roy. Belg. t. xxrii.
contents of which were driven hither and thither by peristaltic waves of contraction; these movements were generally though not always to be seen; they appeared to be sometimes increased by warming the slide. I did mot observe any movement of the cilia on the under surface of the prostominum.

The capsules were of various sizes, some being quite twice as large as others ; but although there was a difference of size there was no ascertainable difference in shape between the larger and smaller capsules, hor, in fact, any difference of structure correlated with the ditference of size. The: capsules bore not a little resemblance when examined with a lens to the "fruit" of Chara, on accomit of their orange colour; this colour is due to the innmerable orange oil-hmpis of the contained woms. Uceasinnally the worms within the capsules appeared of a fant pinkish colour; this compation recalls Prof. Lankester's * observations upon the blow of - Eohenmen. He remarks that the blowe in the vesech is of a pinkish colour; the pink colum which I whervel was net limited to the blood-vessels, but pervaded the body zenerally; it is, I think, clue to a diftision of the interumental pigment likerated through the disintegration of smme of the epidermic oilglobules. The pink colone was notably increased by pressing upon the cover-glass with sufficient enerey to infure the integument and rupture the vesicles containing the pigment.

The capsules consist (see figs. 1 \& 2) of a thin layer, which varies in thickness in different individuals; it is perfectly colourless and transparent ; it had no tinge of yellow like the cocoons of Oligoclaeta in general. When the capsule was ruptured by forcibly pressing unn the coner-glass with a needle the contents were pressed out, leaving the cyst intact. The cyst was then seen to be a complete hollow thin-walled sphere ; the elasticity of the walls was shown ley the fact that if, during the process of rupturing, the eyst-wallis were pressed inwards at any point, they recovered their form immediately that the pressure was removed.

The worm always completely filled the eyst, its epidermis being in cluse contact with the membane. Uecasionally I found empty cysts, which were split across as shown in the figure (fig. 2), to allow the egress of the worm.

What is the nature of these eysts? Are they coconns? It is difficult to answer this que-tion quite positively. But before attempting to do so I may quote a later remank of Irof. Tejulorsky \dagger upon the suljeet. In a general summary of our

[^3]knowledge of the cocuons of the Oligochata he observes with regard to Eolusoma, "Anf die Schikderung der vermeintlichen Coenns von Eolosoma wie sie semerzeit Magri gegelen hat, verzichte ich einzugehen, da es hier durchans maklar bleibt, ob er thatsächlich Cocons, ofer encystirtes Wiamer gesehen hat." I am not certain whether Prof. Tejdovsky is speaking here of his own knowhedge or is merely argung from Mager's figures 1 : that as if mas, I believe that lejlowsky's sugection of encystment is thas right one, and I had cone to that conchaion before making myself acrquanted with the paragraph quated abowe, while getting together the literature of the sulyect. All the facts that I have been able to bring forward in this paprer tend, as it appears to me, to show that we have here a unique case among the Oligochreta of encystment. I believe I an right in saying that no freshwater Amelid has hitherto been discovered to possess this power of temporary encystment. I shall now endeavour to show that Eshosoma does enerst itself.

On the hypothesis that the eysts in question are cocoons we have to dispose of a good many preliminary ditfieulties. In the first place their form-absolutely spherical and without processes at either end-is unique among the Olignchata; Ewlosoma of course may be an exception, but there is int, I think, evidence at present that it is. Socomily, there is the difference of size ; no doubt there are infinite variations in the size of the cocons of varions species of Oligocheta, but I have not found such a great difference as I have recordel here among the cysts of Eofusome. 'This very fact seems thindicate that Jaggi's figures, to which I have already referred, represent cysts (of various sizes) and not developing ora; the figures of the contained embryos which he gives are not sutticiently detailed to enable one to be absolutely certain that. they are not disintegrating worms rather than developing embryos. The difference in shape between the structures figured by Maggi and those which I have observed may be possibly put down to specitic differences. Thiddly, all the cysts which I examined - amounting to forty or fifty contained fully grown worms, immature certainly (as regarts absence of sexual organs), but quite as large as those swimming about in the same water. This may be merely a coincidence, but in that case it will be a very remarkable one; all that we know of the development of the Uligochieta shows that the time varies somewhat in individuals, one growing faster than another. Besides this we have further to assume

Ann. de Mag. N. Hist. Ser. 6. Vol. ix.
that all the cocoons, each furnished with its one orum, were fabricated either upon the same day or at the exact intervals that would allow of the embryos simultaneonsly reaching their full t erm of development. This supposition is rather too much to believe. Fourthly, the supposed cocoms possess no apparatus of fixation; this is not a pusitive bar to believins them to be cocoons, for some worms have mot any such mechanism, but in others the cocom is enveloped in a gelatinous layer which causes it to adhere firmly to the surface upon which it falls. Fifihly, and, if myobservations arecorrect, this is an absolute and final objection to regarding the cysts of Eolosoma as cocoons. I treated a number of these boilies with streng potash; the first effect of this reagent was to change the colour of the pigment to a splendid violet, which rapidly disappeared. This fact I have already recorled in this Journal*. The second effect was to colour hright green the contents (be it noted that there were contents) of the alimentary canal. EElosoma is a vegetable feeler, and potash produces a precisely similar effect upen the coloming substances of various algae. The natural inference is that the supposed embryos had been feeding upon such alge ; clearly therefore they cannot be embryos at all, as alge conlil not gain access to the interior of the cysts. They must have fel upon these algre and then encysted themselves. It is perhaps unnecessary to state that the worms within the cysts hal sete precisely similar to those crawling about outside. I mention this fact, however, more particularly since Masei did not find sete upon the worms within the cysts described by him. 'The seta might, however, be passed over; they are extremely delicate, and the position of the worm in the cyst -coiled upon itself-is not by any means a farourable one for allowing these structures to be seen.

Considering all these facts it seems to me necessary to arrive at the conclusion that Eulosoma can temperarily encyst itself, after the fashion of some of the lower organisms. It should be noted that the alimentary tracts of the free-swimming individuals did not for the most part contain much food ; and I saw but little evidence of active feeding on the part of the worms in the shape of the very characteristic pellets of dang evacuated by these Ammelids. This cessation of feeding may be preliminary to encystment; the torpor caused by the approch of winter may have brought about a general eessation of activity, which culminates in eneystment for a period

- "Notes upen certain Species of . Iotusema," Amb. © Mas. Nat. Hist. Oct. 1889.
when food is unt so abumdant. The apparent rarity of sexual propagation, which might possibly lead to the formation of cocoons so small as to be readily carried about ly the wind, may have something to do with this encystment. The cysts are small enough to travel very easily, and the wide distribution of the speceies may have been thus brought about.
111.- Notes on Longicorn C'alroptera of the (rronp) Cerambycinæ, with Descriptions of new Genera amd Species. By Charles J. Gainan, M.A., Assistant in the Koological Department, British Museum.
[Concluded from vol. vii. p. 3t.]
In my two papers on this group, of Longicomia which have already appeared I have dealt with African, Indo-Malayan, and Australian species. The present contribution is contined to South-American species of the group.

Hammaticherus macrus, Bates.

Mr. Bates's clear description of this species leaves no room for doubt that it is identical with the Hammaticherus bellutor of Dejean's collection. It is very doubtful, however, whether Serville's description could possibly have been drawn up from the same species; if it is to be accepted as accurate we must regard the I. bellator of Serville as a species allied to but quite distinct from II. mocrus, Bates $(=I I$. bellator, Dej.). It may be remarked that in the latter species the anterior cotyloid cavities are distinctly open behind, while in all the other species known to me they are completely or almost completely closed in behind.

Hammaticherus consobrinus, sp. n.

Plocrederus consobrinus, Dej. Cat.
Fulvo sat dense pubescens; prothorace supra transversim regula-
riterque plicato, lateraliter in medio modice tuberculato ; elytris fulvescentibus, apicibus truncatis, utrisque bispinosis; articulis antennarum a tertio ad decimum apice intus spinosis, articulis tertio quartoque spinis recurris.
Long. 26, lat. 8 mm .
Mab. Cayenne (Lacorduire).

Almost cutirely envered with a close but short tasmy pubescence. Antemue (z) a little lonrer than the holy, with the joints from the third to the tenth spinm at their inmer apex, with the spines of the third and fonth j, ints lomer and recurved, that of the fifth almost at right ancless to the joint. those of the following joints sradually bemmins shotior and directed more forwate, until in the tenth the sume is lithes more than a sharp angulate proces of the juint. Prothmas crossed above hy about nime tolerably regular transwerso rillas, exclusive of the raised anterio and posterion marsins; finnished at the middle of each side with a rather feeble tulerche. Elytra cach truncate and bispinose at the alees. Prosternal process feebly tubercled.

This species is to be distinguishom hy the stmetume of its anteme from every known species of the gemus. In colour and general appearance it mist nearly resembles a varicty of H. plicatus, Oliv, which is characterized hy the absence of the dark bands from the margins of the elytra.

Hammaticherus Lacordairei, sp. n.

Plocerderus Lacordaivei, Dej. Cat.
H. buto similis, sed differt capite surpa inter oculos di-tincte carinato; antemis (0°) articulis tertin quartocque solis spinnsis, ceteris inermibus; prothorace supra minus regulariter plicato.

Hab. Argentine: Buenos Ayres, Salta.

Brownish hack, with a yellowish-grey or areenish-srey pubesence. Prothorax with a conical tuburele on the midile of each side, with a callosity (stronger in the make) between this tubercle and the anterion marwin; crossed above ly about ten ridges in addition to the raised anterior and posterion margins. Elyma pitchy brown, with a faint yellowish-grey pubescence; apices truncate, each bispinose. Legs greenis! grey ; tarsi reddish tawny.
of Antemme more than twice as long as the boly; thisd and fourth joints spined at the aper, with the spines tormed strongly backwards; fifth joint very feebly dentate near the apex, the remaining joints unarmed.
of. Irothorax less regulanty wrinkled above. Antemme a little longer than the body, with the third to fith joints each armed with a recurved spine at the apex, the sixth to tenth joints denticulate at the apex.

I have little doubt, considering the very close agreement in colour, that the two specimens here described helong to the same spectes. The mak specimen is from Salta, the female from Buenos Ayres.

The species is evidently very nearly alliel to //. betu; Lim. 'The colour of the elytra is almost the sams, but the pubesecnce has a slight greenish or yellowish tinge. The ridges of the prothoras are more numerons and a little less regularly transverse. The fifth joint of the make antenne is withont a distinct spine. The head is more distinctly carimate between the upper lobes of the eyes.

Hammaticherus punctulatus, sp. n.

Nigro-fusens, cincreo-puhesens; prothoraco supra transversim sat regulariterque plicato, plicis prope medium simuatis, lateribus utrispue tuberculis duobus-uno medio, altero obtusiore paullo pone marginem anticun : elytris clongatis, ruio-ibumeis, cinereo leviter pubescentibus, subiliter muctuluis, apicibus truncatis utrisque valde bispinosis: antemnis (o) quam corpore duplo longioribus, articulis tertio ad quintum spinosis, spinis valdo recurvis, articulo quinto tertio æquali.
Long. 37-41, lat. 10-12 mm.
Hab. Brazil.
Blackish brown, wioh a paie greyish pubseence, with the emargination of the eyes covered with a bright golden pubescence. Prothorax erossed above by about eleven transverse ridges in addition to the raised anterior and pusterior borders; the sides each with two tubercles-one at the middle, the other, distinct thongh olituse, a little behind the anterior margin. Elytra clongate, feebly and somewhat sparsely punctulate, reddish brown, with a faint greyish pubascone?, each truncate and bispinose at the apex.

This species may be distinguished from H. Zutus, Limn, and its allies by the punctuation of its clytra, by the second distinct tubercle on each side of the prothorax, and by having the fifth joint of its antemne equal in length to the third.

In H.batus and H. mexicamus the fifth joint of the antenne is a little shorter than the third; the prothorax has a slight thickening of the ridges, or callosity, on each side near the anterior margin ; the elytra are almost destitute of punctuation beyond the excessively minute pits from which the hairs of the pubescence spring.

In 11. punctulatus the stridulating surfice of the mesonotum is less finely striated than in allied species; but I do not yet know whether this character may be relied on as a specific distinction.
II. carthagence (Guér., MS.), a variety of II. butus, Limn, with brown or reddish-brown elytra, which is fomd in Colombia and Panama, has a strong resemblance to tife present species.

Hammaticherus lasiocerus, sp. n.

Plocaderus lasiocerus, Dej. Cat.
Piceo-ferrugineus, fulvo-griseo-pubeserns; capitis fronte antenni-que griseo-villosis: prothorame latraliter valde tuherenlato, sura transeysim sat recrularitergue plimato: elytris fulvo-tortaceis, opacis, grisen-pubeseentihus: apicibus truncatis, utriagne lispinosis : antennarum aticulo tertio quam quarto fere duplo longiore, articulis tertio quartoque apice spina valde recurra armatis, ceteris inermibus.
ס. Long. 33, lat. $92_{2}^{1} \mathrm{~mm}$.
Hab. Brazil.
'This species somewhat closely resembles II. plicutus, Oliv., but the prothorax is more pubescent and its plication som"what less regnlar towards the middle, and the elyta are without dark mareins. It may be distinguished from this and from every other species in the genns by the yellowishgrey villosity cosering the antemme and the front ot the lead, by the long third joint of the antenme, and by the spines of the antemne, which are confined to the thind and fourth joints, and which are rather shost and directed very mueh backwards.

IFammaticherus marinus, sp. n.

Plocoderus murinus, Dej., MS.
Parvas: fuscus, ommino denseque murimopubescens: prothorace suprat leviter intermpteque plicato: elytris punctulatis sat dense pmbescentibus, apicibus truncatis utris?ue hispinnsis: antemis (c^{*}) corpore sesquilongiorihus, articulis quinto ad decimum apice spineso-dentatis; anteunis (?) eorpore vix longioribus.
Long. 17 , lat. 5 mm .

Hab. Corrientes.

This species may be recosnized by the rather elose monsegrey pubescence, which entirely covers it. The mige of the fowthomax are feebler than in other spectes of the cemus, and (lo mot seem to exceed eipht or nine in number. The dense and very fine punctuation of the elytra is scaredy visible mader the mather elose pubesernce. The joints of the antemne from the thind to the tenth are dentate at the inmer apex, the thind and fourth very feebly so, the tith and some of the following alnhost spinose.

Mammaticherus Thritipenmis (Chevr., M心.), sp. n.
Fermginns, corpme subus grion -ultiliter pmlaneme: antemis
rufesectibus, articulis a quinto apice intus angulato-prompurtis, hand spinosis, scup apice carinato; prothorace supra tr assersim rernlariterque rugato ; elytris fulvo-testaceis, glabris, nitidis, dense functulatis: apicibus truneatis, angulis externis spinosis ; pedibus rufesconthus, dense punctatis, femoribus ponticis apice nigris. Long. 19, lat. 4 mm .

IIab. French Guiana.

This species belongs to the group-including P.glubricollis, Bates, and l^{\prime}. puctor, Lameere-in which the thind and fourth joints of the antemae are unarmed, and in which the succecding juints up to the tenth are angulately or spinosely producel at the imer apex. The species can be casily enongh recognized hy its distinct coloration. The punctures of the elytra are exceedingly minute at and beyond the middle, but are somewhat stronger towards the base. The legs are densely and somewhat strongly, punctured. The sape of the antenna bears a distinct carina at the apex. The proand mesosternal processes are tubercled.

Criodion fulvopilosum, sp. n.

Criodion flaropilosum, Buq., Dej. Cat.
Castaneum, fulro vel griseo-fulvo omnino denserpe pilosum : prothorace supra tuberculato sparsissime punctato, lateribus tuberosis, inequalibus, hasi apiceque constrictis: elytris apice subtruncatis, sutura breviter spinosis; femoribus intermediis posticisque apice hresiter unidentatis : antennis corpore paullo brecioribus (σ°), medium elytrorum rix excedentibus ($~$) . .
Long. 40-60, lat. 11-17 mm.

Hab. Brazil.

Clothed entirely with a dense tawny or greyish tawny pubescence, which is thicker and somewhat silky on the underside of the body. Head with a broad, obtuse, and feebly raised carina on the vertex between the antennary tubercles. Eyes molerately large, the lower lubes each forming a triangle, whose obtusely pointed anterior termination is but little sunk beneath the projecting margin of the antemnary condyle. Prothorax transverse, constricted at the base and apex; the anterior margin of the pronotum slightly projecting and rounded in the middle; the disk with about five obtuse tubercles. Elytra (which are apt to be rubbed bare of their pubescence in places) with the apices truncate for a short distance from the suture, and briefly spined at the suture. Intermediate and posterior femora each with a short spine or tooth at the posterior distal extremity. Tibiæ each
with a spine at their outer termination. Antenme in the mate reaching to within a shont distance of the apex of the Cytra, in the female surpassing but little the midne of the elytra, with the thind juint in loth sexes but little lonser than the scape.

Criodion cinereum, Oliv.

Primus cinereus, Oliv. Ent. iv. 66, p. 35, pl. xiii. fig. 55 ($\%$). Criodron placidum, Dej.
('astanem, griseo sat dense pmieseens; prothorace supra leviter tuberulato, valde subrurnseque punctato, lateribus inerqualibus: clytris rufo-castaneis, fulyo-grisen sat dense puhescentibus, aphicihus rotundatis ef ad suturam brevisoime spinosis: femoribus intermediis posticisque apice unidentatis: antennis quam corpore paullo (or *) vel multo (q) brerioribus.

IIab. Caymne.

I have here characterizel the C. placitum of I .jean; hut I have me doubt that this is the species described and figuted by Olivies under the name Primus cincreus. It may he distinguished from (. futconilosum mot only l, y a difference in colour, but hy its lese distinctly tuberched and more strongly and much more thickly punctured prothoras.

Criodion antennatum, sp. n.

Castaneum, cinereo sat dense pubecens: prothorace prom transrerso: basi apiceque constricto, laterihas tubermis, sulimaInalihus, fortiter sat demerque punctatis, disco leviter tuberalite. sparsim punctato: elytris apicilus rotumdatis, sutura hreviter mucronatis; femorithis intermedis posticisque apice broviter unidentatis : tibiis apice extus hreviter spinesis: antemis utronue sexu articulis duodecim distinetis.
Long. 49 , lat. 12 mm .
Hab. Venezuela.
Clothed ahmest entirely with a rather dense ashy-grey pubescence. I'rothomax slighty transerse, constrictod at the hase and apex, somewhat swollen and uneven atone the sides, the latter strmely and rather thickly punctured, the diak with three feelle tulureles or callosities and with some strong punctures. Dlytra cach rounded at the apes, brietly mueronate at the suture. Antemate about oqual in lengh to the booly in the male, much shonter in the temale; the third joint longer than the first and second taken tugother, amd mere than half as long again as the fumth, the later shomer
than any of the suceceling joints, the twelith exceptel; this joint in the male is abont half as long as the eleventh, in the female it is much shorter.

This species has some resemblance to ('. cinereum, but can le easily distinguished from any of the allied species by the distinct twelfth joint to its antenne.

Criodion Dejeani, sp. n.

Criodion holusericeum, Dej. Cat.
Fulvo vel griseo sat dense tomentosum ; prothorace subquadrato, bavi apiceque eonstricte, supra levier rugoso, lateraliter nomihil inaequali; elytris pulie cinerea decumbente sat dense obtectis, apicihns late et recte truncatis, utrispue hisphosis; antemmis (δ°) corpore paullo longioritus, subtus pilis fulvis dense fimbriatis. Long. 28-38, lat. $7 \frac{1}{2}-9 \frac{1}{2} \mathrm{~mm}$.

Hab. Brazil.

Head with rather strong mandibles; with the cheeks prominent and somewhat bluntly pointed, widely separated below, with a distinct transverse groove on the underside of the head between them. Eyes rather small, the lower lobes transverse, somewhat pointed in front. Prothorax subutudrate, constricted at the base and apex, slightly mionse above, somewhat uneven at the sides, covered with a thick greyish or fulvous pubescence. Elytra with a rather dense ashy-grey documbent pubescence ; the apices broadly truncate, each with two spines, of which the outer is stronger than the sutural one. Body underneaith and legs with a fulvous-grey jubescence. Tibiax each armed with a spine at its outer distal termination ; internechiate femora unispinose at the apex ; apex of the posterior femora spinose behind, dentate or sharply angulate in front. Antennæ (δ) a little longer than the body, thickly fringed with tawny hairs undemeath.

The name holusericeum seems particularly inappropriate to the present species. I can see nothing in the three specimens betore me that could have suggested silkiness; their pubescence, in its present state at least, is cntirely devoid of gloss.

Criodion tuberculatum, sp. n.

Criolion tuberculatum (Cherr., MS.).
©. Fuscun, griseo-pubescens ; prothorace subquadrato, dorso plagis nomullis paullo eleratis, intervallis sulcatis separatis; elytris pube breri grisea dense ebtectis, apicibus late recteque truncatis,
utrisque bispinosis; antemnis corpore paullo longioribus, subtus pilis fulvis dense fimbriatis.
Long. 23 et 38 , lat, $7 \frac{1}{2}-9 \frac{1}{2} \mathrm{~mm}$.

Hab. Peru, Sarayacu ; and (?) Cayenne.

Head with strong mandibles and prominent checks. Disk of the poothorax with about seven slightly raise t plage or thattened tubercles, which are separatel from one ano ther by narow sulcate intervals; the medio-hasal placia is somewhat rhomboidal in form, with its longer diameter in the middes line; the two in front of its anterion angle are sinall amd scarcely separated from each other; the two on either sile of the median plaga are broad. The siles of the prothomax are somewhat meven. The elytra have a dense grevish pul)... cence. 'The intermediate femora are naispinose, the prist rion bispinose at the distal extremity. 'Tone tibise are cach spine at their outer termination. The antemse, a little longer than the body, are fringed with fulsous hairs underneath.

This species, in the sculpture of its pothorax and in its eeneral appearance, somewhat resembles C'. rhimecros, Bates. But the latter species is characterized by the remarkable horn-like processes which come off from the anterior side of the mandibles. In the larger of the two specimens which I have included in the present species there is a slight elevation or ridge on the anterior side of the mandibles.

Criodion testaceum, sp. 1 .

Criodion testaceum, Dej. Cat.

Rufo-testaceum, elytris fulvis: capite prothoraceyne fulvo-grisen dense pubescentibus: prothorace sulnua lrato, fortiter sprsimune punctato; elytris haud nitidis, pilis minutis sparsim munitis, apicibus truncatis, utrisque bispinosis: corpore suitus sparsim pubescente; femoribus intermediis apice unidentatis, postiris bidentatis: tibiis apice extus spinosis: antemis ybam corpmoe paullo longioribus, fulvo sparsim pilosis.
($f^{?}$? Long. 32, lat. 9 mm .
Hab. Brazil.
From its general appearance, and especially from the rather close approximation of the antemal tubereles, this species might be considered to belong to the genus sypullemum; but ats its intermediate cotyloid cavities are not chosed externally, the species could not be placed in sphallenum withont hreaking through the limitation which Mr. Bates has imposed upon the latter genus.

Criodion quadrimaculatum, sp. n.

Fuscum: capite prothoraceque grisen-pubewemthos; prothora"is dorso lateribusque rugose-punctatis, illo madio carina hrevi paullo elevala: elytris testaceo-fulvis, suloparis, sparsim setosis, utris puo marginihus exturnis maculispue duabus (nna sub humerum oblonga parum sitida marginem attingente, altera diseoidali rotundata paullo pone medium) fuscis ; apicibus truncatis, ut risque bispinosis: corpore subus griseo-pubescente ; antemis guan corpore sesqui-longioribus.
ठ. Long. 38, lat. 10 mm .

Ilab. Brazil.

Dark brown, with a grevish pubescence. Prothorax strongly and somewhat rugesely punctured; the sides nearly parallel ; the disk with a short feeble carina in the middle. Elytra fulvous, opaque, sparsely punctulate, with very short yellowish setae springing from the punctures, with the extreme lateral and apical margins and two spots on each dark brown; of these spots one (oblong) is placed under the shoulder in contiguity with the outer margin, the other (rounded) is situated on the disk a little behind the middle; apices of the elytra truncate, each with two moderate-sized spines. Intermediate femora unidentate; posterior bidentate at their distal extremity. Tibia spined at their onter termination. Intermediate cotyloid carities open externally.

This species seems nearly enough relatel to the preceding one, and for similar reasons must be placed in C'rivelion.

Criodion Sommeri, sp. n.

Criodion Sommeri (Dej. Cat.).

Nigro-fuscum: capite prothoraceque griseo-fulso pubescentibus; prothoracis dorso lateribusque rugoso-punctatis, medio disco tuberculo glabro plano antice in carinam prolongato; elytris fulrotestaceis, pilis fulvis erectis dispersis, maculis septem fuscis-una elongata utrinque sub humerum, una comnuni subcordata pone scutellum, duabus utringue pone medium obliguiter dispositis; marginibus externis suturaque angustim infuscatis ; apicibus truncatis, ad suturam breciter spinosis; corpore subtus fulro-rillosis; pedibus fuscis, fulvo sparsim setosis, femoribus utrisque macula dorsali rufo-testacea; antennis sparsim pilosis, quam corpore sesquilongioribus.
8. Long. 41, lat. 12 mm .

Hab. Brazil.
Disk of the prothorax with a flat medio-basal tubercle somewhat rhomboidal in shape and prolonged at its anterior
amgle into a sharp carina, which extenls almost up to the anterion border; with two rery small transverse tub)ereles, one on either site of the carima, on the anterior part of the disk; with a broad and very feebly raised tuberele on cach side near the base; the siles of the prothomax thickly and rugosely, the disk less thickly, punctured. The elongate spot placed just below the shonler of each elytron domes not tonch the outer margin. Of the two sperts, placed whituely behind the middle of eache elytron, the anterior and ontermmet is small, the posterior and inner raller large. Lntermatiate femora midentate, the posterior bidentate at the apes. 'Tibiae spined at their outer termination. Intermediate conjoid cavities open on the outside.

This species must have some resemblane in the style ni marking of the elytra to C'sexmuculutum, Bua., and to U^{\prime}. Chalrillaci, Thoms.; but from other described chatacters of those species I am led to beliere that the present species is quite distinct.

Spleallenum literatum, sp.n.

Ciriodion z-littera, Cherr., MS.

Fuscum, ${ }^{\text {griseo-pubescens ; prothorace grosse. dense sabrugustque }}$ punctato, lateribus leviter rotumbatis: disen thituberculato, tulerculis parvis, glabis, nitidis: clytris fuscis. opacis. sparsim altorsetosis; utrisque maculis duatus testaceis (una ante mertium litere z simulante, altera prope apicem rotundata): apicibus obliquiter truncatis, sutura minus productis et hersiter spinois. angulis externis modice spinosis : antennis corpore sempulangioribus.
ơ. Long. 32, lat. $7 \frac{1}{2} \mathrm{~mm}$.

Hab. Brazil.

Ilcad, thoms, underside of boty, legs, and antomese with a not very thick coarse pheseence. I'rothomax very smongly and thichly punctured, slighty mombel at the sides, narmweil towarls the hate and apex ; its greatest widh seatedy greater than its length along the median dorsal lime; the disk with three feeble, glahoms, shining tubercles. Blyma dark hrown, dull, furnished with minute white seter, and with some lomser white setar aramged somewhat in hometudinal rows. The four pesterion femmare ach midentate at the er apex ; the tibiar are mach teebly phed at their outer distal extremite. The little projecting process of the antero-lateral part of the mesestemm is rery distinct, thongh it dues mot omphetry cut off the epmerni from the interne liate cotylnit carity.

Sphallenum spadiceum, sp. n.

Criodion spadiceum, Dej. Criodion cylindricum, Dej.

Fuscum, fulvo-griseo-tomentosum; prothorace subyiadrats, supraohsolete hituherenlato, sparsim puactato; sentellodense tomenton) ; elytris fuscis, fulvo sparsissime sentisis, setis decumbentibns; apicihus truncatis, utrisque hispinosis: femoribus apice ohtise anculatis, hand dentatis: tiliis apice extus ris spinnsis: antemis fulvo-grisen- 1 mentosis et sparsim riliatis, ynam corpore ses puilongioribus (δ^{*}), vel paullo brevioribus ((f).
Long. 33-36, lat. $8 \frac{1}{2}-9 \frac{1}{2} \mathrm{~mm}$.

Hal. Brazil.

The femora in this species are slightly and obtusely augulate on each sile at the apex ; the tibie have each a very short blunt spine at their outer tormination. The intermediate eotrloid cavities are closed in on the ontside by an antern-lateral process of tuberele coming off fom the metasternum. Owing to the absence of spines or teeth from the apical ancles of the femora, and their great menturion 9.1 the tibie, this species onght perhaps to be placel in Xestin. It may be lonked unm as an intermediate form, whose characters on the whole, it seems to me, bring it int, chaser relation with Sphallenum than with Xestia.

Xestia denticornis (Chevr., MS.), sp. n.
Xestia spinipennis, Dej. Cat., nee Serville.
Nigro-fusca, elytris castaneis, opacis ; eapite (postice excepto) antennisque vis punctatis; prothorace grose sparsimque panctato, dorso punctis in rugis parum transtersis positis ; scutello fulropubescente: elytris coriaceis, minutissime puctulatis: apicibus truncatis, utrisulue longe bispinosis: corpore subtus pedibusque sparsim fulvo-griseo-pilosis; antemis (©') quam corpore panllo longioribus, articulis a quarto ad decimum apice intus denticu-lato-productis, articulo undecimo medio angulato.
Long. 25-35, lat. 6-9 mm. (σ if).

Hab. Brazil.

This species appears to be somewhat allied to X. brevipernis, Bates, from which it may be distinguished by the almost complete absence of large punctures from the front part of the head, including the antennal tubers. The antenna of the male are slightly longer than the boty, those of the female much shorter; the third joint in the male is but little longer than the fourth ; in the female the third joint is about
half as long again as the fourth. The femora are somewhat gradually thickenel from the base up to beyond the midde, and not abruptly thickened, or clavate, between the middle and apex as in some other species of the genus.

In I. brevipemis the antemas of the male are, according to Mr. Bates's description, much shorter than the boly. This character will afford a further means of distinguishing brevipenmis from denticornis. It is necessary to add, however, that the females of some of the species of the present genus might easily (without recourse to dissection) be mistaken for males.

Xestia spinipennis, Serv.

Prothorax transversely and ahonst regulanly wrinkled above, irregularly rugose at the sides, slightly narmwed anterionly. Elytra highly polished, very minutely punctulate, and of a reddish chestnut-colour. Femma somewhat abruptly thickened between the middle ant the aps. Third joint of the antenne in the female-the only sex known to me-twice as long as the fourth; the scape thickly and somewhat rugosely punctured. The head alsio strongly enough but not very thickly punctured.

These supplementary characters of X. spinipemis, Serv., [have drawn up, from a frmale example (from serville's collection) which in (Che vrolat's writing has been labelled type. It will be well also to direct attention to the fact that the species-under the name of X. spinipemis, Serv.-with which Mr. Bates has made comparisons in describing some of his species was not the true spinipennis of Serville, but probably X. denticomis (the X. spinipennis of most cullections), which is quite a different species.

Xestia vittata, Thoms.

The specimens answering to the deseription of this specie's vary considerably in size.
I can find no characters by which to distinguish a specimen from Dejean's collection-ticketed X. contiusa, Dej- from examples of vithata, Thoms. The antenma are eleven-jointed, as in the latter species.

There is, however, one specimen in the British-Musem collection which (in almost every other respot aspering with confuse, Dej) has twelve distinet juints to the antemma. It was no doubt a specimen similar to this which was
under Lacordaire's observation when he wrote the note * refirring to I. confusa. If the complete division of the elerenth joint of the antemme is to be taken by itself as a sufficient specific difference, the latter species may conveniently be called X. confusa, Lacord.

Xestia longipennis (Chevr., MS.), sp. n.

Castanea: prothorace supra transersim sat rerulariterque plicato, lateribus irregulariter rususis; elytris chongitis, castancis, subopacis, vitta lata lompitudinali utrimgue rufo-castanea; apicibus truncatis utrisque longe hispinosis; femoribus ultra mediam modice clavatis: antennis (f) quam corpore multo brevioribus, articulis a septimo ad decimum apice intus angulato-productis, articulo tertio quam quarto duplo longiore.
q. Long. 35, lat. $8 \frac{1}{2} \mathrm{~mm}$.

Hab. Brazil.
Very closely allied to X. vittuta, Thoms., from which it differs by the more regular transverse rugation of the upperside of the prothoran and by the relatively greater length of the elytra.

Xestia globulicollis, sp. n.

Criodion globulicolle (Chevr., MS.).
Rufo-brumnea; capite antennarumque basi sat dense punctatis; prothorace grosse denseque et subragose punctato, danso medio plaga parra levi ; lateribus rotundatis, antice et postice leviter constrictis; elytris minute punctulatis, subopacis, apicibus externe rotundatis, prope suturam breviter truncatis, et ad suturam brerissime mucronatis; antennis (©) articulis a sexto apice intus angulatis, haud dentatis.
ठ. Long. 18, lat. $4 \frac{1}{2} \mathrm{~mm}$.

Hab. Brazil.

This species is of a dull reddish-brown colour above; the elytra somewhat paler in tint. The abdomen, the middle of the hind breast, and the femora are reddish testaceous and nitid. The prothorax is strongly, closely, and somewhat rugosely punctured, with a small smooth space on the middle of the disk; the sides are distinctly rounded in the middle. The elytra are coriaceons, very feebly punctulate, each of the minute punctures or pits bearing an exceedingly minute whitish seta. The first nine joints of the antenne together surpass by a little the middle of the elytra (the remaining joints

[^4]are wanting) ; the joints from the sixth are smewhat angulur at the inmer apex. The abdomen is rather broully trumente at the apex, with a dense fringe of fulyous hairs coming fion a between the dorsal and ventral segments.

The following species appearing under Crin lion in the Munich Catalogue will be better placel in Xastin. Thair tibia are unarmed at the outer apes, their femm are simple, and their intermediate entyloid cavities are either paraly or wholly closed in on the outside.

X. annulipes, Buq.
X. bivittuta, Buq. (=suturalis, Perty (Sten)churw), Delect. An. p. 90, pl. xviii. (i) ヶ. 5).
X. corvina, Germ.
X. dorsalis, Thoms.
X. pictipes, Newm.

The same remarks will, perhapa, apply to oth ir sus.ois.
IV.-On some Jepanese Species of Paromalus. By George Lewis, F.L.S.
The Micro-Colemptera of China, like those of our Imbian possessions, are ahmost wholly mbnown mo Cninese speci-s of Peromalus has been deseribed, amd the only example known to me is one I captured in a rotten stem of a deaying Gitis in Hong Kong in the winter of 1850. It remans therefore a matter of speculation whe ther any of all of the spen's here recorded from Japan necur on not on the adjacent comiment, although it is exceedingly probable some of them do. Liwo at least of the species have a wile distribution, as they are well-known Europan insocts, and their names are, 1 b-lieve, also in the lists of the Siberian Coleoptera.

List of Species.

Paromalus complanatus, P^{\prime} anz.
-.-mendicus.

- viaticus.
- fujisanus.
- vernalis.

Paromalus tardipes.

- parallelepipedus, Hes-bst.
- omineus.
- musculus, Mars.
- montivarus.

Paromalus complanatus, Panz.

Ilab. Japan. This species occurs throughout the Archipelago, but it is commonest in Yezo.

Paromalus mendicus, sp. n.

P. hierculo simillimis at paulo minor: elytris proprgidioque distincte punctulatis: mesosterno stria transpersali nulla.
L. $2-2 \frac{1}{2}$ mill.

Oblong-oval, rather flat, hlack; antema and leg. reddish; the head distinctly but not densely punctured, stria complete, well-marked, and angulate over the eyes; the thorax visibly punctured behind the anterior angles, less so laterally, and nearly smooth on the disk, scutellar spot very small and placed a little away from the edge, stria interrupted behind the neck; the elytra much more distinctly punctured except on the area behind the scutellum and a very narrow margin along the suture, one short basal stria, somewhat straight but ill-defined; the propygidium clearly and rather closely punctured; the pygidium nearly smooth, in the male there are obscure and ill-defined marks but no vermicular sculpture; the prosternum is a little broader than in P. biarcutus, Mars., listriate, stria strong, feelbly sinuous at the sides, and widening outwards a little in front and joining posteriorly; the mesosternum feebly and sparsely punctulate, without a transverse stria, lateral furrow deep and common to it and the metasternum ; the suture is clearly seen between the meso- and metasterna; anterior tibiæ 4 -dentate.

This species differs from P. biarculus in having the elytra distinctly punctured, by the absence of the mesosternal transverse stria, and by the want in the male of vermicular sculpture on the pygidium.

Hab. Japan. I found this insect at Kashiragi and in several places in Higo.

Paromalus viaticus, sp. n.

Oblongo-oralis, depressiusculus, niger, nitidus, supra punctulatus; mesosterno stria transrersali nulla ; metasterno leciter et sparse punctulato; propygidio pygidioque sublæribus.
L. $1 \frac{1}{2}$ mill.

Oblong-oval, somerrhat depressed, black, legs reddish; the head evenly punctured, a little prominent and obtusely angulate over the eyes, stria strong laterally, arched anteriorly, Ann. \& Mag. N. Hist. Ser. 6. Vol. ix.
sinuous lefore the eyes, forehear flatish; the thorax lisinuate behind the head, punctured finely behind the neck and on the disk, punctures much larger at the sides and alone the han, no scutellar forea; the elytra are penctured like the sides of the thorax, sutural margin narrowly smoth, suture fiedty raised bofore the apex to the middle of the donsmm, epiplemal stria continues round the sutural angle, dusal strix indistimet ; the propygidium evenly, not closely punctured; pygitium in the female evenly punctulate, in the male punctulate exept at the apex, which is transversely rough and very densely punctured; the prostenum, lolie sparsely hut distinctly junctate, keel bistriate, stria feelly simuons, bent at both ends, but not comected at either ; the mesosternum without a transverse stria, suture apparent and, like the metastemum, sparsely and fincly punctured, especially in the me lian area; anterior tibie 4-dentate.

Hub. Japan. Taken at Nikkn, Oyama, Kashiwagi, Nara, Kumamoto, and Yuyama, chiefly in the warmer districts of the islands.

Paromalus fujisamus, sp. n.

Oblongo-ovatus, convexiusculus, niger, nitidus, supra punctatus: prosterno striis parallelis postice junctis : promoto ante scutellum toreolato: mesosternum stria transersali liangulata: predibus piceis.
L. 2 mill.
(Ohlong-oval, rather convex, hlack, shining. pumburel abowe; the head rather broad, impressed in front, stria complete, surface cleally and evenly, not thickly puncture l; the thoma, stria complete and strong at the siles, very tine behim? the head, wholly fructured, with a distinct schuthar fovea visible amongst the punctures, anterior angles rather depressed, anterior margin impressed behind the eyes; the elytra punctured like the thorax exeept in the sumal area before the apex, wheme the punctures are oblong, epipleural stria continus along the apex and tums sound the sutumal angh, one oblique obsolete stria; the propegidiun sparscly and evenly punctulate; the pygidium in the mate has a raised exterior margin, and within the margin the whole surface is evenly verniculate in sentpture, in the female the pysilium is immarginate, irregularly and sparsely punctured at the base, nearly smooth at the apex; the prostemum bistriate, striae parallel at the sides, bent inwards at enther end, koed with a few gunctures very irregularly sit, anterior lobe somewhat straight on the anterior edge and sparsely punctured;

1he mesustemum, transvere stria mitide part nearly straight, areuate on cach side, not angulate, suture mot apparent, surface sparsely punctulate; the metasternum with large punctures hetween the intermediate and posterior cona, punctures gradually becoming finer on the median area and especially behind the mesustermum ; anterior tibise 4-dentate.
'This species must be placed next to I. listriutus, Er., trom America.

Hai. Japan. I whtained a considerable number of specimens at Kiga, Hakone, Subashiri, and Nikko.

Paromalus vernalis, sp. n.
Oblongh-ovalis, comvexiusculus, niger, nitidus, suma punctatus; prosterno haud striato: mesosterno, stria tramsersali in medio arcuato, utrinque biangulato.
L. $1 \frac{1}{2}$ mill.

Oblong-oval, rather convex, black, legs pitchy; the head evenly punctured, stria complete, forchead flattish; the thorax, anterior angles depressed, somewhat obtuse, somewhat thickly punctured, stria strong at the sides and behind the anterior angles, fine behind the neck, punctures behind the neck small, those at the sides and in front of the scutellum somewhat oblong; the elytra are punctured like the thoras, suture very feebly raised in the dorsal region, sutural margin narrow, smooth, one stria shoit and oblique, the epiplenal stria does not reach the sutural angle; the propygidium is transversely punctured; the pygitium in the male has a transwerse furrow near the base, and behind it is another (which is sometimes broken at the sides), which is formel to cuclose a semicircular lobe, the course of the furrow not being always well defined; in the female the pygidium is faintly and sparsely punctulate ; the prosternum without stria, punctures scattered and feeble, the whole surface microscopically strigose; the mesosternum, stria arcuate in the mildle, angles acute, median part wider than the appendages, suture invisible ; the metastermum similarly punctate, punctures large and not closely set, subocellate in front of the hind cose; the lateral strix on the first segment of the abdomen are nearly parallel to each other ; anterior tibiæ 4-dentate.

This species also is of the P. bistriatus group.
Hab. Japan. Obtained at Nara, Oyayama, and Yuyana.

Paromalus tardipes, sp. n.

()yalis, depressiusculus, brunneus, nitidus, punctatus; fronte impressa stria interrupta : pronoto basi tenuiter bistriato.
L. $1 \frac{1}{2}-2$ mill.

Oval, rather depressed, brown, shining; the head anterionly impresser, punctate, punctures rather large bot not closely set, stria strong and somewhat carinate, feelly sinuons over the eyes, anteriorly ceasing behind the mandibles; the thorax, anterior angles obtuse and depressed, strongly punctate, punctures oblong, with some inclined to be acicular, evenly, not closely set, stria laterally a little elevated, fine and complete behind the head, two short strie before the base at a point parallel to the usual position of the fourth elytral stria, the strie are faint but easily seen, and they are a goorl specific character in this difficult genus; the elytra wholly punctured somewhat like the thorax, but more distinctly, the punctures towards and at the apex are round, not oval or acicular like some in front ; the propygidium is punctured like the apices of the elytra; the pygidium in the male is punctured like the propygidium at the base, but at the apex there are tramsverse furyows which are contluent with the punctures; in the female the pygidim is sparsely and finely punctulate; the prosternum bistriate, stria nearly straight laterally, bent, but not quite joining at eitherend, a few irregular punctures on the keel, anterior lobe punctate and strigose; the mesosternum rery sparsely punctured, lateral furrow strong, transverse stria with the middle portion very wide and straight, arcuate at the sides, suture not apparent; the metasternum, anterior half lightly punctulate, posteriorly and the tirst segment of the abdomen with much larger punctures, all are more or less elongate or acicular; the other abrominal segments are smooth, with a row of punctures on their posterior edges ; anterior tibit 4-dentate, tarsi rather short.

Hab. Japan. Single specimens taken at Miyanoshita, Kiga, Kashiwagi, and Nara.

Paromalus parallelepipedus, Herbst.

Hab. Japan. Apparently scarce ; five examples only were taken at Sapporo, Miyanoshita, Nikko, and Nishimura.

Paromalus omineus, sp. n.

Ohlongo-oralis, parum convexus, laterihus vix paralhelis, brunneus, nitidus; fronte stria integra: metasterno utrinque suh-ocellato-punctato; pedibus flaris.
L. $1 \frac{1}{2}$ mill.

Oblong-oval, rather conver, brown, shining, antennæ and legs flawous ; the head clearly and somewhat sparsely punctu-
late, stria elevated over the eyes, tine and complete on front, forchead rather flat; the thorax, anterior angles depressed, little acute, stria not interrupted, but very fine behind the neck, not closely punctate, punctures somewhat ocellate, especially before the bases of the elytra ; the elytra are punctured like the thorax, subocellate at the sides, finer behind the seutellum and on the dorsal area, stria obsolete ; the propygidium clearly, not densely punctulate: in both sexes; the pygidium similarly punctured, and in the male a few scratches or obscure furrows are visible at the apex ; the prosternum without strie, findy strigose under the microscope; the mesostemum with a few punctures, transverse stria very slightly bent in the middle portion, rather widely arched on cach side, median portion narrowest ; meso- and metasternal suture invisible, both plates punctate, not closely, but at the sides. the punctures are subocellate; anterior tibie 4 -dentate.

This species is like a small example of P. parallelepipertus. The colour, and especially the shape of the mesosternal stria, with the median portion much less wide than the appendages, will distinguish it.

Mab. Japan. Two examples taken on Ominesan.

Paromalus musculus, Mars.

Mab. Japan. Taken at Nasa, on the main island, and in several places in Kiushiu.

This species is peculiar in occurring under stones in the shady forests, while most of the species of the genus are subcortical.

Paromalus montivagus, sp. n.

Ovalis, convexiusculus, niger, supra punctulatus: pedibus rufobrumneis; elytris striis obsoletis: prgidio subleri vel grosse vermiculato; mesosterno marginato.
L. $2 \frac{1}{4}-2 \frac{1}{2}$ mill.

Oval, convex, black, punctulate above, with a strigose surface-sculpture visible under the microscope; the head lightly impressed in front, somewhat prominent over the cyes, stria complete, strong above the eyes, fine anteriorly; the thorax hisinuous behind the neck, anterior angles obtuse and depressed, stria complete, and on the edge before the scutellumi is a row of ten or twelve large punctures; the elytra, punctuation larger and more dense than that of the thorax except on the dorsal area behind the scutellum, the striæ are obsolete and in their place the punctures are rugose
and confluent ; a narrow margin at the suture is smooth, the epipleural stria is fine and passes round the apex, and terminates after passing the angle at the suture; the propygidium is punctulate like the thorax; the pygidium impurnctate in the female and microscopically strigose, in the male it is narrowly smooth at the base, with a coarse vermicular sculpture at the apex ; the prosternum bistriate, strise indistinctly joined at the base, where the margin is a little broad; the mesostermm short and transverse, marginal stria nearly complete, being a little broken in the middle only, transverse stria widely sinuous, suture invisible; the metasternum, lateral stria oblique, punctuation sparse; the anterior femora conspicuously grooved like those figured for Phelister Simoni, Lew. (Ann. \& Mag. Nat. Hist. 1889, vol. iv. p. 46) ; the anterior tibia 5-6-dentate, posterior without spines. The minute strigosity is more apparent on the sternal plates than on the upper surface.

The facies of this species is like a very large Abrous, and it is the only species noticed in this paper with an anterior marginal stria to the mesosternum.

Ilab. Japar. I took several specimens at different places bordering the great plain of Fujisan in May 1880. It frequents old beeches.
> V.-Descriptions of two new Genera of Scorpions, with Notes upon some Species of Palammæus. By R. I. Pocock, of the Natural-History Museum.

[Plate III. B.]

Having been occupied of late in the identification of the oriental species of Scorpio and Palamneus, I soon made the discovery that there has been considerable confusion respecting the Indian and Burmese species of the latter genus.

Their history may be briefly told as follows.
The type of the gemus, P. spinifir (Hempr. \& Lherb.), was originally described as from India. This species, however, has not been identified since it was established, apparenty because it was described and figured as having nineteen or twenty peetinal teeth-this mumber being considerably latger than any presented by the species deseribed by Dr. Whorell.

In 1877 Dr. Thorell characterized from Singapore a species named I '. I'ctersii ; this form appareatly only differs from
spinifer in the number of the pectinal teeth, and I have little doubt the two are synonymous.

But to complicate the matter still further Dr. Thorell smberquently referted to P. Petersii a number of specimens obtained ly Nig. Fea aml Comoto in Buma, which specimens hat heen previously identified by Mons. Simon as I^{\prime}. Denefulensis ($\%$. Koch). But both these identifications are, I think, erroneons: for, in the first place, bengulensis of C . Koch is a true: Seomio, as is shown by examples in this Museum, and, in the second place, the Burmese specimens above referred to seen to he different from the type of Petersii that Thorell described from Singapore.

The first assertion needs no justification; the second is based upon the following facts.

Whilst collecting in various parts of Burma Mr. E. W. Oates obtained literally many hundred examples of a species of Pelumnens, which is undoubtedly the Burmese form that Dr. Thorell identified as P. Petersii. But amongst those collected at langoon there are three examples which are at once to be recognized from the rest. These are of larger size, with the immer border of the hand beset with spiniform tubercles; the vesicle is clear ferruginous, and the chele or palpi of the male have almost the same form as in the female. In the others, on the contrary, the size is smaller, the inner border of the hand is thickly gramular and not spicular, the vesicle is generally of about the same tint, though sometimes a little praler than the rest of the tail, and the chelo of the male are more slender and longer than in the female, the manus being especially narrow. Of this latter kind the British Museum has those quantities of specimens that were generously presented by Mr. Oates, and, in addition, one example obtained by Sig. Comotto at Minhla-an example, by the way, that was kindly given to the Museum by the Marquis G. Doria, and which is one of those above referred to as having been identified as Petersii by Dr. Thorell. But of the former kind, in addition to those just mentioned from langoon, the Duseum has very many examples from India, East Indies, Bengal, Mergui, Perak, Penang', Singapore, and Billiton Island. This species is, I think, spiniter (Ehrlo.) and Petersii of Thorell.

There is nothing in Ehrenberg's figure and description to refute this view. On the contrary, it is clearly shown that the inner border of the hand is armed with spiniform tubercles and that the vesicle is ferruginous. The specimen, moreover, came from India, whence this Museum also has examples. Furthermore, the Museum, as already stated, has specimens
from Singapore, the place where the type of P. Petersii was obtained-a coincidence which suggests at once the likelihood of specific identity between the scorpions. And this idea as to their identity is amply borne out by Dr. Thorell's description of Petersii; for the vesicle is describerl as ferruginous, and of the hand it is said " ipso latere interiore gramulis acuminatis fortilus olsito." But if we turn to what is said of the Burmese specimens that were referred to Petersii we read, " manus intus sat dense gramulosa est, granulis sat purvis et parum acuminatis," and again, " color coucter niger, pericu interdum paullo clariore.". Thus the figure of spinifer ant the description of Petersii appear to apply to the larger aml more widely distributed East-Indian form. The smaller Burmese species is consequently without a name. I propose therefore to call it P. Thorellii.

As regards the number of the pectinal teeth, which seems to have been a stumbling-block in the way of the identification of P. spinifer, it may be said that the Museum series shows them to vary from 14 to 18 in spinifer and from 14 to 19 in Thorellii. So that the existence of 19 in the type of spinifer and of 16 in the type of Petersii cannot be used as an argument for the separation of the two.

The known synonymy of these will be as follows:-

Palamncers spinifer (Hempr. \& Ehrb.).

Heterometrus spinifer, Hempr, \& Ehrl. Symb. Phys. Scorpiones, p. 3, pl. i. fig. 2 (1829).
Palammeeus Petersii, Thorell, Amn. \& Mag. Nat. Mist. (ser: 4) vol. xxii. p. 13 (1876) : Actes Soc. Ital. Sci. Nat. xix. pp. 214-217 (syn. exel.) (1877).

Palannceus Thorelli, sp. n.

Palamneus bengalensis, Simon, Amn. Mus Genov. xx. pp. Bel-3i-2 (188.1) ; not Muthus bengalensis, C. Kuch, Die Arach. ix. p. B, lig. tind (1842).

Palamnceus Petersï, Thorell, Am. Mus. Cenor. (2) vii. pp. 5ース. Sic) (1889) ; not Petersii,'Thorell, 1876.

The average size of P. spinifer is perhaps about 195 millim., although I have measured many varying from 1:3.5 to 140. P. Thorellii, on the contrary, is much less, seldem being more, and generally less, than 115 millim.

The appended tables of measurements will serve to show how the sexes of the two species may be recognized. From it may be seen, in addition, that the average length of the tail in the female is greater in P. spinifer than in P^{\prime}. Thorellii.

For in the former the tail is more than three and a half times the length of the eephalothorax, while in the latter it is less. This cireumstance strengthens the evidence of identity between P. spinifer and P. Petersii; for the figure of P. spinifer shows that the tail (judging from the sketch of the lateral view of it) is a little over three and a half times the length of the cephalothorax.

Mons. Simon has recorded a species which he considers to be Petersii from Bintang. The males of his specimens, however, are not like those that I here call spinifer, inasmuch as they are declared to be like longimanus, Herbst. 'This opens the interesting question of possible dimorphism in the males.

Now three male examples have been deseribed without their females being known. These are longimamus of IIerbst, longimanus of C. Koch (which is not the same specimen at least as Iferbst's type), and angustimanus of Thorell. I give a table to show the dimensions of these specimens, together with those of two examples in the British Museum which I provisionally refer to angustimanus. A glance shows that the two examples named longimanus have the hand-back very short and the movable dactylus long, the difference between the two being $7 \cdot 5$ and 8 millim. respectively, whereas in the others the difference is 5,2 , and $2 \cdot 5$ millim. But this great interval is almost entirely bridged over by some of the male specimens of spinifer. Thus in no. 5 the difference in length between the dactylus and the hand-back is 3 , in no. 1 it is 3.5 , in nos. 2 and 6 it is 4 , in no. 4 it is $4 \cdot 5$, and in no. 3 it is 6 -the amount of variation being considerable.

I am consequently disposed to think that at least longimanus of C . Koch may be a form of the male of spinifer, and I hold the same opinion with regard to the two males in this collection that I have named angustimanus. P. costimamus of C. Koch is also, I think, probably synonymons with spinifer.

It is worthy of note in connexion with this subject that the slenderness of the hand appears to be correlated with the longitudinal wriukling of the upper surface. Consequently the presence of strong costa on the hands of these males that have just been discussed need not point to specific distinction between them and spinifer, in which the coster are less manifest.

Mr. K. I. Pocock $9 n$
Table of Mersurements in millimetres of P . spinifer.

- ipoq 	
-yวยя 	
- \quad !m! 	
	苗
-хи, 	
\%	O2: = = = : 0\% = = = =
8	

Cheloctonus, gen. nov. (Pl. III. B. fig. 1.)

Cephatothorax with its median eyes near the middle, the lateral eyes, three in number, on the very edge, as in IIormurus.

Stermum pentagonal, a little wider than long, narrower at its posterior angles.

Stigmata elongate.
Tail as in Opisthacanthus, rather stouter than in IIormurus.

Palp.-Humerus as in Heterometrus maurus, very convex above, the anterior border reduced to a minimum; manus intermediate in form between that of, e. g., Opisthacentlus and of, e. g., Scorpio, but rather resembling that of Iurus or Uroducus in having the "hand-back" double, i. e. divided longitudinally by the keel which is found on the hand-back in scorpions of this group ; the lower half of this area is not, however, limited below by a keel, and the keel that defines the upper half is weaker than in Opisthacenthus.

Chelicerer as in Opisthacenthus, Hormurus, and Putemnous, i. e. with the terminal fangs of the movable dactylus subequal in length, the inferior being the longer.

Tail, tarsi, stigmata, and pectines as in Opisthacanthus.
This genus is very interesting on account of its ammectent qualities. On the whole, however, it certainly belongs to the Opisthacanthus group, although in the form of its palpi it approaches Heterometrus.

Cheloctonus Jonesii, sp. n.

Colour olivaceo-piceus above, palpi darker; legs, chelicere, and caudal vesicle ferruginous; pectines and genital operculum testaceous.

Cephalothorax a little wider than long, a little longer than the first two caudal segments, convex from side to side, the sides being considerably sloped, the frontal lobes rounded, the middle of the anterior border with an evenly rounded excision, weakly granular, the median sulcus dividing the ocular tubercle and stopping almost immediately behind it; the tubercle low, situated just in tront of the middle of the upper surface, the eyes separated by a space about equalling a diameter ; the lateral eyes small, subequal, the two anterior contiguous, the posterior separated by a space equal to its own diameter.

Tergites finely and closely gramular, suleate as in Opisthacanthus.

Sternites entirely smooth, very fincly and closely punctured, the sulci uniting in front and resembling the imprint of a horsceshoe; the last rugose, bearing vestiges of four fincly granular, posteriorly converging keels.

Tail about three and a quarter times the length of the ecphalothoma, narrowed posteriorly, the segments longer than they are thick, distinctly sulcate above, the sides of the upper surface rounded and very finely gramular and not k"eled, the lower sufface distinctly carmate, the keels being normal in number, finely granular, and marked by setiferous pores ; the fifth segment nearly flat above, the posterior third of its lower surface without keels; the vesicle large, pyriform, entirely smonth, aculens short and abruptly curved.

I'alpi robust; lumerus coarsely granular above, mostly smooth behind and below, strongly granular in front ; bret chium rugose and subgranular above and behind, and subcostate behind, smooth in front and below except for the keel which separates the anterior and inferior surfaces: memes very stout, rugose, and reticulated and convex above, the pattern passing into tubereles internally and externally; the superior moicty of the hand-back forming a large obtuse angle with the upper surface, beset with small tubereles, defined above by a weak keel which anteriorly breaks up into the general pattern of the upper surface, the inferior moiety entirely smooth and polished, the antero-inferior surface gramular; very wide, the length of the back being much less than the greatest width and only about equal to the width at the base of the dactyli ; the height equal to about three fourths the length of the hand-back; the movable dactylus considerably longer than the hand-back and a little longer than the width of the hand, rugose, carinate, with a lobe which fits into a shallow excavation on the internal edge of the immovable dactylus, the external edge of this dactylus very short, about equal to half the length of the movable dactylus.

Legs very fincly granular externally, the lower edge of the femora of the first three pairs more granular.

Pectines short, furnished with six to seven teeth; the genital operculum cleft, about twice as wide as long.

Measurements in millimetres.-Total length 75; cephalothoras, length 11, width $11 \cdot 5$; length of tail 35 , of first segment 4.5 , of sccond 5 , of third $5 \cdot 2$, of fourth 6 , of fifth $7 \cdot 5$, of vesicle and aculeus $7 \cdot 3$, of aculeus 2 ; width of first 4 , of fifth $2 \cdot 6$; humerus, length 7 , width 4 , height 4 ; brachium, length 8, width 45 , height 5 ; manus, length behind 8,
width $9 \cdot 2$, height 6 ; length of movable dactylus 9%, of immovable (along free border) 5 .

A single male specimen from the Murchison Range in the Transvaal, collected and presented to the British Museum by Mr. C. R. Jones, with whose name I have very great pleasure in associating this remarkable new form.

> Heterocharmus, gen. nov.
> (PI. Ill. B. figs. $2,2 a, 2 b$.
\div (Murmu*, Karach, Mitth. Munch. Ent. Ver. 1~ズs, 1p. 101, 10t, 10.).
Cephalothorax without keels; the ocular tubercle in the anterior half; the frontal region horizontal, not sloped downwards from the tubercle to the anterior margin; three lateral eyes.

Tergites with a single median keel.
Sternum small, pentagonal, wider than long, about equal in length to the genital operculum.

Pectines normal.
Stigmata elongate.
Chelicere with movable dactylus bifid at the apex, the two fangs equal in length, with three teeth on the upper erge and two on the under; immovable dactylus with two teeth above (the posterior bifid) and two subequal teeth below.

Chele with the external series of teeth formed by the enlargement of the three posterior teeth of the median rows, the internal series formed lyy single enlarged teeth, separated from the apices of the median rows and constituting with the teeth of the external series short oblique rows.

Tail somewhat powerful; no spine beneath the aculens.
Legs of third and fourth pairs with tibial spur.
Claws free.

In its broad pentagonal sternum this genus departs widely from what is normal in the Buthile, and its inchusion in this family will necessitate the abandomment of the definition "sternum subtriangulum." Nevertheless I think it should be referred to this group, for in the sum of its characters it is unmistakably Buthoid.

In the dentition of the chelicera, the form of the palpi, with their slonder makeled hands and long dactyli, the arrangement of the denticles on these dactyli, the spurs on the tibia of the posterior legs, the keeling of the trunk, de., it agrees closely with many genera of this family. It only
differs in fact in the firm of the stemum. Of all the genera of Buthide it certainly comes nearest to Butheolus of Simon (0)rhoductylus, Karsch); bit although the stermum in Butheolus is more pentagonal (? always) than in the others, it is not so markedly wide as in Heterocharmus. In Butheolus, again, the cephalothorax has its frontal portion slopeed, while in this new genus it is horizontal. Nevertheless the two are undoubtedly very closely allied.

If, again, Heterocharmus be compared with the known genera of other families, the only one with which it presents: any aflinity is Charmus of Karsch, a genus which this author referred to the Iurini. But between these the aflinity appears to be very great, so far, indeed, as can be judged from the somewhat meagre description that Karsch has given. In fact no generic differences are to be discovered. But I find it hard to believe that any author familiar with scorpions should have placed a species congeneric with the one now before me in close proximity with such forms as Turus, Scorpiops, \&c. It is almost incredible that the Buthoid characters above mentioned can have been wholly overlooked. I consequently feel compelled to assume that some differences which do not appear in the description do in reality exist between Charmus and Heterocharmus.

Heterocharmus cinctipes, sp. n.

Coleur.-Trunk above and tail fuscous, the former obscurely variegated with fulvous; vesicle ferruginous; ventral surface pale; palpi testaceous, brachium with a fuscous band, manus infuscate; legs fuscous, with testaceuns joints.

Cephalothorax convex, about as wide as long, nearly as long as the first tro caudal segments, weakly but closely granular throughout, the anterior margin nearly straight, the trontal region lightly depressed in the middle, the shallow depression extending over the ocular tubercle to the hinder margin; the ocular tuberele prominent, the eyes large and separated by a space about equal to a diameter:

Iergites granular, more coarsely but less closely so than is the cephalothoras, the first without the median keel, the last more thickly granular, without distinct keels, but lobate on the upper surface.

Sternites smooth and shining, the last beset posteriorly with coarse sharp granules.

Tail excavated above, the first three segments coarsely and
thickly granular below and at the sides, the grautation obscuring the keels, the inferior median keels, however, marked by stronger and sharper granules, the upper surface much more fecbly granular, the kecls very fecble on the first but defined by larger granules; the keels absent on the third, which has its margins rounded and the position of the superior and supero-lateral keels marked by a larger granule posterionly; the fourth segment without keels and almost without granules, but roughened by close-set coarse punctures, finely gramular only in the excavation of the upper surface; the fifth segment also without kechs, but marked with coaree, close-set, sometimes anastomosing punctures, granular on the posterior third of its lower surface, and finely so in the posterior portion of the superior excavation, the anal border lohate at the sides, granular beneath; the vesicle mondorately large, coarsely punctured beneath, the aculens strones and curved. Tail and vesicle thickly and irregularly hairy beneath.

Polpi slender; humerus very weakly granular along the feebly develnped keels; lrachium without keels, very slightly granular in front, the rest smoth; monns rouded, narmwer than the brachium, without keels and without granules, the length of the "hand-back" much greater than the wilth of the hand; dactyli long, curved, and slender, the length of the movable dactylus nearly twice as great as the length of the hand.

Leys with weakly granular femora, coxa quite smooth.
Pectines not projecting to the end of the fuarth coser, furnished with fourteen similar teeth.

Mousurements in millimetros.- 'Total length 30, length of cephalothorax 25 , of tail 11%, of first two segments $2 \cdot 8$, of fourth 2 , of fifth 3 ; width of the first $1 \cdot 6$, of the tifth $1 \cdot 4$, of the vesicle 1 ; length of humerus $2 \cdot 3$, of brachium $2 \cdot \tilde{3}$, of hand-back $1 \cdot 2$, of movable dactylus $2 \cdot 5$; width of hand $\cdot 5$.

A single specimen probably from India or Ceylon, but without special locality. It was found in a bottle in Count Keyserling's collection together with a young example of Scorpio Sucammerdemi-a species which is undoubtedly Indian and Ceylonese.

The only known species with which this can be confounded is Churmus leneus of Karsch. But it eertainly differs in colour, in having the last abdominal sternite enarsely and not "subtiliter" gramular, the tail certamly carinate in part, and the fourth segment punctured and not gramular.

explanation of plate itr. b.

Fig. 1. Cheloctonus Jonesii, g. et sp, n. Nat. size.
Fig. 2. IIeterocharmus cinctipes, g. et sp. n. $\times 2$.
Fiy. 2a. The same. Sternum and genital operculum.
Fig. $2 b$. The same. Dentition of dactylus of palp.

> VI.-Description of a new Trap-door Spider from Ceylon. By R. I. Pocock, of the British (Natural History) Museum.

[Plate III. A.]

Ecophlous cinctipes, gen. et sp. n. (Pl. III. A.)

Colour.-Cephalothorax castaneous, variegated with black ; ocular area black; mandibles castaneous; sternum, labium, cosse, and femora clear ochraceous, the patella, tibia, and proximal tarsal segment with a fuscous band round the distal extremity; abdomen fuscous, variegated above and below with testaceous bands and spots.

Cephalothorax longer than wide, its lateral margins convex, anterior margin straight, truncate, its posterior margin lightly concave. The fovea transverse or perhaps very lightly concave backwards. The area of the upper surface behind the fovea sloped at an angle of 45 degrees, the area in front of it very lightly convex longitudinally. No ocular tubercle; the area of the eyes much wider than long and following the convexity of the cephalic portion ; the median and the anterior lateral eyes forming a strongly procurved series, the median and posterior lateral forming a recurved series; the median eyes the largest and the highest, a horizontal line drawn from the base of each would touch but not cut the anterior lateral; the anterior laterals separated by a space which is about equal to twice the diameter of a median eye, the distance between the anterior and posterior lateral about equal to a diameter of a median eye, and that between the median eyes is a little less than a diameter of each; the fourth pair of eyes are small, closely in contact with and on the same level as the posterior lateral, and are separated from the median of each side by a space about equal to their own diameter.

Mandilles of moderate size, the anterior surface evenly curved from the base to the fang, smooth above, hairy in front, but not armed with teeth, fringed below with long reddish hairs, and armed internally with a row of denticles.

Ann. \& Mag. N. Hist. Ser. 6. Vol. ix.

Naxille simply coxiform, fringed with redlish hairs aloner the anterior horder, and having the anterior distal angle furnished with a few black spiniform teeth.

Pulpi completely pediform, clothed with long hairs, the patella and tibia with the lower surface furnished laterally beneath with a few setiform spines, the tarsal segment soopulate, the hairs being thick at the sides, but seanty on the midale of the lower surface, terminated by a single, curvel, inferiorly dentate tooth.

Legs.- The first, second, and third pairs subernal in leneth, the third being slightly the shortest, the fourth haree than the rest almost by its two terminal segments; clothed with hairs but not armed with spines, there being at most a few spiniform setex scattered here and there. The first and second pair with the two distal secments furnished with thick undivided scopular the thind pair with the seopulat very much reduced in size, but with two terminal tufts of hair at the base of the claws; the fourth with similar terminal tufts and with the scopula almost absent. Two simple strongly curved claws terminating each leg.

Labium united to the stemum, quadrate, wider than long, its anterior border straight and armed with a row of black spiniform teeth.

Sternum longer than wide, ovate.
Abdomen ovate; the superior spinmers the longest, a very little shorter than the patella of the third pair of legs, the segments markedly decreasing in size from the base to the apex, the apical segment very short and emical; the inferion spinners comprod of a single segment, which is about half the length of the besal segment of the superior spimers.

Ifecerurtments in millimetres.- Total hogh 155 ; length of ecphatothomex 65 , width 55 ; distance of forea from anterior horder 4 ; longth of abdomen 9 ; length of palp 11 , of first leg $14 \cdot 5$, of secomel $14 \cdot 5$, of thim $14: 3$, of finurth 19 ; with of stemum $2 \cdot 5$, length $3 \cdot 5$; length of superionspmer 2 .

Two fomate secimens in the Muscum collection from Cerden. The first, which has beenselected as the type, was taken ly Mr. E. E. (ireen at Punduloya; the socond was obtained by Mr. Holdsworth.

The nest ut this spiber, which Mr. Green brought with the Etecine ens. Was finmed on the trunk of a tree. There are two denes st chese topether, "ith their hinges in contact, and comst quently upening hack to back. These doons, more or los integulary circalar in shape, are thin and laminate, and consist of small coherent lamellitorm particles, which appear to be pieces of the epitermis of the leaf of some thowering
plant*. The area immediately surrounding the doors is covered with the same leafy flakes; so that, when closed, the doors become almost invisible. The nest itself consists, not of an elongate silk-lined tube, as is usual in this group, but simply of a shallow excavation on the surface of the tree-trunk.

EXPLANATION OF PLATE III. A.

Fiiy, 1. Germhleme cinctipes, g. et sp. n. Dorsal view, nat. size.
Fig. 2. Nest, showing the two doors.

> VII.-Suggested Terms in Crinoid Morphology. By F. A. Bather, M.A.

It is to be feared that the title of this paper will bring a smile to the lips of those who think, not without some show of reason, that students of Crinoid morphology spend more time in quarrelling as to what terms they are to use than in finding out fresh facts that should warrant any departure from the language of the text-books. It is not long since there appeared in this Magazine several notes on the Anatomical Nomenclature of Echinoderms from the pen of the leader whose loss we so deeply lament-P. H. Carpenter \dagger. The object of that paper, however, was to give greater precision to the nomenclature of Echinoderm morphology rather than to propose any great novelty. The object of the present paper is different: it is to propose certain changes in the terminology of the various parts of a Crinoid, partly because it is hoped that these changes will facilitate the drawing up of descriptions and give greater clearness to our ideas, partly because it is believed that they are necessitated by recent advances in Crinoid morphology.

Levery scientific paper should be its own apology; at the same time some reply may be offered to two different classes of objectors.

Those who have an innate objection to all change may be answered by the following quotations from a recent article by Prof. T. Jeffery Parker $\ddagger:$-" I think it may be taken as

[^5]axiomatic that whenever the bounds of knowledge are extended, either by the investigation of new prohlems or by the re-examination of old ones with the aid of improved methods and extended views, an elaboration of nomenclature is inevitable. Indeed, the introduction of an extended terminology, either because of the discovery of new facts or of the more accurate grouping of old ones, is a distinct gain ; it emphasizes an actual advance in knowledge." "In morphological nomenclature suitability is of far more importance than priority, and the most respectable and time-honoured terminology should never be allowed to stand in the way of one by which homologies, mutual relations, \&c., are aderquately expressed."

To those who deem it hardly fitting that one who has sin recently entered on the field of Echinoderm morphology should be already ruming atilt at terms that have long held the ground, no other reply is needed than that the proposed terms were arrived at after considerable discussion with Dr. P. H. Carpenter, and that nearly all receised his definite approval. Without his encouragement this paper would not have been written, and it has only been the sudden removal of his kindly help that has prevented its earlier completion.

Super-radials and Infer-radials.

Many of the Monocyclic genera of Crimoidea Inadunata are remarkable for the transverse bisection of some or all of the radial plates of the dorsal cup. To these radially situated plates themselves the term "Radials" is restricted, but it is convenient to have some short term to express their upper and lower halves. For these therefore I propose the terms "Super-radials" and "Infer-radials," which may be represented symbolically by R^{s} and R^{i}. Instead of saying "the lower half of the left anterior radial," we shall now be able to say "the left anterior inferradial" (1. ant. Ri$)$. The plate for which the term Radianal (R^{\prime}) has been adopted is of course the right posterior infermadial (r . post. H^{i}) ; while the right pesterior radial, being the upper half of the same plate, is morphologically the right pesterior superradial (r. post. Li) .

Arm-ossicles.

In July 1890 the following terminology was pmonsed for the varicus series of arm-cossicles ly l'. II. Carpenter *:

- Op, cit. p. 11.

13rachials $=$ all arm-ossicles, or, in other words, all ossicles situated in the direction of the rays, distal to the radial (s. str.) and belonging to the abactinal system.
Costuls $=$ the first order of brachials, i. e. all brachials from the radial up to and including the first axillary.
Distichals $=$ the second order of brachials.
Palmars $=$ the third order of brachials.
First Postpelimurs = the fourth order of brachials.
Sccond Postpealmars = the fifth order of brachials; and so on. Free Brachials = all brachials after the last axillary, whichever that axillary may be.

Through the kindness of Dr. Carpenter I had already been able to put forward the above terminology * and to announce that it would be used in my papers on British Fossil Crinoids. Wachsmuth and Springer had also privately expressel their intention of accepting it. The latter authors, however, have already found it necessary to modify it slightly \dagger. "To the most of this terminology," they say, "we entirely agreed, but in some particulars it does not quite meet the requirement in dealing with the greater complexity and variety of construction found in the Paleozoic forms." Instead of applying the term Free I3rachials to brachials after the last axillary only, they use it in a different and extended sense, applying it to all brachials that are free from the calyx, as are all the armossieles in the Inadunata. The term is thus opposed to Fixed Brachials, by which is meant those arm-ossicles incorporated in the calyx, such as are often found in the Camerata.

In the same place Wachsmuth and Springer have supplemented the above terminology, as follows:-
"Interradials, all plates interradially disposed in the calyx.
"Interbrachials, a general term for all plates between the rays above the radials.
"Interdistichals, the plates between the first divisions of the ray.
"Interpalmars, those between the second divisions of the ray.
"Interambulacrals, the plates between the ambulacra."
In applying to Palieozoic Crinoids the terminology to which I stood committed, I soon stumbled on certain difficulties. This was especially the case in the attempt to work out and

[^6]to formulate the laws of arm-lranching in the varinns families or genera. The difficulties are of two kinds, suljective and objective. We will take them in that order.

The suljective difficulties are due chiefly to the cumbrouz, illogical, and, for the most part, meaningless nature of the terms adopted. This is not a censure of any one in particular, fur no one man could ever have invented such a disconnected lot of names for similar and comected oljects. The terminology has grown up bit by lit, unsuljected to the stem laws of natural selection. It is by no means easy for the student, or even for the describer of new species, tis carry ali these names in his head. It is on the face of it absurd to begin a fresh series of numbers at the postpahmars, as though there were some mopholegieal change; moreover, the interpretation to the mind of such a pluase as " the second pretpalmars" involves anarithmetical calculation betoreone realizes that the ossicles alluded to are brachials of the fifth order. Them, in speaking of a particular ossicle, one can hardly say "the second thind postpalmar," so one is obliged to intulue in some such cumbrous circumlocution as " the seenod nssicle in the third postpalmar series." The symphen two that are employed in specific formule- $c, \pi, p, p^{\prime}, p^{\prime i}, b, \mathbb{d} c$ - hardly convey their meaning at a glance, while they certainly do not lend themselves to the expression of statements referring to more than one order of brachials at a time. It is of course possible that these difficulties are not obvious to highly trained intellects, and it is true that they hardly present themselves in the study of most recent Crinoids.

There is, however, a more serious objection, at least to one of the terms. It was J. S. Miller who invented the nuw resuscitated term "costals," and it is true that he used it to denote the second radials, where he did not call them armplates. Dut, as can be seen from the table that was given by Carpenter (op) cit. p. 16), he also applied the term to the first madials, the basals, and the infrabsasals. It would no dond have been legitimate to restrict the term to one or other of the plates to which it was applied by Miller; but unfortunately this had already been done. As Capenter himself pointed out, Prof. Loven has "proposed to spectialize this name as denoting the primary interradial plates of the Echinoderm apical system, i. e the genitals of Urehins and the basals of Crimeids." It may be true that l'uf. Loven's proposal "has not becn gencrally aceepted by Echinologists ; "at the same time there are others who have applied the term "costals " to interradially disposed plates, notally I'rof. James Hall, who has thus denoted the basals of various species in the "Palaron-
tology of New York,' vol. i. (1815). It seems to me therefore that the use of the term" "costals" in the sense now proposed cimnot be justified, and I resret that I ever agreed to use it.

The oljective difficulties in the way of the proposed terminolugy are due to the more correct views that are now hold with regard to the homologies of pimules. As was fully explained in the section on the Arms in "British Fossil Crinoids," Part 1I. (p. 374), pimules are nothing more than armlets that have become small, ceased to branch, and are regularly placed on alternate sides of successive ossicles. An armlet itself is merely one branch of a dichotomons arm reduced in size. Consequently, from a morpholugical standpoint, a pimule, however small, is the homologue of a whole dichotom (as we may conveniently call such a branch), while the ossicle that supports a pimnule is simply an axillary, and this without going beyond the strict conception of that term as recently laid down by Carpenter (op. cit. p. 19).

If now we turn to such a genus as Butryocrinus, and compare two of its species, such as B. ramosus and B. ducaluctylus *, and if we name the successive orders of brachials after the methods hitherto followed, we shall come to these con-clusions-that
in B. ramosus
in B. decadactylus
the costals are homologous with the costals;
the distichals " with the first two distichals;
the distichal axillary ", with the second distichal;
the palmars
" with the third distichal and the first pinnule, or, if this pinnule is branched, with the proximal portion thereof;
the first postpalmars ", with the fourth distichal, the sicond pimmule, and the branches of the first pinnule if it be branched;
the second postpalmars „ with the firth distichal and thirit pinmale;
and so on. Which conclusions appear a sufficient reluction at absurdum of our present methods. Those methods were only logitimate so long as pimnules were considered to be structures distinct from arm-branches and present or not according to some unrecognized or, at the best, empirical system.

From the foregoing review of the circumstances it appears that a terminology is required that shatl fulfil the following conditions. Homologous parts must receive the same name. Parts serially homologous must receive names of a similar nature. When specialization and differentiation have taken

[^7]place, there should be some means of expressing the facts in a simple manner. Ceteris paribus, the names employed should at once convey to the mind the idea denoted by them, and should involve as little change as possible from terms that previous naturalists have been accustomed to use. It will also be advantageous if the system of terminology is capable of extension both along its own lines and to parallel structures, and if it can be readily expressed by intelligible symbols such as can be utilized in formulæ.

It is believed that the system about to be detailed does fulfil these conditions as far as possible, and since not one of those conditions has been adequately fulfilled by previous systems, it may claim to be their superior in these respects at least.

Examination of the Carpenter-Wachsmuth system brings to light one term, and one only, that has a meaning, viz. the Müllerian term" "distichals." At first, therefore, it seemed natural to suggest that the successive orders of brachials should be designated monostichals, distichals, tetrastichuls, octastighals, and so on. This plan would inform us how many corresponding branches there ought to be at the level alluded to; but as this number would only be complete in a regularly dichotomous arm, such information would in many cases be merely misleading. Another objection to the system, so far as Palæozoic forms were concerned, lay in the words" so on." For instance, such a term as "cikosinoctokaihckatostichals" would not commend itself to the gentlemen who are so anxious to eliminate Greek from the education of a man of science, and even a mathematician might take some time in discovering that " 128 stichals" signified the fifth postpalmars.

This suggestion may therefore be set aside for the present.
Instead, recourse may be had to the Latin language and to the method of simple enumeration. The term "Brachialia" may be simply combined with the Latin ordinal numbers. Since, however, this plan would produce rather lengthy words, even in their anglicized form, it seems advisable to shorten " brachialia" to "brachs." The terms thus formed are easily represented symbolically by the respective Roman numerals preceding "Br," e.g. IV Br., while the actual ossicle alluded to may be represented by an arabic numeral placed below the line after " $13 r$," e. g. IV $1 \mathrm{Br}_{2}$. When it is desired to indicate the fact that the ossicle alluded to is an axillary, the sulfis "axil" may be combined with the appropriate numeral; while in the symbols " ax " will supplant "Br" (see 'lable, p. 57).

This system has the advantage of at once convering to the mind, in the simplest possible mamer, the desired ideas. It is obviously capable of indefinite extension; but, since very few arms branch as many as twelve times, it does not involve words of any great length. It is true that "primibrachs" is longer than "costals; " but then "the fourth sextibrach " is far shorter than "the fourth brachial of the thine positpralmar series" or even than "the fourth ossicle after the fifth axillary," which latter is a periphrasis proposed to me by Mr. Wachsmuth. Besides, the system is merely a more comvenient rendering of terms that have been, and are still, employed by authors of repute, inclurling Wachismuth and Springer. In a letter dated August isth, 15:91, Mr. Wachsmuth writes: "The terminology of the brachials which you propose is almost the same which I proposed to Carpentur when we discussed the question two years agn, with the exception that I called the costals 'primary brachials,' the distichals 'secondary brachials.' At first we thenght thess terms were excellent, but, using them in some of our deseriptions, we found them extremely cumbreus, and this inducel us to accept C'arpenter's terms." He adds, however, "we occasionally use primary and secondary brachials in place of costals and distichals as a change." 'The alteration involved in adopting the proposed system is therefore of the smallest, possible kind, while the terms have all the 'excellence' without the 'cumbrousness' of those still used occasionally by Wachismuth and Springer.

A still greater advantage of the new system is that it can be extended to all parallel structures. The general tefm at present applied to the covering-plates of the ventral groves is "ambulacralia." This word may be conveniently shantened in composition, and the varions series denotel as " primambulacs" ©c. A similar nomenclature can be applic! to cirrus-ossicles or "cirrals," and to root-ossicles or " radicals," in cases where these branch.
The supplementary plates that oceur in some Camerata between the secundibrachs and tertinbrachs of a single ray have been called "Interdistichals" and "Interpalmars." The change to "Intersecundibrachs" and "Intertertiobrachs" is hardly epphonious; but there is rarely occasion to use these terms. The corresponding plates of the ventral surface should of course be known as "Intersecumbambulacs" and "Intertertambulacs:" these platus have hitherto had no distinctive names, and some may think that it was better so.
As yet we have only considered the propesel system in its application to simple or non-pimulate arms, when those are
free from the radials upsarl. Let us now consider it with reference to pinnulate arms.

First in cates where these are free. Strictly speaking the first ossicle that bears a pimule is homologens with the primaxil, and the next one bearing a pimule with the secundaxil. But however philosophical this may be, it is clear that, after all, practical people do need some name that shall include all the pimmulifirons ossicles of any one series or order. In sumplying this want we may adnpt one of two courses. Either we may retain the present system with its illogical names, or we may evolve a new system that shall answer the reguirements of a morphological terminology as laid down on p. 5.5 . There can be little doubt that the former course will recommend itself to those who have to deal only with recent Crimoids, the vast majority of which belong to the genera Antedon and Actinometra (Comestor), for the species of which genera formulx have been constructed by E. J. Bell * and P. H. Carpentert. When, however, we consider fossil pimulate genera, especially in the Camerata, the seconl course would appear to be accompanied by fewer difficulties.

For descriptive purposes, then, I would propose a t erminology congruous with the Miullerian term "distichals." The objections to this that were stated above do not apply in the case of pimulate genera, for in them the branching is almost always quite regular and does not take place so many times: except in formulæ, it would rarely be necessary to speak of any brachials higher than the octastichals. As a rule the monostichals correspond to the primibrachs, and there is no reason why the latter term should not be employed. In Metucrimus and Calamocrinus, however, pinnules are borne by the brachials of the first order. In that case the two terms do not apply to the same things, and the word "monostichals" must be adopted.

In cases where some of the proximal series of brachials enter into the dorsal cup, these may be called by Wachsmuth and Springer's term" Fixed brachials " or " brachiatia fixa;" while those outside the limits of the cup will be "Free brachials" or "brachictia libera." In formulae and symbols it would have been natural to have expressed the difference letween the two by enclosing the fixed brachials in brackets. Brackets, however, have already been employed by Bell and Carpenter, with far less obvious significance, to denote uncer-

[^8]tainty of occurrence; instead, therefore, it will be necessary to use a brace, or even a simple rule, placed above the symbols of those brachials that are included in the cup. Thus II Br would indicate the secundibrachs, while conveying the additional information that they were fixed.

In cases where some only of the free brachial series bear pimnules, it would be well to apply the Latin terminology to those brachials without pimnules, whether free or fixed, and the Greek to those with pinnules. Thus, $\overline{\mathrm{I}-\Pi \mathrm{Br}}$. III Br . Ssit, indicates that both primibrachs and secundibrachs are fixed, that the tertiobrachs are free but do not bear pinmules, that the next series of arm-ossicles are free and bear pimmules, and that there are eight free arms to a ray. The best way of representing the number of ossicles in each series will be discussed presently.

If the term "Free brachials" be used in the sense here ascribed to it, it can no longer be applied to the distal unbranched ends of the arms. If it is really necessary to have a special term for these ossicles, the word "finials" may be appropriately conveyed from architectural terminology. The word "terminals" already has its special use in Echinoderm morphology. The symbol for finials may be f when they do not bear pimules, and F when they do. In all formulie the last or right-hand term of the brachial series should always be understood as applying to the finials, so that there will rarely be any need to use the special symbol f. For the same reason it seems unnecessary to have different terms to express pimulate and non-pimulate finials, although, strictly speaking, non-pimulate finials are homologous only with the last pimule borne by the finials of a pimulate arm.

Another difficulty arises with regard to the word "axillary." As has been pointed out, each pimnuliferous brachial is morphologically an axillary. Consequently, if the morphological teminology be followed, supposing that the ossicle on which a pimulate arm first branches be the primaxil, then the two ossicles that this supports are the secundaxils; and if there are six distichals the sixth will be the septimaxil. The septimaxil then, in this case, is the same as the distichal axillary. It will therefore be convenient to distinguish those axillaries on which a pimulate am itself branches as "mainaxils;" and instead of alluding to them individually as "monostichal axillary," "distichal axillary," and so on, they may be spoken of as "first mainaxil," "second mainaxal,", and so on ; or they, might pessibly be called "monaxil"," "distaxil," tetraxil," "octaxil," de. In the symbels, the manaxils may be distinguished from the simple axillaries by
being represented by " Λx " instead of "ax," and by the use of Arabic instead of Roman numerals.

We are now in a position to express in the formule the number of brachials in any series. 'To say that the Quartaxil is the fifth ossicle of its series is obviously the same thing as saying that there are five quartibrachs; while to say that the third manaxil (or 'Tetraxil) is the fouth ossicle of its series is obviously the same thing as saying that there are four tetrastichals. These facts may be expressed symbolically thus-IV ax x_{5}, and $3 \lambda x_{1}$; which symbols come to mean just the same as IV Br-5 and 4 St-t, or as IV $\mathrm{Br}_{5}=I V$ ax, and $4 \mathrm{St}_{4}=3 \Lambda x$. Applying this method to the formulae we get such results as these :-

Thenarocrinus callipyyus.

$$
\text { I } a x_{3} \cdot \text { II ax }_{(4)} \cdot \text { III } a x_{4-10} \cdot I V-V I I I a x_{6-18} \cdot f_{2},
$$

which being interpreted is, Primibrachs 3, Secundibrachs 4 as a rule, Tertiobrachs from 4 to 10, Quartibrachs, Quintibrachs, Sextibrachs, Septimibrachs, and Octavibrachs from 6 to 18 , number of finials uncertain. It also conveys the information that the arms branch eight times, that they are nonpinnulate, and that none of the brachials enter into the dorsal cup.

Botryocrinus pinnulatus.

$$
\mathrm{I} \mathrm{ax}_{4} \cdot 2 \mathrm{St}-35+,
$$

which indicates that there are four primibrachs, which are free, that there are two arms to each ray, which do not branch again but which bear pimnules, and that the number of ossicles in each of these arms is uncertain, but exceeded 35.

Botryocrinus decadactylus.

$$
\operatorname{Iax}_{(3-4)} \cdot(\mathrm{II} \mathrm{ax} 2 \& I I I B r) \cdot 2 \mathrm{St} .
$$

The facts expressed by this are somewhat more complicated. Primibrachs are usually 3 or 4 , but may be more or less; they are free. It is clear from the symbol 2 St that the arm bifureates on the primaxil ; but the signs in brackets that precede 2 St show that the earlier ossicles of this distichal series do not all bear pinnules, there being first a simple secundibrach, then a sccundibrach bearing either a pinnule or armlet, then a simple ossicle which is morphologically a tertiobrach, and then the series of pimuliferous distichals of which the number is uncertain.

Batocrinus Lovei (the formula for all rass except anterior).

$$
\begin{aligned}
& \overline{\mathrm{Iax}} .11 \mathrm{ax}_{2} \cdot \mathrm{II} \mathrm{Br}-2.4 \mathrm{St} \text {, } \\
& \text { or, more shortly, } \overline{\mathrm{I}-11 I \mathrm{Br}_{2}} .4 \mathrm{St} \text {. }
\end{aligned}
$$

This is quite clear, the only point to notice being that in the third order of brachials two are fixel, the rest free and pimuliferous. The corresponding formula for Butocrinus Christyi is $\mathrm{I}-\mathrm{III} \mathrm{ax} 2.8 \mathrm{St}$.

Gilbertsocrinus tuberculosus.

$$
\overline{\mathrm{Iax}} . \| a x_{3} . I I I a x_{4-5} .8 \mathrm{St} .
$$

In this case the tertiobrachs are free but bear no pimules, and there are 8 pinnulate arms to each ray.

One camot hope to express quite as much in a formula as Mr. P'uff got into a shake of Lord Burleigh's head; it is hoped nevertheless that the above examples will show how, br a more rational terminology, with its appropriate symbols, the aitempt to apply a system of formulation to Palawobic Crinoids may have some chance of success. There are of course more complicated plans of arm-branching than those here alluded to ; they will demand more complicated formule no doubt, but it should be possible to use the same terminology and symbols in all but the most exceptional cases.

Interradial Plates.-Interbrachials.

The term "Interradials" is applied by Wachsmuth and Springer to "all plates interradially disposed in the calya." These include Basals, Interradials (s. stio), Interambulacrals, and Orals. Now, since all these plates are truly intermetial, and since all morphologists will wish to retain this wide use of the word, it seems a pity to condeavour to restriet it th those interradially situated plates alone that oeeur in the dorsal cup and that are above the level of the hasals. There is a term "Interbrachials," which Wachsmuth and springer have proposed "for all plates between the rays above the radials," thus, ly implication, still further limiting the meaning of Intemadials (s. str.) to the one plate in each interradius that may necur between the radials themselves. But mompho logically these latter plates do not differ from the Interbrachals (W. \& SLe) in the same way as radials difier from brachials ; consequently the difference of name is misleading.

Why should not all interradial plates bolow the free arms, except of course the basals, be called Interbrachials, each row being distinguished as first, second, thire, dee? Thus the plates to which the term "Interradial " is now often wrongly restricted would be called "the first Interbachials," or, when they ahne existed in the dorsal cup, simply "the Interbrachials" (ibr).

It would be convenient still to distinguish the eorresponding plates of the ventral surface as "Interambulacrals" (iumb).

Interradial Plates.-Deltoids.

In the genus Eiuspirecrimus there oceur on the oral surface four cordiform or sultriangular plates. (ne of these is situated in each interradius, except the posterior interradiu*, and abuts on the upturned pertions of the radials, $i . e$. on the radial processes. These four plates meet one another laterally, beneath the ambulacra, exeept in the posterior interradius. In the posterior interradius there is a larger plate of somewhat similar shape, which has an irregular surface. This plate bears to the peristome the same relation as do the fur cordiform plates ; it also partly supports the ambulacra; it does not, however, bear the same relation to the radials, as it is seprated from them by a varying number of plates connected with the anal tube. One or more of these latter plates, on either side of the anal tube, meet the adjacent cordifurns plate beneath the ambulacrum.

The four cordiform plates are also met with in Cissocrinus, Cyutlucrinus, C'erchocrimes, Steptocrinus, and other Inalunate genera. The posterior plate with an irregular surface is usually conspicuons in the same genera. The homologies of these plates with plates occurring in the tegmen of other Crinoids are still in dispute; it is therefore advisable to give to them some names that shall not have too great morphological significance.

The postenior plate appears to have been perforated by one or more prores, being in some cases quite cribriform*, and it is probable that it sulserved the functions of a madreporite, whatever those tunctions may be. It will therefore be convenient to apply to this plate the term "Madreporite," which term, it should be remembered, has no strict morphological significance, since the position of the madreporite in other Echinoderms is by no means constant.

The four cordiform plates have often been regarded as orals,

[^9]a view which in recent times has been advocated by M. Neumayr ('Stämme des Thierreichs'). Most recent writers, however, among whom P. H. Carpenter may be mentioned, have consilered them as Interradials, though whether homologous with Interbrachials or with Interambulacrals was left a little uncertain. The most recent and most original view is that of Wachsmuth and Springer *, who treat them as partly, if not altogether, Subambulacral, a view which can hardly be defended \dagger. The latter authors have, however, suggested that these plates correspond to the deltoids of the Blastoidea (ibid.). I. II. Carpenter, in a letter to me, dated 25th September, 1891, said: "They are unquestionably homologous with the deltoids of Stephanocrinus and the Blastoids." It is not likely that any one will disagree with this statement, however much opinions may differ as to the homologies of the Blastoid deltoids themselves. Consequently we may temporarily extend to the four cordiform, interadially situated plates of the tegmen, in Euspirocrinus and the Cyathocrinidæ, the term "Deltoids," which may be fittingly symbolized by the Greek delta, Δ.

We can hardly doubt that a homologue of the deltoids exists in the posterior interradius ; but whether this be represented by the madreporite or by two of the small plates at the base of the anal tube is a question not yet settled. It is therefore inadvisable at present to extend the term deltoid to any plate or plates in the posterior interradius.

Interradial Plates.-Anals x and t.

It may be as weli to take this opportunity of stating that the term "anal x " will be applied for the present in my papers to the single anal plate that enters into the composition of the dorsal cup in such genera as Cyathoerinus, and to the homologue of that plate in other genera. This is the plate for which the term "Brachianal" was proposed in "British Fossil Crinoids," II. p. 330 ; that term, however, lays too much stress on an inference that has not met with general acceptance.

Once more, however, it is necessary to point out that neither the rejection of the term Brachiamal, nor even the rejection of the inference that the anal x was primitively derived from a brachial, affect the main contentions of the paper refired to. I still believe, for reasons given in that

[^10]paper, that the anal x deseended into the enp from above; and I believe that the lowest, median, posterion plate of the rentral tule is always this same plate, whether it be right above the radials, as in Inerimus and Merocrinus, resting on the radials, as in Ilefrecrinus and Custocrinus, between the radials but not in line with them, as in Homocrinus and Dentrocrinues, in line with the radials, as in Botryocrinus and Cyuthocrimes, or rising ahove the radials again, ats in the later Decatocrimide and in the larval Intedom. In this view I have the misfortune to difier fiom Messes. Wachsmuth and springer, who apply the term "anal x " to the lowest plate of the tube only when it is partly on entirely within the limits of the dersal cup. 'They "apply the tem' 'anal plate' only to those taking part in the dorsal cup. All others are plates of the anal tube or the rentral sac." That this is not, in their opinion, a mere difference of terminology is shown by the arguments that they have based on this supposed difference. 1f, however, we consider such a form as Botiyocrinus, we shall see that the anal x is of exactly the same shape and provided with the same axial ridges as the plate that rests; immediately on it: there is no visible difference between them, and whatever the one is that we should suppose the other must naturally be. It is merely for convenience, and to distinguish it from the other plates of the cup, that we call one of them " anal x."

In exactly the same way, the third anal plate that enters to a greater or less extent into the dorsal cup in such genera as Iomelrocrinus, Poteriocrinus, and Decudocrinus would appear to be merely the small plate that in Botryocrimus, Cyathocrimus, and such forms, is seen on the right of anal x, resting partly on it and partly on the right posterior radial, and corresponding to a similar plate on the left. In other words, calling these two plates $r t$ and $t t$ respectively, $r t$ is outside the cup in Cyathocrinus but partly inside it in Poteriocrinus. Messrs. Whachsmuth and Springer, however, in their paper on the Perisomic Plates (p. 385) have advanced the view, apparently for the first time, that in the Poteriocrinites "a new plate was introduced beneath the other, a sort of thind anal." That is to say, in their opinion the third anal of Poteriverimes is a firesh development without any homologne in the Cyathocrinidæ and Botryocrinites. But surely the constancy in shape and position of the anal cup-plates x and it is hardly consistent with the idea that they are merely supplementary plates developed to suit the needs of those particular genera in which they appear. It seems more in accordance with the principles that have hitherto governed

Ann. \& Mag. N. Hist. Ser. 6. Vol. ix.

Crinoid morphology to regard their resemblances as due to homogeny rather than to homoplasy.

Imperforate Articulation.

Reference to "British Fossil Crinoids," II. p. 314, will show that there is some difficulty in dist:nguishing betwe en those forms of joint that are there called "Loose suture" and "Muscular articulation." There are among Inalunate Crinoids many instances of arm-joints in which there is a well-defined fulcral ridge, combined with muscular and ligatmental depressions, but in which the axial canal dous not happen to be separated from the ventral groove by sterem and so does not perforate the fulcral ridge. It might be advisable to distinguish these joints as "Imperforate articulation," and to call the muscular articulation in which "the articular ridge, whether vertical or transverse, is always perforate," "Perforate articulation."

It is unfortmately necessary to explain that the word "joint" is used here and throughout my papers in its ordinary English and anatomical sense, and not in that restricted ant different sense which is usually ascribed to it by crinoidolo. gists and cooks.

11II.- Un the Oriposition und Eimbryonic Development at the Crocudile. By Dr. A. Voeltzhuw, of Majunga, Madagascar *

The Madagascar Crocodile, Crocorlitus niloticus, Laur. (matergascariensis, Grandid.), is not only one of the commonest reptiles, but perhaps the commonest Vertebrate of the islan.l. It is found in large numbers whereper there is water, in every pool and stream. The natives distinguish two species, one (($\%$ miluticus) with a longer, and another with a shorter heond and greater length of body; the latter is said to ocemr only in the large rivers in the primeval forest, and the natives are extramedinarily afraid of it, as it is stated to be very sarage; it is probably identical with (r. roloustus, Vaill, (iramdid. I

[^11]have not yet suceereded in securing a specimen of this secon! species; my remarks therefore refer exclusively to $C i=$ niloticus, Laur. (madagascariensis, Grandid.).

This anmal is met with in all sizes, especially mumerous on the samdlanks of the Betsiboka River, where, in the space of an homr, in rowing down the river, a hundred and more may be readily observed. The largest which I have yet measured was 13 feet in length, though individuals of considerably larger size occur.

Oviposition commences in the latter days of August, and continues until towards the end of septemb r \%, after which I found that the egess all contained embryos. Altogether rather more than one thousand egs were sulmitted to examination, derived from about tiairy-five batches. In a few cases the number of egrgs in the batch could not be exactly determined. The number of eggs in a bateh varies between twenty and thirty.

The nest consists of a pit excavated in the earth to the depth of about a foot and a half to two feet, with partially steep walls. At the bottom of the pit the walls are undermined, and here the eggs are placed. The floor of the pit is raised slightly in the middle, so that the eggs, as they are laid by the female, roll by themselves into the hollowed-out places. Very rarely one or two eggs are found lying in the middle of the pit, which may well be taken as proving that the mother does not herself push the egges into the hollows with her feet, for in that case $n 0$ egges would ever be found in the centre of the pit. After the eggs are laid the pit is filled in, and no sign of it can be detected from above. The old crocodile sleeps upon the nest, and this enables the natives to find the eggs, since they follow the tracks of the animal from the water.

The shape of the eggs is extremely variable, and not even those of the same batch resemble each other completely; many are elliptical, others cylindrical with rounded ends; two eggs were pointed at one end. In size they vary from $5 \frac{1}{2}$ to 9 centim. in length and from 4 to 5 centim. in breadth. The shell is white, thick, and hard, sometimes coarsely granular, sometimes smooth.

Almost all the nests were dug in the dry white sand, a few in ground rich in humus, but in such a way that they could not be reached by damp. I must lay especial emphasis on the latter point, since freshly-laid eggs are peculiarly sensitive to wet. More than half the eggs which were

[^12]placed in pits in my courtyard perished through getting mouldy, in spite of the fact that only a very small degree of noisture could afterwards be detected in the sand. The fresh exg is altogether one of the most sensitive oljects with which I am acquainted. A slight increase of temperature also killed the young embryos to a certainty if the egse were not covered with a sufficient depth of samd. Older eess, on the contrary, are all the more capable of resistance, and may half dry up, and lie for days uncovered upon the table, without causing the destruction of the embryo.

The Sakalava people told me that when the young are ready to emerge the female scrapes the sand out of the pit; I had no reason to doubt this statement, as I had myself seen numerous pits from which the sand had been removel amd which contaned the broken egg-shells. This gave rise to the question as to how the mother knows that the eges are sufficiently developed and that it is time to scrape out the pit. The solution of the riddle was very simple.

In the workroom of my house there stand a few boxes filled with sand containing crocodile esgs, in order that I may have the latter always before my eyes and eventually be alife to see the joung animals emerge. One day I heard sounds emanating from one of these boxes, and came to the conclusion that a young crocodile had actually hatched and, being buried in the sand, was stifling, and so making these noises. On digging out the sand I discovered the surprising fact that the sounds actually came from the uninjured eggs. The noises are so loud that if the esges are exposed they may be heard quite distinctly in the adjoining room. It the eges are covered with sand, as they are in their natural state, thetefore to the depth of about 2 feet, the sounds are somewhat deadened, but still distinctly discernible without difficulty at the distance of the length of a room. The eries of the griang animals in the egge can be aroused at any time by walking with a heary tread past the spot where the egess are lying, or knocking at the box containing the eggs, or taking the efge in the hand and shaking it slightly; every disturbanee causes the young animals inside to utter sounds.

Since, as mentioned above, the mother animal sleeps upon the nest, it will in its movements or in its wanderings to and fro between the water and the nest slake the ground, and cause those young animals in the eges which are sufficiently far developed to emit somils. The female then sorapes the sand out of the pit, and atter some time the young emerge. From eggs of this kind, which were exhumed ant kept uncovered, the young emerged in three days.

The fact that sounts are produced by the young in the cers was minnown to anybody here. The natives langhed at me: when I spoke about it, until by listening they were eonvinced of their mistake. The sounds are produced with the mouth closed, apparently by powerful contraction of the ventral muscles, much as we make a noise when hiccoughing. The sound, too, is similar.

When the young animals have emerged the old crocodile goes with them to the water. My taxidermist, a thoroughly trustworthy man, who has previously travelled with Dr. Fischer, told me that a short time before he had seen a large crocodile with a tribe of about twenty young ones travelling over a stretch of sand to the water. IIe stated that the old one was remarkably savage. That the just-hatehed young are able, without help from the mother, to break through the superincumbent layer of sand I believe that I am entifled, according to the experiments which I have made, to deny as emphatically as possible. Of the egrgs which were covered with a layer of sand about $1 \frac{1}{2}$ to 2 feet in depth it is true that a few showed feeble attempts on the part of the young to escape, in that the shell was broken at one point, while sometimes the young animals had protruded the tip of the snout; but they had invariably perished, probably from want of air. The eggs which were only lightly covered with sand presented no difficulties to the young in escaping.

The process of hatching is preceded by a change in the position of the embryo, with partial destruction of the embryonic membranes, so that the tip of the snout of the young animal now comes into contact with one end of the egg; at any rate this was the position of all embryos which were ready to emerge. The piercing of the egg-shell is cffected by the mechanical operation of the egg-tooth, which is also found in young birds. The rudiments of this tooth may be detected at a very early stage, at the period at which the young crocodiles begin to assume their definite shape, therefore when the embryos are about one and a half to two months old. In the just-hatched young it appears as a tooth about $\frac{1}{2}$ to $\frac{3}{4}$ millin. in length, terminating in two points; the movements of the animal catise it to act precisely like a gimlet. In crocoliles a fortnight old it was still distinctly recognizable. On the perforation of the egg the embryonic fluid escapes and produces a softening of the adjacent parts of the shell, and the young animal forces itself backwards through the narrow cleft. A specimen which was watched from the moment it pierced the egg-shell took about two hours to completely emerge. As the animal forces itself through the narrow hole
the embryonic membranes are torn off at the edges of the opening and are left behind in the egg.

The just-hatched young are of considerable size, and it is afterwards difficult to understand how they could have found room in the egg. For instance, an ceg_{g} \& centim. in length by 5 centim. in breadth prorluced a young ernoorlile of 25 centim. These young animals are very savage from the first; they snap at the finger if one attempts to pick them up, \&e. They frequently make a noise, especially when they are hungry. This fact lad long been known to me. The note is not so high as that produced by the young in the egs. It sounds pretty much like the cry of our fire-bellied toad (Bomlinator igneus), but is somewhat louder; it is repeated sis or seven times, followed by a pause. Some young crocoliles which I have been observing for alout a fortnight in a poul I have not heard to utter any cries during the last day or two. Besides this the animals make a spitting noise if they are irritated, e. g. when they are held up by the tail.

Hatching is not directly dependent upon the setting in of the rainy season, and is not occasioned by the increased moisture of the ground, since the greater number of pits contained empty egg-shells about a fortnight before the oceurrence of the first fall of rain. Development in the egge takes about three months. It was in the middle of November that I received information that the first newly-hatched young had been observed.

The newly laid egge exhibits the following characteristics.
As has been remarked above, the form and size of the egs are variable, and it possesses a hard and coarsely gramulated shell. Immediately beneath this lies the thick and tough shell-membrane, which is so resistant that the egre retains its furm after the removal of the shell. This shell-membrame consists of two layers, a thicker external and a more delicate internal one. It is possible with a little care to peed off the external layer in large pieces. S. F. Clarke *states that the shell-membrane of the alligator is attached to the shell in a ring-shaped zone in the direction of the smaller diameter, and that even from outside the eges appears to be encircled by a readily distinguishable white zone. Nothing of this is to be seen in the perfectly fresh egess of the crocodile. Crocodile egess which presented this appearance underwent no further development.

The albumen is of about the same consisteney as jelly, sometimes has a greenish lustre, and is so tough that, after care-

[^13]fully removing the shell-membrane, the entire egge may be taken in the hand, rolled about, examined from every side, and even allowed to slide from one hand into the oflee without collapsing. The yolk is glohular and so large that it reaches almost to the long sides of the shell-membrane. The colour is somewhat lnighter than in the case of the fowl. The vitelline membrane is very delicate, but so tough that it is possible with a little practice to remove the albumen entirely, until finally only the yolk is retained in the hand; the yoll then naturally assumes the shape of a round flat cake.

I must agree with S. F. Clarke in stating that the egge of the erocodile is the temberest and most difficult oljeet to manipulate imaginable, since the conditions which have just been described apply to perfectly fresh eggs only; subsequently it is only extremely sellom that the egge can be prepared without injury. I adopted the expedient of first removing one half of the esg-shell and then half of the shellmembrane, which I succeeded in doing without damaching the albumen; then, tuming the egs gently, I searched for the embryo; if I discovered it I opened the albumen and yolk by a quick cut with the scissors, and then allowed the embryo to slide slowly into a watch-glass; the whole was then lifted up, and further manipulated under a dissecting-microscope. In spite of every precaution all my trouble was often thrown away.

It is stated by S. F. Clarke that it is possible to determine the position of the embryo from without by the fact that at one spot the above-mentioned ring-shaped white zone is expanded. This statement is not applicable to Crococlitus niloticus, since an expansion of the zone is found even in bad eggs, in which the embryo has perished. Eggs which develop normally exhibit no trace of change in their external appearance until the cscape of the young animal, but appear pure white.

It would be premature at the present moment to attempt to give a review of the entire course of the embryonic development, since my investigations are not yet concluded and will need a supplementary examination next year, for unfortunately perfectly new-laid eggs have not come to hand so plentifully as might have been wished.

The youngest embryos observed, about six days old, were dumbbell-shaped and 3 millim. in length; the amnion was not yet closed. The object is unfortunately so delicate that I have not yet succeeded in examining these stages under the microscope, and I was obliged to confine myself to preserving these as well as the perhaps even younger stages in toto.

So far as I have yet been able 10 determine, the development of the crocodile closely resembles that of the bird. A noticeable feature is the tail, which is of great length at a very early stage, and is at first rolled up in a spiral form, and afterwards, when the embryo is more strongly bent, twistell round the neck.

That the rudiment of the egg-tooth appears very early has already been mentioned.

Rudiments of the genital protuberance are already to be seen in embryos which are about 10 millim. long (measured in the bent position). A rod-shaped structure may then be observed between the posterior legs ; it is about 1 millim. in length and protrudes from the cloaca, with the anterior wall of which it is fused. It at first lies parallel to the median line of the abdomen, is subsequently erected, and finally completely retracted within the opening of the cloaca. It is not until the embryos are almost full-grown, after about two and a half months, that the genital protuberance begins to disappear altogether, and is then only to be seen by separating the lips of the cloaca.
IX.-On newly-discovered East-African Chameleons, with Remarlis on some other Reptiles described ly Dr. Steindachner. By G. A. Boulenger.
Judging from the number of descriptions recently published* it would seem that the Chameleon fauna of East Africa is likely soon to rank next to that of Madagascar with regard to variety of species. I have, however, no doubt that the list of species has to be reduced by three, of which two have just been described by Dr. Steindachner and the third by Mr. Stejneger. On comparing the descriptions and figures of Chemateon Hölenclii and leikipionsis with the late J. (x . Fischer's account of ($\%$. bitoniutus and the specimens in the British Muscum, I camot come to any other conclusion but that they all belong to one and the same species, D_{1}. Steindacher's specimens heing fully-developed makes. 'The

[^14]difterence betwern them is no greater than between individuals of the South-African Ch. pumilus.

The third species described by Steindachner, Ch. tavetensis, is the same as Stejneger's Ch. Ahlotti. The library of the Natural-Ilistory Muscum having received a copy of the latter author's paper on Sept. 2, and the number of the Viemar 'Anzeiger' contaning Dr. Stemdachmer's diagnosis on June 22, 1 regard ($\%$. teretensis as having priority, and it is under that name that I shall deseribe a female specimen which has recently been presentel to the British Museum by Mr. Keith Anstruther, wholotained it at 'Tareta on the 30th June last.

Chameeleon tavetensis, Stdr., $ㅇ$.

Casciue feebly raised posteriorly, with a mere indication of a parietal crest; the distance between the commissure of the mouth and the extremity of the casque equals the distance between the former point ant the nostril ; canthus rostralis with a series of conical tubercles; the rostral appendages replaced by a slight swelling in front of the nostril. Bonly covered with subequal, rather large, flat gramules, some of which may be regarded as slightly enlarge " tubereles;" no crests. Tail longer than head and body. Olive-grey; a pair of white lines along the middle of the posterior part of the belly.

$$
\begin{gathered}
\text { millim. } \\
.1-5 \\
. \quad 18 \\
. \quad 21 \\
12
\end{gathered}
$$

Tutal length
From end of snout to extremity of mandible 18
Greatest width" of head 21
Depth of skull (mandible included)
Body 70
Tibia 14
Tail 11.5

Chumalcon Fischeri, Reichenow, which is only known to me from the description, differs from ($\%$. turetensis in the much more strongly compressed rostral appendages and the presence of a crest on the anterior part of the back.

Before concluding I have a few remarks to make on some other Reptiles described by Dr. Steindachner in the same paper.

1. Tetragonosoma effrene, Cant.-Dr. Steindachner, who has overlooked Stoliczka's description (Joum. As. Soc. Beng. xxxix. 1870 , p. 203 , pl. xi. fig. 3), is mistaken in believing the Lycodon described by me as L. ctro-
purpureus, Cant., to be the same as L. effernis; the latter has three labials in contact with the ere, the former only two. The type of Lycodon opltiteoides, Blkr., is preserved in the British Museum.
2. Simotes Meyerin7uii, Steind., is, I suggest, only a variety of S. octolineatus, Schn.
3. Chalcirles Simonyi, Steind., from Fuertaventura, I regard as a varicty of C. viridemus, and as there is a C. viridatus, var. Simonyi, cither of the names will have to be changed. My reason for not accepting C Simonyi as a valid species, although some of its characters do not fit into the diagnosis I have given of C. viridanus (Cat. Liz. iii. p. 402) is that a female specimen from Grand Canary, preserver in the British Muscum, falling, as regards coloration, into Steindachner's var. bistriata, β^{3}, arid with 36 scales round the middle of the body, agrees precisely in its propontions with C. Simonyi, as may be seen from the following measurements:-

From snout to vent . milim_{87}	
From snout to fore limb	25
Head (to ear-opening)	$1: 3$
Width of head	10
Fore limb	15
Hind limb	22
Tail (reproduced)	-

4. Molge Luschani, Steind.-I have no douht this is a Sulamendicu. There seems to be less difference between Salemandia Luscheni and S. cencesicu than between the latter and S. maculosa.

X.-Description of a new Snake from Nubia. By G. A. Boulenger.

Gongylophis Muelleri.

liostral large and hood, with angular horizontal edge; uper surface of shout and crown with small smooth shiclds, the largest of which is an azygons shied behind and wellyed in between the internasals, which form a shont suture behmed the rostral ; five shields from eye to eye across the forehead; nine or ten scales round the eye, which is sepratad from the labials liy a single series of seates; nine upper labials. Scales
perfectly smonth, in 41 to 4.5 rows. Ventrals 181-187; amal small, entire ; subcaudals 16-19. Tail pointed, ending in a curved, claw-like, homy scute, as I have described in Eiry. doyntani. Cream-colour, above with a dorsal series of large dark-hrown hotches, some of which alternate and are confluent into a zigzag band; a lateral series of smaller dark brown spots, alternating with the dorsals.

Total length 370 millim. ; tail 30.
Two examples of this species from Semar, obtained by the Italian traveller Marno, were noticed by Dr. F. Miiller in his Catalogne of the Reptiles in the Basle Musemm (Verh. nat. (ies. Basel, vi. 1s78, p. (5.50), and provisionally referred to Eryse juculus. Through the kindness of Dr. Miiller I have now received one of the two specimens, and feel no hesitation in pronomeng it to belong to a new species, with which it gives me great pleasure to comnect the name of my friend the distinguished herpetologist.

This now brings the number of Eryces (Eryse and Gongylophis) to eight, which may be easily distinguished by means of the following synopsis :-
I. A mental groove: Eryx, Daud.
A. Eyes latero-superior, separated from each other by six or more longitudinal series of scales; tail obtuse or obtusely pointed.
a. Anal shield small; rentrals and subcaudals narrow.
$51-65$ scales across the middle of the body; ventrals 194-210 E. Johnï, Russ.

40-50 scales across the middle of the body; rentrals 165-200
E. jaculus, L.

36 scales across the middle of the body ; ventrals 184
E. elegans, Gray.
b. Anal shield large; rentrals and subcaudals
broad, the former occupying at least one
fourth the circumference of the body .. E. sennariensis, Jan.
B. Eyes entirely on the upper surface of the head, separated from each other by four lougitudinal series of scales; tail pointed, ending in a curved, claw-like, homy scute.
E. Jandilari, Blgr.
II. No mental groove: Gongylophis, Wagl.
A. Scales keeled, at least on the hind part of the body; tail ending in a conical scute.
8 -10 keeled scales from eye to eye across the forehead; rostral without angular edge; scales in 40-49 rows
G. conicus, Schn.

12-15 smooth scales from eye to eye across the forehead; rostral with angular horizontal edge; scales in 47-53 rows

G. thebaicus, Reuss.

B. Scales smooth, in 41-45 rows; tail ending in a curred, claw-like scute; 5 smooth scales from eye to eve across the forehead.

Cí. Murlleri, Blers.

XI.-Descriptions of Three new Gerbilles in the Pritish Museum Collection. By Oldfield Thomas.

Gerbillus calurus, sp. n.
Size medium. Lars rather large, laid forward they reach 1 millim. in front of the anterior canthus of the eye. Namma, as usual, $2-2=8$. Palms naked, with the usual five pads, the two large basal ones subequal in size. Soles quite naked, the proximal halves smonth and shining, the distal hallves very coarsely granulated and bearing six large and prominent pads. Tail considerably longer than the head ant boty, even without its terminal tuft of hairs; coarsely scaly, the rings of scales averaging about fourteen to the centimetre; thickly clothed all romed with long coarse hairs 13 to 15 millim. in length from within an inch of its base to its tip, the whole tail being as bushy as in many Myoxida; its colour apparently has been a dark rich brown or black throughout its length, except at its tip, where the terminal half-inch is white or yellow.

Colour of the body apparently as usual in the genus, yellowish or rufous above and whitish below, but, like the colours of the tail, they must be taken with great reservation, as the only specimen is in a very bad condition and has been at least fifty years in spirit.

Skull with a long, slender muzzle, narrow interorbital region, large bulla, whose posterior portion is much swollen and appears in an upper view of the skull, and projects posteriorly just beyond the level of the ocepiptal bone.

Upper incisors bevelled, with a single deep grouve. Molars of the type so wom that the three lamine of im: are commectel by two central hridges; these two bridges are, howerer, mot directly in front of one another, the anterior being at a markedly more intemal level than the posterior. As far, however, as can be julged in the present state of wear, the teeth are decidedly those of Gerinillus (s. s.), and not of the Meriones section of the group. Laminte as usual $3-2$ - 1
both above and below ; the last molar nearly cirentar in cach case.

Dimensions of the typre (an alult femate in spirit) :-ITead and body 11.3 millim. ; tail, without hairs, 1.52 ; him 1 fous 31 ; ear (above crown) 15.

Skull: basal length 31 ; greatest length, from tip of matals to oeciput, 37 ; greatest bremlth, at anterior elge of anditory meatus, $19 \cdot 6$; zygomatic breadth $1!9 \cdot 2$; nasals, lengtl 14%, Ereatess headth $3 \cdot 4$; interorbital brealth $5 \cdot 7$; interparictal, length 4 , breadth $5 \cdot \%$; least distance between posterior portions of hullar across occiput $7 \cdot 9$; length of anterior zygomaroot 5.5; palate, length $1!\cdot 1$, liastema $9 \cdot 5$, palatal foramina 6.8 ; length of upper molar series .5 ; greatest diameter of bulle 14%; greatest vertical height of Drain-case and bulla combined $13 \cdot 8$.

Hab. Unknown.
The type specimen of this species has been in the Museum at least since 1837, and probably considerably longer, for about that date it was entered by Dr. Gray in the first mannscript list of the then Museum collection of rodents in spirit; and even then its history seems to have been already forgotten, as it is merely entered as "22. a. Sciurus", the localities, donors, \&e. being in other eases entered in the same list. It is noteworthy that so distinct a species has never turned up since.
G. culurus is a most striking and remarkable species, differing from every other member of the group loy its evenly bushy tail, which more resembles that of one of the larger Myoxida or smaller Sciuride than that of a Gerbille. This last resemblance is curiously exemplified by Dr. Gray's entry of the specimen already referred to. In addition only some three or four other species, and these quite small ones, half the size of G. calurus, have six posterior foot-pads. They are all African, and there is every probability that G^{*}. calurus also comes from that contincut, as the Asiatic species all have palms and soles of quite a different character.

Gerbillus gracilis, sp. n.

Size rather small, form slender and graceful. Ears large, rounded, laid furward they reach to the anterior canthus of the eye. Palms and soles as in Cr. indicus, leucoyester, ufer, and others, viz. naked, the palms gramulated and with five pads, the soles smooth posteriorly, granulated anteriorly, and with four small pads. Tail slender, thinly hairy, but little pencilled terminally.

General colour above bright rich rufons, darker along the centre of the back, clearer and richer on the sides. Under surface from nose and cheeks to anus, forearms all round, hands and feet, white, the line of demarcation sharply marked.
Tail brown above, dull yellow on the sides and below; the lengthening of the upper brown hairs forming the usual crest and pencil commencing on the proximal thind of the tail.
Skull narrow, lyut with rather a stout muzzle; its gencral form more Murine than Meriones-like, as the posterior part is narrow, and no part of the bulla show in a vertical view of the skull. These latter are small, oval, and have their mastoid portion scarcely swollen at all.
Teeth: upper incisors very much bevelled, with a single deep groove. MLolars markedly (Gerbilline in the strictest sense, their lamine low, separate from each other, and evidently each originally composed of two cusps, with the usual exceptions of thie anterior lamina of the first and the posterior of the last molar.

Dimensions of the type (an adult male in spirit): :-Itead and body 92 millim.; tail 134 ; hind foot 29 ; car 15.5.

Skull: basal length 25.5 ; greatest length from tip of nasals to occiput 32 ; zygomatic breadth 15.7 ; lereadth at anterior edge of auditory meatus $14 \cdot 9$; masals, length $12 \cdot 4$, greatest loreadth $3 \cdot 2$; interorbital breadth $5 \cdot 9$; interparietal, length $4 \cdot 4$, brealth $8 \cdot 5$; length of anterior zygoma-root $\overline{5} .1$; palate, length $16 \cdot 2$, diastema $7 \cdot 7$, palatal foramina $5 \cdot 0$; length of upper molar series $5 \cdot 1$; greatest diameter of bulla 10 ; vertical height of brain-case and bulla combined $12 \cdot 2$.

Hab. Gambia.
Type specimen (85.2.2.1) collected and presented to the Museum by Sir C. A. Moloney.

This pretty little species appears to be most nearly allied to G. leucogaster, Peters, which is found from Mozambique across to Angola, and to the Algerian G. garementis, Lataste. The former of these, however, is considerably larger than ${ }_{r}$. gracilis, while the latter, besides being much smaller, has five instead of only four hind foot-pads.

Gerbillus Emini; sp. n.

Nize slightly larger than in (i. gruectis, markelly smaller than in the large species and larger than in the small ones deseribed by Sundevall, Henglin, and others from the same region.
Colour above a soft brownish fulvous, fincly grizzled with black, paler on the sides. Lower surface, hands, and feet, as usual, pure white.
'Tail longer flan the had and body, bown above, peneilled with black terminally, orange-rufous on the sides anm below. Palms and soles with the cssential chatacters of those of (6. gracilis, lencoguster, de., i. e. nakerl, with five anterior and four posterior pads, bat distinguished from all the species of this group) hy the fact that a band (about 4 millim. broad) of fine hairs passes acrosis the soles at abont the level of the base of the hallux. Skin of soles black.

Skull very much as in ('t. gracilis. Bulle small, egsshaped, their posterior part scarcely swollen.
'leeth: upper incisums much bevelled, each with one deep groove. Molars with the low, distinct, directly transverse famina characteristic of this group of Gerbilles.

Dimensions of the type (an culult specimen in skin) : II ead and body 140 millin.; tail 155 ; hind foot 29.

Skull: basal length 30 ; greatest length 3.3 ; tympanic breadth 16.5 ; nasals, length 14 , breadth 3.7 ; interorbital breadth 6 ; interparictal, length 4 , breadth $8 \cdot 5$; palate, length $15 \cdot 5$, diastema 10 , palatal foramen $6 \cdot 1$; length of upper molar series $5 \cdot 2$; greatest diameter of bulla 10.4 ; vertical height of brain-case and bullæ combined 13.5 .

Hab. Wadelai.
Type (87. 12. 1. 50) collected and presented by Dr. Emin Pasha.

A second specimen, collected at the same time and place, agrees in every respect with the type.

These two specimens were presented to the Museum with Emin Pasha's first collection (see P. Z. S. 1888, p. 10, no. 24). Turning out now to be new, it is only just that they should receive the name of their distinguished discoverer.

XII.-The Mesozoon Salinella. By Johannes Frenzel \%.

IT is a well-known fact that between unicellular and multicellular animals there hitherto stretched a gulf which was wider than that between the vegetable and animal kingdoms, for indeed the two latter, in spite of the advances which we have made in knowledge, are even to-day hardly separable from one another. The unicellular animals, usually comprised under the name Protozoa, and embracing besides many doubtful forms of the Protista, not only consist, as their name

[^15]alrealy implies, of a single cell which unites in itself all the various functions of an animal organism, but also assume quite a peculiar position in many other rejpects, especially with regard to developnent. In the systematic arrangement of the group we are even obliged, hard though it will be for every modern zoologist, to allow ourselves to be swayed by physiological considerations, since here the purely mompioToyical and embryolegical foundations are insufficient ; and we are even forced to exclude them, at any rate in general, from 1läckel's findamental principle of biogenesis, which is equally unsatisfactory.

The multicellular animals, on the other hand, are not mere aggregates of cells, such as, moreover, are not unknown among the Protista, but they permit us. to distinguish, alle it frequently with difficulty, a structure consisting of thee layers, in that in the simplest case they pussess an extermal layer of cells, which provides for sensory perceptions de., next a medien supporting tissue, and finally an internal one, which discharges the function of mutrition, since it clothes a carity which is known as the gastral chamber, alimentary canal, de.

There is yet another by no means mimportant difference between unicellular and multicellular animals to which unfortumately far too little attention is paid, perhaps in consequence of the fact that it arises in the first place trom physiological conditions only.

For if we disregard forms which exhibit holophytic nutrition, and therefore live like a lower form of plant, and further neglect the intestinal parasites, which in many cases, but not always, are able to absorb that which has alrealy been digested ly uther animals, we fime that the Protozom enell receives its food into itoelf, digests it in its interion, and absombs what is suitable. This is a so-called intro-cilluten, digestion, which in Mctazoa, on the contrary, is only met with in isolated and exceptional cases ; for in the latter extrocelluter digestion prevails, which is accomplished on the principle of "one for all and all for one," since all the participating cells to a certain extent throw their digestive ferments into a common pot, in which digestion procects, exactly as cooking is done in a kitchen tor a large number of persons. It follows that solid, in part absolutely indigestihle bodies, are no longer taken up hy the cells, as we found to be the case in Protuzoa, but only fluid substances in the shape of petene, sugar, fat, de. In consequence of this, these morphohegically specially constructed organs for the acquisition of foot, such as we meet with in the Protozoa in the form of pseudepotia, flagella, cilia, de., are no lonoer necessary. We may
rather regard absorption in the Metazom as a purely chemical process, emanating from the living cells.

Now, shombl we desire to construct a multicellular animal from a mumber of Protozoa, e. $\%$ from Ciliate Infusoria, we should comseguently soon be confronted with a great physiological difticulty. We could indeed easily imitate the simplest Metazoon type, and so arrange the cells that they should suround a cavity posessing an incurent opening. But how would mutrition proced? 'The eroup of Protozoa would at all events ubtain their food from the enmmon cavity, but it would be directly introluced into the interine of the separate individuals, there digested, and so forth. It follows that in this construction of ours we should not get beyome a simple Protozoon colony, and should still be a long way from obtaining a typical Metazons. For althoneth among the Metazoa there are forms which possess intracellular digestion, we must nevertheless not forget that it is only the cuilontorm cells which can be concerned therein. But yet all the other tissues must be similarly nourished, and this is effected by their receiving already digested matters from the intestinal cells. Were we able therefure still to regard the latter at all events as Protozoon cells, this view would be absolutely inadmissible for the former, the cells of the mesoderm and ectoderm, and they must ahsorb in a manner similar to that of the intestinal cells which possess the power of extriacellular digestion.

From the foregoing ennsiderations it is not difficult to see that the multilamellar character of the Metazoa in itself entails the decisive diflerence which sepratates them from the Protozoa, and, further, that the multicellular character, as such, is insufficient to bridge over the deep gulf between the two principal groups of the animal kingdom.

It is well known that the title Mesozoa has already been bestowed upon organisms which it must be confessed are strange enough, and which remberd the justification of the term not improbable. But the position of the Orthonectids and Dicyemids is nevertheless an extremely doubttul one, and points more to an affinity with the worms. The genus Trichoplax, moreover, has been with gond reason assigned to the Metazoa by Fr. Schulze; for although its conditions of nutrition may be regarded as being still very obscure, nevertheless it has not been possible to determine that its digestive processes are intracellular.

It thus came to pass that the group Mesozoa once more disappeared from the scene. I therefure consider that I am entitled to regard the chance as a lucky one which enabled me Ann. \& Mag. N. Hist. Ser, 6. Vol. is.
to discover, in a solution of salt obtained from a salt-pit in the province of Cordova, in the Argentine Republic, a microscopic animal, which, being a combination of a number of cells to form a single organism, cannot be regarderl as a Protozoon; while, on the other hand, since it exhibits only a single layer of cells, it cannot be termed a Metazon, although the digestive processes follow the Metazoon type.

It follows that we are here confronted with the first and only example of a connecting-link between Protozoa and Metazoa.

Salinella, as I have named this new animal, is a multicellular organism in which the elementary organisms of which it is composed have so completely renounced their independence, that there has been developed an animal possessing a midgut as it were, an animal the intestinal epithelium of which is composed of typical mid-gut cells. Whether, nevertheless, there was in this case originally a colony of Infusoria, which have gradually become transformed, is a question which it is absolutely impossible to decide in any way whatever ; for unfortunately one of the most material aids to demonstration, i. e a knowledge of the derelopment, is so far wanting. I have so far only met with larve, which are certainly umicellutar, and moreover have an intracellular digestion, exactly like a true Ciliate. The extemal structure of these larvat is, however, of so peculiar a character, in the possession of ventral cilia, dorsal setæ, \&e., that we are bound at once to recognize their comexion with Sulinella, and are inclined to conclude that development is thoroughly direct. This nevertheless leaves a difficulty of considerable importance to be surmounted, in that the transition from the single cell with intracellular digestion to the adult animal with extracellular digestion is enigmatical and completely mexplained.

Were we to attempt to construct cur sulinclle from an aggregate of Ciliate Intusoria, we shouh obtain, as we alrealy know, merely a Protozoon colony. It would then be further necessary to induce the individual elementary organisms to close their mouths, empty their digestive ferments into the common cavity of the intestine, and absorb the digested matter. 'This would, however, constitute a highly complicated developmental process, to which there seareely exists anything analogous.

As a matter of fact moreoser Nature appears to have followed a different path; for an observation, which unfortunately could not be further continued in consequence of an unlucky accident, pinits to the fact that within the larral cell, by means of a kind of endogeneus cell-formation upons
the body-wall, new and much smaller cells arise, leaving a cavity in the interior which probably subsequently becomes the intestinal canal. This process is ushered in by a splitting of the nucleus into two, which is indeed to be regarded as an imlirect division, but which differs materially from mitosis. Further segments are subsequently produced, which then pass to the periphery of the larval cell. What afterwards happens I was unfortunately mable to observe. Probably, however, as already stated, a cell is formed round each of those nuclei - ventral cells on the ciliated ventral side of the larva, dorsal cells on the dorsal side, which is beset with seter, and so on. Simultanenusly an oral opening must be developer at the anterion pole and an anal opening posteriorly, and likewise a coating of cilia on the inner side of the young cells. With this the fully-developed animal would then be constituted, and the original digestive cavity of the unicellular larva, which, indeed, is filled with endoplasm and is not hollow, would have passed into the alimentary canal, which for its part is now free from such contents.

It appears to me that this last circumstance becomes of quite critical importance; for were the intestine also to contain a (digestive) plasma, this must be of a cellular nature, and must, since particles of food are taken in, digest by the intracellular method. But then a multilamellar structure also would be already in existence.

I have already published a preliminary communication upon the structure of Salinella*, and have recently sent to the press a detailed paper upon the subject. I may be permitted to refer the reader to the latter for particulars, since here it was only intended specially to indicate the closeness of the relations between Salinella and the Metazoa from the point of view of physiology, and to show that it must not be regarded ofthand as having arisen from a Protozoon colony, although its larval form indeed looks just like a Ciliated Infusorian; for it is precisely the further development of this larva, incomplete though my study of it was, which proves that it does not develop into the perfect animal by means of ordinary division, much as a colony is formed from a single Choanoflagellate, but by a far more complicated process, which we may most fitly term endogenous cell-formation.

In conclusion, it is for the present pretty much a matter of indifference whether we assign Salinella to the Protozoa or to the Metazoa, or introduce it between the two as a Mesozoon, where its position will be quite as disconnected as that

[^16]of Amplionus in the series of higher animals. Nevertheless, that it constitutes an actual transition l,etween the two great groups of the animal kingdom can be asserted of it equally as little as of an Orthonectid or of Trichortux; for indeed we have here isolated links before us for which we cannot find a place in our system, beautifully and ingeniously constructed though it is, aud which tend to prove how little Nature is amenalile to a dogmatic treatment on our part, a treatment which unfortunately appears to take the upper hand too much in the biological sciences, and which would gladly exclu:le everything which does not fit into its narrow frames.

XIII-Descriptions of Seven nene Species of Torrastrial Mollusca from South Africa. By James Cosmo Melyill, M.A., F.L.S., and Join Ilexry Punsuabr, F.Z.S.
[Plates IV. \& VI.]

1. Helix (Pella) trichosteiroma, sp. n. (Pl. IV. fig. 9.)
II. testa angustissime sed profunde umbilicata, cornen-fusea, emnrexiuscula, subleri, longitudinaliter ohlique tenuintriata, umbigue lirulis spiralihus minutissime decussata: anfractibus quinyue, ultimo in medio carinato, carina capillis breribus accincta: anertura lunari-orata ; peristomate simplici ad marginem columellarem reflexo.
Long. 5.50, lat. 7.50 mill.

Hab. Port Elizabeth, S. Africa.

Judging from the description of Inelie petran (Benson), recorded from High Constantia, Cape of Ciond Hoper, but of which we have not been able to examine the tylue, the specius under disenssion would seem to ditier chiefly in the acutely angled keel, fringed with regular, shurt, epmermal hairs, also in the form loing more convex, colour dull hrown, with no fulvous tinge, and other minor distinctions.

> 2. Helix (Pella) epetrima, sp. n. (Pl. IV. fig. 3.)
II. testa anguste umbilicata, depresea, temui, comea, subpellumida. umdigue confert im striatula, ariic ohliquis regularibus, opira ilo-
 impresis, ultime antratu rapite aceroceato; aponura lumai.
peristomate simplici, acuto, ad marginem columellarem breviter triangulatim reflexo.
Long. 3, lat. 4.50 mill.

Mab. Somerset District, S. Africa.

Allied to II. lisculpta (Benson), from which this little species differs in its whorls being more disenid, greater depression of spire, and smaller size; the system of senppture, so far as the closely ranged longitulinal strix are concerned, though apparently identical, is found upon examination with a strong lens to be far more clearly and finely developed in II. bisculpta, the strix in that species looking like finely cut semations round the edge of the periphery, while in II. epetrima they are barely pereeptible and the edge of the shell looks ragged in comparison.

3. IHelix (Pella) lygra, sp. n. (Pl. IV. fig. 7.)

II. testa profunde sed anguste umbilicata, cornea, tenui; spir:a depresso-conoidea ; mfractibus sex (ultimo acuti-carinato), undique confertim regulariter obliquistriatis; apertura lunari ; peristomate simplici, ad basin reflexo, et ad marginem columellarem laminam triangularem formante.
Long. 7, lat. 12 mill.
Hab. Natal (Lightfoot).
A conspienous species, but one which we have not seen in good live condition. It is of the same horny and striated character of whon as the last two species, much resembling 11. lens (Fér.) in miniature, but the outer lip is not so strongly expanded nor developed as in that species.

4. Stenogyra cacuminata, sp. n. (Pl. VI. fig. 2.)

S. testa acute turrita, gracili, pellucida, albo-cornea, undique larissima, nitida ; anfractibus decem, ultimis quinque fere uniformibus, ad apicem sensim gradatulis, apice quasi-papillari; apertura ovata; peristomate simplici, acuto.
Long. 21, lat. 5 mill.

Hab. Bedford (Farquhar).

A remarkably delicate, shining, pellucid shell, differing from all the species of the genus hitherto described, though its characters are simple enough.

5. Ennea thelodonta, sp. n. (Pl. VI. fig. 4.)

E. testa subrimata, breviter cylindriformi, obtusa, albo-cornea, nitida, tenuissime et regulariter obliquistriata; anfractibus ses,
prope apicem obtusatis, infra eylindracelis; apertura oratooblonga, labro reflexo, albo-nitente, quarriplicato, plica parietali magna acinaciformi, producta valide intrante, plica labiali nitida, magna, interdum haud seque bidentata, hasali simplici, minore, interna subtus marginem columellarem mammaformi.
Long. 4, lat. 2 mill.
Hab. Noord Hock (Lang7ey) and Monk's Klosf.
An extremely beautiful small species, of horny-white colour, bluntly cylindrical; mouth ovate-oblone, slightly produced, the lip shining white, thick, much reflexed, with four plaits; of these the parietal and labial are very lares, shining white, the basal smaller and simple, the internal tooth below the columellar margin being shining white and roundly nipple-shaped. This species scems widely distributed and variable; we have been able to examine a considerable number of individuals.

6. Ennea munita, sp. n. (Pl. VI. fig. 5.)

E. testa subrimata, breri, cylindriformi, minuta, obtusa, tenui, corneo-fuscescente, ad suturas impressa, confertim regulariter argute striata; anfractibus sex, ad apicem duohus breribus. compressulis, tribus uniformibus, rentricosis, ultimo ad basin producto; apertura oblonga, auriculaformi, constrictissima, lahro crasso, albo-nitente, subreflexo, extus scrobiculato, triplicato, plica parietali magna valide intrante, labiali magna crassa. interdum bifurcata, basali minore, margine columellari intus dentato, multum incrassato.
Long. 3.50, lat. 1.50 mill.

Hab. Griqualand East (E. R. Syłes).

A smaller species even than the last, to which it possesses many points of similarity, but the nearly closed, very narrowly auricular mouth, with shining white and untsually thickened subreflexed lip, and prominent plica amply distinguish it.

7. Ennea dolichoskia, sp. n. (Pl. VI. fig. 6.)

E. testa oblongata, cylindracea, pellucile ochracea, submitente. undique confertim oliliquistriata; anfractibus septem, duohus ad apicem brecissimis, tertio et sequentibus lente acerescentilus, ultimo ad basin prolongato; apertura para, lahro albe-nitide, crassiusculo, quadriplicato, plica parietali conspicua, multum intrante, labiali prominente, basali simplici, minere, quarta interna subtus marginem columellarem variahili, interdum mammaformi. Long. 5, lat. 2 mill.

Hab. Near Port Elizabeth (Langley).

A very similar shell to E. thelorlonta, differing in being composed of more whorls, namely seven, as against six, greater attemuation of build, and feebler development of lip, though the various plica are arranged as those of the abovementioned species. It is never difficult, however, to distinguish them.
MIV.-Descriptions of Seventeen new Terrestrial Mollustes from South or Central Africa, in the Collection of Eillyar L. Layarl, Eisq. By James Cosmo Melioll, M.A., I'.L.S., and Joun Henry Ponsonby, F.Z.S.
[Plates IV.-VI.]
The seventeen species which form the subject of the present paper are from the collection of Mr. Edgar L. Layard, who has most kindly placed them at our disposal for description.

1. Nanina hypochlora, sp. 11. (Pl. IV. fig. S.)

1 . testa imperforata, effusa, pallide stramineo-cornea, vitrea, lævi, nitida; anfractibus quinque, planato-depressis, ultimo rapide accrescente : apertura orata ; peristomate simplici, tenui.
Long. 4.50, lat. 12 mill.
Hab. Cape of Good Hope (Edgar L. Layard).
A plain, smooth, shining, and delicate little species, someWhat flattened, the last whorl much the largest, lip thin, aperture ovate.
'Though of simple character it does not appear to have been previously noticed or described. Two specimens, precisely similar.

2. Helix (Pella) rhysodes, sp. n. (Pl. IV. fig. 2.)

II. testa profunde sed anguste umbilicata, tenui, depresso-convera, corneo-fuscescente, ad apicem planato-depressa; anfractibus quinque, apud suturas compressis, undique longitudinaliter liris albulis irregularibus oblique cinctis, ultimo anfractu ad medium rix angulato ; apertura lunari-ovata; peristomate simplici, tenui, ad marginem columellarem reflexo.
Long. 4, lat. 6 mill.
Hab. "S. Africa" (E. L. Layard).
Unfortunately Mr. Layard has no record of the precise
lialitat of this little species, of which there are three specimens, two being hardly full-grown, and conserquently smaller than that selected for the type. It falls muder the "lissculpta" section of P'ella, considered typical in 'Tryon's Manual, while it is there mentioned that the name "Sibldonia" has been employed by Ancey (1557) for such species as nutulensis, Trotteriana, and cotyledonis.
II. virgsodes is thin, homy, fuscons, five-whorled, with white obligue lire longitudinally crossing, somewhat irrecularly, there being here and there sma!l spaces left quite clear and free ; and the shell presents a wrinkled appearance in comsequence. 'The umbilicus is deep, but narrow; mouth lunarovate, lip a little reflexed at the colunellar margin.

3. Helix (Pellu) tuguriotum, sp. n. (Pl. V. fig. 5.)

II. testa obtecte umbilicata, temui, allo-cornea, sulplanata, infra ventricosa ; anfractilus quinque, longitudinaliter indistinctissime striatis, transersim tenuiter et minute concentrico-decussatis; apertura lunari-ovata : peristomate simplici, ad marginem columellarem paullo reflexo.
Long. 6 (sp. majoris), lat. $8 \cdot 50$ mill.

Hab. "S. Africa" (E. L. Layard).

Three specimens, of which two are perfect. A plain, smonthish, homy shell, bearing indistinet lines of longitulinal ribling (when closely examined with a lens), very minutely decussated by spiral stria. Allied to $I /$. Lenéni (Kraus:), represented ly only a poor specimen in the National Collection, Gouth Kensington, from which this species seems to differ chicfly in the absence of any keel at the periphery, and likewise in there being now sign of epidermis, which in $1 /$. Lovéni adheres to the rilos and remers them more conspicuons.

4. Helix (Pella) crateina, sp. n. (Pl. V. fig. 3.)

II. testa profunde sed anguste umbilicata. lentienlari, depressonconica ; :nffactihus quinque, cinercis, undique confertion costulis lamellosis regularihus ohlicque cinctis, flammispue rufis homgitudinaliter decoratis, ad suturas guasi-cremulatis, anfractu ultimo apud peripheriam serri-carinato; apertura submadrata: peristomate simplici, ad marginom columellarem pallum reflex.
Long. 2.25, lat. 3 mili.
Itab. Bredasdorp, in sand under stones; and Capue Point (E. L. Layard).

A most elegant and beautiful little shell, fomb, as notioed above, by Mr. Layard in two localities; we have taken the

Bredasilorp specimen as the type. Though minute, the sculpture is most claborate, with fine obligue lirula extending over the entire surface. The umbilicus is deep, though narrow, last whon serrately keeled, aperture somewhat square, lip simple.

We provisionally place this species under Pella on account of its similarity of texture to II. bisculpta (Benson) and allies; but there can be no doubt but that in some respects it approaches the sulogenus Martensia (Semper).

> 5. Helix (Pella) buthycale, sp. n. (Pl. V. fig. 4.)
II. testa minuta, profundissime umbilicata, tenui, cornco-virente, phanorhifomn, apice fere immerso ; anfractibus sex, convexis, ad suturas impressis, liris regularibus longitudinaliter undique cinctis, anfractu ultimo rapide accrescente, infra effusa; peristomate tenui, simplici ; apertura lunari.
Long. 1.50, lat. 2.50 mill.
Hat. Under dead leaves in the bush, Craigie Burn, Somerset East, S. Africa (Miss Mary Layard Bowler).

Another very lovely species, though minute, and conspicuous for its flattened upper whorls as well as its deep perspective umbilicus, the whole surface of the greenish-horny shell being decorated with fine longitudinal regular liræ.

Five specimens.

6. Helix (Trochozonites) dioryx, sp. n. (Pl. V. fig. 2.)

II. testa conico-prramidali, obtecte umbilicata, ad basin planatoconvexa, trochiformi, opaca, albo-grisea, scrupulosa, epidermide brumnea tecta: anfractibus septem, infra suturas canaliculatis, costulis rugulosis regulariter oblique dispositis, ultimo ad peripheriam carinato ; apertura quadrata; peristomate tenui, simplici, apud marginem columellarem paullum reflexo.
Long. 7 , lat. 6 mill.
Hub. On sand-dunes, Robbe Bay, S. Africa (E. L. Layard).

Allied to H. Folimi (Morelet), from W. Africa. The shell is pyramidal, with conical apex, seven-whorled, the whorls being very deeply transversely chanelled just below the sutures and covered with a brownish epidermis. There are rough wrinkled lire or riblets at regular distances longitudinally crossing the whorls, the mouth being simple, with slight columellar marginal reflexion.

7. Buliminus Layardi, sp. n. (Pl. V. fig. 11.)

B. testa imperforata, solidiuseula, leeri, ovato-prymidali, apice oltuso; anfractibus octo, subventricosis, et ad suturas compressis, flammis brumeis hic illis: longitudinaliter depictis; apertua oblonga, fauce pallida; peristomate subexpanso, solidiusculo, ad marginem columellarem late reflexo.
Long. 12, lat. 6 mill.

IIab Kobis (E. L. Layard).

This seems to us to differ from B. Burchelli (Gray) in the smaller size, want of umbilication, greater reflexion of columella, less ventricose whorls, and more vivid painting. Mr. Layard remarks that one of his three specimens shows a rather solid epiphragin in situ, which would seem to indicate astivation at one period of the year.

8. Bulimimus quisqualis, sp. 11. (Pl. V. fig. 10.)

B. testa ovato-oblonga, obtecte umbilicata, candide nitente, pellucida, spirae suturis subimpressis, apice obtuso: anfractibus sex, ventricosulis: apertura parva, oblonga, labro simplici, paullo ad basin marginis columellaris reflexo.
Long. 7•25, lat. 3.50 mill.
Hab. Moçambie (E. L. Layard).
A small white, subpellucid, little species, with somewhat of the aspect of a Stenogyra.

9. Buliminus lamoensis, sp. n. (Pl. V. fig. 12.)

B. testa oblongo-turrita, obtecte umbilicata, cornea, subopaea, apice obtuso; anfractibus octo longitudinaliter confertim crasse obliquistriatis; apertura fere oblonga, labro simplici.
Long. 12, lat. 4.50 mill.
Hab. Lamo, E. Africa (E. L. Layard).
Very like a Stenogyra, being a simply formed, somewhat plain, turreted shell.

10. Stenogyra Chupmami, sp. n. (Pl. VI. fig. 3.)

S. testa gracillima, tenui, candida, aciculari, elongato-turrita : anfractibus novem, ad suturas sradatulis, hinis ad apicem effusis. longitudinaliter ohligue striatis, ultimo oillongo, recto. columella truncata : apertura oblongo-ovata ; peristomate simplici, temui.
Long. 9.50, lat. $2 \cdot 25$ mill.
Iial. Orampo-land, collected by the late Mr. Chapman (E. L. Leryard).

An extremely pretty though very small shell, of which the three specimens in Mr. Layard's collection are all more or less imperfect. They bear a decided superficial resemblance to certain marine forms of the genus Chemnitaia, the shell being very delicate, white, cight- or nine-whorled, the whorls gradated at the sutures and longitudinally finely ribbed with raised strix.

11. Cionella ovampoensis, sp. n. (Pl. VI. fig. 1.)

C. testa parva, aciculari, candida, temuissima, apice obtuso ; anfractilus quatuor, ultimo producto, columella ad basin truncata; apertura oblonga, labro simplici.
Long. 3, lat. 1 mill.
Hab. Ovampo-land (E. L. Layard).
A very elegant, pure white, four-whorled shell, with very obtuse apex, a little recalling the Ccecilianella acicula (Müll.) of Europe and the British Isles.

12. Pupa elizabethensis, sp. n. (Pl. V. fig. 13.)

P. testa minuta, aperte rimata, ritrea, albo-nitente, breviter cylindrica; anfractibus septem, læribus subventricosis, minutissime sub lente striatulis ; apertura rotundata, plicis duabus intrantibus munita, altera parietali, altera columellari valde intrante ; peristomate paullum reflexo.
Long. 3, lat. 1•20 mill.
Hab. Port Elizabeth (Miss Glanville).
This little Pupa is a shining, white, smooth species; with a strong magnifier the slightly ventricose whorls are found to be closely and finely striated; the mouth is furnished with two teeth-plaits, both deep-seated and extending far back, one parietal, the other behind the columellar margin; the lip is also slightly reflexed.

Four specimens.

13. Pupa ovampoensis, sp. n. (Pl. VI. fig. 11.)

P. testa rimata, prolongato-cylindrica, alba, tenui ; anfractibus quinque, veutricosis; apertura subquadrata; peristomate effuso, dentibus duobus munito, altero parietali, altero subtus marginem columellarem intrante.
Long. 2, lat. 1 mill.
Hab. Ovampo-land (E. L. Layard).
A very neat though minute species, with conspicuously
swollen whorls; the effuse lip furnished with two deeplyseated plaited teeth, one parietal, the other columellar.

14. Ennea Bowlerce, sp. n. (Pl. VI. fig. 9.)

E. testa minuta, rimata, crlindrica, albecente, sulpellucida: anfractilus septem, longitudinaliter malique comfertim oillique tennistiatis, anfractu ultimo extus sembiculato; apertura callo-a, trigono-ovata; peristomate tribus dentibus munito, altero valido parietali, altero incrassato lahiali, tertio minore basali, subtusque marginem columellarem ad imam faucem plica interna aditum fere claudente.
Long. 3, lat. 1.25 mill.

Hab. East London (Miss Mary L. Bowłer).

A very small shell, but very wonderful in its symmetry, and complicated as regards its orifice. It is seven-whorled, cylindrical, the whorls being uniformly densely striated; mouth somewhat triangular, furnished with three tecth, of which, firstly, a large and projecting parictal tooth is conspicuous, and alsn another on the imer thickened edge of the outer lip; a smaller and simple basal one completes the prominences of the peristome, but a large callous plait below the columellar margin almost serves to close the throat completely.

Four specimens, but only one in good condition.

15. Ennea Maric, sp. n. (Pl. VI. fig. 12.)

E. testa rimata, breviter cylindriformi, ritrea, leeri: anfractibus sex, ad apicem obtusissimis, latribus, linea transter-im infra suturas circumambiente ; apertura trigono-ovata: peristomate dentibus quatuor instructo, uno parictali, secondo labiali hifurcato, tertio minuto basali, quarto ad marginem columellarem et intra valde ad imam faucem penetrante.
Long. 2.75, lat. 1 mill.
Hab. Under decayed leaves, Craigie Bum, Somerset East, S. Africa (Miss Mary L. Bowker).

A very pretty little shining eylindrical species, quite plain and smooth, save for a transverse, compressed, suleated line encircling the whorls a little below the sutures and romine parallel with them. The mouth is furnishel with four teeth, one parietal, one on the immer edge of the thickened outer lip, a very small one at the base, and a fourth at the columellar margin, which joins on to a large intemal plait which well nigh closes the throat below.

Four specimens, all in good condition and precisely similar.

We have much pleasure in associating the name of Mr. Layard's gol-daughter, Miss Mary Layard Bowker, with buth this and the preceding species, both having been discovered by her, and, as far as we can ascertain, found by her alone.

16. Ennea aperostoma, sp. n. (PI. VI. fig. 10.)

E. testa parmin rimata, cylindrica, albo-cinerea, pellucente ; anfractibus septem, ad apicem compressulis, obtusis apud suturas impressis, striis olliquis undique longitudinaliter instructic; apertura ovato-auriformi ; peristomate crassiusculo, triphicato, piliea parietali columellarique utranue prolongati, valida, profiunde intrante, labro intus tridentato.
Long. 8.75, lat. 3.50 mill.

Hab. Natal (E. L. Layard).

Allied to E. Wahlleryi (Pfr.). There are three specimens on the tablet in Mr. Layard's collection, of which we have taken that with the whorls delicately obliquely striated as the type. 'The other two are quite smooth, and we would designate these as var. lissophenes, which seems in other respects to agree with the type. 'This species is at once distinguished from any others of the genus described in this or our former paper ('Amnals,' Sept. 1891) by the comparatively open character of the mouth. 'This is ovately auriform; the parictal plait is well developed ; the columellar tooth is broad, flat, and enters deeply into the shell ; there is a small tooth at the base and the outer lip is furnished with a raised callus from which spring two teeth, the lower one small, the upper one larger and entering more deeply.

17. Ennea scrobiculata, sp. n. (Pl. VI. fig. 8.)

E. testa rimata, breviter cylindrica, albo-cinerea, subdiaphana; anfractibus norem, tribus ad apicem gradatim decrescentibus, quatuor his proximis fere unifurmihus, duobus ultimis majorihus, ommibus striis obliquis confertim longitudinaliter decoratis, anfractu ultimo extus multum seroliculato et prelongato; apertura trigona; perristomate incrassato, plica parietali magna, columellari valde intrante et ad imam faucem fere omnino aditum claudente, dente labiali patulo.
Long. $5 \cdot \tau 5$, lat. 2 mill.

Hab. Natal (E. L. Layard).

This shell is queried by Mr. Layard as appertaining to E. Kroussi (Pfr.). It is an extremely interesting little species, owing to the attenuated constriction behind the outer lip; the mouth is well furnished with plicie and teeth large in propor-
tion to the orifice, so that the inner throat of the shell at some little distance down appears almost closed.

Three specimens, of which two are in good condition.
We take this opportunity of correcting two errors that have appeared. In our paper in Ann. \& Mag. Nat. Hist. for Sept. 1891 the dimensions of Cyclostome trenscoulense should have been long. 12, lat. $11 \frac{1}{2}$ mill. In the same paper it will bes noticed that there is a discrepancy between the number of teeth in lertigo thaumasta as stated in the Latin and the English text. The former is correct, for it will be seen on reference to the plate that the shell has three teeth.

EXPLANATION OF THE PLATES.
Plate IV.

Fig. 1. Helix viridescens \dagger.
Fig. 2. -rhysodes.
Fig. 3. - epetrima.
Fig. 4. - Crawfordi*.
Fig. 5. - pretoriensis *.
rig. 6. - hottentota \dagger.

Fiy. 7. Helix lygea.
Fig. 8. -hypochlora.
Fig. 9. - trichosteiroma.
Fig. 10. - gypsinat.
Fig. 11. - porphyrostoma \dagger.
Fig. 12. - namaquensis \dagger.
Plate V.
Fig. 8. Titrina cingulata *.
Fïg. 9. - zonamydra*.
Fig. 10. Buliminus quisqualis.
Kig. 11. - Layardi.
Fïg. 12. - lamoensis.
Fig. 13. Tupa cliactiethensis.

Jiy. 1. Helix livicostata \dagger.
Fig. 2. - dioryx.
Fig. 3. - erateina.
Fig. 4. -bathycole.
Fig. 5. -tuguriolum.
Fig. 6. Cyg-lestoma transraalense \dagger.
Fig. 7. Pisidium Langleyanum \dagger.

Plate Vi.
Fig. 1. Cionella orampoensis.
Fig. 2. Stenogyra cauminata.
Fig. 3. —— Chapmani.
Fig. 4. Emea thelodonta.
Fig. 5. - munita.
Fig. 6. - dolichoskia.

Fig. 7. Yertigo thanmasta \dagger. Fig. 8. Ennea scrobiculata.
Pïg. 9. - Bouckerc.
Fíg. 10. - aperostoma.
Fig. 11. Pupa orampoensis.
Fïg. 12. Einnea Marice.

* Described in the 'Annals' for Dec. 1890.
\dagger Ditto for Sept. 1891.
XV.-On the Sheleton of a Chimeroid 1 ish (Ischyonlus) from the Oxford Clay of Christiun Mulford, Willshire. By A. Smiti Woodward, F.G.S.
Of the later Jurassic Chimaroid fishes several skeletons have been discovered in a good state of preservation in the Bararian Lithographic Sitone (Lower Kimmeridgian)*. In

[^17]Britain, however, such fossils have hitherto remained unknown, and Chimeroid fishes have been recorded solely on the evidence of detached teeth and spines. At last a single specimen, comparable in many respects with the Bavarian material, is forthcoming for discussion; and this forms the sulject of the following notes. The writer observed the fosisil during a recent visit to the Northampton Musemn, and is indelited to the kindness of MIr. T. J. George, F.G.S., Curator, and the Committee of the Museum, for the opportunity of making a detailed stuly of the chaareters of the specimen.

The fossil is displayed on a small slab of hard clay from the Oxfordian series of Christian Malford, near Chippenham, Wiltshire, and was evidently obtained from the same horizon as that already well known to yield species of Lepidotus, Aspidorhynchus, and Leptolepis*. The skeleton is apparently that of a laterally-compressed fish, being shown in side-view ; and the cartilages seem to have been very slightly calcified. The total length of the original fish probably did not exceed 0.32 m ., and its maximum depth would be about 0.045 .

The rostrum is unfortunately wanting and the cartilages of the head are too much crushed and obscured for determination. Moreover the dentition is too imperfectly displayed to decide whether the species is truly referable to Ischyodus or to Ganodus; but as the latter genus has never been obtained above the Lower Oolites, the specimen may be most probably assigned to Ischyodus. The left palatine and vomerine dental plates are shown from the external aspect, the latter of the quadrate shape characterizing these plates in Ischyodus. The greater part of the left mandibular plate is also exposed from the outer face, showing the deeply sinuous oral border ; and the corresponding element on the right side projects in front, showing the very narrow symphysis. The individual being a male, a large rostral spine occurs on the top of the head, with a cluster of scattered dermal hooklets below. The base of this spine forms a triangular expansion, with a faint median crest on the inferior attached face; and the proximal
math.-phys. Cl. k. bay. Akad. Wiss. vol. ix. (1862), p. 2×6, pl. i. fig. 1, and J. Riess, Palæontogr. vol. xxxiv. (1887), p. G, pl. i. figs. 1-5, pl. ii. figs. 1-7.-Chimaropsis paralu, ra, K. A. von Zittel, Handb. Palæont. rol. iii. (1857), p. 11t, fig. 126, and J. Riess, loc. cit. p. 21 , pl. ii. figs. 911, pl. iii. figs. 1-10.

* Sir P. Egerton, "On some uew Species of Fossil Fish from the Oxford Clay at Christian Malford," Quart. Jumen Geol. Suc. vul. i. (1845), pp. 2:9-232.
end of the comparatively slender exserted portion is laterally compressed, though apparently expanding again at the distal end, where it is much broken. The denticles originally clustered upon this spine are very slender, printed, sigmoidally bent, and fixed upon expanded bases.

The vertebral column consists, as usual, of a closely arranged series of delicate calcified rings, of which five in the abdominal region occupy a length of 0.0035 and measure 0.004 in vertical diameter.

Of the appendicular skeleton both the pectoral and pelvic arches are too imperfectly preserved for description; lut the elongated chaspers are faintly shown, and these do not appear to have been provided with dermal hooklets or spines. A single denticle resting upon the pelvic cartilage may well have been displaced from the group on the head.

The dorsal fin-spine, which measures 0.0 .57 in length, is remarkably slender and only slightly arched. The small supporting cartilage is conspicuons at its base. In form and proportions, and even in the restricted anterior area of the superficial striations, it agrees precisely with the small spines from the Stonesfield Slate described as Leptacunthens semistriatu**, and, if found at a Lower Oolitic horizon, would be thas named without hesitation. In Elasmobranch and Chimaroid fishes, however, the characters of the dursal finspines are often umeliable and insufficient for specific, or even generic, determinations.

No traces of calcified rings in the " lateral line" system or of dermal tubereles are exhibited ; but the absence at least of the former is probably due to their loss in the extrication of the fossil from the matrix.

In conclusion, the Oxfordian fussil now deseribed temds further to confirm the reference of the 1 schymolus-like fishes to the existing family of Chimaritax, and a peculiar form of "Leptactuthus," ahready assumed on theoretical groumds to pertain to Gcunodust, is definitely proved to be at least Chimaroid. The impossibility of observing the oral sufface of the dental plates prevents, as alrealy remarked, any satisfactory determination; but the external aspect of the dentition so clusely resembles that of the well-known Upper-
 evidence is discovered, the Christian Malford fossil may he provisionally quoted as an immature example of that form.

[^18]
X VI.—Descriptions of new Species of Eatina from Tropical

Lately having had occasion to arrange the gents Fit tine and allied (sroups for the 'Biologia,' I lint that I have a lare number of undeseribed species in my collection from rarions localities in tropsical South Ansrica, many of them fiom Eenador collected hy the late Mr. Buckley, to which ans added those received from other collectors dimine the past few years. The species have all been emparel with the types in the National Musemmand those in the Sumbers collection in w in the Oxford Museum.

1 believe it will be necessary to divide the genus at some future time when more material is available for examination; but at present many of the species are so rare that it is impossible to do so.

Eratina artemisia, sp. n.

Mate.-Primaries dark brown, the basal half the palest; a curved white band crosses the wing boyond the mid.lle very similar in shape to one crossing the primaries in E. undulatu, but considerably wider: secondaries dusky white, broadly bordered with blackish brown, the fringe black, with four white sunts on the outer side and one on the inner margin just above the anal angle. The underside of the primaries pale ycllowish lorow, with the line crossing the wing much more extended, reaching from the costal margin to the inner margin close to the anal angle; a large silky white patch extends from the base nearly to the white line; a small white line at the end of the cell and a round white spot in the cell nearer the base: secondaries greyish white, irroratel with yellowish-brown seales, the outer margin broadly bordered with yellowish brown ; the fringes as above. The head, antema, thorax, and abdomen dark brown, the latter banded with fine white lines, the anal tuit yellow; the legs, underside of the thorax, and abdemen greyish white.

Fomale.-Primaries very like those of the male, but shated with reddish brown on each side of the white line and broadly on the imer margin: the secondaries differ from those of the male in being almost miformly dusky brown, with a very faint, zigzag, greyish-white line extending from the costal margin to the inner margin. The underside is very similar to the male, but considerably more red in colour.

Expanse, б才 $1 \frac{3}{4}$, 아 2 inches.
Ann. \& Mag. N. Hist. Ser. 6. Vol. ix.

Mab. Ecuador, Intij, Sarayacu, Chiguinda (Bucleley, Mus. Druce).

This species is allied to E. gomiuris, Feld. \& liog.

Eratina mecyra, sp. n.

Mate- Primaries blackish brown, crossed beyond the middle by a semihyaline yellowish-white band that does not reach the costal or inner margin ; the fringe brownish black: secondaries brownish black, darkest round the outer maryin ; a narow yellowish-white line extends from near the apex of the costal margin almost to the anal angle; the fringe alternately yellowish white and brown. The underside of the primaries reddish brown, streaked with yellow and red lish brown at the base, the yellowish-white band more distinct than above, and a submarginal white line extending from near the apex to the anal angle: secondaries white, streaked with red and yellow, the outer margin dark brown, the fringe the same as above. The head, thorax, and abdomen above dark brown, the latter white on the underside and banded with very narrow yellow lines; the antenne brown and the legs greyish brown.

Expanse 13 $\frac{3}{4}$ inch.
Mab. Colombia, Antioquia, Frontino (Salmon, Mus. Druce).

Eratina rhesa, sp. n.

Mate-Primaries dark brown, partly crossed beyond the middle by a whitish hyaline band, which becomes wider as it extends to the imer margin, the fringe altemately brown and white: secondaries brown, palest at the base and along the imer margin; a large red spot on the imner margin slightly above the anal angle; the fringe alternately hown and white. Underside: primaries reddish brown, thickly irrorated with yellow seales; the white hyaline hand erwsing the wing beyond the middle is more distinet, and a wavel, submarginal, yellow line extends from the costal margin near the apex to the anal angle: secombarics brown, streaked with yellow and white. The head, thoma, and abdomen dark brown, the collar yollow, the anus redish brown; antenne and legs greyish brown.

Expanse $1 \frac{1}{2}$ inch.
Hab. Bolivia (Buckley, Mus. Druce).

Eratina medama, sp. n.

Male.-Primaries dark brown, slightly greyish at the base; a wide yellowish hyaline band crosses the wing beyond the middle from the costal margin almost to the anal angle, but not reaching it, the band is widest just above the anal angle; the fringe alternately brown and white: secondaries dark brown, erossed abont the middle from the costal margin to the anal angle by a straight, rather wide, yellowish hyaline line, below which on the anal angle is a red spot; the fringes alternately brown and white. Undersile: primaries reddish brown, with the band crossing the wing considerably wider than on the upperside; a submarginal yellowishwhite waved line extends from the costal margin near the apex to inner margin, where it almost joins the inner band; the base of the wing is streaked with yellowish white: secondaries reddish brown, the veins mostly yellowish white from the base to about the middle ; a rather wide central pale yellow band, bordered on the outer side with deep red, crosses the middle of the wing from near the costal margin to the anal angle ; a large orange-coloured spot close to the anal angle; the tringe of the primaries brown, that of the secondaries altemately brown and white. The head, thorax, antemne, and legs dark brown; the ablomen brown, banded with fine white lines.

Expanse 2 inches.
Lab. Ecuador, Intij (Buckley, Mus. Druce).
'This species is allied to E. mecyra from Colombia, but the secondaries are considerably broader and not tailed as in that insect.

Eratina aroma, sp. n.

Mate.-Primaries dark brownish black, partly crossed about the middle with a semihyaline bond; the fringe alternately brown and white: secondaries brownish black, crossed about the middle by a wide pale primrose-coloured band; a bright red spot close to the anal angle; the fringe alternately white and black. Underside : primaries dark reddish brown, palest on the outer margin; a rather wide submarginal yellowish line extends from the costal margin near the apex to the anal angle; the semilhyaline band is more distinct, reaching the costal and inner margins; the base of the wing is streaked with white: secondaries reddish brown, with the veins near the base white, the red spot close to the anal angle considerably larger than above. 'The head, thoras, and abdomen dark
brown, the abdomen banded with fine yellowish-white lines, the anal tuft yellow; the legs, unlerside of the thorax, and abdomen dark greyish white; antemme dark lurown.
Expanse 2 inches.
Hab. Bolivia (Buckley, ITus. Druce).
A very distinct species; in form it resembles E. merlumu from Ecuador.

Eratina Hewitsoni, sp. n.

Mate.-Primaries black, partly crossed at the end of the cell by a curved whitish hyaline band that becomes lobed nearest the outer margin ; the imner margin streaked with creamy white, the fringe dark brown: secondaries creamy white, shaded with black close to the base; the outer mary from the apex to the anal angle broadly banded with black; the fringe dark brown, with two white spots on the onter margin. Underside of the primaries rich reddish brown, the veins near the base yellow; a streak at the end of the cell and two streaks extending from the base pure white; the hyaline band is more distinct than on the upperside, reaching the costal margin; a sulmarginal dark yeflow wavel line extends from the costal margin near the apex to the anal angle; the fringe alternately white and redlish brown: secondaries creamy white, the base and outer margin rellish brown, the veins near the base yellow; a bright yellow sub)marginal line extends from the apex to the anal angle. The head and thorax dark brown; the ablumen pale yellowish brown, banded with fine black lines, the anal tuft yellow; anteme hlack; the underside of the thorax, abomene and legs greyish white.

Expanse 13 $\frac{3}{4}$ inch.
Mub. Ecuador, Sarayacu (Buckity, Ifus. Druce).

Eratina artemis, sp. n.

Female.-Primaries brownish black, palest near the has'; a rather broad yellowish-white band partly eruses the wing beyond the cell, but does not reach either margin; the fringe brown: secondaries hatek, with a large cremy-white spot in centre, the outer edge of which is in the form if a shome limal tail, the fringe black and white. Imbesile: primaries deep reddish hrown, trecoming hack on the immer maryin; the veins near the hase pale yellow; the white band wosers the wing trom the enstal margin te the inner margin near the anal angle; two fine submarginal, waved, yellon limes extome
from near the apex almost to the anal angle: seeonlaries, tho milille part of the wine ereamy white, the base, outer and inmer margins deep reddish brown, the veins all yellow ; two fine dark yellow submarginal lines extent from the apsex romed the outer margin to the anal angle; the fringe black and white. 'The head, antemax, thoras, and ablomen black, the abomen banded with fine yellow lines; the leges and the underside of the abdomen greyish white.

Expanse $1 \frac{3}{4}$ inch.
Mab. Colombia (Staudinger, DTus. Druce).
This species is allied to E., Mewitsomi from Eenador, but differs very considerably on the underside and in the shape of the white markings on both wings.

Eratina Buckleyi, sp. n.

Mule--Primaries deep black; a pale primrose-yellow, rather broad, elongated spot beyond the cell, the veins near the base pale yellow; the fringe black: secondaries deep black, elongated into a broad tail on the outer margin; a large round pale primrose-yellow spot about the middle of the wing, not bordered with black on the inner margin; the fringe black, excepting a small spot on the outer margin and the point of the tail pale yellow. Underside of both wings dark brownish red, the markings the same as above; the veins at the base of both wing's pale yellow ; the fringe on the onter margin of the secondaries alternately black and yellow. The head, thorax, abdomen, and antenme black, the abdomen banded with pale yellow; the legs, underside of the thorax, and abdomen yellowish white.

Expanse $1 \frac{1}{4}$ inch.
Hab. Ecuador, Sarayacu (Buckley, Nus. Druce).
A beautiful little species, very distinct from any other known to me.

Eratina arocha, sp. n.

Mute.-Primaries dark brown, with a curved hyaline streak partly crossing the wing at the end of the cell; the fringe alternately brown and white: secondaries red, the outer margin narrowly edged with brown; the fringe alternately red and white. Underside : both wings reddish brown, the secondaries with a yellowish tinge on the outer margin : primaries crossed beyond the middle with a greyish-white band: scoondaries crossed from the costal margin near the apex to the anal angle by a very fine waved white line, edged
on the outer side with dark red. The head, antenne, thorax, abdomen, and legs dark brown, the abdomen banded with very fine yellowish lines.

Expanse $1 \frac{1}{4}$ inch.
Mab. Ecuador, Sarayacu, Chiguinda (Buctotey, Mus. Druce).

The three male specimens before me do not show any variation; the female is unknown.

Evatina meduthina, sp. n.

Mate.-Primaries dark brown, with two round hyaline spots beyond the middle, the first close to the costal margin, the second below, nearest the outer margin; the fringe brown : secoudaries pale yellowish brown, the fringe the same colour. Underside : primaries and secontaries pale yellowish brown, primaries with the spots as ahore, secondaries crossed abont the middle from the costal margin near the apex to the inmer margin slighty above the anal angle by a very faint waver brown line. The head, thorax, abdomen, antenne, and legs dark brown.

The female is almost identical with the male.
Expanse, of o 1 inch.
Mab. Ecuador, Chiguinda (Buclitey, Mus. Druce).
This species is allied to E. arocha, from which it is at once distinguished by the two hyaline spots on the primaries and the very much paler colour of the secondaries, also by the very different underside.

Eratina bosora, sp. n.

Female.-Primaries dark brown, palest at the base, partly crossed from the costal margin beyond the midtle by a band of four hyaline spots, the second and third spots the smallest, the fourth the largest, the fringe alternately brown and white; the costal margin is slightly reddish from the base to about the middle: secondaries dark brown from the base to about the middle, and broadly round the outer margin from the middle of the wing to anal angle bright red, the fringe reddish brown. Enderside: primaries from the hase to the ham of spots blackish brown, the apical portion of the wing yellowish brown: secondaries pale brown, erossed from the costal margin to the anal angle with a rather wide band of the same colour, but considerably paler. The head, therax, abdomen, antemx, and legs dark brown.

Expanse 1 inch.
Mab. Interior of Colombia (Thedor, Mus. Druer).
This species is allied to E : arocha from Ecuator:

Eratina capua, sp. n.

Female.-Primaries and secondaries deep black; a wide semilyaline whitish band crosses the wing beyond the middle, but does not reach either margin; the fringe black, excepting at the apex, where it is white: secondaries with a very fine submarginal white line, the fringe white. Underside: both wings very dark claret-colour, the markings as above, the veins of the secondaries white. 'The head, antenne, thorax, abdomen, and legs black.

Expanse $1 \frac{1}{4}$ inch.
Mub. South-east Brazil, St. Catharina (ILus. Druce).
This species is allied to E. siliquata, Guen.

Eratina masura, sp. n.

Female.-Primaries brown, greyish at the base, with a large elongated spot at the end of the cell: secondaries white, with the base and outer border broadly bordered with dark brown; the fringes of both wings alternately brown and white. Underside: primaries reddish brown, the veins at the base pale yellow; a wide white band crosses the wing beyond the middle from the costal margin to the anal angle, beyond which is a submarginal row of small yellow spots almost forming a waved line: secondaries white, the base and a large irregular-shaped spot at the anal angle reddish brown, the outer margin dark brown, with a submarginal yellow line extending from the apex to the anal angle; the fringe alternately brown and white. The head, antennæ, thorax, and abdomen dark brown, the abdomen banded with fine white lines; the legs greyish brown.

Expanse $1 \frac{1}{4}$ inch.
Hab. Ecuador, Chiguinda (Buckley, Mus. Druce).
A small species, not closely allied to any known to me.

Eratina media, sp. n.

Femate.-Primaries black, with a rather wide, elongated, white spot at the end of the cell: secondaries black, with a large, central, white, round spot in the middle and extending. to the inner margin; the fringes of both wings alternately white and black. Underside : primaries brownish black, the imner margin white from the base to near the anal angle; two bands partly cross the wing from the costal margin; the apex of the wing is irrorated with white scales: secondaries white, broadly bordered with dark brown, the base and the outer
margin thickly iromated with yellow scales. The heart, thorax, and abdemen black; antemae black; the underside of the abdomen and legs greyish brown.
Expanse $1 \frac{1}{4}$ inch.
Ilal. Ecuater, Chiguinda (Tiuclly, Ihus. Druer):
This species is allied to E : masuru, but it is very differently marked on the upper- and undersides.

Eratina peloria, sp. n.

Female- Primaries hlack, slightly greyish at the hase and along the imer margin; a rather wile white baul at the end of the eell, lout not reaching either margin ; the frimes. brown and grey: secondarics greyish brown, with a dight greenish shade, the outer margin ellged with black, the frine altornately grey and hrown. Underside: primaries redidith lown, the white hand extends to the costal margin and almest to the anal angle; a white spot in the millle of the cell and several small yellow dots near the apex : secomatariss pale yellow, the outer margins broally borderel with dark brown; the marginal line yellow; a rather wide, zigzag, submarginal, white line extcinls from the apex to the anal angle; i white streak in the cell and three below the cell between the veins. The head, thorax, aldomen, antenne, and legs dark brown.

Expanse $1 \frac{1}{4}$ inch.
Ihab. Interior of Colombia (TTheder, Mus. Druec).
This species is very distinct from all uthers known to me.

Eratina Wheeleri, sp. n.

Female.-Primaries very dark lrown, palest near the hase; a very prale, almost white, band partly crosses the wing at the end of the cell, hut does not reach either margin ; the frome altemately white and brown: scemblaries dank hrown, with a large oval-shapech, pale yellow, semilyaline spot hellww the cell; a reddish-lmown spot at the anal angle; the veins at the hase of the wing yellow; the fringe alternately yellow and brown. Whderside: primarics dark redhish hrown, the base to alont the middle pale straw-celour, the veins near the lase yellow, the hand as alieve, hut very muth mure distinct, and extending frem the custal margin to the anal angle, where it lecemines a fine line unly; a pale yellaw watch line partly cruses the wing near the apex: secomblaris pale yellow, the base, imer and outer margin lomally bardered with dark brown; the veins all yellow; a bright red
streak extemts partly mom the outer margin from the amal angle; the fringe alternately yellow and dark hown. The head, thomas, antemat, and legs brown, the collar yellow; the abdomen dark brown, banded with yellow.

Expanse $1 \frac{3}{4}$ inch.
Iluh). Interior of Colombia (IVlucler); Antioquia (Sulmon, Mus. Druce).

Eratina artabates, sp. n.

Mule.-Primaries dark brown, ereenish brown at the base, the veins white to about the midule of the wing ; a narow white hand crosses the wing heyom the miklle from the costal margin almost to the anal angln, but does not ruite reach it ; the fringe dark hown: secombaries greenish brown, the outer mangin dark brown, the veins all white from the base to the inmer side of the dark marginal hrown band; a long red streak close to the anal angle ; the fringe altemately white and brown. Underside: primaries redlish bown, the base and a wide band beyond the cell pale yellowish white ; the rems at the base of the wing yellow; a waved sulmarginal yellow line extends from near the aper on the costal margin almost to the amal angle: secondaries redish brown, all the reins and two bands crossing the wing pale yellowish white; a submarginal redlish line extends from the apex to the anal angle; the fringe alternately yellow and brown. The head, thoras, antemme, and abdomen dark brown, the abdomen banded with fine yellow lines; the anus yellowish; the muderside of the thomax and abdomen pale yellow; the legs dark brown.

Expanse $1 \frac{3}{4}$ inch.
Hab. Bolivia (Bucl:ley, Mus. Druce).
This species is allied to E. lineata.
Eratina faventia, sp. n.
Male.-Primaries dark brown, crossed about the midalle by a pale primrosecoluned band, which becomes wide and lote-slated near the anal angle ; on the costal margin it is quite narrw ; a subapical yellow streak touching the costal margin: secondaries pale primose-colour, the base clusky brown, the outer margin from the apex to the anal angle broady bordered with dark brown, much dentated on the imer elge; the fringe alternately yellow and brown. Underside: primaries yellowish hrown, the primrose-coloured band as above, and a submarginal pale yellow band: secondaries very similar
to the upperside, but paler in colour, and with a row of brown spots crossing the middle of the wing. The hearl, antenne, thorax, and abdomen dark brown, the abdumen banded with fine yellow lines; legs dark brown.

Female almost identical with the male.
Expanse $1 \frac{1}{2}$ inch.
Mril. Ecuador, Chiguinda (Buclily, Mus. Druce).
This species is allied to E. Wheeleri from Culombia.

Eratina Whitelyi, sp. n.

Male.-Primaries black, the veins at the base white; a spot at the end of the cell, a round spot below near the anal angle, and two small spots on the costal margin near the apex all white: scoondaries deep black, with a large central, almost round, creamy white spot about the middle of the wins, which extends to the inner margin; the fringe alternately white and black. Underside very similar to the upperside, lut considerably browner in colour, the veins at the bases of both wings white: primaries with a white band, which crosses from the costal margin to the outer margin near the apex: secondaries with two streaks and a round spot close to the anal angle both white. The head, thorax, abdomen, antennæ, and legs black, the abdomen banded with narrow white lines.

The female is identical with the male.
Expanse $1 \frac{1}{2}$ inch.
Hab. East Peru (Whitety, Mrs. Druce).

Eratina necysia, sp. n.

Female-Primaries deep black, with a dark blue gloss; the cell, three spots beyond, and one clungated streak below the cell bluish hyaline white; three spots forming a short band close to the apex bluish hyaline white: secondaries buish hyaline white, with the veins, the costal marrin, and the outer margin deep black, glossed with dark hlue. Underside: primaries the same as above, but with a reddish tinge: secondaries with the hyaline part as above, the dark parts being all of a rich lake-colour, the base of the wing chrome-yellow ; a rather wide, marginal, silvery-white line extends from the apex to the anal angle. 'The head, thomas, antemae, and abdomen huish black; the collar white; the underside of the abdomen banded with white; the legs black.

Expanse $1 \frac{3}{4}$ inch.
Hab. Colombia, interior (Nus, Druce).
A very distinet species allied to Li. pohlik, Fehl. © Rom.

Eratina hermea, sp. n.

Female.-Primaries deep black, the veins at the base, a narrow streak at the end of the cell, and part of the imner margin creany white; the fringe black: secondaries semihyaline white, broadly bordered with deep black from the apex to the anal angle. Underside: primarics lnownish black, with a reddish shade, the veins from the base to the middle pale yellowish white, the streak as above, but extending to the costal margin: secondaries as alove, with a rather wide, submarginal, dark red line which extends from the apex to the anal angle. The heal, thorax, and ahb hame black; the collar and tegule yellowish white ; the ablumen banded with white; antennæ and legs black.

Expanse $1 \frac{1}{2}$ inch.
Itab. Ecuador, Chiguinda (Buckley, Jlus. Druce).

Eratina tryphosa, sp. n.

Male-Primaries: the costal margin, apex, and outer margin broadly bordered with dark brown, the imner portion of the wing white; a large yellow spot close to the apex; the fringe dark brown: secondaries white, the base and outer half of the wing dark brown; the fringe brown. Underside: primaries as above, with a second yellow spot close to the anal angle: seconlaries as above, with a marginal greyish line, which extends from the apex to the anal angle; a large yellow spot at the anal angle. The head, thorax, abdomen, antennæ, and legs dark brown.

Expanse $1 \frac{1}{4}$ inch.
Hab. Ecuador, Intij (Buckley, Mus. Druce).
This species is quite distinct from any known to me.

BIBLIOGRAPHICAL NOTICE.

> Les Cóquilles Murines des Cótes de Fretnce. Par Aryotld Locard. F. B. Baillière et Fils: Paris, 1891.

This work forms a companion rolume to the 'Prodrome de Malacologie Française. Catalogue général des Mollusques virants de France, Mollusques marins,' by the same author, and each may be regarded as supplementary to the other.

The 'Prodrome' contains a classified list of the marine mollusks of France, with more or less complete synouymy of the species and full
details respecting localities. It dows not, however, include descrip, tions of the families, genera, or species, and is unillustratel. In the contrary, in the present volume we find short diagnoses of the various gromis and species, and a woodent of a typical species of each senerie and sect ional group, but no comple tosmonymy, merely a reference to the origimal deseriptions and M. Logard's and a few olleer works. Precise halitals are not quotel, hat only the Particular sea in which the varions forms occur, and the lathymetrical distribution is indicated by three zonss, namely the littoral, the herbaceous (=laminarian), and the coralline.

The classification adopted is practically the same in both works, but we notice a few omissions and altcrations. For example, no mention is made of the families Xenophoride and Siphonaride, both of which occur in the 'Prodrome.' The genus Iswerforlin is remosed from the Cardiide to the C'yminide, Cime and Istert from the Cyprinidie to the Astartidie, Cicloomme from Kelliide to (ialeommide, Spontylus from ()streide to Sp midylide, and in the Brachiopoda Mcyuthyris, Cistclla, and The cidd are placed in the family Megathyridæ instead of Terebratulidæ.

In the first hundred pages, which are a fair sample of the rest, we observe that half a dozen genera and about ten species oreurring in the 'Prodrome' are here abanduncd: at least eight species are placed in different genera, and in about a dozen instances the namess of species have been changed. We also find about twenty so-cellod nen specrics and at least twenty-fire others not contained in the 'Prodrome'!

This excessive multiplication of species could not oceur anywhere except in France-for that is the special function of the " - "owelle école" in that country. By all serious comehomists this practice is strongly condemned, and no opportunity should he lost of lonily protesting against it. What is more ridiculons than the suppesition that within the last fise or six years M. Locard has discovered ahment a hundred and sisty species of Mollusea (one seremth of the tutal number in the hook!) from the shores of France, which have cecapred the attention of his compatriots and others for a humbed years?

This is the only work as yet puhlished which contans deseriptions (alleeit they are ton brief and inadequate) of all the known shells met with on the lrench coast. It consists of 3 - 1 pages of text and is illustrated with 348 fairly good woodeuts.

No reference whatever is made to the soft parts or animals, and the sholl-hearing species only are treated of: conseguently such groups as the Cephahopoda, Nudihranehiata, l'teropoda. Heteropoda, and a few others are entirely disserated. These are serions omissions to scientific students. for whom, however, the werk is probably less intended than for shell-collectors.

In conclusion, we cannot commend this volume as posessing any special scientific value, nor is it in any way comparable with the works of Forbes and Hanley and Jeffreys on the Mollusea of the British consts.

MISCELLANEOUS.

A Multicellular Infusorian-like Animal.

diy l'rof. Jomaxis Fanami, of Corlova (Argentine Republic).
After sending to the press a preliminary report upon my investigations into the microscopic fauna of this locality I diseovered, on making a fresh examination of a small salt-water aquarium, a really remarkable misoncopic ereature, exhihiting indeod many relations to the ('iliata, but sharply separated from that group on the one hand by its multiecelular character, and on the other ley its welldifferentiated alimentary cavity, without, however, being directly referable to the colenterata, owing to the fact that only a simple layer of cells is present.

For the investication of the salt-pit fama of this region I had procured a few litres of a solution containing about two per cent. of salts, ohtained from a salt-pit in the sonth of the province of Cordova. It was some time before a few Flagellata \& 8 . were developed among decaying matter, and these presented so few noteworthy characters that I abandoned my researches. On casually resuming my studies I found a number of little creatures, of which I would here give a brief description; the animals were met with at the bottom as well as upon the glass side's of the ressel, but not free-swimming.

The external form is that of a tule, somewhat pointed in front and behind, and slightly flattened dorso-ventrally, so that it may be termed bilateral. The rentral surface is flat, the dorsal, on the other hand, tolerally evenly arched, so that the transverse section is approximately semicircular.

The rentral surface is clothed with delicate cilin, by means of which the animal moves actively along, twisting ahout at the same time like a snake or worm. The dorsal and lateml regions, on the contraty, are not ciliated, hut bear a sparser covering of shomt seta. In frout, nearer the ventral slarface, we find an oral opening : posteriorly, exactly terminal in position, an anal aperture of smaller size. At the former opening longer and stouter cirri are placed, by the active morement of which particles of food are whitled into the mouth.

A well-dereloped ruticle or similar firm dermal layer is tranting; nererthcless, as in the Ciliata, the membrane of the cells, or limiting layer, is more strongly dewelped on the outer side, almost possessing a double contour, though it is always very delicate.

The wall of this tube-shaped organism is furnished by a single layer of tolerably large, almost cuboid cells, all of nearly equal size, learing a erdindrical lemen, which is clowely packed with foreign bodies, such as particles of sand, harilli, diatoms, regetalle matter, i.c. This is the intustimul chrity, which commenses in front at the mouth and terminates posteriorly at the anus.

The cells are all more or less similar in structure, the difference consisting, as already stated, in the fact that those of the rentral side are ciliated on their free surfaces. In all cells the surface which is turned towards the lumen of the intestine is also delicately
ciliated, wherehy an active morement is imparted to the iutestinal contents.

The oral opening, which is not quite terminal in position, is orertoped by one cell in front. The cirri, which I have previou-ly mentioned, are borne upon this cell, as well as upon the others surrounding the mouth. 'These cells are therefore well diffirentiated from the rematinder, so that altegether we have to distinguish three different kinds of cells.

The limis of each individual cell are distinctly visible, and almost in the centre of each there is a large roundish nuclens. containing several smaller nucleoli, which may usually be made out even in the living animal. The remainder of the contents of the cell are of a finely granular nature, though it is imposible to determine with cortainty whether the nutritive contents of the intestine are receiverl into the cells in solid form. I am inclinerl to believe that this is not the case. A tew globules of fat, on the other hand, are discernible in most of the cells.

I frequently found these animals of different sizes. (iromb simply results from the reduplication of cells by division, which takes place in such a way that the nuclens first becomes more homogeneous, since the nucleoli disappear from riew. The nuclens, which has become elongated, then constricts, as does also the cell almost at the same time, whereupon complete division ensues, the nuelei first separating from one another and then assuming a rounded form. They sulisequently beeome clear asain and exhbit the nuce eoli. Whether during this apparently direet division of the nucleus morphological changes take place in its interior it was impossible to determine in living specimens. Similarly it has not yet been possible to decide whether a true muclear membrate is present, and, it so, how it hehaves during the division. It all events, in observing the process no change can be detected at the margin of the nucleus.

Unfortunately I hare not yet succeederd in killing the animals successfully, as on the addition of foreign mathers they at anee melt away exactly like Infusmia, since the cells sepratate from ohe another, assuming a spherical shape, and then thaten ont after lasing their cilia.

With regard to ifmometion, two methods appear to exist. In the first place, in large indiviluals, a 1 ramswerse divi-ion takes place, which vividly recalls the similar process in Chternhe dee. The cells of the middle resion isually first divide: a constriction of the animal then sets in at this spot at right angles to the lemgitudinal axis, while a new month is formed in the pootering division, sine a lew cells upen the bent mal sutace separate from one another and give rise to ath opening, at the same time produeing stronger cilin. [[1, this the whole is comstricted off. and the two animals are see free and swim away.
liestes this, however, we find conjugation. with sulsopuent
 ventral surfaces, and discontinue the mesement of their cilia. They

whereupon a cystic membrane is differentiated. Is to what happens afterwards and in the interior I am sorry to say that I an unable as yet to give any aceount. Nevertheless it was still possihhe to seo that the cavities of the intestines disappear, apparently owing to continned multiplication of cells, so that finally the entire contents of the eyst are composed of similar cells. I an inclined to believe that each of these cells represents a y yman cuimal, which, after leing set free, roves almut hy aid of its cilia like one of the Ciliata, and hy further division develons into the adult form ; for I observed in the same salt-water small unicellular orranisms, ciliated on the ventral surface only, yet bearing a few cirri in front. These are possibly the young forms (larval).-Zmotorischer Anseiger, xir. Jahrg., no. 367 (13th July, 1891), pp. 230-233.

On the Growth of the Shell in Helix aspersa. By M. Mornier de Villepoix.

We know that the growth of the shell in pulmonate (iastropods takes place by the formation, at the edge of the test, of a soft and diaphanous zone, which speedily hardens. I have specially studied this formation in Helix aspersu, L.

The epidermis which gives rise to it is particularly interesting owing to the hyaline spherical globules, 10μ to $1 \stackrel{2}{2}$ in diameter, which cover its outer surface. Their bature is organic ; they persist on the oldest shells, and I have reasons for thinking that it is to similar formations that we must attribute the markings which are to be found on almost all the shells of the genns Hilic.

In animals in course of growth, the thickened border of the mantle is always applied against the peristome, and the free edge of the epidermis, folded inwards, buries itself, but without any connexion with the tissues, in a rery narrow cleft which runs round the whole circumference of the collar. Immediately hehind this cleft, we observe beneath the epidermis a white zone bounding the mantle in its entire breadth.

The deposition of calcareous matter takes place on the internal face of the epidermis, at some distance from its margin. The origin of these products can be understood by examiniug sagittal sections of the collar and mantle.

The white zone, or bandelet, is a gland composed of flask-shaped cells, with rery long necks, and gramular contents, which bury themselves decply in the sulyacent tissue. The action of acetic acid and oxalate of ammonia discloses the presence of calcareous matter in these cells.

Behind this bandelet the mantle is clothed mith a columnar epithelium, containing pigment or colourless granulatious.

Immediately in front of the bandelet the epithelium invaginates to form the groore in which is lodged the free extremity of the epidermis. The bottom of the groove is occupied by an irregular plexus of cells, which, in a sagittal section, present the appearance of epithelial cells cut obliquely and extending to a greater or less distance into the connective tissue. These cells contain transparent spherules, presenting all the characters of the globules of the epidermis.

There is thus formed in the comective tissue a series of regular glandular sacs, adhering one to another. On teasing ont the tionnes of the living animal it is seen that these gland-eells attain comsiderable dimensions, and that the globules are formed at the expmose of their gramular protoplasm. The shoules originate and grow in vacuoles, which hecomesuccessively hollowed out in the protopla-mic mass, so that finally the cells are nothing more than tran-parent masses formed by an agolomemation of little deliwate-wallent alventi enclosing the globules. The latter, on beine set free. probably by simple rupture, emerge at the bottom of the groove, where they attach themselves to the fine organic memhrane seemedel by the epithelium.

The calcareous and mucous glands are absent, as stated by Loydig*, in all the parts covered by the shell, and I was able to prove that the calcareons glands of the collar, comomatly to the opinion of Semper, do not contribute in any way to the fimmation of the test.

The only elements which take part in the production of the latter are, commencing from in front:-(1) The pallial groore, where is formed the epidermis with the elandular sace, whith produce the globules, and the existence and function of whin 1 believe I am the first to describe; (2) the bandelet, or pallial gland, on which appears to devolve the secretion of the calcareous matter ; (3) the pallial epithelium following the bandelet, which provides the shell with its pigment and completes its enleifieation thy the deposition of organo-calcareous layers, homokgous th the layers of nacre in the Pelecypods.

I determined, moreover, that, when the animal has attainel its
 disappeared.

It is only the eppithelium of the mantle and of the pulmonary sac. which retains its activity, for the purpose of contributing to the internal thickening of the test, and also of replacing the loss of portions of it, as is shown by the following experiment, which indicates the rapidity and activity of the secretion.

If we lay bare a portion of the surface of the pulmonary sace by removing a fragment of the shell, it is possible eren at the end of an hour and a half to two hours to detach an extremely delieate organie membrane, covering the whole surface, and strewn with rhombohedral and radiating erystals of carbonate of lime. If allowed to remain, this membrane thickens very rapidy, and tinally closes up the opening with a solid caleareous wall.

In no case (contrary to the statement of C. Picard t) does the mucus produced by the collar or the mouth tako part in this process of reparation.

As regards the activity of the pallial epithelium, it is such that, during two consecutive months, I was able to observe animals, which were deprived of food, reproducing every day the organocalcareous membrane which I removed every morning.-Comptis Renclus, tome cxiii. no. 7 (August 17, 1891), pp. 317-319.

* Loydir,' 1 Dio Hautdecke und schale der Castropoden.
† Dr. U. Plicarl, ' Hist. dee Moll. terr. of thar. qui rivent dans le dépatement de la simme,' 18.40 .

Mirtern Bras. Inth.
$=$

(2)

R. inimiterin del et lith.
(2)

$1 ;$

10
iI

THE ANNALS

AND

Mag.azine of Natural ilistory.

[SIXTII SERIES.]

No. 50. FEBRUARY 1892.

> XVII.-The Earthworms of the Vienna Museum. By Frank E. Beddard, M.A., F.R.S.E.
[Plate VII.]
Prof. Clatus has been so good as to let me examine the collection of earthworms preserved in the Viema Muscum, which includes the forms described by Schmarda in his 'Neue wirbellose Thiere' *, as well as a number of unnamed species from various localities.

Schmarda's species have been so long a mystery to the students of this group of Amnelids, that I am very glad to be able to identify them.

"Hypogreon heterostichon."

Schmarda's diagnosis of the species runs as follows:-
"Series setarum in dorso octo, binæ in antica parte convergentes, in postica divergentes."

Clearly, therefore, it should not be placed in the genus Ilypogereon as defined by Savigny; for that genus has nine sete per segment, the unpaired seta being dorsal in position. Such a character is quite sufficient to distinguish a genus, though no doubt the existence of this ninth seta requires further proof.

* ' Neue wirbellose Thiere \&c.,' Leipsic, 1861, Bd. ii.

Ann. \& Mag. N. Hist. Ser, 6. Vol. ix.
"Thypogceon heterostichon" is not a species of Perrier's gemus Tilnums*, which lioza has recently shown \dagger th 1 . ilen-

 tion from Eeuador and the Cordilleras.

It anmears to diller from Anteus gigus, the only species of the genus at present known, and may be described as

(1) Anteus hetorostichon (Schm.). (Pl. VII. figs. 1 and 7).

IImpoymon heterostichon, Schmanda, Nelle wish, Thiere. Pa i. Itame ii. p. 12.

The species is about 10 inches or so in length, with a diameter of 12 millim. anteriorly.

The colour (in spirit) is yellowish white anteriorly and 1hnish pesterionly ; the hlue colour is she (1) the thimmse of the intesument and the dark collum of the intestinal oments. There anpears in fact to be no pigmont in the skin at all. The seta have precisely the aramgement which chanacterizes the other species, as is indeed set forth in Schmarta's diagnosis quoted above.

The secte present the form which is illustrated in fige. 7 ; they are perhaps rather staighter (hss curvel) than in many other earthworms; fig. 7 c represents the free extremity it the seta mere highly magnified; it is seen to be cosered with faintly marked ridges. The sanital -cta, which octur umon the clitellun, are rather more than twice as long as the orlinary setar ; the fonertions are as indicated in figs. 7 o and b : a is of course a clitellar seta; the hasal pmom of this seta is ceurved, the rest of the shaft is neanly straight; at the free extremity the ridges are very strmbly matked. The setio appear to be precisely like those of Inteus gigus § and of lihinodrilus $\|$.

The nephridioperes, which commonce upon the first setigerous segment, are phaced as in the genus A Iutens, in front of

* "Mémoires pour servir à l"histoire des Lombriciens terrestres," Nouv, Arch. Mus, t. viii, p. 57.
\dagger "Sul Geoscolex maximus, Leuck." Boll. Mus. Zool. Torino, vol. iii. no. 40.
\ddagger "Gieoscolex, Leuck., ein nenes Geschlecht von lingwiumern," Zool. Bruchstiocke, Hellt ii.
§"Deseriptions of Earthworms.-VI. On Anteus giyas", Perrier, Notes Leyden Mlus. yol. xiii. p. it ; Perrier, loc. cit. pl. i. lips. $10,11$.
|l "On the Structure of a new (ienus of Lumbricidae (Thummedrilus (iuticlmi)," Proc. Zool. Soc. 185̃, p. 1ü4. This worm is really a Mhinodrilus.
 apparent when the sete diverge posteriorly.
'The clitellum is developed in ome specimen and necmpiod scemonts.s.-xxiii. There are fwo pairs of calcinome glands in segments xii. and xiii. 'These glands, as in Urocherte, stand ont from the walls of the wanhlagus instead of being atamed to them along their whole lengh, as in mat carthWomms; they are subenical in lomm, the apex lomge direetend away from the gut. A lage branch arising from the dorsal versil on each sile suphlies the anterion glants, entering them at the apex.

The principal differnce, however, which this species shaws from either of the other two species is in the sperm-sacs; instead of being represented by a single pair of lomg "ton-u"shaped" organs, the sperm-sacs of Anteus heterostichon are two pairs of small hodies attached to the anterior septa of segments si. and xii. They apprar, in fact, to resemble these of Anteus gigas.

It is noteworthy that this species, like the other two, posisesses no spermatheca; the absence of these structures seems to characterize the genus.

The nophridia fall into two suries; up to the twelfth snement they have an exceedingly long muscular duct, which is shown by Horst in his figme * of the nephridium in Antore miyus. I traced a delicate tube prasing from this tuft of tubules forwards into the segment in front, where it doubtless ends in a fumel. Perrier's figure t of the nephridium and lis deseription give an erroneons; idea of the structure. The deserijition runs as follows:-"Cos organes présentent d'ailleurs dans ces deux ammeanx et dans les sept suivants qui font ćgalement partie de la ceinture un calibre ples considérable. Au lieu d'être pelotomnés comme chez la plupart des Lombrice, ils sont simplement un peu flexucux; leur calibre est suffisant pour qu'on puisse les injecter facilement par leur orifice extéricur, qui est lui-même fort apparent sur la ceinture. Chacun d'cus est terminé par une sorte de houppe formée par une séric de replis membrancux implantés sur sal pertion terminale libre. Cette houppe constitue le pavillon vibratil au milieu duquel s'ouvre le cinal." This deseription implies that the convoluted tuit of tubules is really a large funnel.

Neither Perrice nor IIorst noted that the posterior nephridia are different in structure from the anterior series. After the twelfth segment (in the present species) the nephridia still

[^19]\dagger Loc. cit. pl. i. fig. 14,
have a lavee tominal sac; lut this liss along the tranerowo axes of the body in close contact with the septa and is fumisled with a ceecum which lies on the distal side of the external pore.

Pemin has indond remanked that the penterim mondurita of Antens gigas are less in calibre than the anterior and are attached liy a mombame not representel in the ant rion s.anes; hut he says nothing of the cecom (rupporing it to exist in that species).

It is frequently the case in this family of earthworms
 from the pesterior. In lifimadritus Cinlidmist mecisely the same differences exist as in the present species.

The juesent specios of Antens, like the other species of the genus and like so many other earthworms, has several specially thickened septa lying in the anterion region of the body. In Antens hefreoxtichon there are fium of these immediately following the gizzard and sopratime semments vi, sii., vii./viii., viii//ix., ix./x.; behind these is another, thinner, septum which largely corers the septum in frome just at these cover cach other successively in the way that Perrier has described.

Species of Anteus.

Is the above species really distinct from Antrus gigos described by Perrier, and more recently hy Ilowst? I am convinced that it is distinct, and, moreover, I believe that Honst's species is not the same as either Perrier's or the one that I have just described.

The peints of difference between Anteus lutwrestichen and Antous gigas are of course to be fonnd manily in the divergence of the seta posteriorly and in the commencement of the posterion set of nephridia in the thirteenth instead of the twentieth segment in the latter species. There can be mo confusion as to these points, as Perrier's description is perfectly clear. With regard to the setee he says (p.52), "Les soies sont disposés, comme chez le Lombrie ordinaire, en quatre rangées de paires, deux rangices sont franchement ventrales, deux latérales. Ces rangées sont constamment paralleles d'une extrémité à l'antre du corpe, et les sonies de chaque gaire sont toujours très-rapprochées l'une de l'autre."

Ir. Horst comsiders that the species which he investigated is Anteus gigus. But in that form, as in Antous hetervstionon

[^20]and in Ciensenter maximus, "the setee in the posterior secrments have also a tendency to separate."

The clitellum also is less extensive than in Auteus gigus, thongh this point is of less importance and mainly due to a difference in the state of maturity in the two specimens. Finally it comes from a different locality *.

The following is a definition of the three species. I reserve the generic definition until the next section.

1. Anteus gigas, Perrier.

Antens gigas, Perrier, Nouv. Arch. Mus. t. viii. p. 50.
1 metre 16 centim. in length. Sette strictly pairel. Six strong infundibuliform septa following wizaral. Clitellum occupying segments xiii--xxix. (?) Nephritlit chamging in structure in the twentieth segment.

Hab. Cayenne.

2. Anteus Horsti, Beddard.

Anteus gigas, Horst, Notes Leyd. Mus. vol, xiii. p. 77.
S6 centim. in length. Colour (in spirit) bluish green, darker dorsally; clitellum brownish. Sete paired, becoming separated slightly from each other posteriorly. Clitellum occultying sexments xiv--xxaii. Three pairs of calciferous glands; six strong septa following gizzard.

Llab. Brazil.

3. Antous heterostichon (Schmarda).

II!! imymien heternelichun, Schmarda, Neue wirlb. Thiere, Bd. i. Inalfte ii. p. 14.

25 centim. in length. Colour (in spirit) whitish brown, i.e. no pigment in skin or very little. Clitellum wecupying segments xr-xxiii. Seta strictly paired anteriorly, widely divergent posteriorly. Two pairs of calciferons gland. Four strong septa following gizzard. Pusterime mephidia from those of segment xiii. diftiment in structure from anterior.

Hab. Ecuador and the Cordilleras.

Affinities of Genus Antens.

Vaillint has recenty propesei to unite the genera Anteus

* I do not mention the ornamented setre, on the assumption that they also exist in Anteus giyas; and yet lerrier, who discovered these seta in Rhinorlilus, says nothing about their existence in Antens. Indeed he remarks on p. 140 of his memoir, when giving briefly the characters of the genera, that in Anteus the setre are all alike, i. e. not modified upon the clitellum.

End Jiarorhlulu*, a fromeition with which I camot acme. And dombt there is a chace alimity between Abtoms anal Miroorlirta; but the frints of difference are numerous and, colfectively at least, of considemalle importance. Thus in Mirmchotio thie setar are not omamented, even those of the clit-llar segments; the nephrilia difire from these of Autcos; the single calciferous gland is a dilatation of the cesophagus; the sherm-sacs are not at all like those of Antros ; and, finally, the spermatheca of Mirrochita are a number of small sans situated behind the segment: which these structures nemaliy necury. Benham has sugesested that similar spermathece may have been overlonkel by Perrier in Antens; they io not, I am convinced, exist in that genus. With Pihimolritus, however, Antous shows such close resemblances that they amount, in my opinion, to generic identity.

Until the pulbeation of Ilonst's paper upon Antons mat my own upon Rikinotritus Gulidmi the two genera appearel to lee very different. We now know that the emamentation of the setar and the differnce between the ordinary sota and the elitellar setge are the same in hoth gencra and that the nephridia have the same relations and strueture (there being an anterior and posterior semies differing by the presence on ahsence of a ca cam to the rluct), ant that the genitalia show
 man ly corstensive with that of Antors luterastionan: inded that ifecies of lihimulitus aml Antus luthowshang link together the more divergent forms of cither genue. 'The only points in which the two genera differ are:-
(1) The presence of a greater number of calciferous glands ; and
(2) The I reence of an elongatel penstonium in lithondritus.

As to the first point, it may be remarked that the number of pais of calcitimens pashers is not the shme in all spoxies of
 Ihhinodritus G'ulielmi, eight pairs in likinoclritus coucudoriensia |. ; we lomw mothing ahont these glambs in Rabiandrifies

- "Amelés," in 'Suites ì Buffon,' t. iii. p., 184.
+ "An Attempt to Classify Earthworms," Quart. Journ. Mier. Sci. vol. xxxi. p. 265.
\ddagger Except perlaps in the presence or absence of spermathece. In Anteus spermathecre have never been found; in lihinumilus, perratuxus Perrier did not meet with them, but he examined only one individual ; I found them to be oceasionally wamting in lihnodrilns (iudicmi.

II lienhana, lec. cit. 1. ajoj.
pereuturiss. If the mumher of the glands were constantly the same the character would lave more importance.

Wihh regand to the prostomium, I quite agree with Pervice that the inowifitations of this alone are not sutfi-ient to lase yeneric characters upon. In view of the close resemblanees in the clitellum, seter, neqhridia, and genitalia, hetween Rhitume drilus Cialielmi ant Anteus hutwostichom, and the eomsiduralle diiflerences between the several species of each genus, it is difficult, I think, to maintain the two genera.
Anturs also shows resicmblances to Gicosectex which nearly, if not quite, amount to generic identity.
The divergence of the sete postorimly which occurs in Antens luterestichon is a new character in Anturs, but is one which characterizes (icuse hex-at least (ionseoher maximus; another character of Gowester maximus, which I shall refer to again in cleseribing that species, is share! by Antous ant lihinolrilus-that is, the ornamentation of the sete; the clitellar setie, it is true, are not different from the rest, but neither are they in Antens gigus (?). (ienscolec, howerer, is distinguished by the long sperm-sacs, of which there is only one pair, ly the muscular atrium, by the ventral nephridiojures, and the alsence of any specialization in the nephridia of the anterior segments, and ly the single pair of calciecrous glands. In the meantime, therefore, I should prefer to retain the genus Geoscolex as distinct, but to merge Anteus and Rikinodrilus*.

(2) Geoscoles maximus, F. S. Letcekart. (Pl. V1I. figs. 2 and S.)

Geoscoler maveimus, F. S. Lencknt, Zool. Bruchstücke, IIe eft ii.
Titanus brasiliensis, Perrier, Nour. Arcl. Mus. t. тiii. p. 57.
There is a single specimen of a worm which I refer to this sprecies; it is labethed "Lumbricus pmencisutis," and was colleeted near the river Patia, in Colombia.
The envecmen measures 26 2 inches in length by 15 millim.

[^21]in diameter at the clitellum; it is of an intense brown crilour, almost black, the intersegmental gronves heing grey. Perrier does not mention the colour of his specimens.

The only points in the structure of the worm to which I wish to call particular attention are the calciferous glands, which were mistaken by Perrier for a part of the circulatory system; the structure lettered coe in his fisure * is really a calciferons gland \dagger of a conical form; a blool-vessel arisine from the dorsal vessel enters this gland at the apex, and looks very much as if it were simply continuous with it ; however, in the specimen in the Vienna Museum the blood-vessel gives off a branch which ramifies over the surface of the gland before it enters its substance; this does away with the resembance which the gland bears to a simple enlargement of the vascular trunk which suplies it. In the segment in front of this, i. e. the twelfth, is a large body which appears to be in comexion with the calciferous gland. This is really a dilated "heart," and there is another pair equally or nearly equally large in the next segment in front. The comlition of this specimen did not permit of a conclusive settlement of this question; but I have been able to get some evidence in favour of this view of the anatomy of the parts.

A pertion of the contents of the body lettered n in the drawing (Pl. VII. fig. 2) was extracted and teased in elycerine; it was evidently simply a blood-clot. (On the other hamd, a portion of the contents of the body, lettered (in, which I take to be a calciferons gland, showed a series of chomated 1.houl-clots which were smrounded by a layer of grambiar dehnis; these ches were highly sugerestive of the congulated contents of the blood-spaces which lie in the folds of the calciferons glands of other carthwoms: the Grambar sul)stance round the clots would be in this case the remains of the epithelium. As to the comexion between the calcifernas glands of each side and the heart, which lemper fisures, it madnubtedly oremes, thongh perhapsis is mone apment than real. In the first place there is a septum between the two ; they necur in different segrments, both being attached to the septum womblave an a!pearate of an attual commexion; there may, howerer, he a short banch from the heat to the calciferous gland.

The sete of Geoscolex are said by Pervier to possess no interesting perculianty. I moterstamel hy thi that ho regardeat them as similar to those of Lumbricus. I find, howerer (sce

* Loc. cit. pl. i. fig, 15.
\dagger Dr. Benliam intorms me that he has come to the same conclusion.
fig. S), that, as in Antens, the distal extremity of each seta is ornamental ly slight ridges with a jaered ontline. The sate present the same character on the clitellum and at the posterior extremity of the body. I may remark that it is not always casy to detect the ormamentation of the setae. It is not sufficient to strip, ofl a bit of the cuticle and then in examine under the microscope the cuticle and the sete that have been aceidentally detached in tearing it off. The enticle itself in such a case frequently obscures the markings on the setr.

The setar must be pieked out one by one; this is quite Gasy with a large suecies like Geoscolex marimes; when the hody is opened the cavities where the setar are planted are seen to be very large, and the setie can be realily ssize l with the forceps and detached.

The nephridia open, as I'errier and Leuckart stater, in front of the ventral setee; they have a large muscular vesiele.

In the anterior region of the bo ly the nephridial duct pasises straight from the tuft of tubules to the extemal pore; in the hinder region this duct is bent upon itself, but there is no caccum such as is found in Anteus. The nephridia therefore show only the very slightest traces of the specialization into an anterior and a posterion series that is found in Anteus. The funnel, as in other carthworms, depends into the segment in front of the one in which the nephridium lies.

The spem-sacs are long and were donble $\begin{aligned} & \text { upon themselves }\end{aligned}$ in the specimen which I examinerl. The vas deferens where it leaves the sperm-sate runs at first forwats and downards side by side with the duct of a nephridium ; it opens into a large matenlar we which ocenpies three or four segments and is constricted where it passes through the mesenterics. I did not notice the three bands figured by Perier* attachel to the atrium.

There are, as Perrier has stated, no spermathecæ.

(3) "Perichecta leucocycla."

The collection contains a number of individuals latelled with this name. One smallish individual (no. 16) is evidently the type tigmed hy fechmarda. Being guite immature, it is impossible to be absolutely certain whether it is really identical with a large individual measuring 37 inches in length, which has a similar labil. Su far as it was pessible to form an opinion from the arangement of the setee (which show dorsal and rentral gins) and fiom the gencral appearance of

[^22]the worm it is identical. "Perichenta lourosymelu" is themfore the same species as IVegascoler cormbues, in spite of the differeness of colour shown in Schmarla's figne and in Bourne's \%.

The synonymy of the species will therefore stan thes:-
Megnecolex cerruleus, Templeton, Ann. \& Mar. Nat. Hist. 1815, p. 60.
 p. 13.

Plearocheta Moscleyi, Beddard, Trans. Roy. Soc. Edinb. vol. xxx. p. 481.
Megascolex Moseleyi, Vaillant, Annelés, Suites ì Buffon, t. iii. p. 67.

"Perichceta cingulata," Schm.

The collection contains two specimens, one of which is the type of Semmarla's species. This is sexmally mature, as that I can describe its extemal chamaters more acomatoly than has been hitherto done. Vaillant \dagger apparently confommded several species together umber the name of P Prithen
 are really identical with Schmarda's. It i.s, in fact, mot a true Pericheta at all.

I shall refer to it here as
(4) Megascolex cingulatus, Schm.
(Pl. VIl. figs. 9-13.)
 p. 14,

Non Perichata cingulata, Vaillant, Amn. Sci. Nat. 1868, p. 225.
Non Meyuscoler cingulatus, Vaillant, Ameles, p. 72.
 aceome of the fact that the sete are mot ammed in a proftedy (ombinums cirele rond each segment, but are intempled by dorsal and ventral gaps, as, for instance, in Megascolex cerruleus.

The clitellum consists of five segments, viz. xiii.-xvii.; seto are present upon all these segments, but vary in their numbers on different segments. The first segment of the clisellum, the thirtectit!, hats a comphete cirele ot anter mamel of course by the same dorsal and ventral gaps as are the rows of sctie "y on the pre-and post-clitellar - cerments. The formteenth, fittenth, and sixteenth segments have cach theres a tie

* "On Megascolex carruleus, Templeton, from Ceylon," i.c., Quart. Journ. Miers. Sci, vol. xaxii. pl. xi.
\dagger "Note sur l'Anatomie de deux espèces du gemre Perichecta," ice. Aun. Sci. Nat. t. x. (18(ís) p. N2 2 .
upm carh side of a meelian asap. The eightementh segmment hats five or six setar upen cach site of the mention gap).

Dorsal pores are present, and commence, as in bloguseolect armatus, between segments v./vi.

The oviducal pores, as in Menuscoler sencrally, are domble; each pore lies in from of the immermest set of segment xiv.

The male pores are upon segment xviii. No setæ lie hetween them; they are phaced in the line of the seta. Lach pore is stimmoted by prominent lips, and there is a Genital papilla in fromi of and hehind each pore ; the papille in Inestion are umen the bomdary-lines between segments xvii./xviii. and xviii./xix.

In schmarda's figure of the species the elitellum is depieted as commencing with segment $x v$.; lut in the text it is stated to commence after the thirteenth.

When the worm was opened by a median dorsal incision the intestine was partially cut into ; otherwise the viscera were minjured. Five of the intersegmental septa were specially thick and appeared of a brownish colour, the thin septa being h hiish or colouless. The first thick septum follows immediately after the gizzard ; in frent of the gizzard lies the first recognizable septum, which is also rather thick; between this and the septum following the gizzard is a thin septum. The thick septa are bound by numerous isolated muscular stramk, which show interference-colours. The number of them appeared to me to be umsually great for so small a wom; they were particularly abmant in the gizzarel-segment and in those lying in front of the gizzard.

The alimentary tact presents the nsmal divisions; the first four segments were ocempied by the buccal cavity, phamyne, and a part of the cesphasws. "The hencai cavity" was larsely everted; the pharynx did not present the compact appearance which is asual in this organ ; the muscular filmes forming its corsal wall and comecting it with the parietes were greatly 1.reken up into bundles ruming chiefly in a longitudinal direction ; this was no doubt due to the protrusion of the buccal cavity and the consequent pushing forward of the pharynx ; the fifth segment wats entirely oceupied by the ceso-phasus-the gizzard lying in the two following; the firth segment is not bounded posieriorly by a distinct septum, but the sisth and seventh are separated by a septum. The forward position of the gizzard and the presence of a septum dividing the two segments in which it lies are characteristic of the genus Meyascolex, at least these features are not met with in livelete (s. s.). The terminal section of the esophasess is exceedingly narrow, and the larse intestine sudedely begins
in the fiftecnth segment, its calibre being three or four times that of the œesophagus.

The dorsal blood-vessel is single. The eerebral ganelia lie olposite to the furrow separating the first from the seem serment; they may possibly have been pushed forwards with the everted buccal cavity.

There is only a single pair of spermatheca, which in compensation are very large ; they occupy nearly the whole of the available space in segment ix., and indeed they materially encroach upon the cavity of segment viii., of churse phehing the septum which divides the two segments in front of them. Each spermatheca (fig. 19) consists of a large thin-walled sac (.p) filled with hard coagulated yellowish matter ; this communicates with the exterior loy a duct which is very thick-walled and has a metallic yellow colour ; comected with the duct is ane qually thick-walled, somewhat oval diverticulum ($/$, which lecomes constricted just lefore joining the spermathecal , huet ; at this point it is fumished with two suls sidiary diverticula $\left(\mathrm{a}^{7}\right)$; each of these small diverticula is really duble and consists of two globular sacs (fig. 11, d^{\prime}) ofening by a common duct. These minute sacs, less than a pin's heail in size, are oparpue yellow and contain sperm. The spermathecal duct after it is joined by the wide diverticulum becemes somew hat dilatel and opens on to the exterin just below the mesent ry diviling its segment from the cighth. So far as I could make out there appeared to be some slight variation in the number of the small fouches belonging to the diverticala; bat as the shecimen is a unique one I am not in a position to give details the ree rlang of which wond have mecesitated the destrnetion of the specim. n. 'The spurm-sucs necupy serments x. an 1 xi.; I am not quite centain whether they reach the twelth segment. The atria have the lobate form so characteristic of the P'erichartida, but they are nevertheless rather unsenal in one point of stricture: in ali atria of this kind of which I am acguainted with from figures or deseription or from myown dissections the muscular duct which leads to the exterior comes off from about the middle of the glandular mase, and is gemerally comparavely short and curvel into a horsesho-shapal fome; in licguespler cimmentus the atria lie on either side of the gut, to which they are clocely attached; more gencrally one finds the atria adherent to the rentral paricts. They are long and narrow, and cxtend from the eighteenth to the twenty-fouth scoment ; althogh long and names, they have not the tubular form found in the atria of Acanthodrilus and other genera; they are composed of numerous lobules of various sizes. 'The duct, however, comes of from the ante-

Fion emt of the atrimm in the eighternth semment ; it is mather long and coiled, and opens on to the exterior without any terminal dilatation. The structure of the atria is thus very interesting, inasmuch as they present us with characters intermediate between the "lobate" and "tubular" form of atrium. As both forms of atria are met with in the Perichetider, thomgh the: lobate is the: more common type, the intermediate condition is required.
(llusi to the $l^{\text {min }}$ where the atrimen perforates the bulywall on its way to the exterior is a sac containing penial seter. These setre differ (see fig. 13) from those of Megaserel ir armentes, the on! mether spectios of the fenas in which they hate luen hithem fisumed. They are shamly hent at the extremity, which is beset for a short ilistance with minute denticulations.

Comesponding to the papille which I have refered to in deseribing the external characters are four romed white ghats.

"Perichacta brachycycla," Schm.

This is also a Meguseolex ; there is nothing but the colour to distinguish it from Meyascolex cingulutus, since the clitellum was modevelopect, and since I have not been able to compare the internal organs. As there is the colour difference I shall for the present assume the distinctuess of the species, and rename it

(5) Megascolex brachycyclus (Schm.).

I'erichuctu bruchyeycla, Schmarda, Nene wirbell. Thiere, Bul. i. Ifilfte ii. p. 14.

Megascolex Urachycyclus, Vaillant, Annelés, p. 88.
The characters upon which Schmarda relied to distinguish the species from the others described by him was the form of the setre; it is now known that the form of the setre cannot be relied upon for the discrimination of the species of Perichuta. This is certainly my own experience, and Prof. Bourne, who has examined a large number of species, remarks that, except in special cases, the shape of the seta " is of little use for classificatory purposes."

The dorsal and rentral gaps in the circles of setor are not perhaps so well marked as in M. cingulatus.

The first dorsal pore is, as in that species, between segments v ./vi.

The oviducal pores are double.
The male pores are upon the eighteenth segment; in front of and behind each of them is a genital papilla; these lie, as
 xvii./xviii. and xviii./xix., but appear to be rather different
 the genital pore, but both outside of it.

(6) Perichæta viridis, Schm.

Perichata tividis, Schmarda, Nene mirbell. Thiere, Bd. i. Halfte ii. p. 13. Megascolev viridis, Vaillant, Annelés, p. 87.
Beyond stating that this species is a true Perichectu I have no further observations to offer about it. None of the specimens: were mature, and no distinctive chamaters conh tharefore be drawn up.
(7) Pontoscolex arenicola, Schm.
(Pl. VII. figs. 3 and 6)
Pontoscolex arcnicola, Schmarda, Neue wirbell. Thiere, 1Bd. i. Millfte ii. p. 11 (in part).

Pontoscolex arenicolu, Vaillant, Annelés, p. 198 (in part).
Under the same name Schanaria has contumbel twn pro
 two distinct eencra. As I have mo mans of knowing which spocimen served as the type of the sureies, I shatl rewant those individuals with a clitellum consisting of eizht scomonts as representing the species Pontoscolva armionta, the others I shall call Hiachen littoralis. They have all the same hathat, occurring upon the seashore in the uevghburhood of Kingston and Port Royal, in Jamaica.

I sugesested myself" a shonit time since that Pontmon ${ }^{2}$ might prove to he Ponturtilus, which I have receivel from Bemmoda, where it is also found upon the sathore. This suppsitim proves to be incorrect. The gemes is in fact, as Schmarda's figure would lead one to believe, iknacial with Trachuta; one of the two species at least is relemble, in my (piniom, to that genus. The others, those with a more exterisive clitellum, may perhaps be more suitably placed in Benham's genus Diachecta.

Schmarda's diagnosis of the genus is as follows :-
" Quatumedecim serics setarum alternas binas. Clitellum. Maricolæ."

In the figure illustrating this species the elitellum appears to be shom n in a very minsual pasitim, i. a nemer to the posterior than to the anterior extremity. It is trwe that it is

[^23]not lettered as clitellum ; but no other structure is shown in the drawing which could be supposed to be the clitellum. Amedemarta states in the fext that the clitellmm is nenally simated hathad. Thestmeture which sehmerta hats mistaken for a clitellum is really nothing of the kind; it is formed
 ance which project beyond the general surface of the body, such as Frit\% Niüller first described ${ }^{*}$ in Urocheta corethrera. This mombahle point of sinilanty first directentmy attention to the probable identity of Pontoscolex and Urocheeta.
'I he clitellum, as a matter of fact, is anterior in position.
 The emer into which he fel! is to lace acematen or he the fact 1hat in the specimen figurel, as in many of thase colle ete loy lim, the clitellum was met ieveloped. In these in dividuals in which it is developed it occupies eight segments commencing with $x v$. Its extent therefore is precisely that of liechuten, or, as it must now medoubterlly lise callerl, Fontuscolea corcthromes. Schmarda comnts seven seta only in cach segment, which alternate in position in successive segments frem the very first. This enumeration is inaceurate; there are undoultully cight seta per segment on most of the sigments; cocasionally on sume of the pinsterior staments of the hedy I could only tind seven, lut this is most probahly merely due to the loss of one seta. As to the alternation, this only (eceurs in come of the specimens; perhapes as this fact is the first distinctive peint mentioned in the deseription of the genns: I should refer to that genus the individuals which I deseribe liter as Dieichenter littoralis. As, however, that fact is not refired to in the description of the species, and as the figure seems to me to be a little more like the individuals possessing a clitellum of cight segments, I think that the name " arenicola" should be applied to them.

In this suecies, then, the seter do not alternate from the very beyiming; upon the first few segments (I am not certain low many) they are strictly pairel; the two seta of each pair are quite close to each other. In this the species resmbles I'ontosculex corethrurus. But, unlike what is found in that seceies, the setio are omamented, as in Illinodrilus, with a series of curved ridges. In Pontoscolen corethrurus sume of the sete are ornanched, viz. those upon the elitellum; in Pentoscolex arenicola the clitellar are also ornanuchited, but they only differ from the seta of the preclitellar

* "Description of a new Species of Earthworm," Ann. \& Mag. Nat. Hist. vol. xx. 1.nt, p. 13. See also my own observations upon the same structure in the same journal for January 1891, p. 95.
segments in the ir gratm size. The pheterion aetae have the same irregular quincuncial amaugement which oecurs in I'ontuscole comenthons; man!e of them are large; they vary in fact in size, but are never ornamented.

With regand to int mal structure this species shows cortain differeners from Piontuserlos conethernes; but they are not. in my qianion, -nfliciont to separate the two forms Eenemically. 'Ilice maturial was mot in a sulficiently gom stata of presersation to allow of enything like a complote aceonnt of even the macrosempic anatomy, and I rlil not thimk it worth while to attempt any section cutting.
'Thealimentary canal presents the same characters ori inally
 The large gizzard is situated anterionly, thongh I have mot been able to fix precisely the sesment or segments which it occupies. On each side of the gizzard is a large coiled "glande à mucosité." Srchmarka has mentionel the fact that the cesmphasus is furnished with " 4 braune bimtiomige Crgane", which I take to be the calcifurone slanda mo "plands of Momen " as they are sonctimes calleal. I count, however, six of them, $i . e$. three pairs, as in Pontoscolex corethrurus.

Behind the gizzard are four stout mesenteries.
Behind these again lie two pairs of hearts.
Of the senital organs only the spermathece and the spemsacs were visilbe. I only found two pairs of spermatnex, which lie lehind the gizzard in the segment bounded by the two last thick mesenteries. 'Their form (see fis. 6) is rather different from that of the spermathece in Pontoreslis corethrurus. Each consists of a reniform pach connectel with a long duct which leals to the exterior. The sperm-sacs are tonguc-shaped organs, as in Pontoscolex corethrurus.

In the prosterior region of the body the "priform vesicles" characteristic of Pontoscolex were present.
(8) Diachæta littoralis, sp. n. (Pl. VII. figs. 4 and 5.)
I'ntactlon arcnicela, Schmarda, Nene wirbell. Thiere, Ind. i. Inalite ii. p. 11 (in part).

Pontoscolex arenicola, Vaillant, Annelés, p. 198 (in part).
This wom, like Diachuta Thomasii \dagger, has eight setie in each segment, which alternate in prosition upon suceessive segments from the very first; and, as in that species, the setie
s "Litudes sur l'or-anisation des Lombriciens terrestres, Amatomie

\dagger Benham, "studies on Earthworms. No, Il.," Quart. Joum. Mier. Sci. vol. xxvii. p. 89.
upon a given segment are separated from each other by wide intervals.

The seta upon the general body-surface are not ornamented, which is a further point of resemblance to Diachertir Thomasii ; but they were in a few cases ummistakably bifid, as in Ientoscolea corethrurus. It is seldom that the free extremity of the selie in either of these species shows the bifidity clearly; they are generally apparently too much worn, and a faintly marked notch, readily passod over, alone indicates the cleft. It is quite possible, theretore, that Pontoscoles arenicola and Diachurta Thomasii may really possess the same notehed sct:e which Perrier first deseribel and figured for "Ciochutere corcthrurce." The setae upon the clitellar segments are larger than some of the others and are distinctly ornamented with a series of crescentic ridges limited to the distal part of the seta. This particular form of seta is very characteristic of the Geoscolecide, particularly upon the clitellum, and the fact that similar setie occur in Criorlrilus is a strong argument for regarding that genus as being related to this family. Benham makes no remark about the clitellar sete of Diacheta Thomusii. I may mention that this peculiar ornamentation of the sete in the Geoscolecile often requires sume looking for; it is not always very strongly marked.

As in the last species, there is no prostomium.
The clitellum is extensive, oceupying segments xri.-xxxi. Schmarda has mentioned that the clitellum sometimes consists of fifteen rings, commencing with the fifteenth.

The nephridia are furnished with those peculiar cup-like bodies at their termination which Perrier first described in Pontoscolex corethruras and regarded as sphincters for the closure of the nephridial pore.

The spermathece (figs. $\frac{ \pm}{}, 5$) are exceedingly long thin sacs, hardly, if at all, dilated at the blind extremity, where the semen is stored. There are here again only two pairs ; each measures about 5 millim. in length, which is half the cireumference of the worm in the region where they occur.

The mucous gland, gizzard, and thick mesenteries appear to be as in the last species.

"Hypogæon orthostichon," Schmarda.

This species clearly belongs to the family Cryptodrilidex, which comprises the majority of the Australian carthworms: it is not a characteristic family in New Zealand-at present Ann. \& Mag. N. Hist. Ser. 6. Vol. in.

Rhodortritus minutus* is the only member of the family known from that country; but I have specimens of another (undescribed) species, and if Captain Hutton is right \dagger in refering his Lamblicus lervis and L. uliginosus to Perrier's gemus Diguster, we have a thind Cryptodrilid genms in New Yealand." "Hypmeryeon orthosticheon" is not referable to either lihodoctritus or Cergptodritus. It seems nearest perhaps to Fletelier's \ddagger Nutoscolex $(=$ Megascolides, M'Coy). I am not at all certain that it belongs to that genus, for the definition given by Fletcher is not at all satisfactory ; indeed the discrimination of the genera of Cryptodrilide is unquestionably the most difficult part of the classification of the Oligochæta.

As I do not wish, pending a revision of the Crypentrilita, to add umecessarily a new generic name, I shall describe Schmarda's species as

(9) Megascolides orthostichon (Schm.).

Ityporren orthostichon, Schmarda, Neate wirbell. Thiere, Ba, i. Halft.. ii p. 12.

I do not attempt to give here anything more than the most obvious characters, as I conid only dissect one specimen, which I have been careful to injure as little as possible.

The setæ are in eight equidistant rows.
The elitellum is a complete girdle, and occupries segments xiv.-xvii. inclusive.

The male pores are upon segment xviii. ; there appear to he no genital papilla developed in their neighbourhood on anywhere else upon the borly; the mate pores correspond in position to the ventralmost seta.

The gizzard is in segment v.
The nephridia are apparently of the "diffuse " type ; they were not at all obvious.

The sperm-sacs are in segments x., xi., xii.
The ovaries are in segment xiii. The receptacula ovormm are present and occupy the usual position in segment sir.
'The atria are short and tubuler in form ; the chict part of the atrime is a white glamlular tule which commmicates with the exterior by a very short mascular duct. There appear to be no penial sete.

[^24]The spemathere are two pairs and lie in segments viii. and ix. Each hats a small diverticulum, pyriform in shape, like the main pouch.
(10) Perichæta vitiensis, sp.n.

The cullection contained a single specimen of a Percherte hearing the label "M!ypergeron, sp. aff. Ihyp. orthestichon, Schm. Viti Ins." It measures 75 millim. and consists of about seventy segments. 'The colour of the preserved specimen is a lomaish yellow, grey upon the clitellum. The setar are bome upon a very distinct rilge upon the middle of each segment. The clitellum occupies segments xiv.-xvi., ending a little way in front of the posterior border of the sixtuenth segment. There are no seta upon the clitellum. The male pores are transversely elongated, somewhat curven, slits lying upon two glandular-looking areas upon the eighteenthe segment; between the two pores are about six sete. The two pores are 3 millim. apart. The dorsal pores begin between segments xi./xii. The spermathecal pores (one pair) lie between segments vii./viii. on a line with the male pores. The oviducal pore is single and median upon segment xiv.

The gizzard lies in segments ix., x., the septum dividing those segments being absent. From the septum which bounds the gizzard anteriorly a number of muscular bands are given off which are attached to the dorsal parietes. There is only one very clearly defined septum in front of this one; behind the gizzard are four rather thickened septa. The large intestine commences in the fifteenth segment, and there are a pair of caca not quite in the usual position; they appear to belong to segment xxiv. The dorsal vessel is single, and from about the thirtieth segment there are well-developed septal glands arising from the posterior septum of the segments, and in many cases forming a continuous mass lying above the dorsal vessel.

The sperm-sacs are in segments xi., xii. ; each sperm-sac sends up a narrow tubular process which approaches its fellow in the middle dorsal line; the arrangement in fact recalls that found in Pericheeta Vaillanti, where, however, the processes become fused, thus forming an arch round the intestine. I found one pair of testes in segment xi. attached to the front wall of the segment. The funnels of the vasa deferentia, of which there are also only a single pair, open in the neighbourhood of the testes; the septum dividing segments x./xi. seems to be made up of two layers, between which the funnel
lies; but as the specimen is a unique one, I am not able to settle the position of the funnel quite definitely, as it would be probably necessary to cut sections. The main fact, however, to which attention is called is the occurrence of only one pair of testes and one pair of fumels. I believe that in all Perichata hitherto described there are two pairs.

The atria are very compact and lie in serments xvii.-xis.: the horseshoe-shaped duct, which arises from the middie of the gland, is at first tolerahly wide ; just before the extemal opening it becomes exceedingly narrow and opens through a small globular sac on to the exterior.

The ovaries are in the thirtcenth segment. The single pair of spermathece lie in the eighth segment; each has a single diverticulum, of a chalky-white colour owing to the contained sperm.

The only species of Pericheta with one pair of spermathecae are Perichata elongata, P. quadragenaria, and P. sangirensis; but P. vitiensis differs from all of these in the posisession of but a single pair of testes and vas deferens fumels. Is it identical with Grube's P. suldquadrangulus, which also comes from Viti? In this case, as with most of Grube's species, it is impossible to distinguish the species from his data.

(11) Acanthodrilus Schmardæ.

The single specimen of this species was found in fresh water at Rockhampton (? in Queensland).

It measures about 60 millim. in length by 5 millim. in breadth. The clitellum occupies segments xii.-xvii., and is undeveloped ventrally; the grooves between the clitellar segments are very evident; dorsal pores are present, but I could not ascertain where they commenced. Segments iii.-x. are ammlate, the middle segments showing three annuli. On segments xvii. and xix. are the atrial pores, of which the anterior manks the ventral edge of the clitellum, and between segments viii /ix. a pair of spermathecal pores.

The wom being much contracted and the internal organs softened I am not able to say so mach as I could wish about the anatomy of the wom. The motes that I am able to give, however, are quite sufficient to distinguish the species. "The dorsal vessel is single; the nephridia are paired structures. A gizzard is present, but I am not certain which segment it oceupies; after the gizzard come tive thick mesenteries.
'The only organs of which 1 am able to give an adequate account, and they are fortunately the most important, are the spermathecie and the atria.

The atria are two pairs lying in segments x vii. and xir. respectively; the anterior pair are much the larger ; both are coiled tubular glands and both are fumished with penial setae. The anterior larger atria are furnished with five of these seter, the posterior smaller pair have only two. This was only the case, however, on one side of the body; on the right side there were only two to each atrium. They are curved in form and show a transverse striation such as is usually found in large seta up to nearly the free tip. The free extremity of the sete is not ornamented in any way.

There are apparently two pairs of spermathece. In describing the external characters I have refervel to the external aperture of the second pair, which are considerably the larger. Supposing that during copulation the worms lie in opposite directions, as is the case with Lumbricus, the larger pair of spermathece would correspond to the larger pair of atria. Whether the difference in size is a question of maturity or indicates a commencing disappearance of one pair of atria and of the spermathece corresponding to them I am unable to conjecture. The larger spermatheca showed a protuberance on the inner side near to its external aperture ; this I suppose to be a diverticulum. Behind the second pair of spermathece is a pair of oval glands of the same appearance but smaller than the spermatheca. Between the two glands was a sac containing one or two copulatory sete; these are smaller than the penial setre and of a somewhat different form, but resemble them in being unornamented at the tip. Behind this pair of glands is another pair apparently also fumished with penial setre; but I am not certain as to this point or as to whether they lie in the same segment or in the next. Structures similar to these have been described in other species of Acanthodrilus-for instance in A. Layardi*.

There are now four or five aquatic Acanthodrilids known.

EXPLANATION OF PLATE VII.

Fig. 1. Posterior extremity of Auteus heterostichon, to show the divergence of the setie. δ, ventral, s^{\prime}, dorsal setæ; n, nephridiopores; a, anus.
Fig. 2. Genital segments of Geoscolex maximus. D.I., dorsal bloodressel ; H, "heart" connecting dorsal with ventral blood-ressel ; $A s$, œesophagus; $C a$, calciferous gland; V.S., sperm-sac bent upon itself; Γ.d., vas deferens; $A t$., atrium. The organs of the left side only are shown.

[^25]Fig. 3. Posterior end of budy uf Pontosmentex arenicsle, ne nephindinpores; A, anus; a, "growing region" figured by Schmarda as clitellum.
Fig. 4. Extremity of spermatheea of Ifichectu littoralis, a, larye pionitoneal cells.
Fig. 5. A spermatheca of the same species.
Fig. G. A sprmatheca of Poutoseole urenicula. sp, ponch communicating with exterior by long duct.
Fig. 7. Setee of Antors heterostichon. ", clitellar sota: 7 , 7 , it free extmmity more highly magnified; b, one of the ordinary setæ drawn to same scale as $a ; c$, extremity of this seta more highly magnified.
Fig. 8. Seta of Cerosolex marimus. a, a seta from one of the terminal segments of the body; b, free extremity of one of the clitellar setr.
Fig. 9. Ventral aspect of clitellor and neirhbouringr segments of Merascolex cinyulatus, for explanation of which see text. The segments are numbered.
Fig. 10. Megusenter cingulatus. Spermatheca. Spl., the main phoch of the spermatheca; d, diverticulum ; d ', diverticula of this; o, external orifice.
Fig. 11. The smaller diverticula of one side of the same, more highly matnified.
Prig. 12. "Prostate" of the same, showing the duct eiven off from the anterior end.
Fig. 19. Penial seta of the same. ", a seta; b, the free extremity, more highly magnified.

XVHII-The Lysianassiles of the 'British Sessile-eyn? Crustacea, Bate and Westwood. By Alfred O. Walker.
Having lately been enabled, by the courtesy of the British Muscum authorities, to inspect the collection of Amphipola presented by the late Mr. Spence Bate to that institution, I venture to lay the results, so far as the Lysianasside are concerned, before your readers.

The collection consists of one hundred and fourteen tuhes, containing Amphipoda, Caprellida, and two species of Praniza. The specimens are in methylated spirits. All the names are in the handwriting of the late Mr. Spence Bate, and are those of species included in the 'Brit. Sess.eyed Crust. ; ' lut many of the species in that work are not to be found in the collection. Trime amd Lomdon forg dill not permit me to examine more than the Lysianassida, and the two species afterwards noted. It must be mulerstood that the examination had to be carried on without dissection ; nevertheless in most cases I was able, be immersing the specimen in glycerine, to make out the details with sufticient aceuracy. I take the specimens in the orter and with the names given
in the 'Prit. Sess.-eyel Crust.' 'The numbers are those on the tubes.

Lysianassa Costce, M.-Edwards (12).

${ }^{T}$ The tulve contains four specimens in good endition. (Of these one only-the largest-is L. Coster of of the wthers two are L. Lumpicornis, Lucas, and the remaining one ut a Lysianussu-perhaps: Orchomene piempix, Boeck. Owinj to the kindness of Dr. Ňman in lenting me monted areimens of L. longieorais from the Adriatie, I arrivel at the conclusion that mot only were the two specimens mentioner atove that species, but also that the species described by mes as L. ceratimus is a female of it, as suggestel at the time. The characteristic spine projecting from the lower margin of the last joint of the peduncle of the upper antemme is absent in both the specimens I had then obtained; hut I have since dredged a specimen in the Menai Straits which has it partially developed. It is probably not fully developed till the animal is full-grown.

Lysianassa Audouiniana, Bate (11).

A single specimen in bad condition. It is impossible $\mathrm{t} \cdot \mathrm{s}$ make out any details without dissection.

Lysianassa atlantica, M.-Edwards (13).
The tube contains two specimens, of which one appears to be Callisoma Kröyeri, Bruzelizs, and the other to be that figured in the 'Brit. Sess.eyed Crust.' It appears to have been partially dissected, as. one of the first and both the second gnathopods are missing. The telson is not "simple" as described, but cleft to the base, without lateral spines, but with a terminal spine in a deep notel in each division. This character, while it would remose the species from the genus Lysianassa to (probably) Socarnes, Boeck, at the same time agrees sufficiently with M.-Edwards's description, which says "Abdomen terminé par une lame bilobée." The first gnathopod is much too long and slender for Sucarnes Vahlii, Kröyer. The third pleon-segment has the hinder angle acute and shortly recurvel, but without a sinus, as in Ichnopus spinicornis, Boeck. No spine was observed on the peduncle of the upper antemm, but there are two on the lower side of the first joint of the flagellum.

[^26]Lysianassa longicornis (10).
One specimen in good condition and unmutilated. This is certainly not Lucas's species. By immersion in glycerine the first gnathopods could be plainly seen, with the details of the hand and wrist clearly defined. The hand is subchelate and corresponds exactly with that of Orchomene Butei, G. O. Sars, when compared with Sars's figures in his beautiful work on the Nerwegian Amphipoda and with Dr. Norman's mounted specimens. It is needless to add that it is entirely different from that figured in Bate and Westwool's plate. It is certain that the mouth-organs figured could not have been taken from the specimen in the tube, which is, as I have said, unmutilated; and it therefore seems probable that the authors dissected a true L. longicornis, Lucas, figuring its mouth-organs and gnathopod, while they figured the entire animal and the tail from the specimen in the tube, which I have no doult is a male Orchomene Batei, as long since snggested hy G. O. Sars \%. At the same time Mr. Stebling \dagger was fully justified in questioning this in view of the form of the first gnathopod figured by Bate and Westwood.

> Anonyx longicornis, Bate. Not in the collection. $=$ Lepidepecreum longicornis.

Anonyr Edwardsi (15).

The tube so labelled contains several specimens of Orchomenella ciliata, Sars, the largest of which does not exceed $4 \frac{1}{2}$ millim. in length, and no other species. The measurement given by Bate and Westwood is $\frac{5}{2}$ inch, but the two lines indicating the length given abore the figure are respectively this length (or, say, $7 \frac{1}{2}$ millim.) and 20 millim. It is therefore tolerably certain that the specimens now in the tube are not the same as that described and figured. This has been referred by (x. O. Sars to Orchomene Batei of, at which it may stand.

Anony.x obesus, Bate (16).

One specimen, the details of which could not be made out without dissection.

* 'Oversigt af Norges Crustaceer,' 1882, p. 81.
\dagger 'Report ou the 'Challenger' Amphipoda, p. 400.

Anony.x denticulatus, Bate (14).
'Two specimens. These agree with Sars's Hippomedon denticulutus ('Amphipoda of Norway, p. 50, pl. xx.).

Anonyx Holbölli (17).

One specimen, which agrees with Sars's Hoplonyx cicalu, Fabr., $=$ Anony. gulosus, Kröyer. It is not A. Hollälli (Kr.), as shown by Lilljeloorg in 1865, who then referred it to A. gulosus, Kr .

$$
\begin{array}{lc}
\text { Anomyx minutus. } & \text { Not in the collection. } \\
\text { plautus. } & " \\
\text { longipes. } & ", ") ",
\end{array}
$$

Mr. Stebbing has suggested * that A. minutus of the work in question is the young of Orchomene serratus, Boeck.

Anonyx plautus, Kröyer, is now Onesimus plautus, Kröyer, of Boeck and others.

Anonyx longipes, Bate, is Tryphosa longipes, Bate, of Boeck, and Tryphosites longipes, Bate, of G. O. Sars's new work.

> Anonyx ampulla (18).

This was shown by Dr. Norman in 1868, in his ' Report on Shetland Crustacea,' to be the male of Anonyx (Tryphosites) longipes. There is only one specimen in the tube, which has (unlike Bate and Westwood's figure and description) the flagellum of the upper antennæ perfect and very long. It appears to agree in the main with Sars's figure and description, except that the upper flagellum contains about thirtyeight joints instead of thirty and the telson has six pairs of spines instead of three, the fourth from the body being the longest. This may, however, be abnormal, or the animal may be a very old male.

Callisoma crenata, Bate.

Several specimens.
This concludes the Lysianassidæ of Bate and Westwood's work. It only remains to add that among the species stated on the labels of the jars to have been "destroyed or injured

* Ann. \& Mag. Nat. Hist. 1876, ser. 4, vol. xvii. p. 431.
by the action of the spirit" was Cossea microdentopa, Bate. I succeeded in extracting three specimens from a mass of fungus, and was rewarded by discovering that it was the sane species as that described by Bate in the 'Catalogue of the Amphipoda in the British Muscum' under the marne of Pherusa fucicola, Leach, at p. 14.5, and again under Gossea microdentopa at p. 159. This therefore aidls another to the list of synonyms given by me in Ann \& Mag. Nat. Hist. 1891, ser. 6, vol. vii. p. 421, under the name Pherusa oberinii, M.-Edw. It will not, however, "involve any alteration in the gencric name Apherusa proposed by me (Amn. \& Mas. Nat. Ilist. 1891, vol. viii. p. 83), becanse a genus of (Cel metata was named Gossea by Agassiz in the same year (1s62) as Sip. Bate's was published. It is therefore obviously more convenient that Agassiz's genus should be retained.

Pherusa bicuspis.

This, as I have elsewhere* shown, is not Amphithui: hicuspis, Kröyer.

Nant-y-Glyn, Colwyn Bay,
December 9, 1891.
XIX.-On the Occurrence of the Genus Equisctum (E. Itmingwayi, Fidston) in the Yorkshive Coul-mensures. By Robert Kidston, F.R.S.E., F.G.S.
Until the description of Equisetum. Monyi from the Comentry Coal-field by MM. Renault and Zeiller \dagger, there was no satisfactory record of the oceurence of the genus Liquisctum in Palæozoic times \ddagger.

[^27]The specimen described loy these authors is a protion of a stem about 4 inches long and about $1 \frac{1}{2}$ inch wile at the broadest part. It shows poitions of thirteen nodes bearing the characteristie toothed sheath of E'quisetum. 'The channelling on the stem is feebly shown, but each ribe ends in a tooth.

The specimens I now describe, and one of which is here figured, show the fructification of an Equisetum. They were collected by Mr. W. Hemingway, by whom they were communicated to me.

The first example of the fossil was received a couple of years ago, but the carlier specimens discovered were not well preserved and their true nature was mot disecened. More recently I have received some fine specimens from Mr. Ifemingway, which reveal the true character of the fossil.

The cones are about 1 inch long and a short distance above the base measure $\frac{i 6}{i 0}$ inch across. They are rounded at the base and have been attached to a thick stem, whoss width can be ascertained by the concave fracture where the cone has separated from the stem. This "scar" shows that the top of the stem must have had a thickness of $\frac{3}{10}$ of an inch. From about a third above its base the cone gradually narrows upwards, and ends in a blunt apex about $\frac{4}{10}$ of an inch wide. The whole surface of the cone is covered with hexagonal plates whose diameter is from $\frac{1}{3}^{2}$ to $\frac{z^{3}}{20}$ of an inch. In the centre of these smooth plates is usually a slightly prominent point. There appear to be nine transverse rows of plates in the cone figured (woodcut fig. a).

On some of the other specimens the plates of the cone show three, seldom four, ridges ruming from the central point of the plate to the margin. These I believe to be due to shrinkage of the specimen before mineralization, and they do not occur on the specimen figured, which is the finest example I have seen.

For comparison I place beside the drawing of the fossil a figure of an immature cone of Equisetum limosum, Sin. (from which the sheath at the base has been removed), taken from a photegraph of a herbarium specimen that has been compressed during drying. There is seen here in several of the plates the small central clevation, similar to what has been pointed out as occuring in the fossil (woodeut fig. c). Fig. d shows one of the peltate-shields of Equisetum limosum enlarged. Owing to the shrinkage of the cone in drying its hexagonal form is not so distinct as in the fresh state, but it exhibits the central point and the slight elevation of the margin of the peltate-shield. Fig. 6 gives one of the plates of
the fossil, also enlarged, whose similar characters are olserrable. 'To return to fig. d, the central tubercle indicatus the point at which the peltate-shield is attached to its stalk; hence there is a greater thickness of tissue at this part, and in drying the peripheral portions of the shield shrink more, and, being unsupported underneath, fall helow the level of the centre, and thus the central tubercle is formed. One of the peltate-shields is shown in protile at fig. e ", which illustrates more fully their structure.

a. Equisetum Hemingwayi, Kidston. Nat. size.
b. Outer surface of one of the sporangifermes shimps of Equiwitum $I I_{-n-}$ ingrayi. Enlarged.
c. Cone of Equisetum limosum, Sm. $\times 4 \frac{3}{2}$; from a photomicrograph.
d. Outer surface of a -poraugiferous shield of Equis tum linawem. Enlarged.
e. Sporaugifernus shich of exi-ting Fiquisetum som in pratita, to show central column and sporangia. Eularged.

Now though the internal structure of the fossil cones is unknown, I think we are quite warranted in supposing that the central tuherele and slightly elevated margins of the plates
 p. 904 (1873).
have been produced from similar causes. A comparison of figs. d and l, ahmost demands this conclusion. Beyond evidence gained from an examination of the surface of the fossil there is none; but as all the characters exhibited on the outer surface of recent Equisetum occur on the fossils, I think I am quite justified in placing the Yorkshire specimens in the genus Equisetuin.

It gives me pleasure to name this species after MIr. Hemingway, to whom I am much indelted for many interesting fossil plants from the Yorkshire Coal-field.

Before concluding these notes, I may adit that the Ifipqurites gigunten, L. it $11 .^{*}$, from the Lower Comal-measures, Jarrow Culliery, of which the type is preservel in the Hutton Collection, and which 313. Renault and Zeiller thought might possibly belong to the genus Equisetum, is a portion of a stem of Culamitina (probably Culamitina curians, var. insignis, Weiss), and has no very close aftinity with the genus Liquisetum. I have examined the type, and the leaves appear to spring from the node, not as teeth of a sheath, as represented on their plate, but as free and independent organs placed close together \dagger.

Equisetum Monyi, R. \& Z., came from the Upper Coalmeasures, whereas Equisetum Ilemingwayi originates from the Middle Coal-measures.

Loc. Monckton Main Colliery, near Barnsley, and Woolley Colliery, Darton, near Barnsley, Yorkshire.

Hor. Shale over the Bamsley Thick Coal, Middle Cualmeasures.

XX.-Description of a new Frog from Burma. By G. A. Boulenger.

[Plate IX.]

Rana Oatesii.

Tomerine teeth in two strong oblique series between the choanæ, their outer extremities nearly touching the anterior corners of the latter. Ilead depressed, longer than broad by the distance between end of snout and nostrils; snout long, pointed, and projecting; canthus rostralis obtuse; loreal

[^28]
142 Mr. G. A. Boulenger on a new Frog from Burma.

region concave; nostril much nearer to the end of the snout than to the cye; interorbital space as broad as the upper eyclid ; tympanum very distinct, nearly as large as the eye. Fingers and toes rather slender, merely swollen at the ends; first finger extending distinctly beyond second ; foot half ats long as head and body; toes entirely webbed; subarticular tubercles rather feeble; inner metatarsal tubercle feebly prominent, oval, about one third the length of the inner top; no outer tubercle. The tibio-tarsal articulation reaches halfway between the cye and the end of the snout. Skin finely granulate above ; a prominent glandular lateral fold, about half as broad as the upper eyelid; anotlier fuld from the eye to the shoulder, followed by a prominent glanl. Black above, unform or marbled with pale brown, and with five whitish stripes, the midlle extending from between the nostrils to above the vent, the upper pair runaing along the glandular lateral fold, the lower pair from the end of the snout along the upper lip, which is edged with brown, to the groin; siles of upper surface of snout and upper eyelids pale brown; limbs pale bronzy brown, with small black spots or marblings, which are confluent into longitulimal streaks on the sides of the tibia; hinder side of thighs black, spotted or marhed with white; lower parts white, miform or spotted with brown. Male with a large, backish, external vocal sae on each side below the mandible, extending from beluw the centre of the eye to the fore limb; a humeral gland.

From snout to vent, ठ 80 , if 75 millim.
Several specimens were obtained near 'Toungoo by Mr. E. W. Oates.

This very handsome frog is most nearly allie l to R. hermeralis, Blgr., from which it differs in the longer head and the still more feebly developed digital expansions. The shemer hind limbs, the longer web between the toes, and the longer imer finger are characters which differentiate it at once from R. macrotaciyla, Gthr., which has a somewhat similar coloration.

EXPLANATION OF PLATE IX.
Tiana Oatesii, δ^{*}, and side view of head and opeu mouth.
> XXI.- Kote me Toxotes microlepis, Crthr., and Toxotes microlepis, Blyth. By G. A. Boulenger.

Thes important collection of reptiles and fishes recently made at Tomgoo by Mr. E. W. Oates and presented by him to the British Museum, among which I found the new frog described above, contained several examples of a Toxotes which has appeared on all lists of Burmese fishes as Toreotes microlynis; Day * attributing the species to Blyth, Vinciguerat to Günther. The fact is that two fishes were deseribed independently and almost simultaneonsly by fiunther \dagger from Siam and by Blyth§ from Burma under the name of T. microlepis. Day assumed the two species to be identical, in which view he was followed by Bleeker || and by Vinciguerra. Having compared the Burmese specimens with the Siamese types of ' T. microlepis, Gthr., I find them to be easily distinguishable both as regards structure and coloration. As Giunther's name was pullished before 13lyth's I propose to change the name of the Burmese species to T^{\prime}. Blythii. The diagnoses I have drawn up show the distinctive characters of the two species.

1. Toxotes microlepis, G thr.

Jepth of borly one half total length (without caudal) ; fourth dorsal spine considerably longer than third ; third anal spine but slightly longer than second dorsal, and shorter than the soft rays. lour black blotches or vertical bars on the upper part of the side.

2. Toxotes Blythii.

Toxotes microlepis, Blyth.
Depth of body not half total length (without caudal) ; fourth dorsal spine not or but slightly longer than third; third anal spine as long as third dorsal and nearly as long as the soft rays. Inregular black longitudinal blotehes or stripes buning along the borly; a small black spot below the axilla.

[^29]144 Mr. G. A. Boulenger on Strauch's Triton longipes.
Dimensions.

XXII.-On Strauch's Triton longipes. By G. A. Boulenger.

Is my revision of the newts, fublished in 185.2*, I expmesed the opinion that Strauch's Triton longipes \dagger from Astrabal, N. Persia, should probably be considered a variety of Molge cristata, agrecing with var. Karelinii, Strauch, except in the more elongate digits. This view was endorsed shently afterwards by Camerano \ddagger, who referred some Italian sjecimens (from the (rran Sasso) to subsp. longiper, not, howerw, without some hesitation. I am now in a position, thanks to the kindness of 1r. F.S. Monticelli, who sont me numernes specimens of M. cristata from near Naples, to state that I'. longiges represents merely an individual variation of Mulye cristuta, var. Karelinii. Among the Naples - foceimens there is one, a male post muptias, which is in every respect referable to T. longipes; its digits are extremely slemer and clongate, all the fingers except the first extending beyond the snout when the fore limb is stretched forwards, and the longest toe reaching the elbow when the limis are presed agamst the body. As there exists in the same locality every passage between such a specimen and a normal M. Cristuth,

[^30]var. Kratelinie, it is clear that the from lomyipes camme b: uphede even ats a sulspereces. The measurements are hore: given of the specimen referable to T '. Lengipes (e) and of a normal M. cristata, var. Karclimii (1), both males from Naples.

It must be borne in mind that the typical form alan varies comsiderably as regards the clongation of the digits, and that Strauch's statement as to the proportions of the limbs in M . cristuta applies only to females, which have the digits much shorter than in the males. It is quite clear, from the measurements given on $p .46$ of his memoir, that the spesimen from the (xev. Kursk, with which he compares the (make) type specimen of T. longipes, is a female; it need hardly he added that such a course, in al group of amimals in which the secondary sexual chameters are so highly develope l, can only convey a fallacions impession, cespecially if mo mention is made of the sexes of the specimens the measurements of which are tabulated.
XXIII.-Note on the Gibbon of the Island of Mainan (Iylobates haimanus, sp, n.). By Oldfield 'Thomas.
In his paper on the mammals of Hainan * Mr. Robert Swinhoe has given an acconnt, manly compiled from native authorities, of the (ribbon which inhabits that island; but no specimentapears hitherto to have been brought to Europe. The animal was reterred ly Mr. Swinhoe, with some doubt, to Itylulates pileatus, Gray, the Camborgian species; but as he was mable to obtain a specimen, this reference has never been confirmed.

At length a specimen of this (ribbon has been presunt to the British Musemm by Mr. W. T. Lay, to whom it was

$$
\text { * Proc. Zool. Soc. 1870, p. } 224 .
$$

Amn. \& Mag. N. Mist. Ser. 6. Vol. ix.
brought alive from the island, and in whose care it lived for about four years in China.

The animal seems most closely to resemble $I I$. hoolock, but differs from that, as from every other known species (except II. syndactylus), by the entire absence of the white superciliary streak, the animal being absolutely jet-black everywhere.

With the exception of the Siamang all the so-called species of Iylobates are so closely allied to each other and differ by characters of such slight importance that they seem to bee really hardly worthy of specific distinction. Still for the. present it seems better provisionally to recognize them as such, and unless they are all united it will be necessary to consider the Hainan form also as distinet, its differential characters being of very much the same value as in the cases of the other "species." I would therefore propose for it the name of Itylobutes hainamus. At the same time I confess that I shall not be surprised to see this form relluced later t, the rank of a subspecies.
'Two species have, however, also been described as without the superciliary streak, namely II. fuscus* and II. concolur t. The former of these is distinguished from II. Lecinamus by its, brown colour, apart from all question of locality, while the latter, based on a youg specimen, and that an hermaphrolite, was a native of Borneo, and in all probability was the same as H. Muclleri \ddagger. Its youth and abnomality, however, rember it impossible for this point to be settled with certainty, and in any case it can have nothing to do with the Haman species.
H. hainanus appears to be of about the same size as H. hoolock, but the type, although nearly, is not quite adult. Its humerus measures 210 millim. in length, its uha 250 , and its femur 185.
XXIV.-Diagnosis of a nem Sutspecties of Hare fiom thes Corea. By Oldfield 'Thomas.

Lepus sinensis coreanus, subsp. n.

Size slightly larger and heavier than in the typical form.
Colour greyer throughout, the rufous tips to the hairs, especially on the sump and tail, being replaced by pale greyish fawn.

[^31]Skull stouter and heavier. Nasals of more equal breadth thronghout, not so markedly compressed and ${ }^{\text {wointed }}$ anteriorly, nor so much bowed in profile. Frontal region broaler, and the postorbital processes projecting much further out from the skull.

Dimensions.- Head and body (from skin) (c.) 450 millim., tail, with tuft, (c.) 60, ear from crown behind 83, hind foot 107.

Skull: greatest length, from neciput to ghathion, $8: 3$; nasals, greatest length 83 , combined breadth anterionly 15 (against $11 \cdot 5$ in a good Shanghai specimen of L. s. typicus), posteriorly $18 \cdot 8$ (against 19.2); least interorbital breadtl 21. (against 18) ; least intertemporal breadth 12.2 (against $12 \because$) ; distance from the bottom of the postorbital notch to a point on the outer edge of the postorbital process level with it transversely 8 (against 54). Palate, length 34. Diastema 22. Breadth of palatal bridge 7. Antero-posterior dianeter of bulla 10.5 (against 11.8).

Hab. Söul, the capital of Corea.
Type a skin obtained on Jan. 28, 1859, and presented to the Muscum by Mr. Charles W. Campbell, of Her Majesty's Consular Service.

As the Museum at present possesses only summer skins of L. sinensis typicus, it is possible that the above differences in colour will prove to be only a seasonal character; but the skull differences are so marked and so constant in a series of S. Chinese skulls that I do not feel justified in allocating the Corean hare to the older-known form.

Should, however, the colour differences prove to be constant throughont the year it is possible that it will be found necessary to elevate L. sinensis coreanus to the rank of a distinct species.
> XXV.-Description of a new Species of Meriones from Palestine. By Oldfield Thomas.

Trie Gerbille now described belongs to the group known as Meriones, a group which, in agrcement with Brandt and Lataste, and differing from F. Cuvier, Blanford, and Büchner, I consider differs so essentially from Gerbillus as to merit its retention as a distinct genus.

I propose, in honour of its discoverer, to name the species

Meriones Tristrami, sp. n.

Size rather small, about equal to that of M.meritimnus, Pall. Lars rather long and narrow, laid forward they reach beyond the middle of the eye. Fur long and soft. Conour above dull fulvous, grizaled with black, the geneval tone not molike that of M. Shanri. Underside, hands, and feet white. Palms quite naked, granulated, with three small distal and two large proximal parls. Soles mainly hairy, hut with a naked stripe ruming from the heed forwarls to just past the tarso-metatarsal joint; distal part of sole cushionel, granulated, very thimly haired, with four minute parts at the batws of the digits and a rudiment of a fifth posterior internal pal just distinguishable. 'Tail grizzleal yellow and brown abow, with a small black terminal crest and pencil on its distad inch; uniformly yellow or white below.

Skull, for a derriones, slemler, narmw, and delicate, but little flattened and lomadened across the pariotal resim. Bulla very small tor the genns, the neek of the aulitury tub not dilated anterionly towarts the zygma, as is the case in M. meridianus and other allied species.

Incisors slightly bevelled, each with a single groove. Molars of the most $1 /$ oriones-like character, i. e. hypsondont, with havenge-shaped lamina comected witheach other thougiaout.

Dimensions of the type (an adult male in spirit) : -
Head and horly 121 millim., tail 1.53 , hime font (without claw) 32 , ear (above crown) 16 .
skull: greatest length (approximate) 37 ; length from hregma (junction of frontals with parictals) to natal tip 2.j.j; zygomatic bealth is.s; nasals, length 14.7 , lreaulth $3 \cdot 3$; interorlital breadth $6 \cdot 1$; breath across combine 1 frouta-

 foramina 6.8 ; bulla (greatest diameter $12 \cdot 2 *$), greatest diameter of tympanic portion 120 , sreatest breatth from lip of meatus at right angles to last measurement $5 \cdot 7$. Length of upper molar series $5 \cdot 5$.

A second specimen, a female, has the heal and borly 111 , tail 126, and hind foot $29 \cdot 5$.

Ihab. Palestine.
Typre (B. M. (4. 8. 17. 35) from the Deal sea; another specimen from Momit Camel. Both callected by Canm 11. B. 'Tristram.

* The measurements in brackets are taken from the smaller fomale specimen, owing to the imperfection of the skull of the type.

This appears to be the species referred with doubt by Camon Tristram * to "P'sommomys temaracinus, liuhl," but is certainly mot the true Meriones temaricinus, Pall., a very much larger and heavier animal. Its nearest ally is perhaps. 11. meridiamus, Pall.; but neither that nor any other species with which I am acpuatinted has such a narrow slender skull, so little broadened posterionly. Its small and narrow bulla also distinguish it from all its allies.
XXVI.-The Pelyzore of the St. Lawrence: a Study of atretic Forms. By the Rev. Thomas Hincks, B.A., F.R.S.

[Plate VIII.]

[Continued from vol. iii. p. 433.]

Flustra solida, Stimpson. (Pl. VIII. figs. 1.)

Flustru solidu, Stimpsum, Marine Invertubrata Cirand Manan, 185.); Hincks, "Pulyzoa from Barents Sea," Imn. \&D May. Nat. Hist. laso, ser. 5, vol. vi. p. 282, pl. xг. figs. 2, 3.
Eschara palmata, Sars, Beskriv, over nogle norske Polyzoer, 1862.
 18is.
Flustramorpha solida, Verrill, Proc. U.S. Nat. Mus. 1879
This very interesting species oceurs amongst the St.-Lawrence dredyings; it was obtained off Bear IIead, Anticosti, at a depth of 120 fathoms. Besides the form deseribed by Sars a small variety was met with which presents some notable peculiarities, to which I shall refer hereafter.

Zoarium erect, bilaminate, branchec, attaining a height of about 3 inches, in the adult state composed of hroad transversely separated segments, held together by epidermal tubular fibres, which traverse the surface of the zoarium and unite in their course downwards, so as to form cords of many strands, and ultimately give origin at the base to the fibrils by which the colony is attached to its site. Zoacia linear-oblong, narrow, and usually of great length, inclosed by strongly marked boundary-lines and perforated romd the sides, very moderately convex, surface smonth, commonly invested by an epidermal membrane, orifice broader than high, upper margin very slightly arched, sides nearly straight, lower margin decidedly curved outward, an articular process at each

[^32]extrenity of the marginal curve, peristome not raised; immediately below the orifice an clongate linguiform axicularium, about a thind of the cell in length, or snmetimes (in the case of the dwarfer cells) about half the length, mandible printing downwards. Oxcium broader than high, romoded ahove, and narrowing slightly towards the front, surface smooth and silvery, a number of roundish perforations and (in some (ases) of narrow clongate fissures rom the lower part of it, the central portion entire, or with a few seattered punctures.
liange. Spitzbergen; Greenland; Finmark; St. Lawrence;"Barents Sea; Grand Manan.

The smaller form to which I have referred as necurting in the St. Lawrence is characterized by a very slemder habit and by the narrowness of the segments which compose the zoarinm. These differences might only indicate an earlier stage of growtl, lat there are others of more significance. There is a remarkable dissimilarity in the shape of the orifice. In the larger form (of which we have an admirable descrip)tion from the elder sars) it is sublruadrangular ("rotundatuquadrangularis," Smitt), and the lower margin is occupied by a wide and shallow sinuation, stretching between the articular denticles (Pl. VIII. fig. 1 l). In the smaller form the orifice is rather taller than broad, the upper margin moderately arched, and the sides slightly curved, while in the centre of the interior margin there is a small but distinct romded sinus (Pl. VIll. fig. 1 (1). I was at first inclined to think that the latter might be a merely peristomial structure; but on detaching the opercula they were found to be furnished below with a projecting process corresponding exactly with the sinus. The orifice in this form is nuch more slender than in the ether, and generally of a very different character. Notwithstanding these important differences it is difficult to believe that we are dealing with distinct species when we remember the remarkable similarity between the two forms in most of their characters. There is a difference, it is true, hetween the avicularia on the front wall, which produces an effect on the general aspect out of all proportion to its intrinsie impontance. In the smaller form they are of very moderate size, and cither circular or oval; in the other they are (prevailingly) large ard linguifom. But such varieties of shape are too chmon amongst avicularian struetures to have much systematie weight. Smitt long ago noticed the variability of the avicularium in his Escharella peelmata, which was fumded on the larger of the two forms with which I am dealing. Ilis figurs epracent only a sulmuadrangular orifice. The

E'schara palmata of Sars seems to be referable to the same form \%.

On a consideration of the whole question I can only suggest that probably we have to do with one of the species in which the orifice of the cells bearing the ocecium differs in structure from that of the ordinary cells. The larger specimens both from Barents Sea and the St. Lawrence were thickly covered with ececia, and on these I have been mable to find an example of the orifice with the central sinus. ()n specimens of the smaller form from the St. Lawrence the latter was universally present. At the same time it must be almitted that the exclusive presence of one form of cell throughout fine and well-developed colonies affords a presumption against the explanation which 1 suggest. In similar cases the two classes of cell are always, so far as I know, mingled together. The alternative view would be that these forms are distinct species, which seems to be highly improbable.

Opinions have differed widely as to the precise systematic position of Flustra solidu. Stimpson, who first described it, referred it to Flustra, to which it bears a certain amount of superficial resemblance; but there is no real affinity between the two. Sars ranked it in the old genus Escheara, simply on the ground of its zoarial habit, whilst Verrill placed it in the Flustramorpha of Gray, a genus since adopted by Busk for forms with a Microprellidan cell and an erect mode of growth. Such a genus can of course find no place in our later systems of classification \dagger.

Simitt has discussed the affinities of this species in the light of the new views of which he has been so able an expositor, and assigns it a place in his genus Escharella, which (as finally limited) is identical with Smittia \ddagger. Undoubtedly there are points in which it agrees with the members of this genus, though the differences are by no means unimportant.

The orifice in such a species as Smittia reticulate before the development of the peristome bears the closest resemblance to that of Flustra solida in its larger form, the presence of a central denticle and of marginal spines being the only points of difference §. But Prof. Smitt had not met with the other form of orifice carrying a sinus on the lower margin, which

[^33] examination show that the orifice in F＇Mustro salitu is dimon－ fhoms，as it is in many of the Cheilostomata，and that the two forms which I have described are referable to one specios，it will mobably find aplace in the above family．Unfommately I have only hat immature fragments of the so－called＂－malle＂ fom，＂and though they have conabled me to asemtain with acemacy the structure of its cell－month，they du mot fuminh the means of deternining with certainty the relation leetween the two forms．

A striking chamacteristic of F ．solice is the epidemal covering of a miform greyish tint which invests the surface of the zocecia and occasionally of the ofecium alon，thoneth this is more usually free and retains its silvery lustre．The chitinous filmes which hold together the detached swoments of the zoarim and also give origin to the organs of att h－ ment are tubular extensions of the membramons covering of the cell \％（Pl．VIII．fig． $1 c$ ）．

Monotorella spimulifera，Mincl．s，var．（II．VIII．fig．3．／
 May 1889，p．431，pl．xxi．fig．3．
This species was deseribed and figured in the last part of this series of prapers；hut 1 have since met with a stromgly marked varicty（Ill，VIII．tig．3），which should not be pasced without notice．

Var．praclara．－Zuncia much larger than in the common form，more convex and deeply dividal；immediately hednw the orifice a large umbe，which frepuently rises to a con－ siderable height；oral denticle wanting．

The large size of the cell，the suboral umbo，and the ahachere of so distinctive a feature as the spinule on the hower margin materially affect the gencral appearance of the zoarium．

I hate ranked this species in the senus Macremellar ；hut on reconsideration 1 ann inclined to think that its aflinities are rather with Monoporella．

Smith has described and figured M．squmbifire t under the name Discopera crucnta，identifying it with the Lepoline crucote，Noman，from which it differs essentially．He had

[^34]previonsly ranked it as a form of Mictopurellas siliatu ("furme (dura") \%. His figure of Discopura coruenta is a very gome representation of the present species.

A peculiarity of the oœcium must not be omitted; the thick eranular collar which incloses the aritiee of the eall is carred up on cach side, covering the lower part of the owecium athl concealing its oral arch. This is shown, though only partially, in the figure acompanying my last paper ('Amals;' ser. 6, vol. iii. pl. xxi. fig. 3).

The sumace of the ceils as calcification procerels becomes granular and glistening; hot in carlier stages it is thickly covered with minute pores, a line of somewhat larger size rumning round the margin.

Schizoporella cruenta, Norman (ip.). (Pl. VII. fig. 5.)

Lepralia violacea, rar. cruenta, Busk, B. M. Cat. pl. cx. fig. 1.
The figure of this species, taken from a St.-Lawrence specimen (Pl. VIII. fig. J), shows a mach more rugged condition of the surface than I have met with before. Even Busk's excellent figure, in which the two large nodules below the orifice are represented, gives no adequate idea of the extent to which these clevations of the surface may be developed. The suboral nodules seem to be almost always present on adult zonecia; but in addition to these one is sometimes placed near the bottom of the eell, whilst the thickened upper margin of the peristome, which in its simplest condition is carried up into a central peak, is commonly lroken up into two or more of the nodular prominences. it the same time the whole surface is furrowed and ridged and granulated.

The margin of the cell is oceupied by a line of very larese pores and a number are seattered over the front wall. The zoocia near the margin of the colony are comparatively smooth and flattish and the nodules upon theme merely rudimentary.

The figure of s. cruenta in my 'Hist. Brit. Mar. Polyza' was taken from a specimen in which calcification was mot redundant, and does not present what must probably be considered the more usual aspect of the species.

A question may be raised as to the systematic position of this form. I have placed it in the genus Schizopnella, on the ground that "the orifice of the young cells is slightly

[^35]sinuated in front," or, as the character is given in the diagnosis, " slightly channelled in front."

This character is not very strongly marked, and in the more highly calcified condition of the cell is often difficult to detect. On young zooceia in the marginal region of the colony a shallow romuled sinus may be detected, thourh even amongst these cells not unfrequently occur in which the margin has all the appearance of being entire. In the case of older zonecia, which are overlaid by a thick calcareous crust and the orifice is sunk in a comparatively deep shatt, the sinus will often be sought in vain.

It is right to add that Mr. S. O. Ridlley, who oltainel the species from Franz-Joseph Land, found the oral sinus "well marked in most, even old cells "*.

Lepralia pertusa, Esper. (Pl. VIII. fig. 7.)

There seems to have been a good deal of meertainty alomet this species; I have therefore given a figure taken from a tine St-Lawrence specimen in which the characters are well displayed. Smitt, in one of his later works \dagger, identifies it with his Escharella poritera (a near ally, if not a mere variety, of Smittia Landsborocii), from which it is separatel by important differences. Of Busk's figures one or two are referable to another species. Waters, in his 'Bryozoa of the Bay of Naples,' has recorded two varieties of Leprotia pertuse, both of which probably are quite distinct from Eiper's species.

Sehizoporella cincta, Hincks, var. (Pl. VIII. fis. 2.)
Lepralia cincta, 'Amnals', ser. 5, vol. xr. p. 254, pl. viii. fig. 6.
A variety of this New-Zealand species occurs amongst the St.-Lawrence drelgings which is distinguishel by a peeuliar condition of the cell-wall in the immediate neighbouhtom of the avicularium. In the typical form a prominent umborises immediately below the orifice, bearing on its summit an chongate pointed avicularium, placed transersely. In the varicty the umbo has disappeared or is reduced to a very slight and inconspicuous clevation forming part of a distinet area of the cell-wall, extending to a greater or less distance below the orifice, sometimes almost orbicular, sometimes elongate and stretehing down about half the length of the cell. This area

[^36]\dagger (Efvers. Konrl. Vet.-Akad, Föhmall. 1878,-No. 7. Bryozoa from the Aretic Sa (Peninsula of Kola).
differs remarkably in appatance from the rest of the cell, which is of a brown colour and thickly covered with pores. It is smonth, dense, and of a whitish colour, showing very distinctly on the dark front wall. The avicularium lies across the upper part of it, immediately under the lower margin of the orifice, slanting slightly upwards. The whole structare probably represents the umbo of the normal form. Its effect on the general appearance of the cell is very striking.

The orifice in this species is wide and well arched above, but below the articular denticles, which are placed more than halfway down, it narrows off and terminates below in a curved line. 'The structure of the orifice would seem to connect it with the genns Schizoporella rather than Lepralia.

Membranipora armifera, Hincks. (Pl. VIII. fig. 4.)

Membraniparu" urmiferce, Hincks,," Contributions towards a Cieneral Histury of the Marine Polyza,", 'Amals," ser. 5 , vol. vi. p. 6 ed, pl. xi. fig. 5.
Some time since I deseribed a species of Membranipora from the St. Lawrence under the above name; but it now appears that the specimen was immature on which the description was founded. Fortunately the occurrence of the perfect form enables me to revise and complete the diagnosis.

Zowcia orate, quincuncial, wholly membranous in front, margin rather wide, the imer border crenulate, two spines at the top, on each side (or sometimes on one only) a little below the upper margin an acute avicularium, placed obliquely on the top of a prominent bracket-like support, carinate in front, mandible directed downward, a tall and very stout articulated spine rising from the margin close to one or (occasionally) both of the lateral avicularia, immediately below the cell a large mounted avicularium. Oxcium rather large, much broader than high, surface smooth and entire, a prominent rib across it a little above the oral arch, and at the top a large elongate avicularium placed obliquely and stretching along one side of the cell above, mandible pointed.

Hub. On shell and stone, and incrusting Fhustra membret-naceo-truncata, Smitt.

Commonly only one of the lateral avicularia is present, and the large articulated spine takes the place of the other. In some cases both avicularia are present, each with an attendant spine. When the oœecium is developed it adheres to the avicularium at the base of the cell above, which appears as if it were a part of it.

This species is nearly allied to IV. unicomis, Fleming.

Porella concima, Busk (granular var.). (Pl. VIII. fig. 6.)
I have already referred to the variability of this sperins in sulerficial character. The figure represents a highty aran-
 Betli of Sir J. IV. Jawsom *. The latter inteed is deseribed as having a simated orifice, a charactor which dows mot loelong to any varicty of P. concinua. Still it seems move than probable, taking all things into consilemation, that L. B. lli is nothing more than a form of this variable species. Frocimens are of common occurrence in which the cells are separated by a distinctly "sinumbs finrow," which is one of the diagnostics of Sir W. Dawson's species.

Cellepora canaliculata, Busk.

 tig. 5.
'This species seems to be not meommon. It forms sinall nolular masses, which incrust the stems of IIydmaila. It was first obtamed on the 'Challenge' ronsage in the mei-hbourhood of Halifax, Nova Scotia, in 51 fathoms.
'The oocium was not observed. It is globose, of comparatively large size, much browler than hish, math rempminnt in front, oral arch wide and shallow, surface smonth, shinins, entire.

Lagenipora spinulosa, Hincks.

Layenipora spimulosa, Hincks, " Polyzoa of Queen Charlotte Islands,"
 tig. 4.
This very interesting form occurs abundantly. It has only been noticed previonsly amongst In. (i. M1. Dawson's dredgings from the Queen Charlote lslants. It is pmotably an Arctic form. The st-Lawrence specimens hitheth mot with are all erustacens in habit, oversprabling the strme of Hydreda. The erect hanching form ultained at the Usen Charlotte Islands has not occurred.

Smittia Landsborovii, Johnston.

There has been some confusion about this species, anl the identiteation is mot always to ine trusted. Smitt has ranked

[^37]two or three forms under it which must, I think, be acenunterl distinct*. Amongst the St-Lawrence dredgings the true: typical form is not by any means common; the species is represented chiefly by the variety porifera of Simit. One specimen has oecurred to me which, in addition to the ordinary characteristics of S^{\prime}. Lemedslonocio, is furnished with the large spatulate avicularia, which are ravely developed and always in comexion with the oocium.

Myriozoum planum, Dawson.

Myrinaomm crustumum, Smitt, Kitit. Fiort elan, (Eiversigt Kimgl. Vit.Akad. Förl. 1867, Bihaug, p. 114.
This species was first deseribed as Leprotion phene by Sir J. W. Dawson in 18.5s. His account of the species is contained in a paper on the Polyzoa of the Gulf of St. Lawrence, published in the licport of the (Canartian) Geolomical survey for 18.5s. It was afterwarls (1860) reprinted atoms with other papers on the fama of Canada by Messis. D'Uthan and lobert Bell, under the title 'Contributions to Canalian Natural Ilistory.' 'This paper seems to have been entirely overlooked, and in 1867 Prof. Smitt described the present form under the name of Myriozoum crustaceum. Sir W. Dawson's diagnosis may not be as full and minute as we should now desire, but it indicates the general character of the species, and his name has as grod a clatin to be retained as those of a large proportion of the older writers.

EXPLANATION OF PLATE VIII.

Fig. 1. Fhustra solida, Stimpson, with sinus. 1a. Outline of orifice of smaller form. 1b. Ditto of larger form. $1 c$. Showing the connexion between the epidermal covering of the cell and the tubular fibre.
Fig. 2. Schizoporella cincta, Hincks, var.
Fiy. 3. Monoporella spimulifera, Hincks, var. preclara.
Fig. 4. Membranipora armifera, Hincks.
Fig. 5. Schizoporella cruenta, Norman.
Fiy. 6. Porella concima, B isk, granular variety.
Fig. 7. Lepralia pertusi, Esper:

XXVII.-On the Decelopment of Dreissena polymorpha, Pallas. By Dr. Eugen Korschelt \dagger.

The development of Dreissena is particularly interesting becallse, for reasons which will be discussed forthwith, we

* Brit. Mar. Polyzoa, p. 345.

+ Translated from a separate impresion from the 'Sitzungs-Berichte der Gesellschaft naturfowchender Freunde, no. 7, Jahrg. 18:11, pp, 1:31146. Communicated by the Author.
might in its case expect to find free-roving larvæ (in fresh water). Chiefly on this account 1 endeavoured during the summer of last year to elucidate the hitherto unknown moroduction and development of this mollusk. At that time my investigations were undertaken too late; hut with the commencement of spring of the present year I recommenced my ohservations and persevered with them until I finally succeeded in deciding this question. I would remark at the outset that in the following pages I have no intention of giving a detailed account of the development of Dreissenm. My observations were, as I have already hinted, directed chiefly towards the one point of the presence or absence of frec-roving larve. Moreover they were really intended to partake of an orientating character, in order to determine the time and manner of the reproduction of Dreissena, and therehy to facilitate a subsequent minute investigation of the development, since this was not possible for me this year on account of other tasks which could not be postponed. Meanwhile it is already possible to determine the leading frature: of the develoment of Dreissenn, so that a communication on the subject will not be unwelcome.

As a general rule development by means of free-roving larve provided with a velum is characteristic of the Lamellibranchis. Nevertheless an exception is formed by the freshwater mussels. As is frequently the case in freshwater forms, $e . g$. in the Amelids, 'Turbellarians, \&c., these creatures alopt a direct development with the freshwater existence, and abandon the original method by means of free-roving larva. Thus we see that the freshwater mussels have alrealy assumed the adult form on leaving the mother (Cyeles, Pisidium) or else pursue a course of development in which lavere indeed appear, but which is at once recognizable as having undergone secondary modification and considerable adaptation to the present mode of life of the mussels (Unimidar). C'yclus and I'isidium exercise a hrooding-process, since ther form a kind of brood-pouches within the gills, in which the eggs develop until the formation of the perfect animal is almost complete. Nevertheless these mussels pass thongh a stage in which the embryo is to be considered equivalent to the free-roving larva, which has been compared to the Trochophora of the Amelids. The velum of the lavar of marine massels is indicated by an area of cilia in the emberye of Cyclus; in this case therefore we may speak of a rulimentary velum*. Moreover it pessesses a primitive kidney, the

[^38]excretory organ which is so important for the Trochophornlawa (l. Ziegler). With this we have the chicf chatactoristies of the T'rochophora, but this stage which repeats the Truchophora in a modified condition merely represents a transitery period of the embryonic development. In the case of the Dinonida the typical form of the Lamellibrameh larva receives even less expression. Here the velum is entirely wanting, and a tuft of cilia in the anal region is all we have to remind us of the frec-roving larva*. The ova of the Unionida likewise develop) in the gills, and the larva which are expelled from them, provided with shells and shell-hooks, have already reached a tolerably advanced stage of develon-ment-with the free-swimming larva of marine Lamellibranchs they have mothing in common. As is well known, they attach themselves to fishes, upon which they live parat sitically for a time \dagger. This mode of life at once bears witness to the extent of the adaptation which they have undergone, and which explains the striking transformation of their organization as also the various modifications of their early developmental stages \ddagger.

Since the development of the freshwater mussels which have been mentioned exlibits so greatly modified conditions, it seemed interesting to ascertain how Dreissena behaves in this respect. As a near ally of the common mussel Dreissenut possesses more the character of a marine form, and we might therefore expect to meet with free-roving larve in its case, a most unusual phenomenon for freshwater mollusks. On the other hand, it appears to follow from the mamer in which Dreissenu is supposed to have entered our waters that it hats long been accustomed to a freshwater existence, and thus perhaps an influence might also have been exerted upon the development. It appears that Dreissena has been derived from the region of the Euxine. It probably penetrated into our waters by continually travelling further up stream from the wide mouth of the Volga§. At any rate it was transported by connecting canals into those water-courses also

[^39]which open into the Baltic. Finally, and moloably in a similar fashim, it also reached our rivers, and there wandor 1 up stream, until at last it attained its present wide distribntion \%.

It has been reported from the Caspian Sea that Ihreissmu sometimes still oecurs among marine musels, though ewon here it confmes itself to water which is less rich in salt, and is only found in the estuary of the Volga, which is pmotably: langely imprenatel with fresh watm. Other truly momine mussels, such as Curdium, have been foml in its vicinity in a dead state. In the Baltic it lives only within the bays, and it is interesting to mote that here it semens to en lure the strong salt water even less than a freshwater shail, Veritime fluriatilis, since the latter is fonnd on the onter side of hereakwaters, while Dreissena occurs only on the inside (E. von Martensi. In a verbal communcation Prof. som Martons is decidedly of the opinion that Dreissence now really lives in fresh water only.

Hreissenu pulymorplat is comserquently to be regaiked more as a freshwater mussel than as a marine form. We see that the guestion as to how it behaves with reference to its hevelopment is therely bromght still more chasly home to u e, for it would always he possible that a monlification had sit in in the mode of development. It is true that the stall changes in the oremization of the musiel itsalf do not suppont this theory. I was therefore able to scarch for the larve of Mreisena with some prospect of sucerss. Simen the musal is of frequent oceurence near Berlin, and is eren fond in abondance in Lake 'Tegel, a sucessiful treatment of the problem was rendered the more casy.

Althomgh it apreared to me to he probable that repmhention twok place in the spring, I nevertheres examinel a considerabie number of the mollusk in Ansust of hast year, and found them only moderately provided with sexual prolucts or almost entirely destitute of them. Hownerer, ther very small size of the ripe ova appeared to me even at that time to confirm the supposition of a free develoment.

This year from March omwards I watehed the settins in of the breeding-season both in the case of the Dreiss me if

* In the discussion on this proint attention was dramn by Prof. Nehring to the fact that Dreissena polymorpha previonsly oceurred in North Germany, and has been found in the Diluvium of East and West Prussia, as he informed the 'Gesellschaft' some years ago (sitzumgs-Her. 18es'3, 1. 68, "Ueber das fossile Vorkmmen von Corrus dama, Civmrimes carpin, mud Dreissena polymerpha in Norddeutechland"). It is supposed that Dreissena (probably owing to unfarourable climatic conditions) was driven ansay, and subsequently immigrated once more.

Lake Tregel as also in that of the mussels which are preserved under the most favourable possible conditions of existence in the reservoir of the garden of the $/$ /oological Institute here. In the case of two of the latter, which had been obtained from 'legel only a shont time before and placed in the reservoir, I observed as carly as the middle of May the deposition of a large number of ova, which were found in each instance in a cohering mass near the mussel. These eggs did not develop, but soon perished. It was not until the midile of Jume that the deposition of ova was observed once more, and shortly after this the normal reproduction and development eommenced. Whether it was merely retarded this year in consequence of the peculiarly low temperature of the spring, or whether it always takes place at this relatively late season, can only be determined by the observations of future years.

The very small ova of Dreissence polymorpha are deposited freely in the water; they are only surrounded by an extremely delicate envelope and are very scantily supplied with yolk. This very condition of the ova was evidence of the occurrence of free-roving larva. The method of oviposition is as follows. The mussel slightly opens the valves of its shell, and, quickly closing them again, a little ball of ova is extruded. This process is repeated several times and is readily observable in the aquarium by arranging the proper time. 'The balls of ova, which do not at once lose their cohesion, appear like little whitish lumps of mucus.

The mequal segmentation of the ova exhibits a great agrement with that of other mussels, as described by Loven, Flemming, Rabl, Hatschek, Ziegler, Horst", and others. The same is also true on the whole for the subsequent developmental stages, which will receive a detailed description at a later date, and will here be considered only in so far as they are necessary for the comprehension of the development of the larval form. These processes present a quite peculiarly close approximation to the conditions which obtain among the marine mussels, which is not to be wondered at for the very reason that they soon lead to the same result.

An expansion of the primitively narrow segmentation-

* W. Flemming, "Stulien in der Entwicklungareschichte der Na-

C. Main, " Ceber die Entwichlungsgeschichte der Malermuschel," Jenaische Zeitschr. Naturw, 10 Bd., 1876.

1. Horst, "Embryorénie de Phuitre (Ostrea edulis)," Tijdshriit Nelerlandsche lierkundige Vereenigung, supplement, Deel i., los:j-si.
"On the Derelopment of the European Oyster," Quart. Journ. Micr. Sc. vol. xxii., 1882.

Ann. \& Mag. N. Hist. Ser. 6. Vol. ix.
cavity takes place, ann with this the cembey which has arrived at the Gastidu-stage assumes a mumblish oral shape. The rudinent of the intestine arises by the growing inwards from in front of an ectodermal invagination towards the endodermal portion (the subsequent mil-gut); this is the foregut, which afterwards mites with the endorerm. 'The hindght appears to arise in a similar way, though it was impossible to decide this with certaints. I have likewise loeen hitherto unable to determine satisfactorily the origin and further differentiation of the mesoderm. At an early perion mesodermic cells may already be obsersed in the primary bolycavity, scattered about or collected together in grouss, yet a doubt must be allowed to exist as to their relation to the mesodermic bands, which have been desuribed for other mussels, and as to whether these bands are present in on definite a form.

Before the development of the intestine has jet proowlol so far as has been indicated above there has aprearel, in the shape of an invagination of the ectenterm, the ruliment of another organ of extreme importance for the develpment of the Lancilitmanchs; this is the shell-gland. The enbryw, in more correctly speaking the larva, assumes a bryadly parshaped form. "The widening of the anterior grown is cap:cially pronomeed: while even at an carlier period scattered cilia appeared at different parts of the body and causcel it to rotate, they are now found packed more elosely together on the thickened anterior protion, and here form a ciliated sing, which indicates the rudiment of the velum. This stage exhibits the preatest similarity to the mame larve fof Abowe
 We now have the Trechelhoru-las of Drainome betore u-, and it is an interesting leint that this stag, which in athe case of other freshwater mollusks (Cyelas, IVsinimm, anul (iastroporls) is passed through in a more or less moditial thrm within the esg-mmbane, i. co during the combranie woLepment, is preserved as a free-swimming stage in the calse of Dicisistuce. The Amelide, too, which live in fresh water or upn the land (Oligochactes and Himdincans) pass theugh this stage, ats is well limown, only in a montiliod condation within the cocoon, so that free-swimming Trochophora-harve

were not known in fresh water.

Still essentially in the Trochophore-stage is also the smomewhat older lava, in which the shell-membrane has con-

[^40]silerahly increased in size, and alrealy presents the appearance of the bivalve muscl-shell (fig. 1). 'This condition of the lava, apart from the processes which take place in the interior, continues for a long time. Is it is peculianly characteristie, and is useful for the diseovery of the larva, a few sketches of it are given herewith.

Fig. 1:

Youncer larva of Dreissenn, with bivalve shell ($*$) ant velun (cel'), wen from the side. u, anus; m, stomach; mu, mouth; sim, adductor muscle.

Before all things important and characteristic is, besides the shell, which is at first delicate and composed of a thin cuticular membrane, and subsequently somewhat stouter, the extensive velum.

The velum appears as, so to speak, a fleshy organ, which is beset with stout cilia at its margin. It possesses a peculiar pigmentation, which greatly increases with the age of the larva (figs. 1 and 2). Fig. 1 shows the velum as seen from the side in a younger larva, and the following figares exhibit it in older larve in different positions. From fig. 3, which represents an older larra seen from the side, it is evident what a considerable size the velum may assume.

The larva is usually observel as represented in fig. 2. It swims on the surface of the water, with the velum directed upwards. In front and behind we see the valves of the shell projecting bencath the expanded velum (tigs. e, 3). The ciliary morement is most readily comparal,le to the rotation of a circular saw, since only a certain number of the cilia are extended simultancously, while the interjacent ones appear to be bent. Sometimes the whole of the cilia are stretched straight out. The motion of the larva is very rapil, and
generally takes place in such a way that the ieceply pigmented spot (1 ii), which is olservable in fig. 2, is directed

Fig. 2.

Fig. 3.

Tig. 2.-Larva of Dreissena, looking down from above upon the relum, which is fully expanded. p, pigmentation of the velum (vel.) ; ni, pigment beneath the oral opening; s, shell, which is for the most part concealed by the velum.
Fig. 8.-Older larva of Dreissence, with velum greatly expanded, seen from the side. m, retractor muscles of the relum (cel.); pi, pigment ; s, the two ralves of the shell.
towards the rear. When swimming at full speed the larva suddenly halts, and for a longer or shorter time imparts a spinning motion to its velum without moving from the spot. At the smallest disturbance the velum is retracted, the valves of the shell, which are only slightly opened, close with a 1 snap, and the larva sinks to the bottom.

A striking feature is the bilobed character of the velum; this is especially noticeable at pi the commencement of expansion, but is also visible in certain positions in the fully expanded state (fig. 4). This condition reminds us strongly of the bilobed velum of the Gastropods. Attention has momenver alrealy leen drawn by Ziegler to a similar state of thines in the restucel velum of Cesclus ; yet this combition is not noticcable in C'yches until later stages of development, ant
owing to the great degeneration which has taken place in the velum in this instance it is less distinctly visible.

The larve of Dreissene are very minute, and are exceeded in size ly various pelagic Infusoria of Lake Tegel. Indeed at first sight they themselves produce the impression of an Infusorian provided with a strong adoral zone of cilia, or they might be mistaken for a Rotifer if the velum happens to be in active rotary motion.

At the season at which the majority of Dreissenn are engaged in reproduction, this year, therefore, towarls the end of the month of Junce and the begiming of July, the larra occur in large numbers on the surface of the water, so that with the help of the fine pelagie net it is then casy in procure material.

The chief features in the larval orgmization are recognizal)le from fig. 1 -the hivalve shell (figs. 2 and :3, s), the velum with its retractors, and a ciliation, also found in the larve of other mussels, in the neighbourhood of the anns. As in the Trochephorec, the oral opening lies behind the powerful zone of cilia of the velum. In older larva there appears behinit the mouth a peculiar pigmentation, which often has a bilober appearance (fis. 2-4, pi), and which I was at first inclined to regard as the carliest indication of the byssus-shand ; the position of the latter, however, would not well agree with this. A closer investigation of the subsequent stages will be necessary before we can decide whether a more important significance attaches to this formation. The fore-gut, which is marked off tolerably sharply from the mid-gut, leads into the wide stomach, upon which two cactum-shaped evaginations doubtless represent the rudiment of the liver. At an early period the section of the intestine following the stomach forms a coil, which subsequently increases in extent when a lengthening of the intestine sets in.

On the dorsal side the adductor muscle appears early (fig. 1). I have not as yet been able to determine with certainty the nature of a thickening which is found between mouth and anus, yet I am inclined to regard it as the rudiment of the pedal ganglion, owing to the great agreement between its position and that of the pedal ganglion described by Hatsehek for the Trochophora of Teredo \%.

It would have been very desirable to settle the presence of the primitive kidney in the Trochophore of Dreissena, yet in the short time which I was able to devote to the investigation of the younger larval stages I did not succeed in finding it.

[^41]Since this larval organ has mot only been proved to exist in the frec-swimming Trochopllora of T'eredo (Hats herks), but was also described for the very decenerate Troorlophora of ('ycles (Ziegler), it is hardly open to doulth that it is presont in Dreisscna also; the more so since the agreement of the larvæ of Dreissena with those of the marine Lamellibranchs is in other respects complete-a fact to which I would call attention once more. 'This appears in a peculiarly strikinge fashion on instituting a comprison with the figures which Loven (loc. cit.) gives of various larve (belonging to Gerdium, Modioleria, Montucutn, and other genera which are nom further specified). The larva in its youngest stages provided with a livalve shell exhibits a very remarkable acrement with that of the Emopean oyster, as figurel ley Maxley*, Mähinst, and Horst (loce. cit.). The shape of the =hell, imm, at first resembles that of the shell of the poung oyster-larsa. It is almost circular, thengh it appears flatemel in the domal surface, owing to two straight lines which there come int. contact (fig. 1). It sulserquently becomes more cirenlar; with further growth the shell becomes archerd ; this takes place especially in the region of the carde, and leats to the formation of the umbo. The shell is now not unlike that of a Curdium. It still consists solely of a membrane of conchiolin; the secretion of the calcareons matter does not take phace until later.

The lavar rove ahout for some eight days, and during the greater protion of this period are found chiefly on the upper surface of the water. In Lake 'Towel multatules of pragic algae were collected at the same time, and these doubtle-s provide the larsa with sufficient momishmont. When they are still thoroughly capable of active facsession by ain of the velum they sink from the surface to the hentem of the water. This may either be explained as resulting from changes which now take place in their onganization or may be traceable to the fact that fom is perlapis casier of amuisition in the depths.

While the harva was still enjoning a melagic existomee cortain changes set in, of which the mest impertant is the formation of the foot. The latter appears as a protulerance hetween the month and anns, and quichly assmes a comical shape. It thengroms in length, and is forced to trecome bent

[^42]to enable it to obtain accommodation within the shell. In the case of such larra as have been collected at the bottom of the aquarium we ohserve how the font is extended like a ferper when the animal is at rest, white the shell slieghtly opens. 'ilhe velum is then gradually unfolden, and the lava swims away loy its airl, to all appearances quite as actively as before. The foot, which is already tolerably developest, is therefore present in addition to the velum. 'The latter, however, gradually degenerates, and finally the only evidence of its previnus existenee is the pigmentation of the anterior section of the body, which is still retained for some time.

A further change in the larva results from the greater development of the mantle. 'This arose in the shape of a fold, which advanced with the shell from the dorsal towards the ventral surface. It now eomes into greater promisence, since it protmules at many points on the free ellges of the shell. Retween the mantle-fold and the foot the rudiments of the gills were formeel. They appear at this time as a few tolerably large laterally compressed papillx, the approximated edges of which are beset with strong cilia, so that the observer seems to be looking at richly ciliated clefts. The aspect which they present at this stage is very similar to that described for Mytilus by Lacaze-Duthiers *. It is difticult to determine whether the rudiment: of them are developed in the shape of a fold, which becomes motehed at a very early period and so produces the supposed papilla, or whether they sprout forth as real papillo. At any rate a few smaller papillæ are added behind to the large ones in front, so that the rudiment of the gills is continued posteriorly in an undulating line, which might perhaps be regarded as the free edge of a fold.

Meanwhile the foot has attained very large dimensions and is capable of being protruded a long way from the shell. 'The young mussel, for such it must by this time be termed, now progresses solely by its aid. We notice how the iermiform-looking foot is stretehed firr out (fig. 5), goes through the movements of a feeler, and then fixes itself by its extremity; whereupon it contracts

Fig. 5.

Dorsal vies of young Diecisenn crawling, with font (f) much protruded. and so drags the body after it. The

[^43]mussel, provided with an almost circular shell, might at this stage be taken for a young Cyelas. The velum has dogenerated, and in the fort it now posseses a serviceable ongan of locomotiom, ly aid of which it crawls actively about. The mussel conserpuently passes thongh a secomd freely mobile stage. While the body of the young musecl increases in butk, the growth of the foot is retarded, and thus acquires the stump-like form which it possesses in the ardult. The mussel finally becomes fixed *.

The ready mobility of the Ireissenc-larve has doubtless contributed materially to the dissemination of the muserl, which has advanced with guite astonishing mapidity. It is extremely probable that its immigration into Germany di.t not take place until the second decale of this century (E. von Martens, loc. cit.), and nevertheless we find Dicissma in widely distributed and oceurring in many places in enomons quantities. I have shown alove that the larse rove atont for a pretty long time. If therefore they happen to be in a strean they will be able chumer this interval to be carrieal forward for a long distance ly the emrent. Ton Martens has shown how the advance of the mussels up strean is brought about by their being attached to vesels and by lecing transported with timber, sec. The retention of the free-rowing lavere was doubtless of the greatest impurtance to Dreiseme. I have already emphasized the fact that owing to the retention of these primary larve Dreisocmu difters in a strikimg degree from other freshwater forms.

* In the discussion on the present -nheret Drot. Iom Martens alluhed to
 certain power of mobility, in that it is ahle to detach itadf from it lame and fix itself again at a greater or shorter distance. Although the foot, when contrasted with its size in the younc state (fis. $\overline{5}, f$), has very

 I myself indeed had many opportunities of observing the way in which
 high up the side of the aquarium and there fixed themselves. In the
 the water in course of time began to go bad. The motion is, however, very slow, and in the course of several days only a very short space is traversed. In so far as I took notice of this point the utilization of the foot as an organ of locomotion appeared to be very incomplete.

That the foot retains a certain capacity for locomotion would, moreover, follow from the observation commmieated by Reichel (Kool. Anz.
 water from the shallower parts near the shore. If this is so, it follows that the byssus, with which the animals are attached, must be thrown off. It is worthy of note in comexion with this statement that Dreis-
 together again after having previously separated.

The foregoing is intended merely as a peliminary commonication, since, as already mentioned, I purpose to treat the development of Dieissena more fully later m. In conclusion I would just remark that Prof. Blochmam writes to me from Rostock that he has found the larve of Dreissenn in the Warnow. Finally, I camot refrain from expressing in this place also my most sincere thanks to privy-councillon Schulze for the great kinduess with which he placed the resources of the Institute at my disposal for the collection of material, which was repeatedly necessary, and afforded me the opportmity of making abundant use of the reservoir in the garden of the Institute, wherely my taisk was materially facilitated.

XXVIII.-Remarlis on Austratian Shugs. By C. Heddey, F.L.S., Assistant in Zoology to the Australian Muscum.

In a recent number (Felo. 1891) of this Magazine exception was taken by my friend Mr. Pilshry to the treatment of some American slugs by Mr. Cockerell. I also wish, as "one who has studied the species in their native forests," to ard my remonstrance against the mamer in which the same author has dealt with the Australian representatives in his essay "On the Geographical Distribution of Slugs" (P. Z. S. 1891, pp. 214-226). I hope that I am not orerstepping the bounds of courtens criticism by characterizing this article as somewhat superficial though pretentious, and by adding that the conchological fratemity would have been more grateful to this author had he contributed to the treastury of science more "facts and figures" and fewer MSS. names and imperfect generic diagnoses.

The description * of Limex meymbodontes, Quoy and Gaimard, though considered by Mr. C'ockerell mot to le very clear, is amply sufficient to delar the entrance of that species into the genus Aneitea. The jaw is minutely describel and is certainly that of a Limac, while the statements that "le mantear assez étendu est ovale [that of Ameiten is always triangular] et susceptible sans doute de recourrir lat tète. . . . La couleur de cet individu est d'un blane jaunâtre parsemé de taches noir. . . . Sa longeur est d'un ponce huit lignes," convince me the Erench writers had before them the introluced species L. flarus, Lim., still common in the same locality.

[^44]The conclusion has foreed itself upom me that all the species of Limas ileseribed as native to Australasia may be referred to either L. motrimus, flownes, Iargutes, ngmestis, on lumis, all introduced from Euroue. Mr. Cockerell prefaces his remark: by assuring his readers that the powers of migration of a slug are extremely limited. Iby that as it may, in their race to the antipooles they have far outstriped their shell-bearing relatives. Tasmanian specimens of L. meximus were nhemret to le infested with an acarus, which, menfumately, I failed to preserve. Shomld it prove to be identical with the parasitic: attendant of the European mollusk, this fact would arene that the anmals migrated not in the egg lout in the atult stage.

After examining sereral humderds of the hamdsome diamonlslue, Ancitea Ciracfici, IImmbert, from various localities rabging along fouteen degress of latitule, I reitemate the opinion formerly expresed (Proc. Roy. Sine. ():temblamb, vol. v. pt. v. pp. 162-173) that only one species of this genus is yot known to inhahit Australia, and that, with a! s fefomes to Mr. Cockerell's decision, A. K'reftit and Crbutni ane mome synomyms. The colour, size, and shape, as well as all Antails oif the extemal amatomy, are so ohseured in spivit-eperim.nss of slugs that specific characters should be described trem sur h with extreme cantion. As instancins the difference betwem living and preserved specimens I would invin. comparison between two figures of A. Graeffei, (a) 'Mémoires de la Sorcicte de Mhysigue ef d'IDistuin Naturelle de Gemères: wol. xvii. pt. 1, ph. xi. fies, 2, from an aleoh lie specimen, and (7) 'Procedings of the Pinyal Society of (? memsland', mol. I. pt. 5, pl. vii. fig. 1 (publishel with vol. vi. pt. 1), from life; as well as between thense of C!nstopmeta Petterdi, Tate, int "Procerdings of the Limmean society of New S'uth Wales, (2) vol. v. pt. 1, pl. i. fig. 1, from an alcoholic specimen, and (b) op, cit. vol. vi. pt. 1, pl. iii. fig. 4, from life.

When Mr. Cockerell writes of 1. Meti lomelif, ("rare " New Calcdonia, and reputed also to oceur in the Now Hebrides," he has evidently transposed the localities, as a glance at Dr. Macdonald's miginal deseription in an carly number of this periontical will show. Indeed, it is from the islant of Ancitom, in the New Hebrites, that the emens derives its mans. It was also collected in that istand by the well-known travelies and roologist Mr. John Brazier, and is moknow in New Calcolonia.

To Anstralia Mr. Cuckerell assigns cighteen specios of Incliewrom. I can muly say that Australian matmalists are masequanted with eightecen, or even with eight, indigenous:
species of this genus; to have reached this total our author must have impressed every arailable synonym and enlisted an odd genus or so as well.
"Such species as IV. C'uminyi, Beck, . . . might be separated from Thelicurion by their shells alone, at least sub)generically." In this conclusion he is perfectly comect, but was anticipated some twenty years since by Prot. Semper, who demonstrated anatomically (Reis. im Phil. vol. iii. pt. 1, f. S(i) the position of this mollusk in the genus Kest\%. Il. Milli, Cox, should lee classifien as a Simimu (see ' Reveorts of the Australian Museumi,' vol. i. p. 136). The fact that (Garett (P'. Z. S. 15.57, 1, 815) throws grave doblts on the Fijian habitat of Permella is disregarded hy Mr. Cuckerell, who copies the promably fictitions locality from his purnassars. A notice by myself on the ermus. ('Records of the Anstralian Musemm, vol. i. pp. $78-80$, pl. xi.) appeats in have shared the fate of much other molluscan literature, and to have escaped the observation of this author, who should have referred this genus to the Helicarioninæ.

In reference to C'ystopelta Mr. Cockerell seems to have read my article, which he quotes so approvingly, without having quite understood it. I beg to repeat cmphatically that this genus has not the teeth of Testacella, neither has it the jaw of Arion. "Ot this," to quote our merry frienl, "there is no possible doulit, 100 penbable posible shatlow of dount, no possible dumbt whatever." Also that C'ystopelta has mot the slightest rescmblance or antinity to cither the 'lessacellider or the Selenitidæ. Further, that Cystopelte is a much molified and aberrant member of the Helicarionine. I believe that any modern malacological student who attentively examines the drawings and descriptions appearing in the Proc. Limn. Soc. N. S. IV. (2) vol. v. pp. 41-46, pl. i., and rol. vi. pp. $2 \frac{1}{2}$, 25 , pl. iii. fig. 4 , will agree with me.

The classitication of our land Molluscal sadly nechls revision; but a ramble through the British Musemm and a stuly of text-books are not a sufficient qualification for the task, and it is to be hoped that before Mr. Cockereil again add.esses himself to it that he will serve a considerable appenticeship to biolugical seience with the microscope, dissecting-neerlle, and sketch-book.

[^45]XXIX-Descriptions of nor. Genore and Species of Pyralidx containal in the British-, Menseum Collectiom. By W. Warren, M.A., F.E.S.
[Continued from vol. riii. p. 70.]

Subfamily Citrysatganie.

Semiomima, gen. nov.
Fore wings with costa very straight, curvel only before apex and simple in male; apex hlunt; himd margin havdly ohlique and faintly howed. Hind wings triangular, with himi margin omly slightly curvech. Lahbal pahi short, straichtly porrect, shages be heath, the thind joint indistinct; maxillary shont, hairy ; tomene large, scaly; ocelli minnte; foreleail smos, th, flat ; antema in male simple, with very shont pubes-

Type S. faviceps, Burm. (Ifypocrita).
In general appearance, colone, amt markings, resmbling Hïimer's ecmus ("lurysmpilu, hut distinguished at once by the simple costa and antemne of the male.

Subfamily $P_{\text {tralidinte. }}$

Pindicitora, Wik.
Type P. zeuxoalis, Wlk. xxvii. p. 135.
Pindicitora flavifions, sp. n.
Fore wings shining violet-hlack, with a slight prate tinge at the hase of the inner marein; a distinet white, bluntly ziozag, transerse line at one thind, tow quite reachang the costa; a very laint, irreularly smons, and somewhat dilated line at four fifthe. Hime wings vinket-gey, paler inwank the hase etainally dorkming cutwards, with a fantly poler submarginal line, more distinct towards the anal angle. Thmax, antemme, abhemest, and iringes comolorous sith fore whes: collar, hate of amtenat, face palpi, and anal wh-
 a violet gloss; legs pale ochreous.

Expanse of wings 10 millim.
One male from Accra.
'lrichauchenta, gen. nov.
Fore wins chongate, narrow ; costa straight, hind margin straight, obligue. Itind wing romded. Palpi porrect, roughly scaled, the last joint drooping; tongue present, rughscaled; forchead with a short projecting cone of hair; antema long, simple in female, in male monilifom, subdentate beneath, each joint amed with a fascicle of long, fine, curling cilia; patagia of male very long, as in Eindotricha; ocelli wanting, scaling smooth and glossy.

Type T. Churmsuler, Butler (Euclitu), Ill. Lep. IIct. vii. p. 92, pl. cxxxiv. fig. 13.

Actenioides, gen. nov.
Fore wings elongated ; costa straight, in the male somewhat concave in the middle; apex distinct; hind marsin obliquely curved. Hind wings romeded, broader than fore wings; ocelli present. Anteme with the basal joint enlarged, ciliated in the male ; labial and maxillary pal hio horizontally porrect; tongue small; thorax and abtomen stout in comparison with the size of the iusects. Female larger than male; scaling of wings and legs coarse and thick.

Type A. creperalis of, swinh. (Nephopteryx), P. Z. S. Lond. 1885, p. 877, pl. lvii. fig. 20.

Monocona, gen. nov.

Fore wings triangular; costa mainly straight, but slightly concare in the middle; apex rounded oft; hind margin curved. Hind wing rounded. Labial palpi short, porrect, loosely fringed beneath with rough hairs, the terminal joint forming a kind of double tuft; maxillary palpi, tongue, and ocelli absent; forchead produced into a horny conical projection, bluntly flattened vertically; antemæ thick, ammated, the basal joint swollen; thorax and abdomen stout ; scaling coarse.

Neuration.-Fore wing with first median nervule starting at two thirds, sccond, third, and lower radial close together, one after the other, from end of cell; first subcostal nervule opposite to first median, second cluse before end, third and fourth on a common stem, fitth and upper ratial beyond ; the cell romaded off above and not angulated. Hind wing with the three median nervales and the lower radial all close together from lower end of cell; discocellular angulated; lower portion long, oblique.

Type M. rubralis, Warr.

Monocona rubralis, sp. n.

Fore wing red, more or less hidden by a dark fuscous suffition orer the lasal third, and sprinklel with whitish scalks in the rest of the wing ; a large oblique black spot at coul of exll ; fringe dark cincreous, with hlack basal line. Hind wing orange-vel, fringe as in fore wing. Palpi mottled black and white; head, thorax, and basal half of abdomen dark fuscous; hinder half like hind wing.

Expanse of wings 13 millim.
Two females from California.
T'lis insect, in the Grote collection, bears the Ms. name of Wributes Minaii, My. Edw. ; but Oributes is already used in the Arachnide. It was pheed by Grote among the smaller Noctuiner, but it is indeed a true Pyralid, and related to T'egostoma and its allies.

Mimoschinla, gen. nov.

Fore wings with costa straight ; apex blunt-pintel; hime margin oblipucly curved. Hime wing broul, well rounded. Foreheal with a rombded pominence ; labial palpi porreet, the apical joint slighty dronning, naxillary palpi porvet ahove the labial ; ocelli distinct ; antemae simple in femate, fincly pubescent beneath in male. Neuration nomal.

Type M. thalialis, W1k. (Botys), xviii. p. 582.
The semus is intermerliate letween Authophilods, Guen., and Eimpores, Lel., the forchead not heing hilil, as in tho fomer, but prominmily roumber, while in limpmose is is
 Wli., nuchalis, Grote, and elautulis, Grote-all three of which mimic the markings of Hiilmor's Noctuid games Schinia.

> Subfamily Prraustrize.
> Noctuelia, Guen.
> 'I'ype N. superba, Frr. Guen. D. de P. p. 114.

Noctuctia fluvifimbrialis, sp. n.

fone wints fuscous-olive, with a slight glose, and with the two lines ame stigmata tanaty daver: fir-t line oblique, scomel forming a slight amgulation inwards behow the obsta, then a large cerve ontwand , reathing the hmer macein mex the first line ; orbienlar stigma a dark dot, reniform larger,
indistinctly hollow ; a dark fuscous shate ruming obligur I from the apex; fringes fuscous. Hint wing dark fusenms, with pale gellomish iringe:. Underside of buth wings duil fulvous.

Expanse of wings 20 millim.
One male from California.

> Ennyciila, Led.
> 'T'ype E'. ullafuscietis, 'Tr., Luct. WV. E. M. vii. p. 35\%.

Ennychia intrudens, sp. n.

Fore wing reddish fuscous ; second line dank, parallel to hime margin, but curved inwarls a litte belew the meniform and preceded by an ochreous band; first line quite indistinet; the basal two thinets of the wing is slighty paler thatn the marginal third; a small brown spot represents the reniform stigma. Ilind wing with the margin blackish, and the dark line is followed as well as preceded by an ochreons banl. Heal, thorax, and abdomen reddish fuscous; abdomen with white segmental divisions: Underside dull brick-red.

Expanse of wings 12 millim.
One male, New Zealand. Raynor Coll.

Aporodes, Guen.

'Iype A. floralis, Hüb., Guen. D. \& P. p. 159.
Aporodes obscura, sp. n.
Hore wings dirty greyish ochreous, powdered with blackish; an indistinct blackish ublique basal line and an vitwatlly curved exterior line, the two approximating on the inner margin; a large black cell-spot and a smaller dark dut between it and the basal line; costa darkened somewhat abse them ; the extreme base and the hind margin darkened with blackish seales. Hind wings dark fuscous, firinges of both wings greyish. Ilead, thorax, and abdomen dark grey, mottled with fuscous.

Lxpanse of wings 12 millim.
One male in the Zeller Cullection sent by Christoph, and therefore most probably from Sarepta.

A very insignificant and obscure-looking insect.

Aporodes versicolor, sp. n.

Fore wings chestnut-brown, with some fine black scales
interspersed ; the basal third and a diffuse curved exterior fascia pale whitish green; fringes brown. Hind wings blackish fuscous, with fringes whitish, and a sprinkling of the pale grecuish scales along the imer margin. Heart, thorax, and abromen blackish, with a few greenish seal-s intermingled. Underside glossy, dark bronzy fuscous; the imner margin of the fore wings paler; the base of the costa greenish.

Expanse of wings 14-18 millim.
One male, three femalus, from Washington Territory, North America. The single male is larger than the three females.

Pyrausta, Schrank.

T'ype P. cingulata, Linn.

Pyrausta coccinea, sp. n.

Fore wing blackish, mobably with a green tinge when fresh, with it faintly visible dark cliscal spot, and a whitish shot on the costa, remesenting the orisin of the scomt line. Hind wing dull crimson, with thack hind margin, hoal at apex, but thiming out before the anal angle; ablominal margin also blackish. Heal and ablomen hackish. Unierside of both wings dull redish. Anal tuft of male whitish.

Expanse of wings 11 millim.
Two examples from California, collected by Lord Walsingham.

Syllytimia, Hüb.

Type S. sanguinalis, Linn., Hiib. Verz. p. 349.

> Syllythria (?) rubrivena, sp. n.

Fore wing elongate ; apex produced; himl margin oblique; ground-colour canary-ycllow; the costa to beyond the midtle, the two stigmata, it thin, curved, inner transerse band, a lincar, undulaten, postmedian hand, a hroal, oblique, straight, sulmarginal shate, and all the reins bright carmine. Ilind wing yellow, with an abteriated submarginal red fascia; fringes of both wings pure yellow. Head and thoras yellow; papi whtsicle and patagia carmine ; ablomen yelfowish; umberside of abdomen and lege red. Underside of hoth wings yellow, with the costal and exterior margins broadly purple.

Expanse of wings 24 millim.

T'wo females from Madagascar in the British Musemm Collection.

Syllythria subnicalis, sp. n.

Resmbles nieulis, (ir., but smaller ; the same size as Ifthatis. Dull reddish brown, dusted with grey alone the imer magin and before the seemd line, with an indistinctly darker reniform stigma ; lirst line absent or sarcely perceptible; seeond line, starting from a conspicuous yellowishwhite costal spot, forms a very slight curve to the inner margin, never a decided bulge in the centre, as in nicalis. Hind wing with a pale yellowish line, only distinct towarts the inner maryin, beyom which the hind margin is darker. Abdomen reddish grey, with segmental divisions finely whitish.

Several specimens from California.

Blepharucha, gen. nov.

Fore wings elongate, triangular ; costa slightly shouldered at base and incurved in middle, convex before apex, the latter blunt; hind margin oblique. Hind wings twice as broad as fore wings ; hind margin rounded. Palpi porrect, rostriform; maxillary palpi small ; antemne of male strongly pubescent, of female simple; forehead bluntly prominent; the two tramsverse lines oblique in opposite directions, approximating on the inner margin.

Type B. zaide, Stoll (Phalæna).
A South African genus, akin to Emmelia, Hüb.

Euctenospila, gen. nov.

Allied to Blepharucha, but with the antennæ still more developed, those of the male being quite strongly bipectinated. Fore wing with costa slightly convex near base, incurved in the middle; apex pointed, but not acute; hind margin oblique, slightly bowed; antemne strongly bipectinated, the pectinations themselves finely pubescent; labial palpi porrect, drooping, maxillary fine, horizontal; tongue developed; ocelli large; abdomen (male) with a decided anal tuft.

Type E. castalis, Warr.
Euctenospila castalis, sp. n.
Fore wing pale lemon-yellow, markings rather lustrous, lilac-grey, finely edged with black; a few spots irregularly

Anu. \& Mag. N. Hist. Ser. 6. Vol. ix.
12
scattered near the base; first line angulated, with both edters denticulated ; scond line rmning at first inwards, formins a sharp indentation helow the costa, and then two gradual curves outwards to the imner margin, both elges, as in the first, denticulated ; a row of black dots at base of fringes, the top four being expander into spots, filled up with grey and edged with black, like the two lines; renifum stigma the same, 8-shaper, the bower half the larger, followed by a smaller spot before the second line. Ilind wings white, diaphanous, with a central hack spot and series of marginal black dots; a largish greyish bloteh near the margin towards the anal angle. Head, abdomen, and underside whitish.

Expanse of wings 28 millim.
A male from Abyssinia in the British Museum Collection.

Spilodes, Guen.

Type Spilodes verticalis, Linn. S. N. x. p. 335.

Spilodes bicoloralis, sp. n.

Fore wings fuscons, with all the veins pale ochrenus, especially towards the hind margin ; stigmata edged with blackish; the orbicular long and flattened; the reniform obliquely kidney-shaped; space before each paler; a black line from the base bencath the median and a shorter blaekish prateh bencath the submedian; a cmeiform exterior line hackish, interupted by each paler vein; base of fringes dark brown, preceded by a straight pale ochreous space; fringes themselves pale, with a strong dark basal line, and their apices darker. Hind wings dull yellon, suffused with cinereous towards the base and along the costa and hind margin, with a dark cellspot and a blackish curved central fascia; fringes as in fore wing, preceded by a distinct yellomish pate space. Head, thorax, and abdomen cinereons. Underside of hoth wings dull yellowish, with the markings faintly fuscons, but the two stigmata very distinct.

Expanse of wings 30 millim.
One male from Baghdad, evidently related to soaluralis, Christoph, and sedacowialis, Eversm.

Tritea, Meyr.

Type T'. affinitalis, Led. (Eurycreon), T. ustalis, Merr. Tr. E. S. Lond. 1584, p. 342.

Tritea protealis, sp. n.
3. Fore wing cincrous, varied with ochreons; central
fiehl darker, lines indistinct, indicated by difference of tint on either side; first line curved ; basal space paler, with a darker pately on the imer margin near the base ; second line ruming at first slighty motward, then parallel to the hind margin, then inwards for bonath the renifom stigma, and lastly vertical to the imer margin; the two stigmata dark, with the space between them paler ; the second line is followed by a pale space on costa and sometimes also on the inner margin ; a line of hack dashes betine the fringes, which are silky ochreons. Hind wing greyish fuscons, with faint indications of a paler submarginal band.

In the single female the darker tints throughout are almost back, the paler spaces being by contrast whiter; but this may not be a sexual peculiarity.

Expanse of wings 16 millim.
One female, two males, from s . Lorenzo Island, Callao.

Tritcea ferruginea, sp. n.

Fore wings reddish ochreous, somewhat iridescent, with faint indications of two stigmata and an outer line, which are darker; a row of dark spots along the hind margin. Hind wings glossy, pale ochreous, darker towards the hind margin, showing a faintly darker submarginal band, which forms a darker spot towards the anal angle.

Expanse of wings 16 millim.
One male from Coquimbo.
[T'o be continued.]

PROCEEDLYGS OF LEARNED SOCLETIES.

GEOLOGICAL SOCIETY.

Norember 11, 1s91.-Sir Archibald Geikie, D.se., LL.D., F.R.s., President, in the Clair.

The following communication was read :-
"On Dacrytherium neimum from the Iste of Wight and Querce." By R. Lydekiker, Esq., B.A., F.G.S.

Tho Author described a cranium and mandible of D.esentherium Cayluaxi from the (Quercy Phosphorites, which proved the identity of this form with the Dichubune orime of Owen from the Oligocene of the Isle of Wight. The species should thus be known as Ducrytherium ovinum. It was shown that the mandible referred by Filhol to D. Cayluari belongs to another animal.
 President, in the Chair.

The following communication was read:-
 F.R.S., F.G.S.

Hitherto the exidence of the systematic josition of Palacontlens has not been very precise. The duthor has detereded the mis-ine pubis as an isolated specimen. This he romats as the anturior portoon of the left pmhis, and appends a full deacription of the hone. He forthermore sives a critical aroont of our knempelan of wher pelvic bones of the genus, and is led to associate Agathaumus, Crateomus, Omostmres, and Polacenthes in near alliance. in the Scelidosaurian division of the Order Ornithischec.

December 23, 1891.-W. H. Hudleston, Esy., M.A., F.R.S., Vice-President, in the Chair.

The following communication was read:-
"(On Part of the Pelris of Polacanthes:" By R. Lytekker, E"s." B..A., F.(ङ.s.

The specimen described in this paper was acquired by the Imitioh Museum from the ecllection of the late Mr. Beckles, and is from the Wealden, probably of the Isle of Wight. It is the central part of a Dinosaurian ilium, with portions of sacral ribs attached.

The point of special interest is a flat plate of bone, evilently a portion of dermal armour, resting on the uper borker of the ilium : and this suggests comparison of the serecimen with the dersal shied of Joluconthus Foxii. Such a comparison shows that the present specimen belonged to a Dinosaur closely allied to, if mot identicel with, P. Fowie.

> January 6, 1892.-W. H. Hudleston, Esq., M.A., F.R.S., Vice-President, in the Chair.

The following communications were read:-

1. " (n a new Form of Agclucrinites (Lepiturlisens Mitliri, n. sp.) from the lower Carboniferous limestone of Cumberland." Iby (i. Sharman, Esq., and E. I'. Newton, Esq., F.G.S.

Among a large series of fossils ohtainell daring the (iendorical Survey of Cumberland and Northumberland, there are two whith are refemble to that remarkabe and rare eroup of behmonderms. the Inelacmitidie. The mure perfet of these sperimens is frem the Lower Carboniferous rocks near Waterlead, on the Riser Irthinge and forms the sulyeet of this communieation. The disclike fossil is only about four-tenths of an inch in diameter, and wately rises ahme the shell to which it is attathed: wemheles. it is so well preserved as to allow much of its structure to be studied. It is referred to the genus Lepulediscus, and is seemingly elosely
related to L. L. homeri, described by Mr. Percy Sladen before this suciely in 1 -59; but it also has afthities with L. cincinuationsis and L. sifutmusus. From all these, however, the present specimen differs in having the pramid in the midde of the interradial space, in preses-ange shefer amm, and in heing much smatler. This fossil is to bee mamed La pidorlisrus Millori, atter Mr. Mugh Miller, under whose direction these fossils were collected by Mr. J. Rhodes.
2. "Archeopmeustes abruptus, a new Genus and Species of Echinoid from the Oceanic Series in Barbados." By J. W. Gregory, Esq., B.Sc., F.G.s.

This gesus belongs to a group of Echinoidea which has given smme tronble fo systmatists, owing to the union of the characters of the orders C'assiduloidea and spatangoidea; the other genera belonging to the group are Asterostoma, Pseudasterostoma, and l'aluopmusus. The eridence of the new Fchinvild throws light upon the aflinitics of these genera. The main points suggested by a study of the new species are:-(1) the abaudomment of the name I'sendusterostoma as a synonym of P'alcopmeustes; and (2) the inclusion of the true Asternstoma, Polleropmemstes, and Arche opmenstes in the Adeto Spatangoidea, whereby the Plesiospatangide are left as a more homogencous famils, though bereft of the chief interest assigned to it.

A tabular summary of the nomenclature of the group is given.
The best-known fossil species of Asterostoma and Pelloopmenstes occur in C'uba, in deposits referred to the C'retaceous owing to the resemblance of these Echinoids to the common Chalk Echinocorys scmatus. The new genus includes a species from the same deposit, which is probably of the same age as the Bissex Hill rock from which the new species was obtained; this is at the top of the Oceanic Scries, and belongs to the close of the great subsidence.

MISCELLANEOUS.

Note on Abnormatities in the Crayfish (Astacus fluriatilis).
By W. N. Parker, Ph.D.

While a number of crayfishes mere being dissected by my students last month I noticed that three of the specimens presented certain almormalities which, although perhaps not so interesting as the case recently described in this Journal by Benham *, are probably worthy of record.
S_{1} recimen I.-On the left side, in addition to the normal pleurobranch of segment 13 , a small but well-developed gill was present on the mall of segment 12 in place of the usual rudimentary style. This gill was about three quarters as long as the pleurobranch normally present.

Specimen II.-The last arthrobranch of the left side, i. e. the

> * "Note on a Couple of Abnormalities," 'A muals,' ser. 6, rol. vii. no. 39, March 1891, p. 256.
posterin arthoubranch of segment 12. was forked. The bifurcation began close ahove the base, the two thanches home neanly erual to one another in size and haring the usual structure.

Ciprimen IIT.-This specimen presental a pratial fusion of the fourth and fifth ahdomina! sergonents. Iowkerl at from the tergal side the abmormality erould not he seen, but the calvified sternai has were completely fused from the midde line noarly to the attachment of the appendage on the right side. (On the left of the middle line the two sternal bars were separated by a marrow uncalcified portion, and a certain amount of movement hetween the two sugments was still prossible, owing to the clasticity of the narrow and partially fused sternal bars. The appendages were normal, hut the distance between the attachments of thowe on serments 4 and 5 . teft and right, was naturally much less than usual, as the sternal region of these segments was so much reduced in length.

Cardiff, Jan. 12, 1892.

The Chromatophores of Cephulopods.
 By M. Raphafl Blaxchard.

The radiating fibres which are found around the chromatophores of Cephatopons have been deseribed by varinus authors as muedes which are insertel into the enveloping membrane: by contrating they would expand the chromatophore, on relasing they would permit it to revert to its original condition and to efface itself more or less.

In the year 1-s.e I howed that. during the chances of form to which they are continually subject, the chromatophores alone are active. As a matter of fact antentive histulogical study enables me to state that the radiating filnes are neither muscles nor nerres, hut simply filres of connective tissue. presenting a preculiar oricontation in the neighhominod of the chromatophore. with which, however, they have no comexim. Soon afterwards a perfently similar statement was made by M. Girod; this very year these observations have received further confirmation th the hamb of M. Inwhin *.

Nerertheless it has been recently stated by M. Phisalix \dagger that "the radial fibres are muscles," and he affirms that the expan-ive movements of the chromatophore "are determined ly the comenetion of museles arrangel radially at its equator." He memtions elsewhere the writings of M. Girod, M. Joubin, and myself.
M. Phisalis cites, in support of his opinion, the researches of MM. Paul Bert and Frederien: hut neiber of thes has retitied anatomically the muscular nature of the radiating fibers: if they attribute this structure to them, it is solely lwanse it was admitted by the naturalists of the period. The interesting exproments made by If. Illisalix, fellowing upon those of the two ohocrest mentioned ahore are explained by the intimate union wi the chomatophore with the nerres. I expressl! recomized this union, and the result of my whervations appears tio me to remsin unimpaimed. - 'spapes Rentus, tome cxiii. no. 17 (Oet. 26, 1891), pp. $56 \overline{5}, 566$.

* Amn. \& Mag. Nat. Hist. 1891, viii. p. $111 . \quad \dagger$ Iille infiris.

> On the Nature of the Movement of the Chromatophores of Cephalopods. By M. C. Pmisadix.

It is stated by P. Fert, in his important memoir on the physiolory of the cuttle, that the mosement of the chromatophores is due to dilatatory muscles with rapid contractile power. MM. Pelvet and Frederick were the first to support this view with experiments. Another theory, which owes its origin to anatomical observations, considers these movements to be of an amobbid nature. It was advanced by Harting, and has been maintained by MM. Raphail Blanchard, P'. (iirod, and quite recently hy M. Joubin. However, the latter anthor reconciled the theories by admitting the former for the young and the latter for the adult chromatophore and, as a corollary, the transformation of muscular into connective fibres.

The theory of ' P'. Bert is the only rational one. It was to demonstrate the justice of it that 1 undertook a series of investigations at the zoological station of Areachon, where, thanks to MI M. Viall:nes and Jolyet, I found the material necessary for my task.

Three kinds of movenents are distinguishable in the chromatophores.

1. Tremulous morements.-In a living Cephalopod, in a state of rest, the chromatophores are constantly agitated by little shocks, which are scarcely risible; it is like an incessant and rapid trembling, and this gives the skin of Cephalopods its characteristic appearance. These movements are under the control of the nerrous system ; they disappear as soon as the pallial nerve is divided or the chromato-motor centres are injured. In that case the chromatophores diminish still further in diameter and the skin attains its maximum degree of paleness.
2. Undulatiny monements.-These do not set in, as a general rule, until after death. They consist in the maximum expansion follorred by the contraction of the chromatophores. Their characteristic feature is that they commence at one or several points and radiate thence in all directions, to reproduce themselves in an irregular and disordered fashion. They are due to the direct stimulation of the skin, and persist for a long time after death.
3. Morements of functional activity.-These occur in the living animal only, and serve it as a means of defence. They are the result of rellex actions, which depend entirely on the central nerrous system. Accordingly the section of the pallial nerse at the neck suffices to render them impossible in the portion of the body innervated by this nerre. The galvanization of the peripheral extremity of this nerve provokes the dilatation of the chromatophores, which remain in a state of expansion so long as the stimulus continues. It is a veritable tettenization. It is produced and ceases simultaneously with that of the muscles of the mantle. A single stimulus induces a trausitory dilatation, which appears and terminates simultuneously with the muscular shock.

Chromato-motor nerrous centres.-If we stimulate the central extremity of the pallial nerve we obtain the dilatation of the chromatophores of the opposite side. The centre of the reflex actions is
therefore sifuated at the artual origin of then nemes. We can determine their seat hy experment. By indicting localizel injurio. either with red-hot iron or the sealpel, I have arrisel at the tolowing results:-

Subt-asophutyl coutres.-The destruction of the median subceson hageal lobe causes the paraly-is of the chromatophores on the entire surface of the londy, which remaine absolutels pale. If the injury has only affiected one side the paralysis likewiee takes placo on one side only, but on that opposite to the injury. There is therefore a manitest consiany of the nersoas fibres in the thickness of the ganglion.

Supricticaphatent centris.-The removal of the cerehral calonte has no effect on the action of the chomatophores. proviled that the injury does not extend to the ontio nerves. If, on the other hand, the red-hot needle has reached the level of the optic newe, it prosduces, simultanemuly with the dilatation of the papil, the paralyais of the chromatophores of the injurel sile. It therefore appmars that the chromatophores are under the influence of two centres, ane tior direct effects, the other for those which take place on the apposin. side. Ifter the destruction of the former it often happens that the chromatophores of the (1pposite side remain in a state of permanemt dilatation. Now we know that in the normal condition the sensation in the Cephalopods may be expresel loy the dilatation of the chromatophores and the intensely black coloration of the skin, or clee by their maximum contraction and an extrene pallor. Are these two phenomena regulated by two different centres, a chromato-dilator and a chromato-constrictor? I hare not succeded in completely elucidating this point by experiments.

Ficeitubility of the centris.- This is demonstratel hy direet stimulation. We can also operate upon it and modify it ly physinlagien means: thus, it rapidly disappears after copions hatmorrhage, sul insensildy diminishes in animalsenfechled hy starvation and a sojourn in the aquarium. It increases under the intluence of certain powous. Strechnine and carari act upon it in a characterister fashion : at each ennrulsive shock the chromatophores helave like the muecle : their expanding movement commences and ceases simeltansonsly with the muscular shock.

Form and thatecteristics of the monemont. - The movement of the chromatophore is diviville into twostages:-(1) expanion, (2) contraction. In an enfeebled animal the difference of duration the ween the two stages is so aceentuated that we ean register it in an indirent fashion, atal in this way, by a specinl arrangement, I have obeaised outlines whish are as approximate as pessible. If we compare these outlines with thase of the contraction of the museles of the maotle we find a striking resemblance.

The radial fiberesort museles.--11 all the characters which have just heen enmmerated there is not one which cannot be reterred to the properimes of madity contractile muscles: it is, moreover, netessury to diminate from henc forth the slowly contructile mara! of of the skin. The pmistaltic mavemonts whidnare contond in the later
are neither symelronons mor homolagens with these of the chromatophore. The eanse of the actise movement of the chromatophore rewides exclu-ively in the radial fitmes. This is directly demonstrable by means of a crucial experiment.

If we completely destroy the centre of a chromatophore with a needle, so as to leave only the periphery intact, the movements of expansion and contraction continue to take place in this intact portion. If, on the other hand, we destroy the radial fibres by a cireular lesion, leaving the cell intact, the movements are completely aheli-hed. It is, on the contrary; the eentral or coloured prortions if the chromatophore which, by the influence of its elasticity, exerefors the attive role in the stage of contraction. This claticity is casily displayed: a gentle pressure on the centre of a chromatophere is sufficient to llatem it and spreal it ont : hut as soon as the pressure is removed the organ resumes its spherical shape.

Th sum up our results: the chromatophore of the Cephatopech is an clastic pismented sphere, the expansive movements of which are determined by the contraction of muscles arraned radially at its equator, and which reverts to the spherieal shape as som as the contraction has ceased.-C'omptes Romlus, t. cxiii. no. 16(()ct. 1! 1891), pp. 510-512.

On the Anatomy of the Mate Sexual Organs of the Honey-Bee. ly (i. Kuschewatioff, Assistant in the University of Moscow.

In my insestigations into the structure of the male sexual apparatus of the honey-bee I arrived at the following results.

All existing figures and descriptions of the male sexual apparatus of the honey-hee in zoological and apicultural literature are either incomplete or incorrect. The testis of the bee has two enrelopes. The external one, formed by the fat-body, has two kinds of cells(1) large and flat, with elongated flattened nuclei ; (2) irregularly -pherical, which are entirely similar to the cells of the fat-body containing fat-globules. The second inner envelope is of the nature of comnective tissue, and two layers are to be distinguished in it. In the outer layer we fivd large cells with oral muclei, and the imeer layer is finely fibrillar, with spindle-shaped nuclei.

The seminal tubules are surrounded by a delieate fibrillar envelope, containing elongated nuclei, and open into a reservoir in the interior of the testis, which is clothed with epithelium. This cerithelium euters slightly into the orifice of each separate seminal tubule.

The trachee, which everywhere penetrate the testicular emselopes, ramify in the interior of the testis between the several seminal tuluales. The belief (Cholodkowsky) that in butterfles there are no trachere within the testis is erroneous.

The entire testis of the bee corresponds to only a section of the testis of such a type as, e. y., in Bomlyne mori. The reservoir, into which all seminal tubules open, is enveloped in a thick membrane
of connective tissue rontaining oval mulle. From the ruarmir the Vats deferens is separated onf, the epithelial cells and melne of whinh are larger than those of the rescrvoir. The vas deferens ruus for a time within the testis, forms lowns there, ant, after i-whing therefrom, makes several loops, rolling itself into a little hall, and then passes into the seminal vesicle.

The epithelial ecells of the seminal vesicle (resicula semimalis) are rery colmmar and ranged in ammlar cylinders ". Rimewalan"). These cells are of a glandular nature. On the outer side of the epithelium lies an extraordinarily thin comertivetisone momimabe. and then follows a muscolar layer, which we don mot fimd unno the vas deferens. The deep-lying layer consints of rifcular and the upar layer of longitudimal muscles. In addition on the chocely arhermar thin connective-tissue membrane. which enwelops the entire vas deferens and the seminal resicles, these two organs have a special membrane, which is not closely adhering and is a pmonengation of the teeticular membrane. This membrane enmbletely concend the vasa deferentia.

The seminal resicle narrows into a how-rhaped canal. whith oprens not into the ductus ejarulatorius, hat into the erlandela mucose The epithelial cells, which clothe this camal, are rery hishly vacuolate, so that they have a pongy apmearance. Dlind tubse which are described by li. Leuckart as appendages of the orlamblat mumene, and figured in his chart (Anatomie der biene *), are mothing else than serered muscles which are attached to the wall of the abdomen, and were described by Swammerdam.

The glandulx mucosie have, beneath a thin membrane of commective tisute, a layer of longitudinal museles: muder this is a later of circular muscles, and then, in addition, we have three groups of deeply-lying longitudinal muscles, which are only developent in that portion of the organ which is nearer the ductus ejaculatorins. Tinse longitudinal museles press the epithelial lityer of the mumbe glands into there lonsitulinal folds. Towards the otherend of the mosems gland the deep-lying muscles grow enn imatiy namower, until they finally disappear altogether. liencath the mascular iavir lias a structureless membrane of connective tissue, and then a layer of narrow, columnar, gladular ephithelial cells, with oval maclei.

The ductus efaculatorius is inserted hy means of two chitimons branches into the junction of the tro glandula mucosx. This paired portion of the ductus cjaculatorius is completely biaten beneath the musenlar layer of the glamdula monerat. The dutas: ceaculatorius, as well as the cutire copulatory apmatus. is devad of museles. (In Girard \dagger and Cheshire \ddagger wo find it incorrectls stated that the ductus ejaculatorius has a strong museulature.) Boncath the very thin membane of the duetus ejactatorius le

[^46]hatish mpinclial orlls, and them a thicher, tram-parent, chastiv, and very extensile chitinous layer.

From the end of the ductus ejaculatorius to the external opening of the sexual apparatus we have an uninterrupted chitinous sac, with rarious kinds of evaginations, folds, and thickenings. The upper portion of this section of the sexual apparatus, termed the "bulb" by Letickart, is laterally compressed, and has beneath a deliente extermal memhtrame very columar epithelial edls, beneath which there lies a tolerably thick layer of transparent colourless dhitim, upen whith on each side fwo large chitinons phates, wheh are fused together, are fixed. The chitin of these plates has a distinctly granular structure, and the charer and offter the chitin. the more plainly are the granules visible. In the completely hatemed places the grambes cammet he sectat all. or only indistinctly.

The pention of the senital sace which fillows the bull of the peniis so strongly chitimized that nomheng is to be seen of the ef ithelial cells. The chitin is thickly cowered with stont simple mot hrathelud) hairs, directed inwards, which are larger and thicher at these spots where there are evaginations and folds in the chitinons wall. These structures have, as everyone is aware, a mechanical importance in the act of coition, and have been described a thousand times. han newer quite correctly. The exact dencription of these structures is ont of place in a provisional commonication, since too many details would have to be alluded to. I will only observe that, with the exception of the above-mentioned chitinous plates of the hollh of the penis, we find no plates in the entire genital sac of the bee, but only eraginations and folds of the chitinous wall.

Tlie detailed description of the genital apparatus will appear in the 'Tameblatt der zoologischen ththeilung der kais. (iesell. it. Naturw. Anthropologie und Ethomraphie.'-Zooloyischer Anzeiker, xiv. Jahrg., 1891, no. 376, pp. 393-396.

On the "Free-swimming Sporocysts." By M. Braun, of the Königsberg i. Prr. Zoological Museum.

The term "free-swimming sporoeyst" has been applied by E. Ramsay Wright " and li. Lenckart + to the single example which has hitherto been discorered of a certain developmental stage of it Distomem. I have observed numerous specimens in an aryarium in which I had shortly betore placed various freshwater suails from the "bog" ("Bruch ") near Rossitten in the Kurischer Lomlands. While, homever, the American species is only 1 millim. in length, the specimens from this locality are as much as 6 millim. long, and

* 'American Naturalist,' vol. xix. 1885, pp. 310, 311.
\dagger Die thierischen Parasiten des Menschen ace, \because Aut1. 2 Bul. pp. 10… 103.
they are also not quite trimspurent, but coloured shlphur-yellow at the margin, though colourless elsewhere.

The creature as it floats and rests in the water has the shape of a Roman ' T ; the umpared lmh is bomd-shaperl in tran-weree sontion and thickened into a knob at the free end. In the latter is to be
 microscope, proses to be a Distomm, unablly donblad up, Jyine in at arity of the knobbed ead, which is luent with rines of papillac. The pared limbs of the T ennstitute leaf-shaped movable appendaters. Others of these "sporocyste" rest on the bettomi of ther riserel, lying on the broad side, with the forks of the tail closed or open. The whole assemblage usually rises all at once from the bothon and swims actively about in the water, in the way that our gnat-larse do, afterwards tloating again in the water-with the linob) edel (mul downwards-or sinking slowly to the bottom.

As I had collected various species of shails in the same reweptache, my first task was to separate them, and [som ascortained that whr "frec-swimming sporocysts" are develnpud from Limimu" pulustive. var. corvus. Among fourteen specimens of this species one proved to be infected with tranparent spomest (four others wilh remat) measuring as much as 2 millim. * in length, in which, as was soon evident, our "free-swimming sporocysts" arise. Yet we hare not to deal with this stage, but rather with gigantic Cercarix with forked tails, the bodies of which, the future Jhistommo. cexhilit the usual relations, so long at the Cercariae are enclosed in the spomcyst which produces them. After the escape the body becones retracted into a cavity which was previonsly distinguishathe in the swollen commencement of the tail, and remains in this combition.

These ostensible "frec-swimming sumencersts " are therefore chan-
 C. cystophora, except that they are a furcocercous form.

Untortunately my endeatours at rearing the histommen byenline some goldfish with it, which in a few minute: had devomed aver a dozen Cercarix, were not successful; I could not rediscorer the Hhke's either in the intestine, the mascles, or the eeves. 1 intomt, if I whtan some more fresh material. to repeat the experiments with other fish, since a direct derelopment, i. e. with the omission of a serombl intemediate host, is very probahle: pusilhly hirds also may play the part of final hosts.

Until the question of the species is decided, the Cercaria may stand as Cercuria mirabilis.-Zoologischer Anzeifer, xir. dahrg. 1891, no. 375, pp. 368, 369.

[^47]

THE ANNALS

MAGAZINE OF NATURAL IISTORY.

[SIXTII SERIES.]

No. 51. MARCH 1892.
XXX.-British Fossil Crinoids.-VI. Botryocrinus quinquelobus, sp. nov., Wenlock Limestone; and Note on Butryocrinus pimulatus. By E. A. Batier, M.A., F.G.S'
[Plate XI. figs. 1 \& 2.]
Examination of the numerous British species referred at one time or another to ('yathocrinus has brought to light one that certainly does not belong to the genus, but appears referable to Botryocrinus. 'That this species was not recognized in time to incorporate its description in the preceding paper is due partly to the fact that the anal area is not exposed in either of the only known specimens, but chiefly to the unfortunate necessity I am under of examining the specimens in the Woodwardian Museum, where these are placed, by flying "visits, few and far between."

Botryocrinus quinquelobus, sp. n.

18:3. Cyathocrimus quinquanguldaris, Phill., apud J. W. Salter, 'Catalogue of Cambrian and Silurian Fossils de.,' (ambridee, p. 123.
Non ('yuther rinites quinquangulerix, J. S. Miller, 'Nat. Hist. C'rinoidea, p. 92 (1821).

Non C'yathocrimus quinquanguluris, Miller, apud J. Phillips, 'Geology of Yorkshire,' pt. ii. p. 206 (1836).
Nom Rhoducrimus (:) quinquangularis (Miller), apud J. Phillips, in Murchison's 'Silurian System,' pl. xviii. fig. 5 (1839).
Non C'yuthocrimus quinquangularis, Eichwald, 'Silurische System in Estland,' p. 173 (1840).
Ann. \&o Mag. N. Hist. Ser, 6. Vol. ix. 14

This species is founded on two specimens in the Woodwardian Museum, Cambridge:-
$a / 435$. Upper Wenlnck Limestone, Dudley. Fleteher Coll. (Pl. XI. figs. 1 and 2).

For permission to figure and describe these specimens I am indebted to Prof. T. Jt'Kenny Hughes, F.R.S.

Specific Diagnosis.

Cup elegant, widening above. RR projecting very slightly ; facet about $\frac{2}{3}$ their width. Arms about seven times length of cup, two-branched, with small armlets. (Anal structures unknown.) Stem comparatively stout and markedly quinquelobate, with alternate-sized ossicles.

Description of the Specimens.

The two specimens are figured on Pl. XI., No. 1 being the large specimen and No. 2 the small. They are both seen from the anterior, and show no trace of anals or of the ventral sac.

Dor:al cup. - In both the plates are a little disturbed and the cup is flattened, so that measurements of its height and width are liable to correction. They are as follows:-

| | Height.
 millim. | Width below.
 millim. |
| :--- | :---: | :---: | | Width a bove. |
| :---: |
| millim. |

The plates of the cup are smooth, and there is no trace of axial folding.

IBB 5, pentagonal, forming a very slight angle with the stem. Measurements are:-

	Height. millim.	Width below. millim.	Width above millim.
No. 1	2.4	2.8	$3 \cdot 3$
No. 2	2	$1 \cdot 5$	2

$3 B$ 5, hexagonal; post.B not seen. Measurements are:-

| | Height.
 millim. | Width below.
 millim. |
| ---: | :---: | :---: | | Width above, |
| :---: |
| millim. |

RIL j, of nomal shape ; pmeneeting very slighty towarls the facet, less in No. 2. Mcasurements are :-

| | Height. Width below.
 millim. | Width abore.
 millim. | Width of
 facet. |
| :---: | :---: | :---: | :---: | :---: |
| millim. | millim. | | |

Surface of face mot secon. 'The ralials bend inwards very slightly on either side of the facet.

Arms.-In No. 1 :-
I Br number 6 and 8 . They taper towarls the primaxil. Measurementso I Br-3 millim. high and is. millim. wide. Measurements of 1 ax- t millim. Thigh. $3 \cdot 3$ millim. wide below, and $4 \cdot 6$ millim. greatest width.

From the primasil sprig two rather massive irregular arms, of rather less width than the primilnachs, bearing small armlets at intervals of one, two, or three ossicles. This gives the main arms a slighty irregular appearance, but by no means so irregular as in 13. remosus. About 23 brachials of what we may call the distichal series are visible, and the total length of arm observed is 51 millim. The armlets are very small, the width of the first being 1 millim., or about $\frac{1}{5}$ the width of the main arm at the point where it originates. Thus they approach the pimmules of B. decaductylus, but differ from them in their irregular distribution and in the fact that they apparently bratheh again.

In No. 2 :-
I Br number 5 and 3 and 5 (?). Measurements of $\mathrm{I} \mathrm{Br}_{1}$ are- 1.9 millim. high and 3 millim. wide. Measurements of I ax are- $2 \cdot 25$ millim. high, 2 millim. wide below, and 2.5 greatest width.

The distichal series are as in No. 1, but the distal part of the arms is lost. At the level where the arms are 1.8 millim. wide, the armlets that spring from them have a width of 8 millim.

Covering-plates, ventral gronve, and axial canal are all unseen.

The Stem in Ňo. 1 is preserved to a length of 49 millim., but there are indications in the matrix of at least 20 millim. more. The mean width of the stem, allowing for compression, is $4 \cdot 2$ millim., while the lumen, which is pentagonal, has a width of 75 millim. In section the stem is quinquelobate, as seen in the outline beside it in the figure. The lobes are interradial in position. The ossicles are of three sizes: large and projecting; small and less projecting ; small

$$
14^{*}
$$

and not projecting. The average height of an usicle is about 6 millim. The sutures are erenclate, showing that the articular surfaces must be striated.

In No. 2 the stem is preservel to a length of 2 (j millim. and has a width of about $2 \cdot 25$ millim., and the ossicles have an average height of a little less than 4 millim.

General Remarks.

The relations of this species to the other describerl speci-s of the genus are pretty clear. The character of its armlnanching shows that it comes between B. ramosus and B. decaductylus, and this position is corrobmated by the shape of the cup. On the other hand, the quinguelobate stem remints uss of the few stem-ossicles that are known of B. pimulatus, and seems to show that tor much stress may have been laid on that character as indicative of adranced develoment.

To our knowledge of the morphology of the genns the present species adds nothing.

Note on Botryocrinus pinnulatus.

My friend Mr. W. Maleley, of Dudley, wrote me as follows under date 27 th Jan., 1892 :-"I send you heren ith a speeimen of (\%) Botryocrinus, which I purchased from Mr. Gray's enllection. I think this is from the Upper or Thin Limestone at 'Tividale, Dudley."

The specimen in question turns ont to be an example of Botryocrimus pinmulatus, one of the species deseribed in "Brit. Foss. Crin., V." (Ann. \& Mag. Nat. Hist. ser. 6, vol. vii. p. 402). The specimen, which comsists of an almost complete crown and 4.5 millim. of stem, is fairly well peserved, especially in the lower part, and presents a few points of interest which may here be noted.

Ihorsul cup, is shaped like that of the type specimen. Its height is estimated at about 5.5 millim.; the width below is 4 millim. ; the width above camot well be estimated, as the eup is much flattened and the plates disarranged.

The following are the measurements of the various plates :-

The radial facet appears to be smoothly concare, and the axial canal is not separate.

Arms are preserved to a length of 85 millim. ; they probally reached at least 90 millim. Thus they were more than ten times the height of the cup, and this suggests that the arms of the type specimen were longer than was thought. The arms agree in essential structure with the type specimen, but throw some light on the peculiarities of branching described for that specimen. 'The axial canal exists as a mere tongue from the ventral groove in all the armossicles, in which respect this specimen appears to differ from the type, if the appearances presented by that specimen were correctly interpreted. The cover-ing-plates are numerous and minute, and appear to be slightly irregular in arrangement.

I Br , in the two arms seen, number 4 and 7, and average 3 millim. in both height and width.

II Br_{2} is axillary and gives off on its outer side a long armlet. The widths of the main armbranch and the armlet, at the point where the latter originates, are respectively 2.5 and 1.5 millim.; in other words, the armlet is $\frac{3}{5}$ the width of the main branch. The length of the armlet appears almost to equal that of the main branch, and it appears to have borne smaller branches or pinnules. (Fig. 3.)

The structure just described Fig. B.-DPart of Anterior Arm of suggests that some at least of the secondary arm-branches in the type specimen are not abnormal after all, but that the species does normally branch,

Mr. Madeley's specimen of Botryocrinus pinnulatus ; showing the secoudary branching, and indications of the pinuules: very sliphtly diagrammatized. ($\times 2$ diam.) in some or all of its arms, on II Br_{2}. In this respect, then, B. pinmulatus would resemble those American species of Barycrimus to which allusion was made (loc. cit. p. 40.j), differing from them, however, inthe facts that there may be four arms to a ray, not merely three, and that the anterior
ray may be so branchen mo less than the others. It is to be hoped that more specimens of this species may be found, so that this question may lee settlelf; for it is very remarkable that the same species shoull combine such regularity in the pinnules with irregularity in the arm-branching.

The anterior side of the Tentral Sue is partly expersent in the proximal region, and is composed of small plates, which, like the covering-plates, seem to run without distinction inte thense of the Tegmen. Where the plates are disturbeal, traces of an articular facet can be distinguished on their upper sides, corresponding to the ridge. (Fig. 2.)

The stom is pentagonal or slimhtly quinguelutate, the lum's being interradial in position, while the radial sutures are acen to run down the depressions between them. The assicles are all ridged, but alternate in size. The width of the stem is $3 \cdot 2$ millim. and the average height of the ossicles is $: 36$ millim. (Fig. 1.)

Compared with the stem of B. quinquelulus, that of the present species is seen to be proportionally more slembur amt less lobate. All the ossicles, instead of only altemate ones, are ridged, while the ridges are more obvions in the depressions and are of a finer appearance.

The Horizon of the present specimen is more compatible with its stage of development than that to which the type specimen was, perhaps erroneously, assigned.

> EXPLANATION OF PLATE XI.
> Botryocrinus quinquelobus, sp. n.

Fig. 1. "4:5, Woolwardian Mureum, No, 1. Sen finmanteniw: with drawing of transverse section of the stem. Nat, size.
Fig. 2. a/43̄̄, Woodwardian Museum, No. 2. Seen from anterior. Nat. size.

Mastigocrinus loreus, gen. et sp. n.
 Cat.) Seen from right posterior interradius. Nat. size.
All figures on this Plate are from drawings by Mr. F. Wilson, Artist to the Cambridge Engravinit Co.

XXXI-British Fowsil Crimends.-VIL. Mastigocrinus horeus, nov. gen. et sp., Wenlock Limestone, Dudley. By F. A. Bather, M.A., F.G.S.
[Plate XI. fig. 3, and Plate NII.]
The form described in this paper appars to ketong to the family Dendrocrinida, series Dendrocrinites. It should therefore have bent consileced before the bempocrinites,

BOTR YOOCRINUS PINAULATUSS.

Fig. 1. Part of the stem, at about one inch from the crown. ($\times \frac{1}{3} 0^{0}$ diam.)
Fig. D. Part of the crown, showing the 1. ant., ant., and r, ant. Ralials and Primibrachs with Covering-plates; also the anterior side of the Ventral sac and sone plates of the Tegmen. $(\times 5$ diam.)

MASTIGOCRINUS LOREUS.
Fig. 1. Anterior facet of 1. post. R. from the smaller Dudley Museum specimen. ($\times 10$ diam.)
Fig. ?. Section arrose a hachial ; diagrammatized from the larger Dulley Muscum specimen. ($\times 10$ diam.)
Figs. 3 \& 4. Portions of arms showing covering-plates, from 133, Mason College. ($\times 20$ diam.) Fig. 4 is the wrong way up by mistake.
Fig. 5. Prusimal region of crown aud stem, from posterior. 57048 , B.M. ($\times \because 2$ diam.)

Structure of tie Ventral Sic in MaStigoctiLaus.
Fig. fo. From distal third, on left edge of sac.

 refer to the ridges as numbered in the text, p. I!s.

Thine remeryur represents the artisis first and erroneons impression of the st meture.

which come in the family Decadocrinide. There are two reasons why this was not done: first, that every one who has seen this species, including myself, has regarded it as a C'yalhocrinus; second, that, until the genera Botryocrinus and (iyuthoerimus were understood, the reasons for separating it from the latter genus would hardly have been appreciated.

Of the genns only the one species is as yet known, though it is probable that several American species will be found to belong to it. The descriptions of grenus and species must therefore go together, and a diagnosis of the latter can hardly be given.

Generic Diagnosis.

Cup eyathiform, with plates of medium thickness. I BB 5; BB 5; RR 5. Arms simple, dichotomons, elongate. No R^{\prime}; x hesagonal, in line with Rli; Ventral Sac long, flattened, composed of primitively hexagonal plates which are transversely folded. 'Tegminal plates small, irregular. Stem round, with small pentagonal axial canal, and with radial sutures.

The appearance of the specimens as they lie on the rock, with their long, wavy, delicate arms outstretched, suggests a knout or cat-o'-nine-tails; hence the name, from $\mu \check{\sigma} \sigma \tau \iota \xi$, a scourge.

The type species is founded on the evidence of five specimens, viz. :-

In the British Museum :

57048 , a magnificently preserved crown, with 36 millim. of stem, seen from the posterior. Matrix a blue shale. Dudley. From the collection of Mr. John Gray of Hagley. (Pl. XII. fig. 3, and zincotype, figs. 3-8, and fig. 9 on p. 198.)
In the Museum of Mason College, Birmingham :
133, a fairly complete crown, with 24 millim. of stem; seen from left side; rather disturbed and overgrown by Polyzoa. Matrix a rough limestone. Dudley. (Pl. XII. fig. 2.)
In the Museum of the Dudley Geological Society:
(a), a portion of a crown, with traces of ventral sac and 66 millim. of stem ; seen from anterior. Matrix a blue shale. Dudley. (P. 200, fig. 10.)
(b), a smaller crown broken distally, with 8 millim. of stem, seen from posterior. Matrix a blue shale. Dudley. (Pl. XII. fig. 1, and zincotype, fig. 1.)

In the Woodwardian Museum, Cambridge:

a/493, an almost complete specimen, with the crown slightly disturbed; seen from right posterior radius. On a slab of limestone. Dudley. In the Fletcher collection. (Pl. XI. fig. 3, explanation on p. 194.)

For permission to figure the first and last of these specimens my thanks are here siven to Dr. Hemy Wonlward, F.R.s., and Prof. T'. M"Kemy Hughes. For similar favours, as well as for the loan of the specimens in the Masom College and the Dudley Museums, I must express my gratitude to Prof. C. Lapworth and Mr. W. Madeley.

These specimens all appear to come from the Upper Wenlock Limestone ; but, as usual, their exact locality and horizon are uncertain. They all helong to one species, for which I propose the name-

Mastigocrinus loreus, sp. n.

1873. Cyathocrinus (sp. 9) arboreus, J. W. Salter, nom. mud., Cat. Camb. and Sil. Foss. p. 125: Cambridge.
Nun C'yuthurrimus urbortues, Meets and TVorthem. Frw c: Acad. Nat. sici. Philadelphia for letos, p. 160, and Liep. (ieol. Surv. Illinois. vol, iii. p. 520 (1868).

Cyathocrimes sp. 11, Salter, loc, cit.
The trivial name applied to this species means "provided with lashes," and, hesides carrying on the metaphor of the generic name, it alludes to the very fine teminations of the arms.

Detailed Description.

The plates of all the specimens exeept $5704813 . \mathrm{M}$ are somewhat dieplaced, so that the measuments here siven refer chictly to that. For details comected with the Cambridge specimen I :m indebted to drawincs fumished hy Mr. Edwin Wilson, as well as to an excellent fhotograph sent me ly the Cambridge Engraving Co.: the specmen itself I have ne ex: seen, as it cculd never be found when I went to the WoodWardian Aluseum; for information that it was at last forthcoming I am obliged to Mr. H. Woods. The specimen a'497 which Salter labelled " ('guthemimus sp. 11," was alon thenght to be missing (see Cat. 'Type F'ussils, Wmontwardian Mus. p. 39, Cambritge, " 1891, " 1 s! 9) ; hut, through the kimbues of Mr. Woods in setuling me a rongh sketch of it, 1 am able to refer it, as was to be anticipated, to the present pretes. The efumich consists of a rather diaturbed crewn,
with 10 millim. of stem, and it shows the delieate finials very well. It is on a large block of limestone, and comes from the Fletcher collection.

Tomsul cup conical, slightly expanding above, much as in Butyneminus deculuctylus. 'The plates are smonth or very fincly shagroned, and ahonst plane. Measurements are:Height along pmiterion interadius, 10 millim. ; width betow,
 to crushing.

1BB 5, pentagnal, forming a very slight angle with the stem. Measurements are:-

	Height.	Width below.	Width abore.
	millim.	millim.	millim.
57048 B.M.	35	3	$3 \cdot 2$
" "	3	\%	32

In smaller specimens they are rather larger in proportion.
BB 5; 4 are heaagonal, post. B heptagonal. Measure-ments:-

	Height. millim.	Width below. millim.	Width above. millim.
57048 В.М	45	3.5	4.25 (post.B)
" "	$4 \cdot 75$?	? (r. post. B)

In smaller specimens they are rather larger in proportion.
RR 5, of normal shape; bending outwards towards the facet and curving inwards towards the radial processes, as in Botryocrinus. Measurements are:-

	Height. millim.	Width below. millim.	Width above. midth of mallim.
facet.			
millim.			

The articular facet (zincotype, fig. 1) has a very faint transverse ridge and the axial canal is not separate.

The Arms are about 11 times as long as the height of the cup; they dichotomize at least 8 times, at rather long intervals, and decrease very gradually both in the diameter and height of the ossicles. All this gives them an exceedingly slender and graceful appearance, especially when they have a delicate wave as in 57045 B.M. Corresponding branches are equal in size, except perhaps occasionally in the extreme distal recion, where one branch sometimes appears to be smaller than its fellor.

The rentral grouve is a slight wide depression, from which a narrow V stretches to the axial canal which is not separated by stereom (zincotype, fig. 2). The covering-plates are
irregular ant numerous, as in Botryocrinus, but appear to be more or less alternating (zincotype, figs. 3 and 4).

The total length of the arms in 58045 B.M. is 11 centim.
I Br number from 7 to 11 , the usual number being 5 . Their height is 1.4 millim. ; their width 3 millim.

II $\mathrm{Br} 9,10$, or 11 .
III Br from 9 to 14 .
IV Br from 12 to 26.
V Br numbers noted 17 and 22 .
VI Br numbers noted 16 and 25.
VII Br 15 observed.
VIII Br and IX Br are so small and faint that it is difficult to make out their exact numbers. 'Ihe width of the finials is about ' 25 millim. The distal portions of an arm-branch are figured here (fig. 6), to show that there is no suspicion of pinnules.

Anal structures. - Anal x is hexagonal, resting on the horizontal upper side of post. B, in a line with $R R$, and supporting three plates, viz. a median proximal plate of similar shape and
 a small plate on either side be- Fir. 9-M. M. lureus. Distalend of tween it and the adjacent radials ($r t$ and $l t$). part of 1 . pust. Arm in 5゙い4s B. M. ($\times 6 \frac{2}{3}$ diam.)

The Ventral Sac in 57048, Where it is magnificently displayent, has a length of 7 centim. At its origin it is 10 millim. wile, but rapilly increases to 13 millim, and then decreases very gradually. It is transversely compressed and is very flat.

In its phan of structure this sac rescmbles those of Thenarocrinus, Butryocrinus, and Dendrocrinus (what may be called the wickerwork-type, Trautechold's "Angulosi"). Seen from the posterior, 5 ridges are visible, which are from left to right as follows:-(1) ridge starting from $1 t$, (2) ridge starting from a plate intercalated between It and metian proximal plate, (3) median ridge, starting from median proximal plate, (4) ridge starting from r, (.) ridere on rizht of rt rikge. There are probably three other ridges on the anterior side. This wonld make the number of ridges s in all, in which the genus wuld agree with Thenarocitinus if not with others of the group.

The ussicles are slightly ridged in the midule, and are
thrown into strong lateral folds. Primitively the ossicles are hexagonal in omiline and alternate with those of adjacent rous, hut the simple outline is usually ohscured by the folding. The folds an one side of one osside usually meet the folds on the adjacont side of two adjoining ossields. Sometimes, however, there appear to be small intervening phates, in which the folds of the ossicles on either side meet. The sterem is perferty contimons over the whole surface of the rentral sace, fominig the flom of the depressions just as much ats the summits of the folds and ritges (zineotype, figs. 6 and 3). That the sate was a very flexible structure is proved by the appearance presented hy the upper and lower sutural surfaces of the individual ossicles: when the ossicles are slightly pushed over so as to expose these edges, it is seen that the end of cach ridge is a regular articular facet of almost circular outline, maked with depressions for ligament, Which depressions run at right angies to the surface of the sac (zincotype, fig. 8). The plates that form ridges 2, 3, and 4 are more or less flat; but those forming ridges 1 and 5 , which are at the borders of the sac, are bent round at a sharp angle, the angle itself being rounded and constituting the ridge. In other words, these two ridges form part of both the anterior and the posterior surfaces of the sac. The following are measurements of ossicles from the proximal region of the sac :-In the median ridge (3), height -83 millim., with 3 millim.; in ridges 2 and 4 , height 7 millim., width $2 \cdot 6$ millim. The assides decrease in all dimensions in the distal region of the sac.

The description of the Ventral Sac has been given at considerable length, as the specimen 57048 B.MI. shows the structure of this interesting organ more clearly than any other fossil known to me. It is perfectly certain that there are no slits or pores of any lind in this sac ; and yet so deceptive is the appearance of the depressions filled with matris that both Mr. Hollick and Mr. Wilson, experienced scientific artists, drew the plates as though they were quite discontinuous, and as thongh there were large slits between the fohls oif fingerlike pruceses. Now, however, Mr. Hollick, after examining the whole sufface of the sac with a microscope, and after seeing the matrix cleaned out with needle and brush from some of the most slit-like depressions, is so convinced of his former error that he will hardly permit me to publish the drawing that he first made. This, however, I give in the margin, in order to show how the most careful observer may be misled. These facts seem sufficient explanation of those statements, so often controverted in the present series of papers, as to the presence of slits in the ventral sac of the Fistulate Crinoids.

The Stem attained a length of at least 11 centim. It was round in section, with a width (in 57048) of about 4.5 millim. In the proximal region it is composed of ossicles of three sizes, the larger ones slightly projecting, with an average height of $\cdot 4$ millim. (zincotype, fig. 5). In the more distal regions (fig. 10) the ossicles are smooth and more equal in height. The sutures are crenelate, indicating radiate striæ on the articular surface. The lumen is small, as in Botryocrinus, and from it there proceed five radial sutures, which are usually visible on the outside right up to the dorsal cup. In the distal region of the stem the pentameres show only a slight tendency to the hexagonal shape and semi-alternating arrangement described for Botryocrinus. The distalmost end of the Cambridge specimen is smooth and rounded, and this though the whole stem and cup are very slightly disturbed. If

Fig. 10.- listal part of Stem in the larger Dudley Museum specimen of M. Lirens. (× $3 \frac{1}{3}$ diam.) this rounding be due to weathering, it would appear to have been accomplished while the creature was yet alive. (Pl. XI. fig. 3.)

General Remarks on the Genus.

In the composition of its cup, in the anal area, and in the simple dichotomy of its arms, this species resembles the species of C'yuthocrimus, and, were that genus not more strietly detined than it has hitherto been, it would doubtless he retemed thither. On the other hand, there are many points, not hitherto recognized as of great importance, in which the present species resembles a rery different assemblage of Crinoids. The shape of the eup, especially of the ratials, is the same as that of Botryocrimus. 'The rentral sac is of the same structure as that of Dendrocrinus, Botrgocimus, and Thenarocrinus; while the general resemblance of the smatler Budley specimen to the type specimen of T, gracilis Brit. Foss. Crim. IV., 'Amals,' ser. 6, vol. vii. pl. i. fig. 4) cammot pass monticed. 'The arms are especially like those of T.
gracilis, and in a less degree like those of T. callipygus; they resemble them mot only in their excesive dichotomy, but in the character of the hachials and of the covering-plates. In all these respects they differ from the arms of the Cyathocrinide, and in all exeept the regular dichotomy they resemble the ams of Botryocrinus. In the presence of radial sutures and in the arrangement of the columnals the stem resembles that of' Ollurucrinus, 'Thrnetocinus, and Botryocrinus, but appoaches nearer the last by reason of its smather lumen.

From all these facts, then, it appears that the species must find a place in that line of gencra that passes from Dendrocrimus and Ottawacrinus to Botryocrinus and its allies. When we inguire inte which fanily it slmuld be placed, the obvions answer is-the Dendrocrinite; since the phssession of regularly dichotomons arms prechudes it from finding a place in the Decadocrinida. F'urther, from the non-pinnulate nature of its arms, it must be placed with the Dendrocrinites.

Comparing it now with the other Dendrocrinite genera, we see that it differs from Dendrocrinus, Homocrimus, Perisocrimus, and Thenarocrinus in the total absence of a radianal, in which respect it resembles Merocrinus and Ottawacrinus. In Merocrinus, however, no anal plate of any kind enters into the dorsal cup, so that we are driven back to Ottawacrinus.

Ottancacrinus, it will be remembered, has an anal aplaced between the radials, but no radianal (see Brit. Foss. Crin. II., 'Amals,' ser. 6, vol. v. plo xiv. fig. 12) ; in the main composition of its cup, then, it resembles the present species. The stem of Ottawacrinus, too, has very distinct radial sutures. Our new British species camot, however, be referred to Ottawacrimus, for in that genus the anal x is raised by hal. its height above the general level of the radials, while its upper surface supports only two plates of almost equal size. In Ottanacrinus, moreover, the shapes of both basals and radials are curiously irregular on the right side of the cup. The brachials of Ottawacrimus are much flatter, and the articular facet extends over the whole width of the radial, so that the arms are closely pressed together below. For the loan of the type specimen of Ottawacrinus canadensis I here tender my hearty thanks to its owner and describer, Mr. W. R. Billings, of Ottarra,

This new species, then, appears to be sui generis, and it is unfortunately necessary to add to our lists the name Mastigocrinus. 'This genus may be regarded as leading in one direction towards the Botryocrinites, and in another towards the Cyathocrinites,

The addition of this gemus to the Dendrocrinites sugeests that, after all, Thenarocrimes, to which it is so closely allied, may find more fitting companionship with that family-party than with the somewhat peculiar C'aralocrimus. The latter is in truth a crablued misociable animal, whose nature, thrmah the kindness of my Canalian frienli, is now becoming better known to me.

explanation of plate xif.

Mastigocrinus loreus, gen. et sp. nov.
Fig. 1. The smaller specimen in the Dudley Museum.
Fig. 2. 133 Mason College.
Fig. 3. 57048 B.M. (See p. 195.)
From a photorraph of the specimens, about ats larer than natum.
XXXII.-British Fossil Crimoits.-VIII. Cyathoerinu:: ('. acinotubus, Ang., and C. vallatus, sp. nov., Wenlueli Limestone. By F. A. Bather, M.A., E.G.S.
[Plate XIII.]

Historical Introduction.

The name C'yathocrinus, or, as it used to be written, Cyathocrinites, was first used by J. S. Miller in 1821 on page 8.5 of his 'Natural History of the Crinoidea,' and is derived from кv́aOos, a cup; it has also been used by all suhsequent writers on the subject. When, however, we enquire what particular form of Crinoid should be denoted he this name, we are speedily involved in difficulties. Fortunately Messrs. Wachsmuth and Springer, in their' Revision of the Palancrinoidea' (1. 79 ; Proc. 1579 , p. 802), have dealt fully with this sulject, and their conclusions aceord with common sense. and with the rules of nomenclature. These are only a few points in which insufficient acquaintance with European material or European literature has led them astray. Since their work is, or should be, in the hamds of every serious student of the Crimoids, a short explanation of the position adopted is all that is here required.

The four species referred by Miller to Cyathereinus belong to four different genera, not to mention families and sumorders. The first of these, C. planus, should of course be taken as the type: the others are now known as Tenocrimus tuluceulatus, (trotalocrinus rugosus ($=($ '. momeesus, schloth., sp.), and Parisocrinus quinquangularis.

As to (". plamus itself a little difticulty has arisen. Miller"s
diagnosis of the gemus (p. 85) is as follows :-" A Crinoidal animal, with a round or pentagonal column formed of numerous juints, having side arms proceeding irregulaty from it. On the summit adheres a saucer-shaped pelvis of five pieces, on which are placed in suceessive series, five costal plates, five scapula, and an intervening plate. From cach scapula proceeds one arm having two hands." The generic diagram facing p. 85 shows five pentagonal infrabasals, tive basals, of which tour are hexagonal (or pentagonal aceording to the angles formed by the mper sides of the infrabasals) and the fitth heptagonal (or hexagonal), five radials with a deep noteh and an articular facet about one third the width of the plate, and a hexagonal anal x in line with the rarlials. The figures of $(6$ planus- $1,2,3,4,5,6,7,8,9,29,30$-show that this diagran was taken from that species, and bear out the diagnosis so far as the cup is concemerl. Fig. 1, however, shows dichotomous pimulate arms, and we know of no genus. with arms of this character that has a dorsal cup like that shown in the diagram. 'The Austins' explanation of this was a probable one. 'They said (Monogr. Rec. \& Foss. Crinoidea, p. 61), "Miller's principal figure of this species cannot be depended on, as he appears to have taken the rays of the Taxverinus longiductylus and placed them on the body of the C. plumus." Un this Wachsmuth and Springer remarked (Revision, I. 81, foutnote 2), "In supposing these to be the arms of ''uxocrinus, Austin is certainly mistaken." Austin, howerer, applied the name Taxocrimus longidactylus to a specimen from the Carboniferous Limestone, near Walton Castle in Clevedon Bay, of which a figure had been published by George Cumberland *. This very figure was referred by Miller (p. S6) to C. planus, and it is quite likely that the arms of his own fig. 1 were suggested by it. As a matter of fact there can be little doubt that Cumberland's figure represents a Scaphiocrinus with two primibrachs, although the pinnules are merely indicated in his drawing by rough shading. The same specimen was figured by Austin, pl. xi. fig. $3 a$, under the name Poteriocrinus longidactylus (p. 88), thus showing that the name Taxocrimes was inserted by mistake on p.61. Mr. W. P. Sladen, in his revision of the "Genus Poteriocrinus and allied forms" \dagger, left this species out in the cold; but Messis. Wachsmuth and Springer referred it

[^48]to Scaphiocrimus (Rev. I. 114, Proc. 1879, p. 337). Miller's fig. 28 probsably represents a sicytulecrinus, but the anal area is not very clear ; at any rate it does not agree with the diagnosis or diagrams of Cyatlocrimus. In his diagmosis of the gemus Miller stated that the stem had irregular "side arms" or cirri, and such were representel in his figures 26 and 27 ; but of these the Austins said (op. cit. p. 61), they " are not the side arms of any species of Cyathocrinus, 26 , being a small column, and 27, the column and side arms of a Poteriorinus." No species agreeing in other respects with Miller's diarnosis is known to possess cirri of this nature.

The foregoing specimens were no doubt placerl, as was the rest of J. S. Miller's valuable collection, in the Bristul Museum*, where they were shown to L. Agassiz by the then curator, Mr. S. Stutchbury t. But, to the disgrace of the inhabitants of that town, all these treasures have been gradually allowed to disappear from that, their matural resting-place.

There was, however, another specimen figure by Miller (figs. 29 and 30), which was said by him (p. 87) to he "in the Ashmolean Museum at Oxford." The drawings agree perfectly with the generic diagnosis and diagram, and this specimen would be the best to take as the type of the species. Unfortunately, in the transfer from the Ashmolean t, the new Museum at Oxford, this, with other important specimens, appears to have been mislaid, and all search for it has up till now been fruitless. It were to be wished that those in charge of some of our muscums would remember that they are respunsible, not merely to their immediate employers, not to the town, nor even to the nation, but to the whole word now and to come.
J. Phillips, in his 'Geology of Lorkshire' (1833), did not rocognize ('. plamus. He figured, hwwever, under the name C. distortus (vol. ii. p. 206, , 1. iii. fis. 34), a specimen that was obviously of the same species as Miller's figs. 29 and 30 . The Austins appear to have studied Miller's type specimens before they were 'conveyed' from the Museum of the Bristol Insiitution, and they retained the species (\because plamus, figuring (op. cit. pl. vii. fig. $4 c, d$) a specimen which was in all probability the original of the cup in Miller's fig. 1, as well as a specimen (pl. vii. fig. 4 e) probathy the same as that figured by Phillips for ('. distertus, which species they con-

* See 'The West of Fighand Joum, Sci, and Lit., no. 1, pp. 4, 1!, !s, and 252 : Bristol, Jan. 1835.
\dagger L. Agassiz, 'Poissons Fossiles,' 4 e livr., feuilleton additionel, p. $5:$ (1835).
sidered as a swomym of C ? momas. There is therefore no Miflenley in iferilling whas Miller meane by It phanus, and
 the genus C'yathocrimus.

Before leaving (. julanus, however, it may be as well to correet a few mistakes made br the earlier writers, lest they should again prove cause of confusion.

Miller's erroneons ascription of cirri to the snecies has already been noted. With regard to the arms Miller wrote
 resemble those of Pentacrinus Caput Meduse." Similatly the Austins, though they scouted Miller's figure of the arms, remarked ($\mathrm{p} .6(0)$, "The rays were no doubt tentaculated, although none of the specimens show the tentacula." It is certain, however, that tentacula or pimules are not present in this species.

 " dhi- [abdominal] imtogumbes :- swollan out, atol dive ther spoomen a singmlar appearane." "Ple Aessins ragur a this aperture as the mouth. De Koninck and Le Hon* appear to have understood that it was comected with the anus; but neither they nor prerious writers were aware that the cpening was followed br an anal tube. The plates amund the linse of this rule ivere displaynd ly Mitter in his
 ever (Rev. I. 81, foomote 1) consider that "the four small plates, armanged in tho fictuo in a ladf cinole, ave or ofpor cote the intens lials foral place-) [deltoili] ion the dome, atd ant the plates of the rentral sac, as might be expected." This tanmit be riflt: the specimen, us praved ly fig. 29, pus-cosud me delenids. while in both firures the litter I points to a larger and inverelaty staged plate whith was most pobably the madreporite.
 limenage (y. 69), Wath stated that the articulay face of the radial was perforated. To the question whether there are any species of Cyuthecrinus that possess this character we shall recur later on ; in the Carboniferous species C. planus, at any rate, there is no donbt that in the radial facet the axial canal is not separated from the rentral groore.

* 'Recberches sur les Crimoikes du Terrain Carbonifère de la Belgique,' Mém. Alad. liop. Kelgique, rol. xrviii. p. Sl: Brassels, 1854.

Ann. ib Mar. N. Hist. Ser. 6. Vol. ix.

Restriction of the Genus.

Having determined the type species of the genus, we have now to consider various forms that have at different times been confused with Cyathocrinus.

It is umecessary to say more about the separation of Puteriocrimus from Cyathocrimus, since it differs not only in the anal area but in the possession of pinnules.

Purisocrimus has arms like Cyathocrinus, but an anal area like Poteriocrinus; hence there is no real reason for confusing the two as has often been done.
J. Hall \% extended the diagnosis of Cyathocrimus to include forms with a small quadrangular radianal. These forms, however, differ in other respects, besides the presence of a radianal, from C'yathocrimus, and doubtless belong to quite a different family-the Decadocrinidæ. In America such forms are represented by Baryerimus and Fusocrims: in Englame it is the Silurian Eotryocrinus that has been labelled Cyuthocrimus \dagger; while a Carboniferns fossil that is poblably a Sarycrimus appears to have been considered a Puterinerinus.

De Koninck and Le IIon \ddagger gave a diagram of C'yutho crimus in which the anal x was represented as pentagonal and as supporting two small hexacomal plates. This was probably a mere slip, for neither in C. plamus nor in C. mammillaris, the only species described by them, has the anal x that shape. Some specimens of ('. multilorachiutus from the Keokuk group of North America, that are in the British Museum, appear to have an anal ir of this shape, but it is not typical of the gemus. In fact the diagram given by De Koninck and Le Hon resembles, in this respect at least, that of Ottancocrimes alone among the Inadunata. They also give, under the head of Cyuthocrimes, a diagram of the anal area of a Permian species, of which all we can say is that it certainly is not a Cyathocrinus.

The Anstins (op. cit. p. 66), in reviewing the species aseribed by different authirs to this genus, sail, "Nut one of the so-called Cyuthecrine of Murchismis Silurian System properly belong to the genus." This is pertectle trie: it has long been known that (. tubreulutus is a tionerinus, that ('. Imrigurmis (sic) is an Ichethyocrinus, and that C rugosus is a Crotalocrimus; in fact these corrections were made when the plates were reprinted to illustrate. Murehisomis

[^49]'Siluria' (elit. .3, 1859). The names Cyuthocrinus goaioductylus, ('. arthritious, and C'. coppilluris, of 'The Silurian System' and 'Silmia,' have hat a longer existence; ; indeed it was not till 1575, when Angelin fomded Gissocrimus, that there was any genus for the reception of thosespecies. They, however, together with varions species to which J. W. Sulter gave the Catahogue names of U. scoparius, C. squamiforus, (. sp. 1, and (\therefore.sp. 5 , all appear to differ from Cyathocrimes in the possession of three infrabasals instead of five, and must therefore be referred to Gissocrinus.

Wrachsmuth and Sminger (Rev. I. 83, Proc. 157.), p. 30() said, "Pederocrinus Billings is mot distinct from Clyathorrinus. The construction of the calyx is identical." E. Billings foumded Puluocrinus in 'Figures and Descriptions of Canalian (Orgenic Temains,' decade iv. (18.59), on p. 24 , the type species being P. striatus (p .25) ; he also referred to the genus P. cengelatus (p. 45), P. rhombiferes (p. 45), and P. metchellus (p. 46). Wachsmuth and Springer (Rev. III. 22.); Proc. 1856, p. 149), after examining the type specinens, entirely changed their views with regard to P"eleocrimus. They sail, "The specimen of P. strictus, upon which the genus was proposed, is very imperfect, and may be a Caraboerinus, Dendrocerinus, or a new genus." P. angulatus was referred by them, without any doubt, to Dendrocrinus. 'Through the kindness of Dr. A. R. C. Selwyn and Mr. J. F. Whiteaves, the type specimens of Billings's four species, which are the only specimens known, are now before me. As regards Palroocinus striatus, there is no doubt that it is not it Cyathocrimus; but a very careful examination has convinced me that neither is it a C'arabocrinus or a Dendrocrimus. I should not, however, like to say whether it can really be regarded as an independent gemus. P. angulatus also is no Cyathocrinus; but I quite fail to see why it should be referred to Dendrocrimes: the radiamal is small, apparently four-sided, and occupies a position more like that in Botryocrinus than that in any other Inalunate genus. The specimens of P. rhombiferus and P. pulchellus do not show the anal area; for the present therefore the reticence of Messrs. Wachsmuth and Springer concerning them is the best example to follow.

Among the genera that have been confused with Cyathocrinus there only remains one worthy of discussion, namely the genus Spherocrinus; and the history of this is somewhat peculiar. The only species of the genus is S'. geometricus, a fanly well-known form from the Devonian rocks of both Geminany and England. The species was founded by Gold-
fuss + and was referred by him to Cyatheremus. Since the diagosis of that gemus given by fobldfuss was simply a manslation of Miller's, it follows that C. gemetricus was segarded loy its author as possessing but ome plate in the anal area. Neither the figures of (tollfu:s nom that given by .J. Thillips in his' 'Paleozoic Fossils of Comwall \&ec.' pil. la. fig. 41* (1841), show the amal plates. The Austims, in thair Monograph, p. 61 (1845), likewise referred this species to Gyathocrinus, speaking as thongh there were onc anal phate only, placed as in Ciyuthocrinus; in fact the diagram of '!yathorrimus on p. 58 is said to be taken from ('. geometricus. (\%. F. Remer + appears to have found Miller's description of 'yathocrinus plumus quite unintelligible, and conserquently 1 roposed to take Miller's secon'l species, now known as Toxacrimus tuberculatus, as the type of Cyathocrinus, while he made (r. geometricus the type of a new semms, spherrocrimus. From his diagnosis of syturcerinus we leam that he suppocel the genus to have only three infrabasals, while he again mentions, though with some doubt, the single anal phate. Romer's view was anlopted by C. and F. Sandhereer in 'Hie Verstemerungen des Rhemischenschichtensystems in Ľas-an,' 11. $34!$, 380 (Wicshaden, $18000-18.5(j)$. Joh. Miallers was the first to point out the correct structure of C. geometricus, describing a new variety of it, or posibly, as he regardel it, a cloedy allied species, under the name l'oterincrinus hemisphuricus. He showed that there were five infrahasals, and that the anal area possessed a radianal, an anal x, ame another -mall plate (rt) on the right of anal x, resting on the rabliahal. L. Schultze \|placed all varieties of this species muler the one head Poteriocrimus geometricus, and gave figures ('Taf, v. fies. $6 d, 6, f$) entirely confiming Miiller's Ineserip) tion and figures of the anal area. It is odd that Messis. Wachsmuth and Springer, who refer to both Miillor ant Schultze, should still have kept this species under Cyathen"rimes in the first part of their lievision, saying (p. 8.3), " it has all the characters of '?yathocrimus, ment only in the comstruction of the calyx, but also of the vault." In 1586, howerer (lice. H1. 22: ; Proce p. Lis), they were inclined to
\dagger 'Petrefacta Germanies' vol. i. part 3, p. 189, tab. lviii. fiecs. $\bar{a} a, b$ (1831).
\ddagger "Beitrage zur Kenntniss der fossilen Fauna des Deronischen Gebirges aun Rhein," Verhandl. d. naturhist. Ver. d. preuss. libeinlande, 8th Jahrg. pp. 363-369: Bom, 1851.

 Ak. Wiss. math,-nat. Cl. Bd, xwi. (18(tb) p. $\overline{1}$; Wien, 186^{7}.
separate spherrocrinus from Cypthoreinus; still this was not on acenmut of any differences in the structure of the eup, but merely becanse the axial canal in the rallials was sumate f hy atrmom from the rentral groowe. To the question when har this character is of generic impntance we shatl return inm diately for the present it is curngh to state that the dexeription of Poteriverimesgometricus given by Minller and Sichltze is proved correct by a large number of specimens in the British Museum. So long as the arms of this specime ate maknown one cammo defintely say to which genm- it belomes; it would pmolally be satior to place it in P'risocrimes, but we may be quite certain that it has nothing to do with Cyathocrimus.

A single species, hitherto undescribed, which may be regarded by many as a Cyuthencinis, has been swarated therefrom and made the trpe of a new genns, under the 1 me Mastigocrinus loreus. The reasons for this have been so fully given in the preceding paper (antein, p. 20: 0) that it would be waste of space to repeat them here. Suffice it to say that no C'yathocrimus has yet been foumd with a ventral sac, a tegmen or a stem like those of Mastigocrimus.

Wachsmuth aml Sipringer (Rev. III. :320; Proe. 1980, 1. 15i) have stated that the fossession of a separate axial canal by the radials is a structere that "oceurs exclusively in species from the Silusan and Upper Detonian, never in the (arbmiferons, neither in ('yothereinus nor other genera." "Whether," they continue, "all species of Cyuikerotinus from Guthland and Dudley poseses this structure, camot ban ascertaned from the figures, but if they do, it may form the basis of a separation which seems to us very desirable." Now, even if we were safe in accepting this remarkably broad an 1 dogmatic, though not very clear, statement, intermediate forms might still oceur in the Lower and Midalle Devonian. Even if they did not, so small a point would hardly be enough to differentiate two genera; for it is no rare thing to find the axial canal separate in one species of a genus, in one individual of a species, or in the earlier brachials of an individual, while it is merely a tongue from the ventral gromes in others*. Morcover there do not appear to be any other constant or decided differences letween the Carbomiferons -precies of Cyuther inus and such typical Silurian spectes as C. acinotubus, C. ramosus, and C. visbycensis. As a matter of fact, however, even this difference does not exist, for the axial canal is not separate in the Silurian C. vellutus, although

[^50]it is separate in the closely allied C. acinotulus; while it is separate in sone individuals of C. striolatus from (iothanl lut not in others. Consequently it seems alvisable for the present to retain both Silurian and Carboniferous species in one genus-Cyathocrinus-with the following

Generic Diagnosis.

IBB 5, equal, pentagonal. BB5, hexagonal exeept post. 13 , which is heptagonal and supports x. RR 5, shield-shaped, with facet circular or elliptical in outline, and occupying from less than $\frac{1}{6}$ to $\frac{2}{3}$ width of R. x tetragonal to hexagonal, in line with RRR, and about $\frac{2}{3}$ width of R. Arms long, simple, dichotomizing regularly several times; covering-plates alternating, in from 1 to 4 (05 ?) rows on either side. Tentral sac composed of usually hexagonal plates, either smonth or slightly folded. Jegmen consulidated by deltoids. Madreporite distinct.

Description of the Genus.

Dorsal C'up cyathiform; with sides convex, straight or convexo-concave; with plates plane or tumid; surface smooth, shagreened, or slightly ridged either radiately or concentrically. No pronounced axial folding.

JBR 5; jentagonal ; lying at very various angles to stem, and varying vely greatly in height.

BB 5; liexagonal, except pest.B, which is heptagomal. These also vary much in their proportions, hut are usually large.

RR 5; of normal outline ; as large as or larger than RBB. Articular facet from a little less than $\frac{1}{3}$ to $\frac{2}{3}$ "idth of plate, usually about $\frac{1}{2}$; circular or elliptical in outline; directed outwards and upwards at very various angles; axial canal may or may not be separated firm the rentral groove ly stereom. Radial processes curve upwards and inwards to the deltoids.

Arms non-pimnulate, dichotomous; usually long and branching from 5 to 7 times (in Silurian species at least); with more ossicles in each series towards the immer side of each dichotom. Rather stout, not tapering much, and with short ossicles (in Silurians species); or tine, tapering, with long assicles (in Carboniferns opecies). Covminghates weli developed; cither as solded, alternatings sories, or in rows of 2 to 5 (?) deep on either side of ventral groove.

1 Br from 1 to about S : the number often varies greatly in

いL． 1 WN゙ CYATHOCRINUS．
1．Whe dissected cup；with the anterior radius on the right．
\therefore Longitudinal median section through ten columnals of C．acinotubus． s ，stereom of ossicle ；m ，matrix filling axial canal ；c ，calcite taking the place of former ligament．
3．＇lransverse section through the stem of C．acinotulus．Lettering as above．Figs． 2 and 3 are both reduced from camera－drawings of $\mathrm{E} 600 \pm$ B．M．；\times 万 diam．
4．Transverse section through a brachial（III Br ）of C．acinotubus．Br， body of the ossicle；$u x$ ，axial canal；$v g$ ，ventral ginove ；$c p$ ， covering－plates．Reduced and restored from camera－drawings of E 1367，B．I．；$\times 8$ diam．
5．A young individual of C．acinotubus $\left({ }^{\circ}\right)$ ．The extreme length of some of the brachials may be only apparent and due to the difficulty of seeing the sutures ；it is，however，noticeable in the young of other genera．From an original drawing of M．P．G．vii $\left.\right|_{\frac{4}{8} \frac{4}{4}}$ ；nat． size．
i）u．A first primilrach of the same，showing that the axial canal is mot yet separated from the rentral groove ；$\times 3$ diam．
6．Ventral surface of the calyx of C．plamus with ambulacrals and inter－ ambulacrals remored．Δ ，deltoids，and M，madreporite；these surround the peristome，and on their edges are seen indentations for the reception of the ambulacrals ；x ，anal．From E 6007， B．M．；$\times 2$ diam．
7．Ventral surface of the calrx of C．mammillaris，Phill．，with tegmen complete．Δ ，deltoids，in great part covered by ia，interambu－ lacrals；cp，covering－plates，which are irregular；x ，anal，which is partly broken．From a drawing by Mr．Hollick of E 288 ， B．M．；inat．size．
the arms of a single specimen ; but, in Silurian forms at all events, each species has usually its own limits.

Anal structures.-Anal x from tetragemal to hexagomal; it rests on the upper side of post. P , is in line with RLR, and about 言 their width. In typical species it supports, lyy its horizontal upper side, a smaller plate of similar shapee, while on either side of it, in the angle between it and the arljacent radial processes, rests a smaller plate of the tube (itt and lt). Sometimes re and lt appear not to touch x at all, in which case x is four-sided. Nometimes (e, g. C. multilurachiutus from the Keokuk) the upper side of x is sloper downwards in such a manner that only r t touches the RR, in which case x is roughly five-sided.

The Ventral Sac consists of more or less hexagmal plates, arranged in fairly regular longitudinal rows. It varies very greatly in size, but appears mever to extend to the loneth of the arms. It is romed or swollen, and has a rather lares lumen. The plates are solid, often slightly tumil, and sometimes show a radiating struchure, which may cren exhihit itself in slight folling. In typical species of the genus the foldings are never pronounced, nor are the plates transversely elongate; in none are there slits or pores.

The Tegmen comprises 4 Deltoids and a Madreporite (p. 211, fis. 6). The Deltoids rest on the radial processen, and abut laterally on one another and on the Madreforite. The Aadreporite is usually cordiform and appear: to be pierced by numerous pores.

Ambulacrals (T Amb) pass hetween the deltoids and madreporite to the actinal centre, in which region they are usually conlarged (and are by some writers eomsidered to be the Orals).

Smaller Interambulacrals (i A Ambi) are also often present, almost entirely covering the deltoids (p. 211, fig. 7).

The Stem is rarely preserved to any extent, but it seems never to have attaned a very great length. It varies much in width; it is romed; with a usually quinquelobate lumen, sometimes of large size. Radial sutures have not been observed.

Colummals sather low, and alternating in thickness and height ; or very low and equal in size. They have radiating strie on their articular surface.

There are no Cirri on the stem.
The Root has not yet come beneath my observation.

Species of the Genus.

Althongh the Austins in 1 sif6 could deny the existence of

C'ynethorimus in Silurian rocks, we now know a consideralle momber of Silurian species that may be refered to this gemme. 'The Limestone Boals dand f of Gotland furnish nine speries of CYuthercinus, ats deseribed in a paper read before the Reyal Swelish Academy of science on 1)e. 9th, 1591%. The Niagara Limestone of America contans Cyathorvinus corte, Ilall, ('. watioma, Hall, ab:l ('. Von Itormi, s. A. Miller; hat other Silmian species fom N. America appear to belones rather to Pomyercinus. The Wronlock Limestone of England has as yet presented us with only two species, viz. C. acinotulus, Ane., alsu fome in (intland (1 and /), and a spucies here described for the first time under the name ('. rollutus.

As shewn in the paper aboverefored th, the C'yuthoremi of Gotland fall into three eroups. 'The first of the ee groups hats a stem of moderate width, with rather low and alternately ridged columnals and a more or lese conical cup. Buth oir British species come into this group, and the following synopsis show: the main differences between the species of the group :-
a. Cup with straight sides.
a. Plates plane, granular
C. Dianc.
b. Plates axially folded aud striate
C. striolatus.
b. Cup with convexo-concare sides, irregular.
c. Plates plane; smooth or pustulate C. visbycensis.
d. Plates tumid ; smooth or shagreened C. acinotubus.
c. Cup with convex sides.
e. Plates plane; concentrically ridged and pustulate.. C. vallatus.
There are of course many other differences between the species than these shown in the above table, but they can be gathered from the diagnoses.

Cyathocimus acinotubus, Ang. (Pl. XIII. figs. 1-13.)

1878. Cyathocrimus acinotubus, Angelin, Iconographia, p. 22, pl. xx. fig. $\overline{5}$.
1sie. (yuthocrims alutacens (pars), Anerelin, Iconographia, pl. is. fig. $6 a$.
1879. Cyathocrimus (sp. 6) monile, nom. nud., Salter, 'Catalogue of Cambrian and Silurian Fowils ite., Cambritge, p. I2:).
*F. A. Bather, "The Crinoidea of" Gotland, Part I.," Kgl. Srenska Vet.-Ahad. Handl. Bd. xxir. no. 8. In the press.

Cyathocrimus mimus, MS. Museum labels by J. WV. Salter:
Ciyuthocrimus nodulosus, nom. nud. pars, i. e. Museum labels by J. W. Salter, but not the specimen said to be so referred to in Cat. Camb. Sil. Foss. p. 123.

The description, measurements, and diagrams of this species given in this praper are based entirely on British apecimens, While in the Swedish paper reference is mate throushont to (iotland specimens. Thus any differences due to differing conditions may be more clearly appreciated.

The British specimens examined are the following:-
In the British Museum :
57480 , crown and half an inch of stem, seen from the right side, and showing the ventral sac crossing between the arms. Matrix a blue-grey shale. Dudley. From the collection of Mr. S. Allport, and formerly labelled C. nodulusus. (Pl. XIII. fig. 1.)
E 1450 , crown, free from matrix, which was a sur ent yellow shale; shows origin of ventral sac. Dudley. From the collection of Mr. J. Johnson. (Pl. XLII. fig. 2.)
E 5619, the distal end of a ventral sate, wemed with hardly any doubt to this species. Dudley. From the collection of Mr. J. Gray, of Hagley. (Pl. XIII. fig. 6.)
57421 , crown with 8 to 10 columnals; showing coveringplates well; with a rugose surface produced by weathering. Matrix a blue-grey shale. 'Lividale, Dudley. (Pl. XIII. fig. 7.)
E 6002 , crown with plates of ventral sate well makeet, ant with a radial facet exposed. Matrix a blue shate. Dudley. Johnson collection. (Pl. XIII. figs. S and 11.)
5.6142 , arms with covering-plates and rentral stomve well shown. In limestone. Dudley. Gray collection. (Pl. XIII. fig. 10.)
songo, a dorsal cup free from matrix; showing malal face Dudley. Gray collection. (Pl. XIll. fig. 11.)
 showing shagreen ornament. Iellowish matrix. Dudley. From the collection of Mr. J. Rofe. (Pl. XIII. fig. 12.)
E 1367, ams and two thin transverse sections of same. Dudley. Rofe collection. (Kincotype, p. 211, fig. 4.)
E 6004, longitudinal and transerase thin sections of the stem.

Dudley. Rofe collection. (Zincotype, p. 211, figs. 2 and 3.)
570.5 , hasals and infrabasals. Dulley. Gray collection.

57059, a crushed cup. Dudley. Gray collection.
57113, crushed crown and stem-fragment. Dulloy. (imay collection.
57141 , a crown in hame hue shale. Dudley. Ciray colleretion.
57149 , lower part of cup. Dudley. Gray collection.
57362 , rather small crown and 1 in . of stem. Limestone. Tividale, Dudley. Gray collection.
5736%, arms and upper part of cup. Tividale, Dulley. Gray collection.
57364 , crown and $1 \frac{\mathrm{in}}{}$. of stem. Limestone. Tividale, Dudley. Gray collection.
57365 , a small crown, with traces of colour-spots on ar:ms. 'lividale. Gray collection.
E 5654, a weathered crown. Matrix a conglomemate of limestone in a yellow marly cement. Probably from Dormington in the Woolhope district (according to Mr. R. Etheridge, F.R.S.). Baber collection.

In the Musemm of Practical Geology, Jermyn Street: vii i_{-1}^{4}, a young specimen, probably referable to this species, on a slab with Taxocrinus tuberculatus. (Zincotype, p. 211, figs. 5, 5 a.)

In the Woodwardian Museum, Cambridge :
4,526, 3 well-preserved and characteristic cups, labelled "Cyathocrinus mimus (n. sp.)." Dudley. Fletcher collection. (Pl. XIII. figs. 3, 4, 5.)
$a / 487,2$ or 3 specimens, one showing the covering-plates very well. Labelled "Cyathocrinus monile." Dudley.
In the Oxford University Museum :
A crown showing the ventral sac appearing between the arms.
Malvern. Grindrod collection. (PI. XIII. fig. 9.)
Arms showing the ventral surface and covering-plates. Malvern. Grindrod collection. (Pl. XIII. fig. 10 c.)
In the collection of Charles Holcroft, Esq. :
206, arms with very large number of ossicles in intwodes. Yellowish matrix, Upper Wenlock Limestone. Wren's Nest, Dudley.

For permission to examme and figure certain of the abow specimens my thanks are due to Dr. Henry Woodward, F.R.s., the lirector-Genem of the Gonterical surver, Prot. T. Nick. Hushes, and Prof. 1. H. (imen; while a double measure of thanks is due to Mr. Hareoft for allowing me to retain his specimen for several months.

All the above specimens come from the Wenlock Limestone, and many of them come from the Upper Limestone; others, howevr, are dombtinl, and the absume ont intomation prevents us from assigning them to their exact horizon.

The trivial name of this speries-derived from acinus, a
 like appearance of the ventral sac.

Specific Diagnosis.

 tumid, and smooth or shagreened. Arms rather stout, with rounded nssicles ; coverimg-plates long and conimal, fom ? 6 $3 \frac{1}{2}$ to each brachial. Ventral sac large, slightly swollen above; its plates protuberant and rugose. Stem round, of mokerate wilth, with alternate sized o-siches and a quimporlobate lumen.

Descmiption of the Species.

Dorsal Cup is in shape a broad cone, rounded at the base and often projecting radially. The shape, though characteristic (Pl . XIII. figs. 4, 5), is very variable in minor points. Thus, the infiabasals may project at a rather sharp angle with the stom-axis, or may gently curve upwards. The plates, especially the basals, may be rery tumid (Pl. NIII. fig. 2) ; but in a few cases the swelling is inconspicnous. The projection of the radials also varies very much, as seen by comparing fig. 1 with fig. 4 in Pl. Xll. 'The cup sometines varies on difienont -ides la th in height and in ther sime of its phates, the anterior rays as a rule lemes the larem in swoh cases. The average measurements of the cup, as deduced from five specimens, after corrections have been made for compression, are:-Hcight 13 millim. ; width below, 6.9 millim. ; with alow, $14 \times$ milhin. Bxtremes of lwitht mond are, in 57365 B . M. $7 \cdot 2$ millim., and in E $6003 \mathrm{B}. \mathrm{M}$. millim. In these and subsequent measurements no account is taken of the young specimen at Jermyn Street or of those in the Woodwardian Mnsemm.

1B3) 5, pentagomal and, as a vule, almost iqual-sided.

Averace mesismements, fleduced from six suremens, with allowance for variation within the limits of an individual :Heisht:3.5 millim.; wilth inlow, 3.7 millim. ; width abow,
 E 6003 respectively:-Height 2 millim. and 5 millim.; width below, 25 millim. and 4.25 millim.; width above, 3 millim. and 6.8 millim. In E 1450 , which is a mediumsized specimen, the height varies from $2 \cdot 5$ millim. in r. ant. 1 B to 3.2 millim. in 1. post., 1. ant., and ant. I BB.

 5.8 millim., width above, 6.7 millim. Extreme measurements, as above:-Heisht 3.9 .5 millim. and 10 millim. ; widh below, 3.5 millin. and 8 millim. ; width above, 4.2 millim. amb !!, millim. These measuremonts du mot take the prste: rior basal into account: that is always a little larger every way than the cthers ; thus, in E 1450, the measurements of the post. B and of the other BB are as follows:-Height if millim. and J.j millim.: width below, 5.5 millim. and $5 \cdot 4$ millim. ; width above, 7 millim. and 6 millim.

IR 5, shichl-shaped, often projecting slightly in some or all of the rays. Average measurements, deduced as above, are:-Height to hottom of facet 9.9 .5 millim. ; wilth below, $13 \cdot 9$ millim.; width above, 14.9 millim. ; width of facet 8.7 millim. Extreme meaturements, as above, are:-Heqht 3 millim. and 8 millim. ; width below, 4.2 millim. and $9 \cdot 5$ millim.; widthabove, 4 millim. and 112.5 millim. ; witth of facet 305 millim, and 6 millim. The aijacent siles are nsually almost parallel in medimm-sizel specimens, and even converge upwards in small specimens. From the above measurements and others it appears that, while the average width of the facet is 577 , , mather more than half, that of the madial, it is proportionally greater in small individuals, e. g. - 81 in 57.365 , and less in large individuals, c. \%. . 3 , in E 6003. The facet is sometimes more to one side of the radial than the other; it is transeresely elliptical in outline (Pl. XllI. fig. 11). A fulcral ridge runs across, a little cutside the long diameter, and in the centre of this ridge is the axial canal. The fued-gronve forms a wide depession on the inner side of the ellipse. Partly owing to the variation in the projection of the radials, the angle at which the facet is directed outwards varies considerably even in the same ep ccimer. In the separate chis formand at Klinteberg, in Gothand, which lend themselves to stich measurement more

* These numbers are fractions of the width of the radial, not of a millimetre.
readily than the English specimens, the angle with the horizontal varies between 33° and 85°.

The average measurements of the Gotland specimens are ernsidemally greater than those of the English specimens, but no other difference is obvious.

In such very well-preserved specimens as E 6003 (Pl. XIII. fis. 12) a fine shagreen ornament is seen on the cup.-plates; this, however, is usually worn away, and it may lee doulted, from the smoothness of some otherwise perfect specimens, e. g. I: 1450 , whe ther it was always present in life. In the fusils its place is occasionally taken by a rough surface, that presents much the same appearance to the nakel eve, b, but which consists of irregular pits rather than elevations (P I. Xlll. fig. 7). This roughess appears to be callsed ly weathering along the lines of the original intimate structure of the plates. A specimen of this species, so weatheren, was named by Angelin C. alutaceus.

The Arms dichotomize regularly, and lessen in thickness quite gradually, remaining rather stont even to their extremities. The ossicles are romuled and slightly swollen, and often might be described as moniliform, whence, no doubt, Salter's MS. names of C. monile and C. nodulosus ; sometimes, however, they are more even in thickness. In the proximal region of the arms the brachials are roughly circular in transverse section, but become more laterally compressed in the distal region (zincotype, p. 211, fig. 4). The axial camal is very distinct and is situated just about the middle of the ossicle. The ventral groove is a brom, curved, shallow depression (P'. KIII. fig. 10 (). In the young specimen (zincotype, fig. 5 a) the axial canal is not yet soparated by stereom from the ventral groove, even in the primibrachs. 'The covering-plates are long, thick, and conical both in outline and longitudinal section (I'l. N1II. ligs. 10 u, 10 ce, and zincotype, fig. 4). They interlock, and run from two to thece and a half to each brachial. They are sometimes rather flat and narrow, with parallel sides, at other times more romeded and conical; the former variety is shown in the top lefthand comer of Pl. XIII. fig. 2.

I Br from 3 to 5 . When there are 3 then $\mathrm{I} \mathrm{Br}_{2}$ is generally twice as high as $1 \mathrm{Br}_{1}$; when there are 4 then $1 \mathrm{Br}_{2}$ and $1 \mathrm{Br}_{3}$ are usually much higher than the rest ; when there are 5 they are all more of a size. Three is by far the commonest number. The number of I Br may vary in the several arms of an individual, but is generally the same.

II Br from 2 to 4 . As with $1 \mathrm{Br}, 3$ is the usual number, and $11 \mathrm{Br}_{2}$ is often higher than II Br_{1}.

III Br from 3 to 7 . The lower numbers are more usual, and the higher numbers, when they oecor, are in the hranches on the inmer sile of the dichotom; thas, the left posterion arm of E 14.50 (I'l. XIII. fis. 2) hats III Br, counting from left to right, $-3.4 .6 .4^{*}$. Here, too, the second ossicle is sometimes higher than the first.

IV Br from 3 to 9. In this case the lower numbers are in the branches on the outside of the arm, the higher mumbers on the inside of the dichotoms, and the middle numbers on the inside of the arm. 'I'his arrangement will be better moderstool from an actual example: in 57362 B . M. the quartibrachs run thus, from left to right-4.8..9.7-6.6..7.5.

I Br from ${ }^{3}$ to 11 . Generally speaking these numbers fullow the same sort of arrangement as in previous series, but the higher numbers are often finials, especially in rather young specimens. Thus in an arm of 57480 B. Mi. (Pl. XIII. fig. 1), starting from the middle or inner side of the am and passing towards the outer side on the right, the numbers run ats follows, f^{\prime} being placed against the finials-6.9. $5 f^{\circ} \cdot 6 f-$ $6.9 f^{\circ} . .9 f .8$.

I Br from 2 to 14. Many of these are generally finials, and in young specimens even the lower numbers are finials. Otherwise the arrangement is much as in the quintibrachs

VIIBr are only found in well-grown specimens. The numbers observel are ${ }^{3}$ and 4 . They are always finials; but it is of course conceivable that the arms might branch yet once mere in an exceptionally well-favoured individual. If, however, finials appear in any one series, it seems to be the rule that all of the ensuing series shall be finials; that is to say, in no single arm does one branch ever get more than one series ahead of the other.

The above numbers do not take accomnt of 206 Holeroft, in which the series are rather longer, 17 being seen in one internode.

Anal structures.-The measurements of anal x in E 1450 are as follows:-Height $4^{\circ} 5$ millim.; width below, 3.8 millim. ; width above, 4.75 millim.; that is to say its width is about : that of the adjacent radials (PI, XIII, fig. 2). It supports a large proxiual median plate and a smaller plate on either side (rt and $l t$). The latter plates rest partly on the adjacent radials.
'The Ventral Sac is about half the length of the arms or

[^51]less ; it is rounded and somewhat swollen above (Pl. XIII. figs. 1, 2, (6, 9). The plates of which it is composed are hexagomal in the proximal resion, but distally they become irregular in outimo. The size of the plates varies comsidurably, but their transerse dianeter is as a male betwem 1% and 25 milim, their vertical diancter being rather lese The phates are sometimes quite smothly rombed or almost flat (I'l. XIII. fis. 1) ; sometimes they are slightly folkul at the edges, the folds being at right angles to the sutures (I'l. XIH. fig. 9) : in E (o)!2 this folding is very chanly marked, and at the same time it is quite obvious that there are no pores or slits within the folds (Pl. XIII. fig. 8). In the seprate distal end of a sate shown in Pl. XIII. fig. 6, the surface of the phates appears rather curionsly pitted ; this, however, is no doubt due to weathering, and may be compared with the roughmess alrearly allunded t (PI. NIII, fig. T).

The Tegmen is unknown.
The Stem (Pl. XIII. figs. 1 and 13; zincotype, p. 211, figs. 2 and 3^{3}) is romed, comporen of ossicles which altemate hoth in height and width with fair regularity. The following are a few measurements of the heights of the ossicke: - In Le (oot (fig. 2, p. 211) the sespective lecights of the essicles are about 1.16 millim. and $5!$ millin.; in $5 r e 0^{2}$ I3. N. they are 1 millim. and 555 millim.; in 57364 B. M., in a more proximal part of the stem, the ussichs are of three sizes with leights 1 millim., 75 millim., and $\because \underline{\square}$ millim. The width of the stem is between 5 millim. and 7 nillim. The lumen is quinquelobate and its diameter is about $\frac{1}{3}$ that of the stem, or a little less. The articular surtace of each ussicle is slightly concave, and is radiately striated. In the lomgitudinal soction the space between the concave articular sufaces is filled with transparent calcite, while the lumen itself is filleal with opaque matrix. This probably results from the fact that the interarticular ligaments decayed more gradually than the axial cord and its blood-vessils, and that, after the place of the latter had been taken by intilling onze, they themselves were gradually replaced by the infiltation of carbmate of lime. We may now note, both in the longitulinal and transverse (fig. i3) sections, that the stereom of the assicles is separated from the matrix in the canal be a thin film of calcite; this ton, then, must represent some lining membrane or ligament.

The hase of the cup is often slightly excarated for the top columnal (Pl. XIII. fig. 4).

Cyathocrimus vallatus, sp. n. (Pl. XIII. figs. 14-18.)
This species is based on three specimens, viz.:-

In the British Museum :

 tion. (Pl. XIII. fig. 18.)
(b) E G00f, a cup still more worn, especially in the distal region, and ground down at the sides ; in matrix ; seen from the right side. Gray collection. (Pl. XIII. fig. 15.)

In the Museum of Mason College, Birmingham :
(c) 170, a better preserved cup, showing articular facets for stem and arms; in matrix. (Pl. XIII. figs. 14, $16,17$.

These specimens all come from the Wenlock Limestone of Dudley, but the exact horizons and localities are uncertain. They are all in a rather yellowish shale, on the top of a limestone; it is therefore probable that they come from the Upper Wenlock Limestone.

For permission to figure the specimens in the British Museum I am indebted to Dr. Henry Woodward, F.R.S.; while for the loan of specimen c Prof. C. Lapworth deserves my best thanks.

The trivial name callatus, which means encircled by a -idge, refers to the characteristic ornament of the cup-plates.

Specific Diagnosis.

Dorsal cup rather elongate, with convexly rounded sides; plates plane, with a strong concentric ridge at a short distance from the suture, and with irregular concentric or slightly radiating ornament on the imner part. Axial canal not separate. Stem with a large quinquelobate lumen. Arms, ventral sac, tegmen, and stem unknown.

Remarks on the Species.

Dorsal Cup has a somewhat ovoid curve, bulging more in the region of the basals. The measurements of the specimens are as follows :-

	Height millim.	Width below. millim.	Width above. millim.
$($ a $) \ldots \ldots \ldots$	23	$8(?)$	$21(?)$
$(b) \ldots \ldots \ldots$	23	$7 \cdot 25$	$23(?)$
$(c) \ldots \ldots \ldots$	1975	8	$21(?)$

I BB 5, pentagonal, rather wider than high.

	Height. millim.	Width below. millim.	Width abore millim.
(a)	6	$4 \cdot 75$	7.75
(b)	55	4.2	
	5.5	4	6.5

BB 5, hexagonal ; post. B, seen partially in b, heptagonal.

	Height.	Width below.	Width above.
	${ }_{12}$	${ }_{0}$	
(b)	10.2	$8 \cdot 5$	11
	10.75	8	105

The measurements of post.B are height 12 millim. in b; otherwise unknown.

RR 5, shield-shaped; projecting in a slight bulge just below the articular facet, but not curving inwards much towards the radial processes. The facet is smoothly concave, with a very slight trace of a ridge; the axial canal is not separated from the ventral groove by stercom, but, together with it, forms a deep notch. Measurements are:-
$\left.\begin{array}{cccc} & \begin{array}{c}\text { Height. } \\ \\ \text { millim. }\end{array} & \begin{array}{c}\text { Width below. } \\ \text { millim. }\end{array} & \begin{array}{c}\text { Width abore. } \\ \text { millim. }\end{array}\end{array} \begin{array}{c}\text { Width of } \\ \text { facet. } \\ \text { millim. }\end{array}\right]$

From which it appears that the sides of the radials are almost parallel and that the width of the facet is just half that of the radial. The facet is almost at right angles to the slope of the side and is therefore directed almost upward.

A portion of anal x is preserved in b. It is about 6.5 millim. high and about 5 millim. wide below.

A portion of $r t$ is also preserved in this specimen.
A marked concentric ridge surrounds all the cup-plates at a distance of about 75 millim. from the suture. There is also an irregular ornament on the plates, which tends to run in concentric circles (Pl. XIII. fig. 1S), or may have a more radiate arrangement (Pl . XIII. fig. 14).

The characters of the Stem may be inferred from the bottom of the eup, which shows a very large quinquelobate axial canal, shown in Pl. XIII. fig. 17, where it has a mean
width of $4 \cdot 2$ millim., or a little more than half the probable width of the stem. The facet for the stem is radiately striated. 'The stem was therefore probably like that of C. acinotubus.

In the general shape of the cup and in its probable stemChatacters the species resembles the gromp of C C. acinotubus. The shape of the emp is most like that of C. urinotulues, and indications of the ridge that is here so marked may also) oceatsionally he seen in that species. The moment, however, more resembles that of $(\therefore$. vishyemsis, var. monilifer. In the notched facet and impertorate articulation this species differs from most Silurian Cyuthorini; but such a stage of development is orcasionally presented by C. striolatue, which belongs to the same group. The large size of the cup) is a character of no great importance, but affords a ready means of distinguishing the species in British collections.

General Remarzs on the Genus.

The British specimens do not throw much light on the morphology of the gemus, so that there are very few points to which attention need be here directed.

Growth of the cup.-From the various measurements of the phates of C. acinotulus given on p. 217, it seems to follow that the facets of the radials, and consequently the arms, are wider in proportion in the young than in the adult; also that the radials are proportionally wider below in the young. This latter fact harmonizes with the statements already made in general terms by Messrs. Wachsmuth and Springer \% and Mr. S. A. Niller \dagger as to the infrabasal and basal plates of Crinoids being more largely developed in the young than the other plates of the cup. 'That statement too, it may be mentioned, is confirmed by the measurements made of the present species. It is extremely interesting to note how closely the growth of this Silurian Crinoid agrees with the growth of the Pentacrinoid larva of a recent Antedon \ddagger. But it would be advisable to tabulate the measurements of large series of many other species before laying down any general laws as to the growth of Silurian Inadunate Crinoids.

The Axial Cunal of the Arms. - So much was said about

[^52]this in the earlier part of the paper (p .209), that it is only necessary to print out that a Silurian species is here described, from speetmens of mature growth, in which the axial canal is not separated from the ventral gronve in the radial facet: in this print (C. rallatus resembles Carboniterous species of C'yathocrinus. F'urther evilence, if' such be needed, to show that the nom-separation of the canal is mercly a youthful character, and therefore alin an archaic one, may be adiluceal from the young specimen at Jermyn Street (p. 211, fig 5a). Consequently it is not in itself a character very suitable for the discrimination of genera.

The Cocering-plutes of the Arms.-It does not appear from the present paper, but it will he seen from the doscriptions of the Gotland Cyathoerini that, although the number of these that groes to an ossicle is variable, yet there are limits to the variation, by the recognition of which we are often able to determine species when other means fail us.

In deserilling these structures, Messrs. Wachsmuth an? Springer have mentioned (Rev. I. S4, Proc. 1579 , p. 304) that the groove "is provided with two rows of from two to five successive movable plates, alternately arranged on opposite sides." It is, howerer, undoubtedly the case, as shown by Pl. XIII. fig. 10, that the row on either side may be only one plate deep. It is quite true that there are sonnetimes two plates in the row, a small narrow plate lying at the base of and alternating with each of the regular conical coveringplates (see Angelin, Icmogr, tab. xxvi. fis. 57). Occasionally too there occur small, usually rather irregular plates, over the middle line, between the two rows of regular covering-plates. This might make three or conceivably four rows on either side (see W. \&S. Lev. III. Proc. 185.5, pl. is. fig. 7 ($)$. But in asserting that there were sometimes five rows it is possible that Nessrs. Wachsmuth and springer were misted by Angelin's tab. xxvi. fig. 4, which represents the covering-plates of (\because. ramosus (wrongly called there (? iomgimamus) ; for these plates are marked by transverse lines that divide them into five parts, and produce the impression that each covering-plate is composed of tive ossicles, which is not really the case.

The Fentrul sict-Messis. Wachsmuth and Springer stated in 1879 (Rev. I. 84) that pores and slits had heen observed in the ventral sate of Silurian species of Cyathocrinus. This statement has never heen withdrawn be them, thongh in their recent paper on the Perisomic Ilates * they seem to imply

* Proc. Acad. Nat. Sci. Philadelphia (1890), Part III. See p. 360 , February 1891.
that the ventral sac of the Cyathocrinide generally is not preforate. It is pusithle that they were formerly misled by the erroneons reterence to Cyuthocrinus of many species of Gissocrimus, Botryocrinus, and such forms in which the ventral sac often appears at first glance to be provided with slits between the edges of the plates. At any rate none of the sacs of the Silurian Cyuthocrini that have come under my observation appear to prisess either pores or slits. Deceptive appearances are sometimes produced by weathering, as deseribed under ($:$ arinotulus ($1 \cdot 220$) ; anl sometimes the edges of foldel plates are filled with matrix which everyone does not take the trouble to clear away.

The Tegmen.-As none of the British Silurian specimens show the tegmen it is advisable to defer discussion of the many important problems presented by it. Original drawings, of two Carboniferous specimens are, however, given (p. 211) in illustration of the description of the gentus. The one (fig. 6) shows the deltoids and the madreporite surrounding the peristome; the other (fig. 7) shows how both deltoils and peristome may be covered by ambulacrals and interambulacrals, though portions of the deltoids are still seen peeping out from beneath the interambulacrals. The questions to be decided are these:-What are the true homologies of the plates here called deltoids? Is the madreporite serially homologous with the deltoids? Or is the prosteriur deltuid represented by two plates, une on either side of the madreporite? Are the phates that cover over the peristome, which are sometimes large and fairly regular, sometimes small and irregular, orals or merely large ambulacrals?

explanation of plate xili.

Cyathocrinus acinotubus.

Fig. 1. 5itso, B. M. I crewn with portion of stem, seen from the right side. The ventral sac seen crossing between the arms. Drawn with the camera by Mr. Hullick. (Nat. size.)
Fig. 2. E $1450 \mathrm{~B} . \mathrm{M}$. Crown seen from posterior. Drawn with the camera by Mr. Hollick. (Nat. size.)
Fïg. 3. a jobi, Woodwardian Museum. A small cup, seen fram below, with one or two columnals attached. Note large size of IBB. From a drawing by Mr. Edwin Wilson, artist to the Cambridge Engraring Co. (Nat. size.)
Fig. 4. a.520, Woodwardian Musenu. Cup seen slantwise from below. showing projection of radials. Une very pentagonal columnal seen inserted in the IBB circlet. From a drawing by Mr. E. Wilson. (Nat. size.)
Fig. ©. a ji26, Wivodwardian Musem. Cupsech from pueterior, showing x and $l t$. From a drawing by Mr. E. Wilson. (Nat. size.)

Fig. 6. E 5fils, B. M. A ventral sar, slighty weathered. From a drawing by Mr. Hollick. ($\times 2$ diam.)
Pig. 7. Fiftel, B. M. A small portion of the weathered surface of a radial. From a drawing by Mr. Hollick. ($\times 10$ diann.)
Fig. \&. E fone, B. M. A plate from the proximal eemion of the vemtral sac, to show the folding of the edges. Drawn on stone by the author. ($\times 3$ diam.)
Fig. 9. Grindrod Collection, Oxford. The distal and of the rentral sar appearing between the branches of the anterior arm. Drawn on stone by the author. (Nat. size.)
 covering-plates open.
b. $57142, \mathrm{~B}$. M. The rentral surface of three brachials, the covering-plates removed and the ventral groove exposed.
c. Grindrod Collection. The rentral surface of three brachials, the covering-plates in situ and closed.

All from drawings by the author. ($\times 3$ diam.)
 combined from the eridence of these two specimens. From a drawing by the author. ($\times 3$ diam.)
Fïg. 12. E bion:', D. M. Portion of surfac of a madial, shmwing shazton ornament. From a drawing by Mr. IIollick. ($\times 10$ diam.)
Fig. 13. The articular surface of a stem-ossicle from the evidence of numerous specimens. From a drawing by the author. $(\times$ 3 diam.)

Cyathocrinus vallatus, sp. n.
 articular facet; also showing ornament. From a drawing by Mr. Hollick. ($\times 2$ diam.)
 and x on the left; outline restored. From drawiugs by Mr. Hollick and the author. (Nat. size.)
lig. 16. 170, Mason College. A cup; orientation uncertain. From a drawing by Mr. Hollick. (Nat. size.)
Fig. 17. The articular facet for the stem of the same specimen. From a drawing by Mr. Hollick.
Fig. Is. E foon, J. M. A much watherel cup; mientatiwn uncortain. From drawings by Mr. Hollick and the author. (Nat. size.)
XXXIII.-On some Spieters from the Amiumun Ishemis

Ote knowledge of the amehnolugical fana of the Ambanan Islands is as yet excectingly limited; so far as I know M. Eugeme Simon is the only authe who has, in a recontypublished paper *, enumerated and described any spulers

* "Études sur les Arachn. de 1Asie mérid, faisant partie des collections de l'Indian Museum (Calcutta).-II. Arachn. recueillis anx iles Andaman par M. R. I) Ohdiam," in dium, of the A siatic Ave, of Deneal, lvii. part ii. no. 3 (1887).
from those islands*. Only two of M. Simon's species were known to arachologists as inhabiting other parts of Southern Asia, especially Burma and the Malay Arehipelago ; the rest (five species) were all new to science. Tos the seven species mentioned hy M. Simon I am now able to add fourteen more, captured in 'rable Island by Mr. Oates, and kindly placed by him in my hands for examination. Though onily two of these spiders (Lipeira Outesii and Salticus modestuss) appear to be new, a list of them may, I think, be of some interest, as it afliods strong evidence of the conformity of the spider famia of the Andamans with that of Burma on the one side and the Malay Arehipelago on the other; the twelve alrealy-known species loelong, in fact, also to the fama of Burma or to that of the Malay Archipelagn, and are even common to these two regions, with the exception perhaps of Ar!yproepeira pusilla, from Amboina, of Surotes impulicus, which had hitherto been captured in Buma only, and of Telamonia Peckhamie, which had been found in the Nicobar Islands and Sumatra.

The twenty-one species of spiders now known to inhabit the Andamans belong to the following tribes:- Territelaria (1 sp.), Retitelaria (2 sp.), Orbitelaria (10 sp .), Citisrade (1 sp .), Laterigradae (2 sp .), and Saltigradie (5 sp.). Noreover the 'Tubitelaria are, in Mr. Oates's collectinn, represented by a few young specimens belonging to the genera Clubionce and Eutitthe; but these specimens (and that of a Lycosa) are not sufficiently develuped to be determined or described. Also among the Andaman spiders studied by M. Simon there were young representatives of several genera (Ilomalattus, Oxyopes, Nephilu, [Metu = Argyroopeira?], Hersilia, Chiracanthium) that are not included in our lists of the spiders of the islands.

The species contained in Mr. Oates's collection are ats follows:-

Tribus $R_{\text {ettoteartas. }}$

Fam. Pholcoidæ.

1. Pholcus elongatis, Vins.

1863. Pholeus elongatus, Vins., Aran. d. iles de la Réun., Mauriee et Madag. p. 135, pl. iii. fig. $\overline{\text {. }}$
Two adult specimens, a male and a female.

* These species are:-1. Cytaa albolimbata, sp. n.; 2. Cyllobelus miniaceomicans, sp. n.; 3. Sphedanus marginatus, sp. n. ; 4. Gastera-
 sternis, sp. n.; 6. Tetragnatha gracilis (Stol.); 7. Satzicus andamanious, sp. n.

Fam. Theridioidæ.

2. Theridium rufipes, Luc.

1812*. Theridion rufipes, Luc., Explor. de Algérie, Arachn. p. 263, pl. xvi. figs. 5-5d.
One adult male.

Tribus Orbttelarie.

Fam. Euetrioidæ.

3. Argyroeperra pusilla (Thor.).

1-78. Meter masillu, Thor, Atura sui Ragni Matesie Paphani, II. Razui
 Genora, xiii. p. 97.
Of this species, which had formerly been found in Amboina only, Mr. Oates has captured an atult female in Table Island. The area ocempied hy the four middle eves is in this specimen not perceptibly broaler behimb than in front ; in other respects it appears to be exatly similar in form to the types of the species. The colour shows hut a few slighi difterences. The tarsal joint of the (rellowish) palpi is h)ackish; the middle area of the back of the abomen has behind, instead of three pairs of small silver-coloured spots, two longitatinal, nearly parallel, close-set, silwer-coloured lines; the sides of the abtumen are hackish, with a long, somewhat oblique, and slightly simated silver-coloured baml, mited interiorly with the silvery pattern of the hack, and they show also a small spot of the same colour, situated more below, near the base. The vulva consiste, as in the types, of a small, pale, ahost semicireular fowal, surmmded in front and on the sides by a low, backward-curved callus, which is black on the sides and pale in the middle.

The lengeth of the specimen is $3{ }^{\circ}$ millim. ; length of eqphat bothorax 13, of abolomen $2 \frac{1}{4}$ millim. ; legs, I. ! ! 11. if, III. 4 , IV. nearly $6 \frac{1}{4}$, pat. + tib. IV. nearly 2 millim.

4. Epeira (Cyclosa) Oatesii, sp. n.

 piceo, ciut fusco-iestaceo et saltem in medtio piceo; sterno pluyar albi-cunti-flued occuputo, que interdum, saltem in mare, in linesm anticam et maculas 5 marginales ast divulsa; palibus tistaceis, plus minus distincte nịricanti-ctmulutis: ubulomine ante medium dorsi

[^53]
 cante incequati vel fere thomboidi antice notato, pone medium vero

 picture tamen serpe obsoleta.- $\boldsymbol{\sigma}^{\circ}$ ㅇ red. Long. ठ circa $3 \frac{1}{3}$, if $4 \frac{1}{2}-$ 5 millim.

Peminu.- Fi, ctmeluti, Thor.s, valde aftinis est hate specios, sed minor, et patueis aliis notis distinguenda. Cephuluthoros ad formam plate $u t$ in cat secie cost, inter partes cephaticam et thoracicam fortiter constricta: pars thorabia panllo altior est quam pars cephalica, fovea ordimaria centrali sat magna, six quadrata sed antice rotundata, ef fire in summo partis thoraciat (non in dectiritate ejus antica) locata. Oculorom series antica modice sursum curvata est: linea recta laterales infra tangens medios fiere in ceutro secat; series postica fortiter est recurra. Oculi medii postici cum lateralibus anticis seriem rectam formant, si desuperne inspicitur cephalothoras. Area oculorum mediorum paullo longior est yuam latior antice, multo latior autice quam postice. Oculi medii antici spatio diametrum suam prene requanti sejuncti sunt : medii postici, ut laterales bini, contingentes sunt inter se.
Mumtibulce patellis anticis paullo crassiores, plus duplo et dimidio longiores quam latiores, versus basin sat fortiter conrexa. Peules breves : 1^{i} paris cephalothorace modo circa -3 , non triplo, longiores sunt: pedes t $^{\prime}$ paris pedibus дi paris vis longiores. Aculei 1anci et dehillimi : patelle anteriores aculeo ejusmodi saltem extus muniter sunt, et tibie plereque aculeum uum alterumse (rel potios setam) ostendunt. Ahetomen satis altum, circa dimidio longius yuam latius: non parum ante medium, ad $\frac{1}{3}$ longitudinis fere, versus latera, dorsum ejus tubercula duo olbtusa erecta parra sed evidentissima ostendit; postice in formam coni sat breris retro productum est. Desuper risum abdomen guboratum est, antice anguste rotuudatum, in lateribus, usume ad $\frac{2}{3}$ lougitudinis fere, ample et satis reyualiter rotundatum, dein vero lateribus rectis sensim angustatum et postice subacuminatum. I latere visum antice oblique rotundato-truncatum est, dorso anterius, ante tubercula, consexo-proclisi, dein recto rel patullo conearato, apice retro et paullo sursum directo ; postice hoe modo risum valde ohlique truncatum et sat altum est ahdomen (altitudine hic latitudine'm ejus saltem ieyuante) : spatium inter mamillas et apicem abdominis spatium inter eas et petiolum circiter tequat. Fulce "x "corpore" cirea triplo latiore quan longiore, utrinque conrexo et nitidissimo, fusco constat, et ex "scapo" breri pallido deorsum et retro curvato et directo, qui corpore illo circa triplo angustior est et vix rel parum pone id pertinet : hic scapus basi sat latus et seusim angustatus ent, dein vero angustus. parte apicali

[^54]angusta parum longiore quam latiore, lateribus parallelis, apice rotundato.
Color:-Ciphalothorue picens, parte cephalica antice et plaga mazna utrinque in parte thoracica fusco-testaceis: stepius vero fucentestaceus vel testacels est, modo in medin, prasertim in impressionibus eephalicis, infuscatus, piceus vel nigricans. Strmom nigro-marginatum plaga maxima subtriangula, utringue ter ines.a. allicanti-flava occupatur, guse interdum in medio inatyualitur infuscata est (an nomumquam in maculas divulsa?). Neculit,...h testacese vel fusco-testaceas, apice nigricantes. Mu, rilla et luhium testacea, basi obscuriora. P'ulpi testacei, parte tarsali aphice niericante, parte tihiali interdum ad apicem paullo nigricanti-maculata quoque. Pedes testacei, phus minus evidenter nigro--shammulati: femora anteriora apice intus plagam rel maculam nigram ontendunt, sequentia internodia apice plus minus anguste nipra sunt ; tibie anteriores praterea maculam rel ammum ahruptum nigrum versus medium, extus, habent. Abclomen cincreo-testaceum, supra macula basali mugua nigricunte subrhomhmidi vel incoquali notatum, qua interdum angulo sun prstico havpe inter tuberewh duo dorsi pertinet et panllo pallide-maculataest, int ordam hervior et postice inaequaliter truncata : pmitice dorsum area migrimente maxima fere triangula vecupatur, quae paullo pone medinm domsi initium capiens usque ad apicem cjus pertinet, interdum antion cum plaga illa nigrieante conjuncta: in lateribus tlexuosornentata est haec area, secmudum medimm fascia inempali palleds geminata. Latera abdominis pallida nipricanti-variata sunt: spatium inter apicem dorsi posticum et mamillas fascia longitudinali lata nigricante phus minus expressa occupatur. Venter ante rimam genitalem subfuscus rel nigricans est, pone cam ant alhicanti-flavus et plus minus nigro-variatus vel reticulates, aut nigor et albicanti-flaro-maculatus; mamille nigre in area nigricante vel fusca posita sunt. In exemplis emphalothone et pedibus clarioribus et plaga illa hasalis ot area puesiea imtendum parum distinctae sunt, it ablomen tune superius satis agnaliter cinereo-testaceum est totum.

Mess.-Cefheluthorace vix inter partes cephalicam et thmo ivam onsstrictus, impressionihus cephalicis tamen fortibus et pastice sulbo fransverso comjunctis a latere risus ante declivitatem postiam parum conrexus, pæne rectus et paullo proclivis est, et inter partes cephalicam et thraricam paullo impresons. Utringue anterius multo fortius quam in femma simato-angu-atus ost. parte thoraciea in lateribus amplissime of fomiter rotumata, [arte cephalica lateribus rectis anteriom versus nom parum angustata. tubereulo veulorum mediorum anticorum valde prominente: front is latitudo vix $\frac{1}{3}$ latitudinis partis thoracicæ superat. Forea centralis suhtransersa et profumda pestice suloo sat profumion ungue ad declivitatem pust icam comt inuatur. 'patinm inter endes medtan anticos corum diametro oridenter minus est; spatia, quibus a lateralitus anticis separautur. home diametrmm ifeiter aquant.

P'alpi lireves, clava femoril,us anticis mon parum latiore: pars patellaris paene xque longa ac lata est, supra convexa et seta longa futi erecta nigra munita. I'ars tibialis parte patedlari vix longior eat sed etiam hasi ca faullo latior, a hasi ad apicem pratsertim in latere exteriore sensim dibata, apice paullo obligue trunato parte patcllari circa dimidio latiore, angulo apicis exteriwe paullo producto. Pars tarsalis, intus verqens, hasi extus procursu urdinatio obtus) intus vel sursum enrvato munita est ; h,ulbus, sat complicatus, a frome visus subter, ad apicem extus, dentem fortem nigrum foras directum ostendit et sub) eo setam rectam nigram, cam quogue foras directam; fere e medio bulbi subter, magis extus, alia seta gracilior et longior foras et paullo miteriora rersus directa bulborque appressa exit. Pectes magis aculeati quam in femina sunt; aculci minus debiles quorue. l'rater aculens paucus in femoribus, patellis et tibis anterioribus, ut et in pedihus phaterioribus (praertim in femoribus 4^{4} paris, qua ctiam sulter ad basin sericm hrevissimam aculeorum farvorum ostendunt), aculeos nommullos patlo lougines et fortiores in jeedibus anterioribus riden. In redibus l^{i} paris thitise intus aculcis 1 . 1 , metatarsi intus 1 aculeo muniti sunt ; tihie $2 i$ paris (qui ut 1^{i} paris cylindratie et paullulo foras curvate sed non incrassate sunt) intus 1.1 aculeos, subter extus seriem aculeorum majorum 4 (sive 1.1.1.1 aculeos) ustendunt, subter intus vero aculeos minores 1.1 ; proterea supra versus apicem 1 aculeum habent he tihie. Metatarsi 2 paris aculeo gracili saltem extus instructi sunt. Coxæ omnes mutice. Abdomen brerius oratum est quam in femina, desuper risum postice citius in conum parrum retro directum productum, a latere risum supra fortins et magis aryualiter conrexum, mamillis evidenter longius a petiolo cyuam ab apice abdominis postico remotis.
Color:-Ciphuluthorace totus piceus est, stormm fuscum, maculis marginalibus et linea marginali antica flavis circumdatum. Ilundibuke, maxille et lubium fusco-testacea. P'ell $l^{\prime \prime}$ ejusdem coloris, clava ferruginen-fusca. Perlssubtestacei, nigricanti-subannulati: femora saltem anteriora ad apicem sat late nigricantia sunt, internodia sequentia (prosertim tihiæ 4^{i} pris) apice nigricantia rel nigro-maculata, et tibis metatarsique preterea annulo plus minus distincto rel matula hujus coloris rersus medium notati. Aldomen paxne totum cinereo- rel lurido-testaceum est: pictura distincta in dorso rix ulla (modo vestigia plagae dorsi antica et area ejus posticae video): dorsum ejus punctis + majoribus nigricantibus trapezium formantibus anterius notatum est: renter ante rimam genitalem obscurior ent, pone eam in formans rectanguli transversi albicanti-flavus, maxillis in area transrersa olscura positis.

ㅇ.-L. . corp. 5 ; lg. cephaloth. $\stackrel{2}{ }$, lat. ej. prene $1 \frac{1}{2}$, lat. front. pane 1 ; lg. abd. 3 , lat. ej. $-\frac{1}{4}$ millim. Ped. I. pene $5 \frac{1}{2}$. II. $4 \frac{1}{2}$, III. 3, IV. $4 \frac{1}{2}$ millim. longi ; pat. + tib. IV. paullo plus $1 \frac{1}{2}$ millim.

lat．front．circa $\frac{1}{2}$ ；lg．abd．paullo plus $2 \frac{1}{3}$ ，lat．cj． $1 \frac{3}{4}$ millim． l＇ed．I．pane $4 \frac{1}{2}$ ，II．paulln plus $3 \frac{1}{2}$ ，III． $2 \frac{1}{2}$ ，IV． 4 millim．lungi ； pat．＋tib．IV．pæne $1 \frac{1}{2}$ millim．

Of this species Mr．Oates＇s collection contains a few females and a single male．

5．Epeira（Cyclosa）insulana，Costa．

1834．Epeira insulana，Costa，Cenni Zool．\＆c．p． 65.
1841．Epeira anseripes，Walck．，H．N．d．Ins，Apt．ii．p． 146.
1842．Epera trituberculata，Luc．，Explur．de lıMrérie，Arachn．p．ンド， pl．xv．fig． 4.
1877．（＇yrtophore melamure，Sim．，＂Etudes Arachn．：IX．Arachn． recueillis aux iles Philippines，＂in Ann．de la Suc．Ent．de France，se sér．vii．p．72，pl．iii．fig． 9.
1878．Epeira anseripes，Thor．，Studi isc．，II．Ragni di Imboina，lur． cit，xiii．p． 81.
＇The collection contains many examples of this very variable species，among them some few males．The＂scapus＂of the vulva is wanting（broken）in almost all the alnlt females．

For synonymy of Epeira insulana，Costa，see also Thorell，＂Spindlar fran Nikobarema och antra delar af Sïnta Asien \＆e．，＂in K．Svenska Tetenskaps－Akademiens Mand－ lingar，xxiv．no． 2 （1891），p． 150% ．

6．Epeira Théisii，Walck．

1841．Epeira Thésii［Theïs］，Walck．，H．N．d．Ins．Apt．ii．p． 53 ； Atlas，pl．xviii．fig． 4.
Only a very young female specimen．

7．Epeira punctigera，Dol．

1857．Epeira punctıgera，Dol．Bijadr．，t．de Kemmis d．Arachm．r：d．Inel． Arehipel，in Tijdschr．v．Nederlandsch Indie，xiii．（－ere．：3，iii．），p．420．
＇T＇wo males，one adult，the other not fully dereloped．
＇The full－grown specimen is rather large（ 10 millim．longe）， with the whole cephalothorax of a rusty－bown colour，and the back of the abolomen erverish yellow，withont any other pattern than a small whitish \wedge near the hase and the ombi－ nary four impressed brownish points．＇The belly is darker along the midelle，with a broad tramsverse yellow band imme－ diately behind the rima genitalis and two large yellow spots in front of the mamilla．

[^55]
8. Argiope pulchella, 'Thor.

18is1. Aryiople pulchellu, Thor., Studi \&c., III. Ragnii dell Austroumalesia \&c., loc, cit. xviii. p. 74.
A single young female.

9. Gasteracantha brevispina (Dol.).

1857. Plectana brevispina, Dol., Bijdr. \&c., loc. cit. p. 423.

This appears to be the most common spider of the island. Mr. Oates's collection contains hundreds of specimens, young and full-grown, and among these latter also a few males. The back of the abdomen is in the adult male of a brownish or dirty yellowish colour, with one or two more or less distinctly limited black spots on either side near the lateral angles, and sometimes also with two round paler spots somewhat before the middle, as in most females ". The dorsal tuberele of the female's cephalothorax is rather low and obtuse, sometimes quite truncated at the tip, where it is frequently furnished with two longitudinal, very fine and short furrows, but not cloven so as to form two tubercles.

Tribus Latertgrade.

Fam. Heteropodoidæ.

10. Heteropoda venatoria (Linn.).

1758. Aranea venatoria, Limn., Syst. Nat. ed. 10, I. ii. p. 1035.

Three adult males. The legs of these specimens are distinctly ammulated, or, rather, provided with black bands or spots above, especially on the thighs.

11. Sarotes impudicus, Thor.

Cephatothorace in fundo fermaninco-fuseo, parte cephetica anterius saturatius colorata, clypro et genis piceis; mandibulis nigris, lubio pune semicirculato, palp pis sulpiceis, purte tarsali nigricante ; perlibus subfervugimeis, femoribus puallo pallidioribus, metatersis tarsisque pice is et lute nijpricanti-scopulatis; abdomine ovato, in fundo sordide tustaceo vel sulifusco, pilis densis fleventibus tecto, pictura distincta carente; vuluce ex arell comea fusell constante, que postice late et profuntissime incist ist, hac incisura perte molli albicante repleta.- $\frac{+}{}$ ad. Long. 18-25 millim.

[^56]1887. Suretes impurlime, Thur. Tiacerio di L. Fea in Birmania e rerimi vicine, ii.7, Primo Sarerio sti Laqni Jimmani, in Ann. del Musto Civ. di Storia Nat. di Genova, ser. 2a, v. p. $241\left(=\sigma^{*}\right)$.

Fomina.-C'ephutothoror' æeque longus ac latus est, latitudine clupei $\frac{3}{5}$ latitudinis maxima cephalothoracis sequanti, preterea ar forman ut in mare, vix altior guam in eo. Series oculorum postica desuper visa recta est, series antica vix rel parum deorsum est curvata. Spatia inter orulos medios anticos et posticos anticorum diametro evidenter paullo majora sunt, (t paull, majora quam interrallum inter oculos hinos laterales, hoc intervallo diametrum oculi lateralis antici panllo superanti. Spatia subequalia inter oculns t anticos diametrum mediorum eorum aequant. Oculi 4 postici, quormon medii puallo longius a lateralibui quam inter se distant, spatio triplam mediorum diametrum ayumabibs separati sunt. Spatium inter marginem clypei et oculos laterates anticos eorum diametrum eruat, sed spatium inter hune marginem et oculos medios anticos horum neulorum diametro evidenter minus videtur. Ceterum oculi et sternum ut in mare loc. cit. diximus sunt.
Mundibulu femoribus anticis non parum latiores. Matellas 1' juria longitudine repuantes, plus sesqui sed non duph loneiores puam latiores, in dorso ad longitudinem sat fortiter convexie, leves, nitidae, pilis rariorihus conspersu; sulcus ungucularis pustice ; (5) minntissimo). antice - - lentions armatus est. Wuailh rix in lahium inclinate eogue saltem duphet dimidio longiores: luhiom preno duplo latius quam longins, apieem rotundatum versus lateribus leviter rotundat is sat fortiter angustatum, parne semicirculatum igitur. (lu mare apicem late rotundato-truncatum versus minus fortiter angratatum est.) Palpimediocres: pars patellaris circa dimidio longior est yuam latior, pars tibialis duplo longior quam latior: pars tarsalis duas priores comjumetas longitudine aduat. I'eles paullo breviores quam in mare, 2t paris cephalothorace circa $4 \frac{1}{4}$ longiores: hi pedes perthhes 1^{2} paris paulh plus tarso suo longiores sunt, pedes 1^{2} paris pertes $\frac{1}{}$ paris paullo phas tarso suo longitudine superant yumpe. It in mare sopmatio et aculeati sunt pedes. Ahelame n oratum, saltem ante partum antiee sequaliter rotundatum. Tulva ex area cornea elerata utrinque consexa, postice laterihus rotumbatis sensim paullo anghetata, femora latitudine circiter abuanti, pieea constat, yuat pustive lat. et profundissime incisa est, hae incisura cireiter ad dimilium longitudinis area pertinenti et cute molli albicante repleta: ah apice antien subrotundato hujus partis albieantis sulei dan parri anteriora versus ducti et appopimpuantes in area valva comea conspiciuntur.
C'olor.- ('phuthothoret in fundo ferrugineo-fuscus, parte cephatiea anterius pablo obsemiore, elypeo enm grens nigro-picen: in de livitate postica sultestacons est. hate area pallibiore subtriangula utrinque linea nigricante limitata. Pube sat densa appressa harente restitus eat epphatothomx. et anteriu- pilis -parsus, qui
in fronte et in clypeo nigri sunt, praterea ad maximam partem testacei. Stormem ferrugineo-fusemm, pilis nigris conspersum. Ahcumblubue nigmer, tuherenlo hasali rufo-fusen ; pilis nigris sparse sunt, sulen unguiculari rufio-ciliato. Alucille et lelsium nigra, apice picтa. Palpi pieri, hasi clariores, parte tarsali nigra; al maximam partem sordide olivaceo-nigricanti-pilosi et -pulescentes sunt. Pedes, metatarsis et tarsis exceptis, in fundo testaceofusi, cinmen-testacen-pubescentes of -pilosi, tibiis paullo obscuriorihus ef dunsius pilusis, femoribus subter plus minus obsolete nigricanti-punctatis; metatarsi et tarsi picei sunt, scopulis oliva-eco-nigris. Aculei pedum palporumque nigro-picei vel nigri. - Iletomen in fundo totum cinereo- vel olivaceo-testaceum, pictura distincta nulla: pilis flaventibus undique restitum est. Mamille fuseo-testacer, inferiores subter fusce.
of ad.-Ig. corp. 2-5: 1 lg . ©ephatoth. 11, lat. ej. 10, lat. front. 6 ; lg. ahd. 16, lat. ej. $11 \frac{1}{2}$ millim. P'el. I. 3~ $\frac{1}{2}$, II. 42 $\frac{1}{2}$, III. 31 , IV. $34 \frac{1}{2}$ millim. longi ; pat.+tib. II. 15, pat. + tib. IV. $11 \frac{1}{3}$ millim.

The enllection contains several examples, arlult and young, of both sexes. The males are $15 \frac{1}{2}-18 \frac{1}{2}$ millim. long, with the cephalothorax as long as broad, and as high as in the females; one of them has two yellowish spots on either side of the longitudinal yellowish band on the back of the abdomen at its base. Young specimens are almost totally of a yellowish or brownish-yellow colour.

Of this species only one specimen, a male, had hitherto been found ; it was captured at Me-tan-jà, in Burma, by Mr. L. Fea.

Tribus Saltigrade.

Fam. Salticoidæ.

12. Salticus modestus, sp. n.

Ciphalothorace prico, allio-pulnesernte, in lateribus late palliriore; abriomine quoque piceo et albo-pmblescente, orato, non constricto; pelibus piceis. testucio-lincatis en apice plus minus late testaceis, trochanterilues 4^{i} puris fluro-testuceis, tibiis 1^{i} paris subter 6 puribus acelcorum lonyorum armatis, metutarsis hujus paris 2 paribus acul.ormin èmsmorli, pectibus $2 i$ paris suliter aceleis debilibus, 2.2. in metatarsis et saltem 1.1.1 in tibiis munitis.- $\frac{\text { o jun. Long. }}{\text { jon }}$ saltem $4 \frac{1}{2}$ millim.
Fomina jun.-C'phulothorax paullo plus duplo longior quam latior, paullo pone medium sat fortiter angustatus, parte cephalica, quæ parte thoracica non parum altior est, desuper visa lateribus prene parallelis anteriora rersus rix rel parum angustata, fronte leviter rotundata, pone oculos posticos (qui paullo ante medium cephalo-
thoracis locum tenent) ample rotundata; pars thoracica parte cephalica non parum brevior et angustior est, parum longior quaru latior antice, lateribus modo levissime rotundatis posteriora verius non parum angustata, postice late truncata et tenuiter clevatomarginata. Transversim parum convexa, pane plawa est pars cephalica; a latere visa supra modice proclivis et recta est (modo inter orulos auticos paullo masis proclivis), pone (apur) oculum posticum prorupte declivis, hac declivitate recta, ipso dorso partis cephalice fere quadruplo breviore et oculi postici diametrum duplam longitudine vix expuante; pars thoracica a latere risa usque ad marginem posticum sat fortiter declivis est, modo anterius paullo convexa, preterea recta. Quadrangulus arnlorm postice paullo latior est quam antice, paullo latior antice quam longior. Oculi medii antici valde magni sunt, lateralihus anticis sirca triplo majores, spatio parvo ab iis remoti et pæne tota diametro sua pone cos positi. Oenli minuti $2 x$ seriei evidenter longius a lateralibus anticis quam a prosticis oculis distant. Oculi postici foras eminent, lateralibus anticis paullo minores: vix lougius a margine cephalothoracis quam inter se distant. Stermum longum et angustum, apice postico rotundato ; antice inter coxas 1^{i} paris usque ad labium productum est et hie apice truncatum.
Aendibent anteriora versus et paullo deorsum directee, dupho lonsiores quam latiores, subeylindrat:e, apice late et ollique rotumatotruncate, ad insam basin sub)geniculatio, meterta sat leriter convexie; unguis mandibula non parum lrerior, oblique intus et retro directus. Meweillu paullo diraricantes, longe, lahio cirea dimidio longiores. Lahium plus dimidio, pane duplo longius quam latius, apice rotundato. Pelpi breves, deplanati. Pars patellaris paullo longior est quam latior, a basi ad apicem sensim paullo dilatata; pars tibialis ea saltom duplo latior eat, a basi and apicem sensim non parum dilatata, paullo longior quam latior apice: pars tarsalis parte tibiali ctiam paullulo latior et nom parum longior est, circa dimidio longior quam latior basi, a basi ad apicem subacuminatum lateribus leviter rotumdatis sensim angustata, (dimidiato-) elliptico-triangula fere. Partes tibialis et tarsalis conjunctim laminam magnam formant, quae mandibulam tegit. Pedes breves, graciles, parcius pubesentes: pedes 3^{3} paris paullo longiores quam 2i paris sunt risi (?). Tibia l' paris subter ${ }^{6}$ paribus aculeorum appressorum longorum armatis sumt, metatarsi hujus paris 2.2 aculeis ejusmodi. In pedibus 2i paris tibies subter aculcos paucos debiles (saltem 1.1.1 magis extus) ostendunt, et metatarsi hujus paris ut videtur $\check{\bullet}$ 。こ aculeos parvos subter. Preterea vix aculeati sunt pedes. Abdomen ovatum, circa dimidio longius quam latius, equaliter convexum, neque impressum nee constrictum. Memillae mediocres.
Culor:-C'phedothorac supra nigro-picens, in lateribus testaceopiceus, pube appressa alha minus dense restitus. Normom subpiceum. Mendibuld alho-puheseentes, in derso pieear, in laterihus clariores. Mfurillde et lubium sordide testacea, basi subpicea.

Palpi picei, parte femorali sordide testicea. Pedes ad partem nigrieantes vel sulpicei, ad partem testacei: 1^{1} paris picei sunt, fomoribus faseia longitudinali subtestacea supra notatis, coxis, patellis of tibiis testareis (saltem patella tamen linea piecatomgitudinali utrinque notatis); metatarsi hujus paris fuliginei sunt, fascia longitudinali testacea supra, tarsi nigricanti-testacei. In pedibus 2i paris coxe et femora ad maximam partem picea sunt, sequentia internodia vero testarea, linea lugitudinali picea morinque, per patellam et tibian usque iu metatarsum ducta. D'edes posteriores pieci, patellis hasi ohligne et motatarsi apice testames. tarsis testaceis totis, trochanteribus 4^{i} paris testaceis quoque. Ablumen nigro-picenm, subter paullo pallidius, pilis apperexis temmihns ahbis sat dense restitum. Mamilla testaren-picear.
 lat. cj. pame $1 \frac{1}{2}$ millim. I'ed. I. cirea $5 \frac{1}{4}$, II. cirea $3 \frac{1}{2}$, III. f, IV. fere 63 millim. longi ; pat. + tib. IV. prene 2 millim.

One specimen only, a not fully developed female.

13. Plexippus Paylullii (Aud. in Sav.)

1827. Attus Paykullii, Aud. in Sav., Deser. de 1'Egypte, 2e ed. xx. p. 172, pl. vii. fig. 22.

A male and a female, both adult.

14. T'elamonia Peckhamii, 'Thor.

 p. 125.

A single nearly adult female. This species hand hithert, been met with only in the Nicubar Istands and in Sinnatra.
XXXIV.-An Eartheorm from Ecuador (Mhinadrihus ecu:doriensis). By W. Blaxland Bexham, D.Sc. (Lomdom), Aldrichian Demonstrator in Comparative Anatomy in the University of Oxford.

[Plate X.]

On November 2:3, 1889, I receiver, owing to the kind suggestion of my friend Prof. Jeffrey Bell, two smatl carthworms from Ahr. Edward Whymper for the purpose of itentification; and I wish to record my best thanks to that gentleman for allowing me not only to identify them but to retain them for purposes of further research.

The two worms, from their extemal characters, appeared Arn. \& Mlag. N. Ilist. Ser. 6. Vol. ix.
to be one species at different ages, for in the smaller of the two the clitellum was undeveloped, whereas the larger-which is the sulject of the present commmication-was evilently mature. Being of this opiniom, I cut the smaller warm incis it series of sagittal sections and proceeded to dissect the larger; more recently, however, having had the leisure in which to examine these sections, I find that the former presents several important differences from the larger dissectol one, and certain peculiar characters, which, at the moment, I have not time to discuss, so that I must leave the worm unidentified for the present.

Of the genus Rhinodrilus, Perrier, we at presment know three species, all from the neotropical rewion, viz. li. pmondoxus, Perrier *, from Caracas, in Venezuela, It. Gulielmus, Beddard \dagger, from British Guiana, and Ii. Tenketei, Homst t, from Surinam; the new species, which hats affinities with both the latter, was collected at Cayambe, in Ecuather, at a height of 14,000 feet.

Rhinodrilus ecuadoriensis, sp. n.§,

is 3 inches ($\overline{5} 5$ centim.) in length, and consists of some whe hundred somites. It is thus smatler than any of the previons species, though R. Tenkatei approaches it most nearly, being 11.5 centim. in length.

The colurn of the preserved specimen is perhaps worth recording, thoush no doubt very difterent in lite; wlem stripped of its cuticle it was dinty olise-green, the clitellum buff, tending to orange laterally, the tubereula puhertatis being of a deeper brownish tint.

The choter, as in the other species, are in four couples on each somite, the imer couples heing very chase to the miblle (ventral) line; if this space be taken as the unit (s), the distance between the outer and inner comples is $1 \frac{1}{2} \mathrm{~s}$. In f . I'enkatic this lateral interspace is loss than the ventral space, and in li. Ciulielmus it is equal to triee the rentral spacs.

The chetar are ahsent from the second as weil as form the

[^57]first somite, so that the first chetigerons somite is the thime All the chater are omansmen! in the manner chameteristic for the groms, and somewhat similar chate are fom I in Dion

 M. Belli (Benham).

The onnamentation, which comsists of a series of trans-ressely-artanged crescentic ridges, is not so pronouncel as would appear to he the case in other species; indeed, when the chate are monted in glyerrine, the markings might easily be overlooked with a low power, but in spirit and water they are distinctly visible. There are no special! modified "copulatory" chate, such as exist in the other species, where they are larger and straight, in R percolorus on somites xvi. to xix. and in lí. Giulielmus on the clitellum, or larger and more distinctly marked in R. Tenkatei; nor do I find any fascicles of chaetee such as Horst deseribed in his specimens on somites xvii., xviii., and xix.

The prostomium appeared from the exterior as a small rounded lobe, but on dissection was found to be retracted, as Beddard found to be the case in his species: it is some two or three times as long as the organ in the majority of earthworms.

The clitellum is very distinctly marked, partly from its: colour, but chiefly from the thickness of the epidermis and the deep, conspicuous, intersermental grooves ; it is, as in the other species, "ineomplete," and oecupies somites siv. to xxv., the last twe somites, however, being less distinctly modified on the animal's left side. 'The latero-ventral boundary of the clitellum is nearer the middle line on somites xiv. to xix., and here involve the imer couple of chatie; on the posterior somites xx. to xxv. the edge of the clitellum is bordered by a series of glands-the tulercula pmbertutisforming a semitranslucent band placed between two couples of chata, though nearer to the immer couple. A similar band exists in the other species, and in the case of Horst's and Perrier's species anmears to be the only representative of the clitellum, the anmals not being quite mature. In li. Tenkatei the seven pairs of tubercala traverse somites xx. to axvi.,

[^58]in R. paradoxus they occur on somites xix., xx., and xxi. In R. Geulielunes the clitellum ocempies almost the same somites as in the present species, viz. xv. to xxv., the tub pcula have an identical prsition, and the same difference in regard to the ventral limit of the clitellum is moted and ficured by Beddard for that species.

The nephridiopores, as in other species, are in line with the outer (lateral) comple of chate, the first pair being on somite iv.

The male pores were quite evident between the somites xix./xx., in a line with the sccond chatro on each side. This is the persition assigued to these pore hy Perier. Neithor Horst nor Beddard suceceded in detecting them ; hat in a specimen of li. Culdiclmes which I possess I find them to di. between somites $x x . / x x i$. I could not detect any other genital pores on the surface.

There are no dorsal pores.

Internal Anatomy.

There is a great dirplacement of the internal organs, ws ing to the infumbliblate mature of the sopta, so that the means appear to lie in somites comsiderably pesterion to thase to which they actually belong.

Nome of the septa are strong ; in fact they are all particularly thin and transparent, and are therefore difficult to trace, for they overlap one another and allow the organs below them to be seen. But if the septat fail us intapmertiming the organs to their true morphological position in the holy, we have an excellent guide in the nepheidial, which, as Inosit motient in his suecios, are very conspicnous; and by following them to their external pores I was able to determine the real somites to which the varions other organs belong. These whemilia, as Bedelard found in R. Giulielmus and is frepmenty the case in other genera *: difler in their size and shate de. in difterent regions of the body.

The first pair, or "pentemephridia" as 1 have cathed them", difties from the rest beth in the ereater lengeth of the consu-
 and in the fact that the duct communicates with the gut and nut with the exterior. The consulutal tuine, forming a hitabeal ghandular-fowking mats, lies aboni halway atong the wonphagus (fig. 2, π^{\prime} t.) at its side ; from it the large muscular duct passes forwards and downards, soon coming to lie

[^59]below the pharynx (as in li. Gintirtmens) ; when it maches the level of somite iii. it rises upwards along the sides of this portion of the gut, passes between the two lobes of the
 conters the muscular wall near the junction of the pharyux and buceal region; into the latter the nephridium probably opens.

In the previous species a similar" peptonephridium " is present; but it opens extemally in the second (R. Cintidmens) or third somite (li. Tentionti). I swarched carefully for any pere on somites ii. and iii., hut fomed nome; and it is compairatively ease, despite the small size of the wom, to trace the duct along the course I have just indicated.

When removed from the body the peptonmphridium is somen to be composed of a densely coiled tubule, the course of Which would be very difificult to follow; it is providel wit! a funmel of rather larger size than the following ones. 'The surface of the peptonephridium is covered with a close network of blood-vessels.

I am not quite certain as to the segment to which the funnel belongs; but at any rate it will be seen that this nephridium, like the following, has a considerable length, passing from about the level of the second to that of the cighth somite, and recalls the enlarged thoracic nephridia of many of the tubicolous Polychreta.
 somite iv.; the long duct passes backwards, alongside the pharyax, to reach the comvoluted tube at the side of the anterior part of the asophayrs. The following nephridial apertures are regularly arranged, and the ducts of the nephridia extend backwards in a similar way ; they are all quite easily followed from their pores to the coiled tubule, and it is the latter which it is important to note particularly.

The coil of the third nephridium is at the side of the resophagus, behind the second nephridium, that of the fourth still funther back, in front of the gizzard; the coil of the fifth nephridium (tig. ${ }^{2}, n_{0}{ }^{5}$) lies on the upper surfuce of the gizzerd near its hinder end; and since this nephridinm belongs, to somite vii., the gizzard evidently helongs to the same somite, althengh thrust back into the following somites. The coils of the sixth and seventh nephridia are close together, immediately behime the gizaurl, by the side of the "lateral hearts." TY̌ eighth nephritium belonging to somite x. hals its coiled tubule immerliately in front of, an l very closely applied to, the sac which contains the first pair of ciliated rosetter, which thas leclongs to somite xi. 'Tlie ninth nephri-
dium is similarly situated with receard to the seerond ciliated rosettes.

I did mot trace out the following hephridia, and am mable to say definitely how many there are in this series. Beddand fromid fourtern pairs in i_{i}. Gulielmus following the peptonephridium, diftering from it and aloo from the following series, which, commencing in somite x rii., are smaller, have no long duct, and are less readily followed.

The alimentury tract (fig. 2) presents a gizzan! in somite vii., as determined by tracing sut the nephriblat ; it lies, however, at the level of somites viii., ix., x., apmang to necupy three somites, as Horst describes fir fi. Tenkotri; but the present species agrees with the wher two in having the gizzard confined to one somite.

Immediately behind it there are the chamacteristic paired diverticula of the tubular intestine (fige. 2 and $: 3$, dir.) ; they contain crystalline particles which I took to the carlamate of lime; but I obtaned no effervescence on trating the organ with weak and with strong acic. Nevertlectess they have a structure closely similar to that of the cesombageal (calcaremos) diverticula-"glandes de Morren"-in Lumbrims, as my predecessors have noted. In the present specimen there are
 probably occupying as many somites. The first gland is small and ventro-laterally placed, and might realily be overlooked in a strictly dorsal view; the next three are langer and kidney-shaped; the following three gradualle diminish in size and are hemispherical. Buth in li. Tenlaiti and If. (iulichmus there are six pairs of these divertieula, ugreing in the main with those just described; and it is a most curions fact that in the "type" of the genus Perrier makes no mention of them. It is true they are hidden hy the spermsacs and "hearts;" and as all these organs are closely packent together, it is reasonable to think that they were orerlomed, though I believe, as I state below, that he died see these glands, but mistook them for "hearts."

It is not easy to fix the true pesition of these divertienla with regard to somites, and it can only be really decided by making longitudinal sections throngh a complete minjued specimen. But by tracing other ogans we can flace them in somites viii. to xvi. or in ix. to xv., which agrees pretty well with lichlard's species, in which he found the six pairs to lie in somites ix. to xiv.

The sacculated region of the intestine begins shorty behind these glands and is provided with a typhlosole, fairly well developed, compressed so as to be a thin membrane, and

Which pmants this perelimity, that it line of origin takes a spival course round the wall of the gut ; so that we have, in place of the straight valve commonly fomb in earthworms, a spiral valve.

The ruscoller system presents the characteristic "intestinal hararts" which Perrier was the first to deseribe, and which are now known in other genera than lihinotidus; there are two pairs only of thes. commisumal vessels in the present - pecies, sreatly dilated anl commmicatimg ont with the densal, hint with the" supra-intestinal" pessel, ats Mr. Beldath has figurel for his spectes; they holong to somites xi, and xii., thongh they apmar to lie in somites xiii an driv, the first passing herween the second and third int stinal diverticula and the seemel heart between the thind and fometh of these.

Immediately in frome of these "intestinal hearts" (fig. 3, i h.) are three pairs of very much smatler "lateral hearts" (l.h.) arising from the dorsal vessel; these three lie close behind one annther between the gizzard and the first diverticulum. It is a matter of some unertainty whether these lie in somites viii., ix., x., or in vii., viii., ix. 'l'he dursal vessel (d.e.) is ampullated in somitexr. and in cach somite posteriorly, where it lies above the sacculated intwstine; but anterionly to this, in the region of the "intestinal hearts" and intestinal diverticula, it is pactically eylindrical, though it gratually diminishes in size, and where the "lateral hearts" leave it it has become guite narrow. The domsal ressel appears to terminate behind the gizzurrl, for I could see no median ressel beyond this point; Mr. Beddard states (loc. cit. p. 15s) that anteriorly to the gezzard the "dorsal vessel runs some way above the surface of the cesophagus;" so that it is passible that I had removed it in this region, though it seemed to end quite definitely behind the gizzard.

In R. Gulielmus there are three pairs of "intestimal hearts" in somites x., xi., xii., the hindermost pair of which is smaller and not dilated; in front of these there are two pairs of narrow " lateral hearts."

In li. T'enkutei there are also two pairs of lateral hearts, which, according to Honst, lie in somites xii. and xiii., and behind these are two pairs of "intestinal hearts," passing between the first and second and between the seend and third intestinal diverticula.

With regard to R. peradowns, the "intestinal hearts" are stated to lie in somites xx., xxi., and xxii, though whether this apparent position is due to displacement or not can only be setnled hy a renewed examination of the species; it
is, at any rate, a very peculiar position for the "hearts" to оссиру.

Perrier (loc. cit. p. 70) states that in the three somites immerdiately antrime to these intestinal hearts there exist as many pairs of " viritahbescours." I helieve that he is dealiser really with intestimul diverticulu, for he states that cach of these organs is distinguishalle into twe very distinct part : (1) a superior, white, oparpe, mone voluminous ragion of ovoid form, and communicating at its narrow end with a vesed leading from the donsal trunk; and (O) a more vell trally placed spherical resion, with tran-parent walls, which is swoilen with hood, and in relation to the rentral vessel. 'I', quote his words:-"Sur chacun d'oux on distingue duax parties lien distinctes: l'une infériene, à parois transparentios, genflée par un sang blenatre coagulé, de forme sphérque: P'antresupéricure, hanche, opaque, phis mominense, de forme ownïde, et s'abuchant par son petit hout avee le vaissean 'pui conduit aut trone dorsal."

And he speaks of the inferion resion as an "amicke" ambl the superior as "ventricle;" on the walls of the latter, he goes on to state, there can be seen some bluish veins startimg from the apex, which soon disappear.

He was led to the above conclusion nwing to his having ohserved, as he thought, a similar "heart" with ventricle and auricle in T'itanus (i. e. Geoscoler, Leuckart).

Now I have examined a specimen of this worm, as I have previnusly mentionel*, and 1 find that the mean lring in somite xiii., whose relations were aemately deseribed hy Perrier, and which he mistonk for a "rentricle," is in reality an intestinal diverticulum, having the same essential structure as the cesphageal glands of Lemblotiens \dagger.

I believe, then, that the three pairs of organs are the characteristic intestinal diverticula which oecor in this region in the other three species of Rhinodritus.

The genital erigens (fig. $\boldsymbol{2}$). -There are two mais of tather extensive spem-sacs (spos.), which meet domatly to a greater or less extent, and conceal the gizand, the intestimal liverticula, and wher organs in this restom of the boly. 'Ther anterior sac on each side appears to extend throngh somites viii. to xiii., and the posterior throngh somites xiv, to xvii. ; but more careful observation shows the former to arise in somite xi, and pass forwards into sombere ri, and the portofion to extend through somites xii. to xvii. There are two pairs

[^60]of testes and ciliate $\begin{aligned} & \text { rosettes lying in somites xi. and xii, ats }\end{aligned}$ detominal by tracing ont the mephridia and wher organ: but they emme to lic at the level of two sonates finther back. Each pair of testes and rosettes is contained in a common
 ticular sac" (t.s.) as we may term it (the "Sianenkapsel" of Bergh, the "median seminal vesicle" of some authors).
'The anterion sperm-sacs arise from the siles of the anterine "te-ticular sac," and the posterior :perm-sacs from the pasterior testicular sac. Horst deseribes a similar arrangenent, thongh, as in the case of the other organs of I. Tembatri, he refers them to a more posterior position than in the present species. Botharl tinds the same arrangement and position fin theses sacs in his species. Perrier fomblonly one peir of spermsacs and ciliated rosettes, lying " imméliatement en arriere du gesier." But in neither of these species is any mention mate of the sperm-saes extending beyond the segment in which they arise; they appear to be limited to one somite in cach case; and the condition here deseribed recalls that ustal in the allied family Geoscolecidæ, mihi, viz, in Geoseolex, Urochutu, and Diachutu, where each sperm-sac extends through at least four and usually more somites.

The sperm-ducts were easily traceable firm the fumels to the body-wall, and, as I have stated above, open externally on each side between somites xix. and xx. I could find no waries, although I looked carefilly for them; Beddard and Inorst found them in the normal position, viz somite xiii.
'There are four pairs of spermathecae (sp,th.) enencealed by the pharynx [? perhaps that is the reason why Perver found none; he would have expected them rather more laterally placed than is the case] and lying in somites v., vio, vii., and viii. ; each is a nearly globular sac, with a narrow muscular duct, sharply separated from the sac, and passing to the external aperture on the anterior margin of the somite; these pores lie in the same line as the nephritioperes. On the left side of the specimen an additional very small spermatheca occurs in somite iv.

In h. Tenkatei there are three pairs of long pyriform spermatheca in somites vii., viii., and ix., whereas in R. Gulielmus there is only one pair of "spherical or pear-shaped pouches " in somite vii.

For the purpose of ready comparison with the other species I will summarize the characters of R. ecuadoriensis:-

1. Length $7 \cdot 5$ centim.

2. Clitellum on somites xiv, to xxr. ; tubercula on somites xג. to xxv.
3. Male pores xix./xx.
4. The distance between the two couples of chatet of one side is greater than that between the right and left ventral couples. There are no copulatory chætæ. The chætæ commence on somite iii.
5. The first nephridium opens into the buccal cavity.
6. The gizand lies in somite sii.; there are seven pairs of intestinal diverticula.
7. There are three pairs of "lateral hearts" and two pairs of " intestinal hearts."
8. The two pairs of sperm-sacs are not confined to the somites in which the testes lie; there are four pairs of globular spermathecæ in somites v., vi., vii., viii.

EXPLANATION OF PLATE X.

Fig. 1. Ventral surface of the anterior end of Rhinotrilus ecuadoriensis. neph.p. ${ }^{2}$, pore of second nephridium; Pro., prostomium represented in a protruded condition; spth., spermathecal pores; tub, tubercula pubertatis ; δ^{2}, male pore.
Fïg, コ. Šmi-diarrammatic view of a lomquitinal section, deriwal from a study of a dissection. The left side of the animal and the left sperm-sacs are removed; the organs of the left side only are shown with the exception of the sperm-sacs, those of the right side being seen. The septa and blood-vessels are omitted for clearness' sake, and only the anterior nephridia are represented. σ^{*} indicates the pore of the left sperm-ducts ; cer., the cerebral ganglia; com., the circumpharyngeal nerre-commissure; div. ${ }^{\text {, }}$, the fourth intestinal diverticulum; g.', the subpharyngeal ganglion; giz., the gizzard ; m., mouth ; $n_{.}{ }^{2}, n .{ }^{5}$, the second and fifth nephridia ; n.c., ventral nerve-cord; n.o., nephridiopore; n.t., convoluted tube of a nephridium ; n^{\prime}., convoluted tube of the "peptonephridium ; " p.n.d., the duct of the peptonephridium, dissected out and entering the buccal carity : pro., prostomium, partially retracted; , r.m., radiating muscles of pharynx; sal., "salivary glands" around the pharynx ; sp.d., sperm-duct ; sp.s.', sp.s. ${ }^{2}$, the anterior and posterior sperm-sacs of the right side ; spth. ${ }^{1-4}$, the four spermathece ; t.s., " testicular sacs," enclosing testes and rosettes.
Figg :3. Dorsal view of the tulmar reqion of the inte-time, with the socen pairs of "direrticula" (dix.', dix.3, div.') and the vascular system of the region. D.v., dorsal blood-vessel ; i.h., the two pairs of intestinal hearts (from the supra-intestinal vessel); (l.h., the three pairs of lateral hearts; s.i., sacculated intestine; t.i., tubular intestine.
Filg. f. The pephomephidium removed entive from the hody: Fw.d. the duct ; $m_{\text {. }}$. ., the fumel ; $p m . t$., outline of the mass of couroluted tubules: the convolutions are very complicated, and the whole is covered by a dense network of blood-vessels, both of which are omitted, thengh a sumall portion of the tubule is shown at t.

XXXI:-I esscription of a new Siluroid Fish from C'hine. By G. A. Boulenger.

Pseudubagrus eupogon.

$$
\text { D. } 1 / 7 . \quad \text { A. } 22 . \quad \text { P. } 1 / 8 .
$$

Tpper surface of head smooth and covered with skin; occipital proeess twice as long as loroad, as long as the basal lome of the dorsal spine; head once and one fifthas lomg as brand. Teeth on the palate villiform, in a creseentic band. Nasal harbels twice and a halta as long as the eye; maxillary harbels a little longer than the head, extending to the middle of the pectoral spine; outer mandibular barbels three fourths the lenght of the head, inner one half. 'The depth of the hody contained six times in the total length (without camial), the length of the head five times. Dorsal spine serrated behind, half the length of the hearl. Adipose fin longer than the dorsal, measuring three fifths its distance from the caudal. Pectoral spine strong, one fourth longer than the dorsal, very strongly serrated on the imer edge. Camial deeply forked. A dark lateral stripe; fins with blackish edge; barbels blackish.

Total length (including caudal lobes) 250 millim.
Shanghai, Δ single specimen, received from the Shanghai Museun.
> XXXVI.-Description of a new Species of Rail from Laysan Island (North Pacific). By F'. W. Frounwh, F.E.S.

Porzanula Palmeri, sp. n.

Adult male. -The crown, nape, back, tail, and flanks are a light brown having a slight russet hue; the entire upper surface is streaked with dark brown and black, each feather having an elongated blackish centre; the mantle in some specimens is distinctly mottled with white, but in others the white is scarcely perceptible; cheeks, sides of neck, throat, breast, and abdomen leaden or smoke-grey; the feathers on the flanks have each about four ovate white spots faintly outlined with black; wing very small and rounded, 2nd-4th primaries equal and longest, colour of outer webs pale buff, inner webs smoky brown; secondaries and coverts same
colouring as the back: bill light ereen, darkest an 1 implinims to purnish at the tip and culmen; iris rally; eyelid pal.. grey-eren ; tarsus and feet lieht olive grey-reen. Total Wheth ahont 6 inches, but capable of extenling its weck to a consileatle longth, adinge as much as 2 inches or more to the entire length. Wing from carpal joint $2 \frac{1}{4}$ inches; bill (culmen) $\frac{\pi}{10}$ inch; tarsus $\frac{9}{10}$ inch; middle toe, including claw, $1 \frac{1}{4}$ inch.
siexes very similar, but the femate gemerally paler in cotour throughout.

Goung hime have the moderparts pale buft, replacing the grey of the adult.

The nesting is entirely covered with black down, the bill yellowish.

Nest: outside measurement 6 inches actose, from $2 \frac{1}{2}$ to : inches high; inside it measures 3 inches atows and 2 imedes deep; it is rather lousty comstructed of strip of selze anl coarse grass, and woven together with very fine shreds of grase, filmes, and a little down ; inside the materials me rather finer.

The eqes are oval, the ends of equal siz, arerace monaturements 1_{8}^{1} hy $\frac{18}{8}$ inch, and are of a sery pale creany huff theckel with light red-brown and purplish erey, both colours beins fale and somewhat indistinct; in some the colourius is mudt suffused and variable in depth; they also vary in size.

The nest described was found oin June 24th, 1891, and contained three egge.

Loculty. Laysan Island, lat. 2.5 $46^{\prime} \mathrm{N}$., long. $171^{\circ} 49^{\prime} \mathrm{W}$.
The fullowing notes 1 have fortunately hal tiee oppertanity of making fom the living hinds now in the collection of the Hon. Walter Rothschild (which are in the charge of Mr. Dogegett) ; they have lately heen reverivel from his colloctor, Henry Palmer, from Laysan Island.

This little rail is of rery corsiderate interes, beene new to science, of small size, incapable of Hight, very active ant swift on foont, apparently very tame and fearless, and casily caught.

I had the "pportmity of ohserving them white they were moming athent a romit, when I moteon they mever pone attempted to make use of their wings; the only time I noticed them doing so was in springing up to perch.

Iming the day they keep up an incessant elirpinge cossisting of from ine to three soft, shore, and clear notes: but som atter dusk they all, as if by one given slgnal, strike up a most peruliar chimes, which lasts but a few seromst, and then all remain silent. I can only compare the sound to a hadful or two of mables being thrown on a glase rout

and then rescenting in a succestion of bombs, strikins and restriking the glass at each ricochet.

The tail is at times hed droping, sometimes elevated, an I frequently jerked up and down.

XXXYII-D Desciption of a nex Speries of Calyptomena foom Nenthemestern burmen. By R. Bowdier Sihabpe, LiL.I)., F.L.S., de.
'The accompanying deswiption applins to a most heantind hind which hat been oubmittel to the British Musomm liy Mr. Charles Hose, who procured it on Mount Dulit. It is it larger bird than C.veridis, but inferior in size to C. Whiteheadi, and differs from both in its bright blue breast.

I propose to call it, after its discoverer,

Calyptomena Hosii, sp. n.

Adult mule.- (iencral colone emerald-green, with a black spot on the forehead, nearly concealed by the loral plumes which overhang the bill, the lateral frontal plumes having concealed black bases; on the occiput a spot of velvety black, and a small spot of black on each side behind the ear-coverts; on the lower hind neck another patch of velvety black; on all the median and greater wing-coverts a umaded sultarainal spot of black; quills black, externally ancoald-green; the immenost secondaries entirely green; ul] er tail-corent: very long, green like the back, and entively comealing a lateral patch of lritliant colate-line feathers; tail-feathers sreen, with black shafte, with a broad teminal Dand of black; throat and entire sides of body emerald-green, the centre of the body bright cobalt-blue from the lower throat downwards; meler tail-coverts blue, with greenish Lascs; under wing-coverts dark emerald-green, and quills black below.

Total length $8 \cdot 5$ inches, culmen abment $0 \cdot 8$, wing $\pi \cdot 2$, tail $2 \cdot 4$, tarsus $1 \cdot 0$.

Achuit fimale. - Differs from the male in being much duller in colume, more yellowish-green in tint, especially on the under surface, where the luwer loreast, abdomen, and under tail-coverts are pale blue, not rich cobalt as in the male. The black spets on the forehead, occiput, hinel neck, and behind the ear-curerts. are entirely wanting, and on the wingcoverts the black spots are confined to the median series only; the tail-teathers are entirely dark green, blackish near the base.

Total length $7 \cdot 5$ inches, culmen $1 \cdot 7$, wing $4 \cdot 8$, tail $2 \cdot 4$, tarsus 0:95.
XXXVIII.-On some new Mammalia from the Eiast-Indian Archipelugo. By Oldfield 'Tiromas.

The British Museum owes to Messrs. (harles Huse amd Alfred Everett a collection of Mammals from North Borneo, and in working them out the following new species prowe th need description. The Mount Dulit species will be mose fully described in a general account now in prepration of the Mammals oltained by Mr. Hose in that must interesting locality.

Hemigale Hosei, sp. n.

Size and proportions of II. Itardwiclei. General colour above from nose to tail uniform dark smoky brown, without dorsal or nuchal markings. A spot on each side of the muzzle, another over cach eye, eare, and chin, white. Teeth markedly smaller than in II. Harduricheci.

Dimensions:-
(σ) Head and body 540 millim. ; tail 320 ; hind foot 75 ; basal length of skull 89.

Itab. Mount Dulit, N. Bomeo, 4000 feet (('. Hose).

Tupaia Everetti, sp. n.

Size large; as large as T. tana. Fur short, close, and rather harsh. 'I'ail-hairs scarcely or mot longer than those of the body. General colour unitorm dull rufons-brown; the head rather more olive-brown ; an indistinct ferresinoms stripu over each shonlder. Underside similar to upper, hut rather paler; throat more rufous. Tail ceylindrical, nut lusies; its hairs, exept at the tip, rarely excecting 10 millim. in length, its colour quite like that of the back.

Skull with the elongate tapering form of that of T'. teme, though the muzzle is slightly shorter. Zygomatic racuitios very small, only about $1.5 \times 1^{\circ} 0$ millim.
'T'eeth, except is, very large and stout, markelly heavier than those of ${ }^{\prime}$ ' tance. İ2 nealy twice the height and more than twice the antero posterion diameter of that of T. tuma ; internal lobes of $\mathrm{p} \cdot 3$ and P^{4} very well developed. First and scond lower incisors as usual, but the thind one minute and nearly vertical, markedly contrasting with the which is well developed and nearly horizontal, like mand E. On the other hame, the lower canime, to match the hear?"
against which it hites, is musually large and powerful, mone than twice the hulk of the corresponding tonth of T' tuna.

Dimensions (approximate, from skin):-
Head and body 210 millim.; tail, without terminal pencil, 170 ; hind foot (approximate, from skeleton) 45 .

Skull: hasal length 54 ; occiput to hasal tip $64 \cdot 5$; greatest breadth $2!$; nasal tip to front edge of orbit $3(1 \cdot 7$; interombital breadth 17.5 ; intertemporal headh 18 ; palate, length ist hreadth outside m. 1 (6 , ins:ide m. $\frac{1}{8 \cdot 2}$. Front of $i-1$ to back of
 0.9.

Teeth.-I.2, height above bone behind $4 \cdot 8$, antero-posterion diameter at hase 2.7 ; canine, height 3, diameter 1.7 ; i. , height $1 \cdot 5$, diameter $0 \cdot 6$; e., height 57 , diameter 2.5 ; comlined lengths of $\stackrel{m .1-3}{ } 10 \cdot 6$, of $\frac{.1-3}{m \cdot 1-3} 10 \cdot 8$.

Hah. Zamboanga, IV. Mindanao, Philippine Islands.
Typre Brit. Mus. 79. 5. :3. 11. Coll. Alfred 11. Everett, Esq
'This striking species has in a general way the skull of T '. tana and the external appearance of T. fermginea, with the skins of which in fact the type has hitherto lain umoticed in the Museum collection. The distinctuess of the two, however, at once became apparent on direct comparison, and in describing it I have much pleasure in comecting with it the name of its collector, to whose labours we are so largely indel ted for our knowledge of the zoology of this region.

Since, as Mr. Everett has shown t, the island of Palawan is not, zoulogically considered, properly a part of the Philippine Archipelago, the present is, as far as I know, the first record of the genus T'upaia in that group.

Tupaia picta, sp. n.

Rather smaller than T. fermoinca; more heavily built than T'. dursalis. General colour of back olive-grey, coarsely grizzled with yellowish; more rufous posteriorly. Centre of back with a distinct dorsal stripe extending firom the withers to the rump, the stripe better defined than m. T. montane, but neither so long nor so sharply defined as in T. dorselis. llead, hands, and feet dull grizzled olive; sides dark rufous; a distinct shoulder-stripe present. Underside grey, the hairs washed terminally with yellow ; chin and chest rich yellow

[^61]or omase. 'Tail hroat and hahy, evenly listichous, it = haine above basally mixed red and black, at the tip and below brilliant chestnut-rufous.

Skull muc! as in T. fermemern, but the zyemmatice vaenity rednced to a long narow slit about 45 millin. long an ! only about 1 millim. high.

Thectla also mot materially different from these of T, frome yituen.

Dimensions of the type (Brit. Mus. 92. 2. 8. 1) \#:-
Head and body 185 millim. ; tail 162 ; hind foot 42%.
Skull: basal length 45 ; greatest breadth 26.3 ; masal tip to front edge of orbit 21 ; interorbital breadth 15; intertomporal breadth 17%; palate, lometh $27 \cdot \pi$, heanth witsilu $\xrightarrow{m .1} 15$, inside $\stackrel{\mathrm{m.} 1}{\underline{2}} 5.5$; front of $\stackrel{\text { i. } 1}{ }$ to back of $\frac{\mathrm{m} .3}{\underline{2}} 26.4$; diastema between $\stackrel{i .2}{=}$ and $\stackrel{c}{c} 4$, between $\stackrel{c}{\stackrel{c}{4} \text { and } p .2} 1.8$.

Hab. Baram, N. Borneo. First collected by Mr. Hose; other specimens since received from Mr. Everett.

This handsome species is readily distinguishable from
 and the presence of a black duseal stripe ; from T': tum by it smaller size and shorter muzzhe; from 'T. dursulis te it = has defined dorsal line, bushier tail, and heavirr teeth; am from T. montana, described below, ly it: lnillianty ruturs tail and coarsely grizzled back.

Tupaia montana, sp. n.
Rather smaller than T. formgimen. Dark grizzh. 1 rukime above, with an imdistinct black hasal lime from the withers to the ramp, broadening ont and amost indistimenishald. over the loins. 'Tail rather shat ; ahave dull wrizaled rubus, below more olivaceous yellow, the hateal hairs rimed torminally with black.

Dimensions:-

Head and body of type (δ^{π}) (c.) 2(n) millim. ; tailce.) 141 ; hind foot 41 . Front of i. 1 to back of m. 27 ; back of i.2 to front of $\stackrel{c}{-} 4.5$.

Hub. Mount Dulit, 5000 feet (C. Hose).

T'upaia melamura, sp. n.

Size of IT. minor. General colour of T. jaranica, but without the shoulder-stripe. 'lail slember, erlimdriad, wase

* The specimen selected as the type is one of Mr. Ererett's, Mr. Inose's original specimen having an imperfect skull; the latter gentlenan is, however, the first diseoverer of the species.
hairel, as in "Dendrogute," but without any terminal pencil; its colour deep shining black, except at the base, where it is like the back. Face columed as in T. minor, not as in "Dendrogale."

Dimensions of the type (아):-
Head and body 12.5 millim.; tail 136 ; himd foot 29.7 . Basal length of skull ;30; front of i.1 to back of m.e $17 \cdot 7$.

Hab. Mount Dulit, 5000 feet (C. Hose).

Sciurus Brookei, sp. n.

Allied to and of the genemal colour of typical Simapore specimens of S. tenmis, Morsf., but distinguished by its much larger size and by its cheeks, anal region, and the proximal inch of the tail beneath being bright rufous.

Dimensions:-

Head and borly 20.5 millim.; tail 144 ; hind foot 37 ; basal length of skull (c.) 37 .

Hab. Mount Dulit, N. Borneo (C. Hose).

Sciurus Lowii, sp. n.

Size and general colour above of S. temuis, ILorsf., but darker, sleeker, and more fiaely grizzled. Ears black-rimmed. Whole of under surface and imner sides of limbs pure white or yellowish white, without admisture of grey. 'Tail broadly ringed with orange and black. Muzzle of skull marke lly longer and interorbital breath less than in S. tenuis ; incisors thrown more forward, forming a more open curve, and the lower pair as dull-coloured in front as the upper.

Dimensions of the type, an adult male in skin (probably overstretched) :-

Head and body 154 millim. ; tail 95 ; hind foot 33.
Skull: basal length 34 ; greatest breadth 23.3 ; nasals, length 12, breadth 5.5 ; interorbital brealth $11 \because 2$; diastema $10 \cdot 1$; palate, length $19 \cdot 5$. Front of $\frac{\mathrm{p} \cdot 4}{}$ to back of $\stackrel{\text { m. } 3}{ } 6 \cdot 6$.

Itcl. Lumbidan, on the mainkad opposite Labuan (several specimens collected by Sir Hugh Low) ; other specimens from Baram (A. Everett).

T'ype Brit. Mus. 76. 5. 2. 14.
The occurrence of a typical grey-bellied short-snouted S. temuis in Mr. Everett's Barani collection proves that this white-bellied form, of which the Museum possesses six specimens, is really distinet from that animal, with which I had hitherto provisionally left it.

The difference in proportion between the skulls of S. temis and S. Lowii is readily shown by the fact that in the former the interorbital breadth is equal to the distance from the front

Amn. \& Mag. N. Hist. Ser. 6. Vol. ix.
face of the incisons to the midule or lack of 1.4 , while in the latter it does not reach to the anterior edge of $\frac{p .3}{}$.

Tragulus nigricans, sp. n.

Allied to and apmently abme the size of T. nam, F . Cuv. Arrangement of colous abowe much as in that species, but the whole of the dossal and lateral surfaces bomdy washed with jet-black, the hairs white at their bases, then dull orance and broadly tippel with black. Na!e with the indistinct blackish line found in T. nupu. Fiae and silts of neck mixed hack and dull fulvous. Chin with the usual naked glandular patch between the rami of the lower juw. Arrangement of white throat-hands quite different trom that of the allied species perhaps most similar to that of T. Stunlaymus. All the stipes rery narow, sharply define I. Anterionly on each side of the nabed space there is a short pure white strip", which ends abruptly at about the level of the prostenom canthas of the eye; these short stripes are completely separate I fimen each other and from the posterior stripes hy a dark hown space, the hreak in their continuity with the latter being nut less than one inch in length. Posteringly the median white stripe, which is very namow and scarely browder behind, is bounded on each side, botween the lateral white stripes, hy deep jet-hack fur, strikingly different from the fur in the corresponding position in the other specins. B hand the stripes are separated from the white patch between the fore limbs hy a broad blackish band. Belly-hairs brady tipped with black, but the imer siles of the thighs, as usual, wisite.

Skull and teeth of the only specimen ton joung and in ton bad a comation for detailed comparison; but, comparing the actual sizes of the milk-teeth, ${ }^{\text {m. p. }} 2$ is much smaller than in a specimen of corresponding size of T. napu, m. n. ? is slightly smaller, while m.p.t and m. $\frac{1}{2}$ are of about the same anteroposterior diameter. Similarly betow m. .e. and mare each much smaller than in T. napm, while $\overline{\text { m. n. }}$ and min are of about the same size.

Dimensions of teeth :-
Antero-posterior diancter of $\stackrel{\text { m. p } 2}{ } 27$ millim., m.p. $3.5 \cdot 5$, m. . 4

Hab. Balabac, Philippine islands.
T'ype Brit. Mius. 91. 11. 23. 2. Collected by the Steere Expedition to the Philippines, 1887-89.

It is unfortunate that he only specimen obtainel of this new Chevrotain is both yonng and in hat condition; lout its general hackness and the pecular character of it throatmarkings separate it at once from any of its congeners.

XXXIX.-Descriptions of new Species of Shl lls from Mauritius and California. By Edgar A. Smirn.

Pecten Crouchi.

Testa compressa, inforne rotumbata, al anicem peracuminata, subaguivalvis, costis validis octo in utraghe valva instructa, supra et inter costas radiatim st riata, undique mieroscopice superficialiter reticulata; valva sinistra alhida, aurantio vel purpureo plus minus tincta, supra et inter costas saturate purpureo vel sangunseo ircequlariter copiose maculata, lincisque angulatis albis inter costas hic ilkic ornatas falva dextra pallidior, marginem ventralem versus aurantio vel purpureo tincta, inter et supra cost as parum maculata; marero cardinis perohliguns, rectilinearis, valde inequalis, parte postica brerissima, longit, totins $\frac{1}{3}$ rix aquante ; auricula ralde inæquales, radiatim tenuiter costulate, postica minima, antica valye dextre inferne profunde sinuata; costic ralvie sinistre interstitio angustiores, ralvie dextre latiores.
Longit. 38 millim., alt. 46, diam. 11.

Hab. Mauritius.

This beautiful species is distinguished by the very sloping dorsal margins, which converge at the apex at an angle of 75°; the very mequal auricles; the elevated ribs, those of the left valve being narrower than the interstices or the costr of the other valve; the style of coloration, which, however, is variable; the fine radiating striæ and the microscopic reticulation or shagreened epidermal coating, which everywhere invests the surface and which is easily rubbed off during the process of cleaning. The central ribs of the left valve have alout seven raised lines down each, separated by striæ or sulci of about equal width, and the grooves between the costz are
 ornamented with about the same number of lines. 'The valves are whitish within, and, being thin, the blotching of the exterior, especially that of the lett valve, is more or less distinctly visible.

This species differs from P. tigris, Lam., which in some
respects it resembles, in the more sloping dorsal margins, in having fewer and much more elevatem costre, in the style of colouring, and the greater inequality of the auricles.

I have much pleasure in naming this handsome species after Mr. Walter Cronch, the author of several useful papers on the Mollusea and other branches of the zoslogey of Exace.

Nitra Fultoni.

Testa orato-fusiformis, ommino nigra, sed ad apicem leviter erwas: anfractus s, consexiusculi, sutura obliqua sejuncti, lincis incrementi ohsolete pliciformihus instructi, sulcisyue angustis piralihus remote sed requlariter punctat is (in anfract. penultimo $\boldsymbol{\pi}$. in ultimo circiter 14) cincti, ultimus infra medimm leviter constrictus. supa caudam ohlique tenuiter liratus; apertura catrulco-alhila, longit. totius $\frac{1}{2}$ tequans: columella fusca, callo tenui superne allu-(allusi) induta, plicis quatuor obliquis albidis, suprema maxima, infima minima, instructa.
Longit. 39 millim., diam. 13 ; apertura $19 \frac{1}{2}$ longa, 5 lata.

Hab. Point Abreojos, Lower California.

This species is well characterized by the punctate sulci, the punctures falling in regular longitudinal rows, through which pass well-marked impressed lines of growth. It has, I believe, been confounded with M. orientalis, Gray, by some conchologists; but from that species it may be sufficiently distinguished by the above-mentioned feature and the difference of form. The whorls are more convex, the epidermis blacker, and the fine spiral strix which adom the surface of that species are scarcely indicated in the present form.

Nitra Fultoni is named after Mr. H.
 Fulton, from whom the specimens were obtained, and through whose ageney the British Musemm has obtained many valuable additions.

> XL. - Seme Points in the Ilistolog!y of Culenterutes. By Dr. Karl Camilo Schneider*.

Is the enmparative investigations of varions cells and tissues of Colenterates, which I commencel at Saples in the month of March, I arrived at certain histo-morphologieal results, of

- Translated from the 'Zoologischer Anzeiger,' xit. Jahrg., 1891, no. 375 , pp. 370,371 , and no. 376 , pp. $378-381$.
which 1 intend to give a brief provisional account in the following pages. I will first comsider the Siphonophora. By comphying a mixture of osmic and acetic acid, which agreed pretty chasely with that adopted by the brothers Hertwis*, I sheceded in determining the presence of ganglion-cells in the ferlers and pmeumatophore of Apotemin urerion and in the polypes of For:kaleat contorta, which in the form of the cell and its prolongations do not differ from those with which we are acquainted in the case of the Meduse and other Crelenterates. In the same way the epithelium of the disk of Filelle spirams, as has already been described by Chun \dagger and others, contains typical ganglion-cells. Sense-cells were found at the anterior extremity of the polypes and feelers of Apolemia, likewise in accordance with the well-known arrangement. On the other hand, the stem of the two Physophorids alluded to contains highly remarkable and divergent cellular structures. In this case the epithelium consists of cells of very different kinds, between which, however, transitional forms occur. Forskalea exhibits on the sides of the stem transversely elongated cells, which send off a process into the interior, and by means of this, which may again divide, they are comected with the longitudinal muscles. Another Physophorid, which I determined to be a young Halistemma, in the stem of which the central canal is extraordinarily wide while the septal ridges of the supporting lamella are very low, exhibited these conditions particularly clearly ; it follows from this that in the stem we have to deal with eqithelio-muscle cells. Circular muscle-fibres are not found: at any rate the superficial prolongations of the epithelial cells, which run transversely and give a transversely rugose appearance to the stem, are not to be regarded as muscular, in spite of their fineness, length, and often very homogeneous appearance, as I shall show in my detailed paper. Their superficial position is also an argument to the contrary. In Apolemia, however, we find muscle-substance enclosed in these prolongations of the body of the cell and likewise in the central processes which lead to the longitudinal muscle; nevertheless this is not the case for all cells of the epithelium, although it is not thereby possible to divide the epithelial cells into those which contain muscle and those which do not. In Apolemia especially the development of the cells varies in a perfectly astounding way; we find cells

[^62]which, hesides the longitudinal muscle, also possess muscular formations ruming in a transverse and perpenticular direction; others, again, are entirely without the transverse processes, and have a rounded termination upon the surface. (Concerning the remarkable muscular formations, which always lie enclosed in the protoplasm of the cell, I refer the reader to my detailed paper.) The peripherally roundel cells are found in the case of Forstoctea chiefly upon the dorsal surface. In shape they agree tolerably well with the " neuromuscular " cells described hy Korotneff *, lut they hare an epithelial and not deep-seated position, and are merely special forms of the epithelial cells in general. Other divergent forms of cells, however, occur. Thus here and there the central process is entirely wanting ; the cell may then become very similar to a bipolar ganglion-cell, though it lies at the periphery; however, the processes also divide tolerably frequently, and thus cells also appear which look like typical ganglion-cells, and I was able to determine the subepithelial position of such structures. Nevertheless, however great the similarity may become, there is always something in the cell which tells against the supposition of a nervous element therein. In all respects the Siponophoran stem appears to be in little accord with the customary views as to ganglion-cells in Ceelenterates; this is particularly noticeable in Forskalea. In this form we find in the mildie line of the dorsal side quite colossal cells beneath the epithelium, which are regarded by Korotneff" as the central nervous system (an interpretation which is adopted by Bedot \dagger). This follows from his deseription, howerer, just as little as choes the nemous nature of his "neuro-muscular" cells, although I believe all the same that his explanation is admissible. I incline to this view, howerer, only because I succeded- lithicult provess though it is-in satisfactorily isolating these cells, for from the tigures of sections, as chawn hy korotneff, every other conchasion is really more probahle than his own. Nevertheless Korotneffis views as to what is to be temed nervons are in gencral very far-reaching; the presence of !nite irregular protoplasmic proceses mpon a cell causes him at once to decide upen their cxtraordinarily sensitive nature. Get the giant cells in the stem of Forskikien pessess offishouts which in length, form, and structure really leave nothing to be desired, and cnable us, in all probability with justice, to

[^63]regard the cells as nervons. It is impossible to sperify a definite form for the cells; indeed, we are really mable to speak of "separate" cells at all, for not only do very broad and slow processes comert the masses of protoplasin, which figure as codls, in the lomeitudinal direction of the stem, but it is usually the case that instead of one nuclens and a correspondingly smatler size the latter is actually very considerable, and a momber of mulvi (I comoted as many as five) are present in the interion. 'These ageregates of cells (in which limits are alsolutely imdistincuishable) lie with their elongated direction crosswise to the stem; they are in continuity with the rest ly means of the short thick comecting portions, and from them then also radiate the nerve-fibore, which are often of extraordinary thickness, ramify like processes of ganglion-cells, rum transersely to the stem beneath the epithelimm, and prubably also penetrate down to the muscles beneath. As regards the structure of these fibres, as well as of the cells and cell masses, I will merely mention that there is a fluid in their interior which exudes in drops when they are erushed and is perhaps comparable to the hyaloplatin of the ganglion-cells of the higher animals. The finer the processes become-and there are very delicate ones which remind us of those of the Medusa-the more difficalt beeomes their distinction from processes of the ordinary epithelinmuscle cells, and they are besides frequently just as irregular as the latter (on this point see the complete paper). In general the amount of fluid too appears to be no certain criterion; on the contrary, it only implies that the cells and cell-offishots in question are thick and rounded, while this is not the case for the majority of epithelial cells, since they appear as if flattened out perpendicularly to their longitulinal elongation in their deeper parts, and above all in the broad basal process; the protoplasm here hats often only the thickness of an even tolerably delicate membrane. In spite of all these odd features it nevertheless appears to me that we must regard the large elements of the dorsal side as nervons, for there is nothing else that could otherwise be considered as such; and although the epithetio-muscle cells are here and there provided with cilia (usually two together), we cammot on that account term them tactile cells with Korotneff, with whom a cilium is sufficient to cause a cell to be regarded as sensitive. I shall endeavour to give further support to my interpretation in my complete work.

At the basal end of the polypes of Forskotea there is a thickening of the ectoderm containing structures which at first attracted my attention very forcibly. Subsequently, on
examining the nettle-parl ("Neselwulst") in Cumarins hastatu, I realized that the two thickenings of the epitheliun correspond to one another. I was also at first inclined to recognize a supporting tissue in them, as the Hortwiss ${ }^{*}$ and others have done ; but the observation of the living animal taught me that we here have to deal with a centre for the formation of nematocysts. In point of fact the filaments ("Senkfaiden") in Forskinlea and the tentacles in Carmarina are supplied with cnidoblasts by the part. In Curmarinct the elements are not large, but in Forsikalen, on the other hand, where the nettle-buds also contain cap-ules of very considerable size, the whole course of development conld be traced with wonderful clearness in their young stares at the seat of formation. I must admit that this is not exactly a very easy task; nevertheless with regard to the series of consecutive stages, as I shall subserquently figure them, I can affirm with tolerable certainty that it correspon ls to the actual course of development. In my laper on Ilydra \dagger I supposed the thread to arise by ingrowth of the protoplatm into the cavity of the capsule, and therehy took the opmosite view to Nussbaum \ddagger and Jickelis, who observed a formation of the thread outside the capsule. At the present time, when I tho have been able to confirm the mode of formation described by the two authors, I have read with real satisfaction that Bedot II, whose papers I unfortunately omitted to consult before, found a development of the threads of the nematocysts in Physalia and Velelle which agrees with that which I described for Hydra. The question might easily he asked, Who is right, or is every body right? I am inclined to think that in the case of Hydra i overlooked or misinterpreted something or other-I shall, however, investigate the point afresh-and that Bedot dil the same; for it seems to the to be not very probable that important differences of this kind should oceur in the course of the devedmment of the cmidohasts in animals which are so chasely allied. This conclusion is strengthened by the fact that I beliwe I am entithed t, assume that the thread develops outside the capsule in the Actinians also, as represented by Admasit homdelaii (sce

[^64]subseyucht paper). I therefore believe that, starting from the cavity of the eapsule, which has previously been formed with the imer wall of the subsequent perfect cyst, the development of the thread proceeds in the protoplasm of the cnidoblast, and that after completion the thread is introverted, commencing with the tip and ending with the thickened bassal protion, su that this enters the capsule last. The development of the outer wall of the capsule is the last to take place, and, as it appears to me, does not oceur until the spot is reached at which the eyst comes into operation. The extremely interesting formation of the thread, from its histulogical aspect, will be described in my subsequent paper. The lamellar arrangement in the protoplasm of the cells of the nettle-pan, as described by the brothers IIertwig *, and as is actually seen in animals macerated in a misture of osmic and acetic acid, is due to the disposition of the thread around the wall of the nematocyst. I did not clearly grasp this point until I examined the pad, both in its living state and when treated with 50 per cent. acetic acid; the latter reagent eauses the thread to become sharply defined, though in the living object it is only to be detected with difficulty (as the tissue dies away it becomes more and more distinct). The young cells paiss from the pad to the filament in Forskalerg, Lut to the tentacle in C'armarina. The same is doubtless true for the cuidoblaste of the peronia of the Narcomeduse and of the mantle-rivets which are found in the Geryonila. Thus the presence of mantle-rivets on the sensory bodies also probably points to the fact that the latter represent rudimentary tentacles.

In conclusion, I would just briefly mention that in the investigation of Alcyonium acaule I arrived at definite views with regard to the formation of the spicula. In the ectoderm of this form cells occur to which the term indifferent may be applied ; these coalesce here and there into group)s, and by fusion give rise to structures which are to be considered as matrix-elements of the spicula. They furnish the form of the future spiculum, and then secrete within them* selves the calcarcous substance, in which the nuclei are at first still distinguishable, but which finally so completely fills the whole that nothing more is to be seen of the organic base and the structure appears homogeneous and shining. This transformation is accomplished in the mesoderm.

[^65]
MISCELLANEOUS.

 By M. Louis Roule.
I nave hat the honar of communicating to the Arealemy seremol of the most impertant phemomena prearnterd lis the o...ilforent Crustacea in the course of their cmbryogeny : some more recont investigations enable me to complete the knowledre alrealy aeguirel and to prepare a synthesis of the first stages of the develpment. taking as types Asellus aquaticus and Porcellio scaber.

The orule is always rich in nutritive vitellus; nevertheless the bulk occupied by the latter varies according to the spectes. When it is least in amount the fertilized ovm underenes a total and radial argmentation, the segments assuming the well-known form of conss. of which the apees is turned towards the centre of the ovele amd the base towards the periphery ; on the contrary, when it- ypantity is comsiderable, as in Porellin for instance, this freliminary sumtation is not manifested. But, whaterer be the mombe expebited. after the radial dirision when it exists. or from the homment the the orum is mature when it does not appear, the formatise vitallas ("vitellus évolutif") does not remain minglel with the mutritise vitellus, but separates from it. This sepraration does mot marifist itself at the same time throughout the orum ; it commenes in a zone which correspouds to the future anterior extremity of the embryo. The formative ritellus forms in the first phave in this region a little cicatricle, which rapidly organizes itedf into cells. to Which the nuclei are furnished he the conjurated mowere, which results from the fusion of the male and female promurleus effertal in fertilization. Fresh quantities of formative vitellus then beome isolated from the nutritive vitellus and added to the cicatricle increasing its mass and dividing likewise int cells: in this way the cicatricle grows and gradually envelops the nutritive vitellos, alvancing with regularity from the zone which it occupied until it reaches the pole diametrically orposite: a cellular layer is extemben thy this proceding upon the periphery of the ovule and finally surtowns it.

Arrised at this stage of derelnmuent. the embryo is constented hy a layer of cells which surroumds a compret mass of mataite vitellus: this layer is the blat derm, which will give nise to the three hastumemic layers. To this cond the cells of the bustohem produce a large number of cellular elements, of which some prosetrate into the nutritive vitellus, while the reat intercalate themonehetween the latter and the hitodermic layer: the develoment of the two kinds of cells is similar. Sreval of these lements, antlected in two gromps placed at the sides of the embrron and not far from the medin-ventraldine. arrane themselves in two sy mamerieal layers which penetrate into the nutritive vitellus, converging enmords one another : these two layers, sopurated from the timent cheir firat appearance. represent the radiments of the codoterm. The wher elements do not arise in limited zones: they atw pomben by the ha-tulerm throughout its cntire extent, and give rise to the mast

Aum. When the blantoderm has thus gisen hirth to the meonderm and emdoderm, it persi-1s as a simple cellulay layer aromen the layem: which arise from it, and constitutes the ectoderm. In short, the primitive hastedom is alome the origin of the three layers: the eedlo of which it is composed maltiply rapidly, and group, themselves in two different ways ; some remain at the periphery and will form fart of the eetoderm, while the rest penetrate into the ovule and reprement a meso-cmbederm, which will differentiate into the two final inuer layers.

One of the mast important facts is the diffuse gener is of the mesoderm by almost the entive hastoderm: a second is the double origin of the endoderm, the two original zones being separated by a vast space. These two pecoliarities taken toqether are really characteristic, for we do not meet with them in the condensed developments of the rest of the Cobomata. Finally, a concluding phenemenon of great value is presented ly the enteron or primitive intestine, which hollows itself out in the interior of the cmbryo without in any way paceeding from a gast rular invagination, and dues not even present a trace of such a primordial origin; here, again, is a contrast to the condensed developments of the other C'clomata. At the present moment I an continuing my investigations and extending them to the Podophthalmata; I shall shortly have occasion to show that they exhibit the same phenomena as the Edriophthahnata, and that the blastodermic depressions, considered ly divers authors, by Reichenbach and Bohretzky among others, as gastrular incaginations, have not, in reality, such a significance.-C'omptes Rentus, tome exiii. no. $2 \pm$ (December 14, 1891), pp. 868-870.
A nou Monde of Respiration in the Mypriapolte. By F. G. Sinclum (formerly F. (i. Henthcore), M.i., Fellow of the (ambrider Philosophical Society.
The Scutigeride respire by means of a series of organs arranged in the middle dorsal line at the posterior edge of every dorsul scale except the last.

Each organ consists of a slit bounded by four cursed ridges, 1 ton at the edges of the slit and two external to the latter. The slit leads into an air-sac. From the sac a number of tubes are given off : these tubes are arranged in two semicircular masses. The ends of the tubes project into the pericardium in such a manner that the ends are bathed in the blood and aürate it just before it is returned into the heart by means of the ostia. In the living animal the hlood can be seen through the transparent chitin of the dorsal surface surrounding the ends of the tubes; and in the organ and surrounding tissues cut out of a Scutigera directly it is killect, the blood-corpuscles can be seen clustering round the tube ends. If the mass of tubes of a freshly killed specimen are tensed out under the microscope in glyeerine, they can be seen to be filled with air. The tubes each branch sereral times. Each tube is lined with chitin. which is a continuation of the chitin of the exo-skeleton. Each tube is also clothed with cells, which are a continuation of the hypodermis. The tubes end in a blunt point of very delicate chitin.

Reasons for supposing these Organs to be Respiratory.

1. There are no other organs which could be supposed to be respiratory in function.

2 . The tuhes are chitimous, and the chitingews thin and memhanous towards the end, affording a good opport mity for interemange of gases.
:3. The tube ends project into the pericardium, so that they are bathed with the blood.
4. The tubes are filled with air.
\therefore. The organ is so phaced as to aerate the home just luffore it returns to the heart.
ti. In sicutigera the dorsal scales dn not agree in mumber with the lugs. The organs are arranged on the dorsal smakes: that is there are not arranged in correspendence with the meoblatie or primitiwe spementation (see a former paper before this Suciety. "The Poot-
 it probable that they are not a primitive development. but a rement monlification, agrering with the fact that all other Myriamols hreathe by the more primitive method of tracher.

This mode of respiration differs irom that in other Myriumols in the following particulars :-

1. The tubes are enlle ent into one definite organ, instead of heing distributed about the body:
2. The tubes have no spiral thread.
3. In acting on the blood just before it returns to the heart, so that aërated blood is distributed instead of unaërated.

It resembles the trachea of other Mrriapols in the following particulars :-

1. In the air-sae into which the tubes open.
2. In the cylindrical form of the tubes.
3. In the branching of the tubes.

The organs resemble the tracheal lungs of Spiders-

1. In the large air-sae.
2. In the number of tubes opening into an air-sac.
3. In the arrangement for bathing the tubes with blood in a blood-sinus.
4. In the supply of aërated blood by the heart.

They differ from them in-

1. The form of the tubes, which in Sentigera are cylindrical.
2. In the absence of the membrane which in Spiters surrounde the organ.

I therefore hold that the respiratory ongan in scutigera halds a position intermediate hetween the trachear of Myrapods and the lungs of Spiders. I hold with A. Lenckart ('Zeitsch. fïr wiss. Zonl." vol, i. p. 246 , $1-19$, " Cober den Bau und bedentung der sug. Lamgen bei den Arachmiden ") that the tra hea have derengen into the lunge of Spiders and siorphems, and 1 think that the urgans in tastion form a series of which the lowe-1 term is the tramea, the next the argan of sentigera, then the lunge of spiters. and then of

Beriam cisi

THE ANNALS

MAGAZINE OF NATURAL HESTORY.

[SIXTH SERLES.]

No. 52. APRIL 1892.
XLI.-Matural Mistory Notes fiom M.ME. Indirn Ilrrine Surcey Stermer. 'Incesteyutor,' C'mmenter li. IV. Ihoskyn, R.N., commanding.-Series II., No. 1. On the Results of Deep-sea Dredrining deriming the Season 1590-92. By .J. Troon-MAsos, Superintendent of the Endian Mus:mun, and Professor of Comparative Anatomy in the Medical College of Bengal, and A. Alcock, M.B., Surgeon I.M.ぶ, Sur-geon-Naturalist to the Survey.
[Continued from vol. viii. p. 362.]

$$
[\text { Plates XIV. \& XV.] }
$$

Family Psalidopodidæ, fam. nov.
Olfactory flagellum of antermules simple. Mamblible deeply divided into molar and incisive processes and furnished with a 2 -jointed palp. 'The exoporlite of the first maxillipede is a broad and abruptly incurved falciform plate which does not terminate in a Hagellum, and is not expanded at the outer margin into a process. The exopodites of the second ant third maxillipedes are undivided, porrect, and membranons Hagella. The thoracic appendages from the second to the eighth inclusively have the third (ischiopodite) and fourth (meropodite) joints fused, and are hence all 6 -jointed with

Ann. © Mag. N. Hist. Ser. 6. Vol. ix.
the exception of the third pair, in which the sisth and serment joints are in addition finsed, and there are hence only five distinct joints; those of the fourth pair are formed as in the

 those of the fifth pair, which are the shortest and weakest of the limbs, bear a probably expansile pencil of seta at the distal (and of the fropadite, which is the furntional lat jomint of the limb, the dactylopodite being reduced to a minute moment; the sisth, seventh, and eighth pairs form a hackwarlly incerasing series of walling legs; the five last paiss are devoid of all traces of epipodites and exopodites.

The thorax is firmly articulated to the abolomen her a strong hinge.

In andition to the functional gills, which are five pentor branchise attached to the posterior thoracic somites from the tenth to the fourteenth inclesively, there is present, on the arthrodial membranes of the theracic appemtases from the ninth to the thinteenth inclusively, a series of five small conicel papilat, which correanond hoth in number amt in fusition to the anthonanchise of tine (ilyphocrangoniter, and are, there is little rloubt, to he interpeteil ats vestiges of gills of the same category.

The body is exceedingly spiny and termmates in front in a powerfilisecurved rostrum, which is toothed on all its fimu margins.

Psalidopus, gen. nov.

Body moderately compressed, in shape somewhat like I'rlem.on. Interunsent tirmly chitinized though thin, coverent thenghent durally, from the alpex of the matrum to the chel of the sixth abdominal somite, with long symmetrically arranged needle-shaped spines, and between the spines with michecopically small sete, which are evenly and resularly distroluted, and give to the smface a minutely gramuateil appearance up to the base of the caudal swimmeret, upon which they become developed into a fury pubescence.

The carapace is produced in front into a long ascendant curved motrum fully twice its. own length measured from the frontal to the posterior matein in a straight lime; its anterion margin is amed on hoth sides with four spines, which may he femed the antemalary, antemmal, bramehinstegal, and sulimanchiostegal spines resectively, and with a stout blumt subtriangular deftexed proces, against the immer margin of which the rudimentary eye-peduncles are firmly retacted;

 sally, where it rises into a strone and bold ridere, fommen at cach cond of the carapace the pmiterion bomdary of a derp growne the ridge with the srowe concentric therewith enn-
 hinge.

The banchostegins are abrupty infleted, and their fire marsins, which are chasly applied to the hases of the less, are widely hot obtusely amolated inwards opmosite to the interval between the first and secomed pairs of legs anterimety, While pesterionly they give off a triangular pmenso which abuts against the postembatmal face of the eighth thmacie: sternum, aml thas serves mot only to keep the tso elements of the thomacicu-abuminal hinge in comstant relationm aphmsition with one another, lout alse to divide that which answers to the afferent branchial eleft in Astecus into twon parts, ant inferior and a superior: in the former of these the free margin of the carapace is in such close contact with the leg-innes a to leave no passage for water to enter; the latter, on the contrary, is a wide and rigidly-patent oval aporture placing the lnamehial ehamber of itsown side in dieect communication with the subabdominal cavity, and forms the exchsive inhet. for the water required for respiration: whence it follows that all the water which enters the branchial chambers must do so by way of the subabdominal cavity, and that during life a constant circulation must be maintained in this cavity; in the female, in which the special afferent lumehial apsernes are larger than in the male and the subabdominal cavity forms a spacious brood-pouch, the constant cireulation of Water in the latter must secure a more perfect acration of the eggs than would otherwise osear; there is no dombt, in fact, that we have here to do with a mechanism for securing the due aeration of the eggs similar to that which exists in Encephuioides Armstrongi and other deep-water Brachyura (Am. \& Mag. Nat. Hisis. (6), vii. pp, 2.99, 266, et 2(67), wherein the branchial cavities communicate with the broodcavity by means of canals in the himder angles of the cephalothoras and, the ordinary direct chamels being elosed, water for respiration is derived from the brool-cavity.

The rostrum is compressed, and presents four longitudinal spiny ridges-one dorsal, two lateral, and one ventral; the spines of these are all sharp, slender, forwardly curved ani inclined, and decrease in length from the base towards the obsoletely bifid aper of the rustrom. The dorsal ridge is
continued to the posterior margin of the carapace; its spines are larger, more compressed, and less inclined, thongh more curved, than those of the restrum, and suberual, with ome or two shorter and slemberer ones intercalated between them here and there. In addition to the dorsal ridge the carapace brans on each side four other longitudinal rows of spines: the first of these runs quite close and subparallel to the dorsal rillee from one end of the carapace to the other ; the seeml commences with the antemulary spine, curves slighty downwards and then slightly upwards to the cervical suture, Whence it takes a straight couse to the hinder marsin, ruming parallel to the dusal ridge; the thind consists of the antemmal spine and of two spines on the posterior half of the cephatic purtion of the carapace; the fourth, of five or six spins commencing with the branchinstegal spine, and runs ahnes the midule of the prominent efferent branchial canal, and like the second has its spines connected by a ridge.

The surface of the part of the branchiostarite come inding with the suljacent branchial chamber is raised into a bunitudinally oval convex-topped clevation, which is fimest at the clges with strong spines and bears an irregular mow of five or six along its middle. Between the branchial elevat tion and the alnost horizontally intlected portion of the carapace are some smaller spines roughly in the same straight line with those on the efferent branchial canal.

The abolomen is amed along the mithonsal line with a spiniterous ridge similar to that of the cephahothomax amil extending almost without interruption from the base to the apex, bemg absent only in the basal half of the fifth teremm, on the sides of its terga and phenra with symmetrically aranged spines similar in form to those of the dorsal ritee, and on the edges of each of its pleura with several exceedingly long and slender needte-like spines, tesides smaller ones; the number, form, arrangement, size, and direction of these spines, which vary within small limits in all of the above respects from specimen to specimen, will be best understood by deference to the accompanying figures. The first abdominal somite is produced in froist on each side at the junction of the tergum with the plemon into a short, stout, bitid, and incurved process, which fomms the abheminal element of the thoracico-abtominal hinge, and is received into the groove in the hinder margin of the side of the carapate already described. The pleura of the secom abhominal somite are much more expanded in the femate than in the male. The telsom is elongate-triangular or olslavate in outline, its margin heing at first rombled and then taperins in
straight or very slightly concatve lines to the triangular apex; its dorsal surface, which is covered with a furry coating of minute appresed spinules, is transersely convex and trat versed longitulinally by a deep sroove, white its ventral surface is deeply excavated gutter-like and glabrons.

The eye-peduncles are very small and immovably retracted outwards against the extrorbital angle, boing ankylose: at hase to the ophthalmie sternum ; a distinct emmstriction limits off' a wider and almost spherical apical or comeal portion from a namower basal protion ; the latter bears on its inner and inferior side, near the base, a minnte papillat the corneal protion is smooth and polished, and does not exhibit the slightest trace either of superticial faceting or of subjacent pigmentation ; the eyes appear, in fact, to be in exactly the same degencrate condition as those of Nepheropsis stemerti, and it is certain can be capable at most of appreciating differences in the intensity of the light.

The peduncle of the antemules is subcylindrical ; its first joint is about equal to the two remaining joints taken together, crested on the infero-inte:nal margin, the crest ruming into an acieular spine some distance from the apex, and produced at its outer base into an oval digitats seale-like process; the sceond and third joints subequal, the latter armed with an acienkur spine about the midde of its exterosuperior face; Hagella equal in length, the outer the thicker (much the thicker in δ), and bearing olfactory filaments to within a short distance of its extremity.

The second joint of the antema is armed with three spines on the outer apex ; the scale is a narrow, firmly chitinized, oblong phate, with an acute triangular somewhat inturned point; it is strengthened and stiffened not only by its greatly thickened outer margin, which terminates some distance from the apex of the part in a prominent spine, but also by a stout midrib and a slight thickening of the apical and inner margins. The flagellum is very long.

The mandible is very distinctly divided into molar and incisive processes by a deep and almost rectangular noteh, in which the palp is lodged. 'The incisive process is a thin, excessively sharp, and slightly recurved knife-like plate. The stout molar process may be described either as an irregular four-sided prism with one angle broadly rounded off or as an irregular three-sided prison with one side conves; its trapezoidal or subtriangular masticatory surface is concave with sharp edges. The palp is robust, two-jointed; the apex, with the greater part of the inwardly directed outer edge of its oval terminal joint, is beset with stiff sete.

The coxopodite of the first maxille is much shorter and wider than the hasipodite; the endopodite is a short, simple, and undivided finger-shaped joint with a few setæ on its onter afex, and the expmdite apmats to be represented ley a fimly chitinized rom conchomal , hate, the convex face of which is turned downwards and backwards.

The coxefredite of the second maxillat is hat little shomere but much narower than the hasipentite, not extending nearly so far towards the middle line; the basipodite is subtivided; the endopodite differs from that of the first maxille only in being somewhat larger; the anterior lobe of the scaphognathite is much broader than the posterior lobe, in which the apical fringe is developed into excessively long and fine setee.

In the first maxillipedes the coxppoditic plate is rudimentary and furnished with limp, hairs, the functional jaw being entirely formed hy the basiporlite; the endopodite is a namow slighty curved and knife-like pointed plate, the exufodite is a broad and abruptly incurved falciform plate, and the epipodite is two-leaved.

The recond maxillipedes lave (mly five distinct juints, the third and fourth joints of the typical malacostracous limb being indistinguishably fused tugether ; the first joint bears a thiangular (pipodite, the second a long, taperine, undivided and mombranons exoporlite, the third is about as longe as the second, hat ouly alcut half its thickness, the fiuth is short, about half as long as the thind, the fifth is broadiy subtriangular and does not enter into the formation of the functional jaw, which is wholly formed by the very short and broad wedge-shaped sixth joint.

The external maxillipedes present only five distinct juints, the sixth and seventh, as well as the thiod and fourth, joints leing indisting uishably fused tugether. The first and seeome, which are ankylosed together, are shont, stont, arid subuphat: the first bears a small oval and sulpedmenlated hard proeess, probably representing an cpipodite; the second, a flagetlar exopdite, similar to that of the secom maxillipedes; the third joint, forming the functional jaw, is an obelavate comprescel selerite, and is strong!y curved to the configmation of the maderlying appendages; its imer margin bears mo fringe of setar ; the fourth and fith joints are slember, cylindrical, and tringed with narrow, transerse, seale-like rows of seta 1.n the imeredge; the fourth is a lithe shomer than the third and exactly half of the fitth, which latter is almost straight, and tepers leyond the midelle of its lengeth reey slighty and gradually to a bluntish point bearing a few stiff sctie.

The legs of the first pair are built upon the same plan as
those of the (Trangonider, winch they chasely resembla, and from which they chiefly differ in the ir scisems-like extromity. They presint hat six distinet true joints, one of the blades of the temimal seisoms having to be interpreted as a movably articulated prolongation of the propedite, and the thied aml fourth juints being all but indistinsuishably fused tore ther. The first two joints are short. The third joint, which is strondy corved like the comesponding joint of the external maxillipede, increases slightly in thickness from the base to the apex, where its upper margin is prolonged into a sharp needle-like spine preceded by a few spinules. The forurth joint, short and whenic, also bears a similar spine in enereFomeng position. The fifth juint, or properlite, is oblong and somewhat compressed, it bears at the distal end two equal and movably articulated tonthed knife-like bladesone answering to the fixed prolongation of the propolite, the other to the dactyhpodite of the typical crustacean chela, which are evidently capable of playing upon one another like the blades of a pair of scissors or shears.

The legs of the secomb pair are also only six jointed, the thind and fourth joints being all but indistinguishably fused together. They differ remarkably in form from the precedine. The first two joints are as in the legs of the first pair. The third joint is a cylindrical rod armed with a few minute spinules on the upre margin, which teminates in a sharp spine. The fourth joint is also cylindrical, but shorter and much thimer than the preceding, and marmed. 'The fifth joint, likewise cylindrical, is about half as bong as the preceding and tapers slightly to its apex, where it bears a compactly coned pencil of possibly expansile sete. The sixth joint is a minute, transvereely clongated, nodular rudiment, lodged in a notch of the upper and onter margin of the distal end of the propodite.

The three remaning pairs of legs are quite different from their predecessors, and are substantially alike, differing from one another only in length and in the degree to which the fusion of their third and fourth joints has been carried. They are typical ambulatory limbs. The second only slightly exceeds the first, while the last, owing mainly to the great clongation of its propodite, greatly exceeds the second in length. 'They are roughly cylindrical and are armed below and on the contignons parts of their sides thronghout with sharp spinules, which in the fourth juint or meropotite assume an arrangement in two rows on the ventral edges of the joint, while the apices of the meropodite and of the obconic carpopodite each bear one median dorsal and at least one
lateral outstanding spine larger than the rest. In the last of these legs the third joint is fixedly mited to the fourth, the division between the two perfectly retaining its primitive distinctness; in the second the mion is more perfect, but the division may be readily made out on the inner sile ; while in the first the union is more perfect still, and the primitive distinctness of the parts is scarcely traceable; so that the fusion of the two joints in question becomes more and more perfect as we pass from behind forwards until at last it is mo longer possible to distinguish them. The compound joint is curved, like its predecessors in the series, to fit the convex ventral surface of the thorax. Their terminal jnint forms a stoutish curved and acuminately-pointed claw. There is no trace either of epipodites or of exopodites on any of the legs.

The protopodites of the abdominal appendages are lons, being more than half the length of the rami in the first pair, and less than half their length in the succeeding pairs. The apical half more or less of their carinated outer margin is armed with small spines, which increase in length towards the apex, near to which there is usually a single spine that is much larger than the rest. Near their base on the posterion face a transverse suture divides them into a long distal and a short and incomplete proximal joint. Their rami are all long-lanceolate and undivided membranous plates, with the exception of the inner ramus of the first pair; this is in both sexes only about one third the length of the outer and is prriform or obelavate in outline ; flat and flexible and frimged with seta on both edges in the female, it appears convex and stiff and glabrous and somewhat subulate or acuminate in the male, owing to the apical half more or less of its celges being folded up into a sort of tube, and owing to the fringe of its outer margin being reduced to short and simple seter; the outer ramus of the first pair is in both sexes narrower than either of the rami of the succeeding pairs. In the appendages of the second to the filth pairs inclusively the inner ramus is shorter and narrower than the outer, and is furnished near its hase on the imner side with a short cylindrical appendix internn, provided at its apex with minute hooks for attachment to its fellow of the opposite side. In the second pair in the male there anises from the inner ramms, in front of and slighty internal to the "ppendix interne, a tapering finger-shaped "Ipendiar masculine, and the second joint of the protopodite is sublivided by a false joint into two aproximately equal parts.

The rami of the sixth pair of ablominal aprendages are fimely chitinized, rigid, wal phates, the outer ahmest twice the
width of the immer the former is strembthemed by a stent midrib and by a thickening of the outer matgin, which torminates a good way from the apex in a prominent spine of the same size amb character as that of the antemal scale; an inflexible diaresis extends inwards from the hase of this pine up to the midrib. The inner ramus is strengthened by a similar midrib, from near the base of which a ridge extents obliquely inwards and backwands to the imer margin.

The legs of the first th the third pairs of opposite sides tonch one another in the midde line, and their sterna are hence invisille without dissection ; those of the last two fairs, on the contrary, are wider apart and their stemat are planly visible and have the form of an inverted T, the cruss stroke of which is, in the hinder and larger of the two, produced forwards, between the hases of the legs of the last pair and over its own down-stroke, as an acute angular (δ°) or semicircular ($\%$) phate, beneath the sides of which the genital apertures can in the male be concealed.

The branchial formula is as follows:-

35. [Psalidopus Ihuxteyi, sp. n. (Pl. XIV. figs. 1, 2, 7.)
q. Stouter. Thoracic and abdominal sterna unarmed. No tubercle between the last spine of the dorsal ridge and the posterior margin of the carapace.

Columr in life brilliant old-ivory white or straw-colour.
millim.

Total length from apex of rostrum to tip of telson in
a straight line

141
Length of rostrum from supra-orbital margin in a straight line 51.5
Length of carapace from supra-orbital to posterior marrin 25
Length of abdomen from middle of anterior margin of first tergum to tip of telson 63
Length of telson 195
Leugth of antenual scale 21
Width of 6
Length of antenuulary flagella 37

A single ovigernis female was taken on April 12,1858 , $7 \frac{1}{2}$ miles east of N. Cinque Istand, Andaman Sea, in 450 fathoms.

It carried twelve very lange erge, which in equit measure no less than $3 \cdot 8 \times 2.7$ millim.]

36. Psalitopas spiniventris, sp. n.

(Pl. XIV. figs. 3-6a, 8; Pl. XV. figs. 1-10.)
of \circ. Slenderer. Two posterior thoracic and all the abdominal stemat with an erect spine in the midde line. A conical tuhercle between the last spine of the domal rilge and the posterior margin of the carapace.

Colour in life deep-sea pink with white points.

	Male. millim.	Female. millim.
Total length from apex of rostrum totip of teleon in a straight line.	106	103\%
Length of rostrum from supra-orbital margin in a straight line (tip gone in male)	40	51\%
Length of carapace from supra-orbital to posterior margin	20	25
Length of abdumen from middle of auterior margin of first tergum to tip of telson		$\therefore 9$
Length of telson		15
Length of antennal scale	16	1!
Width of	3;	-
Length of antennulary Hagella	37	3.5

An adult mald and female, with me yomes specimen, were obtained at Station 116, 405 fathoms.

A small pair, in which the rostrum is much larger in the female than in the make, have come whe lit in the somiac of past seasoms' collections. They were takens miles 心. E . of Cinque Island, Andaman Sea, in 500 fathoms.

Colour in life "more of a boiled lobster tint" [i. e. than other Crustaceans ontained at the same time and deseribed in the same notes as pink and blood-red], "deepest on the spines" (G. M. Giles).

ENPLANATION OF THE PLATES.

Phate MIV.
Fig. 1. Panlidupus Iluxicyi, of from the left side. Nat, size.
Fig. 2. The candal swimmeret of the same, from above. Nat. size.
Fiig, e3. Psalidopus spiniventris, of. Peduncle of the left antemnule, from above. $\times+$
Fig\% 4. Left antennal seale of the same, from abowe Niat. size.

Fiig．is．Left leg of the first pair of the same，from the ont－ide．$\times 4$ ．
fify．6．Left leng of the second pair of the same，from the outside．$\times 4$ ．
Fig． 6 a．Apex of propodite of same，to show the rudimentary modular dnetylopodite．
Fig．7．Psatidopus IHuxleyi，last thoracic starnum with buses of legs of last pair of female．Nat．size．
Prig．8．P＇sulidopus spiniventris，last thoracic sternum with leg bases of male．Nit，size．

Plate XV．

Fïgs 1,1 a．Psalitopus spiniventris，mandible．\times 万．
Fig．2．First maxilla．\times う．
Fig．3．Second maxilla．\times 万．
Fig．4．First maxillipede．\times 5．
Fig．5．Second maxillipede．$a \times 5$ ．
Fig．6．Third maxillipede．$\times 2$ ．
Fig．7．Left abdominal appendage of the first pair in female．$\times 2$ ．
Fig．8．Left abdominal appendage of the second pair in female．$\times 2$.
Fig．9．Left abdominal appendage of first pair in male．$\times 2$ ．
Fig．10．Left abdominal appendage of second pair in male．$\quad \times 2$ ．

XLII．－Descriptim of a nen（ienns and some new Species of Interecera tiom Cential 1 merica．By Ilebbert Dhece， F．L．S．

Fam．Ægeriidæ．

Egerla，Fabr．
Egeria armasata，sp．n．
Primaries and secondaries lyyaline，with a slightly yellowish tinge，the costal，outer，and imer margins of the primaries edged with yellowish brown，the reins of both wings yellowish brewn，those of the secomdaries being the darkest；the fringe of the secondaries dark brown．The underside of both wings light yellow．＇The palpi and front of the head yellow；tie antenna dark brown，yellowish at the base；the thorax and abdomen blackish brown，with a yellow line at the base of the abdomen；the anal tuft yellowish brown；the legs orange， banded with black．

Expanse $1 \frac{1}{4}$ inch．
Hab．Mexico，near Durango city（Becker）．
A fine species，very distinct from all others known to me．
Egeria mardia，sp．n．
This species is allied to Eyferia trathoniformis，Walker，
from which it differs as follows:-The primaries anl secondaries are quite hyaline, with the streak at the emt of the cell and the spot at the apex bright orange-red instean of pale ycllowish brown; the head, thomax, aml almomen black instead of yellow, as in A. tryllomiformes; the anal tutt large and bright orange-red ; antenna black ; palpi orange.

Expanse $\frac{3}{4}$ inch.
Hab. Mexico, near Durango city (Becter).

Melitta, Hübn.
 Melitta Beckeri, sp. n.

Primaries greeni-h brown, very thick!y irrmated with pale green scales, the frimge greenish brown: seconlaries hyaline, with all the veins bright orange-red, the marsinal line hack, the fringe dark brown. The umbersike of the primuins pale yellow near the apex, which is greenish brown; the secondaries the same as above. The head and thorax greenish brown, the same colour as the primaries; the palpi yellow; antemme black; the abdomen hachish hown; the amal tw:t yellow; the hime legs long and resy thickly chathed with hair, that nearest the base on the onter sid being pate yellow, that on the tibia and tarsus black on the inner si le, bright orange on the outer side, almost white close to the ungues. The underside of the abdomen is banded with yellow.

Expanse $1 \frac{1}{2}$ inch.
Hab. Mexico, near Durango city (Becker).
This fine species is alliel to M. sutyriniformis, Hiibs., from which it is at once distinguishel by the mangerel reins of the secondaries and much paler green primaries.

Fam. Saturniidæ.

Metosamia, gen. nov.

Mule-Head rather small. Thorax broad. Abelomen short and thick, not extending to the midtle of the immer margin of the secondarics. Antemar very depply pectimatel, more so than in the genus Samia. Palpi very minute; legs stout and rather short, thickly chothed with hairs. Prmarses with the costal margin very much arched from the millhe to the apee, which is very pomted, the outer margin very deoply concave and dentated between the veins; the anal angle roundel; th. inner margin straight; the eell very haw and much shorter than in simme Soemblaries: the ental margm rery much rombed to the apex, which is gute pmintal; the
nuter margin decply concare to the midde, then almot straight to the anal angle, dentated slightly between the veins; the inner margin slighty eurvel from the ath 1 m on, the anal angle rounded.

Type Metosamia Gormani.
Siturain montramu, Salle, will also come int., this gallus. Both species will be figured in the 'Biologia.'

Metosamia Godmani, sp. n.

Ahto. Primaries and semblaries mitiom lwight umanhown ; primaries with marly two thisho of the costal margin homally edged with greyish hrown, thickly imomatel with white scales; a large white eport at the base of the winc chose to the thorax; a large V white mark at the base of the cell and a large hyaline oral spot at the end of the cell berderel with pale yellow and edged with a very fine black line; a pinkish-white line parly croseres the wing near the base; a rather wide black submargimal line edged with pinkish-white scales extends from the costal margin close to the apex to the imer margin just above the anal angle : secondartes crussel below the middle from the costal margin to the anal angle by a black line correspmbing to the one on the primaries, but only edged with pinkish-white scales from the en? of the cell to the anal angle ; a small hyaline spot at the end of the cell broadly bordered with pale yellow, edged with a rather wide hack: line, the black line on the upherside being diviled into two by a narrow line of bluish-white scales. Underside: both wings reddish brown, thickly irrorated round the outer margins and at the base of the secondaries with black and jinkish-white seales. The head, front of the thorax, ant base of the tegulx greyish brown, thickly irrorated with white hairs; the thorax, abdomen, tegulae, and legs bright orange-brown ; the antenne pale yellowish brown.

Expanse 7 inches.
Hab. Mexico, Oaxaca (E. D. Godman).
This very grand insect was obtained by Mr. Godman during his last visit to Mexico. I at first thought it might posibly be the species described by Salte as Saturnia monkzuma; but having recently receivel a careful drawing of that species made from the type, and since then a very fine specimen of that species, it at unce proved that the insect I have very much pleasure in naming atter Mr. (iodman is exceetingly distinct.

Telea, Hïbn.

Telea aurelia, sp. n.

Monto-Primaries and secon laries pale fawn-colone: prismaries crossed from the costal to the inner margin by a rery wide black hand, enteed on both sides with a wased hlack line, which is eitged on the immer side with pink and white scale: ; the costal margin thickly irroratel with white scal... from the base almost to the apex ; the apex stroakel with pink and white, with a rather large black spot on the costal margin; a laree hyaline spot at the on l of the cell, boodesel with reddish fawn-colour and then boadly with hack, the basal halt of the liack ring being thick!y irmated with bluishwhite scales; a narrow, straight, fawn-colotred line extmols from the costal margin close to the aper to the inner margin above the anal angle: secomlaries, the central part of the wing dusky black; a large lyaline spot at the end of the coll very hoadly hordered with deep black, which is thidty irrorated on the imer side with pale hhu scales ; a sumbarginal pale fawn-coloured line extends from the contal mangith to the anal angle. Underside pale fambenlow, thickly imo rated with white scales, with the markings very similar to those above, but of a dark brown colour. The heal, motersid. of the thomas, and leas dark brown the collar and front of the thorax greyish white, the thoma and abdomen pate fawncolour ; the antenne yellowish brown.

Expanse $5 \frac{3}{7}$ inches.
IIab. Mexico, near Durango city (Becker).
This species is very distinct from any known to me.

Fam. Hepialidæ.

Phassus, Walker.

Phassus marcius, sp. n.

Primaries pate greyish brown, thickly warked with grey and darker hown lines; a double row of blackish-mown chongated spots croses the wing from the costal marcin near the apex to the imer margin, and a row of elongated comed lines cexends romed the outer margin from the apex the the anal angle; a mather long metallic geld streak broken into three spots at the end of the cell, heyond wheh, neaver the nuter margin, are two very minute metallie gold dots: seondaries pale greyish hown, paleat at the hase, with aseral indintinet
darker markings on the costal margin close to the apex. Thes head, thorax, and abdomen pale greyish brown.

Expanse $4 \frac{2}{0}$ inches.
Hal. Mexico, near Durango city (Becker).
Λ fine distinct species, allied to P. argentiferus, Walker.

XLIII.-Observations on the Dentition of Mammuls*. By W. Kükenthal \dagger 。

We do mot yt pussess a satisfactory explamation of the tomblhchange of Xammals, as was shown by M. Schbosert only a short time ago.

The conjecture that both series of teeth have been derived from the Reptiles is at once opposed by a number of statements, according to which in the lower orders of Mammals tooth-change is either entirely absent, or, as in the case of the Alarsupials, is contined to one premolar. Flowers hepothesis, aftemands comsiderably expanded by Oldtielid Thomas l, that the milk-dentition mpersonte a fieshacruisition on the part of the higher Mammals, and that the permanent series alome is the oniginal one, conld therefore le supported by many weishty ratoms. Prom amoms the large number of viens which differ trom this in more on lese material perints, 1 will here merely allude to that of Baume d, according to "hich both series of tee thathe had merely a seemulary migin. For Baume suppese that owing the shortening of the jaws Which set in in the comrse of the evolution of Mammals, the originally momerons and similar teeth could no longer fime room in one series, so that a portion of them became displaced and were able to appear only later on, as the permanent dentition.

* I intend to gire a detailed exposition of the present investigations in the second rolume of my - Terglemelend-anatomischen mend entwichelungsgeschichtlichen Unterisichanmen an Wittieren (Denksehriften dur mediz--1naturw. Gesellschaft in Jena, Bd. iii.).
+ Translated from a sparate impresion from the " Inatomischer Anzeirer', ri. Jahrgang (1891), no. 13, pp. 36 ± 370.
 1890.
§ W. H. Flower, "On the development and succession of the Teeth in the Marsupialia," Phil. Trans., 1867.
|| O. Thomas, "On the homologies and succession of the Teeth in the 1)asymide, with an attempt to trace the histury of the exulation of the Mammatian Teeth in general,' Phil. Trans, vol. 178 , pp. 43-462.
- Bame, " Versuch einer Entwirlielungereschiohte des (ietiose": Leipzig, 188。.

Baume, like many other investigators, therefore rewrith: at the original form a dentition consisting of numerous similar teeth, and consequently starts from the Eilentates and eap:cially the Toothed Whales as the primary type; I therefore commence by examining the latter.

Tootmen Whanes: The Toothen Whales are very gen rally considered as homodont; Weher", however, is right in considering the tusk of the Narwhal and the lower canine of the Ziphioids to be vestiges of a former dissimilarity of dentition. In an embryo of Ploorrna communis of nearly full tim., I find a heterodont dentition tolerably sharply marked, since: out of the twenty-five teeth in cach half of the jaw, the pusterior seven have two and sometimes three cusps.

If on the one hand it is open to doubt whether the 'Tooth. 1 Whales have an entirely homodont dentition, nevertheless na the other it has been regarded as an absolutely certain fart that the Toothed Whales are monophyodont, and that the: single series of teeth which appears belongs to the permmont dentition. Weber, who adopts afresh an ilea previonsly expressed by Julint, is alone in suggesting the hypothesis \hat{i}, that the dentition of the 'Toothed Whales comprises both series of teeth, which, owing to the enlargement of the jows, were all able to appear at the same time.

My investigations in this direction so far embrace a considerable number of embryos of Beluya leucas, (rlobine phhalus melas, and Tursiops tursio; this is what I have discoverel: The dentition of the 'Tootimed Whales is a trie mhlkmextition, or, better, it belongs to the first dentition, which is permanent. Irrefragable proof of this is furnished ly the appearance of rudiments of second teeth internally is those which persist; it is true that the former are comsiderably smaller and do not reach the surface, but they newertheless possess a distinet crown of enamel, and even the chamateristic enamel pulp.

In the 'Toothed Whates, theretore, the germs of hont dentitions are found, and this cuts the ground from bemath those hypotheses which start from them as typical momphyoudont animals; Weber's hypothesis, also, is no lomeer temathe.

Whablisone: Whanes: The Whatebone Whates, fine which, since they have genctically mothing to do with the 'Toothed Whales, I clam a special order within the Mamma-

- Weber, 'Studien über Säugetiere ': Jena, 1886, p. 196.
\dagger Ch. Julin, " Recherches sur l'ossifiention du maxillaire inférieur, et
 rostrata," Arch. de Biologie, 1880.
t Weber, op. cit. p. 13.4.
lian class *, have, as is well known, germs of tere!! in the first third of their fertal life; these are subsergumaty absomped. Among recent investigators Julint and Weher \ddagger widened the difference which Eschricht S. previonsly stated to exist between the nine anterior teeth and the posterior ones, by affirming that the latter are not simply ennical but have several cusps, and that the dentition is absolutely heterodont.

My own investigations were carried out upon thirty different specimens of large jaws of fietal Whatelone Whales, including Meqaptera boopis, Dialenoptera rostratia, Butrennptera Sibluldii, and Balcenoptera musculus, which were partly preserved whole and partly divided into series of sections made in the three chicf directions. In the first place I dispute such a difference as has been stated to exist between the nine anterior and the posterior teeth; the appearance of teeth which seem to have several cusps is, in my preparations of older jaws, occasioned by the process of absorption, which begins at the tipil. The posterior teeth are somewhat more convex than the anterior ones, but throughont are simply conical, with the exception of eases, which are of yuite isolated occurrence, where a pair of neighbouring tecth are apparently fused together. The position of double tecth of this kind (three separate teeth or even four may also be mited together) scarcely follows any definite rule; in a few cases they also occur anong the first nine teeth, and even on this accoment they camot correspond to the supposed molars, acconding to Julin's interpretation. Are these double teeth secondary fusions, or do they represent primitive conditions? Embryology furnishes the answer. A series of seven embryos of Balenoptera musculus, measuring from 43 to 82 cm in length, shows that the number of the double teeth diminishes considerably with increasing growth, while the number of the separate tooth-tips in each half of the jaw remains constant at fifty-three. In the youngest stages nine or even fifteen teeth are fused together; in the following ones five, four, and three, and in the oldest only two. The same result, the diminution of the double teeth with increasing growth, is furnished by the comparison of younger and older embryos of other species of Whalebone Whales. It follows from this

* W. Kuknthal, "Ueher die Ampassung won Siugetieren an das Leben im Wasser," Zovlwische Jahbücher, 1se0; Anu. and Mag. Nat. Hist. ser. 6, vol. vii. pp. 153-179.
+ Julin, loc. cet.
\ddagger Weber, loc. cit.
§ Eschricht, ' Listersuchmagen ither die nordishen Waltiere `: Leipzig, 1849.

II V'ide also Pouchet et C'habry, "Sur l'évolution des dents des Balænides," Compt. Rend. Ac. Sc. Paris, tone 94, no. 8, pp. 540-542.

Amn. di Mag. N. Mist. Ser. 6. Vol. ix.
that the donlde treth repmesent an wiginal comblition, and are therefore to be regarded as molars, and further that CONICAL teeth, witif single tips, abise from molates by division. We have thas learat a methon bey wheh manementhementont teeth arise from a small number of heterodont molars. I shall subserpently ahluce the: palamondegicat fanto which substantiate such an oiigin of homorlont from hetrodont dentitions; I would here only further allude in all brevity to an analngent phenomenom which ewoms in a beardeal rad (Ploca barbuta) from Spitzbergen.

Owing to mechanical causes (hard food, consisting of mussels, besides the final reason, which is the incomplete calcification of the teetl) the molars in the specimen before me have worn away, and, with the exception of the last, have ach lucome more or has (ompletely sparated intu two, which present an absolutely smilar appeamere; instend of five molars, we consequently find seven and eight unicuspid teeth.

The results of my cminyourical inverications heride the
 first or the second series, in so far as they show that rudiments of a second series of teeth are still present; the cord of epithelium in question is for the most part fused with the chamel-rem of the actual towth, which themetime semtially corresponds to the first series. 'The teetli belonging thereto resemble in this the so-called true melars of allowher mammats, which, as they have no precursurs in the milk-hentition, are
 as having aisen from the fusion of the rmbimento of both dentitions. (In the case of the first molar this is ofen still distinctly demonstrable ; it is to be seen with especial deamess in embryos of isermophilus leptertuctylues, for instance.)

I refer the peculiar transformations of the dentition in felagie mammals, which hate ju-t heen describel, tw medna hical canses, terninating with diminished calcification, which, as being necessary for the diminution of the specitie sravity, is a phenomenon of very frequent occurrence in pelagic mammals, and, as has already been shown, also gave the first stimulue which ley th the mexmmere of hypephatanty, as well as the loss of the dermal armature of the 'loothed Whales*.

* In my paper on the "Adaptation of Mammals to Iquatic Life" (Zool. Jahrbieher, 1890 [Ann. and Mag. lue. cit.], I explained these views in greater detail. Of the former presence of a dermal armature in 'wothed Whales, which 1 inferred from grounds of comparative anatomy and embryology (Anat. Anzeiger, 1840, p. 237), I am now able to adduce palaontological prools also.
 typical firmation of suceessms for the first seven teeth; a sucusen is wating only in the case of the last tuoth. The necurtence of tonth-change in this animal has alrearly been demom-trated hy Tomes. Moreover in the fower jaw of the mblnems I find mot eight teeth, but eleven, of which the three first are smaller and do not cut the gum. I am now also able to mention a secend bilentate which has ruliments of two fomtitims: this is Jomypus cillosus. This phenomenon conserpunty aynars to le of very seneral occurrence among the amanliloes. Whether actual fonth-change really takes place is of no consequence for my purpose; 1 merely affirm the presence of rudiments of milk and second teeth.

Marsupials: Flower, who was afterwards followed by Thomats, haters hiss hypothesis that the milk-demtion is a secendary acrpuisition on the part of the higher mammals, on what takes place in Marsupials, in which either no toothchame or only the change of a thid premolar occus. The dentition of Marsupials is very gencrally assigned to the secomel series, and the precursor of the third premolar regarded as a milk-tooth. My own investigations upon this group have so far extended only to the study of a series of young specimens of Didelpleys of different sizes. On the basis of these impetigations I aseert that the permaxext set of
 and that only one second tooth, the subsequent third premolar, of curs. I can casily fumish the proof of this, as smon as it is granted, that the two dentitions are alsu distimemishable from the point of view of momphogy, hesides being of from the physiological standpoint of the differnee in the time of their appearance. The rudiments of the two dentitions, Which have a common origin in the primitive dental fodd, are so dispesed, that the first set of teeth is developel from the outer one, and the second from the inner. Now my preparations show that this is the case not only in the third premolar, hot that the tooth-rudiments lying in front of it, e-pecially those of the incisors, also passess on the inner side, branching off from the neck of the epithelial invagination, a distinct twig of epithelimm with a knobbed end; and this mast be regarded ats the earliest rudiment of the enamelorgan of the second tooth. It at all events follows from this that the entire dertition of the opossums is to be ascribed to the first and mot to the secoml serics. The mainstay of the hypothesis of Flower and 'Thomas, that the milk-lentition has been secondarily acquired by the higher mammals, is thus. destroyed.

The following conclusions result from the foregoing investigations into the dentitions of mammals. The rudiments of both dentitions occur not only in the higher mammals, but also in the lower orders of Mar-mpials, Eilentates, Olfontoceter, and Mystacoceter. The eabliast mamali were midiyodont. The monophyodont and homodont condition of many mammals, e. g. the 'Toothed Whales, has been secondarily acquired. Within the mammalian class, ascending from the lowest to the highest forms, we see how the second dentition gains the upper hand more and more as regards form and function, while in the lower forms the first dentition is predominant. In the rudimentary stage both dentitions are of equal value; embryology gives us no support for the oftenexpressed assertion that one of the two dental ruliments has arisen in dependence upon the other ; they are both sisters, whose mother is the simple invagination in the jaw, which we term the dental fold ('Zahnleiste').

Now can we discover a bridge which comects the dentition of Mammals with that of their ancestors, the Reptiles?

There are no absolute differences between the mammalian and reptilian tonth, as has already been shown by Secley *; not one of the characters of the mammalian tooth is perfectly constant; the loss of any one of them is an approximation to the reptilian tooth, and conversely reptilian teeth often assumed characters belonging to those of mammals. The replacement of teeth moreover occurs in reptiles to a still greater extent than in mammals, since several series of teeth may follow one another, the rudiments of which, as in the case of the second dentition of mammals, are formed internally to the first. The idea of deriving the dentition of mammals from that of reptiles therefore does not appear to me to be too hazardous; of the several series of teeth which are found in reptiles, only two still persist in mammals.

In conclusion I would suljoin the following attempt to explain the origin of molar teeth in mammals, while freely admitting its purely hypothetical nature. (lwing to our investigation of tooth-germs in Whalebone Whates, we have become acguainted with the phenomenon of the division of the molars in mammals, whose jaws become chongated, into a multitude of conically pointed structures, vesembling the teeth of reptiles. Conversely, have not the molars of mammals also arisen in this way, in that, in consequence of the reverse proeess, a shortening of the jaws, which the ancestors of existing mammals underwent in the couse of their trans-

[^66]formation from reptile-like progenitors, a number of simple, conical reptile-teeth came together to form cach mammalian molar? Palarontology is in favour of my view ; the oldest known mammals, e. g. Ticonodon from the Upper Jura, exhibit molars of the typical structure requisite for our idea, each consisting of three similar conical tooth-segments, lying one behind the other and fused together. The admirable papers of Copee, Osborn, Sehlosser, and others have shown that from the triconodont, that is the fricuspid type, the molars of all manmals may be derived.

A multitude of 'questions as to the specialization of the teeth within the various orders, the teeth with continuous growth, the formation of roots, \&c., still remain to be answered; I shall make the attempt to (l) this in a detailed account of my investigations.

Jena, June 5, 1891.

XLIV.-The Dentition of Didelphys: a Contribution to the Embryology of the Dentition of Marsupials \%. By W. Kükenthal \dagger.

In the case of Didelpheys the dental formula $\begin{array}{cccc}5 & 1 & 3 & 4 \\ 4 & 3 & 3 & 4 \\ \text { is }\end{array}$ very generally accepted. The tooth-change is limited to one tooth, the last premolar, as was first discovered by Gervais and Flower to be the case in Marsupials. By this discovery the older view that in Marsupials the whole of the teeth are replaced with the exception of the four molars was finally overthrown. The question, however, now arose as to how the dentition of Marsupials was to be regarded, i.e. whether it corresponds to the milk-dentition or to the permanent series of other Mammals. While Owen was rather inclined to adopt the former view, the latter was maintained by Flower,

[^67]thus laying the fombation of the theory that the milk－len－ tition has been secombarily acruused ly the Mammalia，and occurs in Marsuphals mily in a single case（the thind promolar）． Although Flower＇s defuctime was liy no means generally accepted，the conception of the Marsupial dentition as belenging to the pomanont on，to speak mome ommoly，sho second series of teeth，was universally adopted．Thus it is supposed by Wiuge＊，who otherwine in opposition to Fhame regards tonth－change as an wh andugement，inherite I foren the lower Vertebrates，that the milk－lentition in the Mavon－ pials has been lost，with the exception of one milk－twith，the precursor of the third premolar．A higher grade would therefore have to be as－igned to the dentition of Marsuphals than to that of the majority of Mammals．＂But if，con－ tray to all pmbahility，it shouhl appear that the Marsupial teeth in questim have never had precursms in the conure of either ontogeny or phylugury，they would correspond to than milk－terth in other Mammals：but they would be milk－teorh developeal to shed an extent that in reapect of their there de． they wonld have to he compared with the tecth of the secomel series in other Mammals．＂

Our knowledge of the dentition of Marsupials receivel a further and very material advance in comsequence of oldadid ＇Thomas＇s paper ${ }^{\dagger}$ ，in which the homologies of the rarion－ teeth are determined and the typical Marsupial dentition stated as consisting of j incisors， 1 canine， 4 premsars，and 4 melars．Reductionset in，and gave rise to the dentition of the various Marsupials；that of Thidlphys amse in conso－ guence of the hass of the scend premolar．The thint pros molar，which is proviled with a precursar，should therefore really be termed the fourth premolar．Thomas follows IHwer in rearding the milk－dentition as haviag berm semo－ danily acruired within the Manmalian class，and emsiotenty fullows out this idea．He．himedt points out that，besiles Wher things，the pmsible discosery of the ruliments of a succesor in the case of Marsmpial tecth which exhibit no tooth－change would be fatal to his theory．

It was this consiferation which cuiled me in my awn inves－ tigations．If in the cruse of dovelopment rulliments of secomel

[^68]tecth should he present, internal to muliments of tereth which are subserpently cat, the prom wonld thas be fimishand that the sories of teeth which arrives at dovelopment belongs mot, as was hitheito gemerally helined, to the second, hat to the first dentition. Thus it would be shown that the milk-
 sition within the Mammalian class.
'The very fact that the third milk-premolar is cut at about the same time as the other premolars, whereupon the molars appear, commencing forn the first, an I that the thiret premelar which replaces it incolops much later than the other teeth, expecially than it-twomenhmors*, gives ground for the conjecture that the thit milk-premolar h lomes th the same series as the rest of the teeth which are situated in front of it. This difficulty of reganding the this 1 milk-promolar and the other teeth as belonging to two diothet serim- was felt by W'inge, who believed he was able to remone it ley explaining that the other teeth, in spite of belonging to the seeme dentaion, are cut simultanconsly with the single milk-tuoth beranse their precursors are wanting. Perfect clearness is naturally attainable only by means of an embryongical investigation. The material at my disposal consisted in the first place of a number of lower jalls of yomeg stares of Jidelphys, for which I am indebed to the kindness of Prof. M. Fübringer; my thanks are also due to Dr. Kraepelin, the Director of the Natural History Museum at Hanburg, who aftewards handed over to ne fur treatment a mmber of well-preserved young specimens of Jletelifys, throwigh the heals of which series of frontal sections were made. The two smallest eubryos examined measured 1 centim. in length from the rump to the nape of the neck.

I select the upper jaw for the purpose of description, since the conditions in it are more distinct than those in the lower. Throughout the entire length of the upper jaw there runs a cord of epithelium, the dental fold ("Zathmeiste"), close beneath the epithelium of the cavity of the mouth; in front it is not sharply separated from the epithelium of the oral cavity, but further back, on the contrary, it lies at a greater depth. The rudiments of the enamel-organs of the five incisors appear as knobbed thiekenings of the dental fold. Nothing is yet to be seen of the invagmation of the enamelorgan by the dental papilla; no indication whatever of the latter is as yet presented by the rudiments of the incisors. The comective tissue surrounding the epitioclial knob has

* Jide Thomas, loe cit. p. 452.
fig. 1.

Fir. :

Fig. $\%$.
Fig. B .

Fig． 4.

Fir． 8.

All the firures represent frontal sections throurh the upper jaw． E denotes the rudiment of the enamel－organ of the second teeth．
Fig．1．－Frontal section through the upper jaw of a voung Didelphys measuring 1 centim．from rump to nape．The third premolar with the rudiment of the enamel－organ of the second tooth．
Fig．＂．－The first and second incisors of the upper jaw of a young Didelphys $8 \cdot 2$ centim．in length．
Fig．3．－Third incisor of the upper jaw of a young Ditelphys 2.5 centim． in length．
Fig．4．－Fourth incisor of the upper jaw of a young Didelphys 3 centim． in length．
Fig． \bar{j}－Fifth incisor of the upper jaw of a young Didelphys 3 centim．in length．
Fig．6．－Third premolar of the upper jarm of the 3－centim．stage．
Fig．7．－Second molar of the upper jass of the $3 \cdot 2$－centim．stage．
Fig．8．－Rudiment of the successor of the second molar of the upper jaw at the 3 －centim．stage．
The figures are sketched with the help of the camera lucida．Figs． 1 and 8 with Zeiss＇s objective D and erepiere no．$\stackrel{y}{2}$ ．reduced by one half； tigs． 2 F with Zeiss＇s objective 1 and eyepiere no．2．reduced by one thind．
become disposed in clnare concentric stranls, anl firms the carliest rudiment of the dental sac. The ruliment of the canime tooth is considematly larger; in the fice eme of the enamel-organ there is a slight mbentation correspmling to the rudiment of the dental papilla, which is berimainz to appear, and which is recognizable as a namber of closepacked cells. The first and second prombats ar scamely distinguishable from the dental fold, white the third 1 wmolar, which comes next to then, is the most der.ong I if all teeth (cide fig. 1). The enamel-organ has asimm a cap,shaped form simultaneonsly with the commencoment of the development of the dental papilla. The immer epith linm (the enamel-membrane) exhibits the typical form of the long columnar cells, and the enamel-pulp likewioe borins w develop. Internally to the wall of the jaw the enameorgan becomes indented by an ingrowth of commetive tizille an l assumes a lobate form. Another series of sections from an embryo 1 centim. in length, the development of which is slightly more adranced, shows how the ingrowth of comme: tive tissue premluces further back a complete s.pration of the inner epithelial knob from the onter whe, the oritinal chan lorgan. The lube which is thus constricted off can only be regarded as the earliest rudiment of the ehamel-organ of the: successional tooth.

Shortly after this the dental fold comes to an end, without forming any further rudiments of enamel-organs. The thind premolar is therefore at this young stage far the most heveloped of all dental rudiments, and alrealy exhithits the carlin-6 indication of the enamel-organ of the successional tooth, white the rest are scareely differentiated from the dental fibld. Ths conditions in the lower jaw are precisely similar, though the rudiments are still less developed.

The next embryoselected for examination was com-ilemally larger, measuring 2.5 centim. Here we tind the develupment of the teeth greatly adrancel. Commencing with the incisurs, we see how a strong cap of dentine is differentiated by tho odontoblat: In the enamel-organ the caamel-pulp hats become almust completely ubliterated owing to the vigorous grow th of the dental papilla. The internal enamel-epithelium consists of very cohmmar and narrow cells regularly disposed side by side; the external one forms a not altugether thin layer of flattened cells above it. The continuty of the enamel-organ with the epithelium of the cavity of the mouch is still preserved; at the same tume, howerer, we also motion how, in the case of each of the incisors, from the tolerably broad neck a cond of epithelium projecte on the inner sile it
the dontal rudiment and has a more or less distinctly swollen termination. The eanine which follows has already attamed a comsiderable size; nothing more than remains of an epithe lial cond lying on the inner side of it is still to be seen. Its base has still mot entirely disappeared from the frontal sections, when the rudiment of the first premolar is alrealy visible above it. The latter also exhibits on the imer side a cord of epithelimm with a rombled end ruming from the neck of the enamel-organ. It was in vain that I sought in the gap, which oeems between this premslar and the one immediately following, for a pusible tombi-ruliment which had disappeared, the existence of which has been rembered so probable by Thomas's investigations: I fomm mothing whatever ; on the contrary, the gap appeared to be matively smaller than in the adult. The second premolar, which eomes next (which is therefore the thind aceneding to Thomas), did not show the looked-for cord of epithelimm, which only appeared again beside the third premolar. 'lhe dental rudiment itself is already well developed in all parts; the epithelial cord lying on the imner side of it ends in a knobbed swelling of considerable size. This concludes the investigation of the premolars; the next sections show us the conditions in the case of the molars. I was very much astonished when I saw internally to the rudiment of the first molar also, a short but distinct cord of epithelimm ruming close bencath the epithelium of the eavity of the mouth, and still more so when the second molar also exhibited a similar epithelial cord. The conditions here were very distinct: the short and somewhat bent neck of the epithelium of the enamel-germ gave off on the imer side a lateral cord, which was of tolerable length and which thickened at the end laterally, on the inside of the dental rudiment, into a knobled swelling of considerable size, precisely as we saw in the case of the third premolar. In comexion with this attention must also be directel to the following points:-'The lateral knob of epithelium lies at a tolerable distance on the inside of the rudiment of the second molar, which has already completely dereloped its separate cusps ; these have the same number and arangement as in the adult animal. Moreover, the epithelial knob is absolutely lateral and not posterior in position: it has already disappeared in sections in which the rudiment of the second molar is still distinctly present. Rudiments of teeth beyond the second molar are not yet to be found.

I am now able to furnish abundant confirmation of the foregoing results, in consequence of the examination of two slages somewhat more advanced in development and measuring

3 and 3.2 centim. from rump to nape. The epithelial ends and their knobbed swellings are traceable with the utmost distinctness on the inside of the dental rudiments (cide figs. 2-7).

We now come to the interpretation of the facts olseerved. In all three larger stages we see the dental rudiments distinctly developed, and moreover an epithelial cond ruming close to and on the inside of them, which arises from the neek of the enamel-organ and is provided with a swollen free ent. In these lateral cords of epithelium we have before us perfectly typical rudimeyts of the ehrlitst staides of the enamel-organs of successional teeth, and they are indicated with special distinctness in the case of the whole of the incisors; remains of these rurliments are also seen in the case of the canine as well as in that of the tirst molar, and it was only in the case of the second premolar that I did not succed in discovering them. A valuable sulgect for comparison is furnished ly the third premolar, to which a successional tooth actually appears later om. Now the rudiment of the enamel-organ of its successional tooth agrees so entirely with that of the rudiments of the other successimal teeth that there is nothing to prevent their homolngization. The discovery of rudiments of successional teeth in the case of teeth other than the third premolar, which Thomas himself declared would be fatal to his hypothesis, has therefore been achieved, and moreover not in the case of one, but in that of almost all teeth. It is for the present a matter of indifference to us whether these enamel-organs of the rudiments of successional teeth undergo still further development or become rudimentary at an early period; in any case the nature of the dentition of Didelphys, and, as I shall immediately add, in all probability that also of the rest of the Marsupials, is settlel. Tue permanext dentition of the Marselphas belongis to the first series, the milk-dentition; Redmmide of the: second dentition are actlaliy present in an mabionale condition, blt with the exceptios of the thisd premolar it does not cut the gum.

A few words yet remain to be added as to the rudiments of the so-called true molars, the molars. The smallest staze, 1 centim. in length, showed as yet no trace of a rudiment either in the upper or in the lower jaw. It was muly in the three subsequent larger stages that ru liments of these teeth could be detected, and here they were nearly equally far advanced in development. In the upper jaw the first and second molars were present, in the lower jaw the first, seon.t, and third. In all cases development was alreanty far adrancol:
the seprate cnspos of dentine were well developed, while the spaces between the several cusps of the tooth were filled with emamel-pulp, which was surmomed hy a very colmmar internal and a flat external enamel-epithelium.

As has already been mentioned, a cord of epithelium moming in a lateral direction is also present in the case of the first malar. 'The cond is, however, very little developed; it runs continuensly hackwards, and at the level of the dental rudiment of the second molar it comes into commexion with the enamel-organ of the latter; but simultaneonsly it sends oft inwards a second strong cond of epithelimen of consiterable length, which teminates with a knobled swelling (cide fig. s). The swelling is surmumded be elose-packed strands of comective tissue, arranged concentrically, and exhibits at its free end two slight indentations, while at the same time in the commetive tissuc, which lies beneath, the first begimnings of a papilla become visible. The structure does not lie as it might be behind the large rudiment of the second molar, but to one side of it, placed at a considerable distance towards the interior; and I can therefore not regard it otherwise than as the rudiment of a successional tooth. Thus it is demonstrated that the second molar (and naturally the first also) is in its origin in mo way different from the teeth lying in front of it. 'The two fhist so-called molars of the lpper jaw belong to the first dentition.

Shortly after the successional twoth has disappeared from the scene the second molar also disappears further backwards, and no indication appears of the rudiment of the last two molars. It is reserved for further investigations, prosecuted upon more comprehensive material, to display the earliest rudiments of these.

In the lower jaw the development of the molars has adranced futther ; the third molar also is already developed, somewhat smaller, it is true, than the preceding one, but still already provided with all its cusps. Here the conditions are such that, from the first molar onwards, an epithelial cord runs uninterruptedly through the posterior portion of the lower jaw, and, tlattened out like a plate, passes above and laterally on the inside of the dental rudiments. It soon comes to pass that this cord has no longer any comexion with the epithelium of the cavity of the mouth, since the latter withdraws more towards the middle in consequence of the growing together of the margins of the upper and lower jaws. At each enamel-organ of the three molars a branch now passes off from this broad and very conspicuous epithelial cord, so that in each case the appearance of a dichotomic
division is pesconterl. The enamel-ugans of the molars ame therefore here also in comexion with an epithelial cord, which is prokneed laterally on the inside of the dental muliments; we have in this case also the representation of the arigin of tecth of the first dentition before $n s$, athomeh maliments of the secmed dentition are mot distimetly formed. The (quithelial cord terminates further back in a knobled swellines, which is perhaps the carliest ruliment of the finuth molar.

Athough the facts may yet be considerahly amplifiet i, y further investigations, nevertheless I consider that I may ahrady maintain that embryology furnishes no supe it the aftributing the first two su-called molars of the uphe jaw and the first three similar teeth of the lower jaw to another dentition than that to which are atributed the rest of the tecth which lie in front of them. There are no molars at all, but premolars. The dentition of Merd, pliys which emis the gum and is permanent therefore belongs (with the exception of the last molare, which appear at a late stage of duvelopment) to the first series, or the milk-dentition.
 contained in the British-1Kuseum Collection. By W. Warmen, M.A., F.E.S.
[Continued from p. 179.]
Micractis, gen. nov.
A subdivision of Botys. Characterized by the presence of a small raised linear dash close to the base immediately beneath the internomedian wem of the fome wing of the mall. The females are always latere amb emmaly pater than the males.

Type N. mubitulis, Hüb. (Pyralis).

> Micractis sanguinealis, sp. n.

Fore wing deop yellow, mone or less thick! sulfisel with dull wed, the conat thenghout derper: limes themsolvereddish; first cumed outwardly, paceded by a yellowish spare, the basal area up to it suffusedly reddish; central space between the two lines thickly suttused with red, the two stigmata deeper ; second line, slightly serrated, forms a distinet
octword curve in the middle, and is followed by a broadish yellow fascia, the outer edge of which is likewise serrated; beyond this the whole hind margin is densely reddish fuscous; fringe dark cinereous. Hind wing yellow, with
 thath. Howi, palpi, and themax medtish; legs white; ablumen yellow. Underside dull yellowish grey.

Expanse of wings 24 millim.
One male from Japan.
Opsibotys, Warr.
Opsibutys, Warr. Amu. © Mag. Nat. Hist. 1890 (ii.), p. 47 t.

Opsibotys latipennis, sp. n.

Fore wings pale straw-colour, with the markings yellowish, viz. the costa, the two stigmata, and the two lines, the first of which is reve indistinct and the second denticulated; a faint undulating submarimal line. Hind wings with a central spot, a curved central fascia, and a faint submarginal one yollowish. In the male the yeilowish parts are tinted also with grey. Thorax and abdomen straw-colour; head and allar yellowish. Underside dirty ochreous, with all the markings very faint.

Expanse of wings 30 millim.
One female, one male, from Japan.
The species reminds one of a Mieractis, but the male is without the characteristic marking of that genus. Both wings are rather broad.

Opsibotys ocellalis, sp. n.

Fore wing fuscons-brown, elongate; first line invisible, second strongly serrated, the serrations thrown up by a slighty paler shate beyond it ; a conspicuous pale yellowishwhite spot at end of cell; fringes concolorons. Hind wing with second line repeated; fringes with pale apices.

Expanse of wings 36 millim.
One male from Japan.
lielated to the American species mustelinalis and fumoferalis.

Sertcoplaga, gen. nov.

Like Opsilutys in structure, but distinguished by the shape of the fore winss, of which the ayex is produced and pointed
and the hind margin concave in the upper half and bul cing not in the lower; the scaling is smonth and glosey and the fringes white. Superficially it bears a resemblance to the East-Indian genus Leucocraspeda, Warr.
'Type S. externalis, Warr.

Sericoplaga externalis, sp. n.

Fore wings reddish ochrenus, gloss, dusted with fusenu*, the costa greyish at the base; lines dark grey, first line denticulated, oblique, approaching second on the imner mar fin, second line also denticulaterl, starting from the costa at two third, forming a large curve for the first half of the wing and ruming deep inwards along the first modian nervile to below the reniform stigma, and thence obliguely to imer margin; a small dark spot in the cell berond first line and a lunular mark at end of cell; fringe with hasal third dark grey, apical two thids silvery white. Hind wings like fore wings, with only the second line representel. Heal, thmax, and abdomen concolorous with fore wings. Underside whitish, with only the outer line and base of fringes dark brownish.

Expanse of wings 26 millim.
One female from 'Texas, in Zeller Collection.

Anthocrypta, gen. nov.

Related to Opsibotys. Fore wings elomgate ; costa slightly sinnous, strongly convex before apex, which is prominent but not acute, as in Sericoplerigu; hind margin simums, but much less distinetly so than in sericoplegen, the subapical simes and lower convexity being much fainter; scaling fine and ghose. Labial palpi mit rostriform, hut shontly porrected horizontally, the last joint quite small and bluntly rombed; maxillary palpi very fine; tongue rather large ; ablomen lensthened, extending beyond himd wings ; antemar simple in hoth sexes, in the male only showing faint traces of pubserence. On the under surface of the mate hind wings is a brown patch, as if hurnt, cmbracing the median and sutmedian nervules.
'Type A. subinquinalis, Guen. (Ebulea), D. \& P. p. 362.
Glauconoë, gen. nov.
Fore wings chongate; costa consex only before apex, which is distinct, but mot acute; hind margin oblique. Himd wines well roumded. Lahial palpi triangular, wather droming, much
shonter than in Opsibetys; antenna lones, two thivets the length of fore wing, filimm in both sexes, and rew finely and shontly pubescent in male; shatonen long, in mate with a distinct, ernemally darker, anal tutt ; scalise dull, slighty iridescent ; markings very indistinct or obsolete.

Type G. deductalis, Wilk. (Botys), xviii. p. 659.

Glauconö̈ subflavalis, sp. n.

Fore wings dull yellowish ochrems, thwards the inner and hind margins ahnost wholly suthusel with dull leartu-grey; the basal area, the costa broadly between the lines, and shortly heroml the sumed line remainige yellow; first lime simply curvel, second forming an anghar proninence ontWarls in the midulle; the intermetiate space dather creer : a dark grey lumula at end of cell. Hiad wings grey, slightly mixed with yellowish, with a faintly darker, paler edtrel, central fascia. Head, thorax, and abdonen yellow. Underside pale ochreous, with only the cell-spots and outer line a little darker.

Expanse of wings 40 millim.
One female from Madagascar.
('́. ceadesalis, WIk. (Butys), from Ashanti, of which the type is in the British Muscum Cullection, as well as another example from Kilimanjare, may be the male of subflacelis; but in them there is no trace of yellow scaling.

Glauconoë fuscescens, sp. n.

Fore wings dull grey, with no markings whatever except a dark lunule at end of cell and a small spot before it. Hind wings wholly dull grey. Underside paler, whitish.

Expanse of wings 36 millim.
One male from Sumatra.

Notaspis, gen. nov.

Resembles Ostrinis, Hiub., in shape of wings, especially in the strongly convex costa of the fore wing, but of stouter build; distinguished by the great length of the labial palpi, which are quite three times as long as the head; the third joint as long as the second, which projects beyond it at its base both above and below; maxillary palpi erect, triangular, cut straight off above; antemnæ in male finely but distinctly ciliated; last segment of thorax with two snow-white lateral spots; second segment of ablomen with a large central one.

Fore wing with the exterior transverse line closely approsimating to the hind margin. Hind wing without markings.

Type N. tranquillatis (Botys tranquillulis, Led. IV. E. II. vii. pp. 371, 466, pl. ix. fig. 16).

In the male the whole of the central field between the two transverse lines is filled up with red-hrown; in the female of Lederer's figure this is only partially the case.

Terastiodes, gen. nov.

Distinguished from Notuspis, Wrarr., by the shape of the fore wings, which are much narrower, with a nearly straight costa; hind margin for the upper two thirds vertical, then suddenly oblique to the anal angle, so forming a decided elbow ; imner margin a little concave before the anal angle; labial palpi only as long as the head, triancular, with the terminal joint short, hardly visible; maxillary short, ereet; antemar of male pubescent only; last segment of thorax with two silvery lateral spots of raisel scales; second serment of abdomen with one large central one; penultimate segment with a silvery white belt.

Type T. ochoacralis (Terastia), WHk. xxxiv. p. 1305.
The similarity in ornamentation of the abdomen whith occurs in two so widely separated species as Nutaspis tronquillatis and T. ochracealis is noticeable; in other respects they do not appear to be in any way related.

Stenochors, gen. nov.

Fore wings elongate, in female with the aper somewhat produced and the hind margin sinuous, heing slightly concave just below the apex and abore the anal angle, in the male with the hind margin very oblique and simple, the apes being bluntly rounded. Hind wings romuded. Both wings broder in female than male. Palpi perrect, rostritorm as in Opsi- $^{\text {per }}$ botys; antemae moniliform in both sexes, slightly pubescent in male; abdomen long, in male with a distinct anal tuft.
'Type S. lancinalis, Guen. (Rhodaria), D. \& P. p. 160 (B. expaditalis, Led. W. E. M. vii. pp. 372,466 , pl. ix. fig. 15).

Aglators, gen. nov.

Fore wings with costa nearly straight, convex beforeapex, which is distinct; hind margin obliquely curved. Hind wings rounded. Palpi porrect, rostriform, comparatively large; antenna simple in both sexes, rery finely pubescent in
male; middle tibia of male enormously enlarged and flattemed; abdomen of female short, stout, of male elongater, slenter; sealing tine, pulverulent; markings two lines-the first vertieal, the second sinmotis, denticulate-and two stigmata. Hind wings without markings.

Type A. furnacalis (Mecynu), Meyr. Tr. E. S. 1886, p. 264.

Hyalorista, gen. nov.

Fore wings clongate, three times as long as wide; costa straight ; hind margin oblique. Hind wings likewise somewhat elongate. Palpi rostriform, long for the size of the species; forehead slightly protuberant; ocelli present; antemae simple, slightly pubescent in male; scaling fine and smooth.

Type II. taniolulis (Rhorlaria), Guen. D. \& P. p. 172.
A natural group of insects hitherto comprehended within the elastic limits of Botys; of comparatively small size and delicate structure, with the usual markings almost wholly absent; both wings showing a dark marginal suffusion; the hind wings nearly transparent.

Hyalorista imitans, sp. n.

Fore wings yellow, suffused with darker towards the costa; an oblique, broadish, purplish-grey band near the base, and another submarginar ; the onter edge of the former and the inner celge of the latter rather irregular; an indistinct dark ocelloid spot at end of cell; traces of an exterior line appear on the costa and in the disk. Hind wings whitish yellow, yellow only along the iuner margin, with an indistinct darker submarginal band and a distinct purplish-grey blotch on the inner margin. Head, thorax, and abdomen rather deep yellow. Underside dull yellowish, with the marking3 faintly darker.

Expanse of wings 14 millim.
Three males from S. Paolo.
Resembles tieniolalis, but smaller and much more indistinctly marked.

Adeloides, gen. nov.

Characterized by the enormous length of the antennæ and the difference in the shape of the fore wings of the sexes. Male with fore wing very narrow; the apex produced; the hind margin very oblique. Female with fore wing broader,
rounded, shaped like Moterades. Hind wing of male wholly white, triangular, being pooluced towards the anal angle; of female white, with dark margin, rounded. Antenne of female setaceons, as lomer as, or longer than, fore wing ; of male more than halt as long again. P'alpi porrected, dronping, pointed; ocelli present; tongue present; abdomen of male very long.

Type Addoites cinerealis (Ifotrodes), Moome, P. Z. ㅊ. 1867, p. 94.

Arcuernis, Mcyr.

Type A. octoguttulis, Feld., Mesr. Tr. E. S. 1987, p. 220.

Archernis pubescens, sp. n.

Fore wings dull qreyish yollow, suffused more or less with fuscous grey; first lime hown, close th hase, second line mueh curved outwards in the midile and rommes in to quite half the length of the wing on the imer margin: three whitish semitransparnt spots, one between the two stigmata in the cell, one on the costa nii the inner sille of the srembllime, the third in the middle of the disk, on the outer side of the second line, in the angle formed where it turns vertically twats the inner margin; submarginal space genecally dearer rellow than the rest of the wing; fringes yellowish. Hind wines pale ycllow, with a brown central spot and sinums central line. Head and thoras suffused with fuscous grey; abdomen yellowish. Underside like upper, but paler.

Expanse of wings 24 millim.
Several of both sexes from N. China and N. India Dharmsala).

Nearest to A. purpurescens, Jonre (Samai), from the Andamans.

Mesothyris, gen. nov.

Fore wings with costa nearly straight, slightly convex before apex, which is lilunt; him margin romadel. Itind wings rounded. Palpi shonty rostriform: anteme (in female) filiform ; cell in hath wings reer shont, hatlly one thin l of the length of the wing; first median nerrum starting inmediately before the end of cell, third and radial on a hons footstalk, second from the stalk halfway hetween tirst and the origin of the other two. This neuration obtains also in the hind wing, where also the two costal hranches are on a long stalk; owing to the shortmess of the cell the two stig-
mata are very close to the base of the wing ; between them is a scaleless white transparent spot.

Type M. aluensis (Botys), Butler, Ann. \& Mag. Nat. Hist. 1887, ii. p. 123.

The male will very likely exhibit further peculiarities.

Prodasycnemis, gen. nov.

Fore wings with the costa slightly indented in the centre, especially in make, convex before apex, which is very slightly produced; himd margin obliquely curved. Ilind wings rounded. Palpi porrect, long, rostriform; maxillary palpi and tongue distinct; scaling hairy ; fringes long. Distingruished by the fore tibie of the male, which at their lower end have a large romuded cushion of scales. Wings without markings.

Type D. inornata, Butler (Botys), Ill. Lep. Het. iii. p. 76, pl. lix. fig. 12.

Aplographe, gen. nov.

Like Produsycnemis, but without the tuft of scales on the fore leg; wings smoothly scaled; shorter and broader than in Produsycnemis; without making:s, except in bisignata, which has the stigmata manifest.

Type A. bisignatu, Butler (Scopula), Ill. Lep. Het. vii. p. 98, pl. cxxxv. fig. 11.

Aplographe fulvalis, sp. n.

Fore wings wholly dull fulvous, the costa just darker. Hind wings slighty paler. Fringes, head, and thorax concolorous. Underside paler, without markings.

Expanse of wings 24 millim.
One female from the Cape of Good Hope.

Aplographe umbrosalis, sp. n.

Fore wings dull greyish yellow. Hind wings more grey on their basal half. Fringes pale yellowish. Head, thorax, and abdomen concolorous. Underside like upper, but with the base of the fore wings greyer.

Expanse of wings 24 millim.
One female from N. China.
Near A. inornatalis, Leech (Botys).

Nascia, Curt.
Type N. cilialis, IIiib., Curt. Brit. Ent. xii. 599.
Nascia citrinalis, sp. n.
Fore wings pale straw-colour, tinged with yellowish towards the hind margin, with a yellowish spot at end of the cell and slightly darker below the costa; fringes silvery white, with a dark leaden-grey base. Hind wings pale straw-colour, tinged with grey, much greyer along the costa ; fringes also straw-colour. Head, thorax, and abdomen concolorous. Underside paler, with a brown subcostal streak in the fore wing.

Expanse of wings 28 millim.
One female from Dharmsala.
Distinguished at once by its smoothness and total absence of markings or streaks.
[To be continued.]
XLVI.-Notes on the Paluozoic Bicalved Entomestraca.No. XXX. On Carboniferous Ostracoda firom Mongulia*. By 'T. Rupert Jones, F.R.S., and James IV. Khiki, Esq.
[Plate XVI.]
Tue Ostracoda figured on the accompanying Plate represent the leading forms of a series of specimens brought to Rlussia from Mongolia, in a small collection of Carboniferous fossils, by the eminent traveller M. (土. N. Putanin, and which have been selected and sent to us by M. P. N. Wenjukoff, of the Geological Museum in the Imperial University at St. Petersburg.

Most of the species, if not all, are well known also as British fossils; but we think them of sufticient interest for special notice on account of their coming from so distant a locality. It was previously known that certain of these species enjoyed a great range in time, being common to both

[^69] 1880.

Carboniferous and Permian strata; it is now evident that they had a very wide geographical range.

The specimens chiefly belong to species of Bairctio. They have evidently been obtained from a hard dark-coloured limestone. Nearly all of them are complete carapaces, not single values. The particulars sent to us as to locality are that they were formed in the "Carboniferous Limestone of the River Bardun, falling into the River Rzsin, South Mongolia" *.

The following brief notes refer to the species and varieties determined by us.

1. Leperditia OReni (Miunster), and var. inornata (MI'Coy). (Pl. XVI. figs. 1 and 2.)

Leperditia Okeni, Jonss and Kirlby, 1865, Ann. \& Mag. Nat. Hist. ser. 3 , vol. xv. p. 406, pl. xx. figs. 1-3; and var. inornata (M‘Coy), op. cit. vol. xviii. 1866, p. 44.
Several examples of this species and its varieties occur in this set of Ostracoda. Fig. 1 represents a good example of the typical form. Fig. 2 is from a specimen that agrees closely with the variety inomata (I^{\prime} Coy). There are other individuals belouging to a variety larger than either of these, being fully one ninth of an inch long and more oval in outline. These are similar to an unnamed form (hitherto grouped with the species) from Holwell, in Gomerset, and other localities.
L. Okeni (with its varieties) is a common and widespread species in the Carboniferous-Limestone series. In these rocks it occurs in England, Scotland, and Ireland; and it has been found in strata more or less equivalent in Nova Scotia, Belgium, Germany, Russia \dagger, and now in Mongolia.

2. Bythocypris bilobata (Mïnster). (Pl. XVI. fig. 3.)

Cythere bilobata, Miinster, Joues and Kirkhy, Am. \& Mag. Nat. Hist. ser. 3, vol. xv. 1865, p. 409, pl. xx. fig. 10.
There are three examples of this species, all of which are similar, both in size and in other respects, to British specimens.

This species occurs in the Carboniferous Limestone of Russia, Bohemia, Belgium, and England.

[^70]
3. Bythocypris (?) cuneola, Jones and Kirkby, var. (Pl. XVI. fig. 4.)

Bythocypris (P) cuneola, J. \& K., Ann. \& Mag. Nat. Hist. ser. 5, vol. xviii. 1886, p. 250, pl. vi. figs. 1 and 2.
Fig. 4 represents a single sfecimen of a small Ostracod that is doubtrully identified with $[$. (\%) cemeole. It has about the same size and gencral apmearace, but its extremities are 100 mearly alike; and its edge-view is scarcely cunciform enough for exact agreement with inat species. It may, however, be a variety of it.
13. (?) cuneola is a common species in the CarbonifurousLimestone series of the North of England and Scotland.

4. Bairdia curta, M'Coy. (Pl. XVI. fig. 5.)

 vol. xxxv. 1879, p. 567, pl. xxviii. figs. 1-8.
The specimen here figured is a nearly perfect imivinalual of B. carta (there are other specimens mere or lus imperfect, and it shows the clegant form and bowl suhangulater anterion extremity characteristic of this species.
B. curta was the first-discovered representative of the genus, and, though now well known as a British Carboniferous fossil, it is nowhere abundant, nor had it until now been found out of the British Isles.

5. Bairdia subelongata, Jones and Kirkby. (Pl. XVI. fig. 6.)

Beireda subelongata, J. \& K., Quart. Jumrn. Cewl. Soc. vol. xaxr. 1s-9, p. 573 , pl. xxx. figs. $1-11$ and 16 .

Dany of the specimens of this small set of Monsentian Ostracoda belonge to 13 , suledongata; and, theush one of the most typical has been chasen for illustration, there are others showing moch the same range of rariation that chtains in spries of British specimens, as netieed in our memoir on Bairdia (Quart. Joum, Gcol. Soc. 1879).
13. suliefonguta is a well-known species thom the Carbon-iferons-Limestone series of ficolland and the north of England.

6. Bairdia plebeia, Reuss. (Pl. IVI. figs. 7 and S.)

Bairdia plebeia, Renss, Jahresb. Wetternu. Ges. 185t, p. 67, fig. 5; Jones and Kirlky, Quart. Journ. Geol. Soc. vol. دxxy, 1870, p. 5 e9, pl. xxviii. figs. 9-19.

There are several examples of this common species, thongh they are not su ahmolant in so well dereloped as these from many british localities. 'Ilmse figured are the most typical, others show some varietal differences.
13. phenin is perbaps the best known of the Carboniferous Bairdie, at least in Britain. It is also known from the Carboniferous strata of Russia. It was first found as a Temian spectes, and as such it is one of the most common ()strameds of the Magnesian Limestone of England and of the Zechstein of Germany.

> 7. Buirlia brevis, Jones and Kirkby. (PI. XII. fig. 9.)

Bairdia brevis, J. \& K., Quart. Journ. Geol. Soc. vol. xxxv. p. 575, pl. xxxi. figs. 1-8.
There are a few examples of this species, and they are not to be distinguished from those known to us from the Carbon-iferons-Limestone series of Scotland and England, where it is not an uncommon fossil.

8. Bairdia amputata, Kirkby. (Pl. XVI. fig. 10.)

Bairdia unmmetuta, Kirkby, Transact. Tyneside Field-Club, vol. iv. 1859, p. 155, pl. xi. fig. 22.
This species is represented by five or six individuals, in all of which its sulpentagonal outline is well marked. The specimens show the valves to have been coarsely pitted.
B. amputate is found in the Carboniferous-Limestone series of Scotland and the north of England, and in the Permian rocks of Durham.

9. Bairdia ampla, Reuss. (Pl. XVI. fig. 11.)

Bairdia ampla, Reuss, Jahresb. Wetterau. Cies. 1s.jt, p. 68, fig. 7 ; Jones and Kirkby, Quart. Journ. Geol. Soc. vol. xxxv. 1879, p. 571 , pl. xxriii. figs. 20-23, and pl. xxxii. figs. 17 and 18.
Fig. 11 evidently represents B. ampla, although the carapace is rather longer than in some examples of the species, not more so, however, than in others found in British Carboniferous strata.
B. ampla is known as a British species in the CarboniferousLimestune series, though it was first found in the Zechstein of Germany. We have also figured and described Carboniferous specimens of it from Russia *.

* Ann. \& Mng. Nat. Hist. ser. 4, rol. xy. 1875, p. 58, pl. ri. fig. 5.

10. Bairdia grandis, Jones and Kirkby.

(Pl. XVI. fig. 12.)
Buirdia grandis, J. \& K., Quart. Journ. (ieol. Sive. vol. xxxr. 1879, p. 572 , pl. xxix. figs. 1 and 2.

Of B. grandis, as known in Carboniferous strata, there are several finely developed and characteristic specimens in this collection, the one figured being one of the best.

Whether this robust form of Bairdia is exactly the same as the Permian Ostracod described and figured by one of us in 1859 as B. plebeia, Reuss, var. grandis, is not quite clear, for the latter is only known to have occurred once, and then in an imperfect condition. There is no doubt, however, as to these Mongolian specimens being the same as the Carboniferous Ostracod which we here and elsewhere refer to as B. grandis. They are the same in size, general furm, thickness of the shell, and other particulars characteristic of the species.
B. grandis occurs in the Carboniferons-Limestone series of Scotland, and less rarely in the same series of the north of England.

11. Bairdia Hisingeri? (Münster), var. Mongoliensis.

(Pl. XVI. fig. 13.)
Bairdia Hisingeri (Münster), Jones and Kirklbr, Quart. Journ. Geol. Soc. vol. xxxy. 1879 , p. 570 , pl. xxix. figs. $4-10$.
Besides the species already noticed there is another form that scarcely agrees with any described licirdie. It is probably nearest to B. Misingeri, with which, as a variety, we place it at present. It differs from good examples of that species in the dorsal horder being straight in the middle and then inclined strongly to the front, also in its longer and more definite anterior and posterior slopes, and in its more rounded anterior extremity. Its carapace is thus highest at the anterior third, and its greneral form is decidedly more elegant than that of B. Nisingeri proper. We distinguish it as var. Mongoliensis.

EXPLANATION OF PLATE XVI.

(All the figures are magnified about 25 diameters.)
Fïg. 1. Leperditia Okeni (Miuster). Carapace, showing left talve.
Jig. 2. Leperditia Okeni (Munster), var. mornata (M'C'oy). C'ara, ace, showing left valve.
Fig. 3. Bythocy/pris bilobata (Munster). Carapace, showing right valve.

Fig. 4. Bythosypris? cuncolu, J. \& K., var. Carapace, showing right valve.
Fig. 5. Buirdia curta, M‘Coy. Carapace, showing right valve.
Fily. (i. lidirdin sulelmugate, J. \& K. Carapace, showingr right valve.
Fiy. 7. Bairdia plebeia, Reuss. Left valve.
Tig. 8. Bairdia plebeia, Reuss. Carapace, showing right valve,
Fig. 9. Bairdia brevis, J. \& K. Left valve.
P'ig. 10. Bairdia amputatn, Kirkby: ('mapace, showingr rirht valve.
P̈̈\%. 11. Bairdia ampla, Reuss. Left valve.
Fig. 12, Bairdie grandis, J. \& K. Carapace, showing right valve.
İig. 18. Bürdit Misingeri: (Minster), var. Momgoliensis, nov. Carapace, showing right valve.

XLTII.-Notes on the Tariation of the Genus Arion, Fér. By Walter E. Collinge, Assistant Demonstrator in Zoology, St. Andrew's University.

The diversity of opinion that at present exists as to specific and varietal forms in this genus induced me some time ago to collect a large quantity of the different species and varieties from many parts of the country for careful comparison and anatomical examination. Some Arion empiricorum, Fér., which are at present under observation, are of interest in that they approach a Portuguese form described some little time ago by Simroth, viz. var. Bocagei. From the descriptions below it will be seen that these variations are so slight that it would be alsurd to name them individually; and as they are likely to occur elsewhere I now describe them, hoping thereby to save future collectors from adding to an already overburdened nomenclature.

The specimens I have were collected in Yorkshire; but allied forms have also been found in Ireland by Dr. Scharff* and at Guernsey by Mr. Brockton Tomlin \dagger.

Arion empiricorum, Fér.

Var. Bocagei, Simroth.-Sides blackish, back decidedly paler or white. Portugal.

Subvar. nov.-Sides blackish, back grey ; margin of sole light yellow. Ireland (Scharff).
Subvar. nov.-Sides blackish, back light bluish grey ; foot whitish, margin of sole white. Yorkshire (Collinge).

[^71]Subvar. nov.-Sides blackish, back greyish; margin of sole light brown. Yorkshire (Collinge).
Subvar. nov.-Animal drab colour ; foot reep yellow, margin bright orange. Guernsey (Roebuch).

After a careful examination of a number of lowow and red forms of A. empiricorum I am much inclined to group Mr. Roebuck's var. brumeus as a subsalr. of var. rufus, L. The variety sulveticulutus, Ckll., might also be grouped as a subvariety of var. reticulutus, Roebuck. 'There can be little doubt but that the var. fallow, Ch-1l., of A. hortensis, Fér., is merely a form of var. sulfusca, C. Pfr. The var. nov. allipes lately described by Mr. Cockerell " is a very msatisfactory one, being made from a single immature specimen. The white sole is such an unusual occurence in A. hortensis that it is important ; but sfecimens frequently flow lizhtcoloured soles in a young condition.

The many perplexing forms of Arion which are at present engaging the attention of conchologists camnot be righty assigned to this or that suecies from a mere examination of the external parts, and it is to be hoper that future collecturs will abstain from adding useless synonyms to the list until they obtain a better knowledge of the anatomy.

XLVIII.-- Votes on Dו. IT. Kïlenthal's Miscoreries in Mammatian Dentition. By Oldfield Thomas.

The two important fapers by Dr. W. Kiikenthal recently publishedt, and translated in the present manier of the 'Amals' \ddagger, render necessary a few words on the bearing that the discoveries therein amonnced have on the theorics of tooth-descent current here and on the Continent.

On the first and most essential question as to the origin of the present Mammahan diphyodentism, i.e. the pascession of two more or less complete sots of teeth, a milk and a permanent set, two contlicting view: have heen adracater-(1.) that this diphyodontism was present in the carliest Mammalia, and has beeome reduced in the different orders to difterent degrees, the lowest orders being paraduxieally the most

[^72]advanced in reduction ; and (II.) that Mammals were primitively monophyodent and that the milk-dentition was superaddel is a secomary develoment, the develoment beines naturally most advanced in the highest orders.

The latter view was adopted and carried out in great detail hy myself *, and therefore now that Dr. Kiikenthal's discoverics have shal a new light on the subject I an imperled to express the revised minion that they have induced me to form.

The second of the two theonies refermed to had as its primary hasis the beaty complete momphyonhtiom of the Massipials, and the moment these were proved to have been ever more larghe diphyodont han they are at present the whole case would fall to the ground. And such proof seems now to have heen fomm by Dr. Kiukenthal in the nearly complete set of rudimentary :ncessional teeth disenvered by him in embryos of Dideld,yss; which can hardly be interpereted otherwise than he has done, namely as rudiments of a previously functional second set of teeth.

Such being the case I ane now for my own part prepared to admit that Jlammals must have been originally diphyodont and that their reqular diphyodontism was probably in direct succession to the irregular polyphyodontism of their Reptilian ancestors, or may even have existed in what were in other respects members of the latter class.

At the same time it is evident that on this view many of the known facts seem to become more instead of less difficult of interpretation. 'Thus the fact that Triconorlon, one of the earliest known Mammalia, changed a single tooth only t, and that the very one which changes in the modern Marsupials, now appears most inexplicable, and is alone almost calculated to stagger belief in primitive diphyodontism.

This problem, however, may be left for time to umravel, but its existence is sufficient to excuse those who, before these latest discoveries were made, could not bring themselves to believe in that view of the ancestral history of Mammalian teeth.

The same fact, combined with the presence of four undoubted premolars (of whichever "series") in so many of the earliest llarsupials, renders it also difficult, if not impos-

[^73]sible, to follow Dr. Kükenthal in his homologization of the changing tooth of Marsupials with $\}$. ${ }^{3}$ instead of $\mathrm{p} .{ }^{4}$, as it has usually been considered to loe, even if the missing premolar has left no trace of its former presence in the position (next anterior to "p." ") which I suggested it had most probally occupied. The problem as to the homologies with each other of the Placental and Marsupial teeth is one that will need much further, and especially paleeontological, evidence for its solution; but comparing the dentition of Triconorlon with those of both groups, it is dificult to awhid eomine to the conclusion (1) that the changing tonth of Marsupials is homologous with the changing tuoth, the fouth premolar, of Ticonolon; (2) that the four premolars of Tricomodion are homologons with the four premolars of the trpical I'acental dentition *; and, as a consequence, (i) that the changing premolar of Masupials is homologous with p. ${ }^{4}$ of Placental Mammals.

But if once the primitive diphordont theory be armitterl, the homologization of the Marsupial molars with the milk series is as likely as with the permanent, for originally all the teeth would have been in duplicate, the pinsterior as well as the anterior, and either set would be as likely to be suppressed as the other. And furthermore, if this homologe of Dr. Kukenthal's is confirmed, and it seems well foundel, in all probability the same will prove true of the Placental molars \dagger, which we have as yet no real reason for knowing to be serially homologous with the permanent more than the milk set. In fact any presumption there may be one way or the other is rather in favour of the Placental liammals having retained the same set as the lowlier and carlier Marsupials.

* Of course, as Mr. Bateson has shown (in his paprer read before the Zoolorical scriety on Feb) Z-not set publi-hed), one may eavily attempt to carry this principle of the individual homolorization of teeth ton far, as no doubt in my efforts to find a nomenclature by which we could name each Marmpial twith I have myalf done in my catakere of that order. Still, without enteriner into this question before the publication of his paper, I may claim that the above is by wo means a strainit gof the true principles of tooth homology.

One possibility, however. would take away the value of the ahore surgestion, namely if it were show n that mether Triom den nor any of the wther 4 -premolured Mesomic mammals were marsupial at all: lat they have been considned as such by all palantolerists, and the chan_ing of the last premolariform tooth is certainly not an agememt aramet their being so.
\dagger The close resemblance of mp. ${ }^{4}$ to the melar hoth in form and stouture has already sugested this homologey to se veral ohservers, although it has hitherto usually heen explained by the adaptive necersity for a grinding-tooth at the back of the tooth-row during youth.

I do not quite understand why, merely on account of the milk origin of the Marsupial molars, Dr. Kiikenthal says of the Marsupials "there are no molars at all, but premolars," for the words molar and !remolar in no way imply either difference or identity of series, and the "molars" are simply the non-changing pusterion teeth either of Placentals or Marsupials, whether homologized with the milk or permanent series. In fact if the Placental molars are also of milk origin their eomplete homolory with the Marsupial posterior nonchanging teeth aceent nates the right of the latter to bear the name "molar."

Should, again, further researeh prove this to have been the origin of the Placental molars, Ir. Kizkenthal's extrandinary and, to all appearanee, most mulikely theny as to the fusion of teeth of the permanent and milk sets in order to form the molars will fall to the ground *.

Of other interestimg points in Dr. Kiikenthal's papers a reference may be made to his theory as to the production by fission of the many simple unicuspid teeth of Cetacea out of compound multicuspid teeth, such as are found in other Mammals. Combined with the fact that real congenital fission does occasionally take place in Seals and other Mammals, as pointed out by Mr. Bateson \dagger, this brilliant suggestion undoubtedly sheds a new light on the origin of Cetacean tecth, and Dr. Kükenthal may well be congratulated on his clever interpretation of the facts. At the same time his ideas on analogy and methods of evolution would appear to be somewhat peculiar when he describes as analogous to such a congenital fission the common mechanical wearing down of a seal's teeth to the roots, whence by the loss of the crown two "teeth" are formed out of each one. Such a multiplication of teeth may occur in any rooted-toothed animal if it only live long enough, and can hardly be considered more "analogous" to true fission than the cleavage of a man's jaw by a battle-axe is analogous to hare-lip.

Another way, and one perhaps more probable, by which Cetaceans may have obtained their numerous teeth is also rendered possible by Dr. Kükenthal's observations on their embryology. Instead of trusting to the comparatively rarely occurring fission, the ordinary process of hypsodontism applied to narrow multicuspid teeth, such as those of certain

[^74]Seals *, might easily and naturally produce a laree number of small separate teeth, mited to each other in embryonic stares but separate in after life. The different lamine of the elephant's molars, produced, as we know, simply by hypsordontism, are perfectly seprarate from one ansther intil just before ermption, and might casily come up as seprate teefta did the needs of the animal reguire it. And in the Colacea the gradual t lengthening of the separate cuts, combine: with firstly the later and later devpmonent, and finaily the total disappearance, of the comnecting "crown," wonld be a modus opercuili so simple and so much in accord wit. what is now going on in many insiances, that I think the balance of probability is rather in its farour as comparel to the theny of multiplication hased on suasmodic fission t. It i-, hemever, difficult to see how the relative claims of the two suggestions can be adjusteh, for Dr. Kükenthal's observations are equally consistent with either, and direet palpontolnsical evidence on the subject we can hardly hope to obtain.

Dr. Kukenthal's suggestion of the converae of the fis-wion process, i. e. the fusion of separate teeth, as a means whereby the comparatively few and compound teeth of Mammals might have sprung from the many simple teeth of leptiles, strikes me, on the other hand, as being he no meanses hapyy. Not only is its modus oprerandi almost inconceivable, amil quite unlike anything that is now going on, so far as we can see, but it is also quite uncalled for, as the number of teeth in the primitive Mammalia, commonly from 14 to 16 on each side of each jaw, so far from being much less, is actual! more than that found in many of the Anomodontia se, certainly the

* E. g. Ogmorhinus.
+ Indeed this process is by no means necessarily very gradual or slom,
 hypsodont species, white the closely alliod grnera Cimhillus, Morimes, and Rhombomys present us, in the orter maned, with a comphte tramsition from brachyotont Mus-like teeth to perfeetly hypondont, yonthen. ever-growing teeth, with the lamina entively di-tinct trom one ano ther throurgont. The close alliance of these tremera in other meperes hemws in how short a period of genloyical timesteh great demtal chanser may take place.
\ddagger The striking fact observed by Dr. Kiikenthal of the identity in number of the cu-ps of the romeng compromel teeth with the total mamher of the adult simple tee th is sheridedly in favour of the methed now surgested, but, on the other hand, the appearances preatent hy the tee th of the early Cetaceans, such as Syuntion, seem to be. on the whole more suggestive of fission than development by hypsodontism.
§Of the liecmodontia theme are ather mi marimal teeth at all or only a single pair, while of the Theriedontia Cymosuchus has 11 or 12. . Finum-
 Titanosuchus 16 or 17 on each side of each jarr. See Ledelker, Cat: Foss. Rept. B. M. ir. pp. 71-101 (1890).
most Mammatian of all the lieptilia. This fact is alone sufficient to discredit Dr. Kuikenthal's theory.

Dr. Kiikenthal semms th credit the adrocates of primitives momphyondontism with supposing that the present simgle dentition of the Cetaced is an monodifies survival of the earlicst momophyodont emdition; but this is not the case, that view having never been taken, so far as I know, by any one but Baume, and by him on the basis of a wholly different theory. I myself* have supperd the ancestoms of the Cetacear to have pasied thmogh a more or luss diphyodont stage, and to have afterwards lust one of their two sets of teeth.

Dr. Kiakenthal is to la congratulated on the brilliant results that have atiended his meseigations, and I trust that he will comtume his cfints to find out the true homolories of the different teeth, and thereby facilitate the work of thase who for systematic purposes need io have correct names under which these important organs can be compared and described.
XLIX.-On some mudescrilued Cicarlitax, with Synonymicel Notes. By W. L. Distant.

I mave had subnitted to me for identification a number of species belonging to this family contaned in the collections of the South-Dfrican Museum at Cape 'Town and the Australian Museum at Sydner. The new species from these sources and others which I have recently received are here described, with a few synonymical notes and corrections resulting from some perfunctory and hasty work in other quarters. The legacy of bewidterment left to stu lents of the Cicadida by the late Mr. Francis Walker is already so sufficing that it is earnestly to be hoped that such difficulties be not increased by other writers unfamiliar with the family. Like all other zoological groups Cicadide require study, but have, unfortunately perhaps, been as much obscured in printed matter as has proved to be the fate of most families of the Rhynchota.

Cicadinte.

Pocilopsaltria Trimeni, sp. n.

Head and pronotum fulvons and molerately pilose, meso-

$$
\text { * T.c. p. } 458
$$

Ann. \& Mag. N. Ilist. Ser. 6. Vol. ix.
notum and aldomen black. ITcarl with a rectangular hollow fascia on front, anterior margins of vertex angularly enlarged at junction with front, a transverse fascia between the eves and the area of the ocelli, black. Promotum with a central longitudinal fascia transversely extended anterionty ant posterionly, the incisures and lateral mareins black. Mrennotum with two obeonical fasciar on anterior margin, the basal cruciform elevation, a sinuated fascia connecting same with the obconical spots, and lateral and pusterior margins ochraceous. Abdomen above moderately pilose, anterion margins of the tympana ochraceons, secmental margins clothed with ochraceous hairs. Body beneath and leas ochraceous; head, sternum, and opercula greyish; anterion margin of head, lateral margins (excluding extreme elge) of sternum, a basal spot to face, spots and streaks to femora and tibiee, and some small central spots to abdomen, black.

T'egmina fulvous, mottled with dark fuscons, the venation ochraceons at base and subsennently piceons towards apees; costal membrane ochraceous, its base amil the hasal call haredy black. Wings black, the base imegulaty ochrace ons to about centre, the outer margins breadly pale hyaline and with a creamy white spot at the apex of the black coloration.

Lustrum reaching the posterior cosar, ofereula moderately overlapping at centre.

Long. of 26 millim. ; exp. tegm. 80 millim.
Hab. S. Africa, Bushman Land (Ifarden). Cape Town Mus. and Coll. Dist.

The peculiar coloration of the wings will renter this species easily recognizable.

Pocilopsaltria Peringueyi, sp. n.

Closely allied to P. Trimeni, but differing in the following characters:-The head is more conical and less trmente in front, the lateral margins of the pronotum are more acutely angular in dilatation, the face is broader, the abomen bemeath with hlack fascire on the segments, and the wings withont the ochraceons basal area, being wholly hack, with the exception of the creamy white spot near apex and the broad pale hyaline outer margins.

Long. ठ 24-26 millim. ; exp. tegm. 68-75 millim.
Hebl. N. Africa, Damara Land (G. Tutten). Cape Town Mus. and Coll. Dist.

Thopha sessiliba, sp. n.
Bendy above dark ochraceous. Head with the margin of
fromt and a hemal lacia baweon the eyes prate castamens I'romotum with the incisures pale eastanens, the lateral and postorine margins straminents. Mesomotum with fone (n)comical castaneons sp ts, the central pair smallest. Ah homen abowe castamens, the base nehracesus, the apical semment thickly greyishly pilose. Boly bencath ochracens; the face, fascia between face and eres, leos, ablomen, and inflatel tympana castaneons; anterion margins of tympama bencath ochraceous.

Tegmina aml wings pale hyaline, the venati m oelraceous, beeoming danker towards apices. Teermina with the eostal membrane and the basal cell ochracents; anterior marein of hasal cell and anterior margin of chaval area dark cataneons; claval area pale sanguincous.

Long., excl. tern., of 42 millim. ; exp. term. 126 millim.
Hub. Australia, Sydney.
This species differs from Thophe succuta, A. \&S'., the only other described species of the genue, by the much more strongly sessile eyes, a character alone which will instantly separate the species. Besides this structural feature, the colour is much paler, the hody ahmet glabrous above, and not pilose as in T. sucentu; the heand, sterum, and opmenta beneath nchracenos and not very dark castancuns, and the abdomen is narrower and more attenuated.

Tibicemina.

Graptotettix thoracica, sp, n.
Head, pronotum, and mesonotum bright pale ochaceou; abdomen pale sanguineous. Eyes fuseons. Pronotum with the posterior, lateral, and anterion (as far as behind evesonly) margins castaneons, and with two jet-llack central, discal, curved fasciæ. Mesonotum with four pale castaneous obeonical fascie, the central pair smallest. Abdomen above ochaceous near base. Bo ly beneath and legs sanguineous; head beneath, anterior cosa, and lateral margins of sternum ochraccous; spots on coxa black. (In the specimen described the apes of one posterior femur and its tibia is almost black, the other posterior leg is unifurmly sanguineous.) Tegmina and wings pale hyaline, more or less completely tinged with castanenus (in the specimen describel more so on one tegmina and wing than on the other, the renation ochraceous or castaneous.

Long., excl. tegm., 3 2 23 millim. ; exp. te gim. 7.5 millim. Hab. Burma, Momeit.

This is a Burmese representative of the arents, hitherts onle represented by a single Ilimalayan and Chinesespocies, f. guttratus, sial. Frou this suceies it is differentiate l by its totally different colour and markings of promotuan the tront of the head is also more angulated and the face more angularly tumid.

Mogannia effecta, sp.n.

Mogannia effecta, Walk., MIS.
Body and legs very dark bluish black; tegmina with the basal half bluish black, this colour broatly marginsi at bise, costal area, claval area, and just before its extremity with sanguineous.

Var. a.-The black area of togmina streakel with pale fuscons and the sanguinens margin to same very dull on costal area and almost absent on claval area.

Var. b. -The venation in hack area of t mmina sanguineous and concolorous with the surrounding margins.

Long., excl. tegm., 17-19 millim.; exp. tegm. 42-45 millim.

Hab. North-east India, Sumatra.
This is a common North-Indian species and of a very distinctive pattern and coloration of tegmina.

Bcturia bicolorata, sp. n.

Ifead, pronotum, and mesonotum pale greenish; ablomen wam nchaceon*, its apex green. Eyes pale fusentus. Heal beneath, stemum, and legs pale greenish, abblomen beneath ochraceous. 'Tarsi ochraceous.

Tegmina and wings pate hyaline, the renation greenish or ochraceon*; costal membrane of tegmina and the catreme bases of tegmina and wings pale greenish.
hostrum reaching posterior ense, with its apex black; anterior femora with three distinct spines.

Long., excl. tegm., of $\because 3$ millim.; exp. tegm. 65 millim.
Hub. New Guinea, Fly River. Austr. Mus., Syduey, and Coll. Dist.

A liceturia of striking bienloration, of which at present I have only seen two female examples.

Tibicen (Quintilia) Weulei, sp. n.

Mody above and beneath with the legs black ; bolly bencatin with a broad, lateral, pale ochracens fascia an eacis site
extenting from eyes to apex of ahdomen. Heal with the eyes brownishochraceons ami a small ochraceons spot at hase. Iromotum with a central, chomate, whamems spot anl with the incisures brownish. Cruciform elevation at base of mesommum ochracome, black at contre and near its apices. Apices of femora and base of tibio narrowly ochraceons. Tympana, oprowha, atm thee indi-tinct longitulinal serics of very small spot- to ahbmen (one central, the other two lateral) dull greyish.

Tegmina aml whas hyaline, the tomina slighty infus-
 veins at the hase of apical ameas hombly and dakly intuscated, and a series of dark blackish marginal spots at the apices of longitudinal veins to apical areas; wings with an angulated blackish fascia situate on the transverse veins at the bases of the apical areas; wings and tegmina narrowly ochraceous at base.

The rustrum just passes the intermediate cosa, the anterior femora have two large and robnst spines and a thirl, small and indistinct, near apex; the head is broad and between the eyes is moderately truncate.

Long., exel. tegm., तो 19 millim. ; exp. tegm. 45 millim.
Hab. S. Africa (1/ansel Weale).
This species is allied to T'. (Yuintiliu) citripernes, Karsch, from which it is distinguished by the dark central fascia to the wings; in seneral apparance it somewhat resembles the Indian species T^{\prime}. subvittata, Walk.

Masupha, gen. nov.

Allied to Cicadutio. 'This genus is to be recognized principally by the tegmina, in which the batiol cell is latge, broader at base than at apex, and not twice longer than its extreme brealth; the costal margin of the radial area is more or less curved and gibbons, and the inner uhar area is distinctly broader at base than at apex.

Masupha ampliata, sp. n.

Body above blackish or very dark castaneous; head and thorax moderately pilose, more thickly so beneath than above. Head with a large ochraceons spot on the anterior margins of vertex adjoining front; eyes pale fuscous. Promotum with the margins and a central longitudinal fascia ochraceons, the incisures brownish. Mesonotum with two central, linear, ochraccous fascie, which are thickened posteriorly, the lateral
margins very narrowly ochracenus and the cruciform elevation ochraceous, with its anterior margin blackish. Abromen with almost the posterion halves of the serments nchaceons. Legs, rostrum (excluding apex), opercula, and central area of abdomen beneath ochraceons; streaks and pots to less, outer basal angles of opercula, and the face castaneons.

Tegmina and wings pale hyatine and talc-like, their hases narrowly ochracenus, marked with fuscons; tesmina with the renation ochraccous or pale fuscous, the costal membrane and inner margin of claval area ochraceous, the transverse veins at the bases of second, third, and fourth apical areas infuscated, and some irrecular fuscous spots or shadings on the longitudinal veins of the third, fourth, fifth, and seventh apical areas. Wings with the venation ochracenns and with some sulmarginal fuscous spots on sharlings on the longitudimal veins to the third, fourth, fifth, and sixth apical areas-

Long., excl. tegm., o 21 millim.; exp. tectm. 63 millim.
Itab. S. Africa, Gokiep. Cape Town IIus. and Coll. Dist.

A striking and uncommonly marked species; the pale wings and tegmina with their submarginal maculation, the ochraceonsly fasciated abdomen, and the gibbous costal margin to the radial tegminal area render it easily recognizable.

Masupha delicata, sp. n.

Tery closely allied to the preceding species IV. ampliatu, but differing hy its larger size and much less gibbously produced costal margin to the radial area of the tegmina; the abdomen above is more ochraceons, with a large black basal spot, the front of the head is pale castane mos, with two central darker lines, the body is monch more miformly ochataceous beneath, and the summarginal spots to tegmina and wings are paler and more obscure.

Long., excl. tegm., of $2: 3-27$ millim. ; exp. tegm. (6.)-i2 millim.

Hab. S. Africa, Ookiep and Bushman Land. Cape Town Mus. and Coll. Dist.

The two species above deseribed are structumally distimet by the length and shape of the tegmina.

Callipsaltria bicolorata, sp. n.

δ^{7}. Bonly Llack; apical margins of vertex of head, prematal magins, two very ulseare eboconical sunts to mean.
notum, apices of cruciform elevation, apical margins of abdominal segments (some effaced), lateral margins of stemum, a spot at base of face, rostrum (exchulines apex), and apex of ablomen beneath dull ochateons; the ruldmentary

T'egmina and wings pale hyaline, the venation brownish or fuscous: costal membrane to tegmina ochraceous.
of (var.?). 'Transverse veins at the bases of second and third apical areas infuscated.

Long., excl. tegm., ठृ 20 , ㅇ 18 millim.; exp. terg., ず 46 , of 45 millim.

Hub. S. Africa, V. Wyks Vley (Alston). Cape 'Town Mus. and Coll. Dist.

The largest of the species of Cidllipaltria yet described.

Psilotympana infuscata, sp. n.

Head and thorax above black; abdomen redish, with the base and a central longitudinal fascia black; apical margins of frent and apex of heal, posterion and lateral margins of pronotum, two curved central fascie to mesonotum, connected with the ernciform elevation and posterior margine of ablominal segments, ochraceons. Body bencath and legs pale ochracenns and moderately piluse ; sulcation and striations of face, streaks to femora and tibie, and some small ensal spots, blackish.

Tegmina and wing pale smoky hyaline, tegmina with the reins fuscous and with slight marginal intuscations; wings paler.

Long., excl. tegm., of 17 millim.; exp. tegm. 38 milim.
Hub. S. Africa, Hex River Tialley. Cape Town Mas. and Coll. Dist.

This species is allied to P. fusiformis, Walk., from which it can at once be separated by the infuseated tegmina.

Fidicina Mülleri, sp. n.

Ifead, pronotum, and mesonotum dark olivaceous, sometimes almost black; abdomen above blackish; body beneath and legs dark olivaceous or blackish and strongly pilose; apices of the femora and bases of the tibia narrowly pale ochaceous; posterion tibiæ pale olivaceous, with the apices pitchy; rostrum (exchuling apex) pale olivaceous. Eyes olivaceous; boly above sparingly pilose, lateral margins of the abdomen prominently greyishly pilose.

Tegmina and wings pale hyaline, the venation ochraceous
or fuscous; tegmina with the basal cell, costal membrane, pertenstal area and base of claval area hackish; the transverse veins at the beses of the ap,ical areas all carkly infuscated, and a summarginal series of small fuscous slmis on the apices of the lomgitudinal veins to apical armas; wings with the base and half of anal area blackish, containing three ochraceous spots, the luwermost of which is somewhat bifid.

Long., excl. tegm., J \& 81 millim. ; exp. tegm. 90 millim. Hab. Brazil, Santa Catarina.
This species is allied to F. pmlluta, Bere, but differs at ance from the description of that species be the peculiar ochraceously-spotted black basal area of the wings.

The female now before me is much paler in coloration than the male.

C'arineta tracta, sp. n.

\&. Head, pronotum, and mesonotum ocliracens: ahbomen alove castaneolls. Hlead with two spots on fromet, the apical margins of vertex and the area of the ovelli Llack. Promotum with a central sulbtriangular spot near base, with a small romuded spot on each side, black. Mesonotum with iwo central obeonical spots, from which on cach lateral marein a short line emerges, a central linear and two roumled spots in front of the eruciform elevation, a spot at the lateral margins, extreme hasal margin, and a spot im anterior angles of hasal cruciform elevation, black. Head beneath ant stomam ochracenus, legs and abdomen beneath very dark castancons; coxa, afices of fimmo, hases of tibie, and pusterior tarsi (excluding apices) ochraceous: two central longitulinal fasciae to face, a spot between face and eyes, base and apical half of rostrum, very dark castaneous.
'Temmina and wings pale lyaline, the venation ochacans and fuscons; tegmina with the costal membrane ochracenus: wines with a rather large fuscous marginal spot at apex of anal area, and a short ochraceous and black marginal =treak at basal margin of same.

Lung, exel. tegm., f 25 millim.; exp. tegm. 82 millim.
Hab. Ecuador.
A speries somewhat alliel to ('. postica, Walk., ly the markings of the wings, but differing from that spectes by the larger, more rohnst, and differently coloured and ornmented body, much wider prometum, shoter and boak henl, de.

Carineta centralis, sp. n.

Body above castancous and pilose; head with the eyes, a contral spot to front, apical marwins of vertex, ated a spot at base greenish ochraceous. Pronotum with the margins, a central fascia bifurcate posteriorly, and with some ovate discal markinge, eremish odraceons. Mesombum with two central whonical sumes, heneath and bounting whioh is as large triangulated sinot, the latual margins and basal erneiforta clevation, greenish ochatemos. Ablumen with three longitulinal grenish-mehracents fascie, one central and two lateral. Head hemeath, stemmen, and leas odmaceons, body beneath dank castanenus ; apiees ni rosum and tarsi pitchyo.

Tegmina and wings pale simoky hyaline; the venation hrownish orhaterns; tugmina with two indistinct fuscous longitudinal streaks in cach apical area, and a marginal series of fuscous linear spots. Wings with a central fusenns spot near end of radial area, the apical margin and inmer basal margin of anal area infusated, and an outer marginal series of fuscous linear spots.

Long., excl. tegm., ot 21 millim. ; exp. tegm. 6.5 millim. Hab. Ecuador.
Apart from other characters this species may be recognized by the central fuscous spot to the wings, which, with the fasciated abdomen, allies it to C. tricittuta, Walk., from which, however, it differs by its larger size, absence of dark spots to tegmina, the more produced and conical fromtal portion of head, uniformly narrow central suication to face, dec.

Carineta matura, sp. n.

ठ. Body and legs warm dull ochraceous. Head with the basal margin and area of the ocelli black, the front with two marginal blackish streaks. Pronotum with a narrow, dark, central, longitudinal line, on each side of which is an obliquely curved amb dentate black line, a short black streak near each lateral margin, and lateral and inner basal margins also black. Mesonotum with two central black-bordered obconical spots on anterior maryin, on each side of which is a longer and more acute spot, a waved and pointed spot in front of the cruciform elevation, and a short black basal streak on each side of the same. Abtumen above and beneath with the lateral margins strongly and palely pilose. Beneath the anterior and intermediate coxa are spotted with pale fuscous, and the abdomen is marked with a central longitudinal fascia of the same colour.

Rostrum with the apex fuscous and reaching the posterior сохæ.

Tegmina and wings pale hyaline, the venation dull ochraceous.

Long., excl. tergm., 15 millim. ; exp. tegm. 46 inillim.
Hab. Venezuela.
The most clusely allied species to the one here described is C. calida, Walk.

Melampsalta rosacea, sp. n.

ot. Head greenish ochraceous. Pronotum and mesonotum pale greenish, the last with two obscure obeonical spots at anterior margin, and with two dark greenish but obscure fascia on each side. Abdomen rosy castameous. Head and thorax beneath greenish ochraceous; lugs pate greenish, with the apices of the tibier and the tarsi pale fusens. Ahtomen beneath paler than above, with the sermental margins narrowly chaceous. Opercula prale greenish, ablipuely directed inwardly, concavely narowed on each sile near base, and with their apices rounded.
lostrum greenish ochraccous, its apex pitchy and just passing the intermediate cose. Anterior femora amel beneath with three strong spines.

Tegmina and wings prale hyaline, the first with the basal portion of venation greenish, remainder and that of wings pale fuscous.

Long., excl. tegm., 23 millim. ; exp. tegm. 59 millim.
Hab. New Caledonia and Ruk Island.
A female specimen from New Caledmia now before me has the abdomen as dark beneath as above, with an ubscure, central, longitudinal, pale fuscous fascia.

Melampsalta convicta, sp. n.

Body above hrownish ochraceons. Head with the fomenal margins and the area of the ocelli hack. Pronotum with three small and very obscure black spots near anterior margin, the incisures also somewhat darker. Mesonotum with four obeonical black spots, the ontermost two very long, and two rounded spots in front of the anterior angles of the basal cruciform elevation, black. Abumen with transverse fasciee at the anterior segmental margins and a series of lateral marginal spots, black. Body beneath brownish ochaceous; the disk of lateral striations to face, apex of rostrum, and a hasal spot to abdomen back; femora fale castancous.
'Tegmina and wings pale hyalime, the venation ochacerous; tegmina with the postcostal area infuseated.

Anterion fommath withee distinct and monst spines, the apical ome smallest. Abhomen (δ) very much attemnated to apex, which is also elongate.

Long., excl. tegm., of 19 millim.; exp. tegm. 56 millim.
Mab. Norfolk Island.
A species to be superfictally recognized be the attemuated ahdemen amd the infuscated pmetcostal area to the tegmina.

Melampsalta abdominalis, sp. n.

Body above black. Head with a central spot to front, apical margins of vertex, a central spot near base, and the eyes ochacooms. Pronctun with a central discal elongated spot, bencath which are two small tramserse spots, ochat ceons. A spot on each side of the eruciform elevation and the metanotal margin ochraceous. Abehomen with two obligue reddish ochateons macular fasciac on the last three segments, and in the female two elongate sulphureons spots at the base of the anal appendage. Head beneath and sternum hlack; a spot at base and the margins of face, a marginal sput near insertion of antemne, coxal margins, legs and abdomen beneath reddish ochracenns; lomgitudinal fascia to legs, the anterion fibie, tarsal claws, central hasal spots, and a series of marginal spots to abdomen black.

Tegmina and wings pale hyaline, the renation blackish; costal membrane and postcostal area of tegmina ochraceons.

Long., excl. tegm., o ot 20 millim. ; exp. tegm. 5S-60 millim.

Llab. Anstralia, Victoria (Stephen Barton). Austr. and Tasmania Mus., Syd., and Coll. Dist.

In one varietal female specimen now before me the lateral ochraceous, macular, abdominal fascia extend over the last four segments, with a central spot of the same colum on the preceding segment.

This species is allied to M. Landsboroughi, Dist., but is especially to be distinguished by the abdominal markings.

Melampsalta extrema, sp. n.

Head, pronotum, and mesonotum black. Abdomen ochraceous, with the basal margin and the two apical segments black ; a central longitudinal spot to the penultimate segment and the posterior margin of the apical segment ochaceous. Head with the front excluding two marginal spots, anterior
marginal angles of vertex, and the ocelli ochraceons; eyes pale hrownish. Pronotum with the margins, and a central longitudinal fascia, on each side of which are discal curved and transverse streaks, ochraceons. Mesonotum with two central fasciae thickened posteriorly, the lateral margins and basat cruciform elevation (excluding anterior anses and central mareins) ochracenus. Bonly benmath and lese ochracenes, hamora streaked with castanenus; a broad central fascia to face, heal berond face, coxal fascier, stemal spots anl bazal angles of abdomen black.

Tegmina and wings pale lyaline, their hases very narmowly nchaceous, the venation senerally fusens; costal membrane to tegmina ochracons, with its outer margin narrowly fuscous. Wings with the inner margin and outer apical angle of claval areas infuscated.

Female with the upper surface of the abdimen omanemted with transverse central segmental hlack spots, ant the two terminal segments are not wholly black as in the male.

Long., excl. tegm., of if 18 millim. ; exp. tegm. 47 millim.

Hab. N.IV. Australia, Roebourne. Austr. Mus., Syd., and Coll. Dist.

A distinct species, to be primarily distinguished be the colour of the abdomen, the thoracic markings of the upper surface, and the fuscous markings on the claval area of the wings.

Melampsalta rootunduta, sp. n.

ठ. Body above black ami moderaty emprisuly pilose lead with the anterior angles of vertex, in in listinct contral linear basal spot, and the oceili ochaccons. Promotum with the basal margin and some indistinct anterion ant poserint marginal spots ochraceous. Mesonotum with two central linear and inwarlly angulated basiat, the hatoral marsins and basal erncifum clevation ochacents. Dblom an (excluding basal segment) with transerse ochacmas scomental fascia, and macularly manked with grey phesity Margins of face, legs, and abolomen bencath whencenns; femoral streaks and bases of tibir blackish.

T'emina and wing pate hyaline, the venation orhateons, locoming fusens towads apex ; tegmina wide, arcied, and romided.

Femule.-From the specimen now before me gencrally paler in hue than the male.

Long., exd. tharm., \& of 14-15 millim. ; exp. tesm. is miilim.
 Coll. Dist.

A very distinct South-African species, defined by the broal amd mumed tormina, appmaching in this respect tho peculiar facies of some Australian species.

Srionymical Notes.

The following symmyny refers to two South-African species, of which I was able during the lifetime of my late friend Dr. Signoret to compare the types in his collection mate low the late Hr. Stal, with thons of Mr. Walker in the British Mnseum:-

Tibicen (Quintilia) primitiva.

Cicadu primitica, Walk. List IIom. i. p. 218. n. 171 (1850).
Tibicen primitica, Stâl, (Efr. Vet.-Ak. Förh. 1862, p. 485.
Tibicen (Quintilia) hematinus, Stãl, Hem. Afr. iv. p. 40. n. 18 (1866).
Quintilia hematina, Karsch, Berl. ent. Zeitsehr. xxxr. p. 121. n. $\mathfrak{\text { on }}$ (1890).

Tibicen (Quintilia) monilifera.

Cicada monilifera, Walk. List Hom. i. p. 219. n. 172 (1850).
Tïbicen monilifera, Stål, (Eft. Vet.-Ak. Förh. 1862, p. 485.
Tibicen (Quintilia) maculinerris, Stâl, Hem. Afr. iv. p. 33. n. 8 (1866).

In the 'Journal of the Limnean Society' (Zoology), mol. xxiv. 11p. 12s-1:31 (1891), Mr. Kirhy has deseribed as new four species of Cicadida from Ceylon. These descriptions may be interpreted as follows:-

Dunctubia mixtu, Kirur, l. c. p. $128=$ Cicutu viritis, Fabr. Syst. Rlyng. p. 39. n. 25 (1803), excl. syn.
Pomponia Greeni, Kirby, l. c. p. 12?, = Pompmia Rumsonneti, Dist. Ann. \& Mag. Nat. Hist. ser. 6, vol. i. p. 372 (1888).

Femponiu elrguns, Kirly, 7. с. p. 1:3), = Terpmosiu* pisecas, Walk. List Hom. i. p. 65. n. 28 (1850).
Cicerte apicolis, Kinly, l. c. p. 1:1, = Tilhicen mbifurca, Walk. List Hom., Suppl. p. 28 (185̃8).

- Terpmosin. cen. nur. Closely allied to Pomponia, but with the tympana almost entirels uncorered, thas locating the genus in the subfam. Hibiceninæ. (More fully described asd tigured in my forthoming part of the 'Monograph of Oriental Cicadidæ.")

In the 'Transactions of the New Zealand Institute,' vol. xxiii. p. 49 (1899), Mr. G. Y. Hudson has published a paper on "New Zealand Cicadx" ".

Cicalle muta, Inuds. I. c. p. IL.-Mr. Mudson thus refers to the well-known Melampselta muta, Fabr., and describes several varieties which apparently belong to two distinct species-11. muta, Fabr., and M. angustu, Walk. These varieties have also previously been described by Walker ats distinct species, while Mr. Hudson again describes moler the name of Cicarla aprilina (l.c. p. 5. 3) another form of the Fabrician species. The synonymy is as follows:-

Melampsalta muta.

Tettigonia muta, Fabr. Ent. Syst. 4, p. 2.3. n. 35 (177.5) ; Syst. Rhyng. p. 43. 11. 53 (1803).

Cicada muta, Olir. Enc. Méth. r. p. 757. n. 48 (1790).
Cicada cutora, Walk. List Hom. i. p. 172. n. 116 (1850).
Cicada ochrina, Walk. List Hom., Suppl. p. 34 (1855).
Melampsalta muta, Stâ1, Eefr. Vet.-Ak. Fürh. 1862, p. 484.
Cicada muta, Huds. (part.), 'Trans, N. Zeal. Inst. xxiii. p. $\overline{1} 1$ (1890).
Cicada aprilina, Huds. ibid. p. 53 (1800).

Melampsalta angusta.

Cicuda angusta, Walk. List IIon. i. p. 17士. n. 121 (1850) ; Stâl, (Efv. Vet.-Ak. Förl. 1862, p. 48?.
Cicada rosea, Walk. List Hom. i. p. 220. n. 173 (1850).
Cicada bilinea, Walk. List Hom., Suppl. p. 34 (1858).
Melampsalta rosea, Stål, (Efr. Vet.-Ah. Förh. 1862, p. 484.
Cicadrı muta, Iluds. (part.), Trans. N. Zeal. Inst. xxiii. p. $\overline{1}$ (1890).
 Walk. List Hom. i. p. 150. n. 88 (IS50).

Cicada iolanthe, Huds. l. c. p. 53, belongs to the genus Melampselta. In a hook entitled' An Elementary Mannal of New Kealand Entomology,' hearing hate 1892, Mr. Hudson gives a figure of a Cicada iolanthe, sp. n., without any description or reference to his previons descrintion in the

* This family name shomble mome comectly spolt " (ieadidae." erpocially as Mr. Beiditom has even more pronem-ly ued the term "C"iada" " for hearly the whole of the Briti-h Homoptera (s Moncer. of the lintiwh
 gists" who contemn "systematic entomologists" must at least be protected by their weaker brethren from forming wrong conclusions un careless systematic worli.

Trans. New Zatal. Hestit, for 1sio. This figure must he ignored, as the colow is unlike the species and the wemation purtraved is also different from any known genns of Cicadidæ.
('icmbur conssione, Huds. l. c. p. it $=1 /$ lemp)salte nervosen, Walk. List Hom. i. p. 213. n. 166 (1850).
> L.- Contritutions timaris a (ienmal Ilistory of the Marime Polyzou, 1850-91.-Aprendin. By the liev. Thomas Hincks, B.A., F.R.S.

[Continued from vol. viii. p. 480.]

'Aunals,' August 1881 (p. 65 sep.).

Mucronella tcres, sp. n.

Syn. Thermentlo lemis, Mac(illisray, Trans. Ros. Soc. Victoria, July 1882 ; Prodr. Zool. Vict. decade xii. p. 64, pl. exvi. fig. 3.
'There can be no doubt that NacGillivray's M. laveis is incentical with the present ipecies, of which it mon-t rank as a synomy. The omly differences between the two as describeed are that in 1I. laris three spines are present in front of the occium on each side, whilst in the specimens which I examined there were only two, and that the small nodular projection on the inner face of the mucro in M. teres is not noted by MacGillisray. These points are quite immaterial.

$$
\text { Ibid. (p. } 6 \text { š sep.). }
$$

Mucronella spinosissima, sp n.

This species is identified by Waters* with Mucronella Peachii, var. oct dentutu, Hinck's, and Niss Jelly has taken the same view in her 'Catalogue ; ' but I am quite unable to accept their decision. Ii. spmosissima is, I have no doubt, identical with the fossil form from New Zealand described by Waters (loc. cit.) ; it agrees with his diagnosis even in

[^75]minute particulars *, but it differs essentially from. II. Parmii, var. oftodentata. From the latter it is distinsuishel by its lageniform cells, the tall, neck-like, tubular peristom", which is more than suberect, sonnetimes standing up) almost at righit angles to the cell-wall, the rim bearing at the back and round the sides about eight rather shont spines set chnsely theether, the front margin carried up into a somewhat hood mucrn, often hi- or tridentate, and ly its recumbent orecium. It is also furnishel with an oral denticle, but it dificts in tiom and position from that of the varicty octorentutu. The cells uf M. spinosissima are very ventricose below, the surface is smooth and shining, and a line of small circular pones runs round the margin. I have no doulbt of its distinctues from the British form.

In my "Report on the Polyzoa of the Queen Chatote Islands" I have described a supposed rarioty of the pmesent species under the name M. spinosissima, form major \dagger. Further consideration has convinced me that the supposed variefy is reatly a distinct spectes, with some matken chararteristics, of which the tubular structure in the cell-wall is probably the most important. I momme to mane it Muennella perforata.

Miss Jelly also ranks Lemalia multispinata, Busk, as a synonym of the variety octodentata \ddagger. Upon this I can only remark that the general character and the details of structure seem to me strikingly dissimilar in the two forms. This must be apparent, 1 think, on a comprarion of Mr. Busk's figure with my own. I may direct attention specially to the cularged figure of the oritice of L. multispinutus, which represents a totally dificrent structure from that which is chameteristic of M. spinosissima.

In his 'Challenger' Report (part 1, p. 160) Busk has described a variety of Mucromelle eotriceses, which he has named multispinetu and which he was inclined to think might be identical with my M. Ienchii, var. setudentatro. IIis form, he contends, must be referred to W. entricomat rather than to M. Peuchii, and judging from the detaiked account which he has given of it there can be little doubt that he is right. On the other hand, some of the most

[^76]distinctive features of IV. Penchii are present in my variety the smaller cell, the absence of striation on the from wall, the less massive muere, and the comparative smaliness of the oral denticle. The two forms are probably distinct; Mr. Busk's ligure in the 'Chatlenger' Report can hardly he referred to the var. octodentata.
M. Peachii and M. ventricosa are closely allied species and have recently bern minted by Lomenz. They are liable to much variation, but there is a strongly marked character about the normal M. ventricosa.
$$
\text { Ibid. (p. } 66 \text { sep.). }
$$

Nucronella tricuspis, sp. n.

Syn. Exochella lomyirostris, Jullien, Miscion du Cap IIorn, Bryozoaires, vol. vi. 1888 , p. 55̃, pl. iii. figs. 1-4.

I can see no difference of any moment between this species and Exochella longirostris, Jullien. The pores round the margin of the cell in the latter are wanting in $m y$ specinens of M. tricuspis; but this is a variable character and has no diagnostic value. The difference may be due to the degree of calcification. Except in this one particnlar there is a close agreement between Dr. Jullien's figure (fig. 4), which is an admirable one, and my own.

As for the genus Exochella, it seems to me to be superfluous. It is tounded on a single character of no special importance-the elongate tooth on the lower margin of the orifice, "forming a kind of spur," and dividing the lower lip of the peristome into two distinct portions. It genera are to rest on such slight foundations they may be indefinitely multiplied and will lose altogether their significance and value as representative of leading morphological types.

Additional Loc. 'Tierra del Fuego ; Chiloe Archipelago (Daruin) ; Simon's Bay, Cape of Good Hope; Prince Edward Island, S0-150 fath. (Busk,, 'C'Kall.' Reps.); Port Phillip Heads and New Zealand (MacG.). Fossil: Petane (IVaters) ; Ile Hoste, baie Orange; Canal du Beagle, au sud de l'île Gable (Jullien).

Ibid. (p. 66 sep.).
Rhynchopora longirostris, sp. n.
Not identical with Mucronella tubulosa, Hincks (see 'Annals' for August 1891, p. 172).

Ann. \& Mag. N. Hist. Ser. 6. Vol. ix.

[1bid. (p. 68 sep.).
 Cellepora gramim, sp.n.

For synonyms see Miss Jelly's 'Catalogue.'
Waters has remarked that this species is clusely alliel to Lagenipores spimuluso, Hincks, and L. Turive, II. There are no doubt points of resemblance, but the differences in this structure of the zocecium $\mathbb{d e}$ are mobably of sufficint importance to justify us in referring them to distinct gemera. The first of these specus (L. spimulusa) he considers to be probably identical with Cellepura bicurmis, Bu:k ${ }^{2}$. I am indebted to Dr. Günther's courtesy for the opportunity of examining specimens of the latter from the "Challenter" Collection, and I am inelined to think that they are distinct forms. One of the marked features of L. spimulosn is the strongly reticulated surface of the cells. They are completely covered below the tubular peristome with mather large roundish formina closed in hy a silvery-white membrane and surrounded by a raised line, forming a distinct network over the cell-wall. This is the usual and characteristic structure, thongh oceasionally in certain states it may be more or less obscured. Of this there is no mention in Busk's deseription of C'ellepora licornis, mor is there a trace of it in the specimens which I have examined. A few large circular poies are present along the margm of the edll and sometimes round the orifice.

The aviculiferous pocesses in C. Diemons, which are tall and stout, are phacel at the front of the peristomial oritice ("promal," accerding to Bu*k), and ahove them are froquently two spimons processes; in L. spimuluse they rise on each side close to the zyper margin, amd immeliately han the coecium, when present. In this speries the front margin of the mifice (peristomial) is clevated alnese the rest, somewhat everted, plain or trimucronate; in C.bicornis it is usnally sinuated between the avienliferons procesees t.

The avicularime of this species is minute as ompared with that of the 'Challenger' form. There are also differences in the cuecium. That of C. Viomnis is small, ghtmbar, smouth and glossy, with a roundish foramen closed in by membrane ("fissure," Busk) in fromt, survombed by a raise" line ; while that of L. spimulose is semicircular, usually placed far hack, and often consideralily below the oritice of

[^77]the peristome, the front thattened, and suromaded by an arched line, within which the surface is minutely pitter. The cells also lifler in shape in the two spectes-lhase of r^{\prime}. hecornis are very math swollen botow and erect; the walls are smonth and entire. The large spatulate avicularia are not present in L. spinulosa.

- Additional Loc. Olf East Monceur Island, Bass Straits, 38 fath. (Biusk, '(hull.' liep') ; New Yealanl; Port Jackson, 8 fath.; Naples (IVaters).

1bid. (p. 68 sep.).
Lumulites incisa, sp. n.
This species scems to belong to the gemus Comescherellina, d'Orb. A fuestion arises as to ite specific name. Haswell described it ins lase as Conesseherellime conico ; my aceount of it appeared in 1581. Sofar therefore as time is concerned Haswell's name has precedence. But it has been suggested by Mr. Waters that as a Buknpora comica and Lunulites conica had been previonsly published, Haswell's name should be rejected and incise retained. How far this will hold good ean only be settled when the genera of the Shemarian family have been more accurately determined.

$$
\text { Ibid. (p. } 69 \text { sep.). }
$$

Membranipora roborata, sp. n.

In the original aceount of this species I have left its systematic pusition undetermined, referring it provisionally to Membranipora. But I have no lenger any doubt that it is rightly placed in this genus, Its zooccium is strictly conformed to the Nembraniporidan type; the mere habit of growth we now know to be absolutely immaterial, whilst the curious modification of the radical fibres (or tubes) is associated with the most diverse zonecial characters and has no generic significance. I am therefore unable to accept Mr. MacGillivray's genus C'ruspedozoum*, which, so far as the essential perints in the diagnosis are concerned, is a synonym of Membranipora. The peculiarity in the radical tubes occurs in Microporella, in Menipea, in Sckizoporella (probably), and no doubt elsewhere. This structure is specially liable to modifications correlated with diversities of habitat, and has no significance as an indication of genetic affinity.

- "Descriptions of nerr or little-known Polyzoa," part ix. fig. 4.

MacGillivray describes two species which he regards as new, C. ligulutum and C. spicutum; but the differences between these forms and $\mathrm{MI}^{\text {. roborata must be regarded, I }}$ think, as merely varietal. The unilaminate condition of the zoarium has certainly no specific value ; cases are not rare in which the bilaminate structure and the unilaminate occur in one and the same species. The other points relied upon-the more slender branches, the occurrence of one avicularium instead of two, the slight differences in the spines, and the spike-like process on the oocium-are all well within the limits of specific variation *.

$$
\text { Ibid. (p. } 70 \text { sep.). }
$$

Membranipora amplectens, sp. n.

This interesting form is entitled to rank as the type of a new genus on the ground of the remarkable structure of its ovicelligerous cells. The oœcium itself is not merely a variation upon the ordinary form, but has a distinct morphological character.

Family Membraniporidæ.

Heterocecium, gen. nov.

Zoocia pyriform, aperture large, occupying about two thirds of the front, closed in by a membranous covering and furmished with marginal spines (caleareons) ; immediately below the aperture a tall articulated spine. Oacium borne on gigantic cells, which are elongate and of considerable wilth, extending over almost the whole of the aperture, which is covered by a roof composed of rib-like processes springing from the opposite sides of the cell-wall, and bending slightly inward so as to meet in the centre, where their extremities are soldered together, whilst they are united laterally by a calcareous expansion, the oral areh pointed; oricelligerous cells placed between the divergent lines of zocecia at a bifurcation.

This fom is nearly allied, so far as the structure of the zoccium is concened, to the group of Membraniporila which Busk (following d'Orbigny) has referred to the family Electrinide \dagger, but is separated from it and from all the Cheilo-

[^78]stomatous genera by its ocecial characters. Its ovicelligerous cell differs essentially from the gonucium or sexual cell which occurs anongst the Adenear. The later is an enlarged and otherwise modified zonecium set apart for reproductive functions. In the present gems there is a true external owecimm or special chamber fir the reepption of the embryo, lut instead of being an appendage of the zonecium, as is usual, it is an integral part of it, ocemping the whole of the upper (or anterior) portion of the cell which is inclosed be a ribbed roofing. This bears a close resemblance in structure to the front wall of the Cribriline zorecimm, and like it has originated in a modification and adaptation of the marginal spines.

The morphological history, then, of the ocecium in this form is unigue and its structural elements differ altosether from those which are met with in ordinary species. There is certainly a valid claim to generic rank.

In the absence of living specimens and of specimens preserved in spirit it is hardly possible to interpret the structure and its functions fully; but we may hope that the observations of the Australian naturalists will soon enable us to complete the history.

$$
\text { Ibid. (p. } 72 \text { sep.) }{ }^{*} \text {. }
$$

Membranipora variegata, sp.n.

This species appears to be identical with I. echinata, d'Orb. (Voy. Amér. mérid. pt. 4, p. 16). D'Orbigny does not mention the pedicellate avicularia, and his diagnosis is wanting in fulness; but there can be no doubt that he had the present species in view. It will rank as M. echinata, d'Orbigny.

Additional Loc. Chili and Peru (d'Orb.) ; Queen Charlotte Islands (Dr. Dawson).

Ibid. (p. 73 sep.).
Diuchoris (Beania) distans, sp. n.
Waters ("Australian Bryozoa," 'Anna!s' for August 1887, p. 94) identifies this species with Diachoris spinigera, MacG. He says, "There is considerable irregularity in the number of spines, and from this specimen I consider that D. distans, Hincks, is too closely allied to be separated as a species."

* See also 'Annals' for February 188'2, ser. 5, rol. ix. p. 81 (sep.).

I have already pointed out the many and important differences which there are between the two forms. A comparison of MacGillivray's figure with my own will show that they are more or less dissimilar in almost every element of the stru-ture. It is not the mere number of the spines which is different ; the difference in character is much more important. MacGillivray's description, "long, slender, incurven spines," does not apply to those of B. distans. Their form and arangement, as shown in his figure, offer a complete contrat to those of the present species \%.

It is unnecessary that I should repeat here the careful comparison of the two forms which is embodied in the original accomnt of B. distans; but I may emplasize the differences in the avicularia, of which enlarged figures are given.

'Annals,' Feb. 1882 (p. 80 sep.).
 Membranipora pilosa, Limn., form multispinata.

This form was referred doubtfully to .1\% pilewn, but I now regard it as a distinct species which will rank as . II. multispinata (see the original description, loe cit. and the figure on plate v.).
[To be contimed.]

BLBLTOGRAPHICAL NO'IICES.

Catalogue of the Type Fossils in the Woorlumation Musemm. Cetmbridge. By Henry Woods, B.A., F.G.S. With a Preface by T. Mchenny Mughes, M.A., F.R.s. aro. 1e9 pip. Cambidere, 1891.

To cnable biologists to be within their rights, and not to infringe on those of others, in giving original names to new genera of animals and plants, there have been provided puldished lists (amd very lengthy (atalogues they are) of the appellations alrealy apmopriated; and lists of specific names are availahle to a limited extent ; but still the recorder of a new species has to be assured whether or no his specimens difter from or agree with already puhlished forms: and to this end it is requisite that he should see those that have been already described, the pullished figures and descriptions not being always satisfactory.

[^79]These particular sperimens or publisshad typms (by no means often real biohwion types of surcies or genera) have unfortumatels in many cases heen mislaid, or eren luat ; but 10 ensure that in future paldontodical workers shombld be ahd to find and examine them, it has heen propmed that catalugues should be made of surh "trpes" "
 alrealy suphlied such a li-1, and the Citalugue heme us is one of such a desirable series. It contains notes on 1666 specimens that have hern either dearibed of allhted to (with or without figures) in bouks and memoirs, with reforenoes to anthors. works, heatities, and formations: alan to domors amb collectors: adding symonems and occasional notes.
 palaontolugiste may tind: fiesils of douhtulalliance. 17; plan's, 37 ; sponges, 22; graptolites, 29 ; corals, 126 ; echinoderms (in seven divisions), 122: woms. 1:3; polywans, 43; hrachiopods, $14: 3$; lamellibranchs, 2! 21 : ga-teropods, 215; other molluses. $1+1$: trilohites, $1: 36$; dectupends, 34 : phyllocarids, 24 ; wher erustaceans, 1.5 ; fishes, 75 ; reptiles, 74 ; other vertebrates, 17 .

This book is well and clearly printed. There are but few verbal errors to be noted besides those in the "Corrigenda,"-such as Anomozamites inimus [minor, from the carcless copying of a former specific name; so also Acidaspis erinaceus instead of erinacea, and p. 45, Truchyderma lavis [ve]; P. 115, Trochonema bïugosa [sum]; p. 126, Crioceras occultus [tum]; p. 169, Doratorhymethes ralidum [dus]: Boumenni, at 1. 146 , and Phitippi, at p. 16:9, are misspelt, and the diphthongs are dropped in Monatrina and Thamnastreat. At p. $15 \pm$ "Gilyphea" should be Glyphea, and sublevis should be sublevis. These are flaws in a book of nomenclature. The degradation of the rightful capitals in specific terms derived from proper names, and the carmicions reduction of i in genitires to a single i, are nomenclatural taults due to the mistaken notions of the neo-classicists. We should have liked that their puristic notions had been hetter directed, and that they had printed Lindstremia and ciapperti with real diphthongs instead of with the modified vowel of the Germans; so also Münsteri should be Muensteri.

Delagou Buy: its Nutives and Lutural History. By Rosr Monterro.
With Illustrations. G. Philip and Son, 1891.
This brightly-written little book is from a lady whose name is well known at Kew (iardens for the dried plants and seeds she has sent home, and also to many entomolugists as a collector of insects; the frontispicce showing nine new species of African butterflies which she discorered during her second risit to Delagoa Bay. The author was no novice in African life, for she had already been in Angola with her husband, the late J. J. Monteiro, an Englishman
of Portuguese descent, who wrote an excellent work on Angola aud the Congo, and who died on the first risit of the pair to I Lelaron Bay, whither they had gome with expresly sriemitio aims. Notwithstanding its sad assoriations Mrs. Monterion spmaks woll of this pore, which she calls "the fimest natural harbour of South Afriea:" adding that the fever and aque are much orer-matel or lately Ahe to indiseretions in eating and drinking: while she makes fun of her troubles with the lazr, drumken, thierish Katir sersants, and even extracts some amusement from the insect plagnes, which are the worst of all and ommipesent. Many practical hints are given respect ing the killing, laftling or circumenting these lat nuisances; and the experiences of the Poprelutu or "collecting lady" are told with a brightness of style which in noway detracts from their scientific ralue. Each chapter is illustrated with charning rignettes hy A. B. and E. C. Woudward. after original wethes he the anthor: among the be-t being Brorico ps mimsismbinus devoning ants, and colpmum futulis in ambush, waiting for his antagonist-a weird piecture. From first to last this work maintains ins interest, and there is not a suspicion of padding about it.

La Plume des Oisecurx : histoive naturelle et industrie. Par Lacrorx-Danliard.-L'amateur de Oiseaua de Volière. Atec 51 Figures dessinées dapres Nature. Par Hexri Mmente. Builliere et fils: Paris, 1891.

Tueplan of the first work is to give a sketeh of the hirds which yield feathers or down useful to man, the history of the preparation of these productions, the markets for them, and their commercial importance. On these or similar lines it is easy to compile a loose treatise on hirds in general. especially on those of which woodcuts are arailable, many of them being very old açuaintances. Accuracy is not a distinguishing characteristic: for instance, in fig. 42 , which, we are expresty toht, is a repreventation of one of the ostrich-parks in Algeria, the birds have three welldereloped toes on each font. and in fige. 11 the ostrich pursuel hy a mounted Aratb is similaty gitted. The letterpress has no seientifie ralue. hut as a hook fer young people who with to improve their knowldage of French it can be recommended, as heing more interesting than the works usually put into their hands.

The second work is far superior to the preceding as regards the letterpess, for the author is evidently no mere eompiler, hut has a practical acequantance with cage-hirds. Fir poung stadents of French this book has the same adrantages as the former, but it is move "serions," and consequenty less cotertaining, thomgh of greater practical utility.

MISCELTANEOUS.

Note on Mr. Minchin's Petper on Ascetta. By R. v. Lendenfeld.

In the 'Quarterly Journal of Microseppical Science' (vol. xxxii. p. 2(60) Mr. Minchin arowes against the statement-made, as he says, ly me-that the central catity of Limplectifla asperyillem is is pseudoscular tube forming part of the inhalant system.

In reply to this I man ohserve that I never sail anything of the kind, and that in perusing the passages of my " Monograph of Iforny Sponges, from which Minchin quotes, I fail to see how he could so far misumberstand my st otements. What I dosay is "thet I thenk it may not be impossible that in some of the cup-shaped or tubutar Ifexuctimellidu" the central cavity may be pseudoseular (inhalant). I never said that the central carity is inhalant in any Hexactinellid, not to speak of Euplectelle, where such an assumption would be quite preposterous.

As a foreigner I am unable to express myself in English as clearly as I might desire; but nerertheless I feel that in this case some hostile motive must have prompted Minchin to so surprising an interpretation of my statements.

I can only say. (1) that I never doubted the exhalant nature of the central carity in E"uplectellu; (2) that I fail to see how any one can gather from my statements such a meaning as Minchin imputes to them : (3) that I uphold all my statements and conclusions on this subject as correct and logical ; and (4) that I regret to see a misinterpretation of this kind used by a student of natural history as a weapon in a scientific controversy.

University, Innsbruck,
March 8, 1892.

Gymnorhynchus reptans, Rud., and its Migration.
By M. R. Moniez.
Among the parasites of marine fishes one of the most curious is certainly Giymnorthuctues reptens, which is harboured by several hosts, and is in particular very common in the rough sun-fish (Ortherforiseles molu), in which it inhabits by preference the liver and muscles. This species is distinguished from the other species of Tetrarhynchide which are known in the larral state by the curious appendage which is found at the extremity of the resicle into which the animal retracts the anterior portion of its body, after the manner of a Cysticercus. This appendage, which, in our species, may attain the length of a metre, forms an inextricable network in the tissues
of the host, and it is extremely difficult to extricate it entire ; a crst protects the parasite throughout the whole of its length.

Gymmorlyngleus reptens was hitherto unknown in the prefect state: I have had the good fortune to meet with it in this state in Oxymhine glauca. Baron de Gueme fomed at Comarnean in the intestine of this shark some worms of large size, which hewas erood enough to hand over to me to study; they unquestionally belong to this species.

The individuals observed reach the length of 30 centim., while the hrearth of the neck scarcely exceeds that of the initial portion of the chain; lut this organ is much thicker, since it attains a depth of 2 millim., while the first serments only mearure about half a millimetre: the ripe segments are almo-t splare. meanaing 4.5 to 5 millim. in breadth by 5 to 6 millim. in length ; they are swollen in the middle and marked at this point with a brod hrown epot, which enrresponds to the mass of ova: the other secemente diminish successively in size until we come to the head.

Contrary to what was supposed by van benehen, the vasiche into which the anterior portion of the larea retracts itself, as well as its enormons appendage, do not pass were to the final animal and do not become sexual; they are ligested by the new howt, and of this exceedingly long animal there remains absolutely notingr hot the neek and that diminutive portion of the tissues which prolongs it, and which we formerty called the fromotive zome, at the expense of which the chain of segments is formed.

We may ask ourselses what is the morpholosical significance of the appendage which prolonss the vesicle of (rymmenturechus in the larval state-an appendage which is not found or which is very rudimentary in the forms allied to this species: there is no dontit that this is a structure perfeetly comparable to that which we have pointed out in several Cestodes of the type of Timin s mathe. Which exists in many other Cestode larro, if not in all, and which we notice in particular in all those Crsticerci recently foumd in freshrater Crustacea. This portion of the hody, which correspmels to the hexacanth embryo, develops hut little, or frequently falls off at an early period, remaining simply indieated at the extremity of the Cysticercus by an umbilicus of which we have exp laned the mode of formation. It is necessary to note that, in the particular case of fiymnorlynchus, the appendage is not derenerating, and that it retains a large degree of vascularity and does not show any laceration in the centre; it is a mistake, moreover, to have represented it as jointed, since it only presents simple folls in its entire lemath.

I would add, in conclnsion, that the dimensions of Gima.o. hymches in the perfect state prevent the conclusion, advancei hy orley in a positive mamer, that the f'eatoles of the cartilagimons tishes are always of small size.- ('ompts licmelus, tome exiii. ne. 24 (i) coember 14, 1891), pp. 870, 871.

On Coral-Reefs of the Eust-African Coast. By Dr. A. Ortmann, of Strassburg.

Fince the puldieation of a more dedated treative upon the sulgeet of my invertigetions into the coral-reefs of the (iemman East-Aftion co:ast will still require some time, I vature to commanicate lierewith a hrief account of the most impertant of the results which have heen gained.
 Zanzilar somhwat to Mihindmi, is ane of nerative shore-displacement. I was able to collect proofs of this at the most widely diflerent spots : just as, momever, similar olmorvations are already
 probalile that the same mosement externds to the sreater portion of the East Coast of Africa.

The development of the coral-reefs also corresponds to this negative monement: they arompany the coast throughont and are true shore rects ("stamhiff: "). 'Their hasiznhtal extension in the direction at richt angles to the coast is in close conmexion with the slope of the sea-lottom from the shore-line to deep water. Where great depths are found close to the shore (which occurs in our territory (hicfly in the south, near Lindi and Mikindani) there is only a narrow shore reef; but where the sea remains shallow to a greater distance from the coast (e.!/ in the Diafia and Zanzibar Channels) not only does the shone reef attain a greater hereadth, but also isolated reefs are found further outside. I term the latter shallow-watik mests ("Flachsecrifie "). (o). Wiaher has adopted the name prasife nabrs for similar formations in the northern part of the liodsea: fo. J. Walther, " Dit: Kmadlemritte der Sinailalbinsel," Alh. K. sächs. Ges. Wiss. 24 Bd., 1888.)

I was nowhere able to observe a formation of barrier-reefs or atolls, and after a careful study of the Enslish Adminalty charts their occurence appared to me to be impolmble, even at spots which 1 did not visit. As tree larrier-reefs and treve atolls I regard, be it well understood, only those which respectively exhibit a channel or lagoon of great depth and rise from sery deep water. I am firmly consinced that fornations of this kind can only arise in a region of positive shore-displacement, and that those cases are of rare and bunsual oceurrence in which they apear in stationary regions. In this respect, therefore, I abide by the old theory of Darwin and 1ana, in opposition to the riews recently published by Guple, who would deduce the existence of mesative shore-displacements from the actual pesence of atolls. The very al suce of such recf-formaticns in our territory is an indirect proof that in regions with megative shore-risplacement athlls and the like are not formed. I regand the atolls of the Sitaits of Jubal in the liod rea, which are figured lyJ. Walther (luce. cit.) not as trar atclls, in the sense giren abofe, but as atoll-like fommations. resulting from the peculiar peripheral grow th of the corals, which can be utiserved on a small and large scale in every coral-ref. Moreoser the difference betmeen
the two formations has already been pointed out by Tangenbeck*, who has also endeavoured to show that (inppy's theories are untenable.

As regards the more special study of the recfs, I have chicfly devoted my attention to determining the wat in which the reefo are composed of the varions forms of corals. hew the lattor are distributel upon the reefs, and what is the nature of the bottom upon which they rest. I cannot here enter into details, but would lay sperial stress on two points only. The observation has already been noted in varions quaters, that stony Corals may lu temponarily deprived of water and exposed to the sun and the open air without perishing. I made precisely the same discovery upon the rewis near Dar-es-Salaam. Certain forms (Porites, Gonitetrea, Coeloria, Tubipora) lie for hours during the ehb-tide, which is a very low one in that recrion, freely exposed to the air, but live and thrive exceedingly. That this faculty is wanting in other forms is shown at once by the fact that a number of species aie met with in the enmpany of those mentioned above, at the same altitule of the reef. hut are there found only in holes and pools, so that they are always covered by water.

The following obscrvation is also important. I. found at eertain points of the reefs near Dar-es-ialam extensim bank of living eorals, resting upon a foundation whirh wat quite loose. The latter consisted of detritus (sand and gravel), which was held todether hy seatwrack, and in this wrack were numerous corals, some of which were of hut little thickness, while others formed large hooks, of which, moreover, entire banks were composed. All these blocks lay loose upon the bottom: I was ahbe, procided their weight was not so emsiderable as to offer resistance, to lift them up or roll them over with ease. This observation is interesting in so far as it has been maintained by J. Wither (luc. cit.), that coral-reefs could only become established upon a firm (rocky) bottom; which mar, indeed be correct enough so far as regards the forms mentinned by him (the umbrella-shaped Madrepores). There are, newertheless, forms of corals (I am here alluding to species of the genera P'ammotora, Montiport, and Lophoseris) which are capahle of thriving upon a looser bottom in large hocks and forming hanks. Such bamks may then again furnish a basis for other corals.

In acoordance with the negative shore-displacement I also found an old eoral-bed above the present level of the seat. The one which I examined i sitn is of quite recent date, yet older raised beds of this kind doulthess oceur in the region in question. The coral structure is for the most part no longer recognizable in the fossil beds.

The coral-fanna of Dar-es-halam is closely allied, as might at once he conjectured from its wengraphical position, to that of the Red sea (cf. Khanzinger). Vet we here already find a few lacifie types, which are wanting in the Red Sea-ZZol. Anzeijer, xv. Jahrg., no. 381 (Jan 11th, 1892), pp. 18-20.

* Lamemberk, 'Die Theorien uber die Entstehung der Komalleninseln太..' : Leipzig, 1890.

Ann. \&o Mag. Nat. Hist. S. 6. Vol. IX. Pl. XIV.

THE ANNALS

ANI)

Magazine of natural history.

[SIXTII SERIES.]

No. 53. MAY 1892.

LI.-On some new Species of Histeridæ. By G. Leivis, F.L.S.

The greater part of the species dealt with in this paper are contained in the collection of Mr. Fry, who has recently received them from Burmah, Perak, and Sumatra; but I have also included in it some descriptions of others which have come to me from other sources. Two species are from Tasmania, taken by Mr. J. J. Walker during his visit last year, and there are three species found by myself in Japan and Ceylon.

The genus Cylistix has hitherto been considered an American genus, and the occurrence of two species in Central Asia is a matter of much interest, and I believe there is a third in the Museum from the Andaman Islands. Having alluded to the distribution of Cylistix, I may mention the curious fact that the genus Hister has as yet no representative in either Australia or New Zealand, and if Mr. Walker fails to find any at Port Darwin or other places from which he at this time dates his letters, the negative evidence of their absence will be greatly increased.

Last December, in the Ann. Dus. Civ. Genova, I gave a list of the Histeridæ taken in Burmah by Signor Fea, amounting to about ninety species ; the Burmese fauna is added

Ann. \& Mag. N. Hist. Ser. 6. Vol. ix.
to here by the addition of four very interesting insects taken by Mr. Doherty.

List of Species arranged systematically.

Apobletes nigritulus.
Platysoma jejunum.

- carolinum, Payk.

Cylistix asiatica.

- orientalis.

Pachycrærus ritsemæ, Mars.
Psiloscelis limatulus.
Hister rugistrius.

- famulus.

Epierus nemoralis.
Xestipyge Fryi.
Notodoma solstitiale.
-rufulum.
Eretmotus Leprieuri, Mars.

Triballus onustus.

- opimus.

Trypeticus Dohertyi, Lev.

- nemorivagus.
- prædaceus.

Teretrius Walkeri.
Onthophilus tuberculatus.

- sculptilis.

Epiechinus taprobanr.

- birmanus.

Abreus mikado.
Acritus shogunus.

- tasmaniæ.

Apobletes nigritulus, sp. n.
Oblongo-oratus, complanatus, niger, nitidus: pronoto stria antice late interrupta; elytris punctato-striatis, striis $1^{n}-f^{m}$ integris, $5^{a}-6^{a}$ abbreriatis.
L. $2 \frac{1}{2}$ mill.

Oblong-oval, black, shining; the head with a few large punctures mixed with small and fine ones of various sizes, ocular stria broad and rather deep, forehead lightly impressed; the thorax, lateral stria somewhat sinuous, fine in the middle, well-marked at the base and strong at the anterior angle, ceasing behind the ege ; there is a line of seattered punctures similar to those on the head on cach side well away from the margin, the disk is sparsely pitted with an extremely fine punctuation, the edge of the base is punctured from the angle to a point opposite the fourth stria, scutellar spot scarcely visible; the elytra punctate-striate, striae $1-4$ complete, fitth apical, reaching just beyond the mildhe, sutural much shorter, neither reaching the middle mor the apex, apical margins a little punctured; the propegidium and pygidium punctured like the sides of the thoras; the prosternum with fine punctures like the thoracie disk and some large punctures on each side of the anterior lobe, bistriate, strie widening out from each other in front of the coxae; the mesosternum smooth, bisinuous anteriorly, but the sinmosities are extremely feeble, the stria is strong and complete, the suture well-marked; the metasternum has scattered points, which become obsolete in the median area; the anterior tibia are 5-dentate.

This species should be phated next to A. striatellus, Mars. LLab. Madagascar (Tamatave).

> Platysoma jejunum, sp. n.

 tatis.
L. 3 mill.

Broadly oval, rather depressed, pitchy red, shining; the forehead microscopically punctulate, stria strong and complete, feebly sinuous behind the mandibles, little bowed in front; the thorax smooth, stria entire, lateral interstice broadest before the middle, scutellar spot very fine; the elytra, strix evenly and well impressed, $1-3$ complete, the first little bent and following the outline of the wing-case, 4-5 straight, equal in length, apical, and nearly reaching the middle; the propygidium and the pygidium, the whole surface of these segments is densely punctured, there is no smooth or raised margin whatever to either; the prosternum, lobe rather densely punctulate, keel without strix; the mesosternum is broad, feebly sinuate behind the keel, anterior angles a little oblique, stria complete, sternal plates and first segment of abdomen impunctate, sutures faintly visible, metasternal lateral stria is stronger than the mesosternal stria and these striæ do not quite join ; the anterior tibiæ are 4 -dentate, tarsal grooves nearly straight.

This species is not similar to any of the described species by reason of its breadth and comparative flatness. It may be placed near to P. cxortivum, Lew., a species resembling jejumum in the tarsal grooves. The sculpture of the propygidium and pygidium is characteristic.

Hab. Perak (low country). One example.

Hister cinnamomeus, White, 1846,=Platysoma carolinum, Payk., 1811.

I have examined White's type in the Museum, and I think there can be no doubt that the locality given by him is a wrong one: he was probably misled by the collector.

Cylistix asiatica, sp. n.

Oblonga, nigra, nitida : pronoto parum dense punctato ; elytris striis $1^{\mathrm{a}}-4^{\mathrm{m}}$ suturalique integris, 5^{a} basi interrupta; prosterno haud striato.
L. $5 \frac{1}{4}$ mill.

Oblong, parallel at the sides, rather convex ; the forehead excavated, distinctly punctured between the eyes, stria transverse, simuous, oblicpue near the eyes, ocular tubercle conspicunus; the thorax wholly punctate, marginal stria fine and sinuous at the sides, obsenvely eremulate behind the neck; the elytra, strix well impessed, $1-3$ ermplete, thim turning towards the second at the apex, frumth broken before the base, fifth apical, nearly reaching the mittle, sutural nearly complete, terminating behind the scutellum; the propycidium irregularly punctate, subfoweolate at the sides; pyidium evenly and rather densely punctured; the prosternm, keed carinate, widening out at the base, without stria, anterior lobe sparsely punctulate; the mesosternum rather widely emarginate in front, stria strong at the sides, fine and scarcely meeting behind the emargination ; the metastemum is histriate on each side, each stria well separated; the sternal phates are smooth; the anterior tibix are 4 -dentate.

This species is certainly congencric with Hister cylindricus, Payk., which is the type of the genus Ciylistid, Marseul.

Hab. Perak (low country). One example.

Cylistix orientalis, sp. n.

Oblonga, parallela, nigra, nitida, supra punctulata; fronte transversin impressa; pronoto stria interna brevissima: elytris striis $1^{\text {n }}-3^{\mathrm{mm}}$ integris, $4^{\text {a }}$ dimidiata, $5^{\mathrm{a}}-6^{\text {a }}$ hasi abbreriatis ; proaterno bistriato.
L. $3 \frac{3}{4}$ mill.

Oblong, parallel at the sides, black, shining; the forehead transversely impressed, stria strong and ublique over the eyes, angulate in front of them, and rery tine within the frontal impression; the thorax evenly but not densely punctured, with some fine points dispersed between the coarser punctures; the elytra, the first stria is complete and continues along the base of the elytra, and in contiming tums towards the suture just before reaching the scutellum, forming thus a margin to the base of each elytron, the second and thind are complete, the third joining the margin formed by the first at the base, fourth apical, shortened and punctifurm in the middle, fifth longer and punctiform from the middle, sixth longer and not emding in punctures; between the fitth stria and the suture are scattered dorsal punctures; the propygidium and pygidium are clearly and somewhat densely punctured; the prosternum, keel carinate, widening and bistriate at the base, anterior lobe sparsely and obscurely
punctured; the mesesternum is widely and feelly cmarginate, stria complete, but not easy to see behind the emargination, as the sternum is depressed at that part, at the sides it is strong and straight ; the metasternum, laterally bistriate, striae ohlique and parallel to each other ; the anterior tibie are 4 -dentate.

This species also belongs to C'ylistix, and in one of its characters, manely the proximity of the metasternal strix, it resembles C. ceylindricu, Payk., more than C'. usiatica.

Hab. Siam (Renong). One example.

> Pachycrerus violaceipennis, Lew., 1891, $=P$. ritseme, Mars.

I find now that I was in error in regard to this species. I was misled by Marseul's description of the frontal strix. It seems to me that there are two stria, but Marseul calls one a suture : perhaps his example was somewhat abraded.

Psiloscelis limatulus, sp. n.

Oblongo-oralis, niger, nitidus, supra punctulatus; fronte foreolata; elytris striis integris, $5^{\text {a }}$ suturalique antice conjunctis.

L. $4 \frac{1}{2}$ mill.

Oval-oblong, rather convex, black, shining; finely and somewhat densely punctured above; the forehead longitudinally foveolate, stria complete, straipht in front, angulate behind the mandibles; the thorax with four feeble impressions, two on each side, two fine marginal stria, one of which continues behind the head, and well within the margin is an internal stria very slightly abbreviated at both ends, leaving a wide interstice in front, which gradually narrows towards the posterior angle; the elytra, strie $1-4$ complete, fifth and sutural also complete and joined at the base ; the propygidium and pygidium are densely punctured, with some very fine points between the larger ones; the prosternum, keel narrow in front, widening out triangularly at the base, margined laterally with a fine clemly marked stria; the mesosternum is truncate anteriorly, with a fine marginal stria; the stemal plates and first segment of the ablomen are more finely punctured than the upper surface; the anterior tibix are 6-7dentate.

This species is smaller than P. Castelnaudi, Mars., and differs in three essential points, viz. the forehead has a deep fovea, the thoras has an internal lateral stria, and the fifth and sutural elytral strix join at the base.

Hab. Assam (Patkai Mountains). One example.

Hister rugistrius, sp. n.

Ovalis, convexus, niger, nitilus; fronte punctulata, hiimpressa, stria antiee recta utrinque int crrupta; clytris striis $1^{n-}-3^{m}$ integris, 4^{n} et 5^{n} apice conjunctis ; propygidio pyridioque dense ocellatopunctatis.
L. 7 mill.

Oval, convex, black, shining; forehead distinctly and somewhat densely punctulate, stria deep and straight anteriorly, interrupted on cither side, with two shallow impressions close behind it, mandibles extemally marginate ; the thomax, disk impunctate, lateral marginal stria very fine, extemal wide and rugose, shortened before the base, internal also wide and rugose, approaching the external posteriorly and turning inwards after passing it, fine and crenulate behind the hearl, interstice irregularly punctured, punctures clustered at the anterior angle; the clytra, strix (including the internal subhumeral) wide and deep, with the edges cremulate, $1-3$ entire, fourth sometimes complete lut very fine in the middle, sometimes widely interrupted, with a short stria at the base and an apical appendage which joins the fitth, which is equally short, the sutural is apical but rather loner and postemiorly turns away from the suture ; the propygidium and pygilium are densely punctured, punctures distinctly ocellate, at the apex of the pygidium there is a small fovea, more or less distinct, with a narrow smooth margin behind it ; the prosternum is without sculpture; the mesostemum is feebly sinuous in front, stria complete, margin narrow ; the anterior tibir are tridentate, the others multispinous.

This species should be placed close to II. metallicus, Lew., from India.

Hab. Mandan, Bengal (Cardon, 1891).

Hister famulus, sp. n.

Ovatus, niger, nitidus : antennis pedibuspue pieeis : promoto ut rinture
 apicali, suturali dimidiata.
L. 3 mill.

Oval, convex, black, shining; the forehead, stria complete and somewhat straight anterionly, feebly simous laterally; the thorax transverse, marginal stria very fine and complete, invisible at the sides when viewed from above, internal lateral stria obligue, short, and much abbreviated at both embs, and it is well within the margin; the elytra, strixe $1-4$ com-
plete, fourth much finer than the third, fifth short and apical, sutural a little longer, reaching beyond the middle; the propygidium is rather finely punctulate, punctures scattered ; the pygidium with finer punctures and smonth at the apex; the prostemum is carinate, without stria; the mesostemum is obsoletely produced anterio:ly (like that of II. dentipes, Lew.), marginal stria fine and complete, of the same form, but not joined to that of the metasternum; anterior tibia $4-5$ dentate.

This small species is allied to II. myrmidon, Mars, and others; the short thoracic stria resembles that of II. comestis, Mars, but it is quite free of punctures.

Hab. Sumatra (Merang).

Epierus nemoralis, sp. n.

Ovalis, convexus, niger, nitidus, supra tenuiter punctulatus ; elytris striis integris, 4^{3} basi incurvata ; mesosterno antice subrecto.
L. $2 \frac{1}{2}-2 \frac{3}{4}$ mill.

Oval, convex, black and shining; the forehead sparsely and finely punctulate, with a short, rather deep stria over the eye; the thorax is fincly punctulate, with large punctures seattered on the sides and disk, scutellar fovea very feeble, on the edge of the base is a single row of punctures, stria wellmarked at the sides, fine behind the neek; the elytra are without the larger punctures of the thorax, striæ crenulate and complete, the sutural being only a little shortened behind the scutellum, the fourth stria turns conspicuonsly towards the fifth near the base, the fifth turns feebly to the suture, the sutural strix are straight, the interstices between the first and third strie are the widest especially behind the middle ; the propygidium and pygidium (except the apex) punctured like the thorax; the prosternum is feebly and very sparsely punctulate, striæ widening out a little behind, but less so anteriorly; the mesusternum a little broad, stria complete, nearly straight in front, and continuing down the sides of the metasternum; the anterior tibia are multispinose; the legs and antennæ reddish.

This species is larger and more oval than the Asiatic species known to me; the fourth stria being bent inwards at the base seems to be a good differential character.

Hab. Assam (Patkai Mountains).

Xestipyge Fryi, sp. n.

Ovata, convexa, nigra, nitida; fronte distincte pmetata; elytris striis $1^{\mathrm{a}}-4^{\mathrm{m}}$ integris, $5^{\mathrm{a}}-6^{\mathrm{a}}$ brevibus; pegidio utrinque $1^{\text {rofofunde }}$ foveolato.
L. $2 \frac{1}{4}$ mill.

Oval, convex, black and shining; the head striate over the eyes only, sparsely punctate, punctures round and each one distinct ; the thorax smooth on the disk, with a broad margin of very distinct punctures at the sides, at the base there are two large, shallow, scutellar punctures close to each other and five or eight smaller and deeper punctures set along the basal edge; the elytra, strix 1-4 complete, 5 - -6 apical, lut passing beyond the dorsal centre and punctiform at the ends, 4-6 being somewhat crenulate; the propygidium is transwerstly rather thickly punctured; the prgidium is smooth in the median area, with two large and deep foveæ, one on each side at the base, apex with a few large punctures; the prosternum, the keel is broad and rather short, with well-makeed lateral striæ, feebly sinuous near the coxe, hamate in front; the mesosternum feebly emarginate, marginal stria complete, obsoletely crenulate, transverse stria slightly bent in the middle, with eight or nine crenulations, and continuing along the sides of the metastemum ; the first segment of the abolomen has large punctures posteriorly and at the sides; the anterior tibiæ are $3-4$-dentate.

This species is the most remarkable in this series. It is congeneric with IIomalister ornutus, lesitter, 1550, and it is doubtful whether Nestipgge was sufficiently characterized by Marsenl to be given precedence; otherwise it has some years priority.

Hab. Burmah (Ruby Mines). One example.

Notodoma solstitiale, sp. n.

(ilobosum, flaro-rufum, nitidum : pedihus flavis: elytris striis $1^{2 a}-2^{2}$ integris, 4^{n} et suturali antien conjunctis, interstitiis impunctatis ; mesosterno stria transrersa nulla.
L. $2 \frac{1}{8}$ mill.

Globose, yellow ish red, shining; the firchead with shallow punctures, not closely set, eyes a little obliquely placed; the thorax clearly and evenly, not densely punctured, marginal stria well-marked; the elytra are pale in colour at the base, but without definite white spots, striae $1-2$ are complete, third absent, fourth and a sutural joined at the base, inter-
stices impunctate; the propygidium and pygidium almost impunctate; the prosternmen kecl-shaped as an elongate triancle, with a few seatterel punctures, lateral strise necessarily ohlique; the mesosternum, marginal stria complete, suture visible, hut there is mo transverse stria; the metasternum, median =tria semicireular, not arched like those of N. fiengorum and glohatum, anci evenly crenulate, cremulations not widened ont; the legs are flavons, anterin tibia denticulate.

This small species resembles N. rufulum, but the forehead is less wide and there is no transverse stria to the mesosternum, which is a very remarkable character.

The chiw diffrence between N . fiengorum, Iew., and globutum, Mars., is that the interstices to the elytral strixe are flunctate in the latter and smooth in the former, and it is a matter for notice in a family where the elytral strix are usually good specific characters that in all the pale-coloured species the striation is so similar. In N. bullutum, Mars., which is a dark-coloured species, there is a third stria.

Hab. Perak (high lands). One example.

Notodoma rufulum, sp. n.

Globosum, rufum, nitidum ; pedihus flavis; elytris striis $1^{a}-2^{2 a}$ intereris, 4^{a} et suturali antice conjunctis, interstitiis impunctatis; mesosterno stria transversa crenulata.
L. 2 mill.

Glubose, yellowish red, sliming ; the forehead with scattered shallow punctures and wider between the eyes than in N. solstitiale, eyes also not oulique ; the thorax, marginal stria fine, feebly crenulate behind the neek, clearly and evenly, not densely punctured; the elytra striate, like those of N. globatum, Mars. ; the propygidium and pygidium feebly and sparsely punctulate ; the prosternum sparsely punctured, points shallow, lateral stria not well defined, little simmous at the coxa, not aproaching near to each other in front; the mesosternum, anterior stria crenulate, the crenulations widening out as the stria passes down the side of the metasternum, transverse stria straight, crenulate, cremulations of equal width; the metasternum, median stria arched and crenulate, crenulations widened out and of somewhat unequal width ; the legs and antennæ are flavous.

Of the described species this closely resembles N. solstitiale, but it has a transverse mesosternal stria. The metasternal stria also has a narrower span and the crenulations are wide and irregular.

Hab. Borneo, Martapura (Doherty).

Eretmotus approximans, Fairm., 1884, $=$ E. Leprieuri, Mars., 1862.

Baron Bomnaire has kindly lent me the type of Fairmaire's species, and I feel sure the above determination is correct.

Triballus onustus, sp. n.

T. agresti, Mars., similis, sed multo major : pronoto stria antice haud interrupta.
L. 3 mill.

Oval, convex, black, shining; the head not thickly punctulate, with a few large points intermixed, stria strong before the eyes, evanescent anteriorly; the thorax is punctured like the head, with the lateral stria continued behind the neek; the elytra are finely punctulate on the disk, with larger punctures, much scattered, at the sides and on the posterior area; the pygidium is punctured like the head, except that the punctulation is more dense ; the prosternum feebly punctulate, bistriate, strixe obscurely crenulate; the mesosternum, stria anteriorly interrupted, transverse stria nearly straight and crenulate thronghout, surface very sparsely and fincly punctulate; the metasternum with a few larger punctures before the posterior coxie.

This species is extremely like T. agrestis, Mars., but it is much larger and the thoracic stria is continued behind the neck. T. agrestis also has no frontal stria.

Hab. Zanzibar (Raffray).

Triballus opimus, sp. n.

Breviter ovalis, convexus, niger vel obscure æneus, nitidus; T. bomber proxime affinis et simillimus.
L. $3 \frac{1}{8}$ mill.

Short-oval, black, or with an æncous tinge, antennex and legs reddish; the forehead obscurely punctulate, triangulate before the anteme, with a stria on each side which does not quite meet in front, epistoma rugose, over the eye is a short ill-defined suleus; the thorax, lateral stria ceases at the anterior angle, punctures fine and sparse and varying in size, along the basal elge there is a continuous line of points, some oval, some acicular; the elytra, disk almost smooth, but laterally scattered punctures of various sizes are visible; the seupture of the propygidium and prgidium is limited to a fine and scattered punctuation; the prostermm is broad and
short, bistriate, strixe divergent before and behind, anterior lobe transwerse, with the rim flavous; the mesosternum, lateral stria fine, interrupted anteriorly, transverse stria evenly crenulate and straight.
T. opimus and T. bombu, Mars., are the largest species of Triballus known.

Hab. Martapura, S.E. Bornco (Doherty, 1891).
Note-Since I formed the genus Idolia Ann. \& Mag. Nat. Ilist. 1885 , xvi. p. 214) nearly a dozen species have been described, and it serms likely this number will be greatly increased. Some of the species exhibit the sternal sutures, and some possess specific characters similar to certain species of Tribullus, so that I think now the two genera should be placed together.

> Trypeticus Dohertyi, Lew., Ent. Mon. Mag. 2nd ser. vol. ii. p. 186 .

There are three male examples (measuring $4 \frac{1}{2}$ millim.) in Mr. Fry's collection which I think are small specimens of this species. All the differences I see in them relate to size and to the want of the two thoracic clevations behind the ridge near the neck. That this should be the case only corresponds to what we see throughout the Coleoptera, that sexual differences are more or less obliterated in small individuals. There are a few genera in the Inisteridæ in which it is quite as important for a describer to know both the sexes as it is in the Lucanidæ, but these genera are limited in number. The anterior angles of the thorax in the male of T. Dohertyi are rectangular, and almost so in the female also.

Trypeticus nemorivagus, sp. n.

Cylindricus, parum robustus, niger, nitidus; pronoto angulis anticis haud rectangulatis; prosterno rugoso-punctato, margine laterali valido.
L. $3 \frac{3}{4}$ mill.

Cylindrical, rather robust, black and shining; the male, snout with shallow punctures, triangular, flat, margined with a carina, the forehead irregularly punctured between the eyes and microscopically strigose; the female snout is impressed, not carinate, with two very small and not very distinct tubercles at the apex ; the thorax in the male parallel laterally, anterior angles rounded off, impressed near the eyes, rather densely punctured anteriorly, punctures on the disk and
posteriorly more scattered, a fine median line is smooth and terminates in a slight ridge behind the neck, the female has the smooth line but no ridge, and the anterior angles are more convex ; the elytra are punctured more fincly than the thorax ; the propegidium and pygidium are evenly, not densely punctured, the latter is feebly convex in the female, and less so in the male; the prosternum closely and roughly punctate, truncate at both ends, lateral striae very strong, joined anteriorly; the mesosternum is less closely punctured with similar stria behind the coxæ.

This species is much more robust than T. Dolertyi, Lew., and there are no thoracic tubercles, the thoracic anterior angles are not rectangular, but well rounded off, and the prosternal lateral strie are much stronger.

Hab. Burmah (Ruby Mines).

Trypeticus predaceus, sp. n.

Crlindricus, brunneo-piccus, nitidus, undique punctatus; fronte inter oculos minute foreolata ; propygidio utrinque prominulo.
L. $3-3 \frac{1}{4}$ mill.

Cylindrical, pitchy brown, shining, anterior angles of the thorax reddish; the head faintly punctured, and between the eyes there is a small fovea in both sexes; the snout in the male is somewhat flat and triangular, but a little sinuous at the sides, and a little wide at the apex, margined with a stria which is best marked at the sides ; the female has the snout concave, stria obsolete, and the apex is furnished with two minute tubereles; the thoras somewhat densely punctured, some punctures, especially those behind the anterior angle, are ocellate, anterior angles in the make depressed and a little acute close to the eyes, behind the neck a fine carma occupies about one fouth of the length of the theras, the female anterior angles romeded off and not dipresed; the elytra, punctuation distinctly finer than that of the thorax ; the propygidium rather densely punctured, projecting at the sides; the pygidium is convex in the femate, impressed on each side in the male, and in both sexes punctured like the propygidium ; the prosternum in the male is witer in front than behind, sparsely punctured, punctures round and shallow, lateral strie widen out a little anterionly and do not join, in the female the prosternum is truncate ; the mesostemum agrees in both sexes, there is a lateral sulens on cach side hehind the coxa, punctures sparse and ohboge; the metasternum has a median furrow, and is punctured like the mesosternum; the abdominal segments, punctures round and
not very thickly set, the segments :3-4 are thickened at the outer edge, and, like the propygidium and pygidium, stand out one from another; on the first segment there is a short intercoxal lateral sulcus.

Hab. Perak (low country).

T'eretrius Walleri, sp. n.

Cylindricus, niger, nitidus, undigue punctatus; prosterno grosso punctato et minute strigono : metasterno parum sparse punctato; pygidio apice rugoso-punctato.
L. $1 \frac{3}{4}-2$ mill.

Cylindrical, black, shining, club of antenne red, legs pitchy black; the forehead convex, punctate, punctures most scattered on the disk; the thorax similarly punctured, stria complete, strong at the sides, especially behind the middle, very fine anteriorly; the elytra with like punctures, margined at the base, with a small smooth space behind the humeral angle; the propygidium and pygidium are clearly and rather densely punctured, the apical half of the latter is impressed, strigose, and more densely pointed ; the prosternum somewhat thickly punctate, punctures large and with their interspaces minutely strigose ; lateral stria well defined and divergent from their bases; the mesosternum triangularly and rather acutely produced anteriorly, stria complete, margin smooth, well defined, and somewhat raised, punctured and strigose like the prosternum; the metasternum and first segment of the abdomen much more sparsely punctured and the strigosity disappears, segments $3-5$ have a row of punctures along their edges; the anterior tibire 7-8-dentate, posterior 3-spinose.

This species is the second known from the Australian region; it seems to have been captured in company with T'eretriosoma somerseti, Mars. It is one of Mr. J. J. Walker's most recent discoveries.

Hab. Tasmania, Hobart, and Launceston (J. J. Walker).

Onthophilus tuberculatus, sp. n.

Suborbicularis, convexiusculus, niger, subopacus; elytris 6-costatis,
$1^{\mathrm{a}}-3^{\mathrm{m}}$ interruptis, 5^{3} ralida, integra ; propygidio tuberculato.
L. $2 \frac{1}{4}$ mill.

Suborbicular, rather convex, black, and somewhat opaque ; the forehead is punctate, with a median carima before the neck, and in front of the carina is an elevated ridge shaped like an inverted V, thus \uparrow; the thorax, margin clearly
elevated, edge emarginate behind the anterior angle, and conspicuously angulate well before the posterior ancle, surface deeply punctate, punctures anterionly round, posterionly oval or somewhat clongate, 6 -costate, two outer coste shortest aut? parallel to the thoracic edge, the others are much clevated and equidistant, the two median coster are a little the longest and turn from each other at the base; the elytra G-costate, with the outer margin and the two sutural enges also elevated, 1-3 costre are twice broken by two transverse depressions, the third costa being very remarkable as the median pertion viewed sideways looks like a conspicuous nodule, the fifth costa is the strongest, the sixth weakest, lonth the last complete, the interstices are very clearly carinulate, with a single row of equidistant punctures. The elytra are in part reblish. The propygidium has three tubercles transversely placed in the middle, the centre one somewhat linear; the prgidium closely punctate, with an elevation thus $\hat{\pi}$ in the midale: the prostemum has large, deep, and closely-set punctures, striate at the coxa; the mesosternum bisinuous anteriorly, and with the metastemum has very large punctures or fovere set somewhat in transverse lines, and on the median area of the metasternum are two triangulate smouth spaces; the first segment of the abdomen has a line of seven foreat along the anterior edge ; legs and antennæ piceous.

Hab. Burmah, Kuby Mines (Doherty).

Onthophilus sculptilis, sp. n.

Oralis, contexiusculus, subeneo-niger, parum nitidus ; fronte haud costata; elytris 3 carinis eleratis, interstitiis olscure punctatocarinulis; pygidio basi transversim elerato.
L. 2 mill.

Oval, rather convex, little shining; the forehear is wholly punctate, little uneven, slightly elevated behind the insertion of the antema, not carinate or costate; the thomas, narrowly marginate, obtusely angulate before the base, 6 -costate, outer costa shortest, with a wide interstice between it and the second, the second is shorter than the third but praballel to it, the two centre costae reach the margin behind the nock, and gradualiy fum inwards anteriorly, but do not meet, the surface is punctured like that in (1. tulecculutus; the elytra are 3 -costate, with an intervening carina comespoding to the second, fourth, and sixth stria; below the shoulder is a transverse depression which croses the first costa to the second carina (or fourth stria), the interstices are ubsourely carinulate with intervening punctures; the profigidium
punctate, with a median elevated line and a small tubercle on each side near the outer edge; the pygidium also is wholly pructate, with a transverse ridge betore the base; the prosternum closely punctate, punctures large and deep; the mesosternum bisinuous anteriorly, with a fine marginal stria; the meso- and metasterna are sculptured like the last species, but the punctures or fovea are smaller, and the median spaces of the metasternum are clearly and evenly punctulate ; the first segment of the abolomen has a line of eleven punctures on the anterior edge, and several additional fuvea at the side. The smoother parts of the under surface are somewhat ancous, and the head and thorax have a bluish metallic tinge.

The general tacies of this Onthophilus agrees with that of O. alternatus, Lec.

Hub. Burmah, Manipore, alt. 7000 feet (Dokerty).

Epiechinus taprobance, sp. n.

Orbicularis, niger, opacus ; metasterno antice utrinque profunde foveolato. Onthophilo arboreo simillimus at major.
L. 2 mill.

Orbicular, opaque, setose; the head very rugose, with a median carina before the neek and one on each side; on the edge of the clypeus are five shallow pits; the thorax with some large punctures on the disk, with traces of carine behind the head, and two Jateral sulci usually filled with squamous matter; the elytra are costate, with rows of large punctures in the interstices, the punctures gradually becoming smaller towards the apices, where they cease to be; the prosternum is bicarinate, carine gradually approaching anteriorly, surface between them smooth, anterior lobe with large punctures; the mesosternum has two large polygonal depressions, one on each side, and a small median sutural fovea; the metasternum has two large and very deep fover, one in each anterior angle, the anterior edge of each fovea joins the mesosternal depression. These fovea are not seen until the sterna are freed of scales. The pygidium is very setose, but when abraded a few large punctures are seen on the surface.

This species is different to Onthophilus hispidus, Mars., but whether Marseul's description applies (as he thought it did) to O. lispidus, Payk., is more than doubtful. I rely on the sculpture of the sterna for specific characters.

Hab. Ceylon. I found this species at Ballangroda in 1882.

Epiechinus birmanus, sp. n.

Suborbicularis, niger, opacus, hispidus; prosterne utrinque earinato ; mesosterno metasternoque in medio foveolatis. O. arboreo simillimus, sed magis ovatus.
L. $1 \frac{3}{4}$ mill.

Suborbicular, opaque, setose; the head rugose, and when abraded of scales and sete an obsolete median and two lateral carine may be secn; the thorax has two lateral sulci on each side, and when cleaned, large scattered punctures are visible on the disk; the elytra are costate, with rows of large punctures in the interstices; the prosternum is bicarinate, the border formed of the carinx joins in front, where the iuner edge of the carina is arcuate, the outer truncate, the anterior lobe has scattered punctures, punctures smaller than in E. taprobance; the mesosternum has a round median fovea and on each side of it a many-sided depression ; the metasternum has also a median fovea, but it is oval, and in front of it on either side, obliquely placed, are two depressions of somewhat corresponding size and shape; the pygitium is punctate and rugose.
'The specimens which represent this species have been referred to in the Amm. Mus. Civ. Genova, 1888, ser. 2, vi. p. 645, as Onthophilus hispidus, Payk., but it is now evident to me that it is not Paykull's species.

Hab. Burmah, Bhamo (Fea).

Abreeus miliado, sp. n.

Ovatus, glohosus, rufo-brumeus, nitidus: antemnis pedibusyue flavis; supra vix dense puuctulatus; mesosterno metasternopue grosse et parce punctatis.
L. 1 mill.

Oval, globose, reddish brown, shining, head darker, antenne and legs paler; the forehead sparsely punctured; the thorax and elytra evenly punctured, punctures shallow and not very thickly set, thoracic marginal stria complete, but very fine behind the neek; the propygidium and the pygidium are feebly and indistinetly punctulate; the presternum a little wider than long, feebly and obsously punctured, lateral stria slightly widen out from the base, the hase rery feebly simuous; the meso- and metastema and the tirst segment of the abdomen is evenly but not thickly covered with somewhat large and shallow punctures, the pinetures heing largest and most closely set at the widest part of the metasternum.

ILub. Japan. I fomnd this species in Cossus. burrows at Kiga, Konosé, Nara, and in S. Yezo.

Acritus shogunus, sp. n.

Ovalis, convexus, nigro-picens, nitidus; antemnis pedibusque brunneis; pronoto linea basali aciculato-punctato in medio temuiter areuata ; elytris sparse punctatis, dor'so aciculato-rugosulis ; prosterno bistriato, utrinque truncato.
L. 1 mill.

Oyal, comvex, nearly lilack, shining, antema and lens pale hrown; the heal feebly panctured; the thome evenly and clearly, not chosely, puncturel, antiscutellar stria very feebly arched in the midille, and following the margin to the sides; striat punctate, punctures acienlate, posteriorly within the stria the surface is strigose ; the elytral punctuation somewhat finer than that of the thema, with a longitudinal strigesity hetween the points; the pygilium impunctate, minutely an! transversely strigose; the prosternum, outline similar to that figured for A. (uchpictus, Mars. (Mon. 15.56, fig. 17), with a few scattered punctures, and suface microscopicallystrinnse; the mesosternum, marginal stria interrupted anterionly, suture feelly visible and with the metasternum and tirst abolominal segment clearly but sparsely punctate.

Hab. Japan. I obtained a single example at Sapporo.

Acritus tasmanice, sp. n.

Ovalis, convexus. brumens, nitidus; supra punctulatus; prosterno bistriato, striis antice et postice divaricatis.
I. 1 mill.

Oval, convex, brown, shining; the head very fincly and sparsely punctulate; the thorax, stria complete, punctures rather sparse, small anteriorly, gradually becming laterer toward the base, at the edge before the scutellum is a pow of functures, but there is no definite antisentellar line like that figured for A. acaroiedes and others by Maseul (Mon. 1s:36); the elytra are seulptured similarly to the thomas, execept at the apical margins, which are, like the pegilium, almost smooth; the prosternum rather long, bistriate, strite rather widely divergent betore and behind, iechly and very sparsely punctured ; the mesosternum, suture ahnost invisible, marginal stria fine and a little interrupted anteriorly, like the metasternum it is sparsely punctulate.

Hab. 'Tasmania (J. J. Hallier, 1891). Ann. \& Mag. N. Hist. Ser, 6. Vol. ix.
1.1I- Natural Ilistory Notes firm I7.1\%. Intirn Iharim Currey Steamer 'Incestiguter')' 'ommander li. F'. Inosl:yn, Li.N., commamling.-Series II., No. 1. On the liowits of Deep-sea Drediging durineg the Sirestm 1s90-91. By .I. Wond-Masen, Superintendent of the Indian Musemm, amd Professen of Comparive Anatomy in the Merlical Colleme of Bengal, and A. Acoock, M.B., Surgeon I.M.s., Sur-geon-Naturalist to the Survey.
[Continued from p. 275.]

Family Acanthephyridæ.

Acanthephyra, A. Milne-Edwards.
37. Acanthephyra sanguinea, sp.n.

ㅇ. Closely allied to A. Agassizii, S. I. Smith, ठ (A. mopurea, A. M.-Edw., of), from which it differs in the minute size of the spincs of the anterion marein of the carapace, which are so small as to be scaredy disermihle liy the unaided eye; (?) in the armature of the telson, which bears only five pairs of dorsal spinules besides three longer and suhequal teminal ones; in its longer and shmbere metrum. "hich is fully twiee the honeth of the antemat seale ; aml in its less clongated abdomen.

Colour in life deep crimson.

$$
F i r . l .
$$

Acuntheph!rea sammincu, f, unt. size.

Length, from tip of rostrum to tip of telson, 92 millim. ; of campace, from supmonhtal to pesterion marin, 15 millim.
 scale 13 millim.; of abdomen 50 millim.; of telson $14 \cdot 5$ millim.
()ne female from Station lonf, 10191 fathoms, one imm titue in framments from station 107, 7 as fathome, and at thite from Station 117, 1748 fathoms.
0^{7}. A male of about the same size as that of A. Agassizii figured by Prof. S. I. Smith was obtained in a previous season $7 \frac{1}{2}$ miles east of North Cinque Island, in the Andaman 心̌a, in 4!a) dathoms. It has a decededly less chomgated abumen than A. Symseizii; its carapace has much the same shape, hut the rostrum shows no signs of becoming premect am! reduced in length as in that species, for althongh it is broken off just in front of the third to th of the lower series, it still extends fully to the end of the antennal scale.

Length, from supraorbital margin to tip of telson, 83 millim.; length of carapace, from supmobital to posterion margin, 2.3.2. millim.; of antemal scale 15.25 millim. ; of abdomen to tip of telson 59 millim.; of telson 17.2.) millim.

38. Acanthephyrit armata, A. M.-Ediv.

Acanthephyrce armata, A. M.-Edw, Ann. d. Sc. Nat. Zool. (6) xi. 1881, 4, p. 12, et Rec. Fig. Crust. 188:3; Spence Bate, 'Challenger' Macrura, 1888 , p. 744 , pl. cxxv. fig. $2, \delta$ vir.
One fine male from Station 116, 405 fathoms.
Colour in life crimson.
Length, from tip of rostrum to tip of telson, $14 \pm$ millim. ; of carapace, from supaorbital to posterin margi:, 总.) millim.; of rostrum, from same point, 34 millim., from front of iuterior spine to tip 17 millim.; of antemal seate 26 millim. ; of abdomen to tip of telson $\overline{7} 5$ millim. ; of telson 18 millim.

It differs from Mihne-Edwards's figure in the following peints:-The rostrum is of the same length as the carapace; its basal spines are only four in number; the spine of its inferior margin arises midway between its base and its apex, and is much more nearly opposite to the midale than to the apex of the antennal scale. The branchiostergal spine is continted backwards along the side of the carapace as a very strong rilge half as long as the antemal scale. The frimges of the legs are greatly developed, reminding one of those of the last two pairs of loge in Sergestes. The spines of the third to the sixth abdominal terga are equal.

It differs from the specimen figured and described by
Fir. \because.

Spenee bate in the form and the armature of the rostruen, in the smaller spimens pmeresies of the ahblominad teres, and in the mome highty developed fringes of the lage. The datylo. pondite of the last pair of legs is incorrectly representel bey spence bate as eynal to thase of the two preceding paiss.

39. Acanthephyra microphthalma, S. I. Smith.

Acunthephyyra misrophthulma, S. I. Smith, Proc. U. S. Nat. Mus. 1885.
 Acanthephyra longidens, Spence B.te, '(hallenger' Macrura, 1808 , p. 735, pl. exxiv. fig. 4, of.
'T'wo males from Station 117, 1748 fathoms.
Colour in life deep crimson.
In one specimen the rostrum is armed with five teeth, and probably also in the other, in which it is broken off just beyond the fourth tooth.
40. Acanthephyra eximia, S. I. Smith.

Acanthephyra eximea, S. I. Smith, Rep. U. S. Comm. Fish. 1884, p. ن32, 1886, pl. xiv. fig. 1, ơ.
Acanthephyra Edacurdsii, Spence Bate, 'Challenger' Macrura, 1858, p. 747 , pl. cxxvi. tig. 1, ${ }^{\text {on }}$
of. Differs from the male in its longer and more styliform

$$
\mathrm{F} \mathrm{i}_{\%} .: 3 .
$$

Acanthephyra eximia, $\frac{\text {, nat. size. }}{\text {, }}$
rostrum, which extends by about one third of its length beyond the antenual scale.

Colour in life crimson.

Lengeth, from tip of rostrum to tip of trlarn, 10.) millim.; of carapace, from supanhital to postorion mary, millim. ; of rostrum, from same point to apex, 2 保millim.; of antemal scale 15 millim. ; of ahdomen, from hase t ts $t i p$ of telson, 53.5 millim. ; of telson 14.5 millim.

One specimen from Station 116, 405 fathoms.
of jur. Difters from the alowe in the rostum only exten line by a pertion of its unarmel tip, begond the extremity of the antennal scale.

Length, from tip of rostrum to tip of telson, 58 millim. ; of carapace, from supmorbital t, priterior margin, 13.7.5 millim.; of rostrum, from same fuint to alex, 11 millin. ; wi antemal scale 9.7.5 millim.; of abomem, from base to apex of telson, 35 millim. ; of telson 10 millim.

Colour in life bright red.
One specimen from Station 112, 561 fathoms.
of jun. Much smaller than the abowe, the rostrum shighty ascendant, straight or only very faintly curved, short, extending about to the end of the second thim of the amtemal scale.

Lemgth of carapace 10 millim. ; of rostrum $5 \cdot 2.5$ millim.
Rostrum $\frac{7}{4}$-toothed.
Colour in life deep crimson.
(as that from Station 112, from station 109, 738 fathems.

The above series of specimens proves that the rostrum increases in length from extreme youth to adolescence.

An adolescent male was taken in a previous season 8 miles south-cast of Cinque Island, in the Andaman Sa, in 500 fathoms.

Rostrum $\frac{7}{4}$-toothed.
Colour in life deep transparent blood-red.
41. Acantheplyyra brachytelsonis, Spence Bate.
 p. 753 , pl. cxxvi. fig. 7 , ㅇ ; Wood-Mason, Amn. 't Mag. Nat Hist. (6) vii. p. 195, ${ }^{\circ}$.

One adoleseent male from Station 113, 68:3 fathoms.
Colour in life bright red.
Two addeseent mates and one young fomale were taken in a previons season $\overline{!} \frac{1}{2}$ miles cast of North Cinque lamel, in the Andaman Sea, in 490 fathoms.

Our serics of specmens proves that the rostrum umberens great changes in form and in lemeth from sumth to maturity.

> Indien Derp-sea Dredying
Acuntheyhyra bruchytelsonis, of, nat. size.
F

In our youngest specimen it is short and porrect, scarcely extending beyond the second third of the length of the antemal scale, and being much shomer than the caragaco. In a somewhat wher specimen it is decidably atecmdant, though still straight, and lomerereaching to thin apex of the antemal scale-though still much shomer than the carapace. In a still older specimen it has ahmost completely attained the length and the upwarl curvature it has in alnluenot specimens, though it is still distinctly shenter than the carapace. It is as long or longer than the carapace in all our adolesent specimens of hath sexes, exeept the two laro--1, and in these, which are males, it is slighly shorter than the campace; whence it may with some confidence lee intimed that, as in A. eximia, A. Agassizii, S. I. Smith, and A. angusta, sience Bate, it cines bont sumpass the antemal sicale in fully developed males. It is from $\frac{5-11}{3}$-toothed.

In all our specimens the eye is much as in Spence Bate's figure of A. angusta, not as in his fig. 7 , pl, exxvi., in which the so-called ocellus is represented as round and sequate from the rest of the eye.

It appears to us probalile that A. ampuste is the adult mak. of A. lirachentelsomis, the diffiernee hetween the two in the number of the rostral spines beines explained he the lass of the apical spine of the lower serics in the process of reluction of the rostrum from the adoleseent to the adult comblition in the former ; and pwsilble that A. Drectlydelsomis itself will prove to he identical with 1 . crimin, since the former lifiers from the latter m!y in having one spine less on the intion or margin of the rostrum, and since Spence Bate includes amongs the epecimens refersed hy him to the fimmer in lividuals with the same number of spines as in the latter.

42. Acantheplyyra curtirostris, W.-M.

Aconthephyya curtirostris, Wood-Mason, Aun. \& Mag. Nat. Mist. (6) vii. p. 195, 0^{3}.

ㅇ. Difters from the male only in its slightly more produced rostrum.
of \circ. The rostrum is $\frac{8-9}{2}$-toothed.
d. The telson hars $9-10$ pairs of demsal spmules amb is somewhat lomger apieal ones, the median of which is aprarently fixed.

$\delta(t \mathrm{pec})$
milim.
:---:
millim.

$1 \therefore \therefore$

Acanthephyra curtirostris, ㅇ, mat. size.
One young male from Station 108, 1043 fathoms, and an adult male and an ovigerous female from Station 11t, 922 fathoms.

Colour in life deep crimson, as in all previously obtained specimens.

Hoplophonus, Milne-Edwards.

As in Acanthephyra the crest of the fourth abdominal tergum is notched near its hinder end.
43. Hoplophorus gracilirostris, A. Milne-Edwards.

Aplophorus gracilirostris, A. M.-Edw. Amm. Sc. Nat. Zool. (6) xi. 4, p. © 0,1881 , et Rec. Fig. Crust. 188:3, \mathbf{b}^{3}.
 p. 194, 1891, ơ jur.

One male from Station 112, 561 fathoms.
Colour in life bright red.
As compared with our previous specimens it is larger, measuring abunt (ie2 millin. in length trom the tip of the rostrum to the tip of the telson; the rostrum is a trifle shorter, but bears the same number of teeth, and the antero-
inferior angle of the firsi abdominal pleuron is decilenty produced.

The right eye-peduncle has been neatly and cleanly exeisel without injury to any of the surrounding parts.

Another male from Station 115, 153-22.) fathoms, is lar_ou still, measuring about 77 millim. in lengeth. The restrum is still shorter and bears only $\frac{11}{7}$ teeth. The antern-interion angle of the first abdominal pleuron is much as in the preceding specimen.

The left antemule has been cut clemonf at the articulation between the basal and the second joints of the peduncle.

The latter of these specimens agrees exactly with Miln:Edwards's figure of II. ifcceilirostris in Rec. Fier. (Jrust., this being so, and all our specimens belonging without donlts to one species, $/ /$. Smithii is mo longer maintainable ats a distinct species and must be suppressed.

Our series proves that the rostrum in the male hecreases in length from adolesence to maturity, as in some Anonflimherere; but whether it is shomer than the carapace in very carly life, subsequently growing to the lengeth it hat in the adclesecnt animal, there is at present no evidence to show.

An ovigerous female was taken in a former season in the
 fathoms. It measures about 59 millim. in length. The rostrum, which is weak and somewhat deformed, and moreover has lost its tip, is mly ${ }_{4}^{10}$-foothed. The phema of the first and the second abdominal terga are soft ant membat nons and harger than in the male, more especially the latter of the two ; and they form the lateral walls of a capacinus incubatory pouch for the exse. The appendages are smaller ami are attached much further below the level of their stema than in the male, being carried downwads towards the enges of the pleura by pillar-like prolongations of their bases, cen... cially the anteriom pair, which are attached quite close to the edges of the plewa. The two anterior ablominal sterna tom appear to be more stiongly arched upwards, whereby the height and hence the capracity of the pouch is still further increased.

The egos are few in number, mbe cighteen havime beon found beneath the ablomen of our specimen, and lar= measuring $2 \cdot 4$ and $1 \cdot 6$ millim. in major and minor diameters respectively.

Family Alpheidæ.
Genus Alpheus, Fabricius. 44. Alphers, sp.

A male and an ovigerous female from Station 11.5, 188220 fathoms

A larger male was taken in a previous season in the Bay
 fathoms.

Colour in life transparent blood-red.
As each of these specimens wants one of the great chela,
 mens shall be available.

Family Pandalidæ.

Dorodotes, Spence Bate.

45. Dorodotes reflexus, Spence Bate.

Dorodotes reflerus, Spence Bate, 'Challenger' Macrura, p. (673, pl. cxvi. fig. 3 ; Wood-Mason, Ann. \& Mag. Nat. Hist. (6) vii. 1891, p. 19.), ${ }^{\circ}$ 오.
'Ihree females (two of them ovigerons) and thee immatare specimens from Station 111, 1644 fathoms.

Colour in life bright pink; legs crimson; carapace transparent, greasy.

Heterocarpus, A. Milne-Edwards.

46. Heterocarpus Alphonsi, Spence Bate.

Heterocarpus Alphonsi, Spence Bate, 'Challenger' Macrura, 1883, p. (6;2.2. pl. exii. tiy. 1: Winod-Mason, Am, © May. Nat. Hist. (fi) vii. 1891, p. 196, ơ 오.

Four males and four females (one ovigerous) of different ages from Station 112, 561 fathoms.

Colour in life bright pink.
The specimens were highly luminous when brought on board (see Introduction, vol. viii. p. 16).
'This species had previously been taken in lat. $6^{\circ} 32^{\prime}$ N., long. $79^{\circ} 37^{1} \mathrm{E}$., off Colombo, in 675 fathoms (one male) ; in lat. $6^{\circ} 29^{\prime}$ N., long. $79^{\circ} 34^{\prime}$ E., in 597 fathoms (one very large ovigerous female) ; and twice in the Andantu Sea, in J!: fathoms (one male and two females).
Fir. 1;

47. Heterocarpus carinatus, S. I. Smith.

P'outahes carimatus, S. I. Smith, Bull. Mus. Comp. Zool. x. 188~2-8:3,

Heterocar')us ensifer (1. M.-Edw.), $=$ P'andelus carinatus (S. I. Smith), A. Milnc-Edwards, Rec. Fig. Crust. 188:3, f.

One small specimen from Station 155, $185-220$) fathoms.
48. Heterocarpus? gibbosus, Spence Bate.

Hetcrocarpus gibbosus, Spence Bate, 'Challenger' Macrura, 1888, p. 63.4, pl. cxii. fig. 2, juv.

Light males and four onigerons females from station 115, 188-220 fathoms.

Colour in life pink, with the legs pink and white.
(one pair (the male with deformed rostrum) from Station 120, 240-276 fathoms.

This species had previonsly been obtained off Port Blair in 271 fathoms (two males), and in lat. $20^{\circ} 17^{\prime} 3()^{\prime \prime} \mathrm{N} .$, lonn. $88^{\circ} 50^{\prime} \mathrm{E}$. , in 193 fathoms (one yonng specimen with a still longer rostrum than in Spence Bate's figure).

Spence Bate described the species very imperfectly from ans immature specimen.

We give a figure of an adult fomale measuring 1 is millim. in length from tip of rostrum (1) tip of telson in a straight line.

Pandalus, Leach.
49. Pandulus prox. quadridentatus, A. M.- Edw.

P'andalus quadridentatus, A. M.-Edw. Ree. Fig. Crust. 1883.
One fine male from Station 112, 561 fathoms.
Colour in life bright pink,
The rostrum is armed with $\frac{5}{16}$ teeth.
One immature specimen with imperfect rostrum from Station 116, 405 fathoms.

Colour in life red.
It has the same number of teeth on the base of the rostrum as the male from Station 112 .
50. Pandalus prox martius, A. M.-Ediv.

Pandalus martius, A. M.-Edw. Rec. Fig. Crust. 1883.
Many specimens of both sexes, immature ats well as culult, from Station 115, 188-220 fathoms.

Colour in life pink ; eggs light blue.
There are only $7-8$ teeth on the base of the rostrum.

51. Pandalus, sp.

One pair (the female ovigerous) from Station 112 , 561 fathoms.

Colour in life light pink.

One ovigerous female from Station 116, 405 fathoms.
Colour in life pink.
A small species, allien to some Eurnpean forms, of which we have no specimens for comparison.
[To be continued.]

LIII.-Remarks on Australian Slugs.

By T. D. A. Cuckerlill, F.Z.'S., Institute of . Jamaion.
As my own ilea of "courtenus criticism" is very different from Mr. Hedley's, I shall not attempt to reply to the (pinions regarding my comduct expressed in this Magazinn, pp. 169-171 (Feb. 1892).

With regard to matters of fact it is not quite the same, as, if Mr. Hedley's statements were not contradicted, they misht pass as valid among those not specially acequaintel with slug-literature. I will therefore diseuss them ane by one.
(1). Limax meyalodontes.- Luy one may see liy reference to my paper that I expressed much dumbtas to its heing an Ancert. It secmed to me very unlikely that L. 5 bous ondid have been in Australia at such an carly date; but later, having read :rme observations by Mr. Mhesom, I expresen the opinion that it might be L. fleces after all (Brit. Nat. 1891, p. 120).
(2). "The conclusion has forced itself upon me," says Mr. Hedley, that all the An-tralian Limeme have been inturduced from Europe. I have said nothing to the contrary, exept that I movisiomally recom the Amallas as temic. It
 and momily has satisfactorily prosed the suphosed istemtey. It was Mr. Hedley himself is ho named an Austratian spocios Limax quecnslandeos, and regarded it as distinct until Dr. Simroth said it was lereis.
(3). I think anyboty reading my paper will see that when

I refor to the limited powers of migration among stras the: matural means only are intended. It is notorions that these are eutramely limited. I give many instances of shag being camiol long distanco (fomn Eumpe to St. H.Nena, Niw Zealand, de., fin example) ty artitichil means. . 1 an it may he ohserverl that many species of shell-hearing molluskis hase been carriod quite as far; there is a whole eroy of syonyms originating in Eurapean species taken to the antipodes.
(1). Mr. Herlley is of the epmion that Amerten Cisaceific, Kreefti, and Schutei are one species. Any one may see by reading my paper that I doubted their distinctures: I saly, "Irabahly the mumber of species will be considerably reduce ! when they are better known." Excellent authorities have comsidered them distinet, and 1 did mot tied justitiol, with the material I had, in lumping them. The differenees I mherven were not thase between living and preserved specimen:, but hetween specimens preswed in exactly the same way, an: the alteration daie to contraction \&e. being a common factor, need not seriously interfere.
(5). Aneitea Macdonaldi was named by Gray, who had New-Catedonian specimens; he supposel these the same as Macdonald's manach lug from Sneitem, but it hat been since doubted whether this was the case. (As to this matter and the distinction of T. Kio, fïi from its allics, see Mr. E. A. Smith, P. Z. S. 1884, p. 273.)
(6). Eighteen species of ITelicarion are on record from Australia; I donnt say they are all distinct, but I am mot in a have been shown to be less than eight in a satistactory manner, it will be time enough to alter the statistics.
(5). I did not say that semper had not placed /I. C'minyi in Mesto. My pinint simply was that certain species, usimelly pheacel in Ifelicurion, might be separated frem it, at least subgenerically. It was not within the serpe of my paper to gno intof further details, especially as the present state of knowledge does not allow any appoximately final sublivision to be made.
($($). I quoted Parmella as a slug-like genus which is referred by authors to the Vitioina-group. I had "grave deult.ts" mysulf, but could not gio inte the details of the matter without unduly enlarging my paper.
(9). I placed C'ystepelta on the characters given by Tate, who described it. Mr. Hedley examine a species, possibly not the same as 'Tate's, found in Australia, and arrived at dificrent conclusions. Ahnitting the weight of his remarks,

I insorted a qualifying footnote. What more could I hase done?
(10). At the: baming of his article Mr. Mo. ley allu les to MS. names and imperfect diagnoses. It seems almost supertlunus to state that there are n! Ms. man s in me paper. The generic diagmoses are purposily short; but the opracies in the new genera and suldenera are elsewhere sles miln: l in detail, with the exception of Neojanella dubia, which is Asseribed on p. 217. Psendaneito stpp. have been lewerib, 1 and their anatomy figured by Simmoth. P'soulmestmin hat similarly been fully described and figured by GodwinAusten. Imerinia has its type in specimens which I consider to be identical with Vermicella Commlili,i, O. N. F ., alrealy described. Ancitalla hats been deseribe 1 an I theme 1 by Mr. E. A. Smith; the anatomy of this and of Nimienelle remans unknown becallse the british-Museun types must not be cut up. 'There is no other generic or subgeneric name in my paper that has mot been used and chatacteriza I batione.

Now I think I have shown that on every single point mentioned, Mr. Hedley's criticism is without sutimemt rason. Noboly appreciates more than the prosent writer the hatoms of stmants like Mr. Hediey in special fammer bont is it fair that they should sumble at othere, whe, with less material, hesitate to assert what they cannot know with certainty?

Kingston, Jamaica, Feb. 19, 1:92.

LIV.-On the Scale-like and Flattened IIairs of certuin Lepidopterous Larve. By A. S. Рsckasd.

Tue late Dr. T'. W. Harris * described an Aeronycta-latva, which he called Acronycta americans, as "beset with a few long black intistles dilated at the emt," and aulte.l, "the that black, spear-headed hairs grow from the skin and not from warts." The same larva was also figured on p. 305 of my

[^80]refers to the larva of Acromyete alni as " much resempliner hoth in colour and in its clavate hairs the larva of 't'molins," the latter leing figmed on pl. xi. ; the large, strong, clavate hairs of this form, Tinolius churneiguth, Walker, which is a semilooper, and from its hack colour a very conspicmons animal, are represented as being from one fourth to one thire as long as the boty and are situated on the first (wo or three segments of the ablomen, this being the most prominent part, forming the loop, when the creature is in motion. These are the only cases known to me of the oecurrence of flattone l hairs, with the exception of the case deseribed by Burmeister and quoted below.

Sculd-like Site.-In cxamining the melian dorsal tults on the second and third thoracic segments of the European Gastropacha quercifolia I found that they are composed of broad lanceolate-oval scales*, which are opaque and dark steelpurple in colour, with the surface quite regularly striated, though not invariably so, while the strize do not appear to extend to either end. They vary in shape and in size, some being narrow and with a simple point at the distal end, while the majority are variously notched or toothed. 'They thus appear to be true scalus, like those on the wings of adult Lepidoptera.

Scales from the dorat thomacic tuft of (iustropuche quercifolia.

In Giastropuchat americana the scales forming the dorsat tufts, both on the two hinder thoracic segments and on the eighth abdominal one, are very different from those of the European species; they are dark and oparue, but are long, narrow, and flat, very gradually increasing in wilth to the end, which has a single notch. From this notel an impressed line or stria extends along the middle of the scale for some distance.

Setwe tlattened at the end.-In Gustropacher quercifotia the lateral tufts along the body each contain a few long hairs with flattened ends, varying in shape from oval to triangular, with the ends often rery broad and ragged, bearing from one to

[^81]four very irregular tecth. No strix are perceptible, and the hairs throughout are pale, colourless, and transparent.

On examining the lateral tufts of Gastropacha americana I found somesmilar very long hairs with the ends flattened and of extramdinary form. These hairs usually project beyond the simple hairs; some of them end in recular lancen-late-oval shapes with the point much attenuated, others are hroader, while some are oval and very broad at the truncater end, which terminates in a fine attenuated print, at the base of which are usually three attenuated tecth. They are similar in shape to those of Gastropacha quercifolia.
(In turning over the beautiful plates of Burn ister's '. Athas of the Lepidoptera of the Argentine Republic' I fomm that the author represents on pl. xxii. fig. 9 the similar long hairs of Clisioctmpa proxima. They are much more reçular than any I have seen, and are much flattened and expandel at the ends, with from three to five long slember teeth. They are alsor represented as striated lomgitudimally, with either beads or clear spots in the expanded portion. These hairs are visible to the naked eye. Pumeister remak (p. So) that Stoll has figured (suphl. de Cramer, pl. xix. fig. A) a similar larva with the same kind of hairs, à palmette terminale, situated on the first and last sergments of the londy. He names it Bombya ephomia (pl. xxxv. fig. 6, of the same volume). Walker refers this species with donbt to the semus Oxytemis. 1:urmeister adds: "Siome other species of the genus Clisiocomp,a have the same kind of hairs placed at each end of the body."

I have been mable to discover these flattened hairs in Clisiocampa americana or in C. neustria of Europe. In (\therefore sylcutica the hairs on the lateral thomacic tuberdes are lapering and finely barbed, with scattered, shmber, spike-like, smooth, simple sete. Perhaps the latter are the homulogues of the flattened sete. In Ifeteroperchat lileyana of the contral United States there are no dersal tufts, amb conserpuently no domal scales like those of its ally Gicustropuchat but cortain of the hairs in the lateral tufts are flattemed at the enl, which is very long and slender and lanceolatenval, with the tip much attenuated *.

In the Noctuma these lairs with flattened ende probably occur in nearly all the hairy and pencilled species. In the

[^82]harva of Acronycta hastutifere, A. is S., many of the harbed 'taiss forming the black pencils are flattened at the end and black, but not striated.

These specialized and highly lifferentiate 1 dark scale-like setar appear to be of use in rembering the dowsal tufts mone conspicuons, the caterpillars heing very hairy, and thus probably ine lible hy bimts. It should be observed that the
 and the scales are much smaller than in the Buropean (t. quercifilio, is remered at last equally conspicuns by the two transwerse hright scand ban!s diselosed hehind the seson l and third thoracic segments when the insect is creeping. These appear to lee entirely wanting in the European species.

Finally, the oecurrence of these scales, so mueh like those of adult Lepiloptera, is an interesting example of the acceleration of development of the setar in the larval stage, and it is not improbable that in the ancestors of certain of the Lasiocampidæe they were characters acquired during the later stages of their larval lifetime.

Providence, R. I., U. S. A.

LV - On the Ophiteres princeps of Cuene and its utter dissimiturity in Structure und Pattern from the Ophideres princeps of Boisclucul. By Arthle (f. Butler, E.L.s.', F.Z.S., \&́c.

In the 'Toyage of the 'Astrolabe'' (Lépilopteres, p. 245) M. Boisduval described a moth from Dorey, New (Guinea, under the name of Ophideres princeps; he characterized it as allied to O.materna, Cramer, and as having "the front wings blackish, slightly clouded, dusted with hack and a little varied with greenish, with four white spots, grouped in pairs ; the lower wings yellow with a kidney-shaped patch and a black border, and the fringe intersected with whitish." This is probably one of the imnmerable varieties of the wideranging O. fullonica.

In the third volume of his 'Noctuélites' M. Guenée describes and figures a West-African slecies (with M. Buisduval's locality) as O. princeps-evilently withont taking the trouble to look up, the deseription in the "Voyage of the 'Astrolabe,' with which the African species hardly corresponds in a single particular, inasmuch as the front wings,
even in the female, only exhibit one isolater white spot ; the lower wings also being orange, with a uniform black border and no kidney-shaped patch, but with the base of the wings also blackish, a marginal series of buff spots, and the fringe opposite to these spots intersected with pure white.

In his 'Catalogue of Lepidoptera Heterocera' Walker again neglected to look up the original description, lut bindly followed M. Guenée, although he indicated his belief that the Muscum specimen was from West Africa.

In his 'Monograph of Ophideride' Mr. Moore asain followed Walker, stating that Ophideres must be restrictel to its type O. princeps, and adopting for O. fillomica the name Othreis, IIibner (which is, of course, symmymous with Ophederes if we admit that typical O. princens is O. fullonica).

The Ophideres minceps of Guenée, Walker, and Moore thus remains without a generic or specific name, and may be called IIclastus intricutus. We have it from Old Calabar, Sierra Leone, Ambriz, and the River Niger. The family must now be called Othreidæ.
LVI.-On the Radula of Paludestrina Jenkinsi, Sinith, anel theat of P. ventrosa, Mont. By B. B. Woudwald, F.G.S., F.R.M.S.

When in the autumn of 1859 my friend and colleague Mr. E. A. Smith had under observation the specimens of Paludestrina ($=$ Mydrobiet) to which he afterwards gave the name of P. Jenkinsi , he handed some examples to me with the request that I would examine the radula and compare it with that of P. ventrosa, Mont. At that time these two species were thought to be very closely allied, and, indeel, with some it was a disputed point, sinee concedel, whether P. denkinsi were anything more than a variety of P^{\prime}. mentrowe.

Pressure of work at the time, followed by prolonged illhealth, prevented the emmpletion of the investigation, or all doubts as to the specific distinctness of the two forms might speedily have been set at rest, as the acompanying motes and descriptions will serve to show.

At the very first glance a dissimilarity in chameter is

* Journ. Conch. vi. (1889) p. 142 ; figured in 'Essex Naturalist,' ir. p. 214.
evident. The transverse rows of teeth are slightly more arched in I'. centrosa than they are in P. Tenkinsi; in the fommer, morenver, the admedian teeth alternate with and project slightly hetween the central ones, whereas in the latter they are nealy in a line with, and stand clear of, the median teeth, so that the whole ralula has the appearance of being more sharply divided into longitulinal areas. The contrast between the respective median teeth is yet greater. In P. contrese the central chsp of the rachindian is as long as half the wilth of the tooth, and is flanked on cither sile by three others, whilst the single hasal denticle on cach side is barely visible; in P. Jentiansi, on the other hamb, the length of the contral cusp is not more than one third the witth of the whole tonth; four or even five minor cusps flank this central one to right and loft of it, and four basal denticles stand out conspicuously on either hand below the crest of the tooth.

B

Portion of Radula of:-A. Paludestrina Senkinsi, Smith B. Paludestrina ventrosa, Mont.

Two rows of teeth are in each case shown on the left of the median tooth in their undisturbed position. On the right the teeth of a single row are drawn apart.

The remaining differences are best seen from the figures. The following brief descriptions, with approximate micromeasurements, of the radula of these two species are founded on several specimens of each.

Paludestrina ventrosa.

Radula measuring $60 \times 16 \mu$ and having 40-4.5 rows of seven teeth each.

Medien (or rachidian) tooth ($2 \cdot 5 \mu$ in width) hears 7 chipls, of which the central one erguals in lensth half the wilthe of the erest of the tonth. Basal ilenticles one on each side, incomspicuous. The crest of the tooth viewed in its position in the radula is markedly concave.

Admetien tooth bears 9 cusps inclined inwards towarts the median line of the whole radula; base prolenged outwamls in a shank which reaches almost to the margin of the ralula and which terminates in a thickened knob-like end.

Latrials long, slender, and curved, with numeroms small cuspis, which in the outer one are difficult to resulve. The imer lateral is more sharply curved at the point where the cuss eate; in the outer one the curve is far more symmetrical throughout.

Formula: $\frac{1 \mathrm{I}}{7}+\frac{1}{9}+\frac{2}{x}$.

Paludestrina Jenkinsi.

Radula measuring $86-93 \times 20 \mu$ and having B0-70 rows of seven teeth each.

Wedian twoth learing 9 , or sometimes even 11 , chasps, of which the central one is about one third the width of the crest. 'This last is less concave in out line than in l '. centrona. Basal denticles four on cither side, very conspicuous.

Admeatien tooth bearing 9-11 cusps, inclined inwards, but slightly lessso than in the preceding species; in other respects it is very similar.

Leterects longe and slender, nearly straight in the shank, and shaply curved at the free end. Cusps numerous and easily visible.

Formula: $\frac{11}{9-11}+\frac{1}{9-11}+\frac{2}{x}$.
LVII.-Olmomations on two rate liritish Nevilorambis (Lomanotus genci, Tirany, cend Hancockia eudactylota, Goust). By F. W. (immbile, 13.Ne., Asmistant to the lieyer Professor of Zoology, Owens College, Manchester.

> [Plate XVII.].

Wrime working last summer at the Plymouth Laboratory of the Marime Biolegical Association I obtatined a single specimen of cach of these species during sucessise wecks from
the same part of Plymouth Somel. Finding that my Lomecnotus possessed eertain prouliarities of which I conl. find no adequate description on figures, and that Ifencorliae had only loen taken on one frevinus nceasimon the British conasts (hy Mr. A. R. Hunt in Tow Bay, 1sī), I wherved and drew the living animals with the following results.

Lomanotus genei, Verany. (Pl. XVII. figs. 1 and 2.)
Frecimens refrable to this species have been taken from time to time on our coasts. Mr. Garstang, in his recent report ", hass collected these cases and adhel a mumher which have oecurred at Plymouth. The following deseription of my own specimen agrees closely in eertain points, such as size, conlour, and gencral stincture, with that of his two dark individuals \dagger.

Length half an inch.
Colour dark hrown, with irregular yellowish spets; the papilla each with a dark band below a white tip. 'The general tint agreed closely with that of the Fucus on which I found it after being dredged, and upon which it lived in captivity.

Oral veil with two prominent processes on each side, the outer ones being the larger. Rhmophores retractile within caly x -like sheathe, clavate, laminated at the base, with smooth truncate tips. Sheath-marwins cach produced into five papilla of very definite shape when expanded. These papilla, like thuse of the oral veil and plewropentinm, are capable of contraction and dilatation. Pleuropolium consisting of four well-marked lobes on cach side. 'The centre of each lobe is dorsal and close to the middle line. It is marked by the large dorsal pajpilla. The sides of the lobe extend anteriorly and posteriorly in a ventral direction, enclosing a slightly concave area, and bearing papilla. Posteriorly the lobes become slightly irregular and meet on the dorsal surface. Foot slender, produced anteriorly into recurved processes. Genital aperture beneath and slightly in front of the first large dorsal papilla of the right sile. Anus beneath the second.

My attention was first drawn to thie characteristic form and changes of shape assumed by the dorsal papille. These changes consisted of contraction from an extended definite shape to a more or less bulbous triangular one. So far as I

[^83]am aware none of the terms used biy previous authors on this subject do justice to the form of the extender pleuropodial papilla. The interest of the matter is increased by the fact that the tips of the "calyx-sheath" have the same power of contractility, and that their extenderd form agrees with that of the dorsal prapille. The velar processes also when extented are of a very definite shape (see figs. 1 and 2).

On gently touching the centre of the right side of the animal with a clean sable brush three events occured almost simultaneonsly; the rhinophores previously expanden were sharply retracted within their sheaths; the velar pmoesens were extended ; and the donsal papillae of the right silde, especially those near the print of the brush, were erected from a previnusly oblifue position, the large papille markelly directing their whitish tips towards the brush. The effect might he almost said to he "bristling." The papille of the" left side were only feclly affected. On repeating the expmiment at different points I found that when the stimulus is applied just hedind the rhinophomal sheath the laree posionexternal sheath-papilla directed its tip obliquely backwank towards the point of attack, the first pimary phemombial papilla directing its tip forwarls. Several times I ouservel a single fully-expanded papilla move imbependently in an oblique phane from an anterionly directed position to a posterionly directed one. The "erection" and movement of the papila is brought about in the same way by matural stimuli. These movements led me to surpect the presence of enidocysts. In spite, however, of the examination of the living animal and of sertions of young specimens for inch long (for the use of which, together with help in many ways, 1 am indebted to my friend Mr. Walter Garstang), Í have hitherto been unsucessful; indeed Bergh*, in his ilescription of the genus, has stated " cnidocystre nulla" as a diagnostic character.

On some oceasions I blserved the peculiar lashing morements of the whole body already notieed hy Mr. Garstanget. Thus, on pushing the anmal laterally with a brosh until its foothold gave way, it bent uron itself and executed a series of very vigorous S -shaped morements from sile to side, the rentral surface of the foot being kept at about the same presition on the surface of the water, the rest of the baty inverted downwards. On another oceasion it veluntarily

* "Wie Cladulepatischen Nudibranchien," Zowl. Jahrbicher, Pa. v. (1890).
 Biol. Assoc. (n. s.) I. ii. 1889, p. 189.
lonsened its hold of the side of the glass versel and progressed slighty ly means of these contractions. Acain, after floating forit upwards for some time, it would wriggle to the bottom and immediately gain a footing.

My specimen was quiet during the day. In the morning I foum that it had crawled out of the dish where it had been placed overnight. This was done constantly, and indicates noeturnal halits. During the three weeks that I kept my specimen no spawn was deposited; hence probably it was immature.

As regards the significance of these observations. Contimual changes of form in the phemopolial papilla during life have been noticed hy Dn. Norman in his species, L. ILuncocki". The emplete similarity, however, both in characteristic form and power of condinative movement possessel by these papillae in common with those of the "calys-sheath " apparently escaped him, and is an additiomal argument in farour of the view advanced by Mr. Garstang \dagger, that such sheaths contain a " pleuropodial element."

Hancockia eudactylota, Gosse. (Pl. XVII. fig. 3.)

A specimen of this species was dredged last summer (1891) on Delesseria in Plymouth Sound, as I have alrealy recorded \ddagger. Mr. Ilunt, the original discoverer of this form, dredged the only previons British specimen on the same Alga in Tor Bay in 187T. This was described by Mr. Gosse § under the name Ilemeockia cuductylota. In 1886 Prof. 'Trinchese, apparently in ignorance of Gosse's paper, described ("Ricerche Anatomiche sul Genere Gocia" $\|$, 1886) four specimens dredged near Naples, defining them as two species of a new genus, Govia rubra and G. viridis. Although the internal anatomy of Hancockia is unknown, it seems probable that the genera Goria and Huncockiu will be united, as indeed has been done by Dr. Norman in his "Revision" (this Journal, vol. vi. 1890, 1p. 79, 80). Carus (' Prodromus Fauma Mediteranea,' vol. ii. pt. 1, p. 208) writes the genus Govia, Trinch., adding in brackets (Hancockia, Gosse).

The Plymouth specimen was about a quarter of an inch in

[^84]Jength when expander. This is omly hatf the length of Mr. Hunt's specimen. Colour a purplish-rose, very similar to the Delesseria on which it lived. 'Tor much stress should not be laid on this point, however, since Mr. Hunt's example, although alparently found on the same weed *, was olive in colour. The mid-dorsal and lateral lines of the upper surface darker. The epidermis of the upper surface is of a bluishgreen hue, as Gosse has already noticed (luc. cit. p. 317). On the shoaths of the rhimphenes are scattered bluish-white spots; somilumar makings of the same kind oceured at the hase of the pleuropodial lobes (eompare 'Trinchese's figure of Goria rulroa). Body widest behind the head, gralually tapering posteriorly. Head with an oral veil bearing four papilla on each side, the second anterior one beeng the largest. These papilla were constantly changing their shape during life, as (iusse and Trinchese liave recordel. Rhinophoral sheathe crect, cylintrical, the margin subelivited ints about tern rounded projections. This agrees closely with the figure and deseription of the sheaths of Ciocien vivilis. Those of (${ }^{\prime}$. mulira, on the rother hand, have phain margins. Rhinophores with a rounded, bulbous, laminated base, terminatinge above in a smooth columar tip. Plemrondium prolucel into four lobes on the right and five on the lett, the fitth being rudimentary. The first pair of lobes are opposite, the rest gradually becoming alternate, as in 'Trinchese's figure of Goria rulica. Lach lobe is concave externally and is composed of seven papilla, one being dorsal and median, three anterior, and three posteriur. The fout is rounden anteriorly, posteriorly it ends in a slightly bifid tail, as in Crovin (Trinchese, loe cit. 1. 183 and my fig. 1). The anal papilla very small, cylindrical, situated halfway hetween the first anil second loles of the right side. Genital opening near dorsal surface between the rhinophore and the first dursal lube of the right side.

In the appended talle I have compared the different speeimens of Mancockiu and ciociu. Although they all agree in main points, no two individuals do so in detail.

[^85]| | \mp | | ＊suoṭəәfoxd pәрипох OL ғnoqe оұu！pəpis！ | －әр！¢ ¢рвә ио \ddagger | －peaot u！${ }^{\text {su saqu }}$

 | －mat 2 | ＇uәruịวads тinotu
 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| § | 8 | ＇вұәџャэ
 －әau！IL jo вəqor |
 Suofe squiod －qus ч十tai paystuma | ＇Ossong）souo II飞us

 |

 әџt su！preum słods पs！
 | ＇muteret |

 | \because |
| \mp | 8 | | suon

 －0L $\begin{gathered}\text { noqu } \\ \text { oqu！} \\ \text { pəp！a！（I }\end{gathered}$ | | | －0utifi | | ＇ |
| － $\mathrm{c}^{\text {apezs }}$ | 70ustarumn | | －u！̣d | | әәрр！

 | | | \％ |
| | 9 | －8d 8－2 јo seqot | ${ }^{\text {cuivid }}$ | ＇өpıs чวтә ио \ddagger | | ＇turu 81 | | \because |
| 9 | －sod zsour
 | | ＇प！̣！${ }^{\text {d }}$ | ＇xoueqsod pur rotax

 | －әа．ा！पџ！ ＊witded xroa pue pes

 | －tutu 0T | ${ }^{1} \mathrm{~L}$ L＇p．lqn．e m？．aon | ＇ |
| | | ＊ธวұовтеч |
 | | ：moron | －¢7．ธิเบข | ${ }^{2}{ }^{\text {une }} \mathrm{N}$ | |
| ＇mmıpodo．mə ${ }^{\text {a }}$ | | | | | | | | |

Our knowledge of the internal anatomy of these forms is limited to the preliminary paper by Prof. Trinchese before referred to. The cutting-edge of the jaw is short and armed with a single series of $15-16$ teeth, the first two or three of which are simple, the rest set with extremely fine tubercles. Radula triseriate ; the tecth of the median row with lateral denticles; the lateral teeth broad, unarmed (" quasi omnino illi Galvinarum similis," Bergh*). Salivary glands large. Liver diffuse, with anterior and posterion luanches, the latter supplying the dorsal papilla. The nervous system similar to that of Eolidiidæ. Eyes well developed. Otocysts with a single otolith. Penis umarmed. The spermatozoa similar to those of Eolidida. Inencocliou apnears to be mature when about half an inch in length. Trinchese describes ripe generative products at this stage, and Cosse has figured amd described the spawn deposited by a specimen of this size. The ribbon was in the form of two complete figure-of-cight coils, the ova being irregularly scatteren. My specimen was only a grarter of an inch long, and during the fortnight that I kept it no spawn was shed.

I stimulated Hancoclica to see if the dorsal papillie would respond, as they do in Lomanotus; no effect, however, fullowed. The presence of enidocysts in the genus described by 'Trinchese as occurring at the tips of the pleuropodial lobes (loc. cit. pp. 186, 189, and plate, figs. S and 14) makes its behaviour contrast still more with that of Lomanotus.

While gliding over the bottom of the vessel in which it lived it would sometimes stop, raise the anterior part of the body, and, with the velar tentacles and the rhinophores well expanded, it would sway from side to side. In a short time the action ceased and the animal went straight to the Delesseria on which it lived. Unfortunately I made no experiments to ascertain whether IIencoclian respmends to shadows as stimuli. The large eyes noted by Trinchese would be in favour of such reaction. Hermuen lifitu, which lives on Delesseria, and certain Eolids have been shown by Mr. Garstang to respond \dagger.

As regards the systematic position of Mancockiar. Gosse placed it in the Tritoniida; 'Trinchese, Bergh, Norman \ddagger, and Carns place it in the Dotonides; Bergh, however, ahling: "Bei der Formulirung der Charaktere der Dotoniden ist auf

[^86]die Hancockien oder Govien keine Rücksicht genommen, weil die Stellung dieser merkwürdigen, gleichsam mehrere Familien verlimdenden Gattung, bei der bisherigen nur vorliatigen Untersuchung 'Trinchese's, noch ganz unsicher ist." I will only allude here to one view implied rather than expressed by Mr. Garstang *. He compared a lube of the pleuropodium of Ituncoeliaa with one of the four arenate lobes of the " raised curtain" forming the pleuropodium in Lomanotus. The side view which I give of the latter genus shows that the lobes are distinct and that the breaks oceur between the segments having the large dorsal papilla as their centres (Pl. XVII. fig. 2).

Explanation of plate XVII.

Fig. 1. Plymouth sperimem of L omanotus yenei, Ver., seen from the dorsal surface. $\times 6$. The papillo are extended.
Fig. 2. The same, from the right side. $\times 6$. Papillre about $\frac{2}{3}$ expanded. n, genital papilla; b, anal papilla. These were inserted from the preserved specimen.
Fig. 3. Plymouth specimen of IIncuctiaia enductylota, Gosse, from dorsal surface. $\times 14$. In this view only three papillæ of each pleuropodial lobe are shown.

LVIII.-On two new Central-Afirican Antelopes obtaineel by Mr. F. J. Jackson. By Oldfield 'Thomas.

By the kinduess of Messrs. Rowland Ward and Coo, of Piceadilly, I have been entrusted with the examination of the skulls and scalps of two antelopes, a Hartebeest and a Wildebeest, sent home by the well-known explorer and naturalist Mr. F. J. Jackson.

Although probably in neither case, as will be scen below, are these specimens absolutely the first of their respective forms which have been sent to Europe, both seem to require new names, the one specitic and the other subspecific.

Firstly, with regard to the Hartebeest. In 15.59 Mr. Petherick sent home from the Bahr el Gazal "several heads of both sexes" of a Hartebeest referred by Dr. Gray \dagger to Alcelupilues bubalis, but of which a female skull, the only reminnt of the series now in the British Museum, appears to belong to

[^87]the caama type, with V-shaped horns. Another similar specimen from the Bahr el Gazal, also female, was sent to the Museum in 1884 by Mr. F. Bohndorff. Noticing their relationship to B. cuama, about a year ago I made many endeavours to find out what had become of Petherick's male specimens or to get hold of another, but withont avail. That a chanu-like species occurred in this region was clear, for Henclin* also speaks of the occurrence on the White Nile of a Hartebeest which "scheint mit A. carman zu*amm"nzufallen," and it was therefore with much pleasure that in Mr. Jackson's hartebeest I recognized a species very possili,y identical with that observed by Petherick, Heuglim, and Bohndorff. At the same time it must be said that while the homs of Petherick and Bohndorff's specimens correspond with small and slender female caama horns, those of Mr. Jackson's skull equal or exceed in size the very largest male cuama horns that I have seen. Male specimens, with skins, from the Upper Nile are therefore needed to confirm or upset this identification.

I propose to call the species

Bubalis Jacksoni, sp. n.

Similar in essential characters, in size and propertion of skull, and in the curves and direction of the horns to the South-African B. caama, but distinguished by the uniform pale colour of the face, which matches that of ${ }^{\circ} B$. tora and is cutircly without any trace of the black frontal and masal patches characteristic of that species. Mair of nasal region reversed uparads for only ahnut 4 or $4 \frac{1}{2}$ inches from the hairy point between the nostrils \dagger.

Ifab. Comntry between Lake Vietoria Nyanza and Lake Naivasha. Its northward range depemis oni the comectness of my identification of IHeuglin's and Petherick's animals with it, and this must of course remain doubtful until further information is obtained.

* N.O.-Afr. ii. p. 123 (1877).
\dagger The extent of the reversed hair on the face seems to be characteristic of the diflionent speries of the gemus. Thus it extemels up to Latween the eyes in B. caama, or even to the horns, while in B. major, tora, and Coke i it is confined to about $1 \frac{1}{2}$ or 2 inches on the tip of the muzzle. In B. Lichtensteini it is reversed on the nasal region, points downwards on the anterior frontal, and is then again reversed up to the base of the horns. No doubt laxger series than I have been able to examine will show these characters to be more or less variable; but the species are all so closely allied to one another that any characters which may help to separate them are worthy of mention.

The following is an extract from Mr. Jackson's letter to Messrs. Warl and Con; and his remarks being quite borne out hy an examination of the specimen, I feel myself at liberty to publish them:-
"I do not think it is likely to extend further south, but of conse it may extend to the Cape for what we know ; if it is Alcelapilus cinema it may do so, but I am inclined to chulst its loing the same as the S. A frican animal. I seem to have an idea that the one at the British Mruseum is very unch darker and the horns different, but this is only from memory, and I cammen be sure. Up morth all along the top of the Elgeyo Eiscarpment (onntinuation of Mau) into Turguel to the north and mortheeast of Nount Elgon it is very common, and takes the place of d. Coleci. Romm Baringo it is fairly plentiful, but some marches south of Njemis the A. Cokei takes its place."

While the presence or absence of the face-markings is in this group, owing to its constancy in the adult, a very good character, the distinction of this species rests largely on geographical considerations. The true B. caama is purely South Λ frican *, and its range is absolutely shut off from that of B. Jacksoni first by B. Lichtenstoini, which covers all the Zambesi region and Nyassaland, and then further north by B. Coleci, these two species being members of totally different srouns of the genus, and neither of them at all closely allie d either to B. caama or to B. Jacksoni.

The following are the measurements of the typical skull of B. Jacksoni:-

Basal length 406 millim., greatest breanth 140 , length of nasal bones 220 ; profile, length from tip of masals to $t p$ of frontal crest between horns 4.5). Distance from tip of horn to end of muzzle in a straight line 888 ($=35 \mathrm{in}$.).

Homs: greatest length romed curves in front 523 ; circumference at base $30 \tilde{J}_{1}=12 \mathrm{in}$.) ; distance from tip to tip 220 .

It is with great pleasure that I connect with this magnilicent new antelope the name of Mr. Jackson, whose discoveries, both zoological and geographical, in the region which it inhabits have rendered his name familiar to all interested in our East-African possessions.

The second antelope, the Wildebeest or Brindled Gntr, is one which is likewise allied to a Suuth-African species, but

[^88]although its differential characters are of almost as important a nature as in the case of the Hartebeest, there is no interruption in the range, and therefore, as intermediate specimens will certainly be found, I propose only to make a subspecies of it.

It may be called
Connochetes taurinus albojubatus, subsp. n.
Distinguished from C'. taurinus typicus by the lonse mane which runs along the centre of the throat being white instead of black, including the tufts on each side of the angles of the lower jaw. Coloration in other respects the same.

Skull somewhat shorter, especially in the muzzle, and the anteorbital depressions more strongly marked. Horns directed somewhat downwards on each side instead of horizontally outwards, and their bases much more expanded and with prominent bosses on their upper aspects.

Measurements of the typical skull :-
Basal length 430 millim., greatest breadth 198 ; occiput to nasal tip 428 ; nasals, length 215.

Iloms * : greatest length round curve behind $494\left(=19 \frac{1}{2}\right.$ in.) ; greatest circumference at base $842\left(=13 \frac{1}{2}\right)$; greatest spread, measured to the outer side of the horns, $652(=2.5)$; tip to tip $414(=16$) ; tip to tip round outer curve and across forehead $1186\left(=46 \frac{3}{4}\right)$.

Hab. Uganda (F. J. Jackson).
Although I have taken Mr. Jackson's fine example as the type of this new subspecies, I believe it will be found that many of the East-African specimens hitherto considered to be the common form really belong to it. Certainly several Kilima-njaro heads that I have seen have white throat-manes, while the South-African specimens invariably have black ones. In fact it seems probable that, just is the recently described Oryer eallotis, with its long hack ear-tuft:-, rencesents in East Africa the O. gazella and O. beisa, so C. taurimus albejubatus represents throughout that resion the typical back-throated race. Where the two forms, if at all, pass into one another remains to be seen; but it is evident that they are certainly difterent geographical races, and ought to have different names accordingly.

[^89]> LAX.- Deseriplioms of new (ienera und Species of Pymadide combtuined in the British-Museume Collection. By W. Warren, M.A., F.E.S.

[Continued from p. 302.]

Thanaphysa, gen. nov.

Fore wings chogate, broalening towarls the apex ; estat convex; apex blunt; hind margin enved, oblique. Hind wings rather narrow; himd margin slightly curved. Palpi porrect, rastriform ; tongue present; antenmes simple in both sexes; distmiguished by a scalchess pateh in the male fore wing; on leaving the eell the last two sulenetal nervules ate slightly curved downwards for half the distance between the end of the cell and the hind margin, and the whole of the space between them is withont seales and diaphanoms.
'Type T. adornatalis, Warr.

Tanaophysa adornatalis, sp. n.

Fore wings bright yellow, brownish along the costa, especially towards the base; an indistinct obliguely curven first line near the base and another exterior of the ordinary shape; a small dot in the cell near the first line and a larger one at the end of the cell. Hind wings like fore wings, with the exterior line repeated; fringes of both wings concolorous. Head, thorax, and abdomen all yellow. Underside whiter.

Expanse of wings, \& 32, of 21 millim.
A pair from S. Paolo in the British-Museum Collection.

Diacme, gen. nov.

Fore wings with costa straight till just before apex, where it is strongly curved; hind margin oblique, slightly indented bencath apex, so that the wings appear subfileate. Hind wings also bluntly subfalcate; the himd margin in the male cut off nearly straight from inner to anal angle ; fore wings in male longer and narrower than in fenale, but not so exaggeratedly as in. Stenophyes, Led. Antennæ in male fincly pubescent; labial palpi short, blunt, porrect; abdomen of male with two small lateral fan-shaped tufts of erect scales on either side of the penultimate serment.

Type D. phyllisalis (Samea), Wik. xix. p. 936.
Ann. \& Mag. N. Hist. Ser. 6. Vol. ix. 29

Pessocosma, Meyr.

'Type P. iolertis, Wlk., Meyr. Tr. E. S. 1854, p. 301.

Pessocosma suffusalis, sp. n.

Fore wings sandy ochreous, the lines dark brown, beardly edged with white, and not reaching cither mar_in; the exterior, starting below the costa, is represented by six dark intrancural spots, preceded by a moodish, and followed hy a narrow, white space, and ends in a larger white spot in the middle of the inner margin, immediately unlerneath the reniform stigma, which is narrow, dark-margined, and with a white centre; fringes chequered, dark and light. Hind wings white, with a sandy-celoured marginal bant, which is broadest at the immer angle and is preceded by a sinuous brown submarginal line; towards the base are three mand dark-edged spots filled in with sandy ochreome, the two nearer the base, of the same size and small, the thind, nearer the centre, much larger. Head, thoras, and abulomen sandy. Underside like upper, with the markings more distinct. In one of the examples the markings are almost entirely lost in the sandy suffusion.

Expanse of wings 24 millim.
Two males from Caya and Pernambuco respectively.

Niphograpta, gen. not.

Fore wings with costa straight, slightly indented in the middle; apex blunt; hind margin romited. Lahial palpi porrect, roughly haired, the joints indistinguishahle ; maxillary absent; tongue slight; head rough; antemie (female) filiform, ammated; ocelli present; markinss, two dark transverse lines and three large stigmata; second line followed by a series of white lumules; (insta with four sul)apical dark dashes, as in Udea and its allies.

Type N. alliguttalis (Efichemistis?, Warr. Tr. E. S. 1859, p. 289.

Aphytoceros, Meyr.

Apheytoceros nigrolinealis, sp. n.

Fore wings satiny white, towants the hase and abong tan imer margin suffusel with hack-forow, most intenaly near the base ; lisst lise thick, curnen, part! obecumed by the hasal
suffusion; exterior line thin and interrupted from the enta as far as the ralial, thene to moar the anal angle formine a broad black streak, preceded at its lower end by two parallel brown-hlack streaks munines at right angles to it, the upper one the finer of the two, from helow the reniform stigma to the anal angle ; ontonlarstigma oral, reniform kilney-shapel, both ilistinet, filled up with yellowish, the renifiom with a smaller flat oval attarched to it at the top; a chomly, fusenus, submarginal line, most distinct towarls the costa, where it is formed by roundish wedg-shaped markings; fringes white, with a black dot at the emd of each vein. Hind winzs white, with a thick mass of hackish scales close to the hase, a yellow, dark-edged, needloil, discal sput, an I a hackish submarginal line, more or less interrupted in the midtle, visible as a thin curved line from the ensta, and becoming a thick black bloteh near the anal angle; the apex also with a blackish hloteh; fringes as in fore wings, but with an indistinct small blackish dot in the fringe beyond each basal dot. Head, thorax, and abdomen more or less corered with intense black-1,rown scales; palpi and antenne brownish. Underside of abdomen and legs whitish; underside of wings like upper.

Expanse of wings 34 millim.
One female from Goya.

Aphytoreros longipalpis, sp. n.

Fore wings white, with the base and inner margin suffused with dark tawny fuscous, leaving, howerer, the veins paler; first line fine, brown, curved, separated from the basal bloteh by a narrow white interspace ; exterior line brown, duble, the outer fainter than the imer portion, starting from costa close before the apex and ruming straight as far as the seeond median nervule, where it is slightly elbowed extemally, then rumning inwards between the first and second median nervales to tonch the base of the reniform stigma, where it again curves round and is lost in the suffusion of the immer margin ; reniform stigma oblique, quadrangular, yellowish, with tine dark edges; fringe white. Hind wings white, with a large discal spot, yellow-centred and broadly ellged with brown; a brown sutmarginal line, which firms a deep sinus inwadly in the middle, so as to tonch the discal spot, and is followed by an indistinct fuscous shade; two lines of more or less erect dark scales from the base, one along the median rein, the other broader, near the interion margin. Head, face, and thorax white; abdomen more suftused with brown-black; palpi and antenmæ brown. Underside like upper, with
markings showing through, and an additional round dark fuscous spot at the anal angle of hind wing.

Expanse of wings 27 millim.
One female from the Transvaal.
This species differs from the rest of the genns in the shape and length of the labjial palpi, which are thin, divaricate, the second and third joints cach as long as the width of the head.

Didymostoma, gen. nov.

Characterized especially by the labial palpi, which are arparently doulle, the ordinary second joint crect in front of face, the terminal porrect, straight; from the base of the second is porrected a tuft resembling the termina! juint; maxillary invisible; ocelli (\%) ; tongue strongly developed; antemas (of male) laminated and pubsescent bencath, somewhat contorted, and slightly thickened shortly above the base. Wines hyaline, with brown patches; fore wing slightly falcate and elbowed above anal angle.

Type D. (upheranoralis (Botys), Wlk. xix. p. 1004.

Dichotis, gen. nov.

Fore wings long and narrow, like Noorde, Wlk, with custa nearly straght; hind marein rertical, except lower thite which is rather sharply ohligue. Lahial palpi porreet, not so long as in Noonda; maxillary erect, dicaricate, with apex broader; tongue present; ocelli small; anteme (female) simple; sealing rather thin. Fiore wing with traces of two darker lines and a stigma. Hind wings white, semitransparent, without markings.

Type I). tencrulis (liotys), Led. W. L. M. vii. pp. 3 OU, 462, pl. viii. fig. 10.

Ebulea, Guen.
'Type Ef. crocculis, 'Tr., Guen. D. \& I. p. 359; Moore, Ceyl. iii. p. 345.

Ebulea fumipennis, sp. n.

Near fumalis, Gn., but smaller; with fore wing narrower, more vinoms-coloured, as far as can he made out from the two rubled examples in the Waksinghan Collection; the direction of the first line is more oblique ; mainly distinguished hy the hind wings, which are wholly suffused with dark fuscous hairy scales.

California, two females.

Ebulea (?) straminea, sp. n

Fore wing straw-colour, irregularly dusted with tawncoloured scales, more especially at the hase and along the hind margin; first line tawny, strongly curved outwarls, obligue; second line, tawny fuxcoms, makes a large mutward curve, and then apmoximates to the first lite on the immer margin; onticular and reniform stigmata slighty darker, edged finely with brown fringe tawny at hase. Hind wing whitish, without markings, with pale tawn fringe. Heal, abdomen, and underside straw-colour ; outsile of labial palpii tawny.

Expanse of wings 20 millim.
Two females from California.

Ebulea (?) pulverulenta, sp. n.

Fore wings bone-coluw, dusted with rusty or fusenus atoms, especially towards the hind margin; first line blackish from one eighth of costa to one third of immer margin, slightly curved outwards ; second line from four fifthe of costa to four fifths of imner margin, starting from a black costal spot, ruming irregularly straight to above the anal angl", then turning abruptly basewarts for a short distance, and asain at right angles to the imier marsin; in the disk before the elbow of this line is an indistinct dark bluteh; fringe concolorous, with a fine dark basal line. Hind wings sandy fuscous, without markings. Head, thoras, and ab, fomen all bone-colour. Underside sandy wehreous, with the exterior line visible in both wings and a dark discal spot in the hind wings.

Expanse of wings 24 millim.
Two females from Dharmsala.

> Udea, Guen.
> Type U. ferrugalis, Hül., Moore, Ceyl. iii. p. 349 .

Udea sabulosalis, sp. n.

Fore winge whitish ochreous, dusted with dull rust-colour, most thickly in the submarginal area and along the costa; stigmata large and filled up with the same colour, united to the costal streak; first line hardly visible, touching the inside of the orbicular stigma; second, terruginous, runs near to and nearly parallel with the hind margin, only making a small indentation above the imner margin; four subapical costal
dashes, dull ferruginous. Hind wing without markings, whitish ochreous. Head and abdomen the same.

Expanse of wings 26 millim.
'T'wo females from Coquimbo.

Udea indistinctalis, sp. n.

Fore winss pale grey, tinged with fawn-colour and sparsely dusted with blackish atoms; lines and stigmata indistinctly darker, the latter edged with hlack atoms; cxterior line thick, huntly denticulate; central area of wing slightly palee than the rest; a row of small dark dots before the base of the fringes which have a darker medial line. Hind wings dark ochreons, dusted with grey, with an indistinct dank diseal spot and a submarginal line, beyond which the rest of the wing is darker ; onter half of fringes paler. Head, thoma, and abdomen cincreous fawn-colour. Underside whitish ochrernes, dusted with darker, and all the markings very indistinct.

Expanse of wings 26 millim.
One female from the Sierra Nevada, N. America.
Distinguished from others of the genus by the length and narrowness of the fore wings, in which it resembles the other two American species itysatis, WIk., and lelciusutis, WIk.

Udea inhospitalis, sp. n.

Both wings dark glossy fuscous, with the usual markings just distinguishable. IIead, thomax, abkomen, and fringes all concolorous. Underside very glussy, with the markings rather more distinct.

Expanse of wings, of 20, ठ 18 millim.
One female, two males, from Patagonia.

Udea nigripunctata, sp. n.

Fore wings dull fusecus; first line indistinct, curvel; second line fine, black, consisting of small blunt denticulations, each followed ly a paler space; a series of very minute black dots or points lefore the fringes, which are concoloms with the wing; orbicular stigma small, indistinet: renitom, hack, conspicuous. Hind wings rather paler, without distinet markings. Underside paler, with the spots and lines dark and quite distinct.

Expanse of wings 16 millim.
One male from Callao.
Distinguished at onee by the black reniorm stigma.

Cybolomis, Led.
T'ype O. pentadulis, Led. W. E. M. vii. p. 420.

Cybolomia extorris, sp. n.

Fore wings grey, tinged with ochreous, sparsely sealed; transverse lines dull white; first at one third, inclined ontward to the median vein, where it is lent slightly inwards, forming a slight angle, then ruming straight or slightly concave to the inner margin; seeond line, at two thirds, forms an outward curve, nears the first line below the median, and then runs straight to the inmer margin; at the end of the cell an clongate white dot, representing the reniform stigma ; the second line starts from a short hack dash on the costa, which is preceded by a longish and followed by a short white dash; another long white dash before the apex; fringes dark grey, with two inconspicuons whitish dashes below the apex and one above the anal angle. Hind wings dull grey, without markings. Abdomen, head, \&c. all dull grey.

As large as C. siccalis.
Two male specimens from Lord Walsingham's collection, from the west United States of America, but with no exact locality given.

Pachynoa, Led.

Type 1 ? thoosalis, Wlk. xviii. p. 737 (Walleri, Led. W. E. M. vii. p. 391, pl. גiii. fig. 2).

Pachynoa limitata, sp. n.

Differs from purpuralis, Wrk., by its restricted dark markings and smaller size. Front wings pale jellow; costa red-brown, with a red-brown protuberance embracing the reniform stigma and a second smaller one beyond; the two not uniting to form a central band as in purpuralis, and having no rosy margin; base of both wings red-brown, much less in extent than in purpuralis, ending in the hind wing about halfway down the iuner margin; faint traces of two darker yellow sinuate lines on buth wings towards the hind margin.

One male from Borneo.
Hemiscopis, Warr.
Type Il. sufficsalis, Wlk. (Scopula), Warr. Amn. \& Mag. Nat. Hist. 1890 (ii.), p. 476.

Hemiscopis cinerea, sp. n.

Wings fuscous cincrens, with only a slight purplish close, which is more apparent leetween the hind margin and the outer line, where the wings are free from the numerons daker atoms with which the central and hasal portions, hefore rach line, are covered; transerse lines dark brown, not rustcolourch; fringes entirely dark, with a very fine uninterrupted pale line at the hase, preceded by an equally fine dark line along the hind margin. In the hind wing the dank line is slightly bent hefore the himd margin, which it rearlies, indistinctly, at one third from the anal angle; costal reging of hime wing only slightly paler. Pappi dark fuscoms, not rufous. Unterside of Thoth wings pale glossy cinereons, the lines and stigma showing through.

Expanse of wings 22-26 millim.
'Two males from Japan.

Hemiscopis expansa, sp. n .

Fore wing glossy violet-fuscous, with an acherous tinge towards the hind margin; first line tine, ohligue, at me thim, slightly rust-coloured; second line much as in suffiusalis, itark hown, somewhat indistinct, in conserpuence of the darker suffinion on cither sile of it ; stigma hardly visible; fringe dark fuscous violet, with a fine pale line at hase, hefore which the hind margin is narrowly darker. Hind wing with the costal fourth clear pale ochreous; the rest of the wing pinkish fuscous, the immer third decidedly pater than the middle, the line abbreviated, starting from the edge of the costal pale space and stopping short just hefore the hime margin, where it is deffeset towards the anal angle paratlel to the lind margin; fringe as in fore wings. Itral, face, and thorax purplish fuscons ; ahalomen cinmeons. Unlersite of heth wings pale glosey ochreous, more or less sutured with dul! fuscons; the stigma and secomd line showing danker.

Expanse of wings 30 millim.
One female from Dharmsala.

Begotareha, Meyr.

TVpe IJ. cunculis (13. crassicomis, Meyr. 'I'r. L. S. 1ーム, p. 306 (nee Walk.)).

Beoturcha cunealis, sp. n.
Fore wings pinkish fuscons, slightly gluss: a pale lemion-
yellow central fascia, irrecularly etwed on both sides with purplish, more oldique than that in P. crerssiommis, Walk., and much narrowe on the imer margin than on the ensta; space before the himd margin pale clear yellow, with a fine dark line from hofore the apex round the himb margin, begond which the fringes again are rellow. Hind wings with mily the costa pale, the rest of the wing beine dark fusenus; fringe yellowish. Head, face, thorax, and ab, lomen pinkish cinereous. Underside of abdomen whitish; prectus pale ycllow; palpi pale yellow, unsputted ; tibiae all spotsed altornately purplish and white.

Expanse of wings 28 millim.
One female, Port Darwin.
[To be continued.]
LX.-On the Anatomy and Embryology of the Phalangiidie. By Victor Faussek*:

Mr Rusian memoir has just appeared, under the title "Studien iiler die Entwicklungseschichte und Anatomie der Afterspimen (Phalangiitar)" (Arbeit. Petersh. Naturf. Gesellschatt, Abt. Zoologie, Bd. xxii. Lief. : [Arbeit. ants dem zootomiselh. Kabinet d. Petersb. Universität]), and in order to render my paper more readily accessible to readers abroad I offer the following resume of the more impertant results of my investigations, some of which have already been published in two smatler provisional communications \dagger; I shall at the same time refer to the figures which accompany my memoir.

1. My researches were conducted upon the ova of two species of Phalunyium-Cerustoma cormutum, L., and Opilio parietimus, Herbst. 'The ova of these differe from one another in the structure of the chorion and in certain conditions necessary for their development. The ova of Cornutum are of a yellowish colour, which is due to a multitule of yellow granules corering the chorion; in the case of Opritio parictinus the chorion possesses no yellow granules and the ova are pure white. The ova of Cicostoma cornutum, which

[^90]were laid in autumn, at once commencel to develop at the temperature of an ordinary room, and within one and a half to two months the whole cycle of development was completed, and the young animals emerged and thove perfectly well throughout the entire winter. The ova of Opilio patiefinus perished under the same conditions, and were capable of further development only after passing the winter in a nomal state, when I placed them upon the ground. Besides thees two species I also had a few ora of larger size belonzinge to a species which I failed to determine.
2. With regard to reagents, Fiemming's mixture gave the loest results, in addition to Perenyi's fluid and sometimes (fime the carlier stages) hot absolute alcohol. I dil not stuly the formation of the segmentation muclei. The earliest stages which I examined showed the orum divided up into a compact mass of cells; in cach of the latre sepments there lay a large muclens (Tat. i. figs. 6 and 7 of the litssian memoir) The ovom consequatly umbergoes total segmentation and pasees through a mombia stage. The first blastolem (cotoderm) cells split off from the superficially situstod hlastor meres, as is correctly deseribed by IIenking** The spromentation nuclei do not come to the surlace of the ovum, but all remain within the blastomeres. In the Arancidie, as may be gathered from the investigations of Morint, total segmentation also takes place and the ora pass through a blastula stage, having a large segmentation carity. In Phelungium a solid morula is formed, and the ectolerm cells are produced by being split off, as it were, by delamination.
3. The entire orum gradually becomes clothel with a layer of flat eetoderm cells, and thes passes into the bilaminar stage. After the formation of the ectolerm the imer esesmembraus (ookmma) becomes considerably thicker, so that two layers can be distinctly distinguished in it, which, lowever, are closely apposed to one another and never separate. There is an evident secretion of cuticular substance by the ectoderm cells, which gives rise to the furmation of a kind of embryonie membrane; yet this new cuticular membrane does not form an inderendent envelope, but serves to thieken the oolemma. This subsequent secondary thickening of the membrana citellina by the formation of a new euticalar layer secected from the ectederm is comparable to the formation of

[^91]that hasturlemie membrane which is produced from the blastoderm in many Crustacea (figs. 7 and 11).
4. The germinal disk arises at one prole of the orum by multiplication of the extoderm cells. The newly formed lower layer of the primitive streak represents the mesolerm, since the endolerm is differentiated from the begiming. Among the cells of the lower layer a group is spparated off from the commencement, the cells of which are distimgished lyy their size and peculiar apmarance. The separation of this group of cells even preceles the formation of the primitive streak; as carly as the time when the ectoderm cloties the ovim with a cellular layer this group of cells alreaty propects as a little cluster into the interior of the ortum (figs. $!$, 10, 11). This cluster lies, as is subsequently to be seen, in the pusterior portion, although mot quite at the emb, of the ventral streak, and consequently forms a lucal thickening of the ectolerm, which arises almost simultancomsly with the mesoderm, and afterwards furnishes the germ-cells.
j). The nuclei of the large endoderm cells frepuently suffered from the effects of the reagents, and then appeared to be destitute of a membrane (fig. 8) ; but they were well fixed by means of Flemming's fluid, and presented the appearance shown in figs. $7,9,11,12$, and 13 . The nuclei, which are figured in Ilenking's paper mentioned above, also seem to me (at least in some cases) to have suffered from the fixative fluids, and therefore to exhibit no membrane and no sharp outlines. That which, for instance, he considers to be sereral muclei in one cell (ride his fig. 37), I am inclined to regard as being nucleoli of a large nuclens, the membrane of which is destroyed. At the time of the formation of the mesoderm the nuclei of the enduderm become considerably larger, so that in comparison with the cells of the germinal disk they appear quite gigantic. They possess a sharp contour and are very poor in chromatin; ahmust the whole of the colourable substance of the nuclens is concentrated in a nucleolus, which is very glistening and takes a deep stain. We often meet with figures which seem to point to amitotic nuclear division (fig. 13) ; it appears that this muclear division is also followed by division of the cell (fig. 12). At any rate the endoderm cells never become multinuclear, and even cells with two nuclei are rare. I succeeded in determining a similar characteristic nuclear structure in the endoderm (yolkcells) of the Arancider also, in the carlier stages of their development; this had not previously been described by any author (Tegenaria, figs. 14 and 15). In Arancide and Phalangiide there consequently occurs a fragmentation of the
nucleus in Ziegler's * sense ; the muclei, however, to not loze their histogenctic property (see below). The study of the fragmentation of the nuclei has led me to wonder whether it may not be that the so-called "secondary mesoderm " of the Crustacea (Astacus, according to Rechenbach) represents no cellular clements, but muclei in the state of fragmentation.
6. The mesoderm is formed, as has been staterl, from the cetoderm; but during the first period of development a few elements of endodermic origin are also added to it; these are large cells which split off from the endoderm cells (figs. 1:3 and 16). A small number of them separate from the endoderm cells lying peripherally immediately beneath the frimitive streak, and are soon indistinguishable from the cells of the latter; for this reason I was unable to ascertain their subsequent fate.
7. It has already been mentioned that the rudiment of the germ-cells appears in the ectoderm at a very early period and projects into the interior of the ovum. In the carliest stages differences in the germinal rudiment may alrealy be perecised in certain ova. In some cases the rudiment consists of cells with large nuclei, but in others their nuclei to not differ much from those of the cells of the primitive streak. The first stage in the further development of the rudiment of the sexual organs consists in its separation from the ectoderm; its cells become superficially covered by a layer of ordinary ectoderm cells (fig. 17). In somewhat later stages the rudiment of the sexual organs lies sunk in the abdominal nervous system (figs. 18 and 19) ; after the nervous system withdraws into the cephalothorax, however, the germinal rudiment remains in the abdomen behind the cephalothoracie ganglia, where it now appears between two layers of mesoderm, i. e. enclosed in the colom (figs. 19, 20, and 21). In subserguent stages the germinal rudiment with the large nuche consideratby increases in size, and after the emergence of the embryo sewes to form the female gencrative organs (figs. 20, 22, 23, 27, 24, and 29). The germinal rudiment of the second kind (that which consists of cells with small nuchei) remains of inconsiderable size and becomes transformed into the male gene-

[^92]rative organs (figs. 24, 25, and 26). During the first two months of pust-embryonic life the further development of the fenale germinal ruliment and the transformation of the embryonic germ-cells into ceg-cells can be casily traced in young Phalangiitia (figs. 27 and 25). I did not succeed in investigating the final development of the male germinal rudiment ; in young harvest-men the latter appeared as a tolerably small group of ecells lying in the abdomen immediatcly behind the nervous system, and, like the female rudiment, separated from the latter and from the body-wall by a layer of loose comective tissue (figs. 2.) and 2.j). In size the male rudiment is far inferior to the female cluring the same period of development. These embryonic germinal rudiments form in the first place the commencement of the actual germglanls, i. e. ovary or testis as the case may be ; other portions of the reproductive organs, male as well as female, are completely wanting at the time when the young emerge, and their formation devolves entirely upon the post-cmbryonic development. The female as well as the male germinal rudiments are enveloped in an extremely delicate membiona propria containing very small scattered nuclei. In Phalangium thercfore there takes place a very carly separation of the germ-cells, similar to what we find in Moine, Chironomus, and the Aphidæ.
S. The endoderm cells preserve their general form and structure without any changes worthy of remark until the later stages of development; they merely become somewhat smaller. But the fragmentation of the nuclei continues for only a limited period. When the nervous system begins to develop the nuclei of the endoderm cells have already lost the characteristic sigus of fragmentation; they have now become smaller and no longer possess their former peculiar structure. The definitive formation of the mesenteron takes place quite at the end of the embryonic development, after the external form of the embryo is alrealy complete, the nervous system concentrated in the cephalothorax, and the portions of the alimentary canal which are derived from the ectoderm (stomodxum and proctodxum) are fully developed. The visceral layer of the mesoderm forms folds, which penetrate deep into the yolk and divide it into separate masses (the subsequent hepatic sats). The central portion of the yolk remains undivided and forms the actual mesenteron. At the close of the embryonic development the endolerm cells appear to undergo a process of degeneration; they lose their contour and the yolk-spherules lie at liberty; in some cases small roundish nuclei, which are sometimes amoboid
and sometimes larger, are found between them. At the periphery of the yolk, where the splanchnic layer of the mesonderm adjoins it, there appears (cven before its division into the future hepatic sacs) a number of small cells with small round nuclei; these cells, which in all pondability split oft from the large endonderm cells, sottle down upwn the visceral layer of the mesoderm and form the epithelium of the mesenteron. Thas it is not the endoderm cells themsions but their derivatives which give rise to the eppithelimm of the mid-gut (figs. 31 and 32).
9. The coxal glands of an adult harvest-man consist of three divisions:-(1) the imner cnd is expanded in the fom of a sac, and constitutes the terminal vesicle ; (2) the terminal vesicle narrows and passes into a rery long conmoluted tube, the tulse of the cosal gland, which has long been known (Malpighian ressel) ; (3) the tulie empties itself into a larse thin-walled sac (urinary hladder), which opmos th the exterion at the side in the cephalothoras, between the conae of the third and fourth pairs of less. The terminal resiele of the coxal gland has hitherto never been deseribed. It is situated in the cephaluthoras as an clongated saccule, at the side of the ganglionic mass surromuling the esmphaves, at the have of the third pair of legs; at the anterior end the saccule bends downwards and somewhat inwark, rums a little way backwards, and terminates blindly near, and on the inside of, the extemal opening of the coxal glami (fig. 50 , es'). In transerse sections we therefore see two lamina, one alove the other (fig. 23, $\mathrm{cs}^{2}, \mathrm{cs}^{1}$); but on serutinizing a series of sections we can casily convince ourselves that both lumma pass into one another anterinty, while posteminty the bwer saccule (the doubled-down anterior end of the terminal vesicle) ends blindly and the upper one becomes narower and passes into the tube (fig. 50, cn^{1}, es^{4}, cor ${ }^{2}$; fis. $3.4, \mathrm{cs}^{*}$; fig. $8.5, c^{2}, x^{2}$). This tube, at first execssively thin (tigs. Si and $\ddot{z}^{5}, \operatorname{cow}^{*}$), heomes gradually wider, and passes into the long-known convoluted tuhe, the "Malpighian vesiel" of Ilateal, the true significance of which was first rewgnizel by Loman *. The tube of the cosal gland forms a complicated coil, passes towards the dorsal side of the boly, where it makes a hopr ruming parallel with the heart, then retums

[^93]towards the ventral surface, and opens into the minary sac (figs. $34,8.5$, and 50, cor, $c^{1}{ }^{1}$). The later (figs. $33,31,3.5$, and 50-IS', O. $/ 15$) extemls a long way lackwarls into the abomene, while in front it stretehes beyonl the peint of attachment of the thied pair of legz; with its anterior blind end it closely adjoins the bow-shaped bend of the terminal resicle (fis. 50). Xin far from its anterior end there issues from the urinary sac a toluably narow duct, which pasies downwards and oprens to the exterion between the coxa of the thind and fourth pairs of lows (Loman) (figs. 3:3, 5) O. MS). It was impussible to examine the histological structure of the teminal resicle more clusely, since this portion of the gland was fomed to be in a rather bad state of preservation in the preparations. The structure of the tube (ligs. 37, , 35) did mot exhilit any considerable deviations from the typical structure of coxal glands, as, for instance, it has been described by Lankester and others in Soorpio, de. The Wall of the urinary sac (fig. 36, surface view) consists of a membrana proprite with small and a parement epithelium with large nuclei ; muscle-fibres were not found in it. The remainder of the chapter on the coxal glands is deroted to an analysis of the papers upon the coxal glands of the Arachniels, especially to a criticism of the views of Eisig\%, according to which the coxal glands are homolughous not with the nephridia, but with the setæ-forming glands ("Borstendriisen ") of the Amelids. I may sum up my own views as follows:-(u) the coxal glands of Thalunyium consist of three divisions-terminal vesiche, tube, and urinary sac; (l) the same divisions are found in the antennary glands of the Crustaceat; (c) these three divisions are homologous with the three portions of the nephridium of Periputus (and Amnelids), with the fumel and terminal vesicle (in Peripatus-in Annelids the aljoining portion of the coelome), the tube, and the expansion of the latter at its distal end ; (d) the coxal glands of Limulus and Arachnids, as well as the excretory organ of the Zü̈u of Eryphica described by Lebedinski \ddagger, and the antemary and shell-glands of the Crustacea are homologous with the nephridia of Periputus and Amelids; (e) Eisig's hypothesis as to the homology of the coxal glands of the Xrachnids with the

[^94]spiming-glands of Peripatus and the seta-forming glands of the Annelids proves to be untenable.
10. The cephalothoracic glands described by Krohn ate constituted in the final stages of development as two pyrifom invaginations of the ectorlerm at the side of the two eyes (figs. 40, 41, and 47, c.dr.). In the ectukerm cells of the glands there commences at an carly period the sesertion and accumulation of a dark pigment which forms two black spots upon the surface of the embryo, which is still protiotly white; these spots are visible like the eyes through the efomembranes. Simultaneously with the glandular structures which have been described there exists in the embryo a pait of provisional organs of a glandular character. In Ciercestomen cormutum these appear as two groups of large cells, lying one on each side in the cephatothorax near the eyes. Extermally these cells are directly covered by the eetoderm, and they appear to be separated from the body-cavity be a thin membrance propria. In addition to a large nuckes the cells of this organ enclose peculiar concretions, which take a deep stain from carmine. Although covered by the ectoderm these cells nevertheless possess a communication with the outer world by means of a special aperture, throngh which the concretions which are formed in them are conveged to the exterior. In the sections a compact mass of these excretions generally lies at this aperture (figs. 39, 40, 41, 44, and 45). In another undetermined species of Plulungium the glandular structure of this organ was even more pronounced. In this case it consisted of a tolerably large hemispherical emplex of cells, which projected freely into the berly-cavity amb was attached to the ectoderm by a relatively smaller portion (figs. 42, 43, 46, and 47) ; the apices of the colummar and distinctly defined pyramidal cells of this organ met tosether in a point, while their broad bases formed a hemispherical surface. In each cell a large nucleus was situated unt far from the base, while the excretory products were aceumulated nearer the apex. The external aperture of the gland hand the form of a small pit, filled with secretion deeply stained ly carmine; short rods of this secretion radiated from this pit between the apices of the cells (fig. 43). But these glants had not exactly the same structure in all preparations of this species of Phalungium; in some cases they were suggestive of those of Cerastoma cornutum (tis. 45). It the same time the embryos investigated were all at the same stage of devehopment. I have consequently found in two species of 'lhelensfum during embryonic development a peculiar glandular ongan, which lies in a simgle pair in the ecphatutheras,
between the eyes amd the cephatothoracic glands on each side, and probably has an excretory function. In the two species examined this organ exhitited considerable differences in structure. The organs are purely embromic ; in the yourgest specimens of harrest-men which I was able to examine I no longer found any trace of them. I failed to clucidate their fate during the fransition to postembryonic life. This pair of glands reminded me forcibly of the dorsal organ of the Mysida, as recenty described by Nusshum * and Butsehinski \dagger. Althongh I did not sucesed in observing its first appeamace, I nevertheless consider it to be very probable that it appears, precisely like that of 1 Ihysis (at least in the case of the secomel species of Thulamgiem), in the form of an invagimation of the ectoderm. Similar orsans have been observed by Watase \ddagger in Limulus, where they were also found to resemble the dowsal organs of Blysis. Kingstey and Patten, however, consider these organs in Limulus to be of a sensory character §. As reqards Phelangium the glandular character of "the lateral or dorsal organs" camot le open to the slightest donbt, as is proved by the numerous concretions enclosed in their cells and their excretion to the exterior.

LXI.-Description of a Third Species of the Gemus Nyctophilus. By Oldfield Thomas.

The genus Nyctophitus was in Dr. Dobson's' Catalogrue of Bats '|| considered to consist in 1878 of only a single species, the Australian Long-eared Bat, Nyotophitus timor:nsis, a species with very much the facies, and evidently taking the place in Australia, of the European Long-eared Bat, Plecotus auritus. In 1888 बI I had the pleasure of describing a second species of the genus from New Giminea, I. microtis, which

- Nussbaum, "Zur Embryologie von .Mysis chamaleo," Zeitschr. Neuruss. Naturf, Gesellschaft in Odessa, xii. Bd., 1887.
† Butschinki, "/Zur Entwicklungsweschichte der Mysiden," Zeitschr. Neuruss. Naturf. Gesellschaft in Odessa, xr. Bd., 1890 ,
\ddagger Watase, "On the Structure and Development of the Dìes of Limulus," Johns Hophins Univ. Circ. rol. viii.
§ Kingsley, "The Ontoreny of Limulus," Zool. Anz. 1890; Patten, "On the Origin of Vertebrates from Araclunids," Quart. Journ. Mier. Sci. xxxii., 1890 .

II P. 172.
© Ann. \& Mag. Natt. Hist. (6) ii. p. 226,
Ann. \& Mag. N. Hist. Ser. 6. Vol. ix.
had so much shorter ears than I. timorensis as to have no general resemblance to Plecotus; and I now have to describe a third species with cars smaller still, so small, in fact, as to be not longer than those of average spocies of Vesperingo. In other respects the new species is absolutely a Vyctophitus and shows no approach to other Vespertilionine genera; so that the long ears of N. timorensis may be presumed to be a later development within the genus, and, judging by the abundance and wide distribution of the specieg, a most successful one.

The type specimen of the new species was obtained by Mr. J. J. Walker, of H.M.S.' Penguin,' to wh se exertions the National Museum is indebted for very large collections in various branches of natural history, and in whase honour I propose to name it

Nyctophilus Walkeri, sp. n.

Allied to N. microtis, Thos., but considerably smaller and with smaller cars; these, when laid forwards, do mot quite reach to the nose-leaf; they are, however, connected across the forehead by a band about 2 millim. in depth, ant in this respect resemble those of N. timorensis; besides being shorter they are decidedly narrower than those of N. mierotis, and their inner marwin is much less convex ; the small lobe on the imner surface of the base of the outer margin is, as in N. microtis, short and well defined, instead of being long and passing gradually at each end into the main outer margin, as is the case in N.timorensis.

Other characters apparently as in N. microtis, exeept that the teeth are smaller and weaker in proportion, and the fur is shorter and paler in colour, especially on the under surface, where the hairs are tipped with dirty white.

Dimensions of the type (an adult female in ale rhol) : -
Head and body 45 millim.; tail 36 ; car, length above crown 10%, breadth 9.5 ; tragus, length of internal margin 43 ; forearm 835 ; lower leg 15 ; hind font 55 ; calcar 12. 'Tip to tip of upper canines $3 \div 4$.

Hab. Adelaide River, Northern Territory, Anstralia.

BLBLAOGRAPHICAL NOTICE.

 Sicard, Doyen de la Faculté des Sciences de Lyon. Avec 94 figures intercahes dans le texte. P'aris: Libraire F. B. Bailliere et Fils, 1892.

Tus little volume contains much information relating to the deselopment of amimals and the peculiarities of their life-history in all its main outlines, heriming with the asexual forms-parthenogenesis establishing a "passige" to the sexual. Sexual evolution in the Darwinian semse - that is. from the variahility where the canse is unknown, gradually developed by natural selection finds little or no place in it, notwithstanding its title. But we have numerous facts respecting semondary characters, amounting in some species to dimorphism. Sexual selection, it is contended, tends to develop such characters, for, as the greatest dissimilarity favours progress, whatever has the effect of diminishing it "is in opposition to the teaching (dommess) of biology." "Many points remain obscure," our author admits : for instance, among insects the occurrence of apterous females in species closely allied to others where the sexes are searcely distinguishable.
l'erhaps the most valuable part of the work is the account of the development of the embryo, including a notice of the once hotlycontested gastram-theory. " Differentiation of the sexes" and "of secondary sexual characters in general" follow. The seventh chapter applies to man only-his anatomy and "mental constitution." The concluding chapter treats of the rarious races of mankind, illustratel he a mmber of chamacteristic portmits, and giving many curious details: the lore of ornamentation seems predominant among the males of savages.

Briefly, the work is a useful summary, a few still-disputed points excepted, of the present condition of our knowledge.

MISCELLANEOUS.
 On the (remus Polychersia of Hiebner (at (rionu, of Plusiin! Muthe). By Arthur G. Butler, F.L.S., F.Z.S., \&ec.

In his 'Verzeicl-miss bekamter schmettlinge,' at p. 20. 1 , Hibuer founded a gemn Polychrysia on the single European species P. mometu. The characters given for his genus were, an usial, ralueless; but the cenus itself is a good one and must be adopited. It is synonymous with the genus Deve of American authors and of Walker's 'supplement,' hut has nothing to do with the typical species of that author's genus.

Walker deseribed his gemus Dera in the twelfth rolume of his 'Catalugue of Lepidoptera Heterowera,' p. !nfe, and included in it two species, I). stimeltans, = Plusiondynta Thomer. (iuen., and I). cmdicoms. $=I^{\prime}$. chateytuidus (inan. On the following page he deswined another new genus, Giadera, with two species, G. incituns and ri. irpellons, honth without lowalities, though he comeluded that G. repellens was Brazilian. As a matter of fact both are natives of Jamaica.

Now as P^{\prime}. compressipulpies, from the [nited states, is the :Spo of P'usiodontu, and differs from all the other species associated with it in its pectinated antmme, and as the speries of D, wand rion and differ from one another in no character whaterer, the bulk of the apecies of Gucnée's genus Plusimilouta fall into Dowa. Walker; Whilst the species referred to b ene l,y Wialker, (irote, and myself subsequently, fall into Polychrysia, Hübner.
The genus Polychionsin, in my opinion, is a true Plusiid (whereas Dem helongs to the (alpike): it differs from typical Plusin in it enormonsly developed Deltuid palpi, the terminal article of which is cursed. compresed, and tapering. the fringe of sates being elongated below the article; the outer margin of the primaries is usually, but not inrariably, subaugulated.
 from Japan; P. c-aureum, = Plusia c-aurerm, from Europe ; P. miKudinu, $=$ Plusiu mikadina, from Japan; P. purpuriyeru, $=$ Deva purpurigera, from the United States ; P. moneta, $=$ Plusia moneta, from Europe: and P. pelligerill $=$ Deal pulligea, from the ['nited States.

Of the abore species P. c-aureum and P. mikadina are nearly allied, hut the former has the golden marking on the centre of the primarles of a \circlearrowright-shape, whereas that on P. miloulime is commashaped, \checkmark; at the same time it is quite posible that a large series will prove this to he an insufticient distinqui-hing character.

Dir. von Lendenfeld on the C'entral C'crity in Luplectella. By E. A. Mincmin.

 Lendenfeld calls me to task for having, as he says, attributed to him the statement (which he well herms "preposterans") that
 forming part of the inhalant ssstem. He adds that he never doubed the exhalant nature of the central cavity in Fompothle and that he fails to see how any une can gather from his statements such a meaning as I impute to them.

No one would sather from reading 1r. von Lembenields note that everything I intertel as to his nginions was supperted hy full quotations from his writings, and I will therefone content myself by merely amplifying what I have already written.

In the first place I quoted from his iMonograph of the Homy

Sponges, p . 757 (by a misprint it cante out p. 717), as follows :"In the tubular implutella usperyillum and in allied forms the central carity . . . appears as a preoscular tube." In other words, the central cavity is of exhalant mature. Well and good! bont on the wers next prace of the same work we read, "The eribriform membrane which is stectched over the widn terminal psendosenha of Dendrille cavernosu, covering the entrances to the vestibular cavities, is very remarkable. I do not hesitate to compare it directly to the lerminal sieve of Eupluctella asprofillom. I think it may not he impomible that in some of the cop-shaped or tubnlar Hexactinellida the central cavity is, like that of Domprillen coernemse, an inhalant vestibule and not a prewsenlar tube." That is to say, the sieve-membane covering the eentral cavity in Euplectoln is compared direetly with a similar sieve covering an inhalant space in another sponge. The only rational conclusion from such a homolory appeared to me to be that the central space in liuplectelle was to be rerarded as inhalant also. In commenting on these statements I concluded by saying it was not necessary to point out the contradictions in which the author had landed himself. I only hope I have made it clear how I gathered from Dr. von Lendenfeld's statements the meaning I imputed to them. I do not quite follow Dr. von Lendenfelds meaning when he speaks of a "hostile motive" having prompted me in my interpretation of his statements, and caunot but deprecate the introduction of personalities into a scientific argument.

> Zoulogical Station, Naples, April 8, 189?.

On some Specimens of Dendroclara Dohruii, Weismam. By Dr. Raffaflo Zola.

On the $2: 3$ rd ()ctoher, $1 \mathbf{1} 91$, the Director of the Zoological Station at Naples, with his usual courtesy. gave me some hydroids (Sertularella, Budendrium, ('u,rp, muluria) which the fishermen had hrought from the coasts of Xisida. Amongst these were a few small colonies of hydrosome which at first sight appeared to me to be very similar to Ciorydendrium, although perhaps the zooids were somewhat smaller than those of C'oryllendium purasiticum. One of these colonies grew from the stalk of a ciompumblerian in the same manner in which the trunks of Corydendrium putrusiticem spring from those of Eudendrium, so that the resemblance between the two was the more striking.

On bringing these hydroid colonies under the microscope, I observed some medusoid buds under the neck of the zooids; and in this, as weil as in other respects, the hydroids corresponded exactly with the Dendiocluct Dolvaii described by Weismann, whose observations, as far as I know, have never yet been called in question.

These colonies were about \geq centimetres in height, somewhat
copiously ramified, and bearing branches on the right and the left of the trunk, although less frequently on the latter side than in the cave of those described by Weismann. The conosare not only at the base of the colony, but also close to the summit. is formed, or rather issues, from two tubes deseribed by Weismann, the outer one bering smooth and straight, while the inner one has undulating lines. The zooids are club-shaped, with about twelve scattered tentacula, of which some were rather longer than the rest.

The medusoid buds proceed from a distinct prediele, attached to the stalk of the supporting hydrosoma. From their structure, at Weismann observes, it is obvious that they become liberated and able to float away. I kept my colonies for two or three days. living in ressels in which the sea-water was constantly changed and kept in motion, and 1 was thms able to obtain a certain number of melusalike zooids, which swan frecly about like the medusio of a Bomeminvillie or a Podocor!me, and on comparing them with the mednsoid buds of Dendrocluere it was erident that they were the ultimate evolutionary forms of the latter.

The detached meduse of Dendroctava Dolunii are somewhat larger than those of Pohloworyme entwen. They have a well-developent umbrella with prolngations: the manubrium, or pediche is wh the other hand small, mot reaching farther than the midelle of the umbrella, and is somewhat bottle-shaperd with small ramifications at its mouth. About halfway down appear four yellow-green radiated spots, "the gonophores," which have a smonth surface. There are four radiated canals, which are flattened as in the family T"uriche. It the base of these there is a delicate longitudinal fibrillation. ()f the eight marginal tentacles four are radial in continuation with the radial canals and four are intermediate, the base of all beingexecesively dense, while the lower side, as well as the distal extremity, bears an orange-coloured spot (ocello).

Weismann considers that this medusa should be placed in the family Tiarider (Hwekel), and in the sultamily of the P'omederiles, while it may posibly be referred to the gemus l'aul., (Lesson) or to Conis (brandt). A close examination of the adult zooids shows that they have the characters of the Tiarible *and of the sulfamily Penderide, but cannot be referred to the gemus ('mis, as they have no double crown of tentacles barang ocelli on the shonter and upper of those bodies. This form may prosibly now admit of heing included in the genus Peendout at any rate I an mable to detect those urticating threads (Nesselstreifen) of the umbella which distinguish the latter genus.

The polypoid form has been referred by Weismam to the family Clacide. If, however, we follow Allman the fact of its having gonophore medusoids would lead us rather to place it in the family

* E. Hreckel, 'Das System der Medusen.' Jena, 1879, I Theil, 1 Hialft, p. 40.
† A. F. Allman, 'A Monograph of Gymmoblastic, or Tubularian Hydroids,' 1872, London.
of the Tumbid, from which we must at the same time remove the genus Coryllewlitim, which Allman had included in it on aceount of the uncertanty which still exints to its reproductive organs.

In regard to the hahitat of this form, I may observe that my specimens were fond in a very different eondition from those of the first specimen described. Weismann had a colony which had heen taken from a depth of in to al metres. On this accoment he refers to Dendroclava Dolernii as a form living at great depths. My specimens on the contrary had heern taken off the coasts of Nisida, and it is only necessary to glance at a hathymetric map of the (iulf of Poozunli to see that the island of Nisida is surrounded by waters of very inconciderable depth.-B.llitino Seimatifio, N.. is e 4, Auno 1891.

On the Development of Bythinia tentaculata. By Dr. R. ғ. Ereangre, of the Heidelberg Zoological Institute.

Haring been oceupied for a long time with the embryology of Gastropods, I thought it desirable to test upon another Prosohranch the observations which I had made upon P'uledine civeipura. For this purpose Bythinice tentuculutu appeared to me to be most adrantageous, since all the stages of development are to be had in any quantity, and the youngest are very suitable for sections on account of their relatise size. Another circumstance strengthened me in my intention. Bythinia has already been the subject of a lengthy paper hy P'. Sarasin * Whese results were by no means to be reconciled with these which I had attained in the case of Pedpelime. The sequel will show that in alnost all important points I have arrived at precisely opposite views to Narasin, and that the development of $B_{i j}$ ithinia possesses a great similarity to that of Paludince.

After the expulsion of the directive vesicles the segmentation proceeds in the manner which is typical for the majority of (iastropods, and conforms closely to that of Planorbis and Neritina. Immediately after the dirision into two it becomes evident that the cells of the germ do not all divide simultanconsly, but that the macromeres which are first formed gradually give rise to a large number of micromers. I traced the segmentation as far as the stage with fortr-eight cells: I did not succeed in following it further, on account of the excessive number of segments. By the time this stage is reached a segmentation-carity of considerable size has been dereloped, which som afterwards acyuires its greatest dimensions. It the regetative pole the four macromeres only are present, while the micromeres, which give rise to exelusively ectodermal elements, gradually diminish in size from the regetative to the animal pole. The macromeres exhibit precisely the same arrangement as the corresponding cells in Planoibis. The anterior and posterior are in contact with one another, forming a sharply

* P. Sarasin, 'Entwicklungegeschichte der Bythinia tentaculata.' In-augural-Dissertation. Wiesbaden, 1882.
defined furrow between them, while the two lateral cells are serparated from one another by the auterior and posterior ones. Thus the blastula already exhibits a bilaterally symmetrical structure.

The hindermost macromere may be terned the endo-mesoderm cell, since it divides into two cells, of which the one retains the position of the posterior macromere, while the other, moving in the longitudinal axis, passes more fowards the animal pole. This cell then similarly divides into two. hut in the direction of the lomgitndinal axis, and the two cells thus producel are the primitive menderm cells, which lie next one another on both sides of the longitudinal axis, dorsally to the posterior macromere.

After these processes have taken place the three other macromeres divide, hut simultaneously with the fourth, which had superedeld the endo-mesodern cell, and furnish the endoderm cells of the wall of the archenteron. In the meantime the blastula flattens out dorso-ventrally, since the endoderm cells which have arisen from the macromeres, as well as the t wo primitise mesolerm cells, are surrounded by the ectoderm and presed into the serment:timpcavity. With progressive flateming of the germ the archontom is gradually formen by in vagination of the endolerm, its walls twing constituted liy the progeny of the four macromeres. The flateming finally becomes on great that the sogmentation-carity in reduced th a cleft, while the blastopore forms an chongated oval which is sithated in the longitudinal axis.

During this time the two primitive mesolerm cells, which on the invagination of the endoderm had come to lie at the hinder pule in the segmentation-carity, have given rise to a mesodermie band on either side of the archenteron. Simultanemusly with this the embryo has also lost its rounded form, and when seen from the ventral or dorsal surface appears as a spherical triangle with nearly equal transverse and longitudinal ases, and with the apex direetent forwards and rounded angles.

At the next stage the blastopme forms a long slit, which necuphes the whole length of the rentral side. The communication between the archenteron, which possesses a tolerably wide earity, and the exterior persists at about the middle of the halathpore. whale the edges of the hastopore cisewhere grow together. The mouth proceeds directly from the persisting communieation hetween the blastopore and the exterior. The first traces of the velum now also appear in the shape of a double row of char ciliated ectederm cells. which form a girde directed obliquely to the longitulimal axis, amd which hisects the longitudinal axis in the dursal median line amd in the ventral median line passes in front of the anterion end of the blastopore. The mesoderm has herome hilamellar and forms a saccule on each side on the right and left, which pass into one another at the hinder pole and grabually grow nut forwards and dorsally. The corlom lying between the two layers oi the mese dorm is distinctly visible.

The arehenteron soon changes its shape. It is breater in fromt, with a wider lumen, and narrows towards the himder emb, whewhy its lumen beonmes correspondingly smaller. In lateral riew it is

Ahsally convex, ventrally coneme. The shell-ghand now appean: upen the dersal surface of the himker end as a thickening of the ectolerm, amd simultancomsly the rudiments of the cerebral gamglia arise as lateral thickenings of the velar area. At this sage there further arises the glandular pertion of the primitive kidney as a little heap of mesoderm eells. It the hinder end of the blastoporal Groove a little pit is olservable, which marks the spot at which suhseguemtly the eontracted end of the arehenteron breaks through the ectoderm to form the anus.

The wesphagus animes hy an invagimation of the ectoderm at the spot where the month had originated from the blastopore, and exhibits in from of the mouth two large clear cells which belong to the velum. The velum itself is distinguished by the very large size of its cells, which show the concretions described hy siranin, and are ciliated. It extends a very long way backwards.
sonn after this the font is formed as a prozuberance of the ectoderm on the ventral side behind the mouth. The cesophagus itvelf already exhibits the exagination of the radula pouch. Shell-gland and cerehral plates continue to increase in size, and the mesoderm grow: round the archenteron more and more in a dorsal direction, while rentrally it gives rise to a considerable mass of cells, which is the rudiment of the pericardium.

The primitive kidney is brought into communication with the exterior by meaus of an ectodermal excretory duct lying beneath the hump-shaped lateral projections of the velum.

The embryonow grows more lengthwise, and its anterior end is distinctly marked off from the posterior, which bears the shell-gland. since it is separated from it by the foot. The kidney arises on the right side from a thickening of the pericardium; the latter has meved more towards the right and in a dorsal direction, owiug to the torsion which now comes into play. The mantle-ridge appears somewhat later, and simultaneonsly there is formed in its ricinity a small invagination of the ectuderm. the rudiment of the excretery duct of the kidney.

In the rudiment of the pericardium, which was hitherto solid. a lumen arises, the pericardial carity: the same thing happens in the kidney; the two lumina come into connexion with one another by a narroir opening, white the kidney itself opens by its excretory dure into the mantle-carity, which has arisen through the outward grow th of the edge of the mantle. The heart is formed as an invagination of the wall of the pericardium : it becomes constricted in the middle. and is thus divided into the auricle, which is situated in front, and the ventricle, which lies behind.

The ganglia arise in precisely the same way as in Palueline *, as separate thickenings of the ectoderm, which sever themselves from their place of origin, sink inwards, and theu, and not before, come into connexion with one another by means of commissures and connectives. There is nothing to be seen of a continuous ingrowth of

[^95]wetoderm lying in the median longitudinal axis, from whiek. acording to Sarasin, the pedal. intestinal, and wiseral ondia proreed, and which he homologizes with the ventral nerve-cond of the Anuelids.

In opposition to Sarasin I must lay stress upon the following points. There is in Byflimin a separate mesolerm. whim arios trom the endoderm, and the development of which from the two primitive cells is traceable step b, step. The archenteron proweds from an insagination of the endoderm. The whole mindent. i.f. stomach and liser, as well as end-gut tif we can use the torm at all ats applied to mollusks), arises from the archenteron, which always exhilits a distinct lumen. The mouth proweed- dirently from the hastopore, accompanied br an inragination of the ectoblerm, whith forms the osophagus ; consequently a complete cluare of the bhastopore does not take place. The anal opening corre-pomls to a small pit at the hinder end of the hastoporal ernose. Primitive kidney and kidney, apart from their ectulermic excretory iluets, are of mesudermic origin: the same is true fir the heart and pericandium. The ganglia arise completely separate from one another, and ho mot come into connexion until afterwards.-Zoologischer Anzeiycr, xiv. Jahrg., 1891, no. 376, pp. 385-388.

On certain Reproductive Phenomena in Cirrhipedes. By M. A. Grutel.

The history of the preliminary phenomena of fertilization in the (irrhipedes is little known. Darwin, relying on the anatmical characters (length of the penis) and on the obsersation that the ora are not ripe at the same time as the spermatozon, concludel that reciprocal fertilization must take place, but never actually witome- i it. I was fortunate enough, during my stay at the seasile . th make a few interesting observations on this subject.

I had in a tank of the aquarium several specimens uf Balames [1 ; fintinnalulu,n) which had been living for anme time and were abhlt : my attention was attracted by the very peculiar mosements of one of them.

The morements of the cirri were accelerated, then all at wnee the latter stopped, opened hehind, and from the midet of them there arose a sort of very mohile tentacle, which was moved th the right. to the left, batwarts, and in erery direction, as if recking tior something: this was the penis. Soon a contraction set in and (mission tork place: the penis then resumed its position thetween the cirri, which also resumed their ordinary movements, until the occurrence of a fresh series of similar phenomena.

Mry attention mee directed to this point. I was nut long in di-corering analogous phenomena in Lepas anatifera.

Indiriduals of the latter species cmbtrace one another to a coveain extent with their cirri. It frequently haphens that the fertilized

* These investigations were carried out at M. de Lacaze-Duthiers: laboratory of experimental zoology at Roscoff during the months of August and September, 1891.
anmal scizes the pronis of the male letween its cirri and drase it inside its valves, where it retains it, unless the latter, as is offorn the ease, premerntes thither hy itarli. The anmals semain in thit way, pressed one against the oher, producing little movements of contraction. Bmission takes phate, and the sperm is always deporsited, in the form of a gelatinons mass, beneath the ovigerous fremum on each side of the body. On each oceasion that I noticed it it was the smaller animal of the two that payed the part of the male.

If there are several sperimens of L pues or Bulamis whose spermatozoa are ripe surrounding another individual which is ready to be fertilized, it is not unusual to see several of them participating in the fertilization of the same individual.

Another phenomenom is frequently witnessed which is strange ennugh to he wortly of mention. Two Buleni (B. tintinnalmlam) are attached to the same fragment of rock, beth of small size, and both with the cirri extended in the same direction. The hindermost one withes to fertilize its ncighbour: it tries, but its penis is too short and c:mmot reach as far as the orifiee of the chamher in order to deposit its sperm there. Then, by a simple process which might be termed ingenious, it turns abruptly in its chamber about three quarters round, and thus diminishing the space which separates them by the length of the orifice of the chamber, it is able to succeed in fertilizing its neighbour.

From these facts, and others which camot find a place in this note, we must conclude that the ordinary mode of fertilization in the Cirrhipedes is reciprocal. When this method is rendered impossible. hy varions circumstances, more especially by the fixation of the animals, self-fertilization may also take place.

There is no actual copulation, but werely approximation of the sexes and deposition of fertilizing matter in the neighhourhood of the oviferous females.

It was impossible to determine the existence of reciprocal fertilization in Pollicipes: I am inclined to beliere that in this case there is only simple self-fertilization.-('omptes Rendus, t. cxiii. no. 20 (Nov. 16, 1891), pp. 706-708.

On the Embryogeny of Sagitta. By MI. S. Jourdins.

Olservations made on the development of Siegittu have led me to differ from Kowalewsky and Bhitschli in my conception of the formation of the archenteric earity, which appears in these animals at the gustrulu stage. According to the naturalists mentioned, thicavity, which is simple at tirst, slould divide at its anterior region into three lohes, while preserving its simplicity in its pesterion portion. The lateral lubes of the tripartite region would constitute the general body-carity : the median lobe would form the digestive canal of the perfect animal. This riew appears to me to be erroneous.

The archenteric carity, open behind at the blastopore, which occupies the region of the future anus, gives rise not to the general
 the lining of the portion endond by embold repreants not manblast, but hypoblast.

Aecording to this, the development of the dimutive carnal mast hee maderstond to proceed as foblows:- It the mal prole of the ovim there appears a depresion, which is clothed by the chiblate whioh
 the subja ent layer, that is th suy the hymolitat, whing yiul- and becomes eaten away after a certain time. In this way a communication is established hetween the hymblatio ravity atm the experior. by the medium of a permanent mouth. As a matter of fact the archenteron does appear trilobed in front. hat thie lohes lwobeng t the digestive canal. Later on, the lateral lubus (ammener tw digenerate and disappear. Then the hlestopere aboco. amb the ans: is formed in its ricinity.

It the same time as the atrophy is taking place in the lateral lobes of the archenteron, a delamination -ets in lectwon the whiblast and hypoblato and a moshliatic cority is formm. whieh wall subsequently become the general body-cavity of the animal.

In propertioni as the posterior portion of the embers inmean. in size, the separation between the two layers jucreases, and there is constitutel posterionly a spacinus eavity, tramomal ly two mananteric bands. of mesohlatic origim. Whath attanh the dizertime cand to the somatic ralls. These mesenteries are finally absorbed in the posterior rewion of the horly, where the somatio favit: i- single in the adult.
()n the sides of the terminal inte-tine cellular proliferations aria.. at an early period, whene are derived the male amd femalo weats. The latter, therefore are not developed, as has hern aweetent. in the (avity of the intestine. but ontaide in, in the -phere realtine from the delamination of the epihast and hyphhlat, of whith we have spoken abore. We found it imposible to determine with certanty the part played hy each of thene two laye.es in the formation of the cronital glands, and conserumbly to diseover wheher Bhmant van Beneden's theory is here confirmed.

We hare nothing to add to what has been stated as to the mode of formation of a cephalic and sumatic sention of the erenerel brab carity.

We aseertained that the musculature. which is anderably comples in the cephalice region, is derived from the meablat of the eomesponding dirision.

We were not able to study in sufficient detail the derelopment of the nerrous system. Nerertheless, from the ensemble of our
 type is not so distant fom the Vertehrato as is cenerally suppose

S'agitta, the Ascidians, and Amphiowns appear to us to constitute a special gromp. in whith we ohserve the appearatnee of the carlion lineaments of the Vertobrates, and which, for this reaton, we miztit
 no. 1 (Jau. 4, 1892), pp. 2S, 29.

THE ANNALS
 ANI)
 MAGAZINE OF NATURAL IILSTORY.
 [SIXTII SERIES.]

No. 54. JUNE 1892.

LNII.-Natural ITistory Notes from II.11. Intiun Marine Surey Steamer 'Investigutor', Communder' Richurd Frazer Hosfiyn, R..N.\%, commanding.-Serics II., No. 3. On Utero-gestation in Trygon Bleckeri. By A. A lcock, M.B., Surgeon I.M.S., Surgeon-Naturalist to the Survey.
[Plate NIX.]

Contents.

§ 1. Introduction.
§ 2. The Pregnant Female and the Gravid Uterus of Trygon Bleekeri.
§ 3. The Secretory Uterine Villi, or Trophonemata.
§ 4. The Glands of the Uterine Villi, or Trophonemata.
§ 5. The Nature of the Secretion.
§ 6. The Foetus of Trygon Bleekeri.
§ 7 . Recapitulation and Conclusion.

§ 1. Introduction.

One of the most interesting of the discoveries made by the 'Investigator' in recent jears is that there are certain Elas-

* This paper was far adranced before the lamented death of Captain Hoskyn, and so I leave it associated with his name, whose breadth of mind, whise high intellectual reaeh, and whose generous concessions to the interests of science are an irreparable loss to naral exploration.

Ann. de Mag. N. Hist. Ser. 6. Vol. ix.
32
mobranch fishes in which the female develops during pregnancy a vast system of uterine glands that secrete a nutrient fluid, or uterine milk, for the nurture of the developing embryo.

In this paper there will be given a detailed account of the phenomenon as lately reinvestigated in the species-Trygon Bleelieri, Blyth-in which it was first noticed by us.

As is weil known, reproduction among the Elasmobranchii is effected by the internal impregnation of the female.

In some, as in the familiar instance of the ray, the female after impregnation lays eggs, which are enveloped in a tolugh leathery capsule secreted by the oviduct.

In others, as familiarly exemplified by many sharks, the egg undergoes its changes and the embryo completes its development in the terminal part of the oviduct, which is now enlarged and claborated to form a true uterus for the reception and retention of the embryo. In this case, as has long been known, a true placenta is formed, difierins from the Mammalian placenta in the particulars which follow from the one main general fact that it is the yolk-sac, instead of an allantois, that fumishes the foetal part of the structure.

There is yet a second method of viviparity known to oecur among the Elasmobranchs, and to some particulars of it this paper is devoted. In this method while, on the one hand, the egg is retained and the embryo nourished within an oviductal enlargement or uterus, on the other hand no sort of vascular comnexion is formed between the parent and the foctus. Here the expenditure of tissue comes altogether from the maternal side, the whole of the egg being devoted to the foctus and none of it being set aside to form vascular absorbent structures.

In passing, one camot but remark upon the interesting fact that in the primitive Elasmobranch group we find in co-existence all the methods of reproduction that occur in the higher Vertebrate phy la, namely (1) oviparity, with large-yolked eges enclosed in a more or less rigid shell, (2) viviparity, with the formation of a placenta, and (3) aplacental viviparity.

So far as we are at present aware the method of uterogestation now under consideration reaches its perfection in the Batoidei; and of the six families into which this suborder is divided it has been observed in three, namely the Torpedinidæ, the Trygonidæ, and the Myliobatidæ.

In Torpedo, as Professor Wood-Mason and I have elsewhere recalled, it was investigated in furthest detail by Dr. John Davy, who, in pregnant females, noticed (1) fuetuses lying naked in the uterus and unattached to it by any form of
placent: (2) a glairy milky or hanly fluid, which he supposed to be in some way ahsomed hy the fotue, and (3) the: gradual ine rease in wrioht of the feetus ats gestation proceeded. Davy heft masetheal the questions (1) of the immediate origin of the milky fluid, (z) of its immediate destination, and (i;) of the direct manner of increase in size of the embryo.

It has been reservel for the 'Investigator,' thanks to the profusion of the Batnid fishes in the wam estuaries of the Coromandel coast, to extend and amplify the observations of Dary, and to draw a more finished and exact picture of the aplacental viviparity of this interesting group. 'The material collected by the 'Investigator' confirms the older obs rvations as to (1) the absence of any structural comexion between footus and mother, (2) the presence of a creamy allominous fluid in the gravid uterus, and (i3) the increase of the foetus in size and weight as pregnancy advances; while it adds to our knowledge the following necessary facts:-(4) the presence of special secretory glands in the mucous membrane of the gravid uterus, (5) the existence of arrangements for conducting the uterine secretion into the pharynx of the foetus, and (6) the presence of the unchanged or little changed secretion in the alimentary canal of the foetus.

As references to original papers are appended, it is not necessary here to do more than mention that the above observations have been made, and in every instance verified at least once, in Trygon Bleekeri, Blyth, Tiygon walya, M. \& H., Pteroplutaa micrura (BI. Schn.), and Myliobatis Nieuhofii (BI. Schn.). In the first-named species, which was the first to come under my notice, the observations were made under particularly unfavourable circumstances, and I therefore seck an opportunity, in describing a second pregnant female of this species recently captured by the 'Investigator,' to make some corrections and numerous additions to my original report.

§ 2. The Pregnant Female and the Gravid Cterus of

 Trygon Bleekeri.A female of Triggon Bleckeri, Blyth, measuring in extreme length, from tip of snout to tip of tail, 9 feet 7 inches, in length of disk 3 feet, and in greatest breadth of disk only an inch and a half less, was callght in Cocanada Bay (at one of the mouths of the river Godívari) on the 12th January last. The abdomen was distended, being strongly convex instead of flat.

On opening the abdomen the internal organs of generation,
consisting of a large orary and oviduct, are found on the left side only. In my origimal paper ('Jommal of the Asiatic Society of Bengal,' vol. lix. pt. ii. p. 23), rescribing a large female of this species taken in one of the estuaries of the river Mahanadi in December 1885, I statel that the right oviduct alone was pesent. I was writing from rough notes taken when the specimen, which was hopelessly large for preservation, was hastily dissected by the dim light of a ship's lantern in one of the scuppers of the ship; and I think it very probable that I may have mistaken my bearings, fur these reasons-first, that owing to the position of the large spiral gut on the right side we have an obvions physical preference for the development of the left oviluct, and secondly, that in all the preguant rays that I have since dissected, where only one oviduct is present it is always the left.

The terminal portion of the (left) oviluct formed a large oval fleshy tumour or uterus, the end of which projected into the cloaca like an "os uteri" into a vagina. On opening this a simgle male foetus was fomed to fill its cavity, the fuetus lying naked, tightly folded, and unattached in any way to the parent. It had the following dimensions:- Extreme length, from tip, of snout to tip of tail, 3 feet, length of bodsdisk 8 inches, and breadth of bordy-disk 8 inches. On removing it attention is next attracted to the sticky, greasy, creamy material which is smeared over the imer surface of the uterine wall, and when this is removed the uterine mucous membrane is exposed. The mucous membrane has a shaggy appearance, owing to the presence of a dense crowd of long filamentous villi; it is of a vivid scarlet colour, owing to its vasculaity, and has an odour much like that of raw beef.

On dividing the utcrus all down one side and tuming it inside out under water the villi are beautifully seen. They clothe the whole organ so thickly-like the bristles of a broom or like a thick coarse fur-that the surface from which they spring is entirely concealed. In a square of a quarter of an inch (after contraction in spirit) there are about 210 villi, and as the internal superficial dimension of the uterus (after contraction in spirit) is about 20 square inches, the total number of villi must be about 67,200 .
bencath (1) the villi, which constinte the muenus mommane, the wall of the uterns in transerse section shews, from within cutwark, (2) a suhmueous stratum in which is a rerg distinct mascularis mucese of both longitmlinally and circhlarly dispmed fibme-the fomer sreatly predminant-
running into the bases of the villi; the contraction of the circular fibers, the humelles of which curve inte the bues of the individual villi, would chidy shomen the villi, while the contraction of the Iomstablinal fibres would chady connmess the villi together, hoth actions serving ergally to stume\%; out the milk from the glants, which, as we shall presently see, make up so large a part of the villi: outside the submucosa is (3) a thick layer of musentar fibres in an encircling haml, (4) an equally thick layer of lomgita linally-arrangel musculat fibres, and (o) a lonese tibnoms coat in which many large blood-vessels run.

§ 3. The Secretory Uterine Villi, or Trophonemata.

For these Professor Wool-Mason and I have elsewhere used the term trophonemata (or "nursing filanents"), to denote their milk-secreting function, since the worl "villas," in its associations with human physiology, has now come to comote the very opposite function of absorption. They vary in length, in the specimen under deseription, from half an inch to an inch and a quarter, the usual length being about three quarters of an incli ; in brealth they range from about $\frac{1}{50}$ inch near the base to $\frac{1}{3}$ inch near the tip; and in thickness they are about $\frac{1}{10}$ inch throngh the centre, and about $\frac{1}{5} 5$ of an inch through either margin.

They are thus guite Hat throughout, and are distinctly spathulate at their free end. They usually arise separately and are unhranched; but often two or three, and sometimes as many as twenty, are found to branch from a single stout peduncular base. Ruming longitudinally up the centre of cach, in strong relief, is a cylindrical swelling which, as will presently be seen, is the single central vein.

When a trophonema is stained (in carmine) and examined under a low power what first arrest attention are the bloodvessels. Ruming along the edige on eath side is seen (1) an arteriole which at the tip, without any subdivision, becomes simply confluent, so that the lateral marginal framework of the trophonema is a long narow arterial loop.

In the concavity of this loop, comsing duwn the midlle of the trophonema, is (-2) a large vein, half as broad again as either of the arterioles; it is only at the tip of the trophonema that the vein shows any subdivision into afluents.

The arterial loop and the rein come clearly into view on deep focusing; a superficial focus displays (3) a dense polygonal meshwork of capillaries over the whole surface of the trophonema.

By careful focusing we find that the entire capillary metwork and the edge of the trophonema in which the arterial lorp runs are covered hy a layer of pavement epithelium. With very little teasing in glycerine the arterial loop can be cleanly stripped from the rest of the trophonema, except at the very tip.

This, then, is what is seen on simple examination of a magnified trophonema-a pair of lateral arterial pillars meeting to form a long narrow arch, a central vemolls culumn standing in the middle of the archway, and a superficial lattice-wall of eapillaries enclosing the whole. From this point of view a trophonema is simply a long compressed cone of blood-vessels.

It must be particularly mentioned that the dimensions above given apply only to the specimen under description. In the Mahanadi specimen the trophonemata were shorter and very much finer and more delicate. And it may be broadly stated that in all the species of Batoids hitherto examined in this comexion on board the 'Investigator' the trophonemata vary in size with every individual.

In a transverse section of a trophonema we see (1) the sections of the artery standing out on each side like a pair of ears, (2) the large vein occupying the centre, and, arranged almost in a ring round the rein, close together (and perpendicular to (3) the sections of the superficial capillaries), (4) a number of glandular follicles which have next to be deseribed. We also see (5) sections of capillaries round the arteries and between the glands.

§ 4. The Glands of the Lterine Tilli, or Trophonemuta.

As above implied, the glands oceupy only the mikde part of a section-about the middle two thirds of a transwerse section made anywhere through the basal half of a trephonnema; there are none at the edge of the trephonema where the arterial loop runs. They are somew hat chub-shaped and lie close together, being separated from one another, those of the same side by capillary chamels, and those of the onmsite faces of the trophonema by the central wein and by the deep capillarices, as well as ly a small ammut of comective tissue. They lie in precket-like depressions, and show (in section) the following structure : - (1) a broadish vestibule, linad ly short colummar epithelimm, and (2) an usually donble bulbous base (the ghand moper), cach hulb comsisting of a compact Wedge of lange boad-based tapering eells ananged like the coats of an onion in vertical section.

In any transerse section of a trophonema we find the reatibules of some of the glathls opening widely to the surface between transvere sections of (w) superticial capillaries, others issuing ly narmonel openings between two more or less ohlignely cut caprllaries, while others again ond blindly, heing coiverd by a sumpticial caprillary in longitudinal section, which itself lies lomeath a layer of parement epithelium.

It may now he stated that the examination of numerous sections made in varions planes shows that the glands are faintly compound, and that they comsist of a collecting well or vestibule, into the bottom of which the shont lumina of the true secreting bulbs open on all sides.

A very delicate hasement membrane delimits the glands in their bulbous portion.

The epithelium, as above noticed, is of two kints: in the bulbs it comsists of large, long, broad-based tapering cells, in which a single nuclens lies clase to the basement membrane; in the vestibule or well we find short columnar or ahost cubical cells in which the single nucleus is more central.

The muclens stains deeply with carmine, the rest of the cell, which is faintly granular, taking the stain very lightly.

In some of the vestibules lightly stained coagula are noticed.

There are other unimportant histological details; but the main facts which sections exhibit are that a trophonema consists eseentially of a dense vascular network, encasing in its meshes simple glands with bullous loculi, protected by a layer of pavement epithelium which is fenestrated over the openings of the glands. The amount of conncetive tissue, except at the very base of the trophonema, is insignificant, and the trophonemata are practically built of blood-vessels and secreting epithelium.

It is not easy to make an exact estimate of the number of glands borne on a single trophonema, and the following calculation can only be regarded as a probable approximation. Taking the area of the orifice of a vestibule at an average of -(oul square millimetre, and, since in any one plane at least two glands open into every restibule, assuming that the space between the restibules occupied by superficial capillaries is given up, to an equivalent of vestibular orifices, and calculating the glandular surface of an average trophonema at $22 \cdot 8$ square millimetres, we should get in each trophonema 22, 500 glands.

§5. The Nature of the Secretion.

The amount of secretion available for examination was so small-only about a fluid drachm, including débris of tropho-nemata-that no satisfactory results have been obtained.

The capture was at a distance from the ship, and to guard against putrefaction the secretion was removed and bottled and covered with strong (rectified) spirit. By the action of the spirit it was at once coagulated.

When fresh it looked like custard, or, rather, like thin pus; it was viscid, had a sticky greasy feel, and a heary sweetish meaty smell. Prolonged heat at $21 z^{\circ}$ Fahr. leaves a translucent homy cake (albumin). F'resh Fehling's solution gave no reaction (no sugar), but the quantity tested was so small that the inference must be quite uncertain. A greasy white film (probably fat) was left wherever the secretion touched the bottle.

A portion of the clot macerated in water, stained in carmine, and examined in glycerine, shows an abundance of formed elements. Besides epithelium, which may perhaps be adventitions, there are to be seen crowds of round granular cells of a miform diameter of about 玉ito of an inch. Of these some, though quite transparent, possess no nucleus at all, fewer others have two or more nuclei, while the great majority have a single small excentric nucleus. There are also to be observed free nuclei.

In the Mahanadi specimen the secretion, which was abundant glairy and turbid, was tested only for albumin, and coagulated in lumps when heated.

The secretion thus seems to vary; and it may be mentioned that in Pteroplutea micruro-a viviparons fish allied to the 'Irygons, and one which carries its young in the same way-the secretion changes with the alvance of gestation.

As to the nature of the secretion, then, all that can at present be predicated is that it is very rich in albumin and that it contains a remarkably jarge proportion of corpuscles and nuclei.

§6. The Footus of 'Trygon Bleekeri.

On removing the feetus we are first attracted by the large size of the spiracles, which are full of the ereamy uterine secretion.

It may perhaps be of alvantage to recall the fact that the spiracles are the first pair of mathehial clefts, which, in many

Elasmolnanch fishes, remain as direet chamels between the pharynx and the external medium.

There is also noticed a small external yolk-sac about as hige as a raisin, with a threal-like stalk which perforates the body-wall, and, cepandine, is attached to the antorion end of the spiral gut on the ventral aspect.

The yolis-sace is empty imb is evidently dwindling ; in the more advanced feetus of the Mahánadi specimen it had altogether disappeared.

On opening the abdomen of the foetus the ereatly distended spiral gut is seen lying to the right *, and the left lobe of the liver to the left *. The stomach is small and empty and is pushed up beneath the pectoral areh.

The small shon dumbem, which is guandel at the pylorms ly a stout valve-like fohl, is, like the anterior part of the spiral gut, full of coagulated lumps of the uterine secretion. The posterior three-fourths of the spiral gut is stuffed with viscid, grumous, bile-stained matter.

The rectum is sharply constricted off from the spiral gut and looks like a solid cord ; dorsal to it lies the rectal gland in a fold of mesentery common to it and the tester, to which last it is intimately adherent.

The liver is of large size and perfectly colourless; the spleen is also large.

The left testis is several times larger than the right, perhaps because the pressure of the distended spiral gut has hindered the growth of the latter.

The external gill-slits are closed ; their anterior edges are finely pectinated.

Un laying open the capacions pharynx the wide internal orifice of the spiracle is displayed. It lies in the same plane with the branchial clefts proper, and symmetrically with them, so that its homodynamy with them is of diagrammatic plainness, and it differs from them chiefly in leing widely open, while they are closed by the close approximation of the branchial bars.

It only remains further to remark, concerning the footus, that while its generic and subgeneric character's are quite distinct, it has not yet acquired its full specific characters. Except for a large centro-dorsal boss surrounded by a few small tubercles its skin is quite smooth; its tail-spine is well developed, but entirely sheathed in skin. Its colour is much like that of the adult, but lighter, being uniform brown dorsally and olive-grey below except along the abdomen.

[^96][The colours of the mother are dark brown dorsally and olivebrown ventrally, except on the thorax and abdomen, which are blotched with white.]

§ 7. Recapitulation and Conclusion.

To recapitulate : in Tryyon Bleekeri, as twice observed in the pregnant state, we find a single uterus containing a single naked fortus unattached structurally to the mother; we find the uterine mucous membrane to be produced into lone villi which consist almost exclusively of blood-vessels and glands ; and we find the viscid, turbid or milky, and richly albuminous secretion of the latter free in the uterine cavity. In the present case the secretion is observed unchanged in the spiracles, and in coagula filling the "duodenum" and the anterior part of the spiral gut, of the foetus.

Elsewhere Professor Wood-Mason and I have shown that in the nearly related Iteroplatera micrura the uterine villi (trophomemata) actually pass into the spiracles of the fretus; and I have quite recently observed this same disposition of the trophonemata in Trygon walga.

The specimen from which these particulars have been recorded was too large for preservation; its skin has leeen sent to the Indian Museum.

Besides the classical text-books and the classical memoir of Johames Müller, "Ueber den glatten Hai des Aristeteles" (Abhand. Ak. Wiss. Berl. 18t0), the following papers refer specially to the subjects of the uterine villi and aplacental viviparity of the Batoidei :-John Dave, "Ohservations on the Torpedo," Phil. Trans. 1834 ; Trois, " ()n the Uterine Villi of Myliubutis noctula [and Centrina sislciani]," Atti del Instituto Venetn, vol. ii.; Haswell, P. L. S., N. s. Wales, vol. iii. 1859, on Cirolophus; Aleock," Ohservations on the Gestation of some Sharks and Rays," Administration Report of the Marine Survey of India for the Official Year 1545-89, and Journ. As. Soc. Bens. vol. lix. part ii. (Tiygon Blederi and Myliohatis Nieulofii); Wood-Mason and Aleock, "On the Uterine Villiform Papilla of Pterplatea micrura," Proe. Roy. Soe vol. xlix., and "Further Oliservations on the Gestation of Indian Lhays," Proce. Roy. Soce rol. 1. (Tryg-n walgo, I'teroluten micirio, and Mylumbetis Niewherel.

EXPLANATION OF PLATE NLX.

Fiy. 1. The distal half of a trophonema, $\times 10$, showinge m, the nouglandular mangin in which runs a, the artery ; ad $!$, the crandular centre with r, the central vein.

Figy. 2. The tip of a trophomema, \times t2, showinge e, the superticial capillary plexus; the other letters as before.
Fig. B. Tram-verar section of a trophomeman in its hasal half, \times In- $: m$, a, v as before ; c, the superficial capillariez of the glandular centre, and c^{\prime}, the superticial capillaries of the non-glandular margin, in section; y, a gland in vertical, and g^{\prime}, one in obliquely transverse section.
P.S.-Since the abowe was written I have been fortunate enough to obtain two female specimens of T'rygon Bleekeri; in both the left oviduct alone is developed.

LAIII.-Description of a new Species of Anterlon from Mauritius. By F. Jeffrey Bell, M.A.

[Plate XVIII.]

The Trustees of the British Muscum have lately acquired some specimens of an Antedon from Mauritius which not only appears to be "new," but to present some very interesting relations to a group of already known species.

The group which the late Dr. P. H. Carpenter called (Chall. Rep. Comat. p. 227) the palmuta-group consisted of bidistichate species with an unplated disk and a first pinnule smaller than its successors.

Of these some have a pinnule on the third brachial, and of those with two or more postradial axillaries some have the rays free laterally. Of these, three species-A. tuberculutu, A. spicata, and A. indica-lhave the second pimmule stiff and styliform, of twelve to eighteen much elongated joints. With them the Mauritian species is to be placed, but it is to be distinguished from them by the following characters:-
(1) The marginal projections at the sides of the rays are continued on to the most proximal brachial joints.
(2) The second pinnule, though "stiff and styliform," is not extraordinarily so, and the joints, though no more than twenty, are not abnormally long.
(3) The disk is as small as in A. indicu, and the centrodorsal occupies the whole of its aboral surface.

The following appear to he the diagnostic characters of this new species, which may be called

Antedon emendatrix.

An Antedon of the "palmatiocsroup" of P. If. ('ampenter, in which the disk is exceedingly small ; the centro-dor-al, which is coextensive with its aboral surface, has abont twenty-two pits, and the cirri have abont twenty-five joints; the second half or distal set of these joints are spiny. The arms are little more than ten in mumber or may be mone than twenty; the third brachial has a pimule ; the secom pinnule is larger than the third; the rays are free laterally ; the second pinnule is stiff and styliform, has about twenty joints, most of which have their distal edge projecting and serrated; the radials, distichals, and most prominent brachials have marginal projections which are not very prominent ; the third pimule is only half as longe as the second; the third ratial is very little longer than the second. The thin:t bachial is a syzygy, and there is not another till the twenty-fith juint.

Colour purple-madder, the pinnules grey.
Siread atont 150 millim. ; diameter of disk 6 millim.
Hab. Mauritius.
This is really a very interesting species, inasmuch as the comparatively large number (twenty) of joints in the secome pimmle makes it interme liate between Di. Carpenter's set (1. 225) of forms in which the second pinnule has trom twelve to eighteen much clongated j,ints and that in which the same pimule has twenty-live or more joints which are not specially elongated. It has many points of resemblance to A. imelice, but its spinose cirri, its second pimule, and its rare syzeres are sufficient to distinguish it. An cxamination of Mir. Smith's type of A. indice shows that in that species the rays have marginal projections. It would be instrutive to get a large series of specimens of that species, of A. spicata and A. tuberculutu. It present we are in the stage of making speces of Antedon, and we must continue to do so till we have largee and tiner series beture us. Then another pait of vur work will begin !

EXPLANATION OF PLATE XVIII.

Fig. 1. Antedun emendatrix; general view from the side. Nat. size.
Fig. 2. Portion of disk and arms. $\times 3$.
Pig, 3. Portion of arm after last axillary. $\times \because$.
Fig. 4. Second pianule. $\times 4$.
 contained in the British-Museum Collection. By W. Wamen, M.A., E'.ES.
[Continued from p. 397.]

'Triscimistognatila, gen. nov.

Fore wings clongate; costa straight, slightly and gradually convex at apex, which is bhut ; hime margin obligue, hadly curved, with a very slight indentation above the anal angle. Hind wings romded. Antemar laminated, a little thicker in male than in female ; tongue present ; ocelli minute ; labial palpi with all three joints very distinct; first and second securiform, the first twice as broad as the second, third shortly rostriform; maxillary palpi like the third joint of the labial; abdomen of male with rather long anal tuft ; hind tibiae with two pairs of spurs, the imner very much longer than the outer; scaling fine and smooth. Wings semidiaphanous; neuration normal.

Type T. palindialis (S'pilodes), Guen. Delt. \& Pyr. p. 380.

'Tholeria, Hüb.
 Type T. illiberalis, Hüb. Verz. p. 354.

Tholeria stigmosalis, sp. n.
Fore wings with base, imner and hind margins dull reddish ; central area whitish, with the costa, the two stigmata, and the veins round them black-brown ; the stigmata themselves filled up with reddish; the white interspaces finely dusted with dark atoms; a faint trace of a curved exterior line at the extremity of the white central space ; fringe dark brown. Hind wings pearly white, with an irregular, narrow, reddishbrown marginal suffusion, which here and there runs up a little way along the reins; fringe white, slightly tingel with reddish towards apex. Head, palpi, antemne, and thorax dull reddish; abdomen darker brown, with segmental divisions white; collar fawn-colour, paler than either head or thorax. Underside: fore wings pearly white, tinged with yellowish, with only the hind margin and stigmata reddish. Hind wings like the upperside, but with the costa reddish brown,
tinged with yellow, and with an irregular redlish projection from it towards the centre.

Expanse of wings 30 millim.
Four males from S. Paolo.
Cirrochrista, Led.
Type C. atherialis, Led. W. E. M. vii. p. 4.41, pl. xvii. fig. 9.

Cirrochrista margarita, sp. n.

Fore wings satiny white, transparent; costa and hind margin irregularly tawny brown, the former with a triangular projection at one third and a larger one at two thirds; a smaller one between them and another between the first and the base; on the imer margin at one third a tooth-shaped brown marking nearly touches the first larger costal projection; another large projection from the hind margin similarly all but touches the seemed larger costal one ; apical rewion oceupied by two snow-white spots, the exterior the smaller and separated from the larger one by a fine fulvous line; fringe whitish, tinged with fulvous. IIind wings pure white, with a mixed rosy and yellow narrow hind margin and a narrow rosy stripe rumning up the wing along the imner margin. Head, thorax, and abdomen white; vertex of head, collar, top of last segment of thorax and of all abdominal segments redbrown; palpi and outside of all tibie more or less tinged with brown. Underside yellowish white, with markings of the upperside showing through.

Expanse of wings 24 millim.
Two males from S. Paolo.

Ramila, Moore.
Type R. marginella, Moore, P. Z. S'. 1567, p. 667.

Ramila angustifimbrialis, sp.n.
Pearly white; costa fulvous, the streak thiming out towards the apex; first line appearing only as a very small projection from the costal streak, second line slightly more distinct for a short distance from the costa, and again on the middle of the imner margin; discocellular vein thinly marked with fulvous, but thickening into two dots at the ends: fringe white, fulvous-tinged, with a fulvous basal line, which is itself preceded by a row of almost contiguous darker dashes at the ends of the veins. Hind wing like fore wing, with
traces of two fine fulvons transerse lines, visible only near the immer marein. Ablomen, umderside, midde and himd legs white; palpi, siles of thorax level with the costal streak of fore wing, and fore tibiæ fulvous.

Expanse of wings 22 millim.
One female from Burmah.

Phlycterena, Hüb.

'Type P. sambucalis (Schiff.), Hüb. Verz. p. 359.
Phlycterna ferruginealis, sp. n.
Fore wings fuscous cinereous, coarscly scaled; the markings nearly all obliterated; the pater ground-colour showing only as faint yellowish patches towards the middle of the first and second lines. Hind wings whitish ochreons, partially suffused with fuscous, especially towards the hind margin, and with a curved submarginal line. Underside paler.

The markings of the fore wings are the same as in P. arenacea, of which species it is not improbable that it may turn out to be the male.

Expanse of wings 24 millim.
One male from Rio daneiro.

Phlycteria paolinalis, sp.n.

Fore wings yellowish ochreous, inclining to orange, fincly dusted with fuscous ; basal half of costa fuscous ; first line bent, or even angulated externally, in the middle; second sinuous, not denticulate; submarginal denticulate, fairly distinct; fringe with darker basal and medial line ; stigmata distinct. Hind wings yellowish white, with a distinct, submarginal, curved line and fuscous shade before fringe. Head, thorax, and abdomen yellowish ochreous. Underside dull ochreous, with few markings.

Expanse of wings 20 millim.
One female, four males, from S. Paolo and Rio Janeiro.

Phlyctonia arenacea, sp. n.

Fore wings pale sandy ochreous, dusted with darker; first line wavy, nearly vertical, at one third; second sinuous and denticulate, forming a moderate sinus in middle; faint traces of a submarginal darker line; fringe glossy, with a darker medial line; stigmata indistinct ; orbicular dot-like; reniform lunate. Hind wings white, with basal and medial line
of fringes fuscous; an inlistinct trace of an abbreviated sul)marginal line. Underside dull ochrenus, with darker suffusion; external line of both wings distinct; veins of fore wings dark. Head, thoras, and abomen all sandy orhreous.

Expanse of wings 24 millim.
Four females from Theresopolis, Rin Taneirn, ands. Panlo.

Hyaloplaga, gen. nov.

Distinguished from Phlyctrenia, which in shape and appearance it much resembles, by several structural differences. Labial palpi not rostriform, but bluntly triangular, slightly porrected upwards. In the male the hind wings have a very prominent shoulder near the base. Fore wings with the submedian nervure somewhat distorted, curved downwards towards the interno-median fold, and with a small tuft of hairs on the upper surface near the base. Antenne thick, laminated and downy bencath. Female with normal wings.

T'ype II. mulchralis (Ifyctrocampu), Monre, P. Z. S. 1867, p. 90.

Loxocreon, gen. nov.

Fore wings elongate ; costa straight, hind margin obliquely curved. Ilind wings roundel, slightly indented beneath apex. Labial palpi broad, triangular, porrect; maxillary palpi short, erect; tongue and ocelli present; eyes large; patagia of male prolonged, as in Omiodes, but not to nearly the same extent; abdomen stoutish, of the male prolonged. Wings smoothly and thickly scaled, with oblique markings.

Type L. continuatalis, Wllngrn. (Salbia).
An isolated group peculiar to the Sandwich Tslands, but certainly not Omiodes, as Mr. Meyrick makes them.

Autocosmia, gen. nov.

Fore wing with straight costa, deflexed only just before the apex, which is produced, but not acutely; hind margin straight, oblique. Labial pralpi porrect, rather long ; maxillary upright, small; tongue developed; ocelli present; antema (female) simple; foreheal conically projectins; hind legs with onter spurs peculiarly short; sealing smooth; the veins all finely delineated in white.

Type A. concima, Warr.
The only species, from N.WV. Ameriea, is separated from Cosmoreon ly its conical, not roundel forchead, the smoothness of the sealing, and the peculiar neatness of the markings.

Aulocosmia concimua, sp. n.
Fore wing siema-brown, with the costa to beyond middle
 marein at the hase ; the efges of the two stigmata, the median mervere, the second and third mediat merstes as far as the seembl line, the submedian, with an oblique streak ruming inte it from the median below the mbicular stiona, the interno-median vein, the simous second line, a lime heme the dark hase of the fringe, and one on cach side of the home all delicately and concisely snow-white; fringes themselves brown-grey, with darker central line; betwem the middle of the second line and the white hind marginal line is a small madefined greyish-white pateh. Ihad wing bunatish fuscous, withont markings. Underside the satme, with th: second line showing white in luth wings. Ahtomen fase 川t; head, thorax, and outside of labial palpi chestuat-lomenn legs and underside of abdomen whitish.

Expanse of wings 15 millim.

Cosmocreon, gen. nov.

Fore wings elonsate, namow at hase, witening consilumbly towards hime margin; costa straight, convex only just heme apex, which is hant; lime marein simply curvel; imer margin huging sighty ne ar the base. Hind wings rombed, twice as hroad as fure wings. Labial palpi pormet, rostriform, rather rombly sealed; maxillary small, marly umight, lnoad at apex ; tongue long; ocelli present ; anternie pubsescent in male; forehead with a rounded protuberance; thomax and abdomen rather stout.

Type B. albiceralis, Grote, Bull. U. S. Gicol. Surv. is: p. 675 .

The genus will also include B. allectalis, Grote.

Euergestis, Hiib.

Type E. cxtimalis, Scop. (E. murgaritulis, IIiil). V.w\%. p. 354).

Euergestis consimilis, sp. n.

Closely allied to E. ertimulis, but distinguished liy the much darker tint of the marginal bloteh and tringes and by the outer line itself, which, instead of being emmprecl if separate dots, forms a distinct and, near the costa, serrate? line.

One specimen, from the Grote Collection. Ann. \& Mag. N. Hist. Ser. 6. Vol. ix.

Mesographe, Hüb.
Type dr. strominalis, IIüb. (IV. stromentulis, IIül). Vaz. p. 35ั4).

Mesographe junctalis, sp. n.

Fore wings straw-colour, with the hasal thind and the himet margin hroally bronzy fuscous; the fuscous tinge of the hasal area extends further along the costa and inmer mane in, so that its outer edge is concave; renifom stigma tilled up with fuscous, connected above with the dark costa and obliquely below with the marginal band; fringes fuscous. Hind wings straw-colour, with the same margin as fore wings ant a broadish fuscoms-grey imer edge. Heard, thomax, an l abdomen bronzy fuscons, the latter rimged with paler. Underside like upper, but less distinctly coloured.

Expanse of wings 24 millim.
One male from Japan.
Akin to M. limuata, but slightly smaller and darker.

A romostictis, gen. nov.

Diustictis (IIuib. Verz. p. 3.j) , of which the type is aryyralis (Huib. Zutr. figs. 113, 114), camnot stand, as it was already employed hy Hiibmer himself at p. 2sh of the "Verzeichniss' for a genits of Geometre, with artesioriu, Schint., for type.

I propose to substitute the above term for Diastictis, to include argyialis, IIï)., fincterralis, Zell., and cucalis, Wiar.

Anomostictis coccalis, sp.n.

Fore wings dull fuscous, sometimes with a suthosion of fulvous, slightly paler on the inner sicie of the esterion lime; lines and stigmata very obscure; first line hardly distinGuishable at all, owing to the deper sulfu-im near the has ; exterion line rectangularly sinums, fombing a distimet sinms outwards in the middle and a smaller curve inwards above and below it ; reniform stigma a dark dot. Hind wings slightly pater, more fulvons, and darker towavls hinal marein, with the exterior line of fore wings reproduced. Head, thorax, and ahelomen! very dark furcous. Umbersite slighty paler, with the markings also indistinct.

Expanse of wings $18-24$ millim.
One female, two males, from California.
The single female is intermediate in size betwen the two. males.

Connifions, Led.

'Type (: uleratulis, Leel. W. E. M. 155s, p. 147, pl. iv.

Cornifrons pulveralis, sp. n.

Fore wings whitish, coarsely and thickly du-ted with greyish ocheons; first line at fully one thim, sumewhat obscure towards the costa, forming a small tooth ontwardem the median vein, then ruming obliquly hasewarts, and entine in a dark spot on inner margin; second line from costa at four fifths, dark grey, minutely denticulate, curving inwants at the middle, and thence ruming paralled to first line ; remiform stigma dank grey; space between second line and hime margin clouled with dark grey, with indications of a paler suhmarginal line ; fringes chequered. Hind wings whitish grey, with a dark curved submarginal line, heyond the middle. of which is a paler patch. Head and thorax cinereons; abolomen paler. Underside dull grey, with indistinct makings.

Expanse of wings 26 millim.
One male, one female, from Nevada, N. America.

Acharana, Moore.

'I'ype A. otreusalis, Wlk., Moore, Ceyl. iii. p. 285.

Acharana rudis, sp. n.

Like Paclyzancla stultalis, but larger and more ronghly scaled; more suffused with pale greyish fuscons over buth wings; costa darker; abdomen pale ochreous grey.

One female, two males, from Japan.

Acharana minoralis, sp. n.

Fore wing glossy greyish fuscous; the lines still darker ; first line slightly oblique, second curving obligucly outwarls for two thirds of the wing, then ruming inwards to bencath the reniform, thence straight to the imer margin ; renifiom stigma a white lunule. Hind wing like fore wing, but without the white spot. Alodomen glossy grey, with the segmental divisions white.

Expanse of wings 16 millim.
One female from Accra.

Acharana maledicta, sp. n.

Fore wings dark fiscous cinerents, darker towards costa and hind margin; exterior line forming a distinct three33^{*}
torothed progection lowlow the millale of the wing ; first lime preceded and second line followed by a distinct pale spar..; stigmata black, distinct. Hind wings with the extwrion line of fore wings repooluret. II ad and thomas dark fuswant: ahdomen pater, ochreous. Enterside duller and pater, with the markings clearer.

Expanse of wings 20 millim.
One female from Piteairn's Island.

Acharana descripta, sp. n.

Extremely like Puchiyzunclu stmtalis, Wlk., hut smallw, and with the hind margin of the lhind winge nearly straight. not rounded.

One female from S. Paolo.

> Acharana simplex, sp. n.

Fore wings clear pale cochrents, with the two stimmata and transverse limes neatly marked, fusem:, and a dark line at hase of fringes. Ilind wings with diseal dot and line listinet. Head, thorax, and abdomen concolorons. Very much like verminalis, Guen., from Sierra Leone, but with the hind margin more oblique and the seemol line handly forming a sinus outwards in the middle of the wing.

Expanse of wings 20 millim.
'I'wo males from Bombay.

Acharana olivescens, sp.n.

Fore wings dull bromzy fuscons alive, with a puyphe tinge towards the costa, and deeper fuscous towards the hind margin; the lines imbistinet, exterion demiculate and didetly edged with paler ; a distinet dark discal spot in both wings.

Expanse of wings 28 millim.
One female, one male, from Ecuador.

Acharana indistincta, sp. n.

Both wings entirely dull dark fuscons, the lines am stigmatat only just visihle. Hind wings mather darker than tome wings f finge of hind wings sometimes whitish. Ahbmen dark fusents, with white segmental divisions: anal tukt of the male blackish.

Expanse of wings 30 millim.
'Two males, two females, from Japan.
Near A. tristrialis, Bremer, but larger and much darker.

Acharana elongalis, sp. n.

Fore wings fuscons, with a pupplish timge, rather olluss. Hime wings darker; all the lines very indistinct; a distimet black discal spot in cach wing, which in the fore whig is preceded by a smaller mure obscure onn ; fringes ghosey, concolorons. Ilead and thorax dark fuseons; abdomen pater, somewhat ochreous.

Expanse of wings 28 millim.
One male from Tormosa.
The species may be distinguished at once by the clongated fire wings, so much narower than the rest of the group. In this respect it resembles stenomeles anguralis, Wlk., but the hind wings are broad and well rounded.

Acharana fuscescens, sp. n.

Like A. rudis, Wrarr, but larger ; dark fuscous cinerents, generally slightly paler beyond the lines; abobomen dark fuscous.

Expanse of wings 28 millim.
Three examples from Japan.

Stenomeles, gen. nov.

Fore wings elongate, narrow, quite four times as long as wide; costa straight, very rralually emvex before apex; hind margin very oblique. Liind wings triangular, twic: as long as broad, with the hind margin nearly straight from inmer to anal angle. Palpi as in Achertene ; antemme loms, in the male pubeseent; collan and patasial cluthed with conatie lomse seales; abdomen in buth sexes lung, reaching beyond the hind wings.
'Type S. agavealis (Botys), Wlk. xviii. p. 575.

Prionopaltis, gen. nov.

Fore wings broadish; costa convex before apex; hind margin faimly sinuous, being slightly incurved below apex and elbowed ahove the anal angle; scating fine, glosisy. Labial palpi broad, perrect, as in Acletrena; masillary erect, behind the labial, rather broal at argex; tomerne present; ocelli large ; antemm with angular jomts, wheli in the male project like the teeth of a saw.

T'ype P. sericea, War.

Prionopaltis sericea, sp. n.

Fore wing glossy fuscous, rather broarler than is usmal in the genus; first line very indistinct, slightly obligue, seemed line also indistinct, bounded below the eosta, from which it starts vertically, by a pale yellowish-white blutch, beneath which its middle third shows three distinct tectlo, and the lower third one larger tooth; fringes enncolorous, with a fire pale line along their base; stigmata darker, but indistinct; the orbicular small, close to the first line; the renifom larger, in the middle of the wing. Hind wing with the secend line repeated, and followed by a pale ipace thromshout its course. Head, thorax, and abdomen all fuscous.

Expanse of wings 24 millim.
Three females from Dharmsala.

Prionopaltis consocia, sp. n.

Fore wings not quite so broad ass in P^{\prime}. seriem ; the (m-te straighter towards the apex ; silky brown, as in sericen, from which it is distinguished as follows: the pale suboostal patele at the begiming of the second line is larger, more distinetly tridentate behind; the end of the line on the inmer margin is distinctly marked as a small angulated bloteh; the hase of the reniform stigma is marked by a minute yollowish dent; all the fringes concolorons, without the bright pale basal line of sericea.

Expanse of wings 26 millim.
One male from Japan.

Prionopaltis (?) suffusalis, sp. n.

Fore wing fuscous brown ; the lines the same entone, imiticated only by a few yellowish dots, which follow their coulse: a small yellow spot before the orbicular stigma; a square hotch between the two stigmata, and a large, irreqular, oval one between the reniform and the sceond line; below the median wein is a wedge-shaped yellowish mark between the first median nervule and the median vein itself, and behow it a square bloteh. Hind wing with the sccond line more visible; a large brown central spot, comnected by a secome with the outer line ; contral space irregularly gollow; fringes concolorous.

Expanse of wings 28 millim.
One forate from Japan.

Rifectocraspeda, gen. nov.

Chameterized by the hind wing (of the male), which is peculianly comorted bencath at the anal angle opposite veins 1 a-1 c, and bears on cither side of the contortion a curled wisp of hairs. Fore wing with costa slightly concave in the middle, stromoly curved before apex, which is blunt; hind margin obliquely curved. Hind wing with a decided inflection below aper as well as contorted at anal angle. Labial palpi shortly porrect, broad; maxillary invisible ; tonsue present ; antema visibly pubescent beneath, each joint with a short spine; ocelli present.

Type R. periusalis (Botys), Wlk. xviii. p. 564.

Camptomastix, gen. nov.

Fore wing with gradually convex costa, slightly curvel, not very oblique hind margin; not more than twice as long as broad. Hind wing by comparison narrow. Labial palpi very long, porrect and thin, third joint half as long as second; maxillary absent; tongue present; ocelli larese and conspicuons; antemm (of male) with enlarged basal joint, finely ciliated throughout, suddenly bent under at one third, flattened and broadened at the curve, which is laterally serrated and bears longer silky hairs, thence thimning out towards the apex. C'ential fich of fore wing clothed with longthencel raised hairs.

Type C. pacalis (Botys), Leech, of $=$ Diplutyla lonyipalpis, Butler, of.

Meyrick's genus Diplotyla has upright palpi.

Agrannia, Guen.

Type A. matronalis, Guen. Delt. \& Pyr. p. 406.

Agrammia cervinalis, sp. n.

Fore wing and thorax fawn-colour; costa whitish. Head and palpi luteous. Hind wings white, with darker fringes. Abdomen fawn-colour.

Expanse of wings 26 millim.
Two males from S. Paolo.

Agrammia lutealis, sp. n.

Ileal, thoras, palpi, antemie, and fore wings bright
luterons, without makkines. Hind wings pale straw-coblom, yellower towards the hind margin. Underside jaler yellow.

Expanse of wings 24 millim.
A pair from S. Paolo.

Choristostigma, gen. nov.

Fore wings elongate; costa straight, but befon: ap"x sather strongly conves; apex somewhat protucen; hime margin oblique, slightly sinuous. Hind wings roxniled. Lahial palpi horizontally porrect, rostriform; maxillary small ; tongue and weelli present; antenne of female simply filiform, of male shont, thick, laminated, curved backwandorer the head; forehead sightly produced and rough-scaled; scaling fine and thick, hat not glosey; markings, two lines and -tige mata, the latter remote from each other.
'T'ype C'. plumlesigmate (Butys), Femald, Ent. Am. ir. p. $2 \overline{4}$, superficially reminding one of Syllythriu, but at onee distinguished by the structure of the antenne.

Choristostigma elegintalis, sp. n.

Fore wing pale yelluw, with tawny markings; costa suffused with tawny along basal half; first line indistinct, hrown; scond line hown, rising nearer himd marein than usual, rums parallel to it as far as the second melian nervule, then curves upwards and inwards, tonching the hase of the renifime stigma, and ranming along the mellian nervam nearly to the orbicular stigma, finally reaches the inner marein at about the middle; a submarcinal hmon shambe runs parallel to it, touches it at the elbow, and then forms apparently with its lower portion a comtimatime of the waiform stigma; all the nervules brownish towards the hind margin, with brown dots at their eatremities ; mincular stigma a flattened owal ringed with hown amd fillel up with gromelcolour; reniform large, constricted in middle, edged with hown, and filled up with litac-grey. Hind wheg gellowi-h white, with dark central spot and faint traces of a curved suhmarginal haml. Whterside gellowish, duste 1 with thes cous; all the markings clearer.

Expanse of wings 20 millim.
'Iwo males from California.
Minudea, gen. nor.
Fore wing elongate, pointed ; costa straight ; hind margin obliquely sintous. Labial palpi long, porrect ; second juint
rough-haired abwee, straight bemeath; temminal joint small, smowh, rombed; maxillary palpi emed, small; antemme laminated, short, curved, with serrate joints, slightly puins. ent honeath in male; tongue slight ; ocelli present. Female larger and paler than mate; male with a distinct anal tult. Markings, two transwese limes and two stigmata, the latter soparated by a pale discal pot; the renitorm also followe by a large subcostal pale bloteh.
'Iype M. olivalis, Warr.

Mimudea olivalis, sp. n.

Fore wing (female) olive-yellowish, suffused with olivefuscoms; costa, the two transverse lines and the two stigmata darker fusenus; first line slight, curved, seemed broader, rsuecially in its lower half, where it beenmes a broad shade and unites with the reniform stigma; a small straw-yellow spot before and a larger one beyond the reniform stigma. Hind wing olive-fuscous, paler at base, with a dull central band and row of dark marginal dots.

Male smaller, fuscons grey, withont any yellowish tinge, and the pale spots whitish; the ecentral space between the two lines wholly dark fuscous.

Expanse of wings, of 16, ठ 14 millim.
'Two females, two males, from S. Paolo.

Mimudea flavinotata, sp. n.

Male. - Fore wing cinereons fuscons, the two lines only faintly discernible, the second preceded on ensta by a large straw-coloured spot; a smaller romed one stambing on the disk between the two stigmata, which are searcely otherwise discernible. Ilind wing dull ochreuns, with darker hind margin and faint central line.

Female yellowish, very similar to the femate of Mr. olicalis, but without the fuscous-olive suffusion, and larger.

Expanse of wings 18 millim.
One female, one male, from Rio Janeiro.

Mimudea subrosea, sp. n.

Fore wings dull rosy grey; first line fuscons, at one thind, nearly vertical; second line from two thirels of the custa, where it is preceded by a large irregularly triangular yellow spot, ending as a vertical line near the centre of the immer margin, approximate and parallel to the first line; a pale yellow spot between the stigmata, which are scarcely
discemible; fringe yellowish. Himl wines fuscous, with yellowish fringes. Head, thorax, and ablomen rosy grey; anal segment of abdomen yellow.

Expanse of wings 12 millim.
One female, S. Paolo.
In the specimen above deseriber the abdomen is unnsually short and apparently malformed.

Pachyzancla, Meyr.

Type P. stultalis, Wik. (I'. mutnalis, Meyr. 'Tr. E. S. 1884, p. 315 (part)).

Pachyzancla dissimilis, sp. n.

Resembles stultulis, W'lk., but smaller, the transwerse lines net preceded or followed by a pater space; firsi line less oblicue, nearly vertical, second line without any denticulations in the middle and lower thinds; the general gromelcolour of both wings more uniformly fuscous.

One female from Accra.

LXT.- Totes on Dr. C'. Fluches signonymic List of the Eurnuen Trichoptergide. By the Rev. A. Matmilws.

For the last few years the time which I have been able to derote to entomology has been fully oecupied in investigating the Corylophidae; lout since that study has been almost fimisher, I have lately turned my attention to collecting materials for a scond part of my 'Trichopterygia Illustrata,' and I fime that such a work is much needed, for, since the publication of the first part in 1572, the number of the Trichopterygide has been nearly doubled by the discovery of fresh species in various parts of the world, especially in Ameriea, throngh the exertions of Mr. Croteh, Mr. Champion, Dr: Le Conte, Dr. Horn, and Mr. Casey.

Thus it has happened that until a few weeks ago I was maware of the existence of an inportant essay on the Luropean secies of Trichopterggider from the pen of Dr. C'. Flaeh, published in the "Verhandungen der kaiserlich-k imighehen zoolngisch-hotanisehen Gesellschat in Wien,' vol. axxix. $1859, ~ p p .481-532$.

In this essay Dr. Flach has revised, or, rather, attempted
to reenstruct, the nomemelature of the whele family, and my purpese in the present paper is to consider the alterations promed ly Dr. Flath and to set plainly before entomolngists my own views, where they differ from these of Dr. Flach, amb, having dome this, to lease it in their hands to form an mprejudiced opinion on the comparative merits of the systems. in question.
'The changes of nomenclature proposed by Dr. Flach form a leading feature in his essay and reruire special notice. The mamer in which he has treated the genus Ptilium exhibits it chamacteristic example of his style. He has, in fact, artopted an arrangement sugested long ago by Col. Motschulsky, dividing this very complex genus into many subgenera. The creation of what are temed subgenera has always appared to me oljectionable for many reasons: it is impossilibe to define a subgenus with accuracy sufficient to enable a student to determine the proper position of any douldful species; if this could be done, and the subgenus proved to exhibit ummistakable anatomical characters, it would become a true genus, and must be designated as such in any subseguent work. Col. Nutschulsky's separation of Ptinelle from I'tilum is a clear proof of the truth of what I have said, for no one since his time has ever thonght of remiting those two genera. If it had been possible I would willingly have retained Mierella, (lligelle, and other genera which he proposed at the same time as I'timella; lut I could find in these no true feristent generic characters; the differences which they exhibit are merely specific, e.g. the short transversely-jointed anteme of P. Kunzei merge gradually through other species whose thorax is equally devoid of channels into the long slender-jointed antemm of P^{\prime}. exaratum, and the same may be said of their superficial sculpture and other differences. I found therefore that generic separation could not be supjorted by anatomical evidence, and was content to retain in the old genus the greater jart of its former species, distinguishing its various divisions by scu!ptural characters alone -thus avoiding the confusion of a multiplicity of indefinite generic terms. But even if sulogeneric names should be deemed advisable, I consider it unjust as well as uncourteons to appropriate to your own credit names previously published by mother author, although they be but imperfectly characterized. Be this as it may (for genera are at the best mere arbitrary divisions, depending on the peculiar ideas of indivilual authors), in dealing with species greater caution is reguired. The characters which distimguish squecies are mainly silerficial: anatomical vasiation, though often useful,
can only be regarded as acceseory; lencth of limb, form of outline, and superficial sculpture must always form the $p^{n i n c i p a l}$ specific factors-colour and size, except when uniformly persistent, are of minor importance.

But, on the other hand, anatomical characters, especially the organs of the mouth and the comparative shape ant disposition of the various parts of the external skeleton, must be regarded as the only true generic distinctions.

Such, I believe, are the rules by which weneric or specitie: sparations should be regulated. But all these rules seen to have been distegarded in the nomenclature of the Trichoperygidx with which Dr. Flach concludes his essaty.

Lefore entering into a detailed examination of this nomenchature Imust premise that in my own collection there are anthentic types from the collections of M. Allibent and Col. Notschulsky of the greater number of the species described by those authors, together with types of their own species kindly presented to me by Dr. Aulsé, M1M. C. Brisuut de Bameville, Faimaire, leciche, Thomsom, Hampe, and other friends, so that I may fairly consider that I an in a psition to speak with some anomit of accuracy on their respective merits; and with these pheliminary rmanks I will now tum to the unwelome task of examiniag the monemelature of the T'richopterygida published by Dr. Wlach.

The first genns in this list which requires notice is Plemidium, divided in the following mamer into four su', ${ }^{\prime}$ enera: -

Prenidiom, Erichson.
Matthewsium, Flach.

> ovulum, Flach.
> Gressneri, Gillm. Lederi, Flach. lcevigatum, Gillm. atomaroides, Matth., ex typ. Bruclii, Matth.
> turgichum, Thoms.

If onkiveiczium, Flach.
intermectuem, Wank.
? N'ankouciezii, Matth.
Var. Weiseit, Flach.
Brenskei, Flach.
I'cnidium.
Pensiyi, Flach.
turgidulum, Flach.
fuscicome, Wrichs. preqpes, Matth. "biscutcomen Muts.

Fynomymic List of the Fimopern Trichoperyoilar. A1.5
luticolle, IJochh.
Heydeni, Flach.
myrmecophitum, Mots. formicetorum, Krantz. Kiraatzii, Matth.
mesillum, Gyll.
apicale, Erichs.
evanescens, Marsh.
punctatum, Mots.
terminale, Hald.
Var. corpulentum, Lucas.
Var. atomaroides, Mots. Var. maroccamum, Flach.
Brisouti, Matth.
nitidum, Bris.
eranescens, Mots.
Var. lonyicorne, Fuss.
Var. orientale, Flach. obotritis, Flach. monctatum, Gyll. alutaceum, Gillm. littorale, Mots.

Gillmeisterium, Flach.

> nitidum, Heer. $$
\begin{array}{l}\text { pusillum, Erichs. } \\ \text { 4-foceolatum, Allib. } \\ \text { minutissimum, Steph. }\end{array}
$$ Var. insulare, Flach. Var. Matthewsiz, Flach. lavigatum, Gillm. Reitteri, Flach.tatum, Steph.

If the characters on which these subgenera are founded result in the combination of such miscellaneous gromes as those exhibited in the foregoing list, they must be radically false and deceptive. P. Gressneri shows the most striking dissimilarity in form and outline to every other speceies if Pfenidium, unless it be to Dr. Flach's new species, with whith I am macquainted. P. levigatum, Gillm., is very chosly allied to P. nitidum, Heer. My own description of this species was made from an example presented to me by Dr. Anbé, which had been rerified by Gillmeister himself, and therefore authentically typieal. P^{\prime}. ctometroiles (whether assigned to myself or to Col. Motschulsky) (an be associated with no other than P. ceumescens. If by the words "extyp." (appended to this name in his list) Dr. Flach means to insimuate that he received the type from myself, I can only Say that I never sent an example of any species whatever to Dr. Flach, although I have effered to do so, and I positively
decline to be considered responsible for mistakes male log other perple. But the expression "ex typ." may aceonat for many of the errors of nomenclature contained in this list. I have myself suffered from the careless mamer in whied specimens are often named and then distributel as types of certain species; and the same misfortume may have, and poobably has, happened to Dr. Flach. P. Bruckiii is conspicuously distinet from all its congeners. P. furgitum I deseribed from a type I reecived from M. Thomson; it is allied to P. formicetorum alone. In his next subgenus 1) W. Wlach has placed P. intermedium, Wank.; but this is s, closely allied to I. cerceesecens, Marsh., that it seems strangu to have placed them so widely apart.

Of the ten species emstained in his subsenus Ptorifium four are introduced hy Dr. Flach himeelf, and are all monown to me; lut throughaut the I'teridia it would he difficult th find anong the older species five more totally dis-imilar than these which he has eromped tose ther in this division, namely, I'. fuscicorn, finmictorum, cranesons, Brionsti, and
 has phaced but two species, P. witidum and P. licitheri; the synonymy assigned to the former of these is, as far as I can judge, correct, with the exception of P. lomigutum, (iillon. 1 need not repeat again what I have said only a tew lines above respecting this specise, but, should any doukt exist, must refer its solation to the deserption and figure given by (iillmeister himself or to those in the 'Trichupterygia Illustrata."

The genus Euryptilum is placed next in suceession, an 1 in this genus Dr. Flach has included I'tilum muminutum, Auhé. It seems to me that Dr. Flach is right in adding this sureis (10) Euryptilium, for the apex of the elytra is cutire anl its whole form and sculpture very similar.

Among the Ptilia the subdivisions and the combination of species become more numerous and still more proplexing. In his first subgenus Dr. Wlach places I^{\prime}. Kunsei atome, but amalgamates under that name P. brevicolle, whose thoma is one half shoster, and I ' rupulosum, which has hong and slender antema and exhitits striking differences in outline and sculpture. The next subsenus, Triehoptilinm, contains hat one speceies, T'. Sithlbergi. The tigure of this inseet (pl. xi. fig. 3) clearly proves that it cannot possibly be iacluted in any pant of the genus Pritiom, since it- therax werlips the shoulime of the dytra, a formation hitheren only found in Actidium and Microptitium. Then follows the

maknown to me. From types reecived from Ifer Reitter T'. adipus is illentical with a species which I formerly described under the name of Ptilium olectecatum. I would at that time have willingly separated this species from Ptilium, hut could find no distinct generic difference, and did not comsider the rudimentary comdition of its eyes to be of itself sufficient. The next sulgenns, I'tilolum, commences with I^{2}. ollonyum, a mame long agor superseded by Spencri, Allil), and to this are added as synonyms Fonersteri and finscipenne; the latter of these is the type (received from Prof. Foerster) from which I deseribed I'. F'uersteri. Dr. Flach then makes l'. angustatum, L'richs., into a distinct species, althongh he had just lefore quoted that name as a symonym of P. oblongum, and finishes I'tilulum with two new species. The last subgenus of this group is Euptilum, contaning croaticum, caludonicum, and one new species. Then having inserted the genus Acticlium in the most unintelligible manner among the normal I'tilia, Dr. Flach appropriates Motschulsky's name Oligellu for the purpose of forming a genus to receive P. foreolutum alone. '1'o this succeeds the absurd introluction of Motschulsky's Micridium cittutum among some of the most normal species of Ptilium. The shape and length of the posterior legs is alone sulficient to separate Dicridiun loy a long interval from I'tilium, withont entering at all into the numerous anatomical differences which exist between those two genera. But this is not all; Dr. Flach has incorporated with Micrictium cittutum two ahmost normal species of P'tilium, P. Intiduii and P. angulicolle, which resemble Micritium in the transparency of their elytra and in that alone. Then, after the intercalation of Millillium, Dr. Flach proceeds to enumerate the remaining Ptilia as species of his subgenus. Ptilium.

I have now examined in detail the whole arrangement of the Ptiliina; to proceed in the same way through the Trichopterygina would but entail the constant repetition of similas: remarks and prove wearisome to the realer. The same confusion of syonymy pervades the whole list; it is very comspicuous in l'tinclla (Neuglenes), but seems to reach its climax in Trichopteryx.

I fully believe that Dr. Flach's new species are true and genuine, the characteristic portraits of those which he has figured speak for themselves; but, if I can julge by types of some others received from Herr Reitter, the differences on which they have been separated are far less distinguishing than those which exist between many species unceremonionsly grouped together by Dr. Wlach as mere symonyms; and in
what way to account for the synonymy exhithited in his list is far beyond my comprehension.

I have myself long pased the onnventional term of human lifo, and would glatly welonme the apparance of any on who womld carry on the wonk which has lacon my stmily the more than fifty years, but not in such a fashion as this.

Ciumley, Market Harborough, March 1892.

LXVI.-Deseriptions of some new Species of Asiatic Satumiidæ. By F. Dloore, F.E.S.

1. Anthereea pulchra.

Wale- Varied with ochreous red on the basal area, mange-yellow along the apical bonken, ond wlive-rwy on himil margins, the outer lorkes olive-grey; acelli orat, with thiok back ontw ring, slighty protubant at uppor anl bwo eml of the cell; shlmaminal hand dank ren, very slizhtly whithordered; suhbasal hands prominent, hack; two tran-veres diecal, dusky ochrenus bown, humbar fascie, both choulol anterionly on the fore winf and hackith on the himd wing, the imer discal fascia boing very namow and the outer one broad.

Female-Varied deep orange-brown; with two darker discal fasciae as in the male; outer hombers paler ; submarginal hand bonal, with prominent white bonlor: wellas of fore wing protuberant at upper and lowerent of the ofll, itom back border thickenel at the lower pmonborance; mello- of hind wing less protuberant.

Expanse $5 \frac{3}{4}$ inches.
Hab. Satara Hills, Bombay (Coussmaker).
A larger insect than the three following: Mistimenthabs. from them in the male by the broader dusky outer diseal band and much narrower inner discal fascia, the latter crasing the wing (nutsite the eefl on hoth winge: the itureFater between the subbasal dusky band and the submarginal band is also wider.

2. Antherea fusciuta.

Mule.-Pale brownish ochreous; discal area slightly tinted
"ith redkish whrents, apical bomer yellowish nohreuns, out lomerers pate olive-hrown; submarginal band dusky pink an! slighly whitish-bomered; ocelli small, hlumly oval; sul)basal lands, omer diseal lumblar band on fore wing, and discal encircling wayy hand on hime wing prominently hackish; a suffused discal fascia across both wings.

Femule.-Deep ochreous ycllow, brightest across the disk, outer border much paler, submarginal hand dusky red, narow, and lmoally white-bondered; ocelli large, oval; discal bands as in the male, prominently black.

Expanse, $\delta^{7} 4_{\frac{3}{4}}^{3}$, of $5 \frac{1}{4}$ inches.
llab. Satara Hills, Bombay (Coussmaker).
Distinguishahle by its somewhat wonlly appearance, especially ohservable in the female, the male having a prominent broad, dusky, lunular onter discal band on the fore wing and a prominent similar cucircling discal band on the hind wing, the latter approaching nearer to the ocellus.

3. Anthercea olivescens.

Male and female.-Pale olive-brown, the outer borders paler; submarginal band deep purple-red, bordered with finkish white, that on the fore wing sinuous; ocelli bluntly oval, the black ring thick in the female; sublasal banit pinkish brown, white immer-bordered; a darker olive-brown suffused discal fascia crossing both wing*, amt a similar coloured narrower lumular fascia contiguns to the submarginal band.

Expanse $5 \frac{1}{4}$ inches.
Hab. Satara IItls, Bombay (Coussmaker).

4. Antherca ocluripicta.

Mate.-Reddish ochrents, with paler olive-grey borders; subbasal and submarginal band deep red, the latter slightly white-bordered; wcelli small, almost circular, talcose centre small.

Female.-Ochreons or orange-yellow, brightest acros the disk; the base pale greyish ochreous ; subbasal band ochreous red; sulmarginal band pink, prominent whitebordered.

Expanse, of $4 \frac{3}{4}$, 아 5 inches.
Hab. Satara Hills, Bombay.
Smaller than A. olicescens. In the male the outer discal dusky lunular band is futher from the submarginal band.

Ann. \& Mag. N. Hist. Ser, 6. Vol. ix.

Reared from cocnons received in 1874 from Capt. G. Coussmaker.

5. Anthercea versicolor.

Male. - Taried deep ochreous brown; outer borders ochreons, tinged with olive; ocelli oval ($\frac{4}{12} \mathrm{in}$. in diameter and $\frac{6}{12}$ in length), talcose centre large; submarginal red band broad, the white outer border narrow on the fore wing and broken into dentate marks on the hind wing ; an indistinct dusky subbasal band, a medial diseal and contiguous lunular fascia on the fore wing. Hind wing with an indistinct dusky subbasal band extending close to and round the ocellus to the anal margin.

Female-Ochreous or greyish brown; ocelli large, oval ($\frac{5}{12} \mathrm{in}$. in diameter and $\frac{8}{12}$ in length) ; discal area du:ky brown ; submarginal red band broad and broadly pink-white bordered; the discal encircling dusky band prominent and touching both upper and lower ends of the ocellus.

Expanse, of 5, $\$ 5 \frac{1}{2}$ inches.
Mab. Purulia, Maumbhoom, W. Bengal.
Of smaller size than either A. mylitte or A. nelutasu (of which latter species I have Iutton's typical specimens), and is distinguished by having a different shaped ocellus, the male having the submarginal red band much nearer to the ocelli and the encircling discal dusky band on hind wing touching the ocellus.

6. Anthercea Hartii.

Male and female.-Upperside dark purplish ochreous-brown, the base of the wings and the body being more or less reddish brown ; both wings with a rounded ocellus of from two tenths to three tenths of an inch in diameter, encireled by a blackish line, with the centre talcose, the outer half being chromeyellow and the immer half purplish red, the latter colour also extending more or less paler round the outer yellow half; crossing the middle of the wing is a more or less blackish wavy shade, which imperceptibly passes through the ocelli, and an oblique blackish, rather straight submarginal line extends halfway between the margin and the ceellus on the fore wing and at three fourths on the hind wing, this line in the female being exteriorly purplish-bordered and slighty grey-speckled towards the apex of the fore wins; in the female also the base of the costal borter is liken ise slighty grey-speckled; in some specimens of the female the outer hor ker
of the hind wing is almost entively covered with chromeyellow scales, these yellow seales also being scattered ou the horker of the fore wing ; cilia deep chrome-yellow.

Expanse of wings $4 \frac{1}{2}-4 \frac{3}{4}$ inches.
Menk. Newchwang, Manchuria, N. China. In Coll. Moore.
The adult larva of A. Hurtio (in alcohol) is 4 inches in length. Colour green, with two dorsal rows of short hairy tufts composed of a few fine divergent hairs, and two lateral rows of smaller similar tufts, one being on each segment in each series, and the two dorsal tufts on the third and fourth segment on slightly raised prominences; a smaller tuft also on each of the fore legs; at the base of the anterior tufts and the dorsal and lateral tufts is usually a sparkling gilt spot ; the feet, underside, and front of head also slightly hairy; head with black spots in front and a lateral upward streak; front legs with black streaks and pads on the middle, and hind legs also black; spiracles narrow, blackish. Cocoon pale ochreous white, attached by a long slender peduncle to a twig of the food-plant, and partly enveloped with the leaves.

The natives rear the larva, in a semi-domesticated state, on oak trees, it being stated that two broods are obtained within the year.

Named after Sir Robert IIart, through whose interest specimens were collected and forwarded to Mons. Natalis Rondot.

7. Antherea borneensis.

Female-Upperside dark ochreous yellow. Fore wing with grey-speckled costal border; a prominent ordinary narrow, outer discal, transverse, blackish band with whitespeckled pink outer border; a broad, very bluntly ovate ocellus with small talcose centre, the inner half of the ocellus being light red, with traversing incurved white line, the outer half greyish purple and externally edged by a black line, which is slightly thickened at its upper end and then extends to the costal vein; a subbasal, transverse, indistinct, slender, nearly erect pale red line, and a darker similar short line crossing the cell; a red broad streak also within the cell from near its base and extending beyond the transverse line; a narrow, indistinct, darker ochreous fascia crossing the middle of the wing and passing through the outer edge of the ocellus. Hind wing with a similar very bluntly ovate ocellus having. a talcose centre, and the upper end of its black outer line terminating in a large yellow-centred longitudinal streak; a prominent outer discal, narrow, transverse, blackish band as
on fore wing, extending close to the ocellus ; a red, narrow, subbasal angulated line from inner marsin extending abowe and round the uper part of the ocelhus; a darker ochreous medial fascia from below the ocellus to inner margin. Thorax grey-speckled ; head, antemne, and legs dark ochreous; eyes brownish; thorax and abdomen ochreous yellow.

Expanse $6 \frac{1}{2}$ inches.
Hab. S. Borneo. In coll. F. Monre and Singapore Museum.
'This species is nearest allied to A. Itelferi, the female of berncensis differing on the fore wing in the more prominent transverse outer discal line, a larger ocellus having a talense centre (the ocelli in Mefferi being hlind), in the red dash within base of the cell, and in the darker ochrenus imlistinct middle fascia extending across the wing through the outher edge of the ocellus (in Helferi it extends midway between the ocellus and discal line). On the hind wing liomeneis alsio differs in the prominent outer discal line, larger and talcosecontred ocellus, and the medial dark ochreons fascia (not present in Itclfieri). From the allied A. yemamai of Japan, the female borneensis differs on the fore wing in the less obliquity of the outer discal line, differently shaped ocellus, the red dash at base of the cell, and different position of the medial ochreous fascia (which in yomamai extends through the middle of the ocellus); on the lind wing in the different curvature of the outer discal line and smaller as well as different-shaped ocellus.

8. Anthercea Ridlyi.

Female--Upperside with the inner area dark oehreons yellow, clouded with reddish ochreous, the outer horders hoadly dark purplish brown. ljuth wings have a large rounded ocellus with a broad talense centre, the inner border of the ocellus being crimson with white traversing line, the outer border olive-hrown, the encireling lime hack and that on the fore wing thickened at base of the subenstal hanch; crosing the discal area are two redidishback simuns lines, the imner line broadest and tonching the ocelli: a medial hoad fascia and two sulbasal angulated fascie ; costal bomer of the fore wing and front of themax grey-speckled; head, body, and legs reddish ochreous; antenne brown.

Expanse, of $5 \frac{5}{8}$ inches.
Hed. North Bornco. In coll. F. Nhore and singapore Museum.

This species is allied to A. Turissa (W'estwond, 'Cabinct
of Oichtal Entomology, pl. xxiv. fig. 1) of Java. It is distinguishable from the same sex of that specios hy the wery considerable darker cobour, bromer transerse simous makings, and larger ocelli.

9. Antherea suralarta.

Mele.-Upperside pinkish brownish-nchrous. Fore wins with grey-speckled costal homer; with a hroad suffuse brownish-uchreous anterior shade before the apex ; a narrow dusky excurved subbasal line, a short incurvel similar line cros-ing the cell near its hase, an oblique inner discal similar line commencing from below the apex, which is lunular anteriorly and sinums posterionly; beyond this line is a conspicuous ordinaty pink-hordered, dusky, discal lime, which is almost straight ; ocellus small and bluntly oval, a quarter of an inch in vertical diameter, outwardly lined with black, the taleose centre being narrow. Hind wing with an indistinct dusky angulated subbasal line, which almost imperceptibly curves below the anterior margin and returns sinuously across the discal area, beyond which is an indistinctly defined ordinary pink-bordered, sinuous, outer discal line; ocellus small, one quarter of an inch in vertical diameter, rounded, talcose centre very minute.

Female.-Upperside ochreous yellow; costal border greyspeckled. Fore wing with a pale whitish-bordered subbasal line and an outer discal, whitish-bordered, slender, pinkish line; an indistinct darker ochreous narrow shate crossing the middle of the wing through the ocellus; the ocellus very large, irregularly elongated outwarlly, three quarters of an inch in longitudinal length, brownish wehreous, black-line outwardly, talcose centre large and longitudinally oval, an l crossed by the discocellular veinlet. Hind wing with a darker ochreous narrow shade crossing the middle; outer discal pinkish line with narrow lunulated outer border; ocellus longitudinally bluntly oval, ochreous brown, with oval talcose centre and black outer line. Body ochreons yellow; collar grey; head and front legs bright vehreous yellow; antenne reddish ochreous.
Expanse, of 5, ㅇ 6 inches.
Mab. Java (llorsficild). Type in coll. British Muscum.
LXVII.-British Sehizopoda of the Fumilies Lophogastride and Euphausiide. By the Rev. Canon A. II. Normas, M.A., D.C.L., F.R.S., de.

In Bell's 'History of British Stalk-eyed Crustacea' a single species of these families was described which had been found by Couch in the stomach of a mackerel at Polperro. It was named Thysanopodu Couchïi, Bell, and is the Nyotiphunes Couchiio of the present paper.

In 1861 I briefly described in the Brit. Assoc. Report, from Shetland, Ctenomysis alata, Norman, which is the Lophogaster typicus of M. Sars.
In 1868 I recorded in the "Last Report of Shetland Dredging" (Brit. Assoc. Report) Thysanopoda norvegica, M. Sars, $=$ Nyctiphanes norvegica of this paper. The younger specimens there referred to subsequently proved to be referable to Thysanoessa neglecta, Kröyer.
In 1872 Mr. G. Sim recorded in the 'Scottish Naturalist,' as found at Aberdeen, Rhoda Jordineana, Sim ($=$ Boreophansia Raschii, M. Sars), Thysanoessa alberlonensis, Sim ($=$ Thysanoessa neglecta, Kröyer), and under a name Thysanoessa borealis, Norman (non G. O. Sars, 1882) the Nematoscelis megalops of the present paper. Mr. Sim wrote:"This species [T. aberdonensis] is found in considerable abundance on our sandy beach in the months of March and April, along with T. borealis, a species named by the Rev. A. M. Norman, for the identification of which I am much obliged to that gentleman. The principal difference between T'. borealis and T' aberdonensis is in the first pair of feet, which in T. borealis are terminated with from eighteen to twenty long sharp spines, all proceeding from the extremity of the limb, while in T. aberdonensis eighteen spines are arranged along the sides of the last segment of that member, and two more placed on the wrist. 'The body and rostrum also differ in the two species." Mr. Sim here greatly exaggerates the number of spines at the extremity of the limb, which are (usually) eight; but one of my mounted specimens might well be mistaken to have sixteen, since the animal being about to cast its skin, the whole of the new spines are seen within the old ones, and would easily deceive in such a mounted specimen if the observer was not prepared for the deception. In consequence of this inaccuracy with respect to the number of spines it appears to mee that the
specific name T. lorealis must yield to the later name Nemutoscelis megalops, G. O. Sars.

In 1887 Professor M'Intosh first recorded Thysanoessa tenera, (i. O. Sars ($=$ T'. longicauduta, Krioyer), as British (Amn. \& Mag. Nat. Hist. ser. 5, vol. xix. p. 140).

Lastly, Boreophausia inermis, Kröyer, was first published as British by Messrs. Brook and Hoyle in their paper "On the Metamorphnses of British Euphausiide" (Proc. Roy. Soc. Edinb. 1888, p. 414).

Such were the first records of the species of Lophograstrida and Euphausiidæ which at the present time are known to live in our seas. As there is no accome of them in any English work, and I consequently have specimens frequently sent to me to name, I have thought it desirable to write the following notes on this interesting group of oceanic (Brustaceans, which are found either as surface swimmers or in deep water at some distance from land.

The descriptions of the families are in great measure condensed and slightly modified from the works of G. O. Sars.

Synopsis of Families, Genera, and Species.

Suborder SCHIZOPODA.

Legs furnished with exopodites used for swimming. In rare instances the first pair of legs formed for prehension, more usually this pair, as all the remaining legs, are simple. Ova borne below the carapace between the posterior pair or pairs of legs, usually enclosed in a marsupial sac formed by leaflike processes which are developed from the base of the legs.

Fam. I. Lophogastridæ.

Maxillipeds robust; the exopodite imperfectly developed, consisting of a single joint ; the epipodite very large and projecting within the branchial cavity. First legs with terminal joint obtusely rounded, and densely hirsute ; remaining legs having a well-developed nail. Branchiæ arborescent, complex, the largest branch freely projecting beneath the body, the remaining branches concealed by the carapace. Marsupium composed of seven pairs of plates. Caudal limbs (pleopods) well developed in both sexes. No phosphorescent organs. Inner uropods not furnished with an auditory apparatus at their base. Telson very large, in general form as in the Macrura.

Fam. II. Euphausiidæ.

Maxillipeds clongate, pediform ; exopodite well developed, epiporlite rudimentary or wanting. Leers without dactylu*, fosterior pairs more or less imperfectly developed. Branchia wholly exposed to view. Exg-pouch, when present, not formed of plates attached to hases of legs. Caudal limls (pleopods) well developed in lonth sexes. Phosphorescent organs present at the bases of the first and of the penultimate legs and also on the abdomen between the pairs of pleoports. Inner uropods not furnished with an auditory apparatus at their base. Telson very slender and tapering to an acute point, giving off on either side at a short distance from the extremity a very large spine-formed process, which extends far beyond the end of the telson itself.

Fam. III. Mysidæ.

Maxillipeds strong, with exopodite well developed, natatory, and the epipodite lanceolate and projecting within the branchial cavity. First legs diftering from the following, used as gnathopods; remaining legs slender, usually without, rarely with, a terminal nail. No true branchia present. Marsupial pouch usually composed of two or three pairs \dagger of leaf-like processes springing from the hinder pairs of legs. Pleopods in female small and rudimentary, in male natatory and often remarkably modified to assist in copulation. Inner uropods with an auditory apparatus at the base. No phosphorescent organs. Telson very variable in form, but never as in the Euphausiidæ.

Fam. I. Lophogastridæ.

Genus Lophogaster, M. Sars.

Carapace tridentate in front, the lateral teeth as much developed as the central, this portion of carapace advanced in front of the eyes, the peduncles of which are completely concealed by it, and the eves themselves are protruded on either side. Peduncle of

[^97]autemules remarkably broad and flattened, their imner flagella small, the outer greatly developed. Antemal scale broadly triangular, breadth subequal to length ; imer margin ciliated, outer not ciliated, serrated on the edge, serrations four to six. All the legs biramose as in other Schizopoda. Telson very large and much longer than the uropods; extremity narrowly truncate, with a strong spine at each comer, between which the termination is serrated and furnished with two setie. Outer uropods onejointed
L. typicas.

Fam. II. Euphausiidæ.

All the louss sulnequal A;
first legs much longer than the rest.

> First legs much longer than the rest.

A.

Basal joint of antennules furnished at the extremity with au erect, conspicuous, leaf-like appendage

Nyctiphanes.
Basal juint of antennules without any erect leaf-like
appeudage at the extremity
Boreophausiu.

B.

The long first legs having the two terminal joints armed with spiniform setre on both margins

Thysanoessa.
The long first legs greatly produced and very slender, last joints naked (without any lateral setie), the extremity terminating in a bunch of greatly developed porrected spines, these spines serrated

Nematoscelis.

Genus Nyctiphanes.

A spine on side of carapace behind the middle. Ros-
trum nearly obsoleta, ocular lobes of carapace pro-
duced into spine-like points. No dorsal spine over
base of telson ...eryica.
No lateral spines on carapace. Rostrum distinct, shortly triangular, lobes of carapace over eyes not at all produced. A dorsal spine over base of telson N. Couchiz.

Genus Boreophausia.

Rostrum narrow, about as long as first joint of antenmules; no spine on the sides of the carapace; a spine over the base of the telson; telson longer than uropods.
B. inermis,

Rostrum triangular, shorter than first joint of antennules; a spine on each side of the carapace in front of the middle; no spine over the base of the telson; telson subequal to or rather shorter than uropods

B. Ruschii.

Genus Thysanoessa.

No spine on side of carapace. Antennal scale elongated
and narrow, the extremity bluntly but narrowly
rounded. First joint of antennules shorter than
combined length of the two following joints. A
spine over the base of the telsonecta.
No spine on side of carapace. Antennal scale elongated and very narrow, inner margin gradually sloping to meet the outer, with which it unites at a terminal point. First joint of antennules longer than combined length of two following joints. No spine over the base of the telson

T. longicuudata.

Genus Nematoscelis.

No spine on sides of carapace. Eyes rery large, constricted across the middle. First legs longer than the body in adult . ..

A species has been found on the Norwegian coastEuphausia pellucida, Dana ($=$ E. bidentata, G. O. Sars)which will probably be also met with in our own seas. It may at once be distinguished from all the foregoing by these characters:-

Troo spines on each side of the carapace, one about the middle and the other behind it. Antennal seale broad and widely truncated at the extremity. First joint of antennules furnished with a leaf-like lappet (smaller than in Tyetiphumes) which is cut into two or many digital processes. The ventral preanal spine is trifid.

In the following list the worls Mus. Nor. (Museum Normanianum) indicate that specimens from all the localities and collectors cited in the sentence preceding are in my collection. For instance, examples of Lephoguster typicus are in my possession from all the localities given except "South of Cape of Good Hope."

Synonymic List, with IIabitats.

Suborder SCHIZOPODA.

Fam. I. Lophogastridæ.

Genus Lophogaster, M. Sars, 1856,
$=$ Ctenomysis, Norman, 1861.
Lophogaster typicus, M. Sars.
185ts. Inthoynster tupiens, M. Sars, Forhand. sliand. Naturf. Minle i Christiania, p. 160.

1~hio. Lophomaster typiers, M. Sars, Christiania Coniverstet-pmomam
 tifüddede Krebsdyr), pp. 1-37, pls. i., ii., iii.
1-sti). Lomhoyaster typricus, Norman, "Last Report Shetland Dredginer," Brit. Assoc. Rep. for 1868, p. 260.
18ะ.). Lopheyaster typicus, C. U. Sars, Report 'Challenger' Schizopoda, p. 14, pl. i. figs. 1-7.

Shetland, 1861 and 1868 (A. M. N.) ; 'Porcupine' Exped., 1869, Stat. 6 and 11 off S.W. of Ireland, in 90 and 1630 fath., Stat. 67 and 68 Last of Shetland, 64 and 75 fath. : Mus. Nor.
I) istribution. Bergen and Hardanger Fiords, Norway (A. M. N.) ; Fosse de Cap Breton, Bay of Biscay, 3̃̃-60 fath. (A. 11. N.) ; Messina (Zool. Stat. Na,les) : Mus. Nor. South of the Cape of Good Hope, 98-150 fath., 'Challenger' Stats. 141, 142 (G.O. Sars).

Fam. II. Euphausiidæ.

Genus 1. Nyctiphanes, G. O. Sars, 1883.

1. Nyctiphanes norvegica (M. Sars).

1856. Thysanopoda norregica, M. Sars, Forhand. Scand. Naturf. Mïde i Christiania, p. 169.
1857. Thysanopoda norvenicu, M. Sars, "Om Slegten Thysanopode ng dens Norske Arter " (Christ. Vidensk. Forhand.), p. 2 (separate copy).
1858. Thysanopoda nana, id, ibid. p. 15 (junior).
1859. Thysanopodu norvegica, (ioës, " Crust. decap, podoph, marina Suecie むc." (Efvers. Vet.-Alsad. Fürh.) p. 13 (separate cupy).
1860. Thysanopnda nomegica, G. O. Sars, Beret. Sommeren leb.) foretagen Zool. Reise, \&c., p. 15.
18ti?. Thysanopoda norvegicu, Norman, "Last Report Shetland Dredge ing," Brit. Assoc. Rep. for 1868, p. 265.
1N74. Thysanoproda nornegicu, Buchholz, Zweite deutsche Nordpolarfahrt, vol. ii. p. 285.
1861. Thysanumba norvegico, S. I. Smith, "Stalli-eved Crust. Atlantic Coast of N. Amer.," Trans. Comnec. Acad. rol. v. p. 89.
 p. 50.

1-s.". Vyctiplanes norreflich, Ci. (). Sars, "Prelim. Noticus on Selhiupula of "Challenger'" ((lnist. Videnth. Forhand.), p. 2t (-6paate (ap)
 p. 157; and Ann. \& May. Nat. Hist. ser. 5, vol. xix. 1887, p. 92.

She tland, 1861; off Valentia, Ireland, 1870; Loch Frme, 1555 (A. M. N.) ; Banff (T. Éducard) ; Firth of Clyde (1). Robertson) ; Last Sontland (Prof. Éwart); Monay Firth (V^{\prime}. Scott) ; Loch Goil, Loch Long (Dr. J. Murray): Mus. Nor. Firth of Forth (J. B. Henderson).

Distribution. Norway (11. Sors) ; Bay of Biscay (A, M.N.) ; off' coast of Portugal, taken by Mr. Davilson in " Poncupme, 1570 ; ' Porcupine,' 1869 , stat. 64, lat. $61^{\circ} 10^{\prime}$ N., lung. $2^{\prime} 21^{\prime}$ W. ; Faroe Chamel, 'Triton' Experl, 1552 (Muromin); off Eastport, N.E. Americal (S. I. Smith): Mus. Aor. Lat. 75° N., long. $12^{\circ} \mathrm{E}$. ((roüs) ; off the Naze (Metzyri) ; is great abondance off N.E. America aml in Gult of St. Lawrence (S. I. Smith).

2. Nyctiphanes Couchii (Bell).

185). Thysanopodu Conchii, Bell, Hist. Brit. Stalk-eyel Crust. p. 2fic.

Polperro, Cornwall, stomachs of mackerel (R. I. (imelh) ; Comish coast, 1581 (Dr. Day) ; Polperro (II. Laugherin); Banff (T. Educard) ; off Valentia, Ireland (A. M. N.) : Mus. Nor.

Nyctiphanes Couchii is quite distinct from N. norregica, and specimens from all the above sources agree in the characters I here give to distinguish it from the latter species.

Tyctiphanes norregica.-A spine on cach side of the carapace behind the middle. Rostrum scarcely developed, so short as to leave the base of the eye-stalks exposed. Lobes of carapace over the eyes drawn out into slender spine-like points, these points projected as far as, or further forward than, the rostral lobe. No spine over the base of the telsom.

Ayctiphanes Couchio.- A much smaller and more delicate species, usual length about 13 millim. No lateral spines on callapace. Rostrum more developed than in norvegien, in shape broadly and bluntly triangular, concealing the base of the eye-stalks ; lubes of carapace over the eyes not prowlued. A spine over the base of the telson as well as a small rentral preanal spine. In the make, of which some examples oocured at Baniff, the antemmes, in addition to the nsual reflexed membanoms leatlet of the first joint, have another reflexed membranons leaflet at the end of the second joint of the
peduncle, the distal portion of the leaflet being ent into digitated processes \%.

Siyctiplumes Conchio is very like I. anstralis, (i. O. Sias ('Challenger' limont, p. 1i.5, pls. xx. and xxi. figs. 1-7), except that in the former there is a spine at the base of the telson and a small promal spine, which are absent in the latter. The male also of N. Comchii agrees most clusely with N. anstratis in the form of the himer margin of the carapace: and the sexual developments of the phempols (ceide 'Chatlenger' Report, pl. xxi. figs. 3, 4, 6, 7). As regards the first pheopod, the likeness is mot merely one of general character, lat the serrated edge of the one margin and the single seta of the lateral lube of the other margin are indentical. But with respect to the male antemmles, no leatlet corresponding to that of the second joint in N. Couchio is described or figured in N. australis.

Genus 2. Boreopilausia, G. O. Sars, 1883.

(Viede Sars, Prelim. Notices Schizopoda '(Hallemger' Expod., Christ. Vidensk. F'orhand. 1853, p) 11 (sepanate (opy) ; but I am not aware that the genus has as yet been defined.)

1. Boreophausia inermis (Kröyer).

1~1!). Thysenoporla inermis, Kroyer, Voyage en Stamdinavi- de., Cru-t. pl . vii. fig. 2 (t-t.

1879. Thysanupeda inermis, … Smith. "Stalk-eved Crust. Athantic Coasts N. Amer.," Trans, Conn. Acad, vol, v. p. 91.
1882. Euphausia inermis, G. O. Sars, Oversigt ©cc. (l. c.), p. 5l, pl. i. fig. 15.
1887. Boreophausia inermis, H. J. Hansen, l. c. p. 53.

Banff (T. Educard) ; Shetland, 1S6S (A. M. N.) ; Moray Firth (T. Scott) : Mus. Mor. Clyde district (Brook ame Hoyle).

Distribution. West Norway (G. O. Sars); Eastport, N.E. America (S. I. Smith): Mus. Nor. Greenland (Hüller (dc., fide II. J. IIansen) ; E. America from south of Cape Cod northwards (S. I. Smith) ; Gulf of St. Lawrence, as 'T. neglecta (J. T. Whiteaves) ; Spitsbergen (Goës).

[^98]
2. Boreophausia Raschii (M. Sars).

1863. Thysanopodu Raschii, M. Sars, "Om Sliegten Thysanempert" "ice. (Christ. Vidensk. Forhand.), p. 14 (separate copy).
1-i-. Rhoda Jardineana, (i. Sim., " Stalk-+yed Crust, N.E. Cuat uf Scotland," in 'Scottish Naturalist,' p. 6 (separate copr), pl. iv. fire . . .
 (Christ. Vidensk. Forhand.), p. 51 (separate copy).
18vi. Boreophausin Raschii, Norman, Fourth Amual Ihmort Fishery Buard of Scotland, p. 150 ; Aun. © Mag. Nat. Hist. ser. 5 , rol. xix. 1887, p. 91.
18s7. Bonenphausia Raschii, II. J. Hansen, "Oversirt ower dut ventlime Grionlands Fauna af malac. Havkrebsdyr" (Vidensk. Middel. frat den naturh. Foren. i Kjöbh.), p. 53 (separate copy).
Firth of Forth (J. B. Menderson) ; Loch Fyne, 00 fath. (A. M. N. in 'Medusa,' 1855̃); Lochs Goil and Loner and between Cumbrae and Bute (Dr. J. Murray) ; East of Scotland (Ewart): Wus. Nor. Loch Broom (Brook and Hoyle); Aberdeen (Sim).

Distrilution. Norway, Christiania Fiord (M. Sars), west coast (G. O. Sars) ; Greenland (Müller dec., fide II. J. ILansen) ; German North Polar Exped. (Buchholz).

Genus 3. Thysaonessa, F. Brandt, 1851.

1. Thysanoessa neglecta (Kröyer).

1~49. Thysanopoda neglecta, Kröyer, Voyage en Scamdinabie ite., Crust. pl. vii. fig. $3 a-d$.
18.51. Thysanoperle (Thysanoessa) lonyipes, F. Branitt, in Middendortt"s Sibirische Reise, Bd. ii. Th. i. p. 128, pl. vi. figs. 1-14.
1si2. Thysanoesad aberdonensis, (t. Sim, "stalk-ered (rust. N.F.. Coast of Scotland," in 'Scottish Naturalist,' p. 7 (separate copy; pl. i. figs. 1-8.
1-vio. Thysanoessa borealis, (i, O. Sars, Orersigt ive. (l. e.), p. i-… pl. i. figs. 16-18.
1887. Thysanoessa neglecta, II. J. Hansen, l. c. p. 54.

Shetland, 1861 (A. M. N.) ; Aberdeen, 1563 (Cr. Sim); Firth of Forth (T. Scott) : Mus. Nor. Loch Seafurth, N.B. (Brook and Hoyle).

Distribution. West Norway (some of Kroyer's types from Copenhagen Museum) ; Lastport, N.E. Smerica (S. I. Smith *): Mus. Sor. Western and northern Norway and Fimmark (G. O. Surs) ; Siberian coast (Brandt) ; (ircenland (II. J. Mansen).

[^99]
2. Thysanoessa longicaudata (Kröyer).

1s.19. Thystanmmaturnimuluta, Krioyer, Voyage en scandinavie isc., Crust. pl. viii. fig. 1 a-f.
 (Christ. Vidensk. Fomhand.), p. $5: 3$ (spparate copy), pl, i. firs. 1s, I 19.
185. Thysanmessu lungiemulata, H.J. Hansen, "(bers. over det vestlige (iriulands Fauna af malak. Havslirehsdyr" (Videusk. Middel. fra den naturh. Foren. i Kjöbh.), p. 54 (separate copy).
Thrown up in enormous quantity in St. Andrew's Bay, April 22, 1886, and sent to me by Prof. M'Intosh for determination, who wrote subsequently that this species, together with Ayctiphanes norvegica, occurred "so densely that the tidal wave was crowded with them, and miles of sand were strewed with their borlies which the receding wavelets left in streaks and curves "*. In 'The Naturalist' of this month (May 1892) Mr. Thomas Il. Nelson, in his 'Ornithological Notes from Ridear,' writes (p. 144):-"February 10th, 11th, and 12th. Attracted by the number of Kittiwakes (Rissu tridactyla) to be seen about a mile out at sea, I procured a boat and went off to ascertain the cause of this vast assemblage of gulls; both east and west, as far as the eye could reach, their graceful white forms were visible, many busily engaged dipping into the water and others Hying overhead and then darting down to pick up some object from the surface. I shot two or three examples and found that their mouths were full of small Crustaceans, with which the sea was literally alive ; heaps of these were afterwards washed ashore by sea-winds, and afforded a feast for starlings and other frequenters of the tidal line." Mr. Nelson sent to me a small bottleful of the Crustaceans for determination. The mass of them were Euthemisto compressa, Goës, an Amphipod allied to Hyperia, which had not been previously observed on our coast. There were also several examples of Nematoscelis megalops, G. O. Sars, and one of Thysanoessa longicaudata, Kröyer (Mus. Nor.).

Distribution. Greenland, 'Valorous' Exped., Stat. 8; Faroe Channel, 'Triton' Exped., 1882 (IIus. Vor.), lat. $59^{\circ} \mathrm{N}$., long. $51^{\circ} \mathrm{W}$. (Olrik, fide Hansen). Krïyer's original examples were from lat. $61^{\circ} \mathrm{N}$., long. $13^{\circ} \mathrm{W}$., and lat. $60^{\circ} \mathrm{N}$., long. $11^{\circ} \mathrm{W}$. (Itunsen), Western Norway and Varanger Fiord, Finmark (G. O. Sars).

[^100]
Genus 4. Nematoscelis, G. O. Sars, 1883.
 Nematoscelis megalops, G. O. Sars.

 N.E. ("oast of Scotland" ('Soottish Naturalist'), p, Sorparate cuply).
 poda of 'Challenger' Exped." (Christ. Vidensk. Forhand.), p. 27 (separate copy).
1xi.). Nematowcelis mergalops, (i, (). Nar-, Report 'Challengri" Shizupoda, p. 127, pl. xxiii. figs. 5-10, and pl. xxiv.

Nematoscelis is remarkable on account of the very great length of the first pair of feet, which are even longer than in Thysanoessa and differ markelly in character. In mature Nrmatoscelis megalops these legs exceed the length of the borly, the meral and two following joints are very long ant slender, especially the meros, and at the extremity of the meros the limb is capable of being bent back upoin itself. The meros has a row on each side of small nearly appressed spimules and also several falcate-shaped spines, which lo k as if they might serve the purpose of grasping the propmos when bent back upon the meros. The carpus is guite smonth, the propodos is almost naked, but there are two or three small spinules towards the extremity, and at the extremity are two promected and greatly developed spines, which, with six other similar spines springing from the last joint (lactylus?), form a remarkable terminal brush to the limb. These eight teminal spines are serrated in a very peculiar spimal manner, and the serrations point backwards. The ventral preanal spine in the Scotch examples is either bifid, as figured by Sars, or simple.

The British examples appear in all respects to agree with Sars's description and higures of N. megolops, except that he writes of the first legs that the meros and sulseguent juints lack "every trace of marginal bristles, being quite naked throughout, save at the apex." This is not quite correct as regards the specimens I have seen. I think it well for the present to refer these to N. megolopis; lut if the form should hereafter prove distinct my nane $\bar{\lambda}$. berealis can be adopted.

Specimens not full-grown have the first legs sharter than the body, the eyes smaller and with faint traces of hilobation, the antemal scale proportionately shorter, and thas come rather suspicionsly near to N. microps, G. O. Sars.

Bandf, 1562 ('T'. Eidererd) ; Therdeen, 1865 (G. Sim) ; Firth of Forth, 1892 (1. Scott); Redcar, Yorkshire, April 1892 (T, H. Nelson) : Mus. Nor.

In the 'Challenser' Expedition N. megnetops was fumd in the middle of the south Athatie on the line between linemes Ayres and 'Tristan d'Acumha at Stations $3: 31,3: 32$, and 333 . It was also taken in the North Atlantic off Nova Seutia.

1．unt ミiきか
$\because \quad \because$

4×9

Ann. \& Mars. Nat. IFist. S. 6. Vol. IX. Pl. XIX.

LXVIII-Critical Olservations on Frenzel's Mesozoon Salinella: a Binlogical sketeh. By Prof. Stepan Apámy".

In the 'Zoologischer Anzeiger' for 1891, no. 367, pp. 230 et seq. \dagger, and in the ' Biolosisches Centralblatt,' Bd. xi. pp. 577 et seq.f, Frenzel deseribed a new animal, on which he bestowed the name Salinella §. The creature is a tube provided with two apertures-mouth and anus-and its wall consists of a single layer of celds. The cells on the ventral surface are similar to one another and fincly ciliate; it is only around the mouth, which is not quite terminal in position, that certain of the cells are provided with stonter cilia. On the dorsal side the cells bear short setee instead of cilia. The surface of all the cells which is turned towarls; the intestinal cavity is likewise finely ciliate. Fond-particles are found in the intestine in a solid form. Frenzel is led to believe that intracellular digestion does not take place.

By the discovery of Salinella our store of facts received a very material addition, since the creature in question, as it appears to me, serves to a certain extent to fill the gap between Volvox and Trichoplax. For the comprehension of the most primary forms of multicellular life Salinella seems more important than the Orthonectids and Dicyemids, in which we find a genealogical stage, certainly a very ancient one, at the best merely restored by parasitism as a fullydeveloped animal.

A large number of questions of the highest biological importance can be connected with Salinella; but although in Salinella Frenzel furnishes an important contribution for our comparisons, he himself, in criticizing it and the problems connected with it, does not make sufficient use, for the purposes of comparison, of the store of facts already available. The result is that certain difficulties, which are indeed present,

[^101]appear to him to be greater than, when considered from the comparative standpoint, they actually are.

In what follows I only hope to apply to an interesting concrete case nothing but what is well known and generally admitted, while venturing to add thereto certain reflections of my own.
"It is a well-known fact," says Frenzel in his seconrl paper (loc. cit. p. 577^{*}), " that between unicellular and multicellular animals there liitherto stretched a gulf which was wider than that between the vegetable and animal kingdoms; for indeed the two latter, in spite of the advances which we have made in knowledge, are even to-day hardly separable from one another." But the further our knowledge progresses the less will such a separation be possible, and the less moreover shall we consider it to be necessary: the animal and vegetable worlds have been developed in two different directions from a common basis, the non-nucleate Protoblasts. I totally disbelieve that it is permissible to institute such comparisons in the natural sciences. A gulf, if it is once present, can be neither smaller nor greater than any other.

Between animals and plants a gulf might well exist ; but happily it does not. It is nevertheless only in relatively quite recent times that our store of facts has been so far enriched as to render it possible to bridge over the gulf, which, from the standpoint of earlier knowledge, was only too evident. It is possible that, among the forms at present existing, there is a gulf between Protozoa and Metazoa; it is possible, nay even very probable, that it does not really exist at all, and that our array of facts only needs to be further amplified in order to bridge it over. The transition also from the unicellular to the multicellular plants is to-day quite a gradual one: why should it be otherwise from the unicellular to the multicellular animals? Frenzel contributes a rery considerable pillar to the bridge, and withal exerts himself, in developing lis paper, to make the gulf appear deeper and broader than it is. Our science does not deserve such an extremely pessimistic conception of its present position; although in a general way I consider pessimism-but without relapsing into resignation and exclaiming "Ignorabimus"!active pessimism, to be more fruitful than activity in an exaggeratedly optimistic direction. Frenzel, however, also overlooks stones which are already in existence for the building of the future bridge between Protozoa and Metazoa.

Frenzel moreover does the modern zoologist injustice when

[^102]he says (Biol. Cenfallol. lece cit. 1r. 577 ; Am. © Mag. Nar. Ilist. loce cit. ρ^{\prime}. 81) :-" "In the systematic arramement of the group (i. e. the Irotozon) we are even obliged, hard thongh it will be for every modern zoologist, to allow ourselves to be swayed by physiological considerations, since here the purely morphological and embryological fomerlations are insuflicient." In cases in which " unfortmately far too little attention is paid" to a "by no means unimportant difference perhaps in conserpuence of the fact that it arises in the first place from physiological conditions only," this does not oceur becaluse it would be hard for a modern zoologist to take physiological considerations into account, but because there are unfortmately still far too many zoologists who are me-sided in their views, i. e. not molern. It appears to me that precisely the perception that differences of a purely physiological nature exist between organisms, especially unicellular ones, which are not to be distinguished morphologically (i.e. anatomically and embryologically), is one of the most important acquisitions in biology; for it teaches us that the most essential differences-at least in my opinion-between organisms are independent of the degree of development which their organization has attained ; and that protoplasm, or, better, Protoblasts-for independent protoplasm, without forming any kind of Protoblast or living being (Lebewesen), has no existence at all-is subject to material differences even in the non-organized condition.

Indeed, we must even arrive at the conclusion-in a manner which I will perhaps indicate more closely upon another occasion-that in the non-organized condition there already were at least as many original kinds of Protoblaists as there are to-day really independent forms of living beings, or, we might say, qualities of life ; probably, however, there were many more. It may be that new qualities of life, in spite of the diversity of gradually developing forms of life, did not subsequently come into existence at all; for new and different forms of life may arise by gradual change of shape from apparently similar Qualities of life, the difference between which, though present from the begimning, does not become perceptible until a higher grade of development is reached. Yet it is probable that the qualities of life which were originally present camnot all have sustained the struggle for existence until now.

More or less visible gulfs between the various forms of life are and must be present, therefore, if we would in any way identify the idea of difference with that of a gulf. The apparent size of such a gulf may in the first instance depend
upon the paucity of our supply of facts; it is, however, on the other hand merely a matter of arbitrary valuation : essentially it makes no difference whether an abyss, which we cannot cross, is ten metres or a hundred metres wide. A difference is a difference, and can really be neither greater nor smaller than any other.

And wherefore must we exclude the Protozoa "from Häckel's fundamental principle of biogenesis"? To what extent is our knowledge of the Protozoa to upset this principle? For if there really are living creatures which are to be EXCLUDED from the fundamental principle of biogenesis, the latter is entirely invalidated. But has it recently been proved that we are confronted with insuperable difficulties if we assume that, in the case of the Protozoa also, ontogeny recapitulates phylogeny? It is true that the number of distinguishable conditions of form through which the individual life of a unicellular animal passes is much smaller than that of the series of forms in its phylogeny must have been. Yet we see the same abbreviation-relatively still more-among the Metazoa also, and, just as in the Metazon, the series of forms in the Protozoa often becomes somewhat more complete only in a cycle of several generations. In the same way larval adaptations and other coenogenetic conditions of form must play a perhaps even greater part among the Protozoa than they do in the case of the Metazoa.

If phylogeny is really repeated in ontogeny it must be possible to rediscover in the individual development of a Protozoon the initial stage also of the non-nlelefete Protoblast, the stage of the Monera. The same demand must, however, be presented to the Metazoa also; for in their case, too, phylogeny cannot have procceded from the nucleate Protoblast, but rather from the non-mucleate primary stage of all living forms. But the ontogeny of every Metazoon has hitherto appeared to commence with the stage of the egg-cell (or the reproductive cell in general), therefore with the nucleate Protoblast. Yet I now find it possible, owing to the discovery of the general diffusion of centrosomes (attraction-spheres) and their, so to speak, leading rôle in cell-division, to trace back the ontogeny of the egg-eell also, and consequently that of all Protozoa, to the stage of the Monera. But the stage of the non-nucleate Protoblasts is at the present time always passed within the mother-eell, before delimitation of the daughter-cells occurs; for as soon as division has taken place in the centrosoma, the attracted area of which is equivalent to the unit of the Protoblast, therefore to its individuality, the parent individual has ceased to exist ;
and the two daughter individuals are, although less separated than they subsequently become, already present before the mucleus has divided.
'The nticlids of the parent indiyidual, wifch remains undivided belongis to neither of tie daughter indiViduals; the latter abe therefore in the stage of the non-nucleate Protoblast. But since, for the full activity of the Protoblast, the nucleus has become an organ of already indispensable importance, they must in the ontogeny receive a nucleus much carlier than may have been the case in the phylogeny. The appearance of important organs relatively earlier in ontogeny than in phylogeny is an occurrence which has indeed met with general acceptation since the writings of Fritz Düller. The unappropriated parent mucleus, which is left behind, is the more unable to lead an independent life, and relapses into its constructive parts: the daughter individuals hasten to divide among themselves this material, which is so important for the building-up of their further organization, and to construct from it a nucleus for themselves, after the pattern of that of the parent form. Consequently the orject also of the more or less complicated forms of nuclear division appeais to be nothing fubther than an ontogenetic abbreviation of the phylogenetic process of the formation of the nuclees from the material substratum, to which the hereditary special properties are united. This substratud, though not as yet concentrated in the shape of the nucleus, an orgian subsequently so important, certanly belovged also to the non-nucleate stage in the phylogeny*. Since, therefore, the nucleus, although as an organ more important than ever, has been to a certain extent dethroned, the Protoblast without a nucleus, no matter whether or not there still exist non-nucleate forms capable of independent life, may assume its rights once more.

The non-nucleate Protoblast, therefore, as the initial stage

[^103]of development, can be rediscovered in ontogeny also, and indeed both among the Protozoa and the Metazoa as well. The ontogeny of a Metazoon individual does not commence with the stage of the fertilized or unfertilized eger-cell in process of division from which the Metazoon is built up; but the individual itself, which is represented by the mature egg-cell, has a past of its own which was possibly of great length, and which commenced with the non-nucleate stage within that germ-cell, from whose division into two it immediately proceeded as an umripe egg-cell.

1 am unacquainted with any facts-it may be that my knowledge is insufficient for the purpose-which would render the theory of morphogeny inapplicable to the Protozoa, especially as, between the visible stages of the development of their organization, there may be others which are invisible. Development may even attain the highest stage of unicellular existence without evolving further organization ; for it consists in a series of transformations of the phoperties of the Protoblast, in imitation of the sequence of events in the phylogeny, wherein each arrangement of organs corresponding to the particular stage of development is only potentially combined with the succession of these transformations-that is, the latter includes only the capacity to produce such organization should circumstances require it.

In this manner it seems to me that the egg-cell ontogenetically arrives at the highest stage of unicellular existence which has been present in the phylogeny of that form of life; and all its daughter-cells and subsequent descendants, the constituents of the Metazoon body, have the capacity to reach the same stage, and must endeavour to reach it by the same way, starting from the stage of the non-mucleate Protoblast. 'The rapidity of the development varies according to the conditions under which the particular cell commences and continues to maintain its individual life. The greater portion of the cells of the Metazoon body, however, owing to the conditions which obtain at an earlier or later stage of the ontogeny of the latter, is compelled actually to develop the organization which belongs to this particular stage, although it may not be exhibited by other cells of the baty. Those cells which, at whatever stage, really have to develop their organization, are hindered in their potential further development owing to immediate one-sided adaptation, are usually enfeebled in consequence of the performance of special funcfions, and never attain the highest stage of development, to Which at their origin they were, so to spak, historically predestinated. It is mbly the reproluctive cells, in, if two
kinds of them are present, only the egerecells, which enjoy such favourable conditions as to virtually pass through in their own ontogeny the whole unicellular phylogeny of the species, and thereby to be able to transmit to their successors: the complete character of that form of life.

Yet pretty frequently in the vegetable kingdom, but more rarely in that of the animals, cases also indisputably occur in which cells which had already adapted themselves to a special function, aud which we should therefore be inclined to term working cells ("Arbcitszellen") in contrast to the reproductive cells, under certain circumstances rejuvenate themselves as it were, resume their virtual further development, and consequently, when they have arrived at the highest unicellular stage of their species, themselves become reproductive cells. But if, in consequence of excessive specialization or of the accumulation of aplasmatic cellproducts, they have forfeited their capacity to virtually attain the highest unicellular stage, the daughter-cells which may be produced from them will also be unable to arrive at anything of the kind, and will never, even virtually, reach a higher stage of development than their parent-cell. For this reason the successors of already specialized tissue-cells can never do anything else than at the utmost develop, multiply, or regenerate the same tissuc; and it is only in consequence of this that the working cells can never produce from themselves a new, independent, multicellular individual, similar to the mother.

Pcrhaps I am not mistaken if I consider that the theory of morphogeny appears to be inapplicable to the Protozoa only for the same reasons as those which are the cause of difficulties in the interpretation of the embryological stages among the Metazoa also-upon which, moreover, the differentiation of the body-cells likewise depends; and (briefly to repeat once more what has already been stated) these reasons themselves depend upon the fact that the different cells arrive at a different grade of virtual development, the highest possible stage of which is actually attained by the egg-cell alone: then, remaining stationary at an carlier or later stage, they display an organization which differs according to their conditions, at the same time adapting themselves in one direction and becoming far too much exhausted to be able to have a further future.

I will not, however, weigh every sentence of Frenzel's article so precisely, although indeed we only weigh that which appears to us to be worth weighing. Otherwise I might be charged with fault-finding. I hope nevertheless that Frenzel
is not one of those who are at once inclined to regard every reflection aeainst their train of thought as "an attempt to pick holes" ("Anbohrungen ").

In his article Frenzel lays most stress upon the supposed gulf between Protozoa and Metazoa, which is stated th be cansed by the fact that the digestion of the Protozom cell is intra-cellular, while among the Metazoa, on the contrary, where extra-cellular digestion prevails, the intra-cellular mode "is only met with in isolated and exceptional cases." In opposition to this I consider-and in so doing I am supported by the leading existing authorities-that the way in which the cell feeds in the Protozoa and Metazoa is least of all adapted to form a gulf between them. Quite on the contrary !

Ameng the Protnzoa it may be a matter of momentary adaptation whether the digestion of one and the same animal is extra- or intra-cellular. And among the Metazo intracellular digestion is not only not of isolated occurrence, but in the whole of the lower forms is, so to speak, predominant ; in many, as e.g. in the Sponges, such a digestion is pertaps exclusively present. Moreover it is not "only the endmberm cells which can be concemed therein; " hut also, and indeed chicfly, the amoeboid cells of the mesenchyma, which, even in the highest Metazoa, as so-called phagocytes, contimue to practise this faculty of theirs which they have retained from the Protozom stage. Should we desire to construct a Metazoon out of Protozon, we should not find, as Frenzel believes, any physiological difficulty at all in the mode of nutrition. Since the sereral individuals in the colony also would each digest for itself by the intra-cellular method, we could perfectly well get "beyond a simple Protozdon enlony" and obtain a "typical Metazoon." If we take into consideration the more recent facts of comparative embryology and physiology among the lowest Metazoa, we arrive at the result that the several eell-individuals of the Metazoon, which continually relinopuish more and more of their independence (in my minion becatse the race of Protulasts which is represented by them continually forfeits more and more of its vital chergy), have on that account long retained the faculty of digesting their food for themselves. It is probable that this faculty was first lost in the ectulerm cells and then in those of the enduderm, while, on the centrary, the cells of the mesenchyma, even in the highest forms, are to-day still able to digest for themselves.

In upposition to Frenzel, we must cutirely agree with Metechnikofl" that this mode of digestion represents one of the few properties of the Metazeon erganism which have
been transmifted from the Protozoa, and conseruently furnishes a consective bink, however small it be, between the two groups"*. We should certainly be confronted with great difficulties, althongh not on the ground of nutrition, if we would construct Metazoa from Infusorian-like unicellular animals, such as the "larva" of Sulinellu. But we must not select precisely the most improbable possibility. The very earliest Metazoa are, as is generally agreed, to be derived from Flagellate-like creatures; and among the Flagellata it is really only a question of the stage of development whether the digestion of an anmal is extra- or intracellular; the different conditions of form through which the eell passes in its. life are also characterized by different modes of nutrition. In their different phases of life the Protozoa may resemble Amcebe, Flagellata, or Ciliata, or may pass through all three conditions (Catallacta of Ilackel). The same is also true of a large number of cells in the body of the Metazoon. Should we actually wish to consider holophytic Flagellates as ancestral forms of the Metazoa, in which comexion a very pretty transition is realized by Volvox, it is easy to believe that, so soon as a communication between the central cavity and the exterior became established, or in some other way a gastral cavity arose, the cells gave up their holophytic mode of life, to pass for the first time to an extracellular method of digestion. We even find that real highly organized plants are also capable of digestion on occasions, and indeed of extra-cellular digestion, like the insectivorous plants. In criticizing the relationships of the Flagellates it is of no importance whatever whether a particular form possesses holophytic or saprophytic nutrition; not only among closely allied genera are some holophytic (e. g. Chlamydomonas and Cryptomonas) and the others (Polytoma and Chilomonas) saprophytic, but the mode of nutrition also changes within the genus (the various species of Euglena); nay, it is even possible for one and the same form in its predominant phase of life to pass from the holophytic to the saprophytic mode of existence by losing its chlorophyll (e. g. Chlorogonium and Carteria). The transition is, however, very casy between saprophytic forms, and therefore such as really do not digest, and those which are capable of digestion, and as a matter of fact the digestion is for the most part intra-cellular, in correspondence with the amoboid form which has been assumed ($e . g$. in septic Monads), though

[^104]occasionally also extra-cellular. For how could we designate otherwise than as extra-cellular digestion the capacity of certain Bacteria to dissolve by their secretions caoutchoue and other substances which are difficult to assail and to absorb them as nutriment?

That extra-cellular digestion is of such limited occurrence among the Protozoa, nay even that it can only take place under exceptional circumstances, is solely due to external conditions, which render extra-cellular digestion a physical impossibility for the majority of the Protozoa. Under the term digestion we understand only the process of the conversion of solid nutriment into a solution or into a fine emulsion. In this the chief part is played by the digestive secretions and ferments. In extra-cellular digestion the food is exposed to the influences of the cell-body externally to the lafter; in intra-cellular digestion, however, this takes place within the body of the cell. Now how should a Protuzoon, supposing it to be possible for the digestive juices to be produced at all without immediate stimulation of the protoplasm, secure their effect upon the fool outside its body? The Protozoon must, in order to be able to digest, in order to render possible the operation of the digestive juices upon its food, incorporate its nutriment. But if this can also take place outside the cell, in consequence of the position of the cells in the colony, it will be possible to omit the incorporation of the food into the cells.

It is therefore in no way wonderful that the change in the mode of life of the former Protozoon, produced by living together with other cells in the consolidated, individualized, and differentiated colony, or in the Metazoon, should entail an alteration in its habits. In the first place it was of great advantage to be able to store up in an intestinal cavity much more nutriment than the several cells were in a position to secure all at once. An intra-cellular digestion was no longer unavoidable; but it gradually became for the majority of the cells of the body also impossible. The very fatit of theik memaining tugether in a colony, and their incapabllity To live independently, alie sigis of the individual debilitation of the several Propoblasts; in consequance of further exhaustion the majority of the cells, and gradually also the endoderm cells, forteit the capacity for active, amoboid changes of form; in compensation for the rest of the colony, however, the endoderm cells become specialized for the preparation of digestive juices and ferments, i. e. the eonsequence of their debilitation is the transfomation of their protoplasm to digestive juices, and moreover without the application of a
direct stimulus to it. The great caducity of endoderm cells (and of gland-wils altogether) is a character of very general occurrence.

Were we alk, says Frenzel, "still to regard the latter (i.e. the intestinal cells) at all events as Protozoon celle, this view would be absulutely inadmissible for the former, the cells of the mesoderm and ectoderm" I do not at all see why. The intestinal cells with intra-cellular digestion correspond to holophytie Protozoa; the rest of the cells of the body correspond partly to saprophytic Protozoa, becanse, thanks to the labours of other cells, they need only to feed, but not to digest their food; in part, however, the body-cells (especially those of the mesenchyma) are likewise holophytic Protozoa, and remain so even when the intestinal cells have long lost the faculty of intra-cellular digestion. In more primitive cases the intestinal cells themselves digest; they subsequently lose this faculty, and henceforth expend their energies in the production of digestive juices; the latter, however, are not sutficient for the digestion of the food-matter, and the wandering amoboid cells have to assist more or less with their power of intra-cellular digestion. The intestinal cells continue to be Protozoa, with which other body-cells, likewise corresponding to Protozoa, live together in a kind of symbiosis: their services to one another are reciprocal, so that their functions are consolidated into a physiologrical whole. Not only do the intestinal cells feed the rest, but a large portion of the latter also make provision for the intestinal cells: oxygen is in the widest sense food, just as much as albumen, fat, and carbohydrates.

I believe that I have sufficiently demonstrated in the foregoing that it is preciscly the physiology of digestion which causes least difficulties in deriving the Metazoa from the Protozoa; but also the other "gulf" between Protozoa and Metazoa, which Frenzel likewise emphasizes, and which is occasioned by the multilaminar character of the Metazoa, appears to us less great when we take into consideration the following facts.

As a single-layered multicellular animal we are now also acquainted with Salinella, besides Volvox. The next stage, with the representatives of which we have closer acquaintance as adult animals, already consists-to leave Trichoplax aulheerens out of consideration-of three layers, since in them a mesoderm, or, better, mesenchyma, is already present between ectoderm and endoderm; for of animals which in the adult stage also would correspond to the typical Gastrula, and consist merely of ectoderm and endoderm, we have no knowledge.

The most cogent proof that the ancestral form of the Metazon was the Cerstrou-an animal with intestinal cavity and oral aperture, composed of ectoderm and endoderm, without meso-derm-is therefore wanting. We negure this form, however, as a transitional stage, unly if we would haye the next step in the sequexce of the phylorenhtic development, starting; from the Blastlla-fura (BLastea), to consist in an invagination.

It is true that for a Gastrula to arise by invagination is mechanically the simplest mode of further development, and therefore it is that ontogeny; which always strives after abbreviation and simplification, so often adopts this methot, especially among the higher types; therefore, on the other hand, it is also natural and easily explainable that the next stage in ontogeny after the Blastula is the Gastrula without mesoderm. But the question arises whether a similar formation of a Gustrula is also the physiologically simplest possibility in the further development from the Blastem. It does not appear to me that it is. The methor of forming the endoderm which is physiologically the simplest, and therefore probably genealogically the oldest, is that which commences with immigration into the inner cavity of ectolerm cells, which have been forced out of comexion with the epithelium and have become amocboid, i.e. formation of the endoderm by apolar multilocular inward growth (Metsehnikoff). The growth is apolar, because only by subsequent adaptation (aceumulation of yolk) could the original ןularity of the orum be so far increased as already actually to cffect a differentiation of the Blastula-cells, a greater difference between the hypoblast and epiblast. The cells which penetrated into the cavity of the Blastulu afterwards gradually arranged themselves again in the manner of an epithelium to form the endoderm, after the communication of the Bhestulescavity with the exterior by means of the blastopore had furnished an incentive thereto. Perhaps an open Blustare of this kind is even more archaic than the elosed vesiele, amt in that case the incentive alluded to would not have subsequently occurred, but would have been present from the besinning. I would remind the reader of the development of Vilcox, where the young but already perfect colonics close their opening only after leaving the parent.

Now it cannot have happened either that all the immigrant cells were utilized for the formation of the endederm, or that with the eomipletion of the endoderm the immigration frem the ectoderm at once came to an end; it is much more frolable that the eells of the mesonchyma also shoubl be
angmented in the same way from among the entoderm cells, which were hy this time multiplying to excess. But then it is absolutely impossible to see why precisely sach a form of animal should exist, as one in which only so many ectoterm cells become amoboid as are necessary for the formation of the endoderm, in order not to leave any over in the shape of so-called mesoderm. The formation of the endoterm was indeed neither the object nor the canse, hut merely the consequence of the immigration. As a matter of fact, such a bilaminate animal as represented by the Gestrexa can neither have existed in phylogeny nor be in existence to-day.

That the Gastrula is nevertheless present in ontogeny is, as has already been mentioned, to be explained from the fact that the immediate incentive th the further development of the body from the Blastula, which in phylogeny was a more physiological process, dependent in a higher degree upon the individuality of the cells, has here, in ontogeny, become a more mechanical necessity. The phylogenetic methot is longer, and therefore in ontogeny it is adopted merely in the case of very primitive forms (certain Porifera and Cnidaria), as opposed to which the more developed forms have gradually selected a shorter, because more mechanical, way to the same end.

Now the various colonies of Flagellata, and especially Volvor, present us with the highest stage of colony-formation among unicellular creatures, nay eren with the most primitive multicellular animal, which already appears to possess an integral individuality. At the same or a somewhat higher stage, but developed from other unicellular ancestors, we also find Salinella*, likewise an animal formed of an epithelial layer of cells, with an internal cavity. Now more and more cells-probably because they are weaker or stronger than their neighbours, and perhaps also because, owing to the axis of fission having been possibly somewhat oblique, they were situated more towards the interior-become continually forced from the epithelial position (if they are stronger than the rest they set themselves free), and passing into an amoboid stage reach the inner cavity. It is possible that Trichoplax adhcerens corresponds to precisely this stage, in which, with the communication between the internal cavity and the exterior, the incentive to a secondary epithelial

[^105]arangement of the cells which have wandered into the original cavity is also wanting. But so soom as a communication was constituted between the cavity of the IBlustula and the exterior by means of a mouth-opening, there was also provided the incentive for the immigrant cells to arranse themselves again like an epithelium, this time as an entroderm, and to pass from the Gymmomyxa form into a Corticata phase once more. Thus we already have the true: Metazoon, a Colenterate, or one of the Porifera before us. In this series of stages we nowhere miss the Giastrora.

A greater difficulty than those advanced by Frenzel appears to me to consist in the fact that it is not easy to form an idea as to how the single individuality of the Metazoon has arisen from the separate individualities of the Protozoa, which at first composed a loose colony as ancestral form. 'This, however, is at once a question which directly touches upon the relationship between the soul of the Protozoa and that of the Metazoa, that is really the question of the soul in general!

Frenzel finally observes something also in the development of Salinella which is said to be difficult to harmonize with our previous knowledge. He speaks of a hyputrichous Infu-sorian-like unicellular animal, which he regards as the Larval stage of Salinella. "This nevertheless leaves a difficulty of considerable importance to be surmounted," he adds, "in that the transition from the single cell with intra-cellular digestion to the adult animal with extra-cellular digestion is enigmatical and completely unexplained." I would not consider this phenomenon to be so very enigmatical, even should the fact be established that the digestion of 'Sulinella is really enzymatic, and not intra-cellular, like that of the majority of the lower Metazoa. This point, however, has already been sufficiently disposed of. Let us at once proceed to consider whethera dinicellularanimal, Whatevie its struture. can be considered as the larda of a militielditar form.

That stage in the ontogeny of the multicellular animal which, while still unicellular, immediately precedes the multicellular condition, and is therefore the highest unicellular stage, we term, whether fertilized or unfertilized, the ripe meit-ctil.. In the case of Salinella we have before us-if I rightly comprehend the meaning of a phenomenon observed by Frenzelthe product of an act of copulation, we might say a aggospore; there can in this case be no question of an actual ege-cell, for there is no difference to be observed between the two copulating cells, and in fact in Salinella there are no special reproductive cells at all. All the cells in the body have the prower of multiplying the spreies, and, singulaty emongh, the colony does not first relapse inte its comstituents
(like, e. g., Patulorina), but two exthee asimals become fused together and form a common cyst. Unfortumately Frenzel was unable to trace the further phenomena within the eyst. It is, however, hardly possible to imacine anything else than the fusion of each pair of cells of different origin. If, as Frenzel writes, a continuation of cell-multiplication really takes place within the cyst, this in all probability happens before the copulation of the several cells. Unfortunately, too, Frenzel did not directly observe that the separate similar cells in the cyst pass into the micellular Ciliate form which he has described.

Should that Infusorian really be a developmental stage of Salinella, it camnont nevertheless, as has already been stated, be termed a larva. The ova of many other animals also are capable of movements, particularly amoboid ones, and of feeding in the intbaceldular fashion upon the neighbouring cells, such as is the case, among others, in Tubuluria and Iyddra; and not only ean this be done by the unfertilized, immature, reproductive cell, but also, as is well known, by the fertilized one, as, for instance, in the case of certain Platyheminthes, where, in addition to a larger number of yolk-cells, only a few fertilized egg-cells are found in the egg-capsule. The sole difference between Salinella and the other known cases of active egg-cells is that the latter have only to incorporate and digest the nutritive material which is already stored up for them; while on the other hand the fertilized ovom (or zygospore) of Salinella has itself to acquire its food by its own activity, in order to be able to proceed with the building-up of its body. Therefore it is that the faculty of reproducing the organization of the highest unicellular ancestral form in the highest unicellular stage of Salinella does not, as is the case in the majority of ova, remain virtual and latent. The necessity of accumulating the building-material for further development by its own activity only sets in in the case of Salinella earlier than in that of all other multicellular animals. In point of fact much more is demanded from an independent cell in Salinella than in higher animals, where the separate cells always retain less of the activity and independent energy of their unicellular ancestors. For the rest, however, the transition from the "cell with intra-cellular digestion to the adult animal with extra-cellular digestion" in the case of Salinella is by no means more enigmatical and unexplained than the fact that from egg-cells with amceboid digestion Metazoa develop whose body-cells-partly indeed themselves digest throughout life-for the greater part, however, are endowed with extra-cellular digestion or none at all.

The further ontorgeny of Salinella also, subserguent to the already active unicellular stage, exhibits nothing extranclinary. Frenzel writes:-"For it is preciscly the further development of this larva, incomplete though my sturly of it was, which proves that it does not develop into the perfect animal by means of ordinary division, much as a colony is formed from a single Choanoflagellate, but by a far more complicated process, which we may most fitly term endogenous cell-formation." We may, however, designate the segmentation of all Metazoa whatever, and even the formation of the daughter-colonies of the Volvocineæ, as endogenous cell-division ("cell-formation"). In very many cases the egg-cell has a distinct cell-membrane, and the processes of fission, in which segmentation consists, always proceed within this membrane; it often happens that it is only the already tolerably advanced larva or the almost perfect animal that leaves the cell-membrane of the parent-cell, the cerg-cell. Even more distinct endogenous cell-division than in the case of the holoblastic ora is the segmentation in the meroblastie eggs, where, as for instance in the egg of the fly, the limits of the daughter-cells within the cell-membrane of the parentcell are for a long time absolutely indistinguishable from one another.

It is indeed in the chief degree the circumstance that the daughter-cells remain in organic connexion with one another, and that they have no longer the strength to separate, which has replaced societies of cells by the higher category of colonies; and a still more intimate union of the cells, in connexion with their endogenous origin in the eqg-cell and in consequence of their further individual debilitation, characterizes the Metazoa, and makes of them a single individual, an indivisible physiological whole.

That the daughter-cells and subsequent descemtants of the Metazoon egg-cell have now no longer the power to separate from one another, and lead an independent cell-life like Protozoa or like the unicellular ancestors of the species, is a fact. It remains to be asked, what is the cause of this? It cannet be a change of habit owing to the living together for so long in the cell-colonies of the ancestors, for the latter is itself the first consequence of the cause for which we are secking. I consider that the cause is to be found in a certain dehilitation of the genus of Protoblasts with which we have to deal; and the latter is again mothing more than the consequence of that change in all protoplaims (vital qualities) which sets in as time goes on, even without special extermal influences, and which we are only able to detect through its combined effect
 ment. A comtimms and inevitalde change in the condtion (mobile condition?) of matter in general is the common destiny of the univese, and is the equivalent of existmene an the prowress of the worlt. In speaking of phytumatio development we refer this general change only to now sum case, to that of living heings, where it procests at different rates according to the qualities of the Protoblasta, but everywhere essentially in the same direction and ace mang to the same laws.

Certain cells in the Mctazoon, owing to their peculiarly farourable conditions of life, attain to more of the original independent vital energy of the unicellular ancestors than do the rest: these cells are the reprotuctive ones. The egg-cell of Sulinella proves the originality (low stage of development) of the species also through the very fact that, as a simple cellindividual, it possesses even more vital energy than does the ego-cell in all Metazaa. In a general way it is perhaps possible to advance the proposition, somewhat paralloxical though it appears, that the higher organtzation of the alulticeldular individual is to be regarded as the consequence of the gradual degeneration of the separate cell-individuals whici compose it.

To briefly sum up what has been stated in the foresening pages, I consider Sulinelle as a highly valuable and interesting discovery precisely because, in opposition to Frenzel's view, it at once fits in thoroughly well with our present biological theory as to the origin of the Metazoa, and, so to speak, fills a gap in the series of facts for our deductions. Frenzel is certainly guite right when he states in the concluding words of his article ('Biologisches Centralblatt ; 'Anm. © Mag. Nat. Hist. loc. cit.) that there are isolated links in Nature "for which we camot find a place in our system, beautifully and ingeniously constructed though it is, and which tend to prove how little Nature is amenable to a dogmatic treatment on our part, a treatment which unfortunately appears to take the upper hand too much in the biologieal sciences, and which would gladly exclude everything which does not fit into its narrow frames." Happily, however, this great truth does not apply to Salinella! *。

Kolozsvár,
October, 1891.

[^106]
BIBLIOGRAPHICAL NOTICES.

An Elementary Manual of Nev-Zealand Entomology. By G. V. Hudsos, F.E.S. With 21 coloured plates. Sro, 123 pp. London: West, Newman, and Co.

Tris little book bears a somewhat mislealine titl. The text consists mainly of a serics of short descriptions of the hathits and metamorphoses of varinus New-Zealand insects. This hranch of the subject, dealing with the life-histories of insects, is well treated, and the descriptions, being lased to a great extent upon the author's own obsercations, are likely to prove a useful adlition to entomological literature. In a Manual of Entomology, however. we look for a better treatment of the anatomy and cla-sifieation of insects than is to be found in the hali-dozen pages alloted to thom in the present volume. A ferr such statements as that "the functions of the antenne are at present, extremely denhlful," and the reference to the Malpighian tubes at "hiliary reseels," sufficiently prove that, on the physinlugical sile of hi- subpet, the author might with advantage hare consult al some fowl molema text-book of biology or entomology.

The amatenr would not miss much, in fact, by passing oner tho first chapter, which is somewhat curiously headed "General Oiserrations." In the second chapter "on collecting" he will ind some useful hints. The remaining chapters, which, with the plates, form almost the entire bulk of the wolume, contain the deseriptions

[^107]alrealy refierved to. These provide intoresting reading, and will go far to compunsate for the delicieneies of the book in other respects.

The plates seem on the wholo well up to the average. In some of the figures we miss that attention to stuctural detal which was to be expected from an artist who is at the same time the author of a work on entomolugy. The heetle represented at fig. Z2, pl. ii., as having three-jointed tarsi and six-jointed antemse gives a very erronems idea of the characters of the family Tenctrionide, to which it is said to belong. The neuration of the wings is, in some cases also, less accurate than is desiable in a work where the herimer has to rely almest wholly upon the figures for the identifieation of the species as well as for a knowledge of the structural characters of families. This leads us to notiee that the author has introduced into the hook a certain number of spectes which he refers to as new. Ife figures hut does not describe them, nor does he give any due as to where deseriptions of them may be found. If he wishes to olnain recognition from the syatematic entomologist for the names he has given to these species he would do well to publish brief technical descriptions of them.

Notwithstanding the defects pointed out we trust that this work may succeed in the purpose for which it was written, of inducing the youths of New Zealand to take a more active interest in entomological science.

On the Moclifications of Orquitms. Diy David Sime. Melbourne: George Robinson and Co. London: Kegan Paul, 'Trench, and Co .

Some idea of the spirit of this book may be gathered from the following sentence:-"Darwin describes the action of natural selection as preservative and accumulative, but properly speaking it is a purely destructive process. It is heredity and not natural selection which is preservative and accumulative."

In a very rigorous fashion Mr. Syme denies almost every statement which Darwin relied on, maintaining that he "has practically abandoned his theory altogether when he admits that the tendency to rary in the same mamer is so strong that whole species may be modified without the aid of any form of natural selection." Ho asserts that "Darwin's language is wauting in precision, and his definitions and theories are variable and contradictory;" eren to forgetting his own statement of what natural selection is. The surrival of the fittest should be the result of natural selection or the struggle for life ; yet Darwin uses the three terms as synonymous. But, according to iIr. Syme, "it is the organism which struggles, not, howerer, to select this or that rariation, but to adapt itself to its curiromment." Darwin, with good reasou (except, perhaps, as to
sure and colour), was not dispesed to give the enviromment mand weight.
"One of the most singular of Darwin's conclusions" is, says Mr. Syme, "that it is the female that seleets the male, and not the male that selects the fomale;" yet on the next pare we finl that " the female seleets the handsomest and most valiant male:" further, that the sexual strusgle is not between the make, hut "is rather a struggle het ween the opposite sexes." Much that has heen written on this subject is purely conjectural.
The following will probably be new to many:-" Butterflies I me $^{\text {mat }}$ up their wings and expose their underside to the artion of the sum ;" they "have their brilliant nom-protective tints on the upper -urface of their wings, while the underside is almnst invariably proteatively coloured." Again, "wheu chased," we are twh, "ther sulden!y disappear by aliphting on some olject coloured like themselves. whereby they escape observation, and so confident are thee that they remain motionless eren when an enemy approaches within a fow inches of them."

One of the objections to natural selection-unnoticed by Mr. Cyme, but not unnoticed by Darwin himself-is the diver-ity of means for the same end.

The fertilization of plants by insects is discussed at length. Darwin believed that their relationship was motually hencficial. Mr. Syme, on the contrary, asserts" that insects of call kimbls are in rarions ways destructive to plants," and he denies that flowen- owe their conspicuous colours to insects.

There is no date and there is no index to this look, which only consists of 16.4 pages. There are several mispellinge- whe as
 \&e.; printed in London, and the author probahly in Mulhame. may sufficiently aceount for such errors. Niverthelew we shall he glad to see Mr. Syme again; right ur wrong, his bond is undomhtedly suggestive.

MISCELLANEOUS.

Some Anatomical Characters of Hyperoodon rostratus.
By M. E.-L. Bouvier.
I mase had the opportunity of studying, at the marine latmatary
 which had stranded on the beack near lort de la llougue.

The animal had a shon time predmaly given birth to a goung one; its nammar were full of milk, the internal ergans aif generation
contaned a large cuantity of samguimelent matter, and the ammarar folds of the vagina, which represent a more or less perfect os uteri, were scarcely indicated. The mamme are at least 1.15 m . long, with a maximum leadth of $16 \cdot 2=$ m., and are only a few cominetres thick; cach of them is traversent by a lomgitridinal duct, which rommences abruptly about 10 cmin. from the anterion en! remity, and continues, without greatly increasing its calibre, as far as the reservoir situated beneath the teat ; beeides this two large lat rat duets open into this reservoir. which is of comparatively small size. The milk is yellowish white, of the com-itcosey of cram; it hat an agrecable nutty flavour. The mammare aresered thronghont their entire length liy a layer of the entanembenarle: this layer must be the most active argent in the phenomena of compreatom which produce the emission of the milk: in front it acts chiefly by means of its external apmenenses, which are here almost the only covering of the mamma : proterionly the musle itselt is applied directly to the gland. The entanenus musele is elsewhere very wedl dencleperd, and in several regioms of the flamks exceeds 4 cm . in thiekness. In front it cowers at eertain points the prolongations which are sent off, to a distance of 1 m . behind the junction of the lips, by the spomgy and largely arcolar tissue, which contains the spermaceti oil in abundance.

The stomach is composed of ten successive chambers. The capacity of the first is nearly equal to that of the nine other chambers; its mucons membrane is covered with convolutions which are grouped round three perfectly distinct centres. The nine subsequent chambers form a mammillated mass, which is very sharply separated from the first: they are separated from one another by perforated septa, which were described a loner time ago ; the first is at the most as large as the fist, the last, on the other hand, is of enormous size. In the duodenal dilatation, which is greatly developed, we observe a little ampulliform swelling at the orifice of the hepato-pancreatic duct ; besides this it presents a large semi-lunar valvular fold in front of the point where it passes into the narrow duodenum. There are a mumber of little glands at the posterior extremity of the rectum, in the immediate vicinity of the anus. The liver is divided into two lobes, one of which is situated to the right, the other to the left ; to the right lobe is attached a small dorsal one.

The aortic trunk is greatly swollen at its exit from the heart ; immediately abore the sigmoid valves it gires rise to two coronary arteries, and exhibits, besides, a perforated ductus arterions which brings it into connexion with the pulmonary arters. The thoracic plexuses are much less developed than those of the Delphinidie, but more so than those of the Mrsticetes. Instead of extending to the further end of the thoracic chamber. the network terminates posteriorly at the level of the sixth rib. The plexus of the right side, which alone I was able to examine, is traversed, a short distance
from its extornat bordor, hy a longiturlinal artery which starts from tho right brachio-cephalic trunk, and which probably represents the internal thoracic artery. The intercostal arteries are separated at their origin, and take part, like the foregoing artery, in the formation of the plexuses. There is only a single renal artery on cach sile ; but wo find two renal veins, a large one in front, and a much smaller one behind. The obliterated umbilical arteries, which terminate at the summit of the bladder, are connected with the hypogastric arteries, which each divide into two hranches and form, in spite of their small size (the little finger can scarcely be insertend into them), the sole source of the blood containel in the enormons genital arterial plexus. This plexus completely covers the anterior portion of the vagina, the uterns and its comua; but it does not extend in front into the broad ligament.

The venous plexuses apmear to he little develuped, and those of the proas are wantiug as in the Mysticetes. On the other hand, there is a venous sinus in each of the large lobes of the liver, and the simus of the vena cava inferior assumes enormons proportions. A large longitudinal vein traverses the rioht thoravie plewns, and receives three large branches at least from the medullary carity; it is by this rein, which functionally replaces the ab-ent azyros veins, that the blood of the medullary veins returns into the vena cava anterior. In short, judging by all the characters with which we are so far acquainted, the circulatory apparatus of $I I_{!} I^{\prime \prime}$ iomen appears to approach that of the terrestrial ancestral forms of the group, less, howerer, then that of the Mysticetes, but much more than that of the non-Ziphioid Cetodouts.-('omptes Remelus, t. exiii. no. 17 (Oct. 26, 1891), pp. 563-565.

On Self-pollination in Amsonia Tabernæmontana. By Thomas Meeitan.

To my mind the number of plants which have their flowers constructed for self-fertilization is so large, that it would secm hardly worth particularizing them hut for the industrions work of notinir the opposite characteristies which prevals in our stientific serials. It seems not fair to true science that muly one site uf nature's story shomld be told. This is why I record some self-fertilizing eases.

It has been left to me to point out that only those plants which have other means of persistence than by seeds have flowers which aro wholly dependent on external agents for pollination, and also to show that while flowers which have arrangements for self-fertilizafion are abundantly fertile, those which cannot make use of frollen without assistance are frequently barren, and are at a sad disadrantage in making their way through the world. So clearly has this heen worked out to my mind, that when a plant is found ahmolanty
fertile it is fair to assume that it must be arranged for self-pollination. In Aselepiadacea, with the large majority of the flowers barren, we may theoretically assume insect agency,-with many abundantly fertile A pocynacea we may assume self-fortilization.

I have already shown that the Madagascar periwinkle, Fince rosic, with every flower fertile in American garden, is a selffertilizer. Another of the same order, Amsomin Thbermemontanu (the form known as A. salicifinliu, Pursh), is abundantly fertile. I watched the flowers this seasom, satisfied that they would be found arranged for self-pollination. The plants proved, as usual, abuudantly fertile. On one panicle there were twenty-nine pairs of follicles that matured; there were many others that had been evidently fertilized, but failed to reach maturity through lack of nutrition.

Showy as the blue flowers are, and we might suppose, in view of prevailing speculations, made so in orler to be attractive to insects, the arrangements are such that no insect, not even the ubinuitous thrips, ean gain entrance to the neetary. The mouth of the tube is so densely matted with hair that Fimex chansa is the term used in the description of the species by Lat in authors. If a pollen-clothed tongue were thrust through the mass it would he thoroughly cleaned, and in like manner the flower's own pollen would be brushed back when the insect withdrew its tongue. But a greater difficulty presents itself. The capitate stigma with its surrounding rim completely fills the upper portion of the tube. There is no space for an insect's tongue to get past the stigma. But eren could this rulicon he passed, a dense mass of hair presses close against the style, and the most porrerful insect known to the writer could hardly force a passage. The entrance of insects is completely blocked. To provide for pollination the anthers curve over and rest an the stigma, and the pollen on ejection from the ant herss can do no more than cover the stigma.

In many plants which hare flowers that are generally fertilized by their own pollen the arrangements will often permit of pollination from some other; but in the case of this Avnsumin nothing but self-pollination is possible.

To those who may not have flowers for comparison the figure of this plant in ' Botanical leegister,' pl. 151, will aid in makingr some of the above-noted points clear--Proc. Accul. Nut. Sci, Philud. March 29, 1892, p. 162.

NDEX тo VOL. IX.

Abreus, netr species of, 356.
Acanthephyrn, new species of, 358.
Acanthodrilus, new species of, $1: 3^{2} \cdot$.
Acharana, now species of, 435.
Acritus, new species of, $: 357$.
Actenioides, characters of the new genus, 17%.
Adeloides, characters of the new genus, 29).
Egeria, new species of, 275.
AElosoma, on the encystment of, 12.

Aglaops, characters of the new genus, 295.
Acrammia, new species of, $4: 30$.
Alcock, A., on Indian deep-sea dredging, 265, 358: on uterogestation in Trygon Bleckeri, 417.
Amsonia Tabernemontana, on selfpollination in, 486.
Anomostictis, chazacters of the new genus, 4:3:.
Antedon, new species of, 427.
Anteus, notes on species of, 114.
Antheren, new species of, 448.
Anthocrypta, characters of the new genus, 996
Apáthy, Prof. S., on the Mesozoon Salinella, 46ij.
Aphytoceros, new species of, 390 .
Aploirraphe, characters of the new genns, 301.
Apobletes, new species of, :3.12.
Aporodes, new species of, 175.
Arachnidn, now, :88, 4!), $2=$ (6.
Archeopmeustes, note on the now gronu: 181.
Archernis, new species of, :30.

Arion, on the rariation of the cemm, 307.

Astacus fluviatilis, on abnormalities in, 181.
Autocosmia, characters of the new genus, $4: 3$. 2.
Bieturia, new species of, : $: 10$.
Bather, F. A., surgested terms in Crinoid morpholory, 51 ; on 13ntryocrinus quinquelobus and Jb. pinnulatus, 189: on Mastivocrinus loreus, 194; on Cyathocrimus, 202.
Batrachia, new, 141.
Beddard, F. E., on the encrstment of Nolosoma, 12; on the Earthworms of the Vienua Museun, 113.

Bee, on the male sexual oryans of the Honer-, 185.
Bell, Prof. İ. J., on a new species of Antedon, 422^{2}.
Benham, Dr. W: lB., on an earthworm from Echador, 237 .
Birds, new, 247,249 .
Blanchard, R., on the chromatophores of Cephalopods, $1 \mathrm{~s}^{\circ}$.
Blepharucha, characters of the nem gemus, 17%.
Deotareha, new species of, Bot
Botryocrinus, new species of, 18:).
Mooks, new:-Locand's Coquitles Marinee des Cotes de France, 107 : Woods's Catalopue of the Type Fossila in the Woodwardian Musemm, 3:-1: Monteimo's Mehermas Bay, 3:3.5; Lacroix-1 anliard's La Plume dos Oiseaux, a3k: Mn-
renu's L'amateur d'Uiseaux de Volière, 336 ; Sicard's L'Evolution Sexuelle dans l'Espèce humaine, 407 ; Hudson's Elementary Manual of New-Lealand Entomology, 482; Syme's Modifications of Organisms, 483.

Boulenger, G. Λ., on newly-discovered E.-African chameleons, 72 ; on a new snake, 74 ; on a new frog, 141; on two species of Toxotes, 143 ; on Triton longipes, Str., 144 ; on a new Siluroid fish, 247.

Bourier, E.-L., on some anatomical characters of IIyperoodonrostratus, 44.

Braun, M., on the "free-srrimming sporocysts," 187.
Bubalis, new species of, 386 .
Buliminus, new species of, 90 .
Butler, A. G., on Ophideres princeps, Guen., 375 ; on the genus Polychrysia, Hübn., 407.
Bythinia tentaculata, on the development of, 411.
Callipsaltria, netv species of, 318.
Calyptomena, new species of, 249.
Camptomastix, characters of the new genus, 439.
C.rineta, new species of, 320 .

Cellepora granum, observations on, 330.

Cephalopods, on the chromatophores of, 182, 183.
Cerambycinæ, new, 19.
Cercaria, on a new, 187.
Chameleons, notes on some E.-Afriсаи, 73 .
Cheloctonus, characters of the new genus, 44.
Chilton, C., on a ner species of Nunna, 1.
Choristostigma, characters of the new genus, 410 .
Cicadidæ, nerr, 313.
Cionella, ner species of, 91 .
Cirrhipedes, on certain reproductive phenomena in, 414.
Cirrochrista, new species of, 430.
Cockerell, T. D. A., on Australian slugs, 370.
Coelenterates, on some points in the histology of, 256.
Coleoptera, new, 19, 32, 341.
Collinge, W. E., on the rariation of the genus Arion, 307.

Connochetes taurinus, new subspecies of, 388.
Coral-reefs of the E.-African const, on, 339 .
Cornifrons, new species of, 435.
Cosmocreon, characters of the new genus, 433.
Crinoid morphology, suggested terms in, 51.
Crimoids, on British fossil, 189, 194, 202.

Criodion, new species of, 23.
Crocodile, on the oviposition and embryonic development of the, 66.

Crustacea, new, 1, 266, 358,375 ; on the development of sessile-eyed, 262.

Cyathocrinus, on the genus, 202 .
Cybolomia, new species of, 395.
Cylistix, new species of, 343.
Dacrstherium ovatum from the Isle of 'Wight and Quercy, on, 179.
Deep-sea dredging, on Indian, 205, 358.

Dendroclara Dohrnii, notes ou, 409.
Dentition of Nammals, on the, 279, 285, 308.
Diachæta, nerr species of, 128.
Diacme, characters of the new genus, 380.

Dichotis, characters of the nerr genus, 392.
Didelphys, on the dentition of, 285.
Didymostoma, characters of the new genus, 392.
Distant, IW. L., on undescribed Cicadidæ, 313.
Dreissena polymorpha, on the derelopment of, 157 .
Druce, H., on news species of Eratina, 97 ; on new Heterocera, 275.
Earthworm from Ecuador, on an, 237.

Earthrorns of the Vienna Museum, on the, 113.
Ebulea, new species of, 392.
Ennea, new species of, $85,92$.
Ennychia, new species of, 175.
Eutomostraca, on the Palæozoic bivalred, 302.
Epeira, new species of, 228.
Epiechinus, new species of, 355.
Epierus, nem species of, 347.
Equisetum, new species of, 138.
Eratina, new species of, 97 .
Erlanger, Dr. R. ז., on the develop-
ment of Bythinia tentaculata, 411.

Eryces, synopsis of the species of, 75 .
Euctenospila, characters of the new genus, 177.
Euergestis, new species of, 433.
Euphausidæ, on British, 454.
Euplectella, on the central cavity in, :397, 408.
Fausself, V., on the anatomy and embryology of the Phalangiidæ, 397.

Fidicina, new species of, 319.
Fishes, new, 247.
Flustra solida, remarks on, 149.
Frenzel, Prof. J., on the Mesozoon Salinella, 79 ; on a multicellular Infusorian-like animal, 109.
Frohawle, F. W., on a new Rail, 247.
Gahan, C. J., on new Longicorn Coleoptera, 19.
Gamble, F. W., on tro rare British Nudibranchs, 378.
Geological Society, proceedings of the, 179.
Geoscolex maximus, remarks on, 119.
Gerbillus, new species of, 76 .
Glauconoë, characters of the new genus, 296.
Gougylophis, new species of, 74.
Graptotettix, new species of, 315.
Gregory, J. W, on a new genus and species of Echinoid, 181.
Gruvel, M. A., on certain reproductive phenomenain Cirrhipedes, 414.
Gymnorhynchus reptans, on, 337.
Hairs of certain Lepidopterous larva, on the seale-like and tlattened, 372.
Hammaticherus, new species of, 19.
Hancockia eudactylota, remarks on, 381.

Hedley, C., on Australian slugs, 169.
Helix, new species of, $84,87$.

- aspersa, on the growth of the shell in, 111.
Hemigale, new species of, 250.
Hemiscopis, new species of, 396.
Heterocharmus, characters of the new grenus, 46.
Heterocium, characters of the new genus, 322 .
Hincks, liev. T., on the Polyzoa of the st. Lawrence, 149 ; general history of the marine Polyzoa, 327.
Hister, new species of, 346°.
Histeride, new, 341.
Homoptera, new, 313.

Hyaloplaga, characters of the new genus, 432.
Hyalorista, characters of the new genus, 299.
Hylobates, new species of, 145 .
Hyperoodon rostratus, on some anatomical characters of, 484.
Infusorian-like animal, on a multicellular, 109.
Ischyodus from the Osford Clas, on the skeleton of, 94 .
Jones, Prof. T. R., on Carboniferous Ostracoda from Mongolia, 302.
Jourdain, M. S., on the embryogeny of Sagitta, 415 .
Kidston, R., on the occurrence of Equisetum in the Yorkshire Coalmeasures, 138.
Kirlky, J. W., on Carboniferous Ostracoda from Mongolia, 302.
Korschelt, Dr. E., on the development of Dreissena polymorpla, 157.
Koschewnilioff, G., on the male sexualorgaus of the honey-bee, 185.
Kükenthal, Dr. W., on the dentition of Mammals, 279 ; on the dentition of Didelphys, 285.
Lendenfeld, Dr. R. . ., on Ascetta, 337.
Lepidodiscus, new species of, $1=0$.
Lepidoptera, new, $97,172,275,294$. 389, 429, 448.
Lepidopterous larræ, on the scale-like and flattened hairs of certain, 372 .
Lepus sinensis, netw subspecies of, $1 \neq 6$.
Lewis, G., on Japanese species of Paromalus, 32 ; on new Histeride. 341.

Lomanotus genei, remarks on, 3 -9.
Lophogastride, on British, 454.
Loxocreon, characters of the new genus, 432.
Lydeliker, li., on Dacrstherium ovatum from the Isle of Wight and Quercy, 179 ; on part of the pelvis of Polacauthus, 180 .
Lysianassides of the 'British Sessileeyed Crustacea,' on the, 134.
Mammals, on the dentition of, 279 . 285, 308 ; пеш, $76,145,146,147$, 250, 385, 405.
Mastigocrinus, characters of the new genus, 194.
Masupha, characters of the new geuus, 317.
Matthews, liev. A., ou Dr. Flach's Syuonymic List of the European Trichopterygidx, 44?

Mechan, T., on self-pollination in Amsomia Tabernæmontana, 486.
Merascolex, notes od species of, 122.
Melampsalta, new species of, 322 .
Melitta, new species of, 276 .
Melvill, J. C., on new Mollusca, 84, 87.

Membranipora, remarks on species of, 321.

- armifera, remarks on, 155.

Meriones, new species of, 147.
Mesographe, new species of, 434.
Mesothyris, characters of the new genus, 300.
Metosamin, characters of the new genus, 276.
Micractis, characters of the new genus, 294.
Mimoschinia, characters of the new genus, 174.
Mimudea, characters of the new genus, 440.
Minchin, E. A., on the central cavity in Euplectella, 408.
Mitra, new species of, 206.
Mogannia, hetv species of, 316.
Mollusca, new, $81,87,255$.
Moniez, M. R., on Gymnorhynchus reptans, 337.
Monocona, characters of the new genus, 173.
Monoporella spinulifera, newr variety of, 152.
Moore, F., on nemv Saturniidæ, 448.
Mucronella, remarks ou species of, 327.

Munna, new species of, 1.
Myriapoda, on a new mode of respiration in the, 263.
Nanina, new species of, 87.
Nascia, new species of, 302.
Newton, E. T., on a new form of Agelacrinites, 180.
Niphograpta, characters of the new genus, 390.
Noctuelia, nerv species of, 174.
Norman, Rev. A. M., on British Schizopoda of the families Lophogastridæ and Euphausiidæ, 454.
Notaspis, characters of the new genus, 297.
Notodoma, new species of, 348.
Nudibranchs, on tro rare British, 378.

Nyctophilus, nerv species of, 405.
(Ecophlous, characters of the new gezus, 49.

Onthophilus, nows species of, 353 .
Oplideres princeps, Guen., on, 375.
Opsibotys, new species of, 295.
Ortmann, Dr. A., on coral-reefs of the E.-African coast, 339.
Ostracoda from Mongolia, on Corboniferous, 302.
Pachynoa, new species of, 395.
Pachyzancla, new species of, 442.
Packard, A. S., on the scale-like and flattened hairs of certain Lepidopterous larve, 372.
Palamneus, on some species of, 38 .
Paludestrina Jenkinsi and P. ventrosa, on the radule of, 376.
Parker, Dr. WV. N., on abnormalities in the crayfish, 181.
Paromalus, nerv species of, 32.
Pecten, new species of, 255.
Pella, netr species of, 84,87 .
Perichæta, notes on species of, 121 ; new species of, 131.
Pessocosma, new species of, 390 .
Phalangiidæ, on the anatomy and embryology of the, 397.
Phassus, new species of, 278.
Phisalix, C., on the chromatophores of Cephalopods, 183.
Phlyctænia, new species of, 431.
Pindicitora, new species of, 172.
Platysoma, new species of, 343.
Pocock, R. I., on two new genera of Scorpions, 38 ; on a newv trap-door spider, 49.
Pocilopsaltria, new species of, 313 .
Polacanthus Foxi, on the os pubis of, 180.

Polychrysia, Hübn., ou the genus, 407.

Polyzor of the St. Lawrence, on the, 149 ; general history of the narine, 327.

Ponsonby, J. H., on new Mollusca, 84, 87 .
Pontoscolex arenicola, notes on, 126.
Porzanula, new species of, 247 .
Prionopaltis, characters of the new: genus, 437.
Prodasycnemis, characters of the new genus, 301.
Psalidopodidæ, characters of the new family, 265.
Psalidopus, characters of the new genus, 266.
Pseudobagrus, new species of, 247.
Psiloscelis, new species of, 345 .
Psilotympana, new species of, 319 .

Pupa, new species of, 91.
Pyzalidre, new genera and species of, 172, 294, 389, 429.
Pyrausta, new species of, 176 .
Ramila, new species of, 430.
Rana, new species of, 141.
Reptilia, new, 71.
Rhectocraspeda, characters of the new genus, 439.
Rhinodrilus, new species of, 238.
Roule, L., on the development of sessile-eyed Crustacea, 262.
Sagitta, on the embryogeny of, 415.
Salinella, on the Mesozoon, 79, 465.
Salticus, nerr species of, 235.
Sarotes impudicus, remarks on, 233 .
Saturniidx, new Asiatic, 448.
Schizopoda of the families Lophogastridæ and Euphausiidæ, on British, 454.
Schizoporella cincta, new rariety of, 154.

Schneider, Dr. K. C., on the histology of Cœlenterates, 256.
Sciurus, new species of, 253 .
Scorpions, on two new genera of, 38.
Seeley, Prof. H. G., on the os pubis of Polacanthus Foxi, 180.
Semniomima, characters of the ner genus, 172.
Sericoplaga, characters of the new genus, 295.
Sharman, G., on a nerr form of Agelacrinites, 180.
Sharpe, Dr. R. B., on a ner species of Calyptomena, 249.
Sinclair, F. G., on a new mode of respiration in the Myriapoda, 263.
Slugs, on Australian, 169, 370.
Smith, E. A., ou new species of shells, 255.
Sphallenum, new species of, 23.
Spiders from the Andaman Islands, on some, 226 .
Spilodes, new species of, 178 .
Sporocysts, on the free-swimming, 187.

Stenochora, characters of the new genus, 298.
Stenngyra, new species of, 85, 90 .
Stenomeles, characters of the new genus, 437.
Sy-llythria, new species of, 176 .
Tanaophysa, characters of the new genus, 389.

Terastiodes, characters of the new genus, 298.
Teretrius, new species of, 353.
Tholeria, new species of, 429 .
Thomas, O., on three new Gerbilles, 76 ; on the gibbon of the island of Hainan, 145 ; on a new subspecies of hare, 146; on a new specles of Meriones, 147 ; on new Mammalia, 250; on Mammalian dentition, 305: 011 two nen antelopes, 385 ; on a third species of Nyctophilus, 405.
Thopha, new species of, 314 .
Thorell, Prof. T., on some spiders from the Andaman Islands, 226.
Tibicen, new species of, 316 .
Toxotes, new species of, 143 .
Tragulus, new species of, 254.
Triballus, new species of, 350 .
Trichauchenia, characters of the new genus, 173.
Trichopterygidæ, on Dr. Flach's Synonymic List of the European, 442.

Trischistognatha, characters of the new genus, 429.
Tritra, new species of, 178.
Triton lonçipes, on, 144 .
Trochozonites, new species of, 89.
Trygon Bleekeri, on utero-restation in, 417.
Trypeticus, new species of, 351 .
Tupaia, new species of, 250.
Udea, new species of, 393.
Villepoix, M. de, on the growth of the shell in Ilelix aspersa, 111.
Vocltzkow, Dr. A., on the oviposition and embryonic derelopment of the crocodile, 66.
Wallier, A. O., on the Lysianassides of the ' British Sessile-ered Crustacen,' 134.
Warren, W., on netr genera and specie: of Prmlidx, 172, $294,359,429$.
Wood-Mason, Prof. J., on Indian deep-sea dredging, $265,358$.
Woodward, A. S., on a Chimeroid fish from the Oxford Clay, 4 .
Woodward, B. B., on the radule of Paludestrina Jenkinsi and 1 '. ventrosa, 376.
Xestia, new species of, 29 .
Nestipyge, new species of, 3H.
Zoia, Dr. R., on Dendroclava Dohrnii. 409.

Telea, new species of, 278 .

END OF TIIE NINTH VOLUME.

```
    QH The Annals & magazine of
    l natural history
A6
    ser. }
    v.9
Biological
& Medical
Sorials
```


PLEASE DO NOT REMOVE CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

[^0]: * Report of the 'Challenger' Isopoda, part ii. p. 24.

 Ann. \& Mag. N. Hist. Ser. 6. Vol. ix.

[^1]: * 'British Sessile-eyed C'matacea,'ii. p. 329.

[^2]:

[^3]: - "A Contribuion to the knowledge of the Lawe: Aumelids." Trams. Linn. Soc. vol. xxvi. p. 642 .
 + 'Intwicklungseeschichtliche Untersuchungen,' Meft i. p. 4ts.

[^4]: * 'Geuera des Coléoptères,' viii. p. 271 (2).

[^5]: * I am indebted to my collearues of the Botanical Department of the Natural-History Museum for this information respecting the nature of the substance of which these doors are composed.
 \dagger Aun. \& Mag. Nat. Hist. ser. 6, vol. vi. pp. 1-23, July 1890.
 \ddagger "Sugcestions for securing greater Lniformity of Nomenclature in Biolory," "'Nature,' vol slv. p. ©8, Nuv. 19, 1091.

[^6]: * "Brit. Foss. Crin., II.," Anu. \& Mag. Nat. Hist. (6) vol. v. p. 313, April 1890.
 \dagger "The Perisomic Plates of the Crinoids," Proc. Acad. Nat. Sci. Philadelphia, vol, for 1890, p. 374 : Feb. 1891.

[^7]: * Brit. Foss. Crin., V., Aun. \& Mag. Nat. Hist. ser. 6, rol. rii. pp. 394 and 398.

[^8]: * "An attempt to apply a method of Formulation to the species of the Comatulide de.,' Proc, Zoul. soc. Loud. 1s- - , pp, 5:30-5:36.
 \dagger 'Challenger' Zoology, vol. xxri. part lx., leport on the Comatule, pp. 43 et sqq., 1888.

[^9]: * Wrachsmuth and Springer, "Perisomic Plates," loc. cit. p. äos.

[^10]: - Op, cit. pp, 358-360.
 t See revi"w of this paper in Genl. Mar. dee. iii, rol. siii. p. Min, May 1891.

[^11]: * Tramslated from the 'Mathematische und Naturwisenwhateliclow Mittheiluagent aus den sitzumgherichten der kïntichich Procowiohon
 [120].

[^12]: * Oriposition does not appear to take place at the same time in all localities, since Keller mentions the month of January for Nossi-Pé.

[^13]: Cuv.," Zool. Anzeiger, 1888, no. 290, p. 668.

[^14]: lieichenow, Zonl. Anz. 1-ai, pl. sio and :31: (\%. Riowi (kiliti),
 went of Kenia, gil(0) feet), heiliqniemsis (Lecihipia), and taretomi (Taveta. foot of Lilimandiare), Steindachere, Anz, Ah. Wien, 12:11, pl. 141 and

 p. 11, pl. i. fig. 3.

[^15]: * Translated from the 'Biologisches Centralblatt.' xi. Bd. no. 19 (October 15, 1891), pp. 577-581.

[^16]: * Zool. Anzeiger, 1801, no. 367, p. 230 et seqq. See p. 109.

[^17]: * Isehpmentur mitus: Chimara ((iomodus) avita, II. wom Mever. P'alawn-

[^18]: - L. Agassiz, Rech. Poiss. Foss. vol. iii. (1837), p. 르, pl. vii, firs. 3 - .

 \ddagger L. Agassiz, tom. cit. p. 340, pl. xl. c. tigs. 1-10.

[^19]: * Notes Leyd. Mus, xiii. pl. vi. fig. 3.

[^20]: * Beddard, loc. cit., woodeuts figs. 5 and 6 .

[^21]: * I may mention in connexion with the prostomium (so-called) of 7ikimodrilus that I have recently investigated a species of Diacheta with a similar process, which prores to be an evagimable tube lying in a diverticulum of the buccal carity just in front of and beneatir the brain. Vaillant's account of the prostomium in Rhinodrihus agrees with my observations upon "Thamnodrilus" and upon the Diacheta just referred to. I do not think that the presence of this stiucture can be regarded as of generic importance in either case; the fact of its occurrence in species of two geuera widely removed though certainly belonging to the same family is against regarding this "trompe" ns of special importance for systematic purposes.

[^22]: * Loc. cit. pl. i. fic, 15.

[^23]: chæta," Aun. © Mag. Nat. Hist., Jan. 1891, p. U6.

[^24]: * "On the Olifochatons Fama of New Zealamed, with lreliminary Descriptions of new Species," P. Z. S. 1889, p. 380.
 + "Synopsis of the Geuera of Earthworme," New Zeal. Journ. Sci. yol. i. p. 586.
 | "Notes on Australian Earthworms," Proe, Lim. Soe. N. S. WT 1.4ets.

[^25]: * F. E. Beddard, "Note on the Structure of a Iarge Species of Earthworm from New Caledonia," P. Z. S. 1836, p. 173.

[^26]: * "Proceedinrs of the Liverpmol Biohorical suciety. rol. iii. Suseion 1858-89, p. 200, pl. x. figs. 1-8.

[^27]: * 'Fama of Liverpool Bay; Ond liopert, p. 1-i: : 'Iroceedines of the Liverpool Biological Society"' vol. ii. p. 173.
 \dagger 'Comptes-rendus Acad. d. Sciences'' Paris, January 5, 1835. Also see Remault and Zeillor, " Etudes sur he terr. houill. d. Comentry : Fhose fossile," part ii. p. :394, pl. Vii. tig. 'a (Bull. de la sue. de limdutrie minerale, 3° sér. vol. iv. ii livr. 1890 : St. Etieune).

 1 Seveal specimens from the ('oal-measures have heen dowerited und the name of l'quisetites, hut mome of these examples are sutbiciently profect to enable one to form any detinite opinion as to their tau sy-tematic position.

 Some have placed the I.gnisctites mivelbilis, Sumh., in I:quene erm. The
 tion is not satisfactorily determined.

[^28]: * 'Fossil Flora,' vol. ii. pl. cxiv.
 \dagger See Proc. Roy. Phys. Soc. rol. x. p. 370 .

[^29]: * 'Tishes of India; p. 117 (1875).
 \dagger Ann. Mus. Genova, (2) ix. 1890, p. 165.
 \ddagger Cat. Fishes, ii. p. 68 (1860).
 § Journ. As. Soc. Beug. xxix. 1860, p. 142 (1861).
 || Atl. Ichthyol, ix. p. 2.

[^30]: - Cat. Butr. Grad. s. Caud. 188\%.
 \dagger Rev. Salam. Gatt., Mém. Ac. St. I'étersb. xvi. no. 4, 1870, p. 44.
 \ddagger 1'. Z. S. 1884, p. 423 , and Mon. Anf. Urod. Ital., Mem. Ace. Tor, (2) xxxri. 1884.

[^31]: * Lewis, Bost. Journ. N. II. i. pt. 1, p. 32 (1834).
 \dagger Harlan, J. Ac. Philad. r. p. 2.29 (1-207).
 \ddagger See Anderson, Zool. Y̌un. Exp., Mamm, p. 11 (1879).

[^32]: * I. Z. S. 1866, p. 89.

[^33]: * In Stimpson's figure the avicularium is represented as small and suborbicular.
 \dagger Terrill makes the presence of "chitinous fibres strengthening the zoarium " the distinctive generic character. But this is common to many very dissimilar forms.
 t 'British Marine Polyzoa,' vol. i. p. 341.
 § 'History of British Marine Polyzoa,' pl. xlriii. fig. 4.

[^34]: ＊See a paper by the author，＂On new Hydroida and Polyzoa from Barents Sea，＂＂Amals＇for October 1880，p．こどこ．
 at Kongl．Vetensk．－Alad．Förhandl．18゙て．

[^35]: 1867, Bihang, p. 61, pl. xxiv. fig. 17.

[^36]: * 'Amals' for June 1881, p. 449 .

[^37]: * 'Contributions to Canadian Natural History"' by W. 心. M. D'L゙ban and liobert Bell; Jolyzoa, p. ibe. (bxtracted from the koport of the Geological survey for 1858 : Muntreal, 18tio.)

[^38]: * E. Ziegler, "Die Tintwicklung ron Cyclas comen, İam.," Zeitschr. f. wiss. Loul. 41 Bd., 188\%.

[^39]: * C. Schierhulz, " L"eber die Eutwicklung der Ĺnioniden," Denkschrift. k. Akad. Wiss. zu Wien, Math.-naturw. Cl. 45 Bd., 1889.
 \dagger M. Braun, " Postembryonale Entwicklungr vou Anodonta," Zoul. Auz. 1 Jahrg., 1878.

 Schierholz, op. cit.
 F. Schmidt, "Beitrag zur Kemntniss der postembryonalen Entwicklung der Najaden," Arch. f. Naturgesch. 51 Jahrg., 1885.
 \ddagger A. Goette, "Bemerkungen iiber die Embryonalentwicklung von Anodonta piscinalis," Zeitschr. f. wiss. Zool. 52 Bd., 1891.
 § E. von Martens, "Eine eingewanderte Muschel," Dtr Zuologische Garten, 6 Jahrg., 1865.

[^40]: * S. Lovén, "Beiträge zur Kenntniss der Entwicklung der Mullusea acephala lamellibranchiata," aus den Abhand. der k. Schwed. . Nad. Wiss. firr das Jahr lsts im Ius\%ure ibersetat: Stockholm, 1879.

[^41]: * B. Hatschek, "Ueber Entwicklungseseschichte rou Terenw,". Arbeiten Wien. Zool. Inst. 3 Bd., 1881.

[^42]: Magraine, $188{ }^{3}$.
 Soc, Nat. Hist. vol. iv, no, viii, 18)().
 \dagger Ki. Möbius, 'Die Auster und die Austernwirthschalt', Berliu, 1876.

[^43]: * Lacaze-Duthiers, " Memoire sur le développement des branchies des Mollusques Acephales Lamellibranches," Amn. Sce. Nat. ter ćro, Zonol, t. r., 1856.

[^44]: * Yoyage of the 'Uranie,' Zoology, p. 426.

[^45]: Limean Hall,
 Sydney, N. S. TW.,
 December 12, 1891.

[^46]: * R. Lenckart, 'Die Anatomie der Biene:' Cassel und Berlin, 1885, p. 13.
 \dagger M. Girard, 'Les Abeilles :' Paris, 1885.
 \ddagger Cheshire, 'J3ees and Bee-Keeping:' Loudon, 1887.

[^47]: * [The original has "cm."-Transı.

[^48]: * "Description of some new Fossil Encrini and Pentacrini, lately discovered in the neighbourhood of Bristol," Trans. Geol. Soc. lst ser. vol. v. part 1, pp. $87-94$, with pls. ii.-r. : London, 1819. See pl. iii. fig. 1.
 \dagger Proc. West Riding Yorksh. Geol. and Polyt. Soc, vol. vi. (n. s., vol. i.) part iv. pp. 242-253, pl. x. (1877), 1878.

[^49]: * Tiep. Geol. Surv. Iowa, yol. i. part ii. p. 620 (1858).
 + "Mrit. Fow. Crin.. V.." Am. © Mag. Nat. Hist. *r. 1i, vel. vii. p. 395, May 1891; and VI., p. 189, anteì.
 \ddagger 'liecherches sur les Crinoides ise.,' pp. 78 et s\%

[^50]: * See "Brit. Foss. Crin.-V. Botryocrinus," Ann. \& Mag. Nat. Hist. ser. 6, vol. vii. p. 392, May 1891.

[^51]: * In this and in the ensuing examples the peculiar spacing of the numbers is an attempt to represent the bilateral symmetry of the arm: the two brauches of each dichotom are separated by only a single fullstop.

[^52]: * Rev. I. 19, Proc. 1879, p. 242.
 \dagger "Structure \&c. of American Palæozoic Crinoids into Families," Amer. Cieol. vol. vi. p. 2-2, line 11, Nor. 1-10; and 'American Geolugy and Palæontology,' p. 212, Cincinnati, 1889.
 \ddagger See W. B. Carpenter, ․ Researches on the Structure, Physiology, and Development of Antedon ('matula, Lamk.) rosaceus," Phil. Trans. 1866, pp. 727, 29, 731.

[^53]: * Aecording to Simou.

[^54]: * Studi sui lanni Malesi, 11. Ragni di Amboina, \&e., loe. cit. p. 78.

[^55]: ＂＂Eperire tuberculatu，Luc．，＂is here a lapsus calami for E．triubercu－ lutu，Luc．

[^56]: * For a more detailed description of the male see Thor., Spindlar fr. Nikobarerna, \&c., loc. cit. p. 59.

[^57]: *" Rech. pour servir etc. Lombric. terrestres," Nour. Arch. d. Mus, d'llist. Nat. de Paris, viii. 1872, p. 62 .
 \dagger "On the Structure of a new Genus of Lumbricide (Thamnodrilus)," Proc. Zool. Soc. 1887 , p. 154. Mr. Beddard has recently recognized the chametritic featmes of Pitmedirius in thi worms to which eent- be now reters the species (Qunrt. Journ. Micr. Sci. xxivi. p. 155), footnote).
 p. 101 .
 § In a strictly etymological sense perhaps "aquatorius" would have been preferable.

[^58]: * Beddard, Quart. Journ. Micr. Sci. xxxi. p. 467.
 + Reddard, ibid. p. 15!).
 \ddagger Horst, 'Notes from the Leyden Museum,' vol. xiii.
 § Beddard, 'Annals,' Feb. 1892.
 II I may say that Horst appears in some doubt as to his numbers, as he places the tubercula on "-20th (2lst) -2tith (2-th)": aquin, he mentions an" olive-quen rine around the body from the loth (llth) loith (16th) segment."

[^59]: * Benham, "An Attempt to Classify Earthworms," Quart. Journ. Micr. Sci, axxi. p. 2l?.

[^60]: * "Studies on Larthworms, I.," Quart. Jom'n. Micr. Sci, xwi, p. 250.
 † Mr. Beddard contirms my view of the matter in his paper in thiJumbal for Febmary of the present yeart

[^61]: * The most anterior premolar. Specimens in the Museum show that this tooth changes in Tupaiu, and is therefore clearly ${ }^{\mathrm{p} \cdot 2}$, the true ${ }^{\mathrm{p},-1}$ of Camivora aud Insectivora never changing.
 † P. Z. S. 1889, p. 220.

[^62]: * O. and R. Hertwig, 'Das Nerrensrstem und die Sinnesorgane der Medusen,' Leipzig, 1878.
 + C. ('hun,' Dlie Gemebe der Siphouophoren, II.' Zonl. Anzeiger, 1832, no. 117.

[^63]: Stat. Neapel, 5 Bd.
 \dagger Bedot, "Sur l's galma Clausi, n. sp.," Recueil zool, suisse, T. r.

[^64]: * O. and LI. Hertwig, loc. cit.
 † K. C. Schneider, "Histologie ron IIydra \&c.," Areh. mikr. Anat. 35) Bd.
 | M. Nusshamm, " I cber die Theilharheit der hemendigen Materie: 11. Arydra," Areh. miker. Anat. 29) Bed.
 § C. F. Jickeli, "Der Bau der Hydroidpolypen, I.," Morphol. Jahrb. Gerrenbaur, 8 Bd.
 || Bedot, " liecherches sur les cellules urticantes," lecueil zool. suisse, t. iv.

[^65]: * O. and R. Hertwig, loc. cit.

[^66]: * 11. (i. Seeley, "On the Nature and Limits of Leptilian Character in Mammalian Teeth," Proc. Roy. Soc. Lond. vol. xliv. pp. 129-141.

[^67]: * Translated from a separate impression from the 'Inatomischer Anzeiqer,' vi. Jahroug (1ع91), nos. $2: 3$ and 24 , pp. 658-666.
 \dagger In a paper which was recently published in this periodical, entitled "Einige Bemerkungen iiber die Säugetierbezahnung" (Anat. Anz. 1891, p. 369 [ride surmi, "Observations on the Dentition of Mammals," pp. $279-2857$), I have already alluded to the chief result of my investigations, which formed the subject of an address delivered on the 30th of May of the present year in the Aula of our Eniversity. But, in consequence of the delay which has arisen in the setting-up of my detailed statements owing to the compositors' strike, I am now induced to gire herewith a somewhat closer pre of of my acsertions, at deast as recands the Marsupials.

[^68]:
 havn，188＊，p． 52.
 \dagger Olatield Thomas．＂On the Homologies and Succession of the Teeth in the Disyuride，with an Attempt to trace the History of the Erolution
 Society（Lomkton，トスベ）．

[^69]: - No. XXIX. appeared in the Ann. \& Mag. Nat. Hist. for October

[^70]: - See also 'La Faune du Calcaire Carbonifêre Lnférieur du Bardoun en Mongolie,' par P. Venukoff : 8vo, St. Petersburg, 1888, in Russian and French, pp. 211 and 225.
 + See Ann. \& Mag. Nat. Hist. ser. 4, vol. xr. 1875, p. 54.

[^71]: * Trans. Roy. Dublin Soc. vol. iv. ser. ii. p. 560, pl. 1ri. fig. 16.
 † 'British Naturalist,' p. 46 (1891).

[^72]: * 'The Conchologist,' vol. i. p. 33 (1891).
 \dagger Anat. Anz. vi. pp. 369 and 658 (1891).

[^73]: * Phil. Trans. 1887, p. 443.
 \dagger The specimen of Triconorfon (Triacanthoden) figured in my paper has, by the lind fermission of Dr. Woodward, been carefully dereloped beneath all the cheek-teeth, and reexamined by the light of Dr. Kükenthal's discoveries. No other successional teeth, howerer, lesides that below p. ${ }^{4}$ are present in the jaw.

[^74]: * For all evidence as to this remarkable suggestion we have the mere statement "Beim ersten Molaren ist dies oft noch deutlich nachweisbar, besonders schön z. B. an Embryonen von Spermophilus leptodactylus."
 \dagger In the paper already referred to.

[^75]: * "Tertiary Cheilustomata from New Zealand," Quart. Journ. Cenl. Soc. for Feb. ${ }^{1887, ~ p . ~} \check{6} 6$.

[^76]: * It is fumished, like the fossil species, with the broad, flat, oral denticle, disected dewhwads and owerhame a laren purtion of the mitiee, mentioned by Waters. It may be added that the uper margin of the primary orifice is distinctly crenulate.
 \dagger "Report Pul. Q. C. I." p. 27 (sep.), pl. iii. fig. 3.
 \ddagger 'Synonymic Catalogue,' p. 195.
 fig. 6.

[^77]: * 'Challenger' Report, part 1, p. 202, pl. xxx. figs. 1 aud 12.
 \dagger These processes appear to rise from the primary orifice.

[^78]: * C. lignlatum and C. spicatum are placed amongst the synonyms of Membramipora roborata in Miss Jelly's 'Catalogue.'
 † 'Challenger' Report, pt. 1, p. 77.

[^79]: - Polyzon of Vieteria, decente v. p. 32, pl. xlvi. tigs, is.

[^80]: * 'Entomological Correspondence of T. W'. Harris' editel by s. II. senuder. Boston, 186\%.
 \dagger "On the Natural Altinities of the Lepidoptera hitherto referred to the Gemus Acrongete of Authors," Trans. Ent. Soe. Lond., Dec. lef! p. :313.

[^81]: * These scales were brietly referred to in mr article entitled " ITints on the Evolution of the Bristles. Sjines, and Tubpercles of certain Caterpillars," Proc. Bost. Soc. Nat. Hist. xxir. p. 512, 189 (1890).

 Aun. \& Mag. N. Hist. Ser, 6. Vol. ix.

[^82]: * In Tolype velleda there are no such scales or hairs with flattened ends as in Ciastropacha; those on the dorsal tubercles of the thoracie and eighth

 dark scales of Gustropucha.

[^83]: * "Complete List of Plymourh Opisthubranchs," Journ, Mar. Biol. Assoc. (n. s.) i. no. 4.
 † " Report on Nuxilrauchs of Plymouth Sound," Juurn. Mar. Biol. Assoc. I. ii. 1889, p. 187.

[^84]: * Norman, Ann. \& Mag. Nat. Hist. 1877, xx. p. 518.
 \dagger "Complete List of Opisthubranchs at Ilymuuth," Jomrn, Mar. Biol. Assoc. (n. s.) i. no. 4, p. 430.
 \ddagger "The Uccurrence of Hancoclize at Plymonth," ibid. (n. s.) vol. ii. no. 2, p. 193.
 § Ann. \& Mag. Nat. Hist. ser. 4, rol. xx. 1877, p. 316.
 || Mem. della R. Acc. delle Sc. dell' Instituto di Bologna, ser. 5, rol. rii.

[^85]: * Gosse, loc. cit. p. 316, note.

[^86]: * "Die Cladohepatischen Nudibranchien," Zool. Jahrb. r. p. ē3.
 Mar. Biol. Assoc. (n, s.) i. no. 4, p. 423.
 p. 79.

[^87]: * Ibid. p. 429.
 \dagger Ann. \& Mag. Nat. Hist. (3) iv. p. 296 (1859).

[^88]: * Selous (P. Z. S. 1881, p. 763) says, " It does not extend its range northward of the saltpans near the Botletlie River . . . and is unknown in the Matabele and Mashuna countries."

[^89]: * All these measurements are very difficult to take with any exactace. and probalily no two observers would make them pecisely the same:

[^90]: * Tramslated from the ' Bioloeiseches Centeallhatt,' xii. Bd. no. 1 (Jan. $15,1892), \mathrm{pp} .1-8$.
 + Biol. Centrall, niii, 1: (18s3); Zool, Auzeiger, no, 85:3 (1-01).

[^91]: * Henking, " V'ntervehumper inber die Fon wichlung der l'hatan_id ..." Zeitschrift f. wiss. Zoologie, 45 Bd.

[^92]: Archiv f. mikrosk. Anatomie, 30 Bd . While my memoir was in the press there appeared the interestmy papers of Zicrle on " I tie hinle Fishe
 gisches Centralblatt, xi. Bd, nos, 12 and 13 LAm, \& Mag. Nat. Hist.

 of which 1 was unable to avail myself.

[^93]: - Plateau, "Sur les phénomènes de la digestion, etc. chez les l’halan-
 1'halangiden," Zeitschr. f. wiss, Zool. 13d. 34, 18e"; Loman, "Altes und Nenes uber das Nephridium (die Coxaldriise) der Arachniden," Bijdr. tot de Dierkde. N. A. M. 14 Aufl., 1ess. The recent paper by Sturany (" Die Coxaldrüsen der Arachnoiden," Areh. Zanol. Instit. Wien, 4) Bd.. 1891) came into my hands after my memoir was quite finished.

[^94]: * Eisiy, "I ie ('apitelliden," Fana und Flora des (fulfes von Neapel, xvi. Monographie, 1887, i. p. 374 et seq.
 \dagger The "nephro-peritoneal sac" of the Decapods according to TVeldon (Weldon, " The Fenal Organs of certain Hectaped Crustacea," Uuant. Joum. Mier. sci. ls: 1 , rol. sxxii. probably copreoponds to an extatusdinarily developed urinary sac.

 I Lebedmai, " Pntwikklune ron Eivh kine spimitmas," Zeitschrift dew Neurussischen Naturf. Ges. in Odessa, Bd. xri., 1889 (in Russian).

[^95]: * R. v. Erlanger, "Zur Entwicklung von Paludina vivipara," Zool. Anzeiger, no. 357 (1891).

 Ann. \& Mag. N. Hist. Ser. 6. Fol. ix.

[^96]: * I. e. of the fæetus.

[^97]: * The genus bentlomphasia is, however, not fumishad with then. oryatus.
 \dagger In the renus Borenmysis there are seven pairs.

[^98]: * This lenflet is similar in general character to that attached to the first joint of the antennular peduncle in the genus İuphausia.

[^99]: * I found a single specimen aceidentally mixed with a mumber of Boreophausia inermis which were kimlly sont to me by I'wi. s. I. smith. I do not remember that it has been recorded previvusly from the I nited Ntates.

[^100]: * Ánn. \& Mag. Nat. Hist. ser. 5, vol. xis. 1837, p. 140.

[^101]: * Translated from the 'Biologisches Centralblatt,' xii. Bd., no. 4 (Feb. 29, 1892), pp. 108-123.
 \dagger Ann. \& Mag. Nat. Hist. ser. 6, no. 49, Jan. 1892, 1p. 109-111, "A Multicellular Infusorian-like Animal."
 \ddagger Ann. \& Mag. Nat. Hist. loc. cit. pp. 79-8t, "The Mesozoon Salinella."
 § Under the title "Untersuchungen über die mikroslopische Fauna Argentiniens," Frenzel publishes a detailed description, with figures, in the last part of the 'Archiv fuir Naturgeschichte' ($5 s$ Jahrg., i. Bd., 1 Heft, p1. G6-96, Taf. vii.). This was issued last December, but it did not come into my hands until later. In this paper Frenzel adds to his previous statements nothing that is essentially new: I therefore consider it unnecessary to discuss it further at present.

[^102]: * Amn, \& Mag. Nat. Hist. loce cit. p. 79.

[^103]: * The furthercircumstance that daughter-cells which have been produced by simple fission do not (or less frequentle) form other organs also (chromatophores, racuoles in plants, circlets of cilia, collars, \&c. in Protozoa) quite afresh by themselses, but acquire them by division of the organs in question belonging to the parent-cell, must, İ consider, likewise be regrarded as an ontorenetic abbreviation of the original process of the origin of those organs. In cases, howerer, where the ontogeny of the cell reproduces its phyloreny more faithfully, e.g. in the developinent of unicellular and multicellular creatures from spores, the organs of the parent-cell, with a view to formation of spores, degrenerate befme division takes place, and the daughter-cells or their successors are obliged to reconstruct these (rgans, with the exception of the nucleus, afresh for themselves.

[^104]: * E. Metachnikoff, Untersuchuvern iaber die intrazellulare Verdaunn bei wirbellosen 'Tieren,' Wien, 1883, p. 2.

[^105]: * That cells are found upon the rentral surface which are somerrhat differently constituted to thuse upon the dorsal side, is in this case (as also in that of Trichoplaxi) the immediate result of the creeping, and no longer floating, mode of life, and would in itself indicate no higher position than that of Volvox.

[^106]: * I have already riven expescinn to views as to the simplest living beines, the impescibility of separating the ideas of life and individuality, and the import and causes of reproduction (fission) \&e., which are in

 Ann. d Blag. N. Hist. Ser. G. Vol. ix.

[^107]: certain respects in clone commexion with the statements of K. (: . .chneiter ("Finh Beitrar zur Phyluqenio dew ()qani-men," Ban. Contrath, xi. Mh..

 my capacity as a profesor at Kolisevar. A portion of thon- hater lacions apprared last year in a seris of articles in the 'Sithuesthemben dor

 zelligen," A summary of my results in (rexman wiil he pmblithet in too
 theory regards the (non-organized) Protoblasts ($=$ "Zoen" of K . IS Schmeider) as units of the third atage (third prowe of mater in gromesl (the first power are the atoms in the elements, the second power the molecoles in the chemieal compromed), and matumally, as livine wist of the first stare. The foregoing papro, which mpoduce some of the rosults alluded to, was written immeliately after the appearame of 'Fronmil's article in this Magazine, and mly extrane m- circumbtance prevent- m . from sending it to the press somer.

