Verifying concurrent C programs in Coq

Jean-Marie Madiot
joint work with Santiago Cuellar, Andrew Appel

Princeton University

Gallium seminar, January 4, 2016

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 1/32

Top to bottom verified sofware development

Verified software development:
m from top: specifications, program logics, static analysers

m to bottom: models of low-level architectures.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016

2/32

https://vst.cs.princeton.edu/

Top to bottom verified sofware development

Verified software development:
m from top: specifications, program logics, static analysers

m to bottom: models of low-level architectures.

Existing tools perform well:
m reasoning: powerful program logics and analysers,
m translations: CompCert certified compiler,

m models of weak memory for different architectures.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016

2/32

https://vst.cs.princeton.edu/

Top to bottom verified sofware development

Verified software development:

m from top: specifications, program logics, static analysers
m to bottom: models of low-level architectures.

Existing tools perform well:

m reasoning: powerful program logics and analysers,
m translations: CompCert certified compiler,

m models of weak memory for different architectures.

The Verified Software Toolchain (VST) project in Princeton can already
verify complex C programs in Coq.

https://vst.cs.princeton.edu/

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 2 /32

https://vst.cs.princeton.edu/

Top to bottom verified sofware development

Verified software development:

m from top: specifications, program logics, static analysers
m to bottom: models of low-level architectures.

Existing tools perform well:

m reasoning: powerful program logics and analysers,
m translations: CompCert certified compiler,

m models of weak memory for different architectures.

The Verified Software Toolchain (VST) project in Princeton can already
verify complex C programs in Coq.

https://vst.cs.princeton.edu/

This talk: we try and extend VST to concurrent C programs.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 2 /32

https://vst.cs.princeton.edu/

Architecture of VST

C source program
v v

¥

7 other .
. verifieq | Contributors:
|
Verifiable C | jogram ' Andrew Appel
language & program logic | analysis | .
\ tools ! Lennart Beringer

Aquinas Hobor (PhD '08)

VST retargetable Robert Dockings (PhD '12)
Separation Logic Gordon Stewart (PhD '15)
T 2 2 Joey Dodds (PhD '15)
COMPCERT Qinxiang Cao (grad student)
verified C compiler Santiago Cuellar (grad student)
(from INRIA) Nick Giannarakis (grad student)
3 3 Jean-Marie Madiot (postdoc)

verified machine language program

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 3/32

Architecture of VST

C source program
v v

¥ ¥

Separation Logic
¥ ¥ ¥ ¥
COMPCERT

verified C compiler
(from INRIA)

VST retargetable J

verified machine language program

m CompCert : C program — Power PC code: preserves the semantics
m VST's separation logic: predicates on this semantics,

m VST's program logic: functional correctness of such programs.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 3/32

VST's higher-order separation logic

P:= .. vi4 local variables
p—4,p— _ pointers, shape
f:P—Q function pointers (indirection)

np embedding of Coq propositions
A,V usual logical operators

px. P recursion

Ve.P,3x. P impredicative quantification

P xQ,P (@ non-aliasing (separation)

Recent work was necessary to handle all those features:

Step indexing (Appel, McAllester, TOPLAS 2001)

Step indexing + indirection (Ahmed, Appel, Virga, LICS 2002)
Step indexing + impredicativity (Ahmed PhD thesis 2004)

Very Modal Model (Appel, Melligs, Richards, Vouillon, POPL 2007)
Indirection Theory (Hobor, Dockins, Appel, POPL 2010)

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 4 /32

Example of a proof of a program

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq

Example of a C program

struct list {int head; struct list *tail;};

struct list *merge(struct list *a, struct list *b) {
struct list* ret;
struct list** x = &ret;
while (a && b) {
if (a-=head <= b-=head) {
X = a;
a = a->tail;
} else {
*x = b;
b = b->tail;
}
x = &((*x)-=tail);
*x = (a)?a:b;
return ret;

}

To notice: addressable local variables, pointer to undefined values, loop
invariant with partially defined list segments, pointer tricks, no leak.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 5/32

Same program in verifiable C

#include <stddef.h>
struct list {int head; struct list *tail;};

struct list *merge(struct list *a, struct list *b) {
struct list* ret;
struct list* temp;
struct list** x;
int va, vb, cond;
X = &ret;
cond = a != NULL & b '= NULL;
while (cond) {
va = a->head;

vb = b->head;
if (va == vb) {
*x = a;

x = &(a->tail);
a = a->tail;

x = &(b->tail);
b = b->tail;
+
cond = a != NULL && b != NULL;

}
if (a t= NULL) {

Transformation to verifiable C:

m temp: addressable variables

can't be returned

m va, vb: tests can be on local

expressions only

m cond: tests can't be

transformed in instructions

m loads and stores must be

top-level (which forbids
X = &((*x)—>tail);)

*x = a;
} else {
¥x = b;
}
temp = ret;
return temp;

Jean-Marie Madiot (Princeton)

(the transformation could be done au-
tomatically, but we still need to reason

on this program)

Verifying concurrent C programs in Coq

Gallium, January 4, 2016

6/ 32

Proof of merge.c

extract exists pre] for us. *)
renane a into init a.

rename b into init b.

clear a_b_.

Intros cond a b merged a_ b_ c_ begin.
forward.

(* The loop *}
forward while (merge_invariant _cond sh init_a init b ret_}
[L[[[[[condd 0] bO] mergedd] a 8] b 8] c 0] begind].
+ (* Loop: precondition = invariant *}
Exists cond a b merged a_b_c_ begin; entailer!.
+ (* Loop: condition has nice format *}
nou entailer!.
4 (* Loop body preserves invariant *)
clear - SH HRE HI H2.
rename condB into cond, a8 into a, bB into b, mergedd into merged,
28 intoa, bBinto b, c B into c_, begind into begin.
assert (a_ = nullval) by intuition.
assert (b_ = nullval) by intuition.
Wclear H2.
drop_LOCAL #anat; clear cond HRE
rewrite lseg unfold
destruct a as [|va a'l; simpl.
(* [al cannot be empty *}
normalize. now imtuition.
normalize.
intros a_*
normalize
(* Now the command [va = a-head] can procesd *}
rewrite list cell field at
fonard,

rewrite lseg_unfold with (vli=h }
destruct b as [[vb b'T; simpl.
(* [b] cannot be empty *}

nomalize; new intuition. U:%%- *goals* Bot (36,50) (Cog Goals -2
normalize.
intros b_*
normalize.
clear HZ H3.
verif merge.v 33% (234,36) Git-concurrency (U:%%- *response* All (1,0) (Cog Response

Jean-Marie Madiot (Princeton)

Verifying concurrent C programs in Coq

: merge init a init b = merged ++ merge a b
: cond = Int.zern <> a_ = nullval \/ b_ = nullval

POSTCONDITION := abbreviate : ret_assert

abbreviate : statement

:a_ = nullval

: b= nullval

LOCAL (temp a a_; temp b b

else field address (Tstruct _List noattr) [StructFm'Ld _taill ©)
var ret tlist ret ; temp cond (Vint cond)
SEP (" (lseg LS sh (map Vint 3) a_ nu'l'Lva'L)‘
“(lseg LS sh (map Vint b) b_ nullval);
*(data_at Tsh tlist (if merged then Vundef else begin) ret_);
“(lseg LS sh (map Vint (butlast merged)} begin c_};
“(if merged
then emp
else data_at sh t_struct_List (Vint (last merged), Vundef) c_b}}
(Ssequence
(sset _va
(Efield
(Ederef (Etempvar _a (tptr (Tstruct _List noattr)))
(Tstruct list noattr)) head tint)) MORE COMMANDS)
POSTCONDITION

Gallium, January 4, 2016

7/32

Concurrent programs

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq

Simple concurrent program

x = 0;

y = 0;

x++ || y++;
assert(x + y == 2);

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq

Proof of simple concurrent program

{r— _xy— _}
x = 0;
{z—0*xy— _}
y = 0;
{z— 0xy— 0}
x++ || oyt

(x) {z—1xy— 1}
assert(x +y == 2);
{z—1xym— 1}

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq

Proof of simple concurrent program

{r—_xy— _}
x = 0;
{z—0xy— _}
y = 0;
{r—0xy+— 0}
x++ || oyt

(x) {z—1xy— 1}
assert(x +y == 2);
{z— 1xy— 1}

{z+— 0} x++ {x — 1} {y = 0} y++ {y — 1}
{x—=0xy— 0} x++ || y+r+ {x— 1xy— 1}

(no “no interference”)

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 9 /32

Proof of simple concurrent program

x=0; y=0;
x++ || y++;
assert(x +y == 2);

The program above is safe.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq

Proof of simple concurrent program

x=0; y=0;
x++ || y++;
assert(x +y == 2);

The program above is safe.

But we have no shared resources.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016

10/ 32

Threads sharing memory

x = 0;
x++ || x++;
assert(x >= 0);

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq

Threads sharing memory

x = 0;
x++ || x++;
assert(x >= 0);

...race?

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq

Races in CompCert

There are no data races in CompCert/VST:

m most experimental logic with races are not proved sound for weakly
consistent caches;

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 12 / 32

Races in CompCert

There are no data races in CompCert/VST:

m most experimental logic with races are not proved sound for weakly
consistent caches;

m our program logic ensures the absence of race;

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 12 / 32

Races in CompCert

There are no data races in CompCert/VST:

m most experimental logic with races are not proved sound for weakly
consistent caches;

m our program logic ensures the absence of race;

m CompCert 2.0's semantics gets stuck at racy loads and stores, using a
permission model.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 12 / 32

Races in CompCert

There are no data races in CompCert/VST:

m most experimental logic with races are not proved sound for weakly
consistent caches:

m our program logic ensures the absence of race;

m CompCert 2.0's semantics gets stuck at racy loads and stores, using a
permission model.

Concurrent variants of CompCert:

m either [CompCert TSO, Sewell] racy programs with little ability for
the compiler to optimize

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 12 / 32

Races in CompCert

There are no data races in CompCert/VST:

m most experimental logic with races are not proved sound for weakly
consistent caches:

m our program logic ensures the absence of race;

m CompCert 2.0's semantics gets stuck at racy loads and stores, using a
permission model.

Concurrent variants of CompCert:

m either [CompCert TSO, Sewell] racy programs with little ability for
the compiler to optimize

m or [Compositional CompCert, Appel/Beringer/Stewart/Cuellar]
coarse-grain concurrency and optimizing compilation of memory
operations

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 12 / 32

Permissions in CompCert

CompCert memory model, version 2:
x> 4 rather than x4

m = Freeable | Writable | Readable | Nonempty

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016

13 / 32

Permissions in CompCert

CompCert memory model, version 2:
x> 4 rather than x4

m 1= Freeable > Writable > Readable > Nonempty

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016

13 / 32

Permissions in CompCert

CompCert memory model, version 2:
V>4 rather than z+— 4

m ::= Freeable > Writable > Readable > Nonempty

if a thread has Freeable, others have no permissions;
if a thread has Writable, others have at most Nonempty;
if a thread has Readable, others have at most Readable;

if a thread has Nonempty, others have at most Writable.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016

13 / 32

Permissions in CompCert

CompCert memory model, version 2:
V>4 rather than z+— 4

m ::= Freeable > Writable > Readable > Nonempty

if a thread has Freeable, others have no permissions;
if a thread has Writable, others have at most Nonempty;
if a thread has Readable, others have at most Readable;

if a thread has Nonempty, others have at most Writable.

Nonempty is “comparable with another non-NULL pointer”: in a == b, if
one of a or b is a pointer value, then either one of them must be NULL, or
both must be pointers to allocated objects (Nonempty ensures there are no
other Freeable).

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 13 /32

Permissions in VST

Refinement of CompCert’s permissions:

T — ° ’ o | /\
T T2
Joining permissions:
AN e AN N —e T=m O™
[] o o [] ° []

pHv=pSoxpSu
Embedding, depending on where the es are:

Freeable

N

Nonempty Writable

/N VR

Nonempty Nonempty Readable Readable

/N /NN N

Nonempty Nonempty Nonempty Nonempty Readable Readable Readable Readable

I\ -

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 14 / 32

Threads sharing memory

x = 0;
x++ || x++;
assert(x >= 0);

...race?

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq

Threads sharing memory, using binary semaphores

x = 0;
V(s);
P(s); || P(s);
X++; X++;
V(s); || V(s);
P(s);

assert(x >= 0);

no racel

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 14 / 32

Threads sharing memory, using semaphores in Pthreads

#include <pthread.h>
#include <semaphore.h>

void assert(int i) {i = 1/1i;}

sem_t s;
int x;

int main (void) {
pthread_t th;
X = 0;
sem_init(&s, 0, 0);
sem_post(&s);
pthread_create(&th, NULL, f, (void*)&x);
sem_wait(&s);

void* f(void *arg) {
sem_wait(&s);

X++; X++;

' sem_post(&s);
sem_post(&s); throed JENTIRY
pthread_join(th, NULL); } pthread_exit()i

sem_wait(&s);
sem_destroy(&s);
assert(x >= 0);
return 0;

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 15 / 32

Threads sharing memory, using binary semaphores

Binary semaphores contain permissions, here on x, which can be
transferred between threads:

P(s); || P(s);
X++; X++;

b I

V(s); || V(s);

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016

16 / 32

Threads sharing memory, using binary semaphores

Binary semaphores contain permissions, here on x, which can be
transferred between threads:

{s + lock[z]} {s + lock[z]}

P(s); P(s);

{5+ lock[z] ¥ 2 +> _} || {5+ lock[z] * = +> _}
{5+ lock[x] * x +> _} || {s +> lock[z] ¥ z +> _}
V(s); V(s);

{s = lock|[z]} {s = lock[z]}

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016

16 / 32

Threads sharing memory

Permissions can be refined to lock invariants:

{s = lock[In > 0 = +> n]} {s = lock[3n > 0 = +> n]}

P(s); P(s);
{s—=lock[In >0z n]«In>0z+>n} || {slock[3n >0z > n]+«3In >0z > n}
X4+ X++;
{s—=lock[In >0z n]«In>0z+>n} || {s—lock[3n >0z > n]+«3In >0z > n}
V(s); V(s);

{s > lock[Fn > 0 z +> n]} {s + lock[Fn > 0 = +> n]}

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 17 / 32

Threads sharing memory

Atomicity is not mandatory:

{s = lock[In > 0 = +> n]}

P(s);
{s>lock[Fn >0z +>n]+3In >0z +>n}
a = x;

x = a - 2; // x can be negative here
x=a+1;
{s—=lock[In >0z +>n]*+In>0z+>n}
V(s);

{s = lock[In > 0 = +> n]}

Jean-Marie Madiot (Princeton)

Verifying concurrent C programs in Coq

{s = lock[3In > 0 = +> n]}

P(s);
{s—=lock[Fn >0z +>n]*+3In>0z+>n}
a = x;

x =a - 3;

x=a+1;
{s—=lock[@Fn >0z +3n]*+In>0z+>n}
V(s);

{s = lock[In > 0 = +> n]}

Gallium, January 4, 2016

18 / 32

Threads sharing memory

Coming back to x++:

{s = lock[In > 0 = +> n]} {s = lock[In > 0 = +> n]}

P(s); P(s);
{slock[Fn >0z > nl+3In>0z+>n} || {s+lock[Fn >0z +3n]*3In>0 x> n}
X++; xX++;
{s>lock[Fn >0z > n]+3In >0z +>n} || {s+lock[Fn >0z +3n]+3In>0 x> n}
V(s); V(s);

{s — lock[In > 0 = +> n]} {s — lock[3In > 0 = +> n]}

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq

Threads sharing memory

{s+>lock[@n >0z —n]xz > }

x = 0;

{s+> lock[Fn >0 2+ n] x 2 +> 0}

V(s);

{s+ lock[Tn >0 z +> n]}

(P(s); x++; V(s)) || (P(s); x++; V(s));
{s + lock[Tn >0 z +> n]}

P(s);
{s+>lock[In >0 x+>n]*3In >0 x> n}
assert(x >= 0);
{s+>lock[In >0 x+>n]*3In >0 x> n}

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 20 / 32

Threads sharing memory

{s+>lock[Fn >0z n]*x > }

x = 0;

{s+> lock[Fn >0 2+ n] x 2 +> 0}

V(s);

{s+ lock[Tn >0 z +> n]}

(P(s); x++; V(s)) || (P(s); x++; V(s));
{s + lock[Tn >0 z +> n]}

P(s);
{s+>lock[In >0 x+>n]*3In >0 x> n}
assert(x >= 0);
{s+>lock[In >0 x+>n]*3In >0 x> n}

The above program is safe.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 20 / 32

Threads sharing memory

x = 0;

V(s);

(P(s); x++; V(s)) || (P(s); x++; V(s));
P(s);

assert(x >= 0);

The above program is safe.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq

Threads sharing memory

x = 0;

V(s);

(P(s); xt+; V(s)) || (P(s); x++; V(s));
P(s);

assert(x >= 0);

The above program is safe.

But we can know more about x

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016

20/ 32

Threads sharing memory

x = 0;

V(s);

(P(s); x++; V(s)) || (P(s); x++; V(s));
P(s);

assert(x == 2);

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq

Threads sharing memory

x = 0;

V(s);

(P(s); x++; V(s)) || (P(s); x++; V(s));
P(s);

assert(x == 2);

Invariants are not enough.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 21 /32

Threads sharing memory: ghost variables

x =0; x1 =0; x2 = 0;

V(s);

(P(s); xl++; x++; V(8)) || (P(s); x2++; x++; V(s));
P(s);

assert(x == 2);

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq

Ghost variables

T ni + N9
A new invariant relying on ghost variables: R = dnj,ng * a1 g
* T2 l—°> n9g

{I1E3> R* a9+ 0}

P(1);

{IB3R+3Ing 22> 0xxr>ng +0xx1 > ny}
{lIZI—°>R*J:2'—'>()*xr—.>n1—|—O*J:1|i>n1}
xX2++;

(B2 Rxxy > 1xx3ng +0xx > ny}
X++;
(B3 Rxxy > 1xxr3ng +1xx > ni}
{33 Rxxy+> 1% R}

v(D;

{ZB—C')R*ZEQ*—‘))l}

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 23 /32

Threads sharing memory

{sE> R*xx >}

x =0; x1 =0; x2 = 0;

{(sEBS R*x+>0%x1 > 0%x0 >0}

V(s);

{sE@3 R*x1+> 0% a9 +> 0}

(P(s); xl++; x++; V(s)) || (P(s); x2++; x++; V(s));
{SB:)R*ZLj*—o)l*CL‘Q*—o)l}

P(s);
{sESR+x > 2% > 1xag > 1}
assert(x == 2);

{sESR+x > 2% > 1xag > 1}

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 24 / 32

Threads sharing memory

{sEB>Rxx>}

x =0; x1 =0; x2 = 0;

{sES R*x+r>0%x1 > 0%x9 >0}

V(s);

{sE@3 R*x1+> 0% a9 +> 0}

(P(s); xl++; x++; V(s)) || (P(s); x2++; x++; V(s));
{sE@3 R*xy > 1xag > 1}

P(s);
{sESR+x > 2% > 1xag > 1}
assert(x == 2);

{sESR+x > 2% > 1xag > 1}

The above program is safe.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq

But

Problems:
m unbounded number of ghost variables?

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq

But

Problems:
m unbounded number of ghost variables, or thread flow unknown?

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 25 /32

But

Problems:
m unbounded number of ghost variables, or thread flow unknown?
m erasure theorem on proofs in a shallow embedding?

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 25 /32

But

Problems:
m unbounded number of ghost variables, or thread flow unknown?
m erasure theorem on proofs in a shallow embedding?
m ... isn't it a logical problem?

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 25 /32

But

Problems:
m unbounded number of ghost variables, or thread flow unknown?
m erasure theorem on proofs in a shallow embedding?

m ... isn't it a logical problem?
Solution:
m we use a enriched memory (same as for f: {P} — {Q}):
{39 9> v+ P} c {Q} {g v« P} c{Q}
{P} e {Q} {9 v P} c{Q}

g—=Uv = g—Uv % g

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 25 /32

But

Problems:
m unbounded number of ghost variables, or thread flow unknown?
m erasure theorem on proofs in a shallow embedding?

m ... isn't it a logical problem?
Solution:
m we use a enriched memory (same as for f: {P} — {Q}):
{39 9> v« P} c{Q} {g v« P} c{Q}
{P} e {Q} {9 v P} c{Q}

g—=Uv = g—Uv % g

m Importantly, when we own g ~ v or Jv g — v we know that v is not
modified by another thread.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 25 /32

But

Problems:
m unbounded number of ghost variables, or thread flow unknown?
m erasure theorem on proofs in a shallow embedding?

m ... isn't it a logical problem?
Solution:
m we use a enriched memory (same as for f: {P} — {Q}):
{39 9> v« P} c{Q} {g v« P} c{Q}
{P} e {Q} {9 v P} c{Q}

g—=Uv = g—Uv % g

m Importantly, when we own g ~ v or Jv g — v we know that v is not
modified by another thread.
m semantic erasure

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 25 /32

But

Problems:
m unbounded number of ghost variables, or thread flow unknown?
m erasure theorem on proofs in a shallow embedding?

m ... isn't it a logical problem?
Solution:
m we use a enriched memory (same as for f: {P} — {Q}):
{39 9> v« P} c{Q} {g v+ P} c{Q}
{P} c{Q} {9 v P} c{Q}

g—=Uv = g—Uv % g

m Importantly, when we own g ~ v or Jv g — v we know that v is not
modified by another thread.

m semantic erasure

m infinite number of ghost variables?

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 25 /32

But

Problems:
m unbounded number of ghost variables, or thread flow unknown?
m erasure theorem on proofs in a shallow embedding?

m ... isn't it a logical problem?
Solution:
m we use a enriched memory (same as for f: {P} — {Q}):
{39 9> v« P} c{Q} {g v+ P} c{Q}
{P} c{Q} {9 v P} c{Q}

g—=Uv = g—Uv % g

m Importantly, when we own g ~ v or Jv g — v we know that v is not
modified by another thread.

m semantic erasure

m infinite number of ghost variables? indexed g;’s?

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 25 /32

But

Problems:
m unbounded number of ghost variables, or thread flow unknown?
m erasure theorem on proofs in a shallow embedding?

m ... isn't it a logical problem?
Solution:
m we use a enriched memory (same as for f: {P} — {Q}):
{39 9> v« P} c{Q} {g v« P} c{Q}
{P} e {Q} {9 v P} c{Q}

g—=Uv = g—Uv % g

m Importantly, when we own g ~ v or Jv g — v we know that v is not
modified by another thread.

m semantic erasure

m infinite number of ghost variables? indexed g;’s?
How to organise them? (we must keep an infinite supply!)

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 25 /32

Splitting infinite sets

We can split infinite subsets, e.g. for N:
N = (1+2N)uw2N
and more that once:

N=|+2¥1 +2N) -1
keN

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq

Gallium, January 4, 2016

26 / 32

We have encountered this problem before!

Permissions shares have been implemented by 2,0 < z < 1, intervals of
[0, 1], subsets of N, ... and finally, trees!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 27 / 32

We have encountered this problem before!

Permissions shares have been implemented by 2,0 < z < 1, intervals of
[0, 1], subsets of N, ... and finally, trees!

tu=e]o| M N = o N\ = o

t1 t2 o o

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 27 / 32

We have encountered this problem before!

Permissions shares have been implemented by 2,0 < z < 1, intervals of
[0, 1], subsets of N, ... and finally, trees!

tu=e]o| M N = o N\ = o
t1 t2 o o > o o
Embedding in infinite-or-empty subsets of N:
N.:N NOZQ) N(/\)ZQNtIH'J(]_—FQNtQ)
t1 to

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 27 / 32

We have encountered this problem before!

Permissions shares have been implemented by 2,0 < z < 1, intervals of
[0, 1], subsets of N, ... and finally, trees!

tu=e]o| M AN = o N\ = o
t1 t2 o o > o o
Embedding in infinite-or-empty subsets of N:
N.:N Nozw N(N\)ZQNtl&J(l—FQNtQ)
t1 to

Converse (“terminates” on [-] ; f o N. is the normalization function for =)

f@) =o f(N) =

f(A) = 7, with t1:f<A“2N> and th(Am(lJ;QN)_l)

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 27 / 32

We have encountered this problem before!

Permissions shares have been implemented by 2,0 < z < 1, intervals of
[0, 1], subsets of N, ... and finally, trees!

ti=e | o | N\ AN = e VAN = o0
t1 t2 o o > o o
Embedding in infinite-or-empty subsets of N:
Ne=N No=10 N(/\):2Ntlw(1+2Nt2)
t1 to

Converse (“terminates” on [-] ; f o N. is the normalization function for =)

f@) =o f(N) =

f(A)= 7 with :f<A“22N> and t2:f<Aﬂ(1+2N)—1)

1 t2 2

These N; help us embed our ghost state in our memory model.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 27 / 32

Representation of ghost state

g%v £ 3(%‘) Hgﬂlﬂii/\ZU@-:U

ienN, i€N,

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq

Representation of ghost state

g 2 3w) [[amend v=u

i€N, ieN,
Two tree shares:
m 7: permission (what can we do...)

m p: location (...to which part)

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 28 / 32

Representation of ghost state

g 2 3w) [[amend v=u

i€N, ienN,
Two tree shares: Composed value:
m 7: permission (what can we do...) m v (the sum is finite)
m p: location (...to which part) (can be any PCM)

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 28 / 32

Representation of ghost state

g 2 3w) [[amend v=u

i€N, ienN,
Two tree shares: Composed value:
m 7: permission (what can we do...) m v (the sum is finite)
m p: location (...to which part) (can be any PCM)

T DT =T

s KIS s

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 28 / 32

Representation of ghost state

g0 2 3w) [[amend v=u

ieN, ieN,
Two tree shares: Composed value:
m 7: permission (what can we do...) m v (the sum is finite)
m p: location (...to which part) (can be any PCM)

p1Dp2=p VU2 =V

K s s
gvﬁvl*gﬁvgl—gﬁv

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 28 / 32

Representation of ghost state

g0 2 3w) [[amend v=u

ieN, ieN,
Two tree shares: Composed value:
m 7: permission (what can we do...) m v (the sum is finite)
m p: location (...to which part) (can be any PCM)

p1Dp2=p VU2 =V

K s s
gvﬁvl*gﬁvgl—gﬁv

9'%“"3/)17/)2&1,02, pr1E&p2=p N vi-va=v A 9%01*9'%”2

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 28 / 32

Representation of ghost state

g0 2 3w) [[amend v=u

ieN, ieN,
Two tree shares: Composed value:
m 7: permission (what can we do...) m v (the sum is finite)
m p: location (...to which part) (can be any PCM)

p1Dp2=p VU2 =V

K s s
gvﬁvl*gﬁvgl—gﬁv

g vk 31,0, pr@Ep=p A grrvsgesl

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 28 / 32

Representation of ghost state

oo 2 (v v A v =0
g+ (vi) igpgz i igl\;ﬂ i
Two tree shares: Composed value:
m 7: permission (what can we do...) m v (the sum is finite)
m p: location (...to which part) (can be any PCM)

pPLDp2=p VU9 =0

™ ™ ™
*
gLy vixgr b gry

s s T
gy v=3p1, 02,0102, pLBp2=p A VU2 =0 A G ULXG S Uy

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 28 / 32

Representation of ghost state

g v = A(y) ng"iﬂfi/\zvz‘:?f

P

i€N, i€N,
Two tree shares: Composed value:
m 7: permission (what can we do...) m v (the sum is finite)
m p: location (...to which part) (can be any PCM)

Q%Uzﬂpl,m,vl,w, prop=p N vi-va=0v A g%vl*gr:—gvg

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 28 / 32

Threads sharing memory

{s@> R*x+>0}

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq

Threads sharing memory

{s@> R*x+>0}
{sEI—')R*wQO*g»%O}

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq

Threads sharing memory

{s@> R*x+>0}
{sEI—')R*xéO*g»%O}

V(s);

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq

Threads sharing memory

{s@> R*x+>0}
{sEI—')R*xéO*g»%O}

V(s); Réﬂvxév*g%v

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq

Threads sharing memory

{s@> R*x+>0}
{sEI—')R*xéO*g»%O}
V(s); Réﬂvxév*g%v

{sEl—')R*gv%O}

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq

Threads sharing memory
{s@> R*x+>0}
{sEI—'>R*xr—°>0*g»%>0}
V(s); Réﬂvxév*g%v
{sEl—')R*g»%O}
{3E|—'>R*g%>0>kg%>0}

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq

Threads sharing memory
{s@> R*x+>0}
{3E|—'>R*x»—'>0*g»%>()}
V(s); Réﬂvxév*gn%)v
{8E|—'>R>kg»%>0}
{s @D Rxgr>0xgr>0}
(P(s); x++; V(s)) || (P(s); x++; V(s));

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 29 /32

Threads sharing memory
{s@> R*x+>0}
{sEI—'>R*x»—'>O*g»%>O}
V(s); Réﬂvxév*gn%)v
{8E|—'>R*g»%>0}
{s B> Rxgr> 0% g 0}

(P(8); x++; V(8)) || (P(s); x++; V(8));
{sEI—'>R*gn%>1*g%>1}

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 29 / 32

Threads sharing memory
{s@> R*x+>0}
{sEI—'>R*x»—'>O*g»%>O}
V(s); Réﬂvxév*gn%)v
{8E|—'>R*g»%>0}
{s B> Rxgr> 0% g 0}

(P(8); x++; V(8)) || (P(s); x++; V(8));
{sEI—'>R*gn%>1*g%>1}

{sEI—')R*g%Q}

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 29 /32

Threads sharing memory
{s@> R*x+>0}
{S[}$<R>kxF$()*glE>0}
V(s); Réﬂvxév*gn%)v
{sEB>Rxg %} 0}
{s B> Rxgr> 0% g 0}

(P(8); x++; V(8)) || (P(s); x++; V(8));
{sEI—'>R*gn%>1*g%>1}

{s@> Rx*g %} 2}
P(s);

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 29 /32

Threads sharing memory
{sEF> R+x >0}
{sEI—'>R*x»—'>O*g»%>O}
V(s); Réﬂvxév*gn%)v
{8E|—'>R*g»%>0}
{sEI—'>R*g»%>O*g%>O}
(P(s); x++; V(s)) || (P(s); x++; V(s));
{sEI—'>R*gb%>1*g%>1}
{sEI—')R*g%Q}
P(s);
{slﬂ—.>R*xr—.>2*gn%>2}

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 29 / 32

Threads sharing memory
{s@> R*x+>0}
{sEI—'>R*x»—'>O*g»%>O}
V(s); Réﬂvxév*gn%)v
{8E|—'>R*g»%>0}
{sEI—'>R*g»%>O*g%>O}
(P(s); x++; V(s)) || (P(s); x++; V(s));
{sEI—'>R*gb%>1*g%>1}
{sEI—')R*g%Q}
P(s);
{slﬂ—.>R*xr—.>2*gn%>2}
{s@> R*x+>2}

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 29 /32

Threads sharing memory
{s > R+x+> 0}
{S[}$<R4GEF;()*QIE>O}
V(s); Réﬂvxév*gn%)v
{8[}3]%*g|%}0}
{SE}$]%*ge%>0*57{>0}
(P(s); x++; V(s)) || (P(s); x++; V(s));
{8[}$4R>kgk%'1*57e?]}
{s[}3]%*g»%>2}
P(s);
{s[k3f%*x%$24q7%>2}

{s@> R*x+>2}
assert(x == 2);

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 29 /32

Threads sharing memory

{s@> R*x+>0}

{S[}$<R4GEF;()*QIE>O}

V(s); Réﬂvxév*gn%)v
{8[}3]%*g|%}0}

{SE}$]%*ge%>0*57{>0}

(P(s); x++; V(s)) || (P(s); x++; V(s));
{8[}$4R>kgk%'1*57e?]}

{s[}3]%*g»%>2}

P(s);

{s[k3f%*x%$24q7%>2}

{s@> R*x+>2}
assert(x == 2);
{s@> R*x+>2}

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 29 /32

Threads sharing memory

{s@> R*x+>0}

{3E|—'>R*x»—'>0*g»%>()}

V(s); Réﬂvxév*gn%)v
{8E|—'>R*g»%>0}

{sEI—'>R*g»%>O*g%>O}

(P(s); x++; V(s)) || (P(s); x++; V(s));
{sEI%R*g%l*g%)l}

{sEI—')R*g%Q}

P(s);

{slﬂ—.>R*xr—.>2*gn%>2}

{s@> R*x+>2}
assert(x == 2);
{s@> R*x+>2} safe!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 29 /32

. we catch back on Nanevski's subjective views

Thread 1 Shared resource Thread 2
x = 0;

X

0

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq

. we catch back on Nanevski's subjective views

Thread 1 Shared resource Thread 2
x = 0;
V(s);

X

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 30/ 32

. we catch back on Nanevski's subjective views

Thread 1 Shared resource Thread 2
x = 0;
V(s);
X
P(s);
0

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 30/ 32

. we catch back on Nanevski's subjective views

Thread 1 Shared resource Thread 2
x = 0;
V(s);
X
P(s);
X++;
1

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 30/ 32

. we catch back on Nanevski's subjective views

Thread 1 Shared resource Thread 2
x = 0;
V(s);
X
P(s);
X++;
V(s);

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 30/ 32

. we catch back on Nanevski's subjective views

Thread 1 Shared resource Thread 2
x = 0;
V(s);
X
P(s); P(s);
X++;
0 V(s);

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 30/ 32

. we catch back on Nanevski's subjective views

Thread 1 Shared resource Thread 2
x = 0;
V(s);
X
P(s); P(s);
b x++;
1 V(s);

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 30/ 32

. we catch back on Nanevski's subjective views

Thread 1 Shared resource Thread 2
x = 0;
V(s);

X
P(s); P(s);
b x++;
V(s); V(s);

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 30/ 32

. we catch back on Nanevski's subjective views

Thread 1 Shared resource Thread 2
x = 0;
V(s);

X
P(s); 0 P(s);
b o x++;
V(s); 1 1 V(s);
P(s);

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 30/ 32

. we catch back on Nanevski's subjective views

Thread 1 Shared resource Thread 2
x = 0;
V(s);

X
P(s); P(s);
b 2 x++;
V(s); V(s);
P(s);

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 30/ 32

. we catch back on Nanevski's subjective views

Thread 1

x = 0;
V(s);

P(s);
X++;

b

V(s);

P(s);
assert(x == 2);

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq

Shared resource

Thread 2

P(s);
X++

V(s);

Gallium, January 4, 2016

30 /32

. we catch back on Nanevski's subjective views

Thread 1 Shared resource Thread 2
x = 0;
V(s);
X

P(s); P(s);
b 2 x++;
V(s); V(s);
P(s);
assert(x == 2);

Safel

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 30/ 32

#include <pthread.h>
#include <semaphore.h>

void assert(int i) {i = 1/i;}

sem_t s;
int x;

void* f(void *arg) {
sem_wait (&s);
X++;
sem_post(&s);
pthread_exit (NULL) ;
}

int main (void) {
pthread_t th;
x =0;
sem_init(&s, 0, 0);
sem_post(&s);

pthread_create(&th, NULL, f,

sem_wait (&s);

X++;

sem_post(&s);
pthread_join(th, NULL);
sem_wait (&s);
sem_destroy(&s);
assert(x >= 0);

return 0;

Jean-Marie Madiot (Princeton)

Summary

(void*)&x);

Verifying concurrent C programs in Coq

Gallium, January 4, 2016

31/32

Summary

_ sem_wait grants access
#include <pthread.h>

#include <semaphore.h>
void assert(int i) {i = 1/i;}

sem_t s;
int x;

void* f(void *arg) {
sem_wait (&s);
X++;
sem_post(&s);
pthread_exit (NULL) ;
}

int main (void) {
pthread_t th;
x =0;
sem_init(&s, 0, 0);
sem_post(&s);
pthread_create(&th, NULL, f, (void*)&x);
sem_wait (&s);
X++;
sem_post(&s);
pthread_join(th, NULL);
sem_wait (&s);
sem_destroy(&s);
assert(x >= 0);
return 0;

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 31/32

Summary

sem_wait

#include <pthread.h>
#include <semaphore.h>

sem_post

void assert(int i) {i = 1/i;}

sem_t s;
int x;

void* f(void *arg) {
sem_wait (&s);
X++;
sem_post(&s);
pthread_exit (NULL) ;
}

int main (void) {
pthread_t th;
x =0;
sem_init(&s, 0, 0);
sem_post(&s);
pthread_create(&th, NULL, f, (void*)&x);
sem_wait (&s);
X++;
sem_post(&s);
pthread_join(th, NULL);
sem_wait (&s);
sem_destroy(&s);
assert(x >= 0);
return 0;

Jean-Marie Madiot (Princeton)

Verifying concurrent C programs in Coq

grants access

gives it away

Gallium, January 4, 2016

31/32

Summary

sem_wait grants access

#include <pthread.h>
#include <semaphore.h> . .
sem_post gives It away

void assert(int i) {i = 1/i;}

sem_t s we want knowledge about x's value

int x;

void* f(void *arg) {
sem_wait (&s);
X++;
sem_post(&s);
pthread_exit (NULL) ;
}

int main (void) {
pthread_t th;
x =0;
sem_init(&s, 0, 0);
sem_post(&s);
pthread_create(&th, NULL, f, (void*)&x);
sem_wait (&s);
X++;
sem_post(&s);
pthread_join(th, NULL);
sem_wait (&s);
sem_destroy(&s);
assert(x >= 0);
return 0;

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 31/32

Summary

sem_wait grants access

#include <pthread.h>
#include <semaphore.h> . .
sem_post gives It away

void assert(int i) {i = 1/i;}

sen_t s we want knowledge about x's value
o Concurrent Separation Logic (O'Hearn’04)

void* f(void *arg) {
sem_wait (&s);
X++;
sem_post(&s);
pthread_exit (NULL) ;
}

int main (void) {
pthread_t th;
x =0;
sem_init(&s, 0, 0);
sem_post(&s);
pthread_create(&th, NULL, f, (void*)&x);
sem_wait (&s);
X++;
sem_post(&s);
pthread_join(th, NULL);
sem_wait (&s);
sem_destroy(&s);
assert(x >= 0);
return 0;

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 31/32

Summary

) sem_wait grants access
#include <pthread.h>

#include <semaphore.h> . .
sem_post gives it away

void assert(int i) {i = 1/i;}

sem_t s; we want knowledge about x's value
o Concurrent Separation Logic (O'Hearn’04)

void* f(void *arg) {

Sovert(ss): we can create locks and spawn threads
sem_post(&s); . .
| Phresd exat (L), CSL with first-class locks and threads

' '

int main (void) { (GOtsman 07, HObOr 08)

pthread_t th;

x =0;

sem_init(&s, 0, 0);

sem_post(&s);

pthread_create(&th, NULL, f, (void*)&x);

sem_wait (&s);

X++;

sem_post(&s);

pthread_join(th, NULL);

sem_wait (&s);

sem_destroy(&s);

assert(x >= 0);

return 0;

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 31/32

Summary

) sem_wait grants access
#include <pthread.h>

#include <semaphore.h> . .
sem_post gives it away

void assert(int i) {i = 1/i;}

sem_t s; we want knowledge about x's value
o Concurrent Separation Logic (O'Hearn’04)

void* f(void *arg) {

Sovert(ss): we can create locks and spawn threads
_post (&s) ; . .
} pehread exit (NULL) ; CSL with first-class locks and threads
o (Gotsman'07, Hobor'08)
int main (void) {

pthread_t th;

x =0 we need to join threads and transfer back
sem_init(&s, 0, 0); .. .
sem_post (§s) ; the permissions from f to main.

pthread_create(&th, NULL, f, (void*)&x);
sem_wait (&s);

X++;

sem_post(&s);

pthread_join(th, NULL);

sem_wait (&s);

sem_destroy(&s);

assert(x >= 0);

return 0;

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 31/32

Summary

) sem_wait grants access
#include <pthread.h>

#include <semaphore.h> . .
sem_post gives it away

void assert(int i) {i = 1/i;}

sem_t s; we want knowledge about x's value
o Concurrent Separation Logic (O'Hearn’04)

void* f(void *arg) {

Sovert(ss): we can create locks and spawn threads
_post (&s) ; . .
} pehread exit (NULL) ; CSL with first-class locks and threads
o (Gotsman'07, Hobor'08)
int main (void) {

pthread_t th;

X =0 we need to join threads and transfer back
sem_init(&s, 0, 0); .. .
t(&s);
;::?Z:j_cr:ate(&th, NULL, f, (void*)&x); the permISSIonS from f tO main.
sem_wait (&s);
X i) [@ maintaining x >= 0 is one thing, but how
sem_post(&s); .
pthread_join(th, NULL); to ensure x == 2 in the end?

sem_wait (&s);
sem_destroy(&s);
assert(x >= 0);
return 0;

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 31/32

Summary

) sem_wait grants access
#include <pthread.h>

#include <semaphore.h> . .
sem_post gives it away

void assert(int i) {i = 1/i;}

sem_t s; we want knowledge about x's value
o Concurrent Separation Logic (O'Hearn’04)

void* f(void *arg) {

Sovert(ss): we can create locks and spawn threads
_post (&s) ; . .
} pehread exit (NULL) ; CSL with first-class locks and threads
o (Gotsman'07, Hobor'08)
int main (void) {

pthread_t th; P
LI we need to join threads and transfer back
sem_init(&s, 0O, H . . .
t(&s);
:::?Z:j_cr:ate(&th, NULL, f, (void*)&x); the PErmMIssions from £ to main.
sem_wait (&s);
Py [@ maintaining x >= 0 is one thing, but how
sem_post(&s);

pthread_join(th, NULL); to ensure x == 2 in the end?

sem_wait (&s);

Somgestroy(5s) Ghost variables (~folklore)

assert(x >= 0);
return 0;

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 31/32

#include <pthread.h>
#include <semaphore.h>

void assert(int i) {i = 1/i;}

sem_t s;
int x;

void* f(void *arg) {
sem_wait (&s);
X++;
sem_post(&s);
pthread_exit (NULL) ;
}

int main (void) {
pthread_t th;
x =0;
sem_init(&s, 0, 0);
sem_post(&s);
pthread_create(&th, NULL, f,
sem_wait (&s);
X++;
sem_post(&s);
pthread_join(th, NULL);
sem_wait (&s);
sem_destroy(&s);
assert(x >= 0);
return 0;

Jean-Marie Madiot (Princeton)

Summary

(void*)&x);

sem_wait grants access
sem_post gives it away

we want knowledge about x's value
Concurrent Separation Logic (O'Hearn’04)

we can create locks and spawn threads
CSL with first-class locks and threads
(Gotsman'07, Hobor'08)

we need to join threads and transfer back
the permissions from f to main.
maintaining x >= 0 is one thing, but how
to ensure x == 2 in the end?

Ghost variables (~folklore)
Subjective CSL (Nanevski'14), Iris (JSS+'15)

Verifying concurrent C programs in Coq Gallium, January 4, 2016 31/32

#include <pthread.h>
#include <semaphore.h>

void assert(int i) {i = 1/i;}

sem_t s;
int x;

void* f(void *arg) {
sem_wait (&s);
X++;
sem_post(&s);
pthread_exit (NULL) ;
}

int main (void) {
pthread_t th;
x =0;
sem_init(&s, 0, 0);
sem_post(&s);
pthread_create(&th, NULL, f,
sem_wait (&s);
X++;
sem_post(&s);
pthread_join(th, NULL);
sem_wait (&s);
sem_destroy(&s);
assert(x >= 0);
return 0;

Jean-Marie Madiot (Princeton)

Summary

(void*)&x);

sem_wait grants access
sem_post gives it away

we want knowledge about x's value
Concurrent Separation Logic (O'Hearn’04)

we can create locks and spawn threads
CSL with first-class locks and threads
(Gotsman'07, Hobor'08)

we need to join threads and transfer back
the permissions from f to main.

maintaining x >= 0 is one thing, but how
to ensure x == 2 in the end?
Ghost variables (~folklore)
Subjective CSL (Nanevski'14), Iris (JSS+'15)
~ our ghost state

Verifying concurrent C programs in Coq Gallium, January 4, 2016 31/32

Program patterns
We can do:

m simple x++]| | x++ variants,

m (some) producer/consumer implementations,
m distributed initialize-once.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 32/32

Program patterns
We can do:

m simple x++| | x++ variants,
m (some) producer/consumer implementations,

m distributed initialize-once.

We expect:
m parallel sorting algorithms,
m other producer/consumer implementations,
m parallel tree/graph traversals,

® ... waiting from our sponsor to provide program patterns.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016

32/32

Program patterns
We can do:

m simple x++]| | x++ variants,
m (some) producer/consumer implementations,

m distributed initialize-once.

We expect:
m parallel sorting algorithms,
m other producer/consumer implementations,
m parallel tree/graph traversals,

® ... waiting from our sponsor to provide program patterns.

We don't do:
= RCU,
m races, low-level barriers,
m lock-free implementations.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016

32/32

Thank you for having me!

/0
g— v
p
https://github.com/PrincetonUniversity/VST/tree/concurrency

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 32/32

https://github.com/PrincetonUniversity/VST/

	Overview of the project
	How a proof goes in VST
	Example of a concurrent program

