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Abstract

The varieties RA of relation algebras and DA of dynamic algebras are similar with regard
to definitional capacity, admitting essentially the same equational definitions of converse and
star. They differ with regard to completeness and decidability. The RA definitions that are
incomplete with respect to representable relation algebras, when expressed in their DA form
are complete with respect to representable dynamic algebras. Moreover, whereas the theory
of RA is undecidable, that of DA is decidable in exponential time. These results follow from
representability of the free intensional dynamic algebras.
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1 Introduction

1.1 Overview

Binary relations have proved a fruitful framework in both logic and computer science. In logic they
have served as the eliminator of variables [TG87], and in computer science as the illuminator of
software [dBdR72, Pra76]. One finds the algebraic versions of these topics today under the respec-
tive rubrics of relation algebra [TG87] and dynamic algebra [Koz79b, Pra79a]. The nonalgebraic
origins of the former lie in the subject of foundations of mathematics, and of the latter in that of
logics of programs [KT89].

When the organizers of this conference very kindly asked me to talk on a subject of my choice it
seemed a foregone conclusion that a conference organized by relation algebraists would expect a talk
on dynamic algebras. Not having worked in this area since 1981 however, I would have preferred
to talk about my more recent work on concurrent behavior. With dynamic algebras already well
covered at the conference by Dexter Kozen, I hoped at the start of the meeting that this might be
possible. The day before my talk I took an informal poll, whose outcome determined the topic of
my talk and ultimately the unexpected results of this paper.

At the time I knew little of either the results or the history of relation algebra. I was vaguely aware
that Tarski had shown the equational theory of representable relation algebras to be undecidable in
the 1940’s, and that the equational theory of that class was not finitely based, but I was unaware
of the larger finitely axiomatized variety RA.

On learning more of the background of relation algebras from various helpful sources, especially
George McNulty and Roger Maddux, it occurred to me that it would be a nice idea to organize
this paper as a comparison of the merits of relation and dynamic algebras. It also seemed a good
idea to build up these notions from Boolean monoids and Boolean modules [Bri81] respectively,
with the former mingling logical and relative notions in a single sort and the latter keeping them
segregated.

My initial impression was that modules improved on monoids in the areas of definitional force,
completeness, representability, and decidability, while monoids had the advantages of homogeneity
of sort and expressive power. Both form finitely based varieties.

In the course of making the case for these claims I learned to my surprise that the dynamic
algebra definitions of converse and star were equally effective, suitably modified, in a Boolean
monoid, that is, an ordered monoid whose partial order is a Boolean algebra. What had misled
me about the suitability of Boolean monoids as a medium for defining converse was that every
published equational axiomatization of RA had four equations mentioning converse, and that the
equational theory of the representable relation algebras was not finitely axiomatizable, making the
axiomatization appear an ad hoc attempt to deal with an impossible situation. Moreover since
none of these axiomatizations mentioned star I assumed that a satisfactory axiomatization of star
must be similarly out of the question. I only recently learned of the Ng-Tarski equations for star
[NT77, Ng84].
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As it turns out, in a Boolean monoid converse and star can each be defined with a single equation.
Each equation abstracts the essence of the dynamic algebra definition of that operation. The
equation for star does not mention converse (unlike the three-equation Ng-Tarski axiomatization),
and vice versa.

In this account of RA, converse and star become siblings, as they are in DA. In fact, although
converse appeared in the first dynamic logic paper four pages ahead of star [Pra76], the relative
importance of star to programmers had caused converse to temporarily disappear from dynamic
logic by the time of Segerberg’s axiomatization of propositional dynamic logic [Seg77]. It was
restored and straightforwardly axiomatized the following year by Parikh [Par78], whose axioms
have here become our single-equation definition of RA converse.

The surviving advantages of DA remain those of decidability of the equational theory, and rep-
resentability, as per Kozen [Koz80] and Brink [Bri81] but extended to star at least for the free
algebras [Pra79a, Pra80a], from which follows equational completeness of DA with respect to the
Kripke model.

I attribute these advantages to the “maintenance of a suitable distance” between the Boolean and
monoidal sorts. Too far apart (complete independence of the two sorts) and one is left with a
Boolean algebra and a monoid, in neither of which can either converse or star be defined equation-
ally. RA represents the other extreme, in which the two sorts are identified. The Boolean module
organization of DA keeps the sorts distinct but lets them communicate via operations diamond
� : K × B → B and test ? : B → K. This is close enough to permit the equational definitions of
star and converse, yet not so close as to compromise representability, completeness, or decidability
of the associated equational theory.

For chronological completeness let me mention here the work of my group during the past several
years on concurrent processes. The direction this work has taken has been heavily influenced by
the insights of both dynamic logic and dynamic algebra. The passage from relation algebras to
process algebras may be described as inverse abstraction (back to relations as sets of pairs), two
generalizations (from pairs as labeled linearly ordered doubletons to labeled partial orders [Pra86],
and from partial orders to generalized metrics [CCMP91]), and abstraction back to algebra, with
the resulting logic having models far removed from binary relations, yet remaining remarkably like
RA. The Boolean algebra is relaxed to a lattice and the monoid becomes commutative (it now
represents collision instead of composition). Converse and star remain meaningful but lack some
of the vitality they show in RA and DA.

1.2 Conventions

A variety is the class of models of an equational theory; equivalently, a class closed under homo-
morphisms, subalgebras, and direct products (HSP closure). A universal Horn formula has the
form s1=t1 & . . . & sn=tn → s=t. A quasivariety is the class of models of a universal Horn theory;
equivalently the closure ISP(K) of a pseudoelementary class K under isomorphisms, subalgebras,
and direct products. We supply more details about “pseudoelementary” in conjunction with the
examples of Boolean monoids.
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Given a class C of similar algebras we denote by type C the similarity type to which it belongs, by
ΘC its equational theory, and by ΦC its universal Horn theory. All theories are presumed to have
infinitely many variables, for definiteness countably many.

We denote reducts to type A by superscript A. For example a dynamic algebra D = (B,K, �, ?),
of type DA, has a reduct B = (B,∨, 0,− ) of type DAB, and another K = (K, 0,+, ; , ,̆∗ ), of type
DAK . The equational theory ΘRA of relation algebras has a reduct ΘBM

RA to Boolean monoids,
defined as those theorems of RA that are in the language of BM, i.e. that omit converse. Thus
ΘA must by definition be a conservative extension of ΘB

A , whence to say that ΘRA, as an extension
of ΘBM , is not conservative over ΘBM is to say that ΘBM

RA strictly includes ΘBM .

The equational theory ΘDA of the two-sorted class DA of dynamic algebras partitions as ΘDA =
ΘB

DA + ΘK
DA consisting respectively of equations between Boolean terms and between Kleenean

terms. On the other hand, although ΦDA has reducts ΦB
DA and ΦK

DA, these do not exhaust ΦDA,
which may have equations of both sorts in the one formula. The sets V B and V K of variables of
each sort are disjoint. We reserve the sort names themselves for the underlying sets of each sort,
assumed disjoint; thus the set of individuals of a dynamic algebra D partitions as D = B + K.

1.3 Logical and Relative

The two theories of this paper, those of relation algebras and dynamic algebras, arise out of the
following dilemma.

An n-ary relation on a set X is a subset of Xn. If p is a unary relation we write x ∈ p as p(x),
while for a binary relation a we write (x, y) ∈ a as xay.

That a relation is a set imbues it with a logical character: for any n the set 2Xn
of all n-ary relations

on X forms a Boolean algebra in the usual way. That pairs can be linked, xay and ybz forming
xa; bz, and reversed, xay becoming yă x, confers on binary relations their relative character: the
binary relations on X form a monoid under composition or relative product a; b with identity 1’,
with the additional operations of converse, ă , and star, a∗.

A calculus with both a logical and a relative character would seem very useful for both the foun-
dations of mathematics [TG87] and logics of programs [KT89]. Since relations exhibit both char-
acteristics they should form an excellent basis for such a calculus.

It is clear that unary relations cannot supply the relative part. However either unary or binary
relations can supply the logical part. Depending on which way we resolve this dilemma we obtain
one of two finitely axiomatized varieties, Boolean monoids or Boolean modules [Bri81]. Each may
be equipped independently with converse and star, each definable with a single equation in each
case. A Boolean monoid equipped with converse is called a relation algebra, and one equipped with
converse and star is called an RAT [NT77, Ng84], a relation algebra with transitive closure. Brink
[Bri81] defines Boolean modules to be equipped with converse. A Boolean module with converse
and star is a dynamic algebra [Koz79a, Pra79a].
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2 Boolean monoids

As pointed out by Brink [Bri81], Boolean monoids predate Boolean modules by a decade, 1860 (De
Morgan) vs. 1870 (Peirce), so it is appropriate that we consider them first. They achieve economy
of concept through homogeneity of data: a single sort as opposed to the two sorts of Boolean
modules. Our purpose in treating Boolean monoids in this paper is two-fold: to prime the reader
already acquainted with RA for the perspective from which we shall view DA; and to embellish
the standard RA story with some details, some imported from DA, some resulting from extensive
discussions with Roger Maddux and George McNulty, and some just filling gaps.

An ordered monoid A = (A,≤, ; ) is a set A which is both a partial order (A,≤) and a monoid
(A, ; ) whose composition or relative product a; b is monotone with respect to ≤ in each argument.
We denote the unit of the monoid by 1’. A Boolean monoid is an ordered monoid whose partial
order is a Boolean algebra. We denote join and complement by a+ b and a− respectively. To make
the class of Boolean monoids a variety we treat a Boolean monoid as an algebra (A,+,− , ; , 1’).
The class BM of Boolean monoids is then definable by finitely many equations.

We take as logical abbreviations a ≤ b for a + b = b, a ≤ b ≤ c for a + b = bc, ab for (a− + b−)−, 1
for 1’ + 1’−, 0 for 1−, and a→ b for a− + b. For relative abbreviations we take a +

˘
b for (a−; b−)−

(relative sum), 0’ for 1’−, a↪→b for a− +
˘

b (relative implication), and a←↩b for a +
˘

b− (relative

coimplication).1

Example 1. The motivating example of a Boolean monoid is the set of all binary relations on a base
set X, under the usual composition of binary relations. We refer to this algebra as BM X. BM X
is a simple algebra, one with only two congruences, the identity and the clique. We refer to those
Boolean monoids isomorphic to a subalgebra of BM X for some X as the simple representable
Boolean monoids, forming the class SRBM.

A pseudoelementary class is a reduct of an elementary class [Mak64, Ekl77, 4.3]. That is, it is
obtainable by omitting some of the sorts and operations of some class definable with a first order
theory.

Proposition 1 SRBM is pseudoelementary.

Proof: Let X and R be the sorts of the following two-sorted first-order theory of the set R of all
binary relations over a set X. The language of this theory has all the Boolean monoid operations,
as operations on R, together with a ternary relation (x, a, y) expressing that elements x and y of
X are related by the binary relation a, an element of R. We require that if a 6= b then there exist
x, y such that exactly one of (x, a, y) and (x, b, y) hold; this ensures that each element of R acts

1De Morgan [DM60] writes ab, ab′, and a′b for a; b, a←↩b, and a↪→b respectively, construing them as “an a of a
b of”, “an a of every b of”, and “an a of none but b’s of,” and asserting their sufficiency. Peirce [Pei33, 3.242,1880]
observed their interdefinability, notating them ab, ab, ab and adjoining a fourth connective for relative sum, which he
subsequently notated a†b; the notation a +

˘
b we use here is due to Schröder [Sch95], subsequently (1897) adopted in

modified form (the “scorpion tail”) by Peirce. For 0, 1, 0’, 1’ Peirce writes 0,∞,n, 1 respectively, and calls relations
a ≤ 1’, a ≥ 0’, a ≥ 1’, and a ≤ 0’ respectively concurrent, opponent, self-relative, and alio-relative.
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like a distinct binary relation, i.e. a distinct subset of X2. It is easy to write down axioms that
say that R includes the identity relation (there exists a such that for all x, y, (x, a, y) if and only
if x = y) and the empty relation (there exists a such that for all x, y, ¬(x, a, y)), and is closed
under the Boolean operations (with complement being relative to X2) as well as composition. Now
by “forgetting” the set X and the ternary relation (x, a, y) we are left with a one-sorted relation
algebra isomorphic to a subalgebra of BM X, that is, a simple representable Boolean monoid.

Corollary 2 ISP(SRBM) is a quasivariety.

Proof: Every pseudoelementary class closed under isomorphisms, subalgebras, and direct prod-
ucts is a quasivariety, and these operations preserve the property of being pseudoelementary.

I am indebted to George McNulty for the idea of using pseudoelementary classes in this argument.

We call the members of ISP(SRBM) representable Boolean monoids, forming the class RBM. Thus
up to isomorphism the representable Boolean monoids are formed as subalgebras of direct products
of simple representable ones. The top element 1 of the direct product of simple representable
Boolean monoids amounts to an equivalence relation on the disjoint union of the base sets of those
Boolean monoids, namely the relation x ≡ y which holds just for those x, y coming from the same
base set.

Example 2. In any Boolean algebra, take composition to be meet, and hence relative sum to be join,
called a cartesian Boolean monoid since it is also a cartesian closed category [Mac71, IV.6-1(b)].
The same concept is termed “Boolean” in the relation algebra literature, e.g. Jónsson [Jón82],
which presents the obvious conflict with the present terminology.

A Boolean monoid is called normal when it satisfies a; 0 = 0 = 0; a, and additive when it satisfies
a; (b + c) = a; b + a; c and (a + b); c = a; c + b; c. We shall call it Peircean when it satisfies
(a +

˘
b); c ≤ a +

˘
(b; c) and a; (b +

˘
c) ≤ (a; b) +

˘
c [Pei33, 3.334]. Examples 1 and 2 enjoy all three of

these properties.

Example 3. The dual of a Boolean monoid is obtained by exchanging relative product and relative
sum, itself a Boolean monoid.

The duals of examples 1 and 2 are not in general normal, additive, or Peircean.

Example 4. The set of all subsets of any equivalence relation E on a set X is closed under the usual
composition of binary relations and hence forms a Boolean monoid. We have already encountered
these above as the representable Boolean monoids up to isomorphism.

When E is the identity relation on X the resulting representable Boolean monoid can be seen to be
cartesian. Conversely every cartesian Boolean monoid is so representable via the Stone embedding
of a Boolean algebra into a power set and the embedding of X in X2 as the latter’s diagonal.

We now treat the operations of converse and star in turn.
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2.1 Residuation

An ordered monoid is called a residuated order when it has operations a\c and c/b defined as

a; b ≤ c ↔ b ≤ a\c (RKR)

a; b ≤ c ↔ a ≤ c/b (LKL)

These operations are called respectively the right and left residuals of c over a, b respectively
[WD39, Dil39, Fuc63, Bir67, Jón82]. They may also be viewed as yet another pair of implications,
bringing the number of implications we have now encountered to five, namely a→b, a↪→b, a←↩b,
a\b, and a/b. In the case of commutative monoids, where a; b = b; a, this reduces via a↪→b = b←↩a
and a\b = b/a to just three implications.

We will find it convenient later on to break down (RKR) and (LKL) into four universal Horn
formulas,

a; b ≤ c → b ≤ a\c (KR)

b ≤ a\c → a; b ≤ c (RK)

a; b ≤ c → a ≤ c/b (KL)

a ≤ c/b → a; b ≤ c. (LK)

The letter K in the names of these formulas connotes the theorem De Morgan refers to as Theorem
K [DM60]. This theorem, which was brought to my attention by Roger Maddux, amounts to the
assertion of KR and KL; RK and LK can be derived from these given ă ˘ = a. The L and R refer
to the left and right residuals respectively, and their placement relative to K indicates the direction
of the implication.

Residuated orders enjoy a number of useful properties [Bir67, Theorem XIV-4], all of which are
easily proved. In particular a; b preserves arbitrary sups in each argument, e.g. if the empty
sup or least element 0 exists then a; 0 = 0 = 0; a, and if the sup a + b of a and b exists then
(a+ b); c = a; c+ b; c and c; (a+ b) = c; a+ c; b. Residuation of a over b (on either side) is monotone
in a and antimonotone in b. Furthermore a\b (and likewise b/a) preserves arbitrary infs in the b
argument, e.g. a\1 = 1 and a\(bc) = (a\b)(a\c). It also “antipreserves” arbitrary sups in the a
argument in that it maps them to the corresponding infs, e.g. 0\a = 1 and (a + b)\c = (a\c)(b\c).
And residuation is axiomatizable inequationally, namely via

a; (a\b) ≤ b (rK)

b ≤ a\(a; b) (Kr)

(b/a); a ≤ b (lK)

b ≤ (b; a)/a. (Kl)

In the theory of ordered monoids each of these inequalities is equivalent to the universal Horn
formula with the corresponding upper case identifier: (rK) to (RK), etc.

We say that a is reflexive when 1’ ≤ a, and transitive when a; a ≤ a. These properties are of interest
in their own right, but are of particular interest in the following section on star.
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Proposition 3 In a residuated order, a\a and a/a are each both reflexive and transitive.

Proof: We show this just for a\a. Evidently a; 1’ ≤ a, whence 1’ ≤ a\a, showing reflexivity. Now

a\a ≤ a\a
Hence a; (a\a) ≤ a

so a; (a\a); (a\a) ≤ a; (a\a)
≤ a

Thus (a\a); (a\a) ≤ a\a

When an ordered monoid has the structure of a lattice or a Boolean algebra, the corresponding
residuated order is called a residuated lattice or residuated Boolean algebra respectively. A residu-
ated cartesian lattice (a; b = ab), often assumed also to have a least element 0, is called a Heyting
algebra.

3 Converse

A relation algebra (RA) is a residuated Boolean algebra with a unary operation called converse,
notated ă , satisfying a\b = (ă ; b−)− and a/b = (a−; b̆ )−. This definition of the class RA is the
content of Theorem 2.2 of Chin and Tarski [CT51], which together with the axioms for a Boolean
monoid suffice to axiomatize RA.2

It is customary in giving equational axiomatizations of RA to mention converse in at least four
equations, which invariably include

ă ˘ = a

(a; b)̆ = b̆ ; ă

(a + b)̆ = ă + b̆

along with (any) one of (Kr), (Kl), (rK), or (lK). For a change of pace here is a one-equation
definition of converse.

Proposition 4 The equations for a Boolean monoid, together with the equation

((b−; a )̆−; a) + b = b(a ;̆ (a; b)−)−,

constitute a complete equational axiomatization of RA.
2Monotonicity of a; b in a and b is implied by (LKL) and (RKR) respectively. Thus a complete axiomatization of

RA need consist just of these two plus the axioms for a Boolean algebra and for a monoid, omitting monotonicity.
The inequational versions do not imply monotonicity and hence must accompany the full theory of BM.
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This equation can thus be regarded as an equational definition of converse.

Proof: Examination reveals this equation just to be (lK) and (Kr) combined via the equivalence
x ≤ y ≤ z iff x + y = yz. The essential novelty here is that just two of the four inequalities (Kr),
(rK), (Kl), and (lK) suffice to completely axiomatize converse and hence to prove the other two
inequalities.

From (lK) and (Kr) we can obtain ă ˘ = a, which we decompose as follows.

ă ˘≤ a (I)

a ≤ ă ˘ (C)

We obtain (I) from (Kr) thus.

b ≤ (ă ; (a; b)−)− (Kr)
Hence 1’ ≤ (ă ; a−)− (setting b = 1’)

so ă ˘ ≤ ă ;̆ (ă ; a−)−

≤ a (Kr)

We obtain (C) from (lK) as follows.

(b−; ă )−; a ≤ b (lK)
Hence ă −; a ≤ 0’ (b→ 0’)

so ă ˘−; ă ≤ 0’ (a→ ă )
whence 1’ ≤ (ă ˘−; ă )− (contrapos.)

Therefore a ≤ (ă ˘−; ă )−; a
≤ ă ˘ (lK)

Substituting ă for a in Kr, taking the contrapositive, and using ă ˘ = a then yields rK. Kl is
obtained similarly from lK.

Finally we obtain KR from Kr. Assume a; b ≤ c. Then b ≤ a\(a; b) ≤ a\c. Similarly KL follows
from Kl, while RK follows from rK, and LK from lK. But by Theorem 2.2 of Chin and Tarski
[CT51] this and the equations for Boolean monoids constitute a complete axiomatization of RA.

The relationships we have obtained are summarized by the following lattice of inclusions between
varieties of Boolean monoids. Each variety is labeled with the list of equations defining it, with
BM implicit (so I denotes BM together with ă ˘ ≤ a). Kr+rK is abbreviated to R (the theory of
“right-handed” relation algebras) and Kl+lK to L (ditto for left handed), and Kl+Kr+lK+rK to
RA. (Hence Theorem 2.2 [CT51] amounts to the statement that a relation algebra is a right-handed
relation algebra that is also left handed.) Meet in this lattice corresponds to intersection of the
corresponding varieties. I have not verified whether all 13 varieties are distinct, but I conjecture
that they are.
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The equivalences (RKR) and (LKL) have from the very beginning been a staple of writings on
the algebra of binary relations. Roger Maddux brought to my attention that these are given as a
property of converse by all three of the major 19th century writers on the algebra of binary relations,
De Morgan [DM60, Theorem K]3, Peirce [Pei33, 3.147(170)], and Schröder [Sch95, §17,2)]. In the
form

(c; b̆ )a = 0 ≡ (a; b)c = 0 ≡ (ă ; c)b = 0

it is taken as the defining characteristic of converse and hence of RA in Theorem 2.2 of Chin and
Tarski and Definition 4.1 of Part II of Jónsson and Tarski [JT52], foreshadowed by Tarski [Tar41,
XVI]. (An advantage of the latter form is that it is defined in any lower semilattice with a least
element, rendering it applicable to considerably more general structures than Boolean algebras, e.g.
Heyting algebras and relevant logics.)

We write Rel X for the result of equipping BM X with the standard operation of converse for
binary relations. We write Eqv E for the relation algebra of all subsets of an equivalence relation
E.

A representable relation algebra (RRA) is a representable Boolean monoid equipped with converse
having its usual meaning for binary relations. Equivalently it is a subalgebra of an algebra Eqv E.
The class RRA of such forms a variety [Tar55].

3.1 Star

The operation star, or ancestral, or reflexive transitive closure, which we shall notate a∗, resembles
converse in some respects. It is a unary operation definable in any ordered monoid. Whereas ă is a
reversed, a∗ is a iterated indefinitely. Under progressively stronger assumptions about the ordered
monoid progressively more may be said about star. For residuated Boolean algebras there are a
number of equivalent definitions of star, including more than one equational definition.

An ordered monoid with star is an ordered monoid (A,≤, ; , 1’) such that for each a ∈ A there exists
an element of A, denoted a∗, such that

1’ ≤ a∗ (S1)

a; a∗ ≤ a∗ (S2)
3De Morgan gives only KR and KL, but also was well aware of the involutary nature of converse, which as we

have seen entails KR→RK and KL→LK. In nominating Peirce rather than De Morgan as the “creator of the modern
theory of relations” Tarski [Tar41] appears not to have taken Theorem K into account. Peirce gave an equivalent
equational characterization of converse in 1870, [Pei33], but was no better equipped than De Morgan to appreciate
its completeness.
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a; b ≤ b → a∗; b ≤ b (S3)

We say that a converges at b when a; b ≤ b. Thus (S2) asserts that a converges at a∗, and (S3)
asserts that a∗ converges wherever a does.

Proposition 5 The following hold in any ordered monoid with star.

a∗; a∗ ≤ a∗; (Tr)

a ≤ a∗; (Gr)

1’ ≤ b & b; b ≤ b & a ≤ b → a∗ ≤ b (Cl)

Proof: Setting b to a∗ in (S3) and using (S2) gives (Tr). (That is, a∗ converges at itself.)
By “multiplying” (S1) on the left by a we obtain a ≤ a; a∗, which with (S2) yields (Gr). For
(Cl), if a ≤ b and b; b ≤ b then a; b ≤ b, whence by (S3) a∗; b ≤ b. If moreover 1’ ≤ b then
a∗ = a∗; 1’ ≤ a∗; b ≤ b, giving (Cl).

We define the reflexive transitive closure of a to be the least reflexive transitive element greater or
equal to a, when it exists.

Proposition 6 In an ordered monoid with star, a∗ is implicitly defined as the reflexive transitive
closure of a.

Proof: (S1) asserts that a∗ is reflexive, (Tr) that it is transitive, and (Gr) that it is greater or
equal to a. (Cl) asserts that it is the least such. There can be at most one least such, whence a∗

is uniquely defined.

Star, ancestral, or reflexive transitive closure, is variously notated a∗ [Kle56], ∗a, and a0 [Ded01,
Sch95], while transitive closure has been written a+, aω [NT77], and a00 [Sch95]. The first-
mentioned in each of these lists is the notation universally used in computer science and is adopted
here. In any ordered monoid a+ is definable in terms of a∗ via the equation a+ = a; a∗. In an or-
dered monoid in which the operation a+1’ of reflexive closure is defined, and hence in a semilattice
monoid, a∗ is definable via either of the equations a∗ = a+ + 1’ or a∗ = (a + 1’)+.

Star was first studied in detail by Schröder [Sch95], who notated it a0 following Dedekind’s 1888
notation [Ded01] for the “chain” of a “transformation” a. There Dedekind gave three axioms for
chains, in paragraphs numbered respectively 45-47. Schröder translated Dedekind’s axioms into
the language of binary relations, numbering them (D45)-(D47), as follows.

b ≤ a∗; b (D45)

a; a∗; b ≤ a∗; b (D46)

a; c + b ≤ c → a∗; b ≤ c (D47)
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Proposition 7 (S1) is equipollent with (D45), (S2) with (D46), and (S3) with (D47).

Proof: We may recover (S1)-(S3) from (D45)-(D47) respectively by setting b to 1’ in (D45) and
(D46), and setting c to b in (D47) and simplifying. In the other direction, (D45) and (D46) can
be obtained by multiplying (S1) and (S2) respectively on the right by b. Substituting c for b in
(S3) yields a; c ≤ c → a∗; c ≤ c, which in turn implies a; c + b ≤ c → a∗; c ≤ c. But b ≤ c implies
a∗; b ≤ a∗; c, yielding (D47).

Our definition of star is not equational because (S3) is not an equation, only a universal Horn
formula. Ng and Tarski [NT77, Ng84] define the class RAT of relation algebras with star4 and give
a finite equational axiomatization of RAT. Their proof appeals to the transitivity of a/a and thus
relies on converse. Here we show that the larger class of Boolean monoids with star also constitutes
a variety. In the absence of converse we shall depend on complement, reformulating Segerberg’s
induction axiom for star in dynamic logic [Seg77] as an equational property of Boolean monoids.

Recall that normal means a; 0 = 0 = 0; a and additive that a; (b + c) = a; b + a; c and (a + b); c =
a; c + b; c.

Proposition 8 The class of normal additive Boolean monoids with star is a finitely axiomatized
variety, with star defined by the equations (S1), (S2), and

a∗; b ≤ b + a∗; ((a; b)b−). (Ind)

Proof: (Ind→S3) This is where we use normality. Given a; b ≤ b we wish to show a∗; b ≤ b. From
the hypothesis we infer (a; b)b− = 0, whence

a∗; b ≤ b + a∗; ((a; b)b−)
= b + a∗; 0
= b.

(S3→Ind) Here we depend on additivity. It suffices to show that substituting the right hand side
of (Ind) for b in (S3) satisfies the hypothesis a; b ≤ b of (S3), assured by the following calculation.

a; (b + a∗; ((a; b)b−)) ≤ b + (((a; b)b−) + a; a∗; ((a; b)b−))
≤ b + a∗; ((a; b)b−) ((S1),(S2))

Equation (Ind) viewed suitably is relational induction. To see this take its contrapositive

b ∧ a∗↪→(b→ a↪→b) ≤ a∗↪→b, (Ind’)
4Ng and Tarski treat transitive closure rather than reflexive transitive closure, whence the T in RAT, but as we

have already noted these are interdefinable equationally, and thus the same variety is obtained whether the operation
is taken to be star or transitive closure.
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writing a → b for ¬a + b (“static” or material implication as opposed to “dynamic” implication
a↪→b). Read b as an induction hypothesis, a∗↪→ as “after any number of a’s”, and a↪→ as “after
one a”. Then (Ind’) in English is “if b holds and after any number of a’s the truth of b implies that
b still holds after one more a, then b holds after any number of a’s.”

We may relate this to mathematical induction as follows. Take X to be the set N of natural
numbers and take a ⊆ N2 to be the successor relation, whence a∗ is ≤N . Restrict attention to
those b satisfying b ≤ 1’, allowing us to view b as an arbitrary predicate b(x) on X defined as holding
at x just when (x, x) ∈ b. (Ind’) then asserts that if b(x), and if for all y ≥ x b(y) implies b(y + 1),
then b(y) for all y ≥ x. Hence (Ind’) holds just for “upwardly closed” b, namely those predicates b
such that b(x) and x ≤ y implies b(y). In particular b(0) implies that b holds everywhere. This is
precisely the content of mathematical induction.

Here we wrote a↪→ and a∗↪→ everywhere in preference to a\ and a∗\ so as to define star indepen-
dently of converse. We could however have used a\ in place of a↪→: all occurrences of a↪→ and a∗↪→
in (Ind’) can be made a\ and a∗\. This has the effect of taking the converse of a, computing its
star, then taking the converse of the result, but the answer still comes out in the end to a∗. This
observation may prove useful for nonclassical logics like RA but in which a\b is given as a primitive
implication without a separate notion of converse, e.g. linear entailment in Girard’s linear logic
[Gir87].

As with converse a one-equation definition of star is possible: the reader may verify that

(1’ + a∗ + a+); b = (a∗; b)(b + a∗; ((a; b)b−))

is equipollent with S1-S3, where a+ abbreviates a; a∗.

We have already remarked on the Ng-Tarski variety RAT of relation algebras with star (equiv-
alently, with transitive closure). Relation algebras offer more opportunities to axiomatize star
equationally than do Boolean monoids, as the five equivalences of the following proposition indi-
cate.

Proposition 9 For relation algebras with an operation a∗ satisfying (S1) and (S2), the following
five formulas are equivalent.

a; b ≤ b → a∗; b ≤ b (S3)

a∗; b ≤ b + a∗; ((a; b)b−) (Ind)

1’ ≤ b & b; b ≤ b & a ≤ b → a∗ ≤ b (Cl)

a∗ ≤ (a + b)∗ & (a/a)∗ = a/a (Ta)

a∗ ≤ (a + b)∗ & (a(a/a))+ = a(a/a) (Ng)

where a+ abbreviates a; a∗.

Proof: (Ta) appears in [NT77] (in the equivalent form a; (a\a)+ = a), and is attributed in [Ng84]
to Tarski. (Ng) appears in [Ng84], where the equivalence of (Cl), (Ta), and (Ng) are treated. We
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showed the equivalence of (S3) and (Ind) above, and that (S3) implied (Cl), assuming (S1) and
(S2).

It suffices therefore to show that (Ta) implies (S3). Assume a; b ≤ b. Then a ≤ b/b, whence
a∗ ≤ (b/b)∗ = b/b by respectively the first and second equations of (Ta). Hence a∗; b ≤ b, verifying
(S3).

Hence the class of relation algebras with star can be shown to be a finitely axiomatized variety
using (S1), (S2), and any one of (Ind), (Ta), or (Ng).

This proposition can be straightforwardly extended to residuated Boolean algebras. A key obser-
vation is that a\a is transitive in any residuated order, as noted in the section on residuation.

I do not know whether (S1)-(S2) and (Cl) implies (S3) in an arbitrary Boolean monoid, though I
conjecture it does not. I further conjecture that the obvious “left-handed” version of (S3) is not
equipollent with (S3), though with (S1)-(S2) it implies (Cl) for the same reasons as (S3) does, and
has a corresponding left-handed version of (Ind).

One noteworthy asymmetry between converse and star is that, whereas converse produces the
equations a; 0 = 0 and a; (b + c) = a; b + a; c, star consumes them, requiring a; 0 (normality) to
define reflexive transitive closure via (Ind) and a; (b + c) = a; b + a; c (additivity) in order that
(Ind) define no more than reflexive transitive closure. Thus in this equational microeconomy,
conservatively regulated by the direction of motion (back one for converse and forward many for
star), supply meets demand. In the absence of converse however we must meet star’s demand
artificially by adding normality and additivity to the basis.

4 Dynamic Algebras

4.1 Boolean Modules

Whereas a Boolean monoid lumps the logical and relative aspects of the calculus of relations into
a single sort, a Boolean module [Bri81] maintains the distinction. The resulting system is a little
more complex, but has several advantages: free models that are representable, and an equational
theory that is decidable and finitely axiomatizable yet complete for the representable modules.

The passage from Boolean monoid to relation algebra involves taking on the operations converse
and star. We will set up Boolean modules and dynamic algebras along roughly the same lines,
obtaining dynamic algebras from Boolean modules by adding some operations defined relative to
the Boolean module. This approach differs from that of Kozen [Koz79c, Koz79a] and Brink [Bri81],
who assume those operations are given as an algebra of scalars prior to the installation of that
algebra in the module.

A Boolean module (B,K, �) consists of a Boolean algebra B = (B,∨,¬) (following the customary
notation used in the dynamic logic literature), a set K of names of operators, and an operation
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� : K × B → B such that �(a, p), also written 〈a〉p, is the result of applying to p the Boolean
operator named by a. Following Jonsson and Tarski [JT48, JT51], a Boolean operator is a function
f : B → B on a Boolean algebra such that f(0) = 0 and f(p∨q) = f(p)∨f(q). We write 〈a〉 for the
operator named by a, and write 3 : K → (B → B) for the function defined by 3(a)(p) = �(a, p).

4.2 Kleenean Algebras

The type of a Kleenean algebra K = (K, +, 0, ; , ,̆∗ ) consists of five operations with respective arities
2,0,2,1,1 respectively. We abbreviate 0∗ to λ, the Kleenean algebra notation for the unit of the
monoid notated 1’ in RA.

The motivating example is a Kleenean algebra of relations on a set X. This is an algebra
K = 〈K, +, 0, ; ,∗ , 〉̆ where K = 2X2

and the operations have their standard interpretations for
binary relations. Thus a Kleenean algebra of relations on X is obtained as a reduct of Rel X by
dropping complement, then expanding by adding ∗ defined as reflexive transitive closure of binary
relations. A representable Kleenean algebra is an algebra isomorphic to a subalgebra of a Kleenean
algebra of relations. The delicate distinction that arose for Boolean monoids between the algebra
Rel X of subsets of the complete relation X2 and the algebra Eqv E of subsets of an arbitrary
equivalence relation E does not come up here since we no longer have either intersection or a top
element. Any representable relation algebra with star becomes a representable Kleenean algebra
when complement is dropped.

Redko [Red64] has shown that the equational theory of the representable Kleenean algebras without
converse is not finitely axiomatizable. Moreover Conway [Con71] has enumerated several finite
models of this theory which do not satisfy axiom (S3) (given in the section on star for Boolean
monoids) expressing that a∗ is the least reflexive transitive element dominating a. By Conway’s
Leap I shall mean the 4-element Kleenean algebra in which K = {0, 1, 2, 3} with both + and ;
interpreted as numeric max except for a; 0 = 0 = 0; a. Take a∗ = a + even(a), i.e. 0∗ = 1∗ = 1,
2∗ = 3∗ = 3. This satisfies the equational Kleenean theory for representable Kleenean algebras, yet
20 ∨ 21 ∨ 22 ∨ . . . 2i = 2 for i ≤ 3 (and hence beyond) while 2∗ = 3, defeating S3. Hence if Kleenean
algebras satisfy both the equational theory of representable Kleenean algebras and (S3) they do
not form a variety.

The question then arises as to the appropriate definition of a Kleenean algebra. The previous
paragraph notwithstanding, we shall define Kleenean algebras equationally, albeit in an indirect
way that circumvents the above difficulties.

4.3 Dynamic Algebras

A dynamic algebra is a Boolean module (B,K, �) in which the set K has been expanded to a
Kleenean algebra, satisfying the following five equations, one for each Kleenean operation.5 In this

5Strictly speaking converse is not a Kleenean operation. However it augments Kleene’s four operations for regular
expressions [Kle56, HU79] without any fuss.
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approach the Kleenean algebra is defined as an integral part of a dynamic algebra, as opposed to
being defined externally to a dynamic algebra, as is customary with algebras of scalars.

These equations are essentially the Segerberg axioms [Seg77] for Fischer and Ladner’s propositional
dynamic logic [FL79], translated into equational form. The differences from Segerberg’s system are
the equations for converse, which are due to Parikh [Par78], and the weakening to monotonicity
of the equations that would have expressed normality and finite additivity, namely 〈a〉0 = 0 and
〈a〉(p ∨ q) = 〈a〉p ∨ 〈a〉q, which can be recovered from the equation for converse.

We use the abbreviations p ≤ q for p ∨ q = q, p ∧ q for ¬(¬p ∨ ¬q), and [a]p for ¬(〈a〉¬p).

〈0〉p = 0 (D1)

〈a + b〉p = 〈a〉p ∨ 〈b〉p (D2)

〈a; b〉p = 〈a〉〈b〉p (D3)

〈a〉[ă ]p ≤ p ≤ [ă ]〈a〉p (D4)

p ∨ 〈a〉〈a∗〉p ≤ 〈a∗〉p ≤ p ∨ 〈a∗〉(〈a〉p ∧ ¬p) (D5)

A dynamic algebra with test is one with an operation ? : B → K, notation ?(p) = p?, satisfying

〈p?〉q = p ∧ q. (D?)

The first three equations define 〈0〉 to be the constantly zero operator, 〈a + b〉 to be the pointwise
disjunction of 〈a〉 and 〈b〉, and 〈a; b〉 to be the composition of 〈a〉 and 〈b〉. If we translate 〈a〉p as
a; b then equation (D4) can be seen to be exactly the equation rK,Kr of relation algebra, which as
can be seen from the lattice diagram for those axioms entails the theory R of right-handed relation
algebras. Similarly equation (D5) so translated can be seen to be the relation algebra equation for
star.

The arguments showing that the relation algebra equations for converse and star implicitly define
those operations carry over to this situation without difficulty; see [Pra79a, Pra80a] for the case of
star. Since [ă ] is the right adjoint of 〈a〉 [Mac71, Thm IV.5-1], 〈ă 〉 is the dual right adjoint of 〈a〉.
〈a∗〉 is the reflexive transitive closure of 〈a〉, satisfying 〈a〉 ≤ 〈a∗〉, 〈a∗∗〉 = 〈a∗〉, 〈a〉 ≤ 〈b〉 implies
〈a∗〉 ≤ 〈b∗〉, and 〈a〉 is reflexive and transitive if and only if 〈a∗〉 = 〈a〉. (An operator f is reflexive
when p ≤ f(p) and transitive when f(f(p)) ≤ f(p).)

A preKleenean algebra is the Kleenean algebra of a dynamic algebra. A separable dynamic algebra
[Koz79a] is one for which 3 is injective, satisfying the Π0

2 sentence ∀p[〈a〉p = 〈b〉p] → a = b.
An intensional dynamic algebra is an algebra isomorphic to a subalgebra of a separable dynamic
algebra. A Kleenean algebra is the Kleenean algebra of an intensional dynamic algebra. We denote
the corresponding classes SDA, IDA, and KA respectively.

Proposition 10 IDA is a quasivariety.

Proof: Since SDA is defined by equations and a Π0
2 sentence it is an elementary class closed under

direct products. Hence its closure IDA under isomorphisms and subalgebras is a quasivariety.
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4.4 Examples

In the following example the Boolean and Kleenean elements are respectively unary and binary
relations on a set X. This is the motivating example of a dynamic algebra, and corresponds to
Example 1 of a Boolean monoid, as well as to our notion of a Kleenean algebra of relations.

Example 1. Let Kri X = (B,K, �) consist of the Boolean algebra B = (2X ,∨, 0,∧, 1,¬) of unary
relations on X, and the Kleenean algebra K = (2X2

,+, 0, ; ,∗ , )̆ of binary relations on X, with
symbols interpreted as for Rel X, and such that star is reflexive transitive closure, 〈a〉p = {x |
∃y[xay ∧ p(y)]}. This example may be extended to a dynamic algebra with test by adjoining the
operation p? = {(x, x)|p(x)}.

A Kripke structure on X is any subalgebra of Kri X. The Boolean elements of a Kripke structure
are unary relations and the Kleenean binary. It may be verified that Kripke structures satisfy all
the equations, those for star and converse being the most challenging. A representable dynamic
algebra (RDA) is a dynamic algebra isomorphic to a Kripke structure. These form the class RDA.

Proposition 11 RDA is a quasivariety ([Ném82]).

Proof: It suffices to show that the direct product of a family (Kri Xi) of Kripke structures is an
RDA. Its Boolean component is the power set of

∑
i Xi, the disjoint union of the Xi’s. Its Kleenean

component is isomorphic to the power set of the equivalence relation on
∑

i Xi definable as
∑

i X
2
i ,

relating just those pairs of elements from the same Xi.

Proposition 12 RDA ⊆ IDA.

Proof: Every Kri X is separable. RDA is the ISP closure of the Kri X while IDA is the ISP
closure of SDA.

It follows from a result of Kozen [Koz81] that the converse does not hold.

In the next example the Boolean and Kleenean elements are languages as sets of strings over a
common alphabet X. For languages we must omit converse and test, but see the section on “model
robustness” for an approximation to Lan X containing converse.

Example 2. Let Lan X = (B,K, �) consist of the Boolean algebra B = (2Xω
,+, ∅,∼) of infinitary

languages (sets of infinite-to-the-right strings on X), and the Kleenean algebra K = (2X∗
, 0,+, ; ,∗ )

of all sets of finite strings, with operations (omitting converse) having their usual meaning for
languages [Kle56, HU79]. Take 〈a〉p to be the concatenation of languages a and p. We now have a
dynamic algebra without converse.

All axioms save (D5b) (right hand inequality of (D5)) are easily verified. For (D5b), given any
string s ∈ 〈a∗〉p find the least n such that s = a1 . . . ant for strings ai ∈ a and t ∈ p. If n = 0 then
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s = t and s ∈ p. Otherwise ai . . . ant 6∈ p for 1 ≤ i ≤ n or we could find a smaller n. In particular
ant 6∈ p whence ant ∈ 〈a〉p− p, so s ∈ 〈a∗〉(〈a〉p− p).

From any nonempty infinitary language L not containing the symbol 0 we may construct the
language p = 0L as a universal separator. If s is in a but not b then s0L is a nonempty subset of
〈a〉p but is disjoint from 〈b〉p. This makes Lan X separable.

4.5 Representability and Completeness

Thus far dynamic algebras seem very much like relation algebras, using essentially the same equa-
tions to essentially the same effect. However, whereas the relation algebra axioms incompletely
axiomatize the representable relation algebras, the dynamic algebra axioms completely axiomatize
the representable dynamic algebras. We may put this more graphically as follows.

A representable Boolean algebra is an algebra isomorphic to a field of sets. That is, the class
RBA of such algebras is the quasivariety ISP(2) generated by the two-element Boolean algebra. A
Boolean algebra is a complemented distributive lattice, conditions expressible with finitely many
equations and thus making the variety BA of Boolean algebras finitely axiomatized. Evidently
RBA ⊆ BA. It is one of nature’s little pranks that RBA is a variety, but it is a bigger prank that
RBA = BA [Sto36].

The class RRA of representable relation algebras is the quasivariety generated by algebras Rel
X. The variety RA of relation algebras is finitely based, with RRA ⊆ RA. We again have
the little prank, that RRA is a variety [Tar55]. The difference is that we no longer have the big
prank: RA 6= RRA [Lyn50], and although there are infinitely many finitely axiomatizable varieties
between these two, RRA itself is not finitely axiomatizable [Mon64].

With dynamic algebras the situation is in between these two. The class RDA of representable
dynamic algebras is the quasivariety generated by algebras Kri X. The variety DA of dynamic
algebras is finitely based, with RDA ⊆ IDA ⊆ DA. Now the free IDA’s are residually finite
[Pra79a] and moreover are representable [Ném82], whence the equational theory of IDA completely
axiomatizes RDA, i.e. RDA and IDA have the same equational theory. Also RDA, IDA, and
DA have the same Boolean equational theory. This is a weaker connection than that of RBA=BA,
but a stronger one than RRA ⊆ RA, where the equational theory of RA is strictly less than that
of RRA.

To show that every free IDA is representable, let us consider the effect of the passage from dynamic
algebras to intensional dynamic algebras on the equational theory. This effect is quite striking: the
Boolean theory does not change while the Kleenean theory is transformed at one stroke from the
vacuous theory to the theory of Kleenean algebras.

Since the only axioms of DA are Boolean, ΘK
DA is trivial, consisting just of all equations a = a.

Hence the Kleenean variety generated by the preKleenean algebras is just the anarchic variety
consisting of all word algebras of type DAK and their quotients. As we shall see momentarily
however the preKleenean algebras are considerably more organized than their vacuous theory might
suggest.

17



Proposition 13 A Boolean module has at most one expansion to a separable dynamic algebra.

Proof: In an SDA, the elements of K serve as distinct names for functions on B. Axioms
(D1)-(D3) are easily seen to define the corresponding three operations uniquely, as respectively
the constantly zero operation, pointwise disjunction, and composition. Axioms (D4) and (D5) also
uniquely define converse and star respectively, for the same reasons as do the corresponding axioms
for these operations in RA. For completeness we give the proof in full here.

The left half of (D4) can be written equivalently as p ≤ [a]〈ă 〉p (p is universally quantified here).
The right half says that for any q such that p ≤ [a]q (and we have just seen that 〈ă 〉p is such a
q), we must have 〈ă 〉p ≤ q, i.e. 〈ă 〉p is the least q for which p ≤ [a]q. To see this, let q satisfy
p ≤ [a]q. Then by monotonicity 〈ă 〉p ≤ 〈ă 〉[a]q. But the latter is bounded by q, i.e. 〈ă 〉p ≤ q.
There can only be one least such q, whence 〈ă 〉 is uniquely determined.

A similar argument, given in [Pra79a, Pra80a], obtains for star. The left half of (D5) says that
〈a∗〉p is among those q’s satisfying p∨ 〈a〉q ≤ q. But any such q satisfies p ≤ q, so by monotonicity
〈a∗〉p ≤ 〈a∗〉q. But the latter is bounded by q ∨ 〈a∗〉(〈a〉q ∧ ¬q), and 〈a〉q ∧ ¬q vanishes (since
〈a〉q ≤ q, whence so does < a∗ > (〈a〉q ∧ ¬q), yielding 〈a∗〉p ≤ q. Thus 〈a∗〉p is the least such q.
But there can only be one least such q, whence 〈a∗〉 is uniquely determined.

We now provide a sense in which the preceding result extends to all DA’s. In the following, by
a homomorphism we mean an operation-preserving function between algebras of the same type,
or in the case of an algebra with n sorts, then n “parallel” such functions. For the two sorts of
dynamic algebras a homomorphism f : D → D′ must be a pair (fB, fK) consisting of Boolean and
Kleenean homomorphisms fB : B → B′ and fK : K → K′ satisfying fK(a + b) = fK(a) +′ fK(b),
fB(p ∨ q) = fB(p) ∨′ fB(q), fB(〈a〉p) = 〈fK(a)〉′fB(p), fK(p?) = fB(p)?′, and similarly for the
other operations. By a quotient of an algebra D we mean as usual the equivalence class of all
homomorphic images of an algebra isomorphic to a particular such image, or equivalently, the
representative D/ ∼= of that class whose elements are the congruence classes of some congruence ∼=
on D (namely the kernel of the above “particular image”).

Proposition 14 3 is a preKleenean homomorphism.

Proof: If we denote pointwise disjunction in B → B by +′, then the equation defining + merely
asserts 3+ = +′3, and similarly for the other four Kleenean operations, bearing in mind the
preceding result that these operations are uniquely determined for B → B. But this is then just
the assertion that 3 : K → (B → B) is a homomorphism of preKleenean algebras K and B → B.

It follows that the kernel of 3 is a preKleenean congruence. This was first observed for ∗-continuous
dynamic algebras by Kozen [Koz79b, Koz80] (see the history section). It was generalized to the
weaker Segerberg notion of star by the author [Pra80a].

Proposition 15 Every dynamic algebra D has a unique quotient D′ in IDA such that B = B′.
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Proof: By the preceding proposition, the unique factorization of the function 3 as the composition
of an injection 3′ with a surjection q is such that q is a quotient. This yields a dynamic algebra
D′ as a quotient of D; no finer quotient will land in IDA. For uniqueness, the action of 3 must
be preserved by any homomorphism (via the natural isomorphism relating 3 : K → (B → B) to
� : K ×B → B, “homomorphism” being defined so as to preserve the latter). Hence if B does not
change, distinct operators must remain distinct, whence no coarser quotient will preserve B.

Proposition 16 ΘB
IDA = ΘB

DA.

Proof: Since IDA ⊆ DA it suffices to show ΘB
IDA ⊆ ΘB

DA. From the preceding theorem we
infer that every dynamic algebra D is isomorphic to a subalgebra of the product of an intensional
dynamic algebra D′ with a “Boolean-trivial” dynamic algebra D′′, namely the quotient of D fixing
K and collapsing B to a point. Hence all equations in ΘIDA hold of D′, and trivially of D′′, and
hence of D.

But whereas postulating injectivity of diamond does not increase the Boolean theory, it takes the
Kleenean theory from the vacuous theory to the theory of Kleenean algebras!

Proposition 17 An intensional dynamic algebra (B,K,3) for which B is complete and atomic is
representable. In particular every finite IDA is representable.

Proof: Taking X as the set of atoms of B, interpret B as 2X , each a ∈ K as the relation
paq ≡ (q ≤ 〈a〉p), and 3 as in a Kripke structure. Since a complete and atomic Boolean algebra
is isomorphic to the power set of its atoms, and since all joins exist and are preserved by 〈a〉, this
Kripke structure is isomorphic to the given dynamic algebra.

By free dynamic algebra we shall understand a free algebra of the variety generated by dynamic
algebras. Conway’s Leap, as defined in the section on Kleenean algebras, shows that this variety
contains algebras that do not match our intuition about dynamic algebras. The free algebras of this
variety turn out not to so violate intuition, and indeed are not only dynamic algebras, justifying the
name, but even more importantly are representable. Showing this will be our main goal, allowing
for the occasional digression.

Proposition 18 Every free dynamic algebra is a subdirect product of finite dynamic algebras
[Pra80a].

Proof: With the assumption of freedom we are able to translate into dynamic algebra terminology
Fischer and Ladner’s filtration construction [FL79], whereby from any Kripke structure satisfying
a particular formula they construct a finite Kripke structure satisfying it. Nothing in their proof
makes essential use of attributes of representable dynamic algebras not already possessed by arbi-
trary dynamic algebras. The reader is referred to the proof of Theorem 5 [Pra80a] for the short
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(half a page) details of this translation. The case of a free dynamic algebra on the empty set of
Boolean generators is treated by Németi [Ném82].

Corollary 19 HSP(RDA)=HSP(IDA). That is, ΘRDA = ΘIDA.

Proof: Every intensional dynamic algebra is a quotient of a free intensional dynamic algebra.
Each of these in turn is a subdirect product of finite intensional dynamic algebras, which in turn
are representable. HSP preserves equations, whence the theory of Kripke structures is a subset of
that of intensional dynamic algebras.

Corollary 20 The Segerberg axioms are sound and complete relative to Kripke structures [Pra80a].
That is, ΘB

RDA ⊆ ΘB
IDA.

Corollary 21 Every free intensional dynamic algebra is representable. [Ném82]

(With the previous corollary as my goal I overlooked this nice strengthening in [Pra80a].)

Proof: For any quasivariety K the free algebras of HSP(K) belong to K. RDA is a quasivariety
and HSP(RDA)=HSP(IDA).

4.6 Computational Complexity

Theorem 22 There exist 1 < c < d such that ΘDA and its complement Θ̄DA are not in DTIME(cn)
[FL79] but are in DTIME(dn) [Pra79b].

That is, the time required to deterministically test either satisfiability or validity of dynamic algebra
equations is one exponential in the number n of occurrences of variables in the formula, a bound
that cannot be improved by more than by a polynomial of degree logcd. For comparison, the best
deterministic procedure known for pure Boolean equations, i.e. propositional calculus, requires
time 2n/4 or 1.1892n [VG88], down to 1.093n for equations t = 0 when t is in conjunctive normal
form. Fischer and Ladner do not supply a specific value for c, but their proof is constructive and
if pushed hard might conceivably yield a c as high as 1.01. Thus we are still some distance from
knowing whether dynamic logic is any harder to decide in practice, i.e. deterministically, than
Boolean logic, though close enough that these two bounds may well pass each other within the
coming decade.
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4.7 The Language Model

It can be shown [Pra79b] that the equational theory of Example 2 is that of IDA, in the absence
of converse.

We could alternatively have taken B = 2X∗
. This is still an intensional dynamic algebra, with any

single string serving as a universal separator. The difference is that the equational theory of the
resulting class is strictly larger than that of IDA. In particular 〈a∗〉([a]p∨ [a]¬p) is now a theorem
for any a and p. This asserts that for any predicate it is possible to run any program sufficiently
often that at its next execution it is deterministic with respect to that predicate.

We may extend Example 2 to include converse by embedding K (an algebra of languages) in the
larger algebra K+ of all (normal additive) operators on B. We then define 〈ă 〉p = {s | 〈a〉s∧p 6= 0}.
This defines 〈ă 〉 as an operator but it does not define ă as a language.

To verify (D4a) (left hand inequality of (D4)), consider any string t ∈ 〈a〉[ă ]p. Then there exists
s ∈ [ă ]p such that t ∈ 〈a〉s. So s 6∈ 〈ă 〉¬p, whence 〈a〉s ∧ ¬p = 0. Hence t 6∈ ¬p, i.e. t ∈ p.
For (D4b), suppose s ∈ p. Then 〈a〉s ≤ 〈a〉p, that is, 〈a〉s ∧ ¬〈a〉p = 0, whence s 6∈ 〈ă 〉¬〈a〉p, i.e.
s ∈ [ă ]〈a〉p.

In order to add the test operation p? to this example we evidently require that the structure satisfy
the sentence ∀p∃a∀q[〈a〉q = p ∧ q]. But Example 2 falsifies this at p = 0Xω. For if a 6= 0 then take
q = 1Xω making p ∧ q = 0 6= 〈a〉q, while if a = 0 then take q = p.

I do not have a completely satisfactory solution. Here is as much as I have been able to do. Modify
B to satisfy the sentence as follows. The infinite string (AB . . . Y Z)ω has 26 distinct suffixes, take
B to be the Boolean algebra consisting of the 226 sets of such suffixes. Take K as before but with
X chosen to include the 26 letters. Define 〈a〉p = ap ∩ 1 (1 being the top of B, i.e. the set of 26
suffixes) and p? = π26(p) where π26(p) is the set of all length-26 prefixes of strings of p. Axiom (D?)
is now easily verified, and the arguments for the other axioms are easily modified to accommodate
this change to diamond.

But now we have lost separability. By modifying K along the same lines, changing a; b from
concatenation to something more discriminating, we could restore it. But this completely loses the
spirit of more Lan X. This raises the somewhat vague question, is there a way to define test for a
Lan-like dynamic algebra?

The beginning of Example 2 (no converse and test) appears in [Pra80a]. The modification used
to define test is essentially the result of “the LAN construction” [Pra79b] used to show that the
theory of Lan X coincides with the theory of dynamic algebras, the difference being that we did
not cater for test there, allowing complement to be taken relative to Xω rather than to Lω as here.
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5 Reflections

For a change of pace let us reflect on some of the philosophical issues bearing on dynamic algebras
and their relationship to relation algebras.

5.1 Analysis

Why do Boolean modules and dynamic algebras have so many properties that relation algebras
lack? I like to think of it in terms of holding the two essential ingredients of dynamic and relation
algebras at the proper distance. Too far apart and all you have is a Boolean algebra and a monoid.
Too close and they interfere destructively.

Brink [Bri81] argues that Boolean modules are relatively well-behaved compared to relation alge-
bras. I make a similar point in the context of regular algebras versus dynamic algebras [Pra79a,
Pra79b, Pra80a]. Redko [Red64] has shown that the equational theory of regular algebras has no
finite basis. Conway [Con71] has observed that this theory has a three-element model in which
x0 + x1 + . . . + xn is constant with increasing n > 0 yet x∗ is not that constant, a discontinuity we
refer to as Conway’s Leap. Replacing one-sorted regular algebras by two-sorted dynamic algebras
disposes of both these aberrations, as we will see later in the section on properties of dynamic
algebras.

The common idea here seems to be that intersection and composition in too close proximity only
“fight” each other. If instead each is moved to an appropriate sort, a logical sort accommodating
the Boolean operations and a relative sort for the Kleenean operations, the separation seems to
encourage cooperation instead of competition.

5.2 Star, Converse, and Test

Star has turned out to be converse’s long-lost fraternal twin. Star should have been included in
relation algebras from the outset. Converse without star is a piston without a crankshaft, or cos(x)
without eix.

Test restores strong connectivity of information flow around the algebra. This flow obtains vacu-
ously in one-sorted relation algebras.

Star and test are standard features of any imperative programming language. Star provides itera-
tion, while test enables the rational performance of choice and iteration, expressed deterministically
with if p then a else b and while p do a respectively, and more generally with guarded commands
[Dij76].

The logic-of-programs significance of dynamic algebra is as follows. The set X is viewed as the
states of a computer. Binary relations are viewed as programs: the meaning of (x, y) as an element
of a program is that when that program starts in state x it may stop in y. A deterministic
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program is one that is a partial function. The program a; b performs a then b. The program a + b
nondeterministically chooses to perform one of a or b. The program a∗ nondeterministically chooses
an i ≥ 0 and performs ai, that is, a; a; . . . ; a i times. The test program p? changes nothing but
stops only if p holds, otherwise it is said to block. The programming construct “if p then a else
b” can then be expressed as (p?; a) + (¬p?; b), while “while p do a” can be written (p?; a)∗;¬p.
The program ă “runs a backwards;” a may be deterministic without ă being deterministic, e.g.
the deterministic program that replaces x by its square when run backwards nondeterministically
replaces x by one of its square roots.

5.3 Merits of Decidability

I would like to pass judgment on the value of decidability in mathematical theories. One may with
considerable precedent take the position that undecidability, if not lack of a finite basis, is necessary
in any theory rich enough to serve as a foundation of mathematics [TG87]. After all is not all of
mathematics founded on Zermelo-Fränkel set theory, evidently an undecidable theory?

I would like here to question the inevitability of undecidability.

First, if we really did need a universal theory to serve as a foundation for mathematics I would
grant that such a theory should be undecidable. I question however the premise that a universal
theory is needed in the first place. The link between mathematics and foundations seems more
potential than actual. That is, it is a tenet of faith that “conventional” mathematical proofs can be
expanded out to a purely set theoretic argument, yet this is almost never done. Moreover category
theory has in recent years posed a challenge to set theory as an alternative and strikingly different
foundation, indicating the nonuniqueness of such expansions. The possibility then arises that no
such foundation is needed. Instead we may consider any given argument as being conducted in one
or more relatively small and localized theories.

Second, the purpose of theory is to organize thought, not to drown it, to be constructive without
being oracular. There is something of a movement in programming to make programs more like
proof systems, and computations more like proofs. Coming in the other direction there is similar
enthusiasm in logic for making proof systems more constructive, and proofs more like computations.
There is however the distinct possibility that the two movements will rush right past each other
and find that they have merely switched places!

Instead of founding mathematics on a single theory such as ZF or RA, why not view mathematics as
a large collection of domain-specific theories? The whole of mathematics founded on a single small
theory may have the real estate advantages of an inverted pyramid but it also has its structural
disadvantages.

I propose that the proper notions of constructivity in a logic are its computational complexity and
its human surveyability. These elements should be present in proportions suited to the application,
mainly the former for a mechanical theorem prover, mainly the latter for computer aided instruction,
and in more even proportions for a mathematician’s mechanical apprentice.

This then speaks for computational tractability as an important criterion for judging the merits of
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any theory. If there is any distinction at all to be made between computation and logic it may well
be the respective thresholds of polynomial time and exponential time as criteria for tractability!

5.4 Induction as Termination at Convergence

Kozen’s original definition of dynamic algebra included ∗-continuity as a condition. The terminology
subsequently standardized on by Kozen and myself is “dynamic algebra” for the equational class
with the term “∗-continuous” added to denote the condition that 〈a∗〉p = p∨ 〈a〉p∨ 〈a〉〈a〉p∨ . . . =∨

i<ω ai; p.

Kozen [Koz81], p.175. argues for the practical value of the additional ∗-continuity condition as
follows. “Looping is inherently infinitary and nonequational; . . . Thus the equational approach
must eventually be given up if we are ever to bridge the gap between algebraic and operational
semantics.” To my recent query as to whether he still held this view he replied, “Strictly speaking,
no. Practically speaking, yes.” I would like to take this opportunity to offer my position on the
relative appropriateness of the two definitions of star.

The conditions differ only on the question of when iteration terminates. Under the equational
definition, iteration terminates at convergence, namely at q satisfying 〈a〉q ≤ q, whilst under the
stronger ∗-continuity condition it terminates at ω.

I prefer convergence rather than ω as the place to stop because ω is not first-order definable (in
the same sense that one may say that finiteness is not first-order definable), it is uneconomic for
short iterations, it is needlessly restrictive for long iterations, and it is a potential Achilles heel for
nonclassical dynamic logics.

While the class of dynamic algebras based on termination at convergence forms a quasivariety, that
based on termination at ω is not even first-order-definable. Just as one cuts hair at different lengths
for better appearance, and opens electrical circuits slowly for less electrical noise, so should one
terminate iteration at convergence to achieve the tameness of a quasivariety rather than always
exactly at ω, which goes beyond first-order logic.

In the classical formulation of dynamic logic adhered to in this paper, the economic argument
reduces to an esthetic quibble, there being no charge for “gedanken-iterations.” In nonclassical
frameworks however ∗-continuity may prove unsound. I have no feeling for whether ∗-continuity
will prove compatible with intuitionistic dynamic logic, but its nonconservatism seems quite opposed
to, and hence likely to be unsound for, the explicit conservatism of (intuitionistic) linear [Gir87]
dynamic logic.

I see no point in banning iteration beyond ω, in theory or in practice. The place in mathematics
of iteration beyond ω has long since been secured. Computer science has clung more recently than
mathematics to the superstition that all its practically accessible objects are finite. However any
questions as to the worldly meaning of iteration beyond ω in computation have surely been dispelled
by now by such applications as Manna and Dershowitz’s multiset orderings, involving iteration up
to ε0, and Schwichtenberg’s use of infinite ordinals to give an elegant short description of certain
rapidly growing functions and hence very large numbers. Today’s high level programming languages
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cannot afford to maintain the fiction that there is no iteration after ω. If the compiler’s target
language proscribes iteration beyond ω, it should be the compiler’s duty to shield the programmer
from this low-level restriction.

5.5 Intensionality

Extensionality occasionally gets in the way, and SDA would appear to constitute a simple but
well-motivated example of this phenomenon. The Kleenean elements of an SDA are extensional in
that separability connotes extensionality. Yet in the passage from SDA to IDA extensionality is
lost.

If Kleenean elements were Gödel numbers then we would obtain intensionality as a basic property
of acceptable Gödel numberings, that there is no bijective Gödel numbering of partial recursive
functions. But any such connection with Gödel numbering or effectiveness can only be made via
the computer science origins of dynamic algebra, not via its inherent structure, nothing in which
hints of such a connection. We have only an abstract algebra of programs combined with imperative
control structures, with no reason to suppose that the programs are not distinct partial recursive
functions, or at least relations.

Instead intensionality arises here despite our efforts to achieve extensionality, when we pass from
SDA to the quasivariety IDA by taking subalgebras.

Almost the same transition is made by Kozen [Koz81] when he passes from separable to inherently
separable dynamic algebras, where the essential advantages of extensionality are preserved without
preserving the extensionality itself. Kozen defines an inherently separable dynamic algebra as
one sharing its Kleenean component with a separable dynamic algebra. The notion of intensional
dynamic algebra introduced in this paper makes it in effect an inherently separable dynamic algebra
for which the sharing is mediated via an inclusion between the two Boolean algebras, this being
a roundabout way of describing a subalgebra of a separable dynamic algebra. Clearly intensional
implies inherently separable for dynamic algebras, but I do not know whether the converse holds;
if it does the “almost” at the start of this paragraph may be removed.

5.6 Origins of Dynamic Algebra

My adoption of universal algebra in 1979 represented for me the transfer to logic of a principle I
previously understood only as a programmer. Unsound logic, meaning a discrepancy between a
theory T and a class of (real or fictitious) worlds W , is in programming terms a bug. The connection
between programming and logic can be made by substituting abstract program for theory, concrete
program for proof system, computation for proof, and instruction step for proof step, leaving the
notion of model unchanged.

Whereas a beginning programmer fixes a bug by fixing the program, experience teaches the principle
that fixing the world is also an option. Unix for example was perceived by some in the early 1980’s
as a bug in the world of operating systems. This bug has been fixed, or at least attenuated, by
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adapting both Unix and the world to each other.

So it goes with logic. Given a proof system denoting a theory T and a class W of typical worlds,
to prove T complete for W , an amateur logician such as myself would think only to compare T
to other T ’s while holding W fixed. The first completeness proof [Par78] of Segerberg’s axioma-
tization [Seg77] of PDL however proceeded by changing both, reflecting Parikh’s extensive logical
background.

Failing to understand Parikh’s proof, and also wanting to understand the relationship of the proof
theory to the problem of deciding PDL theoremhood, I undertook to find a structure that would
work for me both as an understandable completeness proof and a decision method. This resulted in
[Pra78], extensively revised as [Pra80b]. The former axiomatized dynamic logic in the language of
Gentzen sequents, the latter extended this approach to a theory whose atomic formulas were u |= p
meaning “state u satisfies proposition p” and u〈a〉v meaning “from state u program a can halt in
state v.” In these proofs I held Kripke structures themselves to be the only models and all the rest
as various proof systems of varying distances from Kripke structures, with completeness proved for
the remoter ones via those closer to Kripke structures where completeness was more obvious.

It was at about this time in 1978 that Dexter Kozen conceived the notion of dynamic algebra. He
mentioned the concept to me, not by name that I recall, towards the end of 1978 when I visited
IBM Yorktown Heights, and said there might be a representation theorem there. At the time I saw
no connection with algorithms and completeness proofs for dynamic logic. I had no idea then of
the role played by representation theorems in completeness proofs that work with many W ’s and
one T .

At STOC-79 in April I recounted an intriguing equational derivation to a group of about eight dy-
namic logic enthusiasts, without however being able to formulate an associated theorem. (It turned
out to be the proof that the inductive definition of star entailed the definition as local reflexive
transitive closure.) Thinking that the derivation might play a role in an algebraic completeness
proof for an equational theory, but never having seen an equational completeness proof before, I
asked Janos Makowsky’s advice. He recommended Henkin’s paper on the logic of equality, a ped-
agogically drawn-out universal algebra proof that the equational theory of the monoid of natural
numbers is completely axiomatized by the theory of commutative monoids. I found it the perfect
Rosetta stone for learning how to translate syntactic insights about proofs into semantic ones.

This led to my formulation and submission to FOCS-79 in early May of a semantic proof that half
a dozen models of programming logic were all completely axiomatized by the equational theory
of PDL [Pra79b]. The proof proceeded by showing that any algebra of those classes could be
constructed from the algebras of a neighboring class by homomorphisms, subalgebras, and direct
products, thereby establishing a strongly connected graph of inclusions between the equational
theories of the classes. One of the classes consisted of the models of Segerberg’s axioms, which I
then called Hoare algebras. That this semantic proof method is complete is an immediate corollary
of Birkhoff’s theorem [Bir35] that every class closed under homomorphisms, subalgebras, and direct
products forms a variety.

The one step in this proof that I did not supply was the inclusion ΘFKRI ⊆ ΘDA, FKRI denoting
the class of finite Kripke structures. This was not a lacuna in the proof since it is the statement
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of completeness of the Segerberg axioms, which by then had no shortage of published proofs.
Nevertheless I thought it would be nice to make the whole proof purely algebraic by finding the
proper HSP formulation of the completeness proof. This however I was unable to do in time for
the FOCS-79 deadline.

Shortly after submitting that paper I received a manuscript from Dexter Kozen [Koz79b]. It
gave the full details of Kozen’s dynamic algebra (a term I subsequently adopted for the proceedings
version of my paper). Kozen’s notion was the same as mine in most respects. The biggest difference
from mine was that Kozen, like Brink, modeled his definition on that of an R-module over a ring
R, where the notion of a ring is presumed to be given a priori. Thus Kozen took K to be what
amounted to a semiring with star satisfying a∗ =

∨
i<ω ai, with a; b∗ =

∨
a; bi and a∗; b =

∨
ai; b. In

contrast my definition satisfied no Kleenean equations. Since that paper was about completeness
of the Boolean theory the missing Kleenean theory presented no problem.

This led two months later to my proof [Pra79a] that every free separable dynamic algebra was a
subdirect product of finite separable, hence representable, dynamic algebras. I later rewrote this
to reduce the length of the proof proper to only half a proceedings page [Pra80a], at which point I
felt I had a good grip on why Segerberg’s axioms were complete.

Further reflection on the meaning of Segerberg’s induction axiom led me to propose a formulation of
the least-fixpoint or µ-calculus for Boolean modules [Pra81]. This would appear to be the first time
that the notions of least fixpoint and Boolean module were brought together. This juxtaposition
has since enjoyed considerable attention from the computer science community, most notably in its
expression as Kozen’s Lµ calculus [KP83].

Acknowledgments. I am very grateful to Dexter Kozen for his insights in 1979 which were most
helpful to me in clarifying my thinking on this subject. Much email traffic and long phone calls to
George McNulty and Roger Maddux turned up many interesting ideas and facts bearing on this
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