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Top to bottom verified sofware development

Verified software development:

from top: specifications, program logics, static analysers

to bottom: models of low-level architectures.

Existing tools perform well:

reasoning: powerful program logics and analysers,

translations: CompCert certified compiler,

models of weak memory for different architectures.

The Verified Software Toolchain (VST) project in Princeton can already
verify complex C programs in Coq.

https://vst.cs.princeton.edu/

This talk: we try and extend VST to concurrent C programs.
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Architecture of VST

CompCert : C program → Power PC code: preserves the semantics

VST’s separation logic: predicates on this semantics,

VST’s program logic: functional correctness of such programs.
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VST’s higher-order separation logic

P ::= ... v ⇓ 4 local variables
p 7→ 4, p 7→ pointers, shape
f : P → Q function pointers (indirection)
!!P embedding of Coq propositions
∧,∨ usual logical operators
µx.P recursion
∀x.P,∃x.P impredicative quantification
P ∗Q,P −∗Q non-aliasing (separation)

Recent work was necessary to handle all those features:
Step indexing (Appel, McAllester, TOPLAS 2001)
Step indexing + indirection (Ahmed, Appel, Virga, LICS 2002)
Step indexing + impredicativity (Ahmed PhD thesis 2004)
Very Modal Model (Appel, Melliès, Richards, Vouillon, POPL 2007)
Indirection Theory (Hobor, Dockins, Appel, POPL 2010)
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Example of a proof of a program
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Example of a C program

To notice: addressable local variables, pointer to undefined values, loop
invariant with partially defined list segments, pointer tricks, no leak.
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Same program in verifiable C

Transformation to verifiable C:

temp: addressable variables
can’t be returned

va, vb: tests can be on local
expressions only

cond: tests can’t be
transformed in instructions

loads and stores must be
top-level (which forbids
x = &((*x)->tail);)

(the transformation could be done au-
tomatically, but we still need to reason
on this program)
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Proof of merge.c
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Concurrent programs
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Simple concurrent program

x = 0;

y = 0;

x++ || y++;

assert(x + y == 2);
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Proof of simple concurrent program

{x 7→ ∗ y 7→ }
x = 0;

{x 7→ 0 ∗ y 7→ }
y = 0;

{x 7→ 0 ∗ y 7→ 0}
x++ || y++;

(∗) {x 7→ 1 ∗ y 7→ 1}
assert(x + y == 2);

{x 7→ 1 ∗ y 7→ 1}

(∗)
{x 7→ 0} x++ {x 7→ 1} {y 7→ 0} y++ {y 7→ 1}
{x 7→ 0 ∗ y 7→ 0} x++ || y++ {x 7→ 1 ∗ y 7→ 1}

(no “no interference”)
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Proof of simple concurrent program

x = 0; y = 0;

x++ || y++;

assert(x + y == 2);

The program above is safe.

But we have no shared resources.
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Threads sharing memory

x = 0;

x++ || x++;

assert(x >= 0);

...race?
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Races in CompCert

There are no data races in CompCert/VST:

most experimental logic with races are not proved sound for weakly
consistent caches;

our program logic ensures the absence of race;

CompCert 2.0’s semantics gets stuck at racy loads and stores, using a
permission model.

Concurrent variants of CompCert:

either [CompCert TSO, Sewell] racy programs with little ability for
the compiler to optimize

or [Compositional CompCert, Appel/Beringer/Stewart/Cuellar]
coarse-grain concurrency and optimizing compilation of memory
operations
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Permissions in CompCert

CompCert memory model, version 2:

x
π7→ 4 rather than x 7→ 4

π ::= Freeable | Writable | Readable | Nonempty

if a thread has Freeable, others have no permissions;

if a thread has Writable, others have at most Nonempty;

if a thread has Readable, others have at most Readable;

if a thread has Nonempty, others have at most Writable.

Nonempty is “comparable with another non-NULL pointer”: in a == b, if
one of a or b is a pointer value, then either one of them must be NULL, or
both must be pointers to allocated objects (Nonempty ensures there are no
other Freeable).
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Permissions in VST
Refinement of CompCert’s permissions:

π ::= • | ◦ |
π1 π2

Joining permissions:

• ◦ ⊕ ◦ • = • • = •
π = π1 ⊕ π2

p
π7→ v = p

π17→ v ∗ p π27→ v

Embedding, depending on where the •s are:

Freeable

Nonempty Writable

NonemptyNonempty Readable Readable

NonemptyNonemptyNonemptyNonempty Readable Readable Readable Readable

...

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 14 / 32



Threads sharing memory

x = 0;

x++ || x++;

assert(x >= 0);

...race?
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Threads sharing memory, using binary semaphores

x = 0;

V(s);

P(s); P(s);

x++; x++;

V(s); V(s);

P(s);

assert(x >= 0);

no race!
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Threads sharing memory, using semaphores in Pthreads
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Threads sharing memory, using binary semaphores

Binary semaphores contain permissions, here on x, which can be
transferred between threads:

P(s); P(s);

x++; x++;

V(s); V(s);
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Threads sharing memory, using binary semaphores

Binary semaphores contain permissions, here on x, which can be
transferred between threads:

{s 7→ lock[x]} {s 7→ lock[x]}
P(s); P(s);

{s 7→ lock[x] ∗ x 7→ } {s 7→ lock[x] ∗ x 7→ }
x++; x++;

{s 7→ lock[x] ∗ x 7→ } {s 7→ lock[x] ∗ x 7→ }
V(s); V(s);

{s 7→ lock[x]} {s 7→ lock[x]}

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 16 / 32



Threads sharing memory

Permissions can be refined to lock invariants:

{s 7→ lock[∃n ≥ 0 x 7→ n]} {s 7→ lock[∃n ≥ 0 x 7→ n]}
P(s); P(s);

{s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n} {s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n}
x++; x++;

{s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n} {s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n}
V(s); V(s);

{s 7→ lock[∃n ≥ 0 x 7→ n]} {s 7→ lock[∃n ≥ 0 x 7→ n]}
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Threads sharing memory

Atomicity is not mandatory:

{s 7→ lock[∃n ≥ 0 x 7→ n]} {s 7→ lock[∃n ≥ 0 x 7→ n]}
P(s); P(s);

{s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n} {s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n}
a = x; a = x;

x = a - 2; // x can be negative here x = a - 3;

x = a + 1; x = a + 1;

{s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n} {s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n}
V(s); V(s);

{s 7→ lock[∃n ≥ 0 x 7→ n]} {s 7→ lock[∃n ≥ 0 x 7→ n]}
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Threads sharing memory

Coming back to x++:

{s 7→ lock[∃n ≥ 0 x 7→ n]} {s 7→ lock[∃n ≥ 0 x 7→ n]}
P(s); P(s);

{s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n} {s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n}
x++; x++;

{s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n} {s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n}
V(s); V(s);

{s 7→ lock[∃n ≥ 0 x 7→ n]} {s 7→ lock[∃n ≥ 0 x 7→ n]}
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Threads sharing memory

{s 7→ lock[∃n ≥ 0 x 7→ n] ∗ x 7→ }
x = 0;

{s 7→ lock[∃n ≥ 0 x 7→ n] ∗ x 7→ 0}
V(s);

{s 7→ lock[∃n ≥ 0 x 7→ n]}
(P(s); x++; V(s)) || (P(s); x++; V(s));

{s 7→ lock[∃n ≥ 0 x 7→ n]}
P(s);

{s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n}
assert(x >= 0);

{s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n}

The above program is safe.

But we can know more about x

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 20 / 32



Threads sharing memory

{s 7→ lock[∃n ≥ 0 x 7→ n] ∗ x 7→ }
x = 0;

{s 7→ lock[∃n ≥ 0 x 7→ n] ∗ x 7→ 0}
V(s);

{s 7→ lock[∃n ≥ 0 x 7→ n]}
(P(s); x++; V(s)) || (P(s); x++; V(s));

{s 7→ lock[∃n ≥ 0 x 7→ n]}
P(s);

{s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n}
assert(x >= 0);

{s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n}

The above program is safe.

But we can know more about x

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 20 / 32



Threads sharing memory

x = 0;

V(s);

(P(s); x++; V(s)) || (P(s); x++; V(s));

P(s);

assert(x >= 0);

The above program is safe.

But we can know more about x

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 20 / 32



Threads sharing memory

x = 0;

V(s);

(P(s); x++; V(s)) || (P(s); x++; V(s));

P(s);

assert(x >= 0);

The above program is safe.

But we can know more about x

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 20 / 32



Threads sharing memory

x = 0;

V(s);

(P(s); x++; V(s)) || (P(s); x++; V(s));

P(s);

assert(x == 2);

Invariants are not enough.
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Threads sharing memory: ghost variables

x = 0; x1 = 0; x2 = 0;

V(s);

(P(s); x1++; x++; V(s)) || (P(s); x2++; x++; V(s));

P(s);

assert(x == 2);
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Ghost variables

A new invariant relying on ghost variables: R = ∃n1, n2
x 7→ n1 + n2
∗ x1 7→ n1
∗ x2 7→ n2

{l �→ R ∗ x2 7→ 0}
P(l);

{l �→ R ∗ ∃n1 x2 7→ 0 ∗ x 7→ n1 + 0 ∗ x1 7→ n1}
{l �→ R ∗ x2 7→ 0 ∗ x 7→ n1 + 0 ∗ x1 7→ n1}
x2++;

{l �→ R ∗ x2 7→ 1 ∗ x 7→ n1 + 0 ∗ x1 7→ n1}
x++;

{l �→ R ∗ x2 7→ 1 ∗ x 7→ n1 + 1 ∗ x1 7→ n1}
{l �→ R ∗ x2 7→ 1 ∗R}
V(l);

{l �→ R ∗ x2 7→ 1}
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Threads sharing memory

{s �→ R ∗ x 7→ }
x = 0; x1 = 0; x2 = 0;

{s �→ R ∗ x 7→ 0 ∗ x1 7→ 0 ∗ x2 7→ 0}
V(s);

{s �→ R ∗ x1 7→ 0 ∗ x2 7→ 0}
(P(s); x1++; x++; V(s)) || (P(s); x2++; x++; V(s));

{s �→ R ∗ x1 7→ 1 ∗ x2 7→ 1}
P(s);

{s �→ R ∗ x 7→ 2 ∗ x1 7→ 1 ∗ x2 7→ 1}
assert(x == 2);

{s �→ R ∗ x 7→ 2 ∗ x1 7→ 1 ∗ x2 7→ 1}

The above program is safe.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 24 / 32



Threads sharing memory

{s �→ R ∗ x 7→ }
x = 0; x1 = 0; x2 = 0;

{s �→ R ∗ x 7→ 0 ∗ x1 7→ 0 ∗ x2 7→ 0}
V(s);

{s �→ R ∗ x1 7→ 0 ∗ x2 7→ 0}
(P(s); x1++; x++; V(s)) || (P(s); x2++; x++; V(s));

{s �→ R ∗ x1 7→ 1 ∗ x2 7→ 1}
P(s);

{s �→ R ∗ x 7→ 2 ∗ x1 7→ 1 ∗ x2 7→ 1}
assert(x == 2);

{s �→ R ∗ x 7→ 2 ∗ x1 7→ 1 ∗ x2 7→ 1}

The above program is safe.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 24 / 32



But
Problems:

unbounded number of ghost variables?

, or thread flow unknown?

erasure theorem on proofs in a shallow embedding?

... isn’t it a logical problem?

Solution:

we use a enriched memory (same as for f : {P} → {Q}):

{∃g g 7→ v ∗ P} c {Q}
{P} c {Q}

{g 7→ v′ ∗ P} c {Q}
{g 7→ v ∗ P} c {Q}

g 7→ v = g 7→ v ∗ g 7→ v

Importantly, when we own g 7→ v or ∃v g 7→ v we know that v is not
modified by another thread.

semantic erasure

infinite number of ghost variables? indexed gi’s?
How to organise them? (we must keep an infinite supply!)
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Splitting infinite sets

We can split infinite subsets, e.g. for N:

N = (1 + 2N) ] 2N

and more that once:
N =

⊎
k∈N

2k(1 + 2N)− 1
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We have encountered this problem before!

Permissions shares have been implemented by z, 0 ≤ z ≤ 1, intervals of
[0, 1], subsets of N, ... and finally, trees!

t ::= • | ◦ |
t1 t2

/ • • ≡ •, ◦ ◦ ≡ ◦

Embedding in infinite-or-empty subsets of N:

N• = N N◦ = ∅ N(
t1 t2

) = 2Nt1 ] (1 + 2Nt2)

Converse (“terminates” on J·K ; f ◦N· is the normalization function for ≡)

f(∅) = ◦ f(N) = •

f(A) =
t1 t2

with t1 = f

(
A ∩ 2N

2

)
and t2 = f

(
A ∩ (1 + 2N)− 1

2

)
These Nt help us embed our ghost state in our memory model.
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Representation of ghost state

g
π7→
ρ
v , ∃(vi)

∏
i∈Nρ

gi
π7→ vi ∧

∑
i∈Nρ

vi = v

Two tree shares:

π: permission (what can we do...)

ρ: location (...to which part)

Composed value:

v (the sum is finite)
(can be any PCM)

π1 ⊕ π2 = π

g
π17→
ρ
v ∗ g π27→

ρ
v = g

π7→
ρ
v

ρ1 ⊕ ρ2 = ρ v1 · v2 = v

g
π7→
ρ1
v1 ∗ g

π7→
ρ2
v2 ` g

π7→
ρ
v

g
π7→
ρ
v ` ∃ρ1, ρ2, v1, v2, ρ1 ⊕ ρ2 = ρ ∧ v1 · v2 = v ∧ g

π7→
ρ1
v1 ∗ g

π7→
ρ2
v2
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Threads sharing memory

{s �→ R ∗ x 7→ 0}

{s �→ R ∗ x 7→ 0 ∗ g 7→ 0}

V(s); R , ∃v x 7→ v ∗ g 7→ v

{s �→ R ∗ g 7→ 0}

{s �→ R ∗ g 7→ 0 ∗ g 7→ 0}
(P(s); x++; V(s)) || (P(s); x++; V(s));

{s �→ R ∗ g 7→ 1 ∗ g 7→ 1}

{s �→ R ∗ g 7→ 2}
P(s);

{s �→ R ∗ x 7→ 2 ∗ g 7→ 2}
{s �→ R ∗ x 7→ 2}
assert(x == 2);

{s �→ R ∗ x 7→ 2} safe!
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{s �→ R ∗ g 7→ 0 ∗ g 7→ 0}
(P(s); x++; V(s)) || (P(s); x++; V(s));

{s �→ R ∗ g 7→ 1 ∗ g 7→ 1}

{s �→ R ∗ g 7→ 2}
P(s);

{s �→ R ∗ x 7→ 2 ∗ g 7→ 2}
{s �→ R ∗ x 7→ 2}
assert(x == 2);

{s �→ R ∗ x 7→ 2} safe!
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... we catch back on Nanevski’s subjective views

x

0

0

2

01 011 1
⊕

Thread 1 Shared resource Thread 2

x = 0;

V(s);

P(s);

x++;

V(s);

P(s);

x++;

V(s);

P(s);

assert(x == 2);
Safe!
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Summary

1 sem wait grants access

2 sem post gives it away

3 we want knowledge about x’s value
Concurrent Separation Logic (O’Hearn’04)

4 we can create locks and spawn threads
CSL with first-class locks and threads

(Gotsman’07, Hobor’08)

5 we need to join threads and transfer back
the permissions from f to main.

6 maintaining x >= 0 is one thing, but how
to ensure x == 2 in the end?

Ghost variables (∼folklore)

Subjective CSL (Nanevski’14), Iris (JSS+’15)

' our ghost state
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Program patterns
We can do:

simple x++||x++ variants,

(some) producer/consumer implementations,

distributed initialize-once.

We expect:

parallel sorting algorithms,

other producer/consumer implementations,

parallel tree/graph traversals,

... waiting from our sponsor to provide program patterns.

We don’t do:

RCU,

races, low-level barriers,

lock-free implementations.
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Thank you for having me!

g
π7→
ρ
v

https://github.com/PrincetonUniversity/VST/tree/concurrency
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