LABORATORY
MANUAL
FOR
MATHEMATICS
PRACTICALS
(WITH FOSS
TOOLS)
For 3rd Semester
B. Sc. (CBCS)

1 Lagrange's theorem

binary operation:Let A be a non-empty set. Then a binary operation * on A is a function $*: A \times A \longrightarrow A$ defined by *(a,b) = a * b.

In other words * is binary operation on a set A if $a * b \in A, \forall a, b \in A$. In this case we say that A is closed under * or closure property holds in A w.r.t *. Binary operations are, usually, denoted by $+,-,*,\div$ etc.

Group: A non-empty set G with a binary operation *, denoted by (G, *), is said to be a group if the following properties (or axioms) are satisfied.

- 1. Closure property: $a * b \in G$ for any $a, b \in G$.
- 2. Associate property: (a * b) * c = a * (b * c) for any $a, b, c \in G$.
- Existence of identity element: There exists e in G such that a * e = e * a = a for all a ∈ G.
- 4. Existence of inverse element: For any a in G there exists a^{-1} in G such that $a*a^{-1}=a^{-1}*a=e$.

Further the group (G, *) is called abelian (or commutative) group if along with above properties a * b = b * a, $\forall a, b \in G$, also holds. A group (G, *) is simply denoted by G.

Lagrange's theorem: If G is any finite group and H is any subgroup of G, then O(H) divides O(G).

Maxima program to verify Lagrange's theorem for the group G = {1,-1, i,-i} and its subset H = {1,-1}

```
G: set(1,-1,%i,-%i);
H: set(1,-1);

HXH: cartesian_product(H,H);

HHinv: makeset(a*b^-1,[a,b],HXH);

if HHinv = H then disp("H is a subgroup of G")

else disp("H is NOT a subgroup of G") $

n: length(G);

m: length(HHinv);

if mod(n,m) = 0 then disp("Lagranges theorem is satisfied")

else disp("Lagranges theorem is NOT satisfied")$

OUTPUT
```

```
{-1,1,-%i,%i}
{-1,1}
{[-1,-1],[-1,1],[1,-1],[1,1]}
{-1,1}
"H is a subgroup of G"
4
```

Exercise

Verify Lagranges theorem for the following

- (i) Let $G = \{1, -1, i, -i\}$ is a group and $H = \{1, i\}$.
- (ii) Let $G = \{1, -1, i, -i\}$ is a group and $H = \{1, -i\}$.
- (iii) Let $G = \{1, -1, i, -i\}$ is a group and $H = \{-1, 1\}$.

(Note: In order to verify Lagranges theorem first we have to prove H is subgroup of G).

(The following problems to be entered in the record: Q. No. (i), (ii) and the worked problem)

Left and right coset and finding the index of a group

Definition: Let H be any subgroup of a group G and a be any element of G. Then the set,

 $Ha = \{ha : h \in H\}$ is called a right coset of H in G generated by a and the set $aH = \{ah : h \in H\}$ is called a left coset of H in G generated by a with respect to multiplicative binary operation. Similarly $H + a = \{h + a : h \in H\}$ is right coset and $a + H = \{a + h : h \in H\}$ is left coset of H with respect to additive binary operation. The cosets are also called residue classes modulo the subgroup. If e is the identity element of G, then He = H = eH. Hence H itself is a right as well as left coset. Since $ea \in Ha$, we have $a \in Ha$ and therefore $Ha \neq \phi$. Consequently no coset can be empty.

[&]quot;Lagranges theorem is satisfied"

To find the 'index' and the distinct cosets of the subgroup $H=\{0,4,8\}$ of the group ($Z_{12},+_{12}$)

```
(%i8)
       kill(all)$
        Z:set(0,1,2,3,4,5,6,7,8,9,10,11);
        n:length(Z);
        H:set(0,4,8);
        m:length(H);
        Index:n/m;
        disp ("Number of distinct cosets of H is", Index) $
        disp("Distinct cosets of H are :")$
        for i:1 thru Index do(HXi:cartesian product(H, {i}),
                          Hi:makeset (mod (i+a,n), [i,a], HXi),
                          disp(Hi))$
        {0,1,2,3,4,5,6,7,8,9,10,11}
(Z)
         12
 (n)
       {0,4,8}
 (H)
 (m)
 (Index) 4
 Number of distinct cosets of H is
 4
 Distinct cosets of H are :
 {1,5,9}
 {2,6,10}
 {3,7,11}
 {0,4,8}
```

Exercise

- 1. Find all the right cosets of the subgroup $H = \{0,3\}$ in the group $(Z_6,+_6)$.
- 2. Find all the distinct cosets of $H = \{0, 3, 6\}$ in $(Z_9, +_9)$.

(The following problems to be entered in the record: Q. No. (1.), (2.) and the worked problem)

LAB--2

Convergent, divergent and oscillatory sequences

Definitions:

- 1. A sequence $\{x_n\}$ is said to be convergent if the sequence tends to a finite quantity, say l.
- 2. A sequence $\{x_n\}$ is said to be divergent if the limit of the sequence is infinite (positive or negative).
- 3. A sequence $\{x_n\}$ is said to be oscillatory if the the sequence neither tends to a unique finite limit nor to $+\infty$ or $-\infty$.

Maxima programme to test the nature of the sequence $\{x_n\}$

Xn: 1+1/n;

lim : limit(xn,n,inf);

if abs(lim) = inf then

print("sequence is divergent")

elseif abs(lim)#inf and abs(lim) # ind then print("sequence is convergent")

else

print("sequence is oscillatory")\$

OUTPUT

$$(\$04)$$
 $\frac{1}{n}+1$ $(\$05)$ 1 sequence is convergent

(The following problems to be entered in the record: Q. No. (i), (iii), (ix), (xiii))

Discuss the convergence of the following sequences

(i)
$$\frac{(2n+3)}{(3n+4)}$$

(ii) n

(iii)
$$-n^2$$

(iv) $(-1)^n$

(v)
$$\frac{1}{n}$$

(vi)
$$1 - \frac{1}{n}$$

$$\text{(vi) } \frac{1}{n} \qquad \qquad \text{(vii) } 1 - \frac{1}{n} \qquad \qquad \text{(viii) } \left(1 + \frac{1}{n}\right)^n \qquad \qquad \text{(viii) } n^{\frac{1}{n}}$$

(viii)
$$n^{\frac{1}{n}}$$

(ix)
$$1 + (-1)^n$$

(x)
$$\frac{(-1)^{(n-1)}}{n}$$

(ix)
$$1 + (-1)^n$$
 (x) $\frac{(-1)^{(n-1)}}{n}$ (xi) $\frac{(n+1)^{(n+1)}}{n^n}$ (xii) $\frac{(n+(-1)^n)}{n}$

(xii)
$$\frac{(n+(-1)^n)}{n}$$

(xiii)
$$n[\log(n+1) - \log(n)]$$

(xiii)
$$n[\log(n+1) - \log(n)]$$
 (xiv) $\frac{\log(n+1) - \log(n)}{\sin(\frac{1}{n})}$

LAB—3

Convergent, divergent and oscillatory series

Definition: Let $\sum u_n$ be a series and $\{s_n\}$ be the corresponding "sequence of partial sums". Then

(i) the series $\sum u_n$ is convergent, if the sequence $\{s_n\}$ is convergent

$$\lim_{n\to\infty} s_n = l$$

(ii) the series $\sum u_n$ is divergent, if the sequence $\{s_n\}$ is divergent i.e.,

$$\lim_{n\to\infty} s_n = +\infty \text{ or } -\infty$$

(iii) (a) the series $\sum u_n$ is said to oscillate finitely, if the sequence $\{s_n\}$ oscillates finitely.

(iii) (b) the series ∑u_n is said to oscillate infinitely, if the sequence {s_n} oscillates infinitely.

Maxima code to test for the convergence of the series $\sum 1/n(n+1)$

kill(all)\$

un: 1/(i*(i+1))\$

u:partfrac(un,i)\$

load("simplify_sum")\$

s:sum(u, i, 1, n);

simp : simplify_sum(s);

seq : partfrac(simp,n);

sequence : limit(seq,n,inf);

if abs(sequence)=inf then

disp(" The series is divergent")

elseif abs(sequence)#inf and abs(sequence)#ind then

disp(" The series is convergent")

else

disp(" The series is oscillatory")\$

OUTPUT

$$(\$04) \sum_{i=1}^{n} \frac{1}{i} - \frac{1}{i+1}$$

$$(\$05) \frac{n}{n+1}$$

$$(\$06) 1 - \frac{1}{n+1}$$

$$(\$07) 1$$
The series is convergent

Exercise: Discuss the convergence of the following series: (i) $\sum (-1/2)^{n-1}$ (ii) $\sum (-1)^n$ (iii) $\sum n^3$ (these problems must to be entered in the record)

Tests for the convergence

D'Alembert's ratio test

Theorem: Let $\sum u_n$ be a series of positive terms, and

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = l.$$

Then if l < 1, the series $\sum u_n$ is convergent and if l > 1, the series $\sum u_n$ is divergent.

If,

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = 1,$$

then the ratio test fails.

Raabe's test

Theorem: Let $\sum u_n$ be a series of positive terms and

$$\lim_{n \to \infty} \left(\frac{u_n}{u_{n+1}} - 1 \right) n = l.$$

Then if l > 1, the series $\sum u_n$ is convergent and if l < 1, the series $\sum u_n$ is divergent.

Maxima code to test for the convergence of the series $\sum 1/n^2$

(D'Alembert's ratio and Raabe's tests)

```
kill(all)$
/*D'Alembert's ratio test*/
u(n):=1/n^2;
D:limit(u(n+1)/u(n), n,inf);
if D<1 then
disp("By D'Alembert's ratio test the series is convergent")
elseif D>1 then
disp("By D'Alembert's ratio test the series is divergent")
else
disp("D'Alembert's ratio test fails and we use
Raabe's test to verify the convergence")$

/* Raabe's test*/
if D=1 then
R:limit(n*((u(n)/u(n+1))-1),n,inf);
if R>1 then
```

disp("By Rabee's test series is convergent")
elseif R<1 then
disp("By Rabee's test series is divergent")
else
disp("Both tests fail")\$

OUTPUT

(%o2) 1

"D'Alembert's ratio test fails and we use Raabe's test to verify the convergence" (%04) 2

Exercise

Discuss the convergence of the following series

(i)
$$1 + \frac{2!}{2^2} + \frac{3!}{3^3} + \dots$$

(ii)
$$\frac{2^{(n+1)}}{3^n+1}$$

$${\rm (iii)}\ \, \frac{1^2.2^2}{1!} + \frac{2^2.3^2}{2!} + \frac{4^2.5^2}{4!} + \dots$$

(iv)
$$\frac{(n+1)!}{3^n}$$

$$(v) \frac{x^n}{n^2 + 1}$$

$$(vi)\frac{1}{5} + \frac{2!}{5^2} + \frac{3!}{5^3} + \dots$$

(vii)
$$\frac{5^n}{2^n + 5}$$

(viii)
$$1 + \frac{2p}{2!} + \frac{3p}{3!} + \frac{4p}{4!} + \dots$$

(ix)
$$\frac{2^n}{n^3}$$

$$(x) \frac{2^n \cdot n!}{n^n}$$

$$(xi)\frac{n^2}{2^n}$$

(The following problems to be entered in the record: Q. No. (iii), (vi), (x), (xi))

The sum of the series

LAB-4:

Maxima code to find sum to infinity of the series

[&]quot;By Rabee's test series is convergent"

$$\sum \frac{1^3}{1!} + \frac{2^3}{2!} + \frac{3^3}{3!} + \cdots$$

Maxima code::

kill(all)\$
load("simplify_sum")\$
u(k):=k^3/factorial(k)\$
S:sum(u(k),k,1,inf)\$
print("The given series is:",S)\$
S1:simplify_sum(S)\$
print("Sum to infinity of the series is:",S1)\$

OUTPUT

The given series is:
$$\sum_{k=1}^{\infty} \frac{k^3}{k!}$$

Sum to infinity of the series is: 5 %e

Exercise

Find sum to infinity of the following series

(i)
$$1 + \frac{2^2}{11} + \frac{3^2}{21} + \frac{4^2}{31} + \dots$$

(ii)
$$\sum_{n=1}^{n=\infty} \frac{(n+1)^3}{n!} x^n$$

(iii)
$$\frac{5}{1!} + \frac{7}{3!} + \frac{9}{5!} + \dots$$

(iv)
$$\sum_{n=1}^{n=\infty} \left(\frac{n^2 + n + 1}{n!} \right) x^n$$

(v)
$$\frac{2}{3!} + \frac{4}{5!} + \frac{6}{7!} + \dots$$

(The following problems to be entered in the record: Q. No. (i), (iii), (v) and the worked example)

Continuity of a function

Definition:

- 1. A function f(x) defined in a neighbourhood of a point 'a' and also at 'a' is said to be continuous at x = a, if $\lim_{x\to a} f(x) = f(a)$.
- 2. A function f(x) is said to be continuous at x = a, if for every $\epsilon > 0$, there exists a real number $\delta > 0$, such that,

$$|f(x) - f(a)| < \epsilon$$
, whenever $|x - a| < \delta$.

(Note : Here ϵ is very small positive number which quantifies accuracy. It can be taken as 10^{-2} , 10^{-3} etc.)

- The continuity of a function f(x) at the end points of the closed interval [a, b] is defined as
 - (i) f(x) is continuous at x = a, if $\lim_{x \to a^+} f(x) = f(a)$.
 - (ii) f(x) is continuous at x = b, if $\lim_{x \to b^-} f(x) = f(b)$.

$$f(x) = \frac{x^2 - 9}{x - 3}$$
 at $x = 3$.

1. Discuss continuity of the function:

given that f(3) = 6

kill(all)\$

a:3\$

fa: 6\$

 $f(x) := (x^2-9)/(x-3);$

LHL : limit(f(x),x,a,plus);

RHL : limit(f(x),x,a,minus);

If LHL=RHL and LHL=fa then

print("Given function is continuous at","x=",a)

else

print("One of the conditions of continuity fails

hence the given function is not continuous at","x=",a)\$

wxplot2d(f,[x,-5,5]);

OUTPUT

$$f(x) = \begin{cases} 3 - x^2 & x < -2 \\ 0 & x = -2 \\ 11 - x^2 & x > 2 \end{cases}$$

2. Discuss continuity of the function:

kill(all)\$

a:-2\$

fa:0\$

```
f(x):=3-x^2;
g(x):=11-x^2;
LHL:limit(f(x),x,a,plus);
RHL:limit(g(x),x,a,minus);
if LHL=RHL and LHL=fa then
print("Given function is continuous at","x=",a)
else
print("One of the conditions of continuity fails
hence the given function is not continuous at","x=",a)$
wxplot2d([f,g],[x,-5,5],[y,-10,10]);
```

```
(%o3) f(x):=3-x^2

(%o4) g(x):=11-x^2

(%o5) -1

(%o6) 7

One of the conditions of continuity fails hence the given function is not continuous at x=-2
```


Note that the two curves do not meet at x = -2 and hence the given function is not continuous at x = -2.

Exercise

Discuss the continuity of the following functions

(iii)
$$f(x) = \begin{cases} x^2 + 3 & x \le 1 \\ x + 1 & x > 1 \end{cases}$$
 at $x = 1$. (iv) $f(x) = \begin{cases} 3x - 2 & x < 1 \\ 4x^2 - 3x & x > 1 \end{cases}$ at $x = 1, 2, -3$.

(The following problems to be entered in the record: Q. No. (iii) and the worked problems (totally three))

LAB-6 : Differentiability of a function

Definition: Let f(x) be a function defined in a domain $D \subset R$ and $'x_0$ ' be any point in D. Then

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

if it exists, is called the derivative of f(x) at $x = x_0$. The derivative of f(x) at $x = x_0$ is denoted by $f'(x_0)$

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

if the latter limit exists.

1. Examine the differentiability at x = 1 for the function

$$f(x) = \begin{cases} x^2 - 1 & x \ge 1\\ 1 - x & x < 1 \end{cases}$$

Maxima code

kill(all)\$

x0:1\$

f1(x) := 1-x;

 $f2(x) := x^2-1;$

LHL: limit(ratsimp((f1(x)-f1(x0))/(x-x0)), x, x0, minus);

RHL: limit(ratsimp((f2(x)-f2(x0))/(x-x0)), x, x0, plus);

if LHL = RHL then

print("Given function is differentiable at", "x=", a)

else

print("Given function is not differentiable at", "x=",a)\$

OUTPUT

(%o2)
$$f1(x):=1-x$$

(%o3) $f2(x):=x^2-1$
(%o4) -1
(%o5) 2
Given function is not differentiable at x= a

Exercise

Examine the differentiability of the following functions using Maxima

(i)
$$f(x) = \begin{cases} x^2 + 3 & x \ge 1 \\ 1 - x & x < 1 \end{cases}$$
 at $x = 1$. (ii) $f(x) = \begin{cases} 6x - 9 & x > 3 \\ x^2 & x \le 3 \end{cases}$ at $x = 3$.

(iii)
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 at $x = 0$ (iv) $f(x) = \begin{cases} 1 - 2x & -1 \leq x \leq 0 \\ 1 - 3x & 0 < x \leq 1 \text{ at } x = x \leq 0 \end{cases}$ (iv) $f(x) = \begin{cases} 1 - 2x & -1 \leq x \leq 0 \\ 1 - 3x & 0 < x \leq 1 \text{ at } x = x \leq 0 \end{cases}$

(v)
$$f(x) = \begin{cases} 1+x & x < 2 \\ 0 & x \ge 2 \end{cases}$$
 at $x = 2$ (vi) $f(x) = \begin{cases} 1-a & x > a \\ a-x & x < 2 \text{ at } x = 0. \end{cases}$

(The following problems to be entered in the record : Q. No. (ii) , (v) and the worked problem (totally three)

LAB-7 Rolle's theorem

```
If f(x) is a function defined on [a,b], such that,
```

- (i) f(x) is continuous on [a, b],
- (ii) f(x) is differentiable on (a, b),
- (iii) f(a) = f(b),

then there exists at least one value of x = c, such that a < c < b, for which f'(c) = 0.

Maxima code to verify the Rolle's theorem for the function $f(x) = x^2 - 6x + 8$ in the interval [2, 4]

```
kill(all)$
a:2; b:4;

f(x):=x^2-6*x+8;

l:f(a); m:f(b);

df:diff(f(x),x)$

c:find_root(df,x,a,b);

t(x):=f(c)$ (Equation of tangent at (c,f(c)))

wxplot2d([f(x),t(x)],[x,a-1,b+1],[y,-3,3]);
```

Note: If f(x) satisfies all conditions of Rolle's theorem then the tangent at (c, f(c)) to the curve y=f(x) is parallel to the X-axis. Red line is the Tangent.

2. Verfiy Rolle's theorem for e^x in the interval $[0,\pi]$

```
kill(all)$
a:0; b:%pi;
f(x):=%e^x;
l:f(a); m:f(b);
df:diff(f(x),x);
c:find_root(df,x,a,b);
t(x):=f(c);
wxplot2d([f(x),t(x)],[x,a-1,b+1],[y,-3,3]);
```

```
(%i7)

(%o1) 0
(%o2) π
(%o3) f(x):=%e<sup>x</sup>
(%o4) 1
(%o5) %e<sup>π</sup>
(%o6) %e<sup>x</sup>

find_root: function has same sign at endpoints: f(0.0)=1.0, f(3.141592653589793)
23.14069263277926

-- an error. To debug this try: debugmode(true);
```

Since $f(0) \neq f(\pi)$, Rolle's theorem is not satisfied by e^x in $[0,\pi]$

3. Verfiy Rolle's theorem for log((x²+3)/4x) in the interval [1,3]
kill(all)\$
a:1; b:3;
f(x):=log((x^2+3)/(4*x));
l:f(a); m:f(b);
df:diff(f(x),x)\$
c:find_root(df,x,a,b);
t(x):=f(c);
wxplot2d([f(x),t(x)],[x,a-1,b+1],[y,-3,3]);

```
(%01) 1
 (%02) 3
 (%o3) f(x) := log \left( \frac{3 + x^2}{4 x} \right)
 (%04) 0
 (%05) 0
 (%07) 1.732050807568877
 (%08) t(x) := f(c)
plot2d: expression evaluates to non-numeric value somewhere in plotting range.
plot2d: some values were clipped.
                 3
                 2
                 1
 (%t9)
                 -1
                 -2
                 -3
                                       1.5
                                               2
                         0.5
                                                     2.5
                                                                   3.5
                                              Х
```

4. Verfiy Rolle's theorem for $\sin(x)/e^x$ in the interval $[0,\pi]$.

```
kill(all)$
a:0; b:%pi;
f(x):=sin(x)/%e^x;
l:f(a); m:f(b);
df:diff(f(x),x)$
c:find_root(df,x,a,b);
t(x):=f(c);
wxplot2d([f(x),t(x)],[x,a-1,b+1],[y,-3,3]);
```


Exercise

Verify Rolle's theorem for the following functions

(i)
$$f(x) = e^x$$
 in the interval $[0, \pi]$

(ii)
$$f(x) = 8x - x^2$$
 in the interval [2, 6]

(iii)
$$f(x) = \log\left(\frac{x^2+3}{4x}\right)$$
 in the interval [1,3]

(iv)
$$f(x) = x(x-3)^2$$
 in the interval $[0,3]$

(v)
$$f(x) = \frac{\sin(x)}{e^x}$$
 in the interval $[0, \pi]$

(vi)
$$e^x(\sin(x) - \cos(x))$$
 in the interval $\left[\frac{pi}{4}, \frac{5\pi}{4}\right]$

(vii)
$$x^3 - 3x^2 - x + 3$$
 in the interval [1, 3]

(The following problems to be entered in the record: The 4 worked problems)

LAB—8 Lagrange's mean value theorem

If a function f(x)

- (i) is continuous on [a, b],
- (ii) is differentiable on (a, b),

then there exists at least one value $c \in (a, b)$ such that,

$$\frac{f(b) - f(a)}{b - a} = f'(c).$$

1. Verify Lagrange's Mean value theorem for f(x) = (x-1)(x-2)(x-3) in interval [0,4]

```
kill(all);
a:0; b:4;
f(x):=(x-1)*(x-2)*(x-3);
p:(f(b)-f(a))/(b-a);
                          > slope of the chord
df:diff(f(x),x);
c:find_root(df-p, a+1,b);
c1:ev(df , x=c);
                        .> slope of the tangent
ch(x):=p^*(x-a)+f(a); > Equation of chord joining (a, f(a)) and (b, f(b))
t(x):=c1*(x-c)+f(c);
                        >Equation of tangent at (c, f(c))
if a<c and c<b then print("Lagrange's Mean value theorem is satisfied by f(x)")
else Print("Lagrange's Mean value theorem is NOT satisfied by f(x)")$
wxplot2d([f,t,ch],[x, a-5, b+5],[y, a-5, b+5],[z, a-5, b+5]);
                                                             ( or we can also use plot2d )
OUTPUT
(%o1) 0
(%o2) 4
(\%03) f(x) := (x-1)*(x-2)*(x-3)
(%o4) 3
(\%05)(x-2)*(x-1)+(x-3)*(x-1)+(x-3)*(x-2)
(%06) 3.154700538379251
(%07) 3.0
(\%08) ch(x):=f(a)+p*(x-a)
(\%09) t(x) := f(c) + c1*(x-c)
"Lagrange's Mean value theorem is satisfied by f(x)"
(Note:: If f(x) satisfies Lagrange's Mean value theorem in the interval [a,b] then there exists a point c such
        that the tangent to the curve y=f(x) at (c,f(c)) is parallel to the chord joining the points (a,f(a)) and
```

(b,f(b)) on the curve)

2. Verify Lagrange's Mean value theorem for f(x) = x(x-1)(x-2) in the interval [0, 0.5]

```
kill(all);
a:0; b:0.5;
f(x):=x^*(x-1)^*(x-2);
p:(f(b)-f(a))/(b-a);
                         > slope of the chord
df:diff(f(x),x);
c:find_root(df-p, a ,b);
c1:ev(df , x=c);
                       .> slope of the tangent
ch(x):=p^*(x-a)+f(a);
                      > Equation of chord joinining (a, f(a)) and (b, f(b))
t(x):=c1*(x-c)+f(c);
                       >Equation of tangent at (c,f(c))
if a<c and c<b then print("Lagrange's Mean value theorem is satisfied by f(x)")
else Print("Lagrange's Mean value theorem is NOT satisfied by f(x)")$
wxplot2d([f,t,ch],[x, a, b],[y, a,b],[z, a,b]); ( or we can also use plot2d )
```

(%o1) 0

(%o2) 0.5

(%o3) f(x):=x*(x-1)*(x-2)

(%04) 0.75

(%05)(x-1)*x+(x-2)*x+(x-2)*(x-1)

(%06) 0.2362373841740267

(%07) 0.7499999999999999

(%08) ch(x):=f(a)+p*(x-a)

(%09) t(x):=f(c)+c1*(x-c)

"Lagrange's Mean value theorem is satisfied by f(x)"

3. . Verify Lagrange's Mean value theorem for f(x) = log(x) in the interval [1, e]

kill(all);

a:1; b: %e;

f(x):=log(x);

```
p:(f(b)-f(a))/(b-a);
                         > slope of the chord
df:diff(f(x),x);
c:find_root(df-p, a ,b);
c1:ev(df , x=c);
                       .> slope of the tangent
ch(x):=p^*(x-a)+f(a);
                       > Equation of chord joining (a, f(a)) and (b, f(b))
t(x):=c1*(x-c)+f(c);
                       >Equation of tangent at (c,f(c))
if a<c and c<b then print("Lagrange's Mean value theorem is satisfied by f(x)")
else Print("Lagrange's Mean value theorem is NOT satisfied by f(x)")$
wxplot2d([f,t,ch],[x, a-1, b+1],[y, a-1,b+1],[z, a-1,b+1]); ( or we can also use plot2d )
OUT PUT
(%o1) 1
(%o2) %e
(\%o3) f(x) := log(x)
```

(%o4) 1/(%e-1)

(%06) 1.718281828459045

(%07) 0.5819767068693265

(%08) ch(x):=f(a)+p*(x-a)

(%09) t(x) = f(c) + c1*(x-c)

"Lagrange's Mean value theorem is satisfied by f(x)"

(%o5) 1/x

Exercise

Verify Lagrange's mean value theorem for the following functions

(i)
$$f(x) = x(x-1)(x-2)$$
 in $\left[0, \frac{1}{2}\right]$

(ii)
$$f(x) = x^2 - 3 * x - 1$$
 in $\left[\frac{-1}{7}, \frac{13}{7} \right]$

(iii)
$$f(x) = sqrt(25 - x^2)$$
 in $[-3, 4]$

(iv)
$$f(x) = \log x$$
 in $[1, e]$

(The following problems to be entered in the record: The 3 worked problems and Q.No. (ii) above.)

LAB—9 Cauchy's mean value theorem

Definition: If two functions f(x) and g(x) are such that

- (i) both f(x) and g(x) are continuous in [a, b]
- (ii) both f(x) and g(x) are differentiable in (a, b)
- (iii) $g'(x) \neq 0$ any where in (a,b), then there exists at least one point $c \in (a,b)$, such that

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

1) Verify Cauchy's Mean value theorem for f(x)=log(x), g(x)=1/x in [1, e]

```
kill(all)$
a:1; b: %e;
f(x):=log(x);
g(x):=1/x;
p:(f(b)-f(a))/(g(b)-g(a));
df:diff(f(x),x);
dg:diff(g(x),x);
c:find_root((df/dg)-p,a,b)$
disp("value of c = ",c)$
if a<c and c<br/>b then print("Cauchy's Mean value theorem is satisfied by f(x)& g(x)")$
else Print("Cauchy's Mean value theorem is NOT satisfied by f(x)& g(x)")$
OUTPUT
```

```
(%01) 1
  (%o2) %e
  (%o3) f(x) := log(x)
  (%04) g(x) := \frac{1}{x}
  (%o5) \frac{1}{%e^{-1}-1}
  (\%06) \frac{1}{x}
  (\%07) - \frac{1}{x^2}
value of c =
1.581976706869326
Cauchy's Mean value theorem is satisfied by f(x)& g(x)
2) Verify Cauchy's Mean value theorem for f(x)=\sqrt{x}, g(x)=1/\sqrt{x} in [1,2]
kill(all)$
a:1;
b:2;
f(x):=sqrt(x);
g(x):=1/sqrt(x);
p:(f(b)-f(a))/(g(b)-g(a));
df:diff(f(x),x);
dg:diff(g(x),x);
c:find_root((df/dg)-p,a,b)$
disp("value of c = ",c)$
if a<c and c<b then print("Cauchy's Mean value theorem is satisfied by f(x)& g(x)")
else Print("Cauchy's Mean value theorem is NOT satisfied by f(x) g(x)")$
OUTPUT
```

```
(%01) 1
(%02) 2
(%03) f(x) := \sqrt{x}
(%04) g(x) := \frac{1}{\sqrt{x}}
(%05) \frac{\sqrt{2}-1}{\frac{1}{\sqrt{2}}-1}
(%06) \frac{1}{2\sqrt{x}}
(%07) -\frac{1}{2x^{3/2}}
value of c = 1.414213562373095
Cauchy's Mean value theorem is satisfied by f(x) \in g(x)
```

3) Verify Cauchy's Mean value theorem for $f(x)=x^3$, $g(x)=x^2$ in [1,3]

```
kill(all)$
a:1;
b:3;
f(x):=x^3;
g(x):=x^2;
p:(f(b)-f(a))/(g(b)-g(a));
df:diff(f(x),x);
dg:diff(g(x),x);
c:find_root((df/dg)-p,a,b)$
disp("value of c = ",c)$
if a<c and c<b then print("Cauchy's Mean value theorem is satisfied by f(x)& g(x)")
else Print("Cauchy's Mean value theorem is NOT satisfied by f(x)& g(x)")
```

(The following problems to be entered in the record: The 3 problems worked above.)

LAB—10 Taylor's theorem

Definition Let f(x) be a function defined on [a, b], such

- (i) $f^{n-1}(x)$ is continuous on [a, b]
- (ii) $f^{n-1}(x)$ is derivable on (a, b)

Then there exists a real number $c \in (a, b)$, such that

$$f(b) = f(a) + (b-a)f'(a) + \frac{(b-a)^2}{2!}f''(a) + \dots + \frac{(b-a)^{n-1}}{(n-1)!}f^{n-1}(x) + \frac{(b-a)^n}{n!}f^n(c).$$

1.Expand the function $f(x) = log_e(1+x)$ around x=1 up to the term containing x^4 by Taylor's Expansion.

Maxima code:: taylor(log(1+x),x,1,4);

OUTPUT

(%i10)
(%o10)/T/
$$\log(2) + \frac{x-1}{2} - \frac{(x-1)^2}{8} + \frac{(x-1)^3}{24} - \frac{(x-1)^4}{64} + \dots$$

2. Expand the function $f(x) = e^x$ around x=1 up to the term containing x^5 by Taylor's Expansion.

Maxima code:: taylor(%e^x,x,1,5);

OUTPUT

$$(\$o15)/T/$$
 $\$e+\$e(x-1)+\frac{\$e(x-1)^2}{2}+\frac{\$e(x-1)^3}{6}+\frac{\$e(x-1)^4}{24}+\frac{\$e(x-1)^5}{120}+\dots$

3. Expand the function $f(x) = e^{x \cdot cos(x)}$ up to the term containing x^4 by Maclaurin's expansion.

Maxima code:: taylor(%e^x*cos(x),x,0,4);

OUTPUT

$$(\%016)/T/1+x-\frac{x^3}{3}-\frac{x^4}{6}+\dots$$

4. Expand the function f(x) = tan(x) up to the term containing x^5 by Maclaurin's expansion.

Maxima code:: taylor(tan(x),x,0,5);

OUTPUT

$$(\%o18)/T/x + \frac{x^3}{3} + \frac{2x^5}{15} + \dots$$

(The following problems to be entered in the record: The 4 problems worked above.)

LAB—11 Evaluation of limits by L'Hospital's rule

Let f(x) and g(x) be two functions defined on [a,b] and satisfy the Cauchy's theorem. We know that

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

provided both the limits exist and

$$\lim_{x \to a} g(x) \neq 0.$$

L'Hospital's rule:

and

Suppose f(x) and g(x) are functions satisfying the conditions

 $\lim_{x \to a} f(x) = 0$

 $\lim_{x \to a} g(x) = 0,$

(ii) $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$

provided the limit on the right hand side exists. The expression $\frac{f(x)}{g(x)}$ in this case is said to assume the indeterminate form $\frac{0}{0}$ as $x \to a$.

The other simple indeterminate forms are $\frac{\infty}{\infty}$, $0 \times \infty$, $\infty - \infty$, 0^{∞} , 1^{∞} and ∞^0 .

1. Evaluate

$$\lim_{x \to 0} \frac{(x - \sin x)}{x^3}$$

(0/0 form)

Maxima code:: $limit((x-sin(x))/x^3,x,0)$;

OUTPUT :: 1/6

$$\lim_{x \to \frac{\pi}{2}} \frac{\tan x}{\tan 3x}$$

2. Evaluate

 $(\infty/\infty \text{ form})$

Maxima code:: limit(tan(x)/tan(3*x),x,%pi/2);

OUTPUT:: 3

$$\lim_{x\to 0} x \log \tan x$$

3. Evaluate

(0x∞ form)

Maxima code :: limit(x*log(tan(x)),x,0);

OUTPUT :: 0

Exercise:: Evaluate the limits of the following functions.

(i)
$$(\cos x)^{\frac{1}{x^2}}$$
 as $x \to 0$

(ii)
$$(1-x^2)^{\frac{1}{\log(1-x)}}$$
 as $x \to 1$

(iii)
$$x \tan \frac{1}{x}$$
 as $x \to \infty$

(iv)
$$\left(\frac{1}{x}\cot x\right)$$
 as $x\to 0$

(v)
$$\frac{1 - \cos x}{x \log(1+x)} \text{ as } x \to 0$$

(vi)
$$\frac{x^x - x}{1 - x + \log x}$$
 as $x \to 0$

(vii)
$$\frac{\log(\theta - \pi/2)}{\tan \theta}$$
 as $x \to \pi/2$

(viii)
$$\frac{\log \tan 2x}{\log \tan x}$$
 as $x \to 0$

(ix)
$$(\sin x)^{\tan x}$$
 as $x \to \pi/2$

(x)
$$\left(\frac{1+\cos 2x}{2}\right)^{\frac{1}{x^2}}$$
 as $x \to 0$

(The following problems to be entered in the record: The 3 problems worked above and Q.No.(i),(iii),(iv)).

