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A Block Coordinate Descent Method for Regularized Multiconvex Optimization
with Applications to Nonnegative Tensor Factorization and Completion*
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Abstract. This paper considers regularized block multiconvex optimization, where the feasible set and objective
function are generally nonconvex but convex in each block of variables. It also accepts nonconvex
blocks and requires these blocks to be updated by proximal minimization. We review some in-
teresting applications and propose a generalized block coordinate descent method. Under certain
conditions, we show that any limit point satisfies the Nash equilibrium conditions. Furthermore, we
establish global convergence and estimate the asymptotic convergence rate of the method by assum-
ing a property based on the Kurdyka—Lojasiewicz inequality. The proposed algorithms are tested on
nonnegative matrix and tensor factorization, as well as matrix and tensor recovery from incomplete
observations. The tests include synthetic data and hyperspectral data, as well as image sets from
the CBCL and ORL databases. Compared to the existing state-of-the-art algorithms, the proposed
algorithms demonstrate superior performance in both speed and solution quality. The MATLAB
code of nonnegative matrix/tensor decomposition and completion, along with a few demos, are
accessible from the authors’ homepages.
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1. Introduction. In this paper, we consider the optimization problem

S
(1.1) ;réi)r(lF(xl,...,xs)Ef(xl,...,xs)—{—z;ri(xi),
1=
where variable x is decomposed into s blocks x1, ..., X, the set X of feasible points is assumed
to be a closed and block multiconvexr subset of R™, f is assumed to be a differentiable and
block multiconvex function, and r;, i = 1,...,s, are extended-value convex functions. Set X
and function f can be nonconvex over x = (x1,...,Xs).
We call a set X' block multiconvex if its projection to each block of variables is convex;
namely, for each i and fixed (s — 1) blocks x1,...,%X;_1,X;+1, ..., Xs, the set
(1 2) Xi(xla---’xi—l,xi—i-l’---’Xs)
' = {XiGRni:(Xl,...,Xi_l,xi,XH_l,...,XS)GX}
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is convex. We call a function f block multiconvex if, for each 7, f is a convex function of x;
while all the other blocks are fixed. Therefore, when all but one block are fixed, (1.1) over
the free block is a convex problem. (Later, using the proximal update (1.3b), we allow f to
be nonconvex over a block.)

Extended value means 7;(x;) = oo if x; € dom(r;), i = 1,...,s. In particular, r; (or a part
of ;) can be indicator functions of convex sets. We use x € X to model joint constraints, and
r1,...,Ts to include individual constraints of x1,...,xs when they are present. In addition,
r; can include nonsmooth functions.

Our main interest is the block coordinate descent (BCD) method of Gauss—Seidel type,
which minimizes F' cyclically over each of x1, ..., x, while fixing the remaining blocks at their
last updated values. Let xf denote the value of x; after its kth update, and let

k k k k—1 k—1 .
fE(x) & F(xT, o X, X, X, xe ) Vi, k.

At each step, we consider three different updates:

(1.3a) Original:  x¥ = argmin fF(x;) + r4(x;);
X,‘EXik
!
(1.3b) Prozimal: xF = argmikn FFx) + 2o |x; — xF 712 4 ri(x;); and
XiEXi
Lyt
(1.3c) Proz-linear: xF = argmikn (&F x; — %M1 + ZTHXZ — %12 i (x),
XiEXi
where || - || denotes the fy-norm, LF~! > 0,
k k k k— k—
XP = X(xT, ... ,xi_l,fo, Ce, X b,
and, in the last type of update (1.3c),
sk—1 k—1 k—1/,k—1 k—2
(1.4) X =% 4w (x]T —x )

denotes an extrapolated point, wf‘l > 0 is the extrapolation weight, and gf =V ff(f(f_l)
is the block-partial gradient of f at %¥~'. We consider extrapolation (1.4) for update (1.3c)
since it significantly accelerates the convergence of BCD in our applications. The framework
of BCD is given in Algorithm 1, which allows each x; to be updated by (1.3a), (1.3b), or
(1.3¢).

When X and f are block multiconvex, all three subproblems in (1.3) are convex. In
general, the three updates generate different sequences and thus can cause BCD to converge
to different solutions. We found that, in many tests, applying (1.3c) on all or some blocks gives
solutions of lower objective values, possibly because its local prox-linear approximation helps
avoid the small regions around certain local minima. In addition, it is generally more time-
consuming to compute (1.3a) and (1.3b) than (1.3c), though each time the former two tend
to make larger objective decreases than (1.3c) applied without extrapolation. We consider
all three updates since they fit different applications, and also different blocks in the same
application, yet their convergence can be analyzed in a unified framework.
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Algorithm 1. Block coordinate descent (BCD) method for solving (1.1).
Initialization: choose two initial points (x;*,...,x;!) = (x{,...,x9)
for k=1,2,...do

fori=1,2,...,sdo
xF « (1.3a), (1.3b), or (1.3c).

end for
if stopping criterion is satisfied then
return (x%,...,x%).
end if
end for

To ensure the convergence of Algorithm 1, for every block ¢ to which (1.3a) is applied,
we require fF(x;) to be strongly convex, and for every block i to which (1.3c) is applied,
we require V f¥(x;) to be Lipschitz continuous. The parameter L¥ in both (1.3b) and (1.3c)
can be fixed for all k. For generality and faster convergence, we allow it to change during
the iterations. Use of (1.3b) only requires L¥ to be uniformly lower bounded from zero and
uniformly upper bounded. In fact, fik in (1.3b) can be nonconvez, and our proof still goes
through. Update (1.3b) is a good replacement for (1.3a) if ff is not strongly convex. Use of
(1.3¢) requires more conditions on L¥; see Lemmas 2.2 and 2.6. Update (1.3c) is relatively
easy to solve and often allows closed form solutions. For block 4, (1.3¢c) is preferred over
(1.3a) and (1.3b) when they are expensive to solve and fF has Lipschitz continuous gradients.
Overall, the three choices cover a large number of cases.

Original subproblem (1.3a) is the most used form in BCD and has been extensively studied.
It dates back to methods in [52] for solving equation systems and to works [24, 70, 5, 61],
which analyze the method assuming F' to be convex (or quasi-convex or hemivariate) and
differentiable, and to have bounded level sets except for certain classes of convex functions.
When F' is nonconvex, BCD may cycle and stagnate [56]. However, subsequence convergence
can be obtained for special cases such as quadratic function [48], strict pseudoconvexity in each
of (s — 2) blocks [22], and unique minimizer per block [47, p. 195]. If F' is nondifferentiable,
BCD can get stuck at a nonstationary point; see [5, p. 94]. However, subsequence convergence
can be obtained if the nondifferentiable part is separable; see works [23, 50, 65, 66] for results
on different forms of F. In our objective function, f is differentiable and possibly nonconvex,
and the nonsmooth part consists of block-separable functions r;.

Proximal subproblem (1.3b) has been used with BCD in [22]. For X = R", the authors’
work shows that every limit point is a critical point. Recently, this method was revisited in
[4] for only two blocks and was shown to converge globally via the Kurdyka—Fojasiewicz (KL)
inequality.

Prox-linear subproblem (1.3¢) with extrapolation is new but very similar to the update in
the block coordinate gradient descent (BCGD) method of [67], which identifies a block descent
direction by gradient projection and then performs an Armijo-type line search. The paper
[67] does not use extrapolation (1.4). This work considers more general functions f which are
smooth but not necessarily multiconvex, and it does not consider joint constraints. Through
private communication, we learned that the recent report [57] provides a unified convergence
analysis of coordinatewise successive minimization methods for nonsmooth nonconvex opti-
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mization. These methods update block variables by minimizing a surrogate function that
dominates the original objective around the current iterate. They do not use extrapolation
either and have only subsequence convergence.

There are examples of r; that make (1.3c) easier to compute than (1.3a) and (1.3b). For
instance, if 7; = dp,, the indicator function of convex set D; (equivalent to x; € D;), (1.3¢)
reduces to x5 = Pxrop, (xF= — gl LA where Pxrnp, is the projection to set XFND;.
If 7;(x;) = Ni||xi|l1 and XF = R™, (1.3¢) reduces to x¥ = SLi_cfl/)\i (&L — g1/ LE ) where
Sy(+) is soft-thresholding, defined componentwise as S, (t) = sign(t) max(|t| — v,0). More
examples arise in joint/group ¢; and nuclear norm minimization, total variation, etc.

1.1. Contributions. We propose Algorithm 1 and establish its global convergence and
asymptotic rate of convergence. The algorithm is applied to two classes of problems: (i) non-
negative matrix/tensor factorization, and (ii) nonnegative matrix/tensor completion from in-
complete observations. It is demonstrated to be superior to the state-of-the-art algorithms on
both synthetic and real data in both speed and solution quality.

Our convergence analysis takes two steps. Under certain assumptions, the first step estab-
lishes the square summable result >, [|x* —x**1||2 < 0o and obtains subsequence convergence
to Nash equilibrium points, as well as global convergence to a single Nash point if the sequence
is bounded and the Nash points are isolated. The second step, which is motivated by [4], as-
sumes the KL inequality [13, 14] and improves the result to Y, ||x* —x*T1|| < oo, which gives
the algorithm’s global convergence, as well as asymptotic rates of convergence. The classes
of functions that obey the KL inequality are reviewed. Despite the popularity of BCD, very
few works establish global convergence without the (quasi-)convexity assumption on F; the
authors of [48, 67] have obtained global convergence by assuming a local Lipschitzian error
bound and the isolation of the isocost surfaces of F'. Some interesting problems satisfy their
assumptions; however, it appears that our assumptions are met by more problems and are eas-
ier to verify. Their and our assumptions do not imply each other, though there are problems
satisfying both.

1.2. Applications. A large number of practical problems can be formulated in the form
of (1.1) such as convex problems: (group) Lasso [64, 75] or the basis pursuit (denoising) [15],
low-rank matrix recovery [58], hybrid Huberized support vector machine [69], and so on. We
give some nonconvex examples as follows.

Blind source separation and sparse dictionary learning. Let si,...,s, € R*P be a
set of source signals. Given m sensor signals x; = 2?21 a;jsj +m;, @ = 1,...,m, where
A = [aijlmxn € R™™ is an unknown mixing matrix and n; is noise, blind source separation
(BSS) [27] aims to estimate both A and S = [s{ ,...,s,]. It has found applications in many
areas such as artifact removal [26] and image processing [28]. Two classical approaches for
BSS are principal component analysis (PCA) [62] and independent component analysis (ICA)
[18]. If m < n and no prior information on A and S is given, these methods will fail. Assuming
that sq,...,s, are sparse under some dictionary B € R”*? namely, s; = y;B and y; € RI*T

is sparse for i = 1,...,n [79, 12], use the sparse BSS model

A
(1.5) IAIH{} §||AYB — X||% +7(Y) subject to A € D,
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where Y = [y ...,y ]T € R™*T, r(Y) is a sparsity regularizer such as 7(Y) = |[Y]||1, D is
a convex set to control the scale of A such as ||A||r < 1, and X is a balancing parameter.
Note that model (1.5) is block multiconvex but nonconvex jointly with respect to A and Y.
A similar model which appears in cosmic microwave background analysis [10] solves

(1.6) gu\r(l %trace <(AYB -X)"CY(AYB - X)) +7(Y) subject to A eD

)

for a certain covariance matrix C. Algorithms for (sparse) BSS include an online learning
algorithm [2], feature extraction method [43], feature sign algorithm [40], and so on.

Model (1.5) with B = I also arises in sparse dictionary training [1, 49], where the goal is
to build a dictionary A that sparsely represents the signals in X.

Nonnegative matrix factorization. Nonnegative matrix factorization (NMF) was first
proposed by Paatero and his coworkers in the area of environmental science [53]. The later
popularity of NMF can be partially attributed to the publication of [38] in Nature. It has
been widely applied in data mining such as text mining [55] and image mining [41], dimension
reduction and clustering [16, 73], and hyperspectral endmember extraction, as well as spectral
data analysis [54]. A widely used model for (regularized) NMF is

1
(1.7) min -

X>0.Y>0 2 IXY — M| + ari(X) + Bra(Y),

where M is the input nonnegative matrix, r1,79 are some regularizers promoting solution
structures, and «, 5 are weight parameters. Two early popular algorithms for NMF are the
projected alternating least squares (ALS) method [53] and the multiplicative updating method
[39]. Due to the biconvexity of the objective in (1.7), a series of alternating nonnegative least
squares (ANLS) methods have been proposed such as [42, 30, 32]; they are BCDs with update
(1.3a). Recently, the classic alternating direction method (ADM) has been applied in [78].
We compare the proposed algorithms to some existing methods for NMF in section 4.
Similar models also arise in low-rank matrix recovery, such as the one considered in [58],

1
(1.8) min | AXY) = b|* + ol X|[7 + 8] YIIZ

where A is a linear operator. The method of multipliers is employed in [58] to solve (1.8)
with no convergence guarantees. Since the objective of (1.8) is coercive and real analytic, our
algorithm is guaranteed to produce a sequence of points that globally converge to a critical
point; see Theorems 2.8 and 2.9.

Nonnegative tensor factorization. Nonnegative tensor factorization (NTF) is a general-
ization of NMF to multidimensional arrays. One commonly used model for NTF is based on
CANDECOMP/PARAFAC tensor decomposition [71]

N
. 1 9
(1.9) A1,.I.T,1KIN20 §”M —AjoAjo--0An[p+ nz_:l At (Ag),
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and another one is based on Tucker decomposition [34]

1
1.10 i —
( ) Q,Alfr}igNZO 2

N
M =G x1 Ay x2 Ay xy AN|[E +M(G) + D Aurn(Ay),

n=1
where M is a given nonnegative tensor; r,r1,...,ry are regularizers; A\, A1, ..., Ay are weight
parameters; and “o” and “Xx,” represent outer product and tensor-matrix multiplication,
respectively. (The necessary background of tensors is reviewed in section 3.) Most algorithms
for solving NMF have been directly extended to NTF. For example, the multiplicative update
in [53] is extended to solving (1.9) in [63]. The ANLS methods in [30, 32] are extended to
solving (1.9) in [31, 33]. Algorithms for solving (1.10) also include the columnwise coordinate
descent method [44] and the ALS method [21]. More about NTF algorithms can be found in
[76].

kM

1.3. Organization. The rest of the paper is organized as follows. Section 2 studies the
convergence of Algorithm 1. In section 3, Algorithm 1 is applied to both the nonnegative
matrix/tensor factorization problem and the completion problem. The numerical results are
presented in section 4. Finally, section 5 concludes the paper.

2. Convergence analysis. In this section, we analyze the convergence of Algorithm 1
under the following assumptions.

Assumption 1. F' is continuous in dom(F) and infycqom(r) F/(x) > —oco. Problem (1.1)
has a Nash point (see (2.3) for definition).

Assumption 2. Each block i is updated by the same scheme among (1.3a)—(1.3¢) for all k.
Let 71, Z,, and Z3 denote the set of blocks updated by (1.3a), (1.3b), and (1.3c), respectively.
In addition, there exist constants 0 < ¢; < L; < 00, i =1,...,s, such that

1. for i € Iy, fF is strongly convex with modulus ¢; < Lf_l < L;, namely,

k—1

Q1) ) - ) 2 (v - B v ey e A

2. for i € Iy, parameters Lf_l obey £; < Lf_l < L;
3. fori € I3, V fik is Lipschitz continuous, and parameters Lf_l obey ¢; < Lf_l <L

and

(2.2) FEGE) < RGN 4 (88 xF — %71 + T — &7

Remark 2.1. The same notation Lf_l is used in all three schemes for the simplicity of
unified convergence analysis, but we want to emphasize that it has different meanings in the
three different schemes. For ¢ € 73, Lf_l is determined by the objective and the current
values of all other blocks, while for ¢ € Zy U Z3 we have some freedom to choose Lf_l. For
1 € Iy, Lf_l can be simply fixed to a positive constant or selected by a predetermined rule
to be uniformly lower bounded from zero and upper bounded. For i € Z3, Lf_l is selected to
satisfy (2.2). Taking Lf‘l as the Lipschitz constant of Vf¥ can satisfy (2.2). However, we
allow smaller Lf_l, which can speed up the algorithm.
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In addition, we want to emphasize that we make different assumptions on the three differ-
ent schemes. The use of (1.3a) requires block strong convexity with modulus uniformly away
from zero and upper bounded, and the use of (1.3c) requires a block Lipschitz continuous
gradient. The use of (1.3b) requires neither strong convexity nor Lipschitz continuity. Even
the block convexity is unnecessary for (1.3b), and our proof still goes through. Each assump-
tion on the corresponding scheme guarantees sufficient decrease of the objective and makes it
square summable; see Lemma 2.2, which plays the key role in our convergence analysis.

For our analysis below, we need the Nash equilibrium condition of (1.1): for i =1,...,s,

(23) F(Xl, ey X—1, X, X1 e ,XS) < F(il, e X1, X, X1y ,is) Vx,; € .)EZ',
or, equivalently,
(2.4) (Vx, [(X) +DPi,x;i — %) >0 Vx; € &; and for some p; € Ir;(X;),

where X; = X;(X1,...,%i_1,%Xi41,...,%s) and Or(x;) is the limiting subdifferential (e.g., see
[60]) of r at x;. We call X a Nash point or block coordinatewise minimizer. Let N be the set
of all Nash points, which we assume to be nonempty.

Remark 2.2. As shown in [4], it holds that

8F(X) = {vx1f(x) + 87”1(}(1)} X X {vxSf(x) + aTS(XS)}-

Therefore, if ¥ = R™ or X is an interior point of X, (2.4) reduces to the first-order optimality
condition 0 € JF(x), and X is a critical point (or stationary point) of (1.1). In general,
the condition (2.4) is weaker than the first-order optimality condition. For problem (1.1), a
critical point must be a Nash point, but a Nash point is not necessarily a critical point. An
example can be found in section 4 of [72].

2.1. Preliminary result. The analysis in this subsection follows the following steps. First,
we show sufficient descent at each step (inequality (2.8)), from which we establish the square
summable result (Lemma 2.2). Next, the square summable result is exploited to show that
any limit point is a Nash point in Theorem 2.3. Finally, with the additional assumptions of
isolated Nash points and bounded {x*}, global convergence is obtained in Corollary 2.4. The
first step is essential, while the last two use rather standard arguments. We begin with the
following lemma, which is similar to Lemma 2.3 of [8]. Since the proof in [8] does not consider
constraints, we include a slightly changed proof for completeness.

Lemma 2.1. Let & (u) and &(u) be two convex functions defined on the convex set U, and
let &1(u) be differentiable. Let {(u) = &1 (u) + &2(u) and u* = argmin, o (V& (V),u — v) +
Hlu— v+ &(w). If

(25) £1(0°) < 6(v) + (Ve ()0 —v)+ £ o’ — |
then we have

(2.6) &(u) —&(u*) > gHu* —v|? 4+ L{v—u,u* —v) for any uecl.
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Proof. Since u* = argmin, (V& (v), u—v)+ % [lu—v||2 +£& (), the first-order optimality
condition holds; i.e.,

(2.7) (V& (V) + L(u* —v)+g,u—u*) >0 forany ucl,
for some g € & (u*). For any u € U, we have

E(u) §(u”)
(51(V +(VE(v),u" —v) + §lju” = v|]?) = &(u)

—51( ) &(v) = (V&(v),u = v) + (V& (v),u —u”)

+&a(u) — &a(u) — Hu —V||2

> &(u) - &(u) - (g,u—u*) — L{u* —v,u —u*) — §flu* —v|?

> —L{u* —v,u—u*) — éHu* —v|?

= Lfu* — [+ Liv — u,u — ),

where the first inequality uses (2.5), the second inequality is obtained from the convexity of
&1 and (2.7), and the last inequality uses the convexity of & and the fact that g € 9¢2(u*).
This completes the proof. |

Based on this lemma, we can show our key lemma below.

Lemma 2.2 (square summable ||x* — x**1||). Under Assumptions 1 and 2, let {x*} be the

sequence generated by Algorithm 1 with 0 < wf_l <,V Lf_z/Lf_l for 6, < 1 uniformly over
alli € I3 and k. Then Y ey |IxF — xF11? < cc.
Proof. For i € T3, we have inequality (2.2) and use Lemma 2.1 by letting F; k fk +r;

and taking & = fZ =1 v = Xf ! and u= xk Ly n (2.6) to have

Lt
k (k=1 k(K ok—1 k k—1/5k—1 k=1 _k ck—1
FEh) = PO 2 =55 =P 4+ L =g = %)

Lt k L k— k—
:ZTHXZ' l_Xin—ZT(Wi 1)2||Xi 2_Xi 1||2
LY e ke Lo ke k1o
2:5) > Bt = Bt

k—1
For i € T; UT, we have FF(xF™1) — FF(xF) > LiTfo_l — x¥||2, and thus inequality (2.8)
still holds. Therefore,

PO = Pty = 37 (FRGEY) = Bb b))

— b2 — Bt o
<12

v
|.Mm
7N
h
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Summing the above inequality over k from 1 to K, we have

Lk 1 —2 -
o) ) = 33 (e B

k=11i=1

K s k—1 K

(1 — 52)L k k— k
I I R
k=11i=1 k=1
Since F' is lower bounded, taking K — oo completes the proof. |

Now, we can establish the following preliminary convergence result.
Theorem 2.3 (limit point is Nash point). Define the difference measure of two sets X, by

diff (X,)) = max | sup inf ||x —y||, sup inf ||x — .
(x.9) (xegy@,u v, sup int | yu>

Assume that the set map X;(-) defined in (1.2) continuously changes; namely, x" x e X, and

xF = x imply

/ / ’

S K/ Kk k ,
kl;m diff (Xi(xl N JHETE IR TR ),XZ’(Xl,...,Xi_l,Xi+1,...,X5)) =0 V.
o0

Then if the assumptions of Lemma 2.2 hold, any limit point of {xk } is a Nash point, namely,
satisfying the Nash equilibrium condition (2.4).

Proof. Let X be a limit point of {x*}, and let {x*1} be the subsequence converging to
X. The closedness of X implies X € X. Since {Lf} is bounded, passing another sequence if
necessary, we have ij — Lifori=1,...,sasj — oo. Lemma 2.2 implies that ||x**!—x*|| —
0, so {x**1} also converges to X.

For i € Z;, we have

(2.9) it

(2

&7 < B %) vxg e AT

Letting j — oo, we can show (2.3) by the continuity of F, and the set map X;(-) by the
following arguments. For any block i¢p € Z; and any y;, € &}, since

lim diff <Xk s )Ei()) —0,

there is yiO XZO] 1 Such that lim; ygo =Yy, From the continuity of F', we have

k+1 kj+1 j k; k; _ _ _ _
(2.10) JIEEOF( . 1,ym, Xigr1se+ 1 Xs') = F (X1, oo, Rig—15 Yigs Rig+15 - - - Xs)-

Note that (2.9) implies
k:j+1 k‘j+1 kj+1 k:j k:j k‘j+1 k? +1 i k:j k:j
F(xy" "X X X gy XsT) SF(xy %) l,ylo, > SERTRRRNS )}

Letting j — oo and using (2.10), we get

F(ilw” 7}_(:2'()—17}_(2'()7)_(7;0-}—17"' 7i8) S F(}_{la 7ii0—17yi07ii0+17’” 7}_{8)'
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Hence, (2.3) holds. Similarly, for i € Z,, we have

F()_(l,...,}_(i_l,}_(i,}_(i+1,...,)_(5)
< F(Ri, .o Rim 1, X, i1, - Xs) + SExi — %412 VX € A5
namely,
(211) X; = argn{inF(Xl, ey Xm 1, X, X1 e - ,XS) + EZHXZ — Xi||2.
X; EX;

Thus, X; satisfies the first-order optimality condition of (2.11), which is precisely (2.4). For
1 € I3, we have

k
k;+1 . Eidl, ks Ny ~ K
x,7 = argmin (Vf7 " (x;7),x; —%;7) + é Hxi—xijﬂz—i-n(xi).

k;+1
xiEXi 7

The convex proximal minimization is continuous in the sense that the output xfj 1 depends
continuously on the input f(fj [59]. Letting j — oo, from xfj R x; and f(fj — X;, we get
(2.12) x; = argmin (Vy, f(X),x; — X;) + &sz — % |12 4 ri(xq).

x;€X; 2
Hence, X; satisfies the first-order optimality condition of (2.12), which is precisely (2.4). This
completes the proof. [ |

Remark 2.3. If X is convex, then the set map X;(+) is continuous; see Theorem 4.32 in [60].
A special case is X = R"; namely, there are no joint constraints.

Corollary 2.4 (global convergence given isolated Nash points). Under the assumptions of
Theorem 2.3, if {x*} is bounded, we have dist(x*,N') — 0. If, further, N contains uni-
formly isolated points, namely, there is n > 0 such that |x —y|| > n for any distinct points
X,y € N, then {x*} converges to a point in N.

Proof. Suppose dist(x*, N') does not converge to 0. Then there exist ¢ > 0 and a subse-
quence {x*i} such that dist(x*, ) > ¢ for all j. However, the boundedness of {x"/} implies
that it must have a limit point X € N according to Theorem 2.3, which is a contradiction.

From dist(x®,N)) — 0, it follows that there is an integer K; > 0 such that x* ¢
Uyen'B(y, 1) for all k > Ky, where B(y,2) £ {x € X : [[x—y]|| < #}. In addition, Lemma 2.2
implies that there exists another integer Ky > 0 such that |[x* — x*+1|| < 2 for all k > K.
Take K = max(K7, K>) and assume xX € B(x, ) for some x € V. We claim that for any
y € N and y # X, ||x* —y|| > ¥ holds for all k > K. This claim can be shown by induction
on k > K. If some x* € B(x, 1), then [[xF! — x|| < [|x*1 — x| + ||x* — x| < %L, and

Iyl = % -yl =[x %] > 3 for any % £y € A
Therefore, x* € B(x, ) for all k > K since xF € Uyen B(y, 4), and thus {x"*} has the unique
limit point X, which means that x* — x. [ |

Remark 2.4. The boundedness of {x*} is guaranteed if the level set {x € X : F(x) <
F(x")} is bounded. On the other hand, the isolation assumption is difficult to verify, or
even fails to hold, for many functions. This motivates another approach below for global
convergence.
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2.2. Kurdyka—tojasiewicz inequality. Before proceeding with our analysis, let us briefly
review the KL inequality, which is central to the global convergence analysis in the next
subsection.

Definition 2.5. A function (x) satisfies the Kurdyka—FLojasiewicz (KL) property at point
x € dom(0v) if there exists 6 € [0,1) such that

ERNT

dist(0, 0y (x))
is bounded around X under the following notational conventions: 0° = 1,00/00 = 0/0 = 0. In
other words, in a certain neighborhood U of X, there exists ¢(s) = cs' =% for some ¢ > 0 and
0 € 10,1) such that the KL inequality holds:

(2.14)  ¢/(Jv(x) — ¥(x)])dist(0,0¢(x)) > 1 for any x € U N dom(9Y) and 1 (x) # (%),
where dom () = {x : OY(x) # 0} and dist(0,0v(x)) = min{||y| : y € 9(x)}.

This property was introduced by Lojasiewicz [46] on real analytic functions, for which
(2.13) is bounded around any critical point x for 0 € [%, 1). Kurdyka extended this property
to functions on the o-minimal structure in [36]. Recently, the KL inequality was extended to
nonsmooth subanalytic functions [13].

The KL inequality (2.14) is usually weaker than the condition of isolated Nash points used
in Corollary 2.4. In (2.14), we require 1)(x) # ¥(X), so a point obeying the KL inequality
need not be an isolated Nash point. The function ¥ (z,y) = (zy — 1)? is an example, where
(z,y) = (1,1) is a minimizer meeting the KL inequality but is not an isolated Nash point.
While it is not trivial to check the conditions in the definition, we summarize a few large
classes of functions that satisfy the KL inequality.

Real analytic functions. A smooth function (t) on R is analytic if (“D(I:!(t) )% is bounded
for all £ and on any compact set D C R. One can verify whether a real function ¢(x) on R" is
analytic by checking the analyticity of p(t) £ 1) (x + ty) for any x,y € R™. For example, any
polynomial function is real analytic, such as ||Ax — b||? and the first terms in the objectives
of (1.9) and (1.10). In addition, it is not difficult to verify that the nonconvex function
Ly(x,6,0) = 30 (22 + €2)%% 4+ 35 [|Ax — b||? with 0 < ¢ < 1 considered in [37] for sparse
vector recovery is a real analytic function (the first term is the e-smoothed ¢,-seminorm). The
logistic loss function ¥ (t) = log(1 + e ") is also analytic. Therefore, all the above functions
satisfy the KL inequality with 6 € [3,1) in (2.13).

Locally strongly convex functions. A function ¢ (x) is strongly convex in a neighborhood
D with constant p if

Y(y) = ¢¥(x) + (v(x),y —x) + gHX —yl* Vy(x) € 99(x) and for any x,y € D.

According to the definition and using the Cauchy—Schwarz inequality, we have

V¥ =000 = (x5 = x) + Gk = yI? = — bR 2 € 0,
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where the last inequality in obtained by minimizing the middle term over y. Hence, u(¢(x) —
P(y)) < (dist(0,01(x)))?, and ¥ satisfies the KL inequality (2.14) at any point y € D with
o(s) = % sand U = DN {x : Y(x) > ¥(y)}. For example, the logistic loss function

() = log(1 + e ) is strongly convex in any bounded set D.

Semialgebraic functions. A set D C R" is called semialgebraic [11] if it can be represented
as

s t
D=J [ {xeR": py(x) = 0,4;5(x) >0},
i=1j=1

where p;;,gi; are real polynomial functions for 1 <17 < s, 1 < j <t¢. A function 1 is called
semialgebraic if its graph Gr(¢) £ {(x,9(x)) : x € dom(z))} is a semialgebraic set.

Semialgebraic functions are subanalytic, so they satisfy the KL inequality according to
[13, 14]. We list some known elementary properties of semialgebraic sets and functions below,
as they help identify semialgebraic functions.

1. If a set D is semialgebraic, so is its closure cl(D).

2. If D; and D, are both semialgebraic, so are Dy U Dy, D1 N Dy, and R™\D;.

3. Indicator functions of semialgebraic sets are semialgebraic.

4. Finite sums and products of semialgebraic functions are semialgebraic.

5. The composition of semialgebraic functions is semialgebraic.
From items 1 and 2, any polyhedral set is semialgebraic, such as the nonnegative orthant
R} = {x € R" : ; > 0 Vi}. Hence, the indicator function dgr is a semialgebraic function.
The absolute value function ¢(t) = |¢| is also semialgebraic since its graph is cl(D), where

D={(ts):t+s=0,—t>0}U{(t,s):t—s=0,t>0}.

Hence, the ¢1-norm ||x||; is semialgebraic since it is the finite sum of absolute functions. In
addition, the sup-norm ||x|| is semialgebraic, which can be shown by observing

Graph(|x[lec) = {(x,) : t = max|z;[} = U{(X’ t) : il =t s <t V5 # i}

7

Further, the Euclidean norm ||x|| is shown to be semialgebraic in [11]. According to item 5,
|Ax — bl|1, ||[Ax — b||oc, and ||[Ax — b|| are all semialgebraic functions.

Sum of real analytic and semialgebraic functions. Both real analytic and semialgebraic
functions are subanalytic. According to [11], if ¢ and 1, are both subanalytic and 11 maps
bounded sets to bounded sets, then 11 + 15 is also subanalytic. Since real analytic functions
map bounded sets to bounded sets, the sum of a real analytic function and a semialgebraic
function is subanalytic, so the sum satisfies the KL property. For example, the sparse logistic
regression function

P(x,b) = % En:log (1 + exp <—ci(al—~|—x + b))) + Allx|]1
i=1

is subanalytic and satisfies the KL inequality.
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2.3. Global convergence and rate. If {x*} is bounded, then Theorem 2.3 guarantees
that there exists one subsequence converging to a Nash point of (1.1). In this subsection, we
assume X = R and strengthen this result for problems with I’ obeying the KL inequality.
Our analysis here was motivated by [4], which applies the inequality to establish the global
convergence of the alternating proximal point method—the special case of BCD with two
blocks and using only update (1.3b).

We make the following modification to Algorithm 1.

(M1) Whenever F(xF) > F(x*~1), we redo the kth iteration with fcf_l = xf_l (i.e., no
extrapolation) for all i € Zs.

Remark 2.5. From the proof of Lemma 2.2, we can see that this modification makes F(x*)
strictly less than F(x*~1) as long as x¥ # x*~1. To show this, observe that the proof of
Lemma 2.2 implies that updates (1.3a) and (1.3b) both make the objective decrease by at

k-1

least Liz [|xk — xf_1||2, and update (1.3c) also makes the objective decrease by at least
k-1
Li2 [xF — xF71)? when %71 = xF7! namely, when the modification step (M1) occurs.

Hence, if x* = x*0~1 for some kg, then F(x*) = F(x*) and x* = x*0 for all k > k.

In what follows, we use the notions F, = F(x*) and F = F(X). First, we establish the
following preconvergence result, the proof of which is given in Appendix A.

Lemma 2.6. Under Assumptions 1 and 2, let {x*} be the sequence of Algorithm 1 with
(M1) and its parameters satisfying w¥ < min(1,6,V LE1/L¥), 6, < 1, for all i € T3 and k.
Assume the following:

1. Vf is Lipschitz continuous on any bounded set;

2. F satisfies the KL inequality (2.14) at X;

3. xq is sufficiently close to X, and Fy, > F for k > 0.

Then there is some B C U N dom(dvp) with ¢ = F in (2.14) such that {x*} C B and x*
converges to a point in B.

Remark 2.6. In the lemma, the required closeness of x° to X depends on U, ¢, and 1) = F
in (2.14) (see the inequality in (A.1)).

The following corollary is a straightforward application of Lemma 2.6.

Corollary 2.7. Under the assumptions of Lemma 2.6, {x*} converges to a global minimizer
of (1.1) if the initial point x° is sufficiently close to any global minimizer X.

Proof. Suppose F(x"0) = F(X) at some ky. Then x* = x*0 for all k > ko, according to
Remark 2.5. Now consider F(x*) > F(x) for all k > 0, and thus Lemma 2.6 implies that
x* converges to some critical point x* if x¥ is sufficiently close to %, where x°,x*,x € B. If
F(x*) > F(x), then the KL inequality (2.14) indicates ¢' (F'(x*) — F(X)) dist (0, 0F (x*)) > 1,
which is impossible since 0 € OF (x*). [ ]

Next, we give the convergence result of Algorithm 1.

Theorem 2.8 (global convergence). Under the assumptions of Lemma 2.6 and the fact that
{x*} has a finite limit point X where F satisfies the KL inequality (2.14), the sequence {x*}
converges to X, which is a critical point of (1.1).

Proof. Note that F(x*) is monotonically nonincreasing and converges to F/(x). If F(x*0) =
F(x) at some kg, then x¥ = x*0 = % for all k > kg, according to Remark 2.5. It remains
to consider F(x*) > F(x) for all k > 0. Since X is a limit point and F(x¥) — F(X), there
must exist an integer ko such that x* is sufficiently close to X as required in Lemma 2.6 (see
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the inequality in (A.1)). Hence, the entire sequence {x*} converges according to Lemma 2.6.
Since x is a limit point of {x*}, we have x* — x. [ |

We can also estimate the rate of convergence, and the proof is given in Appendix A.

Theorem 2.9 (convergence rate). Assume the assumptions of Lemma 2.6, and suppose that
x® converges to a critical point X, at which F satisfies the KL inequality with ¢(s) = c¢s'=? for
c¢>0 and 0 €[0,1). Then the following hold:

1. If 0 =0, xF converges to x in finitely many iterations.

2. If 6 € (0, %], |xF — || < C7* for all k > kg, for certain kg >0, C >0, 7 €[0,1).

3. If0 € (3,1), ||xF — x| < Ck==9/C=Y) for all k > ko, for certain kg >0, C > 0.

Parts 1, 2, and 3 correspond to finite convergence, linear convergence, and sublinear
convergence, respectively.

3. Factorization and completion of nonnegative matrices and tensors. In this section,
we apply Algorithm 1 with modification (M1) to the factorization and completion of nonneg-
ative matrices and tensors. Since a matrix is a two-way tensor, we present the algorithm for
tensors. We first give an overview of a tensor and its two popular factorizations.

3.1. Overview of tensor. A tensor is a multidimensional array. For example, a vector
is a first-order tensor, and a matriz is a second-order tensor. The order of a tensor is the
number of dimensions, also called way or mode. For an N-way tensor X € RI1<[2xXIN e
let its (i1,42,...,in)th element be denoted by x; ,....,. Below we list some concepts related
to a tensor. For more details about a tensor, the reader is referred to the review paper [35].

1. Fiber: A fiber of a tensor X is a vector obtained by fixing all indices of X except
one. For example, a row of a matrix is a mode-2 fiber (the first index is fixed), and
a column is a mode-1 fiber (the second index is fixed). We use X;,...i,_1:i,;-in tO
denote a mode-n fiber of an Nth-order tensor X.

2. Slice: A slice of a tensor X is a matrix obtained by fixing all indices of X except
two. Take a third-order tensor X, for example. X;.., X.;., and X..;; denote horizontal,
lateral, and frontal slices, respectively, of X .

3. Matricization: The mode-n matricization of a tensor X is a matrix whose columns are
the mode-n fibers of X in the lexicographical order. We let X(,) denote the mode-n
matricization of X.

4. Tensor-matriz product: The mode-n product of a tensor X € RIV2xxIN with a
matrix A € R/*In ig a tensor of size I} X -+ X I;,_1 X J X Iny1 X -+ x Iy defined as

I,
(3.1) (X X0 A)is i 1jingrin = D Tigigin G-

in=1

In addition, we briefly review the matrix Kronecker, Khatri-Rao, and Hadamard products
below, which we use to derive tensor-related computations.

The Kronecker product of matrices A € R™*™ and B € RP*? is an mp x ng matrix defined
by A ®B = [a;jB|mpxng. The Khatri-Rao product of matrices A € R"™*9 and B € RP*? is an
mpx ¢ matrix AOB = [a; @ by, ay ® b, ..., a; ® b,], where a;, b; are the ith columns of A
and B, respectively. The Hadamard product of matrices A, B € R™*" is the componentwise
product defined by A % B = [a;;bij]mxn-
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Two important tensor decompositions are the CANDECOMP /PARAFAC (CP) [29] and
Tucker [68] decompositions. The former decomposes a tensor X € RI1*[2XXIN iy the form
of X = AjoAyo---0Ap, where A,, € RI"*" n =1,..., N, are factor matrices, r is the
tensor rank of X, and the outer product o is defined as

(V)

T
_ (1)
- a; INJ

(2)
i1jYiog

Tivigin cea for i, € [I], n=1,...,N,

J=1

where agl) is the (,j)th element of A, and [I] £ {1,2,...,1}. The latter Tucker decom-
position decomposes a tensor X in the form of X = G x1 A; X9 Ay--- Xy Ay, where
G € R/xxXIN g called the core tensor and A, € R»*/» n = 1,... N, are factor
matrices.

3.2. An algorithm for nonnegative tensor factorization. One can obtain a nonnegative
CP decomposition of a nonnegative tensor M € R *IN by solving

1
(3.2) min§HM —Ajo0Ayo---0An|% subject to A, € RI" n=1,... N,
where 7 is a specified order and the Frobenius norm of a tensor X € R >IN ig defined as
| XFr = \/Zmzw x?liT”iN. Similar models based on the CP decomposition can be found

in [31, 19, 33]. One can obtain a nonnegative Tucker decomposition of M by solving

min 3||M — G x1 Ay X3 Ay xn A%,

3.3
(33) subject to G € ]fo‘“XJNy A, € RinXJn v,

as in [34, 51, 44]. Usually, it is computationally expensive to update G. Since applying Algo-
rithm 1 to problem (3.3) involves many computing details, we focus on applying Algorithm 1
with update (1.3c) to problem (3.2).

Let A =(A4,...,Ay), and let

1
F(A)=F(A1,As,...,AyN) = §||M—A10Azo...oAN||%

be the objective of (3.2). Consider updating A,, at iteration k. Using the fact that if X =
AjoAs0---0Ay, then X(n) :An(AN@”’@An_H@An_l@---QAl)T, we have

1 2
F(A) = 5 ||Mey ~ An(Av© - 0 An 0 Apr 00 A
and
Va,F = (An(ANQ“'®An+1®An—1®“'®A1)T—M(n))

(ANO- - OA1OA, 1O -OA).
Let

(3.4) Bil=Alo. . oAl oAl 0. 0AL



BLOCK COORDINATE DESCENT AND TENSOR FACTORIZATION 1773

We take

) ) B - . A k=2
(35) Lt =B BT, Wl = min | G by | S
n

where ||A|| is the spectral norm of A, J,, < 1 is preselected, and w1 = % with

1
to =1, tk:§<1—|—\/l+4ti_1>.

In addition, let AF=1 = Ak=1 4 GE=1(AR=1 _ AE=2) and let

Gi = (AL BT - M, ) B

n

be the gradient. Then we derive update (1.3c):

) o - Lk—l 2
Aflzargmln<G]fL LA, —AF 1>—|—"—HAn—AfL 1” )
A>0 2 F

which can be written in the closed form

(3.6) AF = max <0, AR Gﬁ_l/Lﬁ_1> .
At the end of iteration k, we check whether F' (Ak) > F (Ak_l). If so, we reupdate A* by
(3.6) with AF=1 = A*=1forn=1,... N.

Remark 3.1. In (3.6), Gfb_l is most expensive to compute. To efficiently compute it, we
write GE~1 = AR=1(BE-1)TBE-1 — M, )BE~!. Using (A@B)"(A®B) = (ATA)* (B'B),
we compute (BF~1)TBE~! by

(BB = (AN AT e (A5 )TAR )« (AR TAR) e ((AF)TAR).

Then, M(n)Bﬁ_l can be obtained by the matricized-tensor-times-Khatri-Rao-product [6].
Algorithm 2 summarizes how to apply Algorithm 1 with update (1.3¢) to problem (3.2).
Remark 3.2. When N =2, M becomes a matrix, and Algorithm 2 solves NMF.

3.3. Convergence results. Since problem (3.2) is a special case of problem (1.1), the
convergence results in section 2 apply to Algorithm 2. Let D,, = Ri"xr, and let dp,, () be the

indicator function on D,, for n = 1,..., N. Then (3.2) is equivalent to
N

3.7 i A)=F(A)+ op, (An).

(37 A QUA)= FA)+3 b, (An)

According to the discussion in section 2.2, () is a semialgebraic function and satisfies the
KL property (2.13) at any feasible point. Furthermore, we get 6 # 0 in (2.13) for @ at any
critical point. By writing the first-order optimality conditions of (3.7), one can find that if
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Algorithm 2. Alternating proximal gradient (APG) method for solving (3.2).

1: Input: Nonnegative N-way tensor M and rank r.

2: Output: Nonnegative factors Aq,..., Ayn.

3: Initialization: Choose a positive number 6, < 1 and randomize At = AY n =1,... N, as
nonnegative matrices of appropriate sizes.

4: for k=1,2,... do

5 forn=1,2,...,N do

6: Compute LF~! and set w*~! according to (3.5).
7: Let Ak—1 = Ak=1 4 h=1(Ak=1 _ Ak=2)

8: Update A¥ according to (3.6).

9:  end for
10: if F (A*) > F (A*!) then
11: Reupdate A% according to (3.6) with AF~1 = A1 n =1 . N.
12:  end if
13:  if stopping criterion is satisfied then
14: Return A%, ... ,Aé“v.
15:  end if
16: end for

(A1,...,Ay) is a critical point, then so is (tA1, %Ag, As,...,Ay) for any t > 0. Therefore,
from Theorems 2.8 and 2.9 and the above discussions, we have the following theorem.

Theorem 3.1. Let {AF} be the sequence generated by Algorithm 2. Assume that {AF} is
bounded and there is a positive constant £ such that £ < L for all k and n. Then {AF}
converges to a critical point A, and the asymptotic convergence rates in parts 2 and 3 of
Theorem 2.9 apply.

Remark 3.3. The boundedness of {AF} guarantees that L¥ is upper bounded. A simple
way to make {A*} bounded is to scale (Ay,..., Ay) so that |Ay||r = --- = |Ax||F after each
iteration. The existence of a positive £ can be satisfied if one changes LF to max(LE, Ly,)
for a positive constant L.

3.4. An algorithm for nonnegative tensor completion. Algorithm 2 can be easily modi-
fied for solving the nonnegative tensor completion problem

1
. i - —AjoAso---0ApN)|?
(33) aomin _ SlPa(M = Ao Agoro An)lh,
where Q C [I1] x [Io] x - - - x [In] is the index set of the observed entries of M, and Pq(X) keeps
the entries of X in 2 and sets the remaining ones to zero. Nonnegative matrix completion
(corresponding to N = 2) has been proposed in [74], where it is demonstrated that a low-rank
and nonnegative matrix can be recovered from a small set of its entries by taking advantage of
both low-rankness and nonnegative factors. To solve (3.8), we transform it into the equivalent
problem

i GA,X)=1|X —AjoAs0---0Ay|?
(3.9) a2,y CA X =0l 1oAzor o ANy

subject to Po(X) = Po(M).

Our algorithm shall cycle through the decision variables Aq,..., Ay and X. To save space,
we describe a modification to Algorithm 2. At the kth iteration of Algorithm 2, we use
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MA: X*~1 wherever M is referred to. Specifically, we use M = X*~! for the computation
of GE~1 in line 8 and for the evaluation of F' in line 10 of Algorithm 2. After line 12, we
perform update (1.3a) on X as

(3.10) AP =Po(M) + Poe(Af o0 AR,

where ¢ is the complement of Q. Note that for a fixed A, G(A,X) is a strongly convex
function of X with modulus 1; namely, the condition in item 1 of Assumption 2 is satisfied.
Hence, according to Theorem 2.8, the convergence result for Algorithm 2 still holds for this
algorithm with extra update (3.10).

4. Numerical results. In this section, we test Algorithm 2 for nonnegative matrix and

three-way tensor factorization, as well as their completion. In our implementations, we choose
0, = 0.9999. The algorithm is terminated whenever Fkljrl;l;“ < tol holds for three iterations

in a row or H/\ﬂﬁ < tol is met, where F}, is the objective value after iteration k and tol is
specified below. We compare
e APG-MF: nonnegative matrix factorization (NMF) by Algorithm 2 in section 3.2;
e APG-TF: nonnegative tensor factorization (NTF) by Algorithm 2 in section 3.2;
e APG-MC: nonnegative matrix completion (NMC) by modified Algorithm 2 in sec-
tion 3.4;
e APG-TC: nonnegative tensor completion (NTC) by modified Algorithm 2 in sec-
tion 3.4.
All the tests were performed on a laptop with an i7-620m CPU and 3GB RAM, running 32-bit
Windows 7 and MATLAB 2010b with Tensor Toolbox, version 2.5 [7].

4.1. Nonnegative matrix factorization. We choose to compare the most popular and
recent algorithms. The first two are the alternating least squares method (ALS-MF) [53, 9] and
multiplicative updating method (Mult-MF) [39], which are available as the MATLAB function
nnmf with specifiers als and mult, respectively. The recent ANLS method Blockpivot-MF is
compared since it outperforms all other compared ANLS methods in both speed and solution
quality [32]. Another compared algorithm is the recent ADM-based method ADM-MF [78].
Although both Blockpivot-MF and ADM-MF are superior in performance to ALS-MF and
Mult-MF, we include the latter in the first two tests due to their popularity.

We set tol = 10~* for all of the compared algorithms except ADM-MF, for which we
set tol = 107° since it is a dual algorithm and 10™* is too loose. The maximum number of
iterations (mawit) is set to 2000 for all algorithms. The same random starting points are used
for all the algorithms except Mult-MF. Since Mult-MF is very sensitive to initial points, we set
the initial point by running Mult-MF 10 iterations for five independent times and choose the
best one. All of the other parameters for ALS-MF, Mult-MF, Blockpivot-MF, and ADM-MF
are set to their default values.

4.1.1. Synthetic data. Each matrix in this test is exactly low-rank and can be written in
the form of M = LR, where L and R are generated by MATLAB commands max (0, randn
(m,q)) and rand(q,n), respectively. It is worth mentioning that generating R by rand(q,n)
makes the problems more difficult than max(0,randn(q,n)) or abs(randn(q,n)). The al-
gorithms are compared with fixed n = 1000, m chosen from {200,500,1000}, and ¢ cho-
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Table 1
Comparison on nonnegative random m X n matrices for n = 1000; bold values are large error or slow
time.

APG-MFT (prop'd) |  ADM-MF | Blockpivot-MF ALS-MF Mult-MF

m r relerr Time relerr Time relerr Time relerr Time relerr Time

200 10 | 9.98e-5 0.72 2.24e-3 1.04 5.36e-4 1.30 | 7.39e-3 1.04 | 3.61le-2  2.67
200 20 | 9.97e-5 2.09 3.02e-3 2.80 | 1.02e-3 4.71 | 1.01le-2  2.33 | 4.64e-2 3.61
200 30 | 9.97e-5 4.72 4.55e-3 5.70 | 1.75e-3 10.6 | 1.04e-2  4.54 | 4.09e-2  5.53

500 10 | 9.98e-5 1.61 2.26e-3  2.39 5.11e-4 2.38 | 1.15e-2 299 | 3.58e-2 7.76
500 20 | 9.98e-5 3.66 2.82e-3 4.38 5.53e-4 6.86 | 1.08e-2  6.31 | 4.96e-2 7.99
500 30 | 9.98e-5 7.75 3.51e-3  8.34 5.75e-4 13.7 | 1.29e-2  9.95 | 4.42e-2 120

1000 10 | 9.98e-5 2.86 2.11e-3  3.44 4.99e-4 3.18 | 1.54e-3 8.04 | 3.25e-2 15.5
1000 20 | 9.98e-5 7.44 2.82e-3 7.19 5.46e-4 10.5 | 1.74e-2 17.5 | 4.96e-2 16.1
1000 30 | 9.98e-5 12.7 3.01le-3 128 5.76e-4 20.0 | 1.99e-2 26.1 | 4.57e-2 22.1

1 The relerr values of APG-MF are nearly the same due to the use of the same stopping tolerance.

Table 2
Comparison on 2000 selected images from the CBCL face database; bold values are large error or slow
time.

| | APG-MF (prop’d) | ADM-MF | Blockpivot-MF | ALS-MF Mult-MF

r relerr Time relerr Time relerr Time relerr Time relerr Time
30 | 1.91e-1 3.68 1.92e-1  7.33 | 1.90e-1 21.5 | 3.53e-1  3.15 | 2.13e-1  6.51
60 | 1.42e-1 12.5 1.43e-1 195 | 1.40e-1 63.2 | 4.59e-1 1.80 | 1.74e-1  12.1
90 | 1.13e-1 26.7 1.15e-1 342 | 1.12e-1 111 | 6.00e-1 2.15 | 1.52e-1 184

sen from {10,20,30}. The parameter r is set to ¢ in (3.2). We use relative error relerr =
|A1A2 — M| r/||M]r and CPU time (in seconds) to measure performance. Table 1 lists the
average results of 20 independent trials. From the table, we can see that APG-MF outperforms
all the other algorithms in both CPU time and solution quality.

4.1.2. Image data. In this subsection, we compare APG-MF (proposed), ADM-MF,
Blockpivot-MF, ALS-MF, and Mult-MF on the CBCL and ORL image databases used in
[25, 42]. There are 6977 face images in the training set of CBCL, each having 19 x 19 pixels.
Multiple images of each face are taken with varying illuminations and facial expressions. The
first 2000 images are used for our test. We vectorize every image and obtain a matrix M
of size 361 x 2000. Rank r is chosen from {30,60,90}. The average results of 10 indepen-
dent trials are given in Table 2. We can see that APG-MF outperforms ADM-MF in both
speed and solution quality. APG-MF is as accurate as Blockpivot-MF but runs much faster.
ALS-MF and Mult-MF fail this test, and ALS-MF stagnates at solutions of low quality at the
very beginning. Due to the poor performance of ALS-MF and Mult-MF, we compare only
APG-MF, ADM-MF, and Blockpivot-MF in the remaining tests.

The ORL database has 400 images divided into 40 groups. Each image has 112 x 92 pixels,
and each group has 10 images of one face taken from 10 different directions and with different
expressions. All the images are used for our test. We vectorize each image and obtain a
matrix M of size 10304 x 400. As in the previous test, we choose r from {30,60,90}. The
average results of 10 independent trials are listed in Table 3. From the results, we can see
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Table 3
Comparison on the images from the ORL face database; bold values are slow time.

| | APG-MF (proposed) | ADM-MF | Blockpivot-MF |

T relerr Time relerr Time relerr Time
30 | 1.67e-1 15.8 1.71e-1  46.5 | 1.66e-1 74.3
60 | 1.41e-1 42.7 1.45e-1  88.0 | 1.40e-1 178
90 | 1.26e-1 76.4 1.30e-1 127 1.25e-1 253

Figure 1. Hyperspectral data of 150 x 150 x 163: Four selected slices are shown.

Table 4
Comparison on hyperspectral data of size 150 x 150 x 163; bold values are large error or slow time.

| | APG-MF (proposed) | ADM-MF | Blockpivot-MF |
r relerr Time relerr Time relerr Time
20 | 1.18e-2 34.2 2.34e-2 87.5 | 1.38e-2 625
30 | 9.07e-3 63.2 2.02e-2 116 1.10e-2 143
40 | 7.56e-3 86.2 1.78e-2 140 | 9.59e-3 194
50 | 6.45e-3 120 1.58e-2 182 8.00e-3 277

again that APG-MF is better than ADM-MF in both speed and solution quality, and that in
far less time APG-MF achieves relative errors comparable to those of Blockpivot-MF.

4.1.3. Hyperspectral data. It has been shown in [54] that NMF can be applied to spectral
data analysis. In [54], a regularized NMF model is also considered with penalty terms || A%
and B||As|/% added in the objective of (3.2). The parameters o and 3 can be tuned for specific
purposes in practice. Here, we focus on the original NMF model to show the effectiveness
of our algorithm. However, our method can be easily modified for solving the regularized
NMF model. In this test, we use a 150 x 150 x 163 hyperspectral cube to test the compared
algorithms. Each slice of the cube is reshaped as a column vector, and a 22500 x 163 matrix
M is obtained. In addition, the cube is scaled to have a unit maximum element. Four selected
slices before scaling are shown in Figure 1, corresponding to the 1st, 50th, 100th, and 150th
columns of M. The dimension r is chosen from {20, 30, 40,50}, and Table 4 lists the average
results of 10 independent trials. We can see from the table that APG-MF is superior to
ADM-MF and Blockpivot-MF in both speed and solution quality.

4.1.4. Nonnegative matrix completion. In this subsection, we compare APG-MC and
the ADM-based algorithm (ADM-MC) proposed in [74] on the hyperspectral data used in the
previous test. It is demonstrated in [74] that ADM-MC outperforms other matrix completion
solvers such as APGL and LMaFit on recovering nonnegative matrices because ADM-MC
takes advantage of data nonnegativity, while the latter two do not. We fix the dimension
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Table 5
Comparison on hyperspectral data at stopping time T = 50,100 (sec); bold values are large error.
| T =50 | APG-MC (prop’d) | ADM-MC H T =100 | APG-MC (proposed) | ADM-MC |
Smpl. rate | PSNR MSE PSNR MSE Smpl. rate | PSNR MSE PSNR MSE
0.20 32.30 5.89e-4 28.72 1.35e-3 0.20 32.57 5.54e-4 28.80 1.33e-3
0.30 40.65 8.62e-5 33.58 4.64e-4 0.30 41.19 7.61e-5 33.69 4.52e-4
0.40 45.77 2.66e-5 38.52 1.46e-4 0.40 46.03 2.50e-5 38.69 1l.4le-4
Table 6
Comparison on synthetic three-way tensors; bold values are large error or slow time.
| Problem setting || APG-TF (prop’d) | AS-TF | Blockpivot-TF |
N1 No N3 q relerr Time relerr Time relerr Time

80 8 80 10 || 8.76e-005  0.44 7.89e-005 0.86 8.62e-005 0.82
80 8 80 20 | 9.47e-005 1.26 1.97e-004 1.45 | 1.77e-004 121
80 8 80 30 || 9.65e-005 2.83 | 2.05e-004 2.13 | 2.07e-004 1.95
50 50 500 10 || 9.15e-005 1.27 1.07e-004 1.91 9.54e-005 1.87
50 50 500 20 | 9.44e-005 3.42 1.86e-004  3.17 | 1.77e-004  3.47
50 50 500 30 || 9.74e-005  7.11 | 1.89e-004 5.04 | 1.88e-004 4.54

r =40 in (3.8) and choose sample ratio SR £ % from {0.20,0.30,0.40}, where the samples
in Q are chosen at random. The parameter §,, for APG-MC is set to 1, and all the parameters
for ADM-MC are set to their default values. To make the comparison consistent, we let both
of the algorithms run to a maximum time (sec) 7" = 50,100, and we employ peak signal-to-
noise ratio (PSNR) and mean squared error (MSE) to measure the performance of the two
algorithms. Table 5 lists the average results of 10 independent trials. From the table, we can
see that APG-MC is significantly better than ADM-MC in all cases.

4.2. Nonnegative three-way tensor factorization. To the best of our knowledge, all the
existing algorithms for NTFs are extensions of those for NMF, including the multiplicative
updating method [71], hierarchical ALS algorithm [19], alternating Poisson regression algo-
rithm [17], and ANLS methods [31, 33]. We compare APG-TF with two ANLS methods,
AS-TF [31] and Blockpivot-TF [33], which are also proposed based on the CP decomposition
and are superior to many other algorithms. We set tol = 10~* and maxit = 2000 for all the
compared algorithms. All the other parameters for Blockpivot-TF and AS-TF are set to their
default values.

4.2.1. Synthetic data. We compare APG-TF, Blockpivot-TF, and AS-TF on randomly
generated three-way tensors. Each tensor is M = L o C o R, where L, C are generated by
MATLAB commands max(0,randn(N1,q)) and max(0,randn(N2,q)), respectively, and R
by rand(N3,q). The algorithms are compared with two sets of (N1, N2, N3) and r = ¢ =
10,20,30. The relative error relerr = ||[M — Ay o Ay o As||p/||[M]||r and CPU time (sec)
measure the performance of the algorithms. The average results of 10 independent runs are
shown in Table 6, from which we can see that all the algorithms give similar results.

4.2.2. Image test. NMF does not utilize the spatial redundancy, and the matrix decom-
position is not unique. Also, NMF factors tend to form the invariant parts of all images
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Table 7
Comparison results on CBCL database; bold values are slow time.
| | APG-TF (proposed) | AS-TF | Blockpivot-TF |
T relerr Time relerr Time relerr Time
40 | 1.85e-001  9.95e+000 | 1.86e-001 2.99e-+001 | 1.85e-001 2.04e-+001
50 | 1.68e-001  1.65e+001 | 1.68e-001 4.55e+4001 | 1.69e-001 2.47e+001
60 | 1.53e-001  2.13e+001 | 1.56e-001 4.16e+001 | 1.56e-001 2.85e+001
Table 8
Comparison results on Swimmer database; bold values are large error or slow time.
| | APG-TF (proposed) | AS-TF | Blockpivot-TF |
r relerr Time relerr Time relerr Time
40 | 2.43e-001  2.01e4+000 | 2.71e-001 2.09e+001 | 2.53e-001 2.50e+001
50 | 1.45e-001 3.21e4+000 | 2.00e-001 5.54e+001 | 1.87e-001 3.23e+001
60 | 3.16e-002 6.91e4+000 | 1.10e-001 3.55e+001 | 7.63e-002 3.74e+001
Table 9
Relative errors on hyperspectral data.
| | APG-TF (proposed) | AS-TF | Blockpivot-TF
r\T 10 25 50 100 10 25 50 100 10 25 50 100
30 2.56e-1 2.53e-1 2.53e-1 2.53e-1 | 2.60e-1 2.56e-1 2.54e-1 2.53e-1 | 2.60e-1 2.56e-1 2.54e-1 2.53e-1
40 2.32e-1 2.27e-1 2.26e-1 2.26e-1 | 2.37e-1 2.30e-1 2.28e-1 2.26e-1 | 2.36e-1 2.29e-1 2.28e-1 2.27e-1
50 2.14e-1 2.07e-1 2.04e-1 2.04e-1 | 2.20e-1 2.11e-1 2.07e-1 2.06e-1 | 2.17e-1 2.10e-1 2.07e-1 2.05e-1
60 2.00e-1 1.91e-1 1.87e-1 1.86e-1 | 2.04e-1 1.95e-1 1.91e-1 1.88e-1 | 2.0le-1 1.94e-1 1.90e-1 1.88e-1

as ghosts, while NTF factors can correctly resolve all the parts [63]. We compare APG-
TF, Blockpivot-TF, and AS-TF on two nonnegative three-way tensors in [63]. Each slice of
the tensors corresponds to an image. The first tensor is 19 x 19 x 2000 and is formed from
2000 images in the CBCL database used in section 4.1.2. The average performances of 10 in-
dependent runs with r = 40,50,60 are shown in Table 7. Another tensor has the size of
32 x 32 x 256 and is formed with the 256 images in the Swimmer dataset [20]. The results of
10 independent runs with » = 40, 50, 60 are listed in Table 8. Both tests show that APG-TF
is consistently faster than Blockpivot-TF and AS-TF. In particular, APG-TF is much faster
than Blockpivot-TF and AS-TF with better solution quality in the second test.

4.2.3. Hyperspectral data. NTF is employed in [77] for hyperspectral unmixing. It is
demonstrated that the cubic data can be highly compressed, and NTF is efficient in identifying
the material signatures. We compare APG-TF with Blockpivot-TF and AS-TF on the 150 x
150 x 163 hyperspectral cube, which is used in section 4.1.3. For consistency, we let them
run to a maximum time 7" and compare the relative errors. The parameter r is chosen from
{30, 40,50,60}. The relative errors corresponding to 7' = 10, 25,50, 100 are shown in Table 9,
as the average of 10 independent trials. We can see from the table that APG-TF achieves the
same accuracy much earlier than Blockpivot-TF and AS-TF.

4.2.4. Nonnegative tensor completion. Recently, Liu et al. [45] proposed tensor comple-
tion based on minimizing tensor n-rank, the matrix rank of mode-n matricization of a tensor.
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Table 10
Comparison results on synthetic NTC; bold values are bad or slow.

APG-TC (prop’d) | APG-TC (prop’d)
r=gq r = |1.25¢|
N1  No N3 q SR relerr Time relerr Time relerr Time
80 80 80 10 0.10 || 2.02e-4 4.09 6.08e-4 6.88 4.61le-1 31.7
80 80 80 10 0.30 || 1.18e-4 2.52 3.29e-4 5.85 1.96e-2 19.6
80 80 80 10 0.50 || 9.54e-5 2.22 2.45e-4 5.28 1.13e-2 15.2
80 80 80 20 0.10 || 1.50e-4 9.55 4.84e-4 16.0 4.41e-1 24.7
80 80 80 20 0.30 || 1.15e-4 6.08 2.64e-4 12.3 1.43e-1 11.7
80 80 80 20 0.50 || 9.65e-5 5.01 1.72e-4 12.7 1.46e-2 19.5
80 80 80 30 0.10 || 3.14e-3 16.4 4.23e-4 26.6 4.00e-1  20.8
80 80 80 30 0.30 || 1.04e-4 11.2 1.94e-4 21.1 2.22e-1  8.12
80 80 80 30 0.50 || 1.14e-4 9.91 1.47e-4 20.0 5.60e-2 12.8

50 50 500 10 0.10 || 2.76e-4 11.6 4.69e-4 20.3 5.52e-1 183
50 50 500 10 0.30 || 9.81e-5 6.24 2.12e-4 16.2 8.58e-2 96.9
50 50 500 10 0.50 || 9.51e-5 5.34 1.74e-4 16.3 1.25e-2  96.3
50 50 500 20 0.10 || 1.80e-4 24.5 3.50e-4 43.7 4.82e-1 132
50 50 500 20 0.30 || 3.95e-3 13.4 1.59e-4 39.1 2.76e-1  58.2
50 50 500 20 0.50 | 5.32e-3 11.8 1.15e-4 35.3 9.44e-2 55.9
50 50 500 30 0.10 || 7.09e-3 39.0 5.08e-4 67.6 4.32e-1 118
50 50 500 30 0.30 || 1.03e-4 25.4 1.26e-4 63.2 2.76e-1 50.4
50 50 500 30 0.50 || 3.28e-3 23.0 1.03e-4 55.6 1.62e-1  43.0

Problem setting FaLRTC

Using the matrix nuclear norm instead of matrix rank, they solve the convex program
N
(4.1) m‘%nz:lanHX(n)H* subject to Po(X) = Po(M),
—

where o, are prespecified weights satisfying > «a, = 1 and ||A||, is the nuclear norm of A
defined as the sum of singular values of A. Meanwhile, they proposed some algorithms to solve
(4.1) or its relaxed versions, including simple low-rank tensor completion (SiLRTC), fast low-
rank tensor completion (FaLRTC), and high accuracy low-rank tensor completion (HaLRTC).
We compare APG-TC with FaLRTC on synthetic three-way tensors since FAaLRTC is more
efficient and stable than SILRTC and HaLRTC. Each tensor is generated similarly as in
section 4.2.1. Rank ¢ is chosen from {10, 20, 30}, and sampling ratio SR = |2| /(N1 N2 N3) from
{0.10,0.30,0.50}. For APG-TC, we use r = ¢q and r = |1.25¢] in (3.8). We set tol = 107*
and mazit = 2000 for both algorithms. The weights «,, in (4.1) are set to a;,, = %, n=1,2,3,
and the smoothing parameters for FaLRTC are set to p, = 51(,”—:, n = 1,2,3. Other parameters
of FaLRTC are set to their default values. The average results of 10 independent trials are
shown in Table 10. We can see that APG-TC produces much more accurate solutions within
less time.

4.3. Summary. Although our test results are obtained with a given set of parameters, it
is clear from the results that, compared to the existing algorithms, the proposed algorithms
can return solutions of similar or better quality in less time. Tuning the parameters of the
compared algorithms can hardly obtain much improvement in both solution quality and time.
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We believe that the superior performance of the proposed algorithms is due to the use of
prox-linear steps, which are not only easy to compute but also, as a local approximate, help
avoid the small regions around certain local minima.

5. Conclusions. We have proposed a block coordinate descent method with three choices
of update schemes for multiconvex optimization. The diverse update schemes fit different ap-
plications. We established subsequence and global convergence guarantees, as well as asymp-
totic rate of convergence, under certain assumptions. Numerical results on both synthetic and
real image data illustrate the high efficiency of the proposed algorithms.

Appendix A. Proofs of Lemma 2.6 and Theorem 2.9.

A.1. Proof of Lemma 2.6. Without loss of generality, we assume F = 0. Otherwise,
we can consider F' — F. Let B(X,p) 2 {x : |x — x|| < p} C U for some p > 0, where U is
the neighborhood of % in (2.14) with ¢ = F', and let Lg be the global Lipschitz constant for
Vi f(x),i=1,...,s, within B(X,+/11p), namely,

”vxlf(x)_vxlf(y)” SLGHX_Y”7 i=1,...,s,
for any x,y € B(x,v/11p).

The proof will follow two steps. The first step will show the following claim.
Claim A.1. Let £ = min; ¢;, L = max; L;, and

_ 9(L+ sLg) B ¢§ 36, [L 2 2L32
“=ginoay Wit Vet Vit e

where €;, L; are the constants in Assumption 2. If F}, > F and

(Al) Clgb(Fo _F)+CQ V Fo—F—I- ||X0 —)2” < p,
then
(A.2) x" € B(x,p) Vk.

Note that (A.1) quantifies how close to x the initial point x° is required to be. The second
step will establish the next claim.
Claim A.2.

[e.e]
Z ka—i—l _ ch”

(A.3) k=N
<Cro(Fy — F) + e =N 2 )  ( F ) I )

where C is specified in Claim A.1.
Note (A.3) implies that {x*} is a Cauchy sequence, and thus x* converges. Hence, if (A.2)
and (A.3) both hold, then letting B = B(X, p) will prove the results of Lemma 2.6.
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Proof of Claim A.1. We will prove x* € B(x, p) by induction on k.
Obviously, x* € B(x, p) from (A.1). Hence, (A.2) holds for k = 0.
For k = 1, we have from (2.8) that

14
F0>F0—F1>Z Z”X —X1”2Z§H X1H2.
1=1

Hence, [|x° — x!|| < VZF}, and

_ _ 2 _
et — x| < [l = x| + %" — %] <y foT 1% — x[I,

which indicates x! € B(x, p).
For k = 2, we have from (2.8) that

s

~L{ 1 2 LY o 2
FOZFl_F2ZZ?Z”Xi_xi” —27’5 % — 7 1%

i=1 i=1

Note that LY < L and L} > ¢ fori = 1,...,s. Thus, it follows from the above inequality that

o2 =Ll o Lovo 12 L,
x| SZ;?HXi—Xi” §F0+§5w”X —x[|° < 1+Z5w Fo,

which implies ||x! —x?|| < V2 + 2%3’ V' Fy. Therefore,

2 2 2L62
(A4) ux2—>-<usuxl—x2u+ux1—>—<us( AR EQ“>¢F0+HXO—>-<H,

and thus x? € B(%, p).
Suppose xF € B(x,p) for 0 < k < K. We proceed to show that x¥*! € B(x,p). For
k < K, note that

OF(x") = {Orl(x’f) n Vxlf(xk)} X e {ars(x’;) n szf(xk)}

and
—VIFE) + Vi, F(xF) € 0ri(xF) + Vi, f(xF), i e,
—LENxE — x) — V) + Vi f(xF) € 0ri(xF) + Vi, f(xF), i€ T,
—LFUxE - B VR 4 Vi F(R) € O (xF) + Vi, f(XY), i e T,
so (for i € Ty UT, regard %71 = x¥ 1 in xF — %L and 27! = xF in VFEIT) -V, F(xF),

respectively)

dist (0, 0F (x¥))
(A5)  _ H (L’f—l(x’f C g (xck — &5—1)) H + i vaik(gf—l) _ VXif(xk)H .
1
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For the first term on the right-hand side of (A.5), plugging in fcf‘l and recalling Lf_l <L
fori=1,...,s, we can easily get

(A6) [|(EE ek = =E ), L = &) < (k- X))
For the second term on the right-hand side of (A.5), it is not difficult to verify

<x’f, . ,xf_l,fcf_l, . ,x§_1> € B(x,V/11p).
In addition, note that

kiok—1 k k sk—1 k—1
Vfl (X’L ):Vxlf<xl,,xz_1,x "'7XS )

Hence,

3 [T ) = Vi )| < 30 (b b )
i=1 =1
(A7) < sLa (JIx" = x5+ - xE2)).
Combining (A.5), (A.6), and (A.7) gives
dist(0, 0 (x")) < (L + sLg) ([l — x| + b1 =2 )
which together with the KL inequality (2.14) implies
(A38) #(F) 2 (L -+ sLa)™ (I — x4 ot = b =2)
Note that ¢ is concave and ¢'(Fy) > 0. Thus it follows from (2.8) and (A.8) that
¢(Fi) = ¢(Fir1) = ¢ (Fi)(Fi — Fi1)

Soia (LIl —xfHH” — LE a3 =~ — xF)1%)
2(L + sLa) (%" = k71 4 b=t —xP=2)])

v

or, equivalently,
k k41 k k+1
H< Lllc(xl _X1+ )"--’ Llsg(xs _Xs+ )>

<\/L’f‘1(x’f‘1 )T —xf:>)

2L+ L) ([ = x5 4 [ =2 ) (@) = @(Fhr).

(A.9) <62
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Using inequalities a? + b? < (a + b)? and ab < ta® + & b for t > 0, we get from (A.9) that
(Ve ==t ik =t )|

(VT =2

1

+ (ka — xFL xR - Xk_2H>§ (2(L + sLa)(¢(Fr) — ¢(Fk+1)))%

< du

(010 <, |(VEE G = x|
$ O 0VE e oy et b2y 4 AEELA) )

3

Summing up (A.10) over k from 2 to K and doing some eliminations gives

(Vo ol =l Vet it )|

<\/L7’f(x’f — foH), o \/ﬂ(xk — xk“)) H
< & \\(\/7 xi —x1),...,VIl(xs = x2))||

K
1—6w _ _ _
+ E3 T (IxF = %P bt = xk2))
k_

+ %W(Fﬁ — ¢(Fi+1))-

Note that £ < Lf < L for all 7, k. We have from the above inequality that

K
D (1= ) VExE — x5

k=2

K
—dw )V — _ _
< 5w\/f||xl — x|+ ¢! 3)\/_2 (ka _xk L+ ka 1 4k 2”)
L+sL B
+ 73\(@5_53 (0(F2) — d(Fi+1)),
which indicates that
Z [ 41|

<35w JE +2> o — 32 4+ %0 — x| + QL) (4(Fy) — (Fici1))-

(A.11)

Recalling that ||x°—x!|| < VZF, ||x! —x?| < V2 + 2@33’ V' Fp and using (A.4), we have from
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(A.11) that

" = x|

K
< DIt =X  x — x]

36, L 1 9 0 1 9(L + sLq) 2 _
< — — — - - F —
< \/ 7 —1—2) Ix* —x*|| +||x° —x"|| + 201 —0.)° o(Fo) + [|x" — x|

9L+ sLq) 2 36, |L 2 2L52 0 -
< DT 7T - - - N/ _
_26(1—5w)2¢(F0)+<2 €+<1—5w\/£+3 A Fo+ [ =]

where we have used ¢(Fy) > ¢(F;) > 0 in the second inequality. Hence, xX+! € B(%, p), and
this completes the proof of Claim A.1. |

Proof of Claim A.2. Note that (A.10) holds for all ¥ > 0. Summing it over k from N to
T and in the same way that we derive (A.11), we have

T
Z ka _ Xk—i—l”
k=N
_ _ ” _ 9(L+sL
< N2 - XN 4 (&\/%Jrz) [xN-1 — xN|| + ﬁ(é(ﬂv) — ¢(FT+1)).

Letting T' — oo completes the proof of Claim A.2. |

A.2. Proof of Theorem 2.9. If § = 0, we must have F(x*0) = F(X) for some ky. Other-
wise, F(x*) > F(x) for all sufficiently large k. The KL inequality gives c-dist(0, 0F(x")) > 1
for all k > 0, which is impossible since x* — % and 0 € 9F(x). The finite convergence now
follows from the fact that F'(x*0) = F(x) implies x* = x*0 = x for all k > k.

For 6§ € (0,1), we assume F(x*) > F(X) = 0 and use the same notation as in the proof of
Lemma 2.6. Define Sy = 20, ||x* — x*T!||. Then (A.3) can be written as

13_50;5 % + 2) (Sk—1 — Sk) + Sk—2 — Sk—1 for k > 2,

Sk < Cio(Fy) + (

which implies that

3 [L 2) (Sk_o — Sg) for k > 2,

(A.12) Sk < C19(Fy) + (1 V7

since Sy_s — Sk_1 > 0. Using ¢(s) = cs'7?, we have from (A.8) for sufficiently large k that
(1~ 0)(F) > (Lt sLa) ™ (I — x4 - xE2))

or, equivalently, (F}.)? < ¢(1 — 0)(L + sLg)(Sk—2 — Si). Then,

(A.13) $(F) = c(Fi) ™0 < el — B)(L + sLa)(Sp_z — ) 7 -
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Letting C5 = Cie(e(1 — 0)(L + ng))l%e and Cy = %\/% + 2, we have from (A.12) and
(A.13) that

—9
(A.14) Sk < O3 (Sk_z — Sp) 7 + C4 (Si_a — Si).

When 6 € (0, 3], ie., 1;#9 > 1, (A.14) implies that Sy < (C3+C4)(Sk—2—Sk) for sufficiently

large k since Si_o— S — 0, and thus S;, < %S}C_g. Note that ||x* —%|| < Sj. Therefore,

item 2 holds with 7 = v/ % < 1 and sufficiently large C'.
When 0 € (%, 1), ie., 10%9 < 1, we get

(A.15) SK + 8%y — Skry — Sk > (N — K)

for v = % < 0, some constant p > 0, and any N > K with sufficiently large K by the
same argument as in the proof of Theorem 2 of [3]. Note that Sy < Sy_; and v < 0. Hence,
(A.15) implies that

=

Sy < (% (S% 1+ S% + p(N — K))> " <OoNTEIET

for sufficiently large C' and N. This completes the proof. |
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