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1917: Willem de Sitter used general relativity to describe an 
expanding universe. Einstein favored a static model which 
neither expanded nor contracted, by inserting an ad-hoc 
term he called the cosmological constant.  

1929: Hubble measures the expansion of the Universe  

We can rewrite this relationship as v=H0d, where H0 is the 
Hubble constant. Hubble's original derivation gave H0 ~ 200 
km/s/Mpc, but this is wrong because Hubble had the 
distances to the galaxies wrong. Modern measurements 
give a value more like H0 = 72 km/s/Mpc (+/- a handful) 
(Because of historic uncertainty in the Hubble constant, in 
the past, astronomers often defined a parameter h=H0/100, 
and write distance dependant results as (for example), 
d=200h-1 Mpc.)



The Cosmological Redshift 
Remember the redshift:  

 

Using normal Doppler equation (v<<c), v=cz, and d=cz/H0.  

But it is important to realize here that the cosmological redshift is 
not really due to galaxies moving through space at high velocities. 
Galaxies are actually "embedded" in space and space itself is 
expanding. The light emitted from the galaxies is "stretched" as it 
makes its way towards us, and we see it shifted to longer 
wavelengths.  
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Measuring distances in an expanding universe: 

The distance between two objects can be defined as  
• d = proper distance

• R = dimensionless scale factor

• r = comoving coordinate 

For two galaxies r only changes due to peculiar motion of the galaxies (ie due to gravity in a 
cluster, etc). The change in proper distance due to the expansion of space is entirely contained in 
R(t). We define R(now) = 1. 

Note that on cosmological scales, this makes the distance between two objects an ambiguous 
concept. There are different ways of defining distances, which give different answers. 

Go back to the redshift. What does that tell us about the expansion? 

 

So if we observe a quasar at a redshift of z=3, at the time the light left the quasar, the universe 
was 1/4 its current size.

d = R(t) × r

1 + z = λobs
λem
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As z gets large, R gets small. At some point, R=0! When did that happen?  

Let's see. Space is expanding in such a way that d=v/H0, then to get to a distance d moving at velocity v 
would take time t0=d/v=1/H0. So the inverse of the Hubble constant is a (rough) measure of the age. This is 
called the Hubble time. 

If H0 = 72 (km/s)/Mpc, this is ~ 72 (pc/Myr)/Mpc, which is 72x10-6 Mpc/Myr/Mpc = 7.2x10-5 Myr-1. 
Then t0 = 1/H0 = 1.39x104 Myr = 13.9 billion years.  

There's a pretty big assumption built into this -- what is it? 



We'll illustrate expansion dynamics using Newtonian dynamics. Happily, we will derive the 
same dynamical equations that come out of general relativity for a relativistic cosmology, with 
a few terms redefined. 

Start with a test particle on the surface of an expanding sphere of radius R. Its equation of 
motion starts with F=ma and works out to be: 

 

Since density is proportional to R-3, and we define "now" with a 0 subscript, and R0=1, we have 

 

Which we can insert into the equation of motion to get 

 

Note that if ρ0 is nonzero, the Universe must be expanding or contracting. It cannot be static.

··R = − 4π
3 GρR

ρ = ρ0R−3

··R = − 4π
3

Gρ0
R2
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Equation of motion:  


Multiply both side by Ṙ to get  


And remember that  


 


Now, another remembrance: 





 where -k is a constant of integration. 


Replacing ρ0 with ρ*R3, and  then dividing by R2, we finally get 
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What does this mean? 


If k=0, then Ṙ is always positive, and the expansion continues at an ever 
slowing pace (since rho is dropping). This is called a critical or flat 
universe.


If k>0, Ṙ is initially positive, but will reach a point where it goes to zero. 
Expansion stops, gravity wins, and the universe then starts to collapse. 
This is a closed universe.


If k<0, Ṙ is always positive, and never goes to zero -- expansion always 
continues. This is an open universe.
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