Exceptional service in the national interest

"Nuclear Data Needs for Understanding Material Damage"

Presented at: Nuclear Data Needs and Capabilities for Applications (NDNCA) Workshop sponsored by US Nuclear Data Program (USNDP)

Patrick J. Griffin Senior Scientist Org. 1300, Radiation and Electrical Sciences

NNS

FNFRG

Date: May 27 – May 29, 2015 SAND2015-3772 PE

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

AGENDA:

- a) Dosimetry cross sections
- b) Validation data in benchmark neutron fields
- c) Gamma emission probabilities
- d) Uncertainty in cross section
- e) Fission product yields
- f) Other considerations

Dosimetry Cross Sections

- ¹¹⁷Sn(n,n')
 - Cover energy response 0.3 3.0 MeV
- Data to support new evaluations
 - ²³Na(n,γ)
 - Discrepant in fast neutron region, > 100 keV
 - ²³Na(n,2n)
 - ²⁷Al(n,2n)

Address discrepancies:

- ⁵⁵Mn(n,γ) cross section from 10 keV to 1 MeV
- ⁵⁸Fe(n,γ) reaction in the 10 keV to 1 MeV energy region for fast reactor
- ²³⁷Np(n,fission) and ²⁴¹Am(n,fission) measurements between LANL and n-TOF (CERN) on the plateau [
- Some 14-MeV dosimetry reactions

²³⁷Np(n,f): Energies 1 – 100 keV

Incident neutron data / / Np237 / MT=18 : (z,fission) /

Plot from Dextouches, CEA

Unclassified Unlimited Release

Dosimetry data Near 14-MeV where discrepancies are seen (1/2)

Dosimetry data Near 14-MeV where discrepancies are seen (2/2)

Thermal capture for ${}^{93}Nb(n,\gamma)$; ${}^{115}In(n,\gamma)$; K_o conflict with Mughabghab

		Mughabghab [1]			Kayzero/Nudat [2]		IRDFF		IRDF-2002		IRDF-90/V2	
Target	Product	σ_0	$\Delta \sigma_0$	Diff	σ_0	$\Delta \sigma_0$	σ_0	Diff	σ_0	Diff	σ_0	Diff
12		[b]	[%]	[%]	[b]	[%]	[barns]	[%]	[barns]	[%]	[barn]	[%]
Na-23	Na-24	0.53	0.9	3.3	0.513	0.57	0.528	2.9	0.528	2.9	0.528	2.9
Sc-45	Sc-46	27.2	0.7	3.6	26.26	0.40	27.208	3.6	27.21	3.6	27.22	3.7
Mn-55	Mn-56	13.36	0.4	1.3	13.18	0.92	13.278	0.7	13.42	1.8	13.42	1.8
Fe-58	Fe-59	1.316	1.9	1.0	1.30	2.66	1.315	1.2	1.301	-0.1	1.15	-12
Co-59	Co-60	37.18	0.2				37.18		37.18		37.24	
Cu-63	Cu-64	4.52	0.4	-2.4	4.63	0.90	4.471	-3.4	4.471	-3.4	4.473	-3.4
Nb-93	Nb-94m	1.15	4.3		0.86		1.156	34	1.156	34	1.156	34
Ag-109	Ag-110m	3.91	1.1		3.94	2.88	4.214	7.0	4.214	7.0	4.689	19.0
In-115	In-116m	202	1.0		160.24	6.23	159.8	-0.3	166.5	3.9	166.5	3.9
La-139	La-140	9.04	0.4	-4.1	9.42	1.78	9.042	-4.0	9.042	-4.0		
Ta-181	Ta-182	20.5	2.4	-0.4	20.59	7.59	20.68	0.4	20.68	0.5		
W-186	W-187	38.5	1.3	-8.2	41.92	2.67	38.095	-9.1	38.49	-8.2		
Au-197	Au-198	98.65	0.1	0.0	98.65	0.09	98.70	0.1	98.77	0.1	98.79	0.1
Th-232	Th-233	7.35	0.4	-0.3	7.37	0.34	7.338	-0.4	7.405	0.4	7.401	0.4
U-238	U-239	2.68	0.7	-0.1	2.68	0.43	2.686	0.2	2.718	1.3	2.710	1.0

Table from Kodeli, JozefStefan Institute, Slovenia

High Threshold Reactions, e.g. ²⁰⁹Bi(n,4n)

²⁰⁹Bi(n,xn) discrepancy increases with "x"

Existing experimental data for ²⁰⁹Bi(n,xn)

Plot from Pronyaev

How this variation affects data evaluations?

The experimental data also affects the covariance data. Dosimetry reactions require small uncertainty.

High threshold reactions in ²³⁵U(th) reference neutron benchmark field

Plot from Mannhart

High threshold reactions in ²³⁵U(th) reference neutron benchmark field

Validation data in ²⁵²Cf spontaneous fission standard benchmark neutron field

Data lacking

- ²³⁸U(n,γ)
 ³¹P(n,p)
 ¹⁸⁶W(n,γ)
 ⁵⁸Fe(n,γ)
 ¹⁰B(n,X)α
 ¹¹⁵In(n,n')
- ⁴⁵Sc(n,γ)
 ⁵⁴Fe(n,α)
 ⁵⁴Fe(n,2n)
- ⁶⁴Zn(n,p) ²³Na(n,2n)
- 14 other reactions from IRDFF library
- Data with large discrepancy
 - ²³²Th(n,f)
 - ²³⁸U(n,2n)
- Data with outliers (4 reactions)

⁷⁵As(n,2n)

IRMM Exploratory Study of Validation Data in ²⁵²Cf Standard Neutron Benchmark Field

- Issues with existing ¹⁹⁷Au(n,γ) due to room return
- Issues with existing ⁹⁰Zr(n,2n) due to Th contamination
- Issue with existing ⁹⁶Zr(n,2n) due to ⁹⁴Zr(n,γ) contribution

Validation data in ²³⁵U thermal fission reference benchmark neutron field

Data lacking

- ⁴⁵Sc(n,γ)
 ¹¹⁵In(n,2n)
 ⁴⁶Ti(n,2n)
 ⁹³Nb(n,γ)
 ⁶⁵Cu(n,2n)
 ⁵⁴Fe(n,2n)
- ⁵⁸Fe(n,γ)
 ⁵²Cr(n,2n)
 ⁵⁹Co(n,3n)
 ⁵⁹Co(n,3n)
- ¹⁰⁹Ag(n,g) ²³Na(n,2n) ¹⁸⁶W(n,γ)

6 other reactions from IRDFF library

- Data with large discrepancy
 - ¹⁰³Rh(n,n') ⁶³Cu(n,γ) ⁵⁸Ni(n,2n)
 - ²³⁸U(n,γ)
 ¹⁶⁹Tm(n,2n)
 ⁵⁵Mn(n,2n)
- Data with outliers (5 reactions)

Validation data in 30 keV MACS neutron field in Sandia Sandia

- Data lacking
 - ¹⁰⁹Ag(n,γ)
 - ²³²Th(n,γ)
 - ²³⁵U(n,γ)
 - ²³⁸U(n,γ)

Require consistency between nuclear data used in cross section evaluation and for decay data

- Test and improve decay characteristics for radionuclides in new IRDFF reactions:
 - ⁵⁵Co
 - ⁵⁶Co
 - 94Nb
 - ^{114m}In
 - 117mSn
 - ¹⁹⁵Au
- V. Chechev, Khlopin Radium Institute, has been tasked by IARA CRP to do this review

Gamma Emission Probabilities

- Rh-103m
 - x-ray emission probability around 20 keV
- La-140
 - gamma intensities for lines below 1596 keV
- W-187
 - gamma intensities of 2 lines (473.53 keV and 685.81 keV)
- Cu-64
 - 511 keV annihilation gamma line intensity

Uncertainty in cross sections

- Scope:
 - Need is for data-based nuclear data evaluation to complement/validate computational covariance data found in TALYS.
 - Focus on experimental data targeted to support evaluation needs.
- Important Isotopes
 - ⁶⁹Ga, ⁷¹Ga, ⁷⁵As
 - **ASTM E722**
 - ⁵⁶Fe, ⁵⁴Fe
 - ASTM E693

Uncertainty in recoil spectrum

- Recoil spectrum characterization in cross sections (MF=6)
 - ⁶⁹Ga, ⁷¹Ga, ⁷⁵As
 - Fe isotopes
- Validate/test use of calculated cross section libraries, e.g. TENDL, to characterize this uncertainty component
 - Scope "model defect"

Material Primary Damage/Displacement

- Arc-dpa
 - Ion mixing experiments for high recoil energy ions
- Damage correlation
 - Isotopes: Si, Ge, Fe, III-V semiconductors (GaAs, GaN, etc.)
 - Neutron energies:
 - Thermal neutron equivalence
 - 14-MeV damage equivalence
 - Damage metrics:
 - Defect-type sensitive damage modes

Fission product yield needs

- Community consensus
- Updated uncertainties
- Energy-dependence
- Photo-induced fission yields

Some aspects of material damage do not fall within the nuclear data realm

- Correlation of effects with metric
 - Semiconductor gain degradation
- Chemistry of impurities (Ni, Cu) in iron material embrittlement
 - Radiation-induced temperature transition shift, ASTM E900, NRC Reg. Guide 1.99
 - Stable matrix damage (SMD)
 - Copper-rich precipitation (CRP)

Defect efficiency as a function of recoil energy

Example for Cu From OECD "Primary Damage in Materials"

Questions

Annular Core Research Reactor (ACRR) Spectrum

Radiation Transport Model

- Calculate a priori values
 - <1% statistical unc.

Cover and Self-shielding Corrections

- 640-group adjoint response functions generated using dosimetry response function and fielded configuration.
 - Foil self-shielding corrections implicit
- Covers are used on many foils
 - Cd, nominal, thick
 - B₄C
- See:
 - Griffin, "A rigorous treatment of self-shielding and covers in neutron spectra determinations", IEEE TNS, pp. 1878-1885, Vol. 42, 1995

SPR-III Fast Burst Reactor

TWODANT SPR-III Central Cavity

- Max. pulse-width, 76 μs
- Flux 8x10¹⁸ n/cm²-s
- 1-MeV(Si) Fluence, 5.4x10¹⁴ n/cm²

SNLRML Dosimetry

Partition: Robinson vs Akkerman Eqn. for Si

- Robinson fit for Si in Si
 - $g(\varepsilon) = 0.227073\varepsilon + 0.40244\varepsilon^{3/4} + 3.4008\varepsilon^{1/6}$
- Akkerman fit (2006)
 - $g(\varepsilon) = 0.74422\varepsilon + 2.6812\varepsilon^{3/4} + 0.90565\varepsilon^{1/6}$

Akkerman vs. Robinson vs. SRIM for Ne/O/C ions in Si

