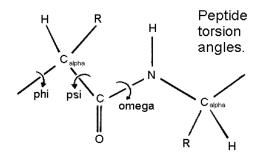

Protein Structure Hierarchy

Bioinformatics Methods

Iosif Vaisman

Email: ivaisman@gmu.edu


Primary - the sequence of amino acid residues
Secondary - ordered regions of primary sequence (helices, beta-sheets, turns)
Tertiary - the three-dimensional fold of a protein subunit
Quaternary - the arrangement of subunits in oligomers.

Anfinsen's Dogma

Three-dimensional structure of a protein is determined solely by its amino-acid sequence.

Native conformation of the protein is the global-minimum free energy conformation.

Levinthal paradox

3 conformations per residue is a very conservative estimate

Complexity of protein structure (Levinthal paradox)

100 residue protein3 conformations per residue

number of distinct conformations: $3^{100}\ \cong 10^{48}$

sampling time $\approx 10^{30}$ years

Complexity

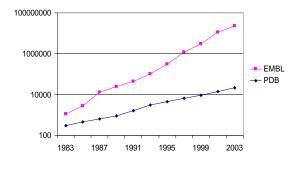
P (Polynomial)

complexity class of decision problems for which execution time of a computation is no more than a polynomial function of the problem size

NP (Nondeterministic Polynomial)

complexity class of decision problems for which answers can be checked by an algorithm whose run time is polynomial in the size of the input

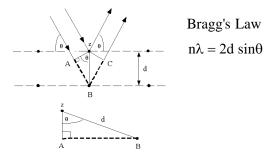
Protein Folding Problem


Given: sequence Find: structure

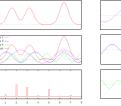
The problem is NP-complete

Protein Folding Problem

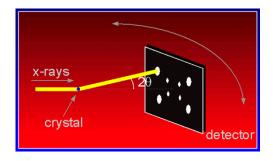
Problem for us, not for proteins. They just fold... (Ken Dill)


Dynamics of Database Growth

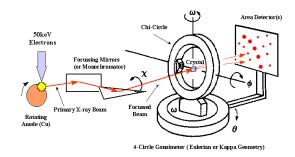
Protein Structure Determination


X-ray crystallography NMR spectroscopy Neutron diffraction Electron microscopy Atomic force microscopy

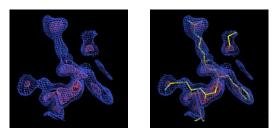
X-ray crystallography


X-ray crystallography

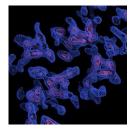
Phase determination: MIR and MAD (Multiple Isomorphous Replacement and Multiwavelength Anomalous Diffraction)



Fourier Transforms


X-ray crystallography

X-ray crystallography




X-ray crystallography

Electron density map created from multi-wavelength data (Arg)

X-ray crystallography

Experimental electron density map and model fitting (apoE four helix bundle)

X-ray crystallography

Confidence in structural features of proteins determined by X-ray crystallography (These are <i>rough</i> estimates, and depend strongly on the quality of the data.)					
	5 Å	3 Â	2.5 Å	2.0 Å	1.5 Å
Chain tracing	-	Fair	Good	Good	Good
Secondary structure	Helices fair	Fair	Good	Good	Good
Sidechain conformations		-	Fair	Good	Good
Orientation of peptide planes	-	_	Fair	Good	Good
Protein hydrogen atoms visible	-	-	-	-	Good