
Verifying concurrent C programs in Coq

Jean-Marie Madiot
joint work with Santiago Cuellar, Andrew Appel

Princeton University

Gallium seminar, January 4, 2016

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 1 / 32

Top to bottom verified sofware development

Verified software development:

from top: specifications, program logics, static analysers

to bottom: models of low-level architectures.

Existing tools perform well:

reasoning: powerful program logics and analysers,

translations: CompCert certified compiler,

models of weak memory for different architectures.

The Verified Software Toolchain (VST) project in Princeton can already
verify complex C programs in Coq.

https://vst.cs.princeton.edu/

This talk: we try and extend VST to concurrent C programs.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 2 / 32

https://vst.cs.princeton.edu/

Top to bottom verified sofware development

Verified software development:

from top: specifications, program logics, static analysers

to bottom: models of low-level architectures.

Existing tools perform well:

reasoning: powerful program logics and analysers,

translations: CompCert certified compiler,

models of weak memory for different architectures.

The Verified Software Toolchain (VST) project in Princeton can already
verify complex C programs in Coq.

https://vst.cs.princeton.edu/

This talk: we try and extend VST to concurrent C programs.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 2 / 32

https://vst.cs.princeton.edu/

Top to bottom verified sofware development

Verified software development:

from top: specifications, program logics, static analysers

to bottom: models of low-level architectures.

Existing tools perform well:

reasoning: powerful program logics and analysers,

translations: CompCert certified compiler,

models of weak memory for different architectures.

The Verified Software Toolchain (VST) project in Princeton can already
verify complex C programs in Coq.

https://vst.cs.princeton.edu/

This talk: we try and extend VST to concurrent C programs.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 2 / 32

https://vst.cs.princeton.edu/

Top to bottom verified sofware development

Verified software development:

from top: specifications, program logics, static analysers

to bottom: models of low-level architectures.

Existing tools perform well:

reasoning: powerful program logics and analysers,

translations: CompCert certified compiler,

models of weak memory for different architectures.

The Verified Software Toolchain (VST) project in Princeton can already
verify complex C programs in Coq.

https://vst.cs.princeton.edu/

This talk: we try and extend VST to concurrent C programs.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 2 / 32

https://vst.cs.princeton.edu/

Architecture of VST

Contributors:
Andrew Appel
Lennart Beringer
Aquinas Hobor (PhD ’08)
Robert Dockings (PhD ’12)
Gordon Stewart (PhD ’15)
Joey Dodds (PhD ’15)
Qinxiang Cao (grad student)
Santiago Cuellar (grad student)
Nick Giannarakis (grad student)
Jean-Marie Madiot (postdoc)

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 3 / 32

Architecture of VST

CompCert : C program → Power PC code: preserves the semantics

VST’s separation logic: predicates on this semantics,

VST’s program logic: functional correctness of such programs.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 3 / 32

VST’s higher-order separation logic

P ::= ... v ⇓ 4 local variables
p 7→ 4, p 7→ pointers, shape
f : P → Q function pointers (indirection)
!!P embedding of Coq propositions
∧,∨ usual logical operators
µx.P recursion
∀x.P,∃x.P impredicative quantification
P ∗Q,P −∗Q non-aliasing (separation)

Recent work was necessary to handle all those features:
Step indexing (Appel, McAllester, TOPLAS 2001)
Step indexing + indirection (Ahmed, Appel, Virga, LICS 2002)
Step indexing + impredicativity (Ahmed PhD thesis 2004)
Very Modal Model (Appel, Melliès, Richards, Vouillon, POPL 2007)
Indirection Theory (Hobor, Dockins, Appel, POPL 2010)

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 4 / 32

Example of a proof of a program

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 4 / 32

Example of a C program

To notice: addressable local variables, pointer to undefined values, loop
invariant with partially defined list segments, pointer tricks, no leak.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 5 / 32

Same program in verifiable C

Transformation to verifiable C:

temp: addressable variables
can’t be returned

va, vb: tests can be on local
expressions only

cond: tests can’t be
transformed in instructions

loads and stores must be
top-level (which forbids
x = &((*x)->tail);)

(the transformation could be done au-
tomatically, but we still need to reason
on this program)

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 6 / 32

Proof of merge.c

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 7 / 32

Concurrent programs

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 7 / 32

Simple concurrent program

x = 0;

y = 0;

x++ || y++;

assert(x + y == 2);

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 8 / 32

Proof of simple concurrent program

{x 7→ ∗ y 7→ }
x = 0;

{x 7→ 0 ∗ y 7→ }
y = 0;

{x 7→ 0 ∗ y 7→ 0}
x++ || y++;

(∗) {x 7→ 1 ∗ y 7→ 1}
assert(x + y == 2);

{x 7→ 1 ∗ y 7→ 1}

(∗)
{x 7→ 0} x++ {x 7→ 1} {y 7→ 0} y++ {y 7→ 1}
{x 7→ 0 ∗ y 7→ 0} x++ || y++ {x 7→ 1 ∗ y 7→ 1}

(no “no interference”)

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 9 / 32

Proof of simple concurrent program

{x 7→ ∗ y 7→ }
x = 0;

{x 7→ 0 ∗ y 7→ }
y = 0;

{x 7→ 0 ∗ y 7→ 0}
x++ || y++;

(∗) {x 7→ 1 ∗ y 7→ 1}
assert(x + y == 2);

{x 7→ 1 ∗ y 7→ 1}

(∗)
{x 7→ 0} x++ {x 7→ 1} {y 7→ 0} y++ {y 7→ 1}
{x 7→ 0 ∗ y 7→ 0} x++ || y++ {x 7→ 1 ∗ y 7→ 1}

(no “no interference”)

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 9 / 32

Proof of simple concurrent program

x = 0; y = 0;

x++ || y++;

assert(x + y == 2);

The program above is safe.

But we have no shared resources.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 10 / 32

Proof of simple concurrent program

x = 0; y = 0;

x++ || y++;

assert(x + y == 2);

The program above is safe.

But we have no shared resources.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 10 / 32

Threads sharing memory

x = 0;

x++ || x++;

assert(x >= 0);

...race?

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 11 / 32

Threads sharing memory

x = 0;

x++ || x++;

assert(x >= 0);

...race?

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 11 / 32

Races in CompCert

There are no data races in CompCert/VST:

most experimental logic with races are not proved sound for weakly
consistent caches;

our program logic ensures the absence of race;

CompCert 2.0’s semantics gets stuck at racy loads and stores, using a
permission model.

Concurrent variants of CompCert:

either [CompCert TSO, Sewell] racy programs with little ability for
the compiler to optimize

or [Compositional CompCert, Appel/Beringer/Stewart/Cuellar]
coarse-grain concurrency and optimizing compilation of memory
operations

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 12 / 32

Races in CompCert

There are no data races in CompCert/VST:

most experimental logic with races are not proved sound for weakly
consistent caches;

our program logic ensures the absence of race;

CompCert 2.0’s semantics gets stuck at racy loads and stores, using a
permission model.

Concurrent variants of CompCert:

either [CompCert TSO, Sewell] racy programs with little ability for
the compiler to optimize

or [Compositional CompCert, Appel/Beringer/Stewart/Cuellar]
coarse-grain concurrency and optimizing compilation of memory
operations

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 12 / 32

Races in CompCert

There are no data races in CompCert/VST:

most experimental logic with races are not proved sound for weakly
consistent caches;

our program logic ensures the absence of race;

CompCert 2.0’s semantics gets stuck at racy loads and stores, using a
permission model.

Concurrent variants of CompCert:

either [CompCert TSO, Sewell] racy programs with little ability for
the compiler to optimize

or [Compositional CompCert, Appel/Beringer/Stewart/Cuellar]
coarse-grain concurrency and optimizing compilation of memory
operations

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 12 / 32

Races in CompCert

There are no data races in CompCert/VST:

most experimental logic with races are not proved sound for weakly
consistent caches;

our program logic ensures the absence of race;

CompCert 2.0’s semantics gets stuck at racy loads and stores, using a
permission model.

Concurrent variants of CompCert:

either [CompCert TSO, Sewell] racy programs with little ability for
the compiler to optimize

or [Compositional CompCert, Appel/Beringer/Stewart/Cuellar]
coarse-grain concurrency and optimizing compilation of memory
operations

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 12 / 32

Races in CompCert

There are no data races in CompCert/VST:

most experimental logic with races are not proved sound for weakly
consistent caches;

our program logic ensures the absence of race;

CompCert 2.0’s semantics gets stuck at racy loads and stores, using a
permission model.

Concurrent variants of CompCert:

either [CompCert TSO, Sewell] racy programs with little ability for
the compiler to optimize

or [Compositional CompCert, Appel/Beringer/Stewart/Cuellar]
coarse-grain concurrency and optimizing compilation of memory
operations

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 12 / 32

Permissions in CompCert

CompCert memory model, version 2:

x
π7→ 4 rather than x 7→ 4

π ::= Freeable | Writable | Readable | Nonempty

if a thread has Freeable, others have no permissions;

if a thread has Writable, others have at most Nonempty;

if a thread has Readable, others have at most Readable;

if a thread has Nonempty, others have at most Writable.

Nonempty is “comparable with another non-NULL pointer”: in a == b, if
one of a or b is a pointer value, then either one of them must be NULL, or
both must be pointers to allocated objects (Nonempty ensures there are no
other Freeable).

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 13 / 32

Permissions in CompCert

CompCert memory model, version 2:

x
π7→ 4 rather than x 7→ 4

π ::= Freeable > Writable > Readable > Nonempty

if a thread has Freeable, others have no permissions;

if a thread has Writable, others have at most Nonempty;

if a thread has Readable, others have at most Readable;

if a thread has Nonempty, others have at most Writable.

Nonempty is “comparable with another non-NULL pointer”: in a == b, if
one of a or b is a pointer value, then either one of them must be NULL, or
both must be pointers to allocated objects (Nonempty ensures there are no
other Freeable).

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 13 / 32

Permissions in CompCert

CompCert memory model, version 2:

x
π7→ 4 rather than x 7→ 4

π ::= Freeable > Writable > Readable > Nonempty

if a thread has Freeable, others have no permissions;

if a thread has Writable, others have at most Nonempty;

if a thread has Readable, others have at most Readable;

if a thread has Nonempty, others have at most Writable.

Nonempty is “comparable with another non-NULL pointer”: in a == b, if
one of a or b is a pointer value, then either one of them must be NULL, or
both must be pointers to allocated objects (Nonempty ensures there are no
other Freeable).

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 13 / 32

Permissions in CompCert

CompCert memory model, version 2:

x
π7→ 4 rather than x 7→ 4

π ::= Freeable > Writable > Readable > Nonempty

if a thread has Freeable, others have no permissions;

if a thread has Writable, others have at most Nonempty;

if a thread has Readable, others have at most Readable;

if a thread has Nonempty, others have at most Writable.

Nonempty is “comparable with another non-NULL pointer”: in a == b, if
one of a or b is a pointer value, then either one of them must be NULL, or
both must be pointers to allocated objects (Nonempty ensures there are no
other Freeable).

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 13 / 32

Permissions in VST
Refinement of CompCert’s permissions:

π ::= • | ◦ |
π1 π2

Joining permissions:

• ◦ ⊕ ◦ • = • • = •
π = π1 ⊕ π2

p
π7→ v = p

π17→ v ∗ p π27→ v

Embedding, depending on where the •s are:

Freeable

Nonempty Writable

NonemptyNonempty Readable Readable

NonemptyNonemptyNonemptyNonempty Readable Readable Readable Readable

...

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 14 / 32

Threads sharing memory

x = 0;

x++ || x++;

assert(x >= 0);

...race?

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 13 / 32

Threads sharing memory, using binary semaphores

x = 0;

V(s);

P(s); P(s);

x++; x++;

V(s); V(s);

P(s);

assert(x >= 0);

no race!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 14 / 32

Threads sharing memory, using semaphores in Pthreads

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 15 / 32

Threads sharing memory, using binary semaphores

Binary semaphores contain permissions, here on x, which can be
transferred between threads:

P(s); P(s);

x++; x++;

V(s); V(s);

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 16 / 32

Threads sharing memory, using binary semaphores

Binary semaphores contain permissions, here on x, which can be
transferred between threads:

{s 7→ lock[x]} {s 7→ lock[x]}
P(s); P(s);

{s 7→ lock[x] ∗ x 7→ } {s 7→ lock[x] ∗ x 7→ }
x++; x++;

{s 7→ lock[x] ∗ x 7→ } {s 7→ lock[x] ∗ x 7→ }
V(s); V(s);

{s 7→ lock[x]} {s 7→ lock[x]}

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 16 / 32

Threads sharing memory

Permissions can be refined to lock invariants:

{s 7→ lock[∃n ≥ 0 x 7→ n]} {s 7→ lock[∃n ≥ 0 x 7→ n]}
P(s); P(s);

{s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n} {s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n}
x++; x++;

{s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n} {s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n}
V(s); V(s);

{s 7→ lock[∃n ≥ 0 x 7→ n]} {s 7→ lock[∃n ≥ 0 x 7→ n]}

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 17 / 32

Threads sharing memory

Atomicity is not mandatory:

{s 7→ lock[∃n ≥ 0 x 7→ n]} {s 7→ lock[∃n ≥ 0 x 7→ n]}
P(s); P(s);

{s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n} {s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n}
a = x; a = x;

x = a - 2; // x can be negative here x = a - 3;

x = a + 1; x = a + 1;

{s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n} {s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n}
V(s); V(s);

{s 7→ lock[∃n ≥ 0 x 7→ n]} {s 7→ lock[∃n ≥ 0 x 7→ n]}

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 18 / 32

Threads sharing memory

Coming back to x++:

{s 7→ lock[∃n ≥ 0 x 7→ n]} {s 7→ lock[∃n ≥ 0 x 7→ n]}
P(s); P(s);

{s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n} {s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n}
x++; x++;

{s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n} {s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n}
V(s); V(s);

{s 7→ lock[∃n ≥ 0 x 7→ n]} {s 7→ lock[∃n ≥ 0 x 7→ n]}

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 19 / 32

Threads sharing memory

{s 7→ lock[∃n ≥ 0 x 7→ n] ∗ x 7→ }
x = 0;

{s 7→ lock[∃n ≥ 0 x 7→ n] ∗ x 7→ 0}
V(s);

{s 7→ lock[∃n ≥ 0 x 7→ n]}
(P(s); x++; V(s)) || (P(s); x++; V(s));

{s 7→ lock[∃n ≥ 0 x 7→ n]}
P(s);

{s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n}
assert(x >= 0);

{s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n}

The above program is safe.

But we can know more about x

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 20 / 32

Threads sharing memory

{s 7→ lock[∃n ≥ 0 x 7→ n] ∗ x 7→ }
x = 0;

{s 7→ lock[∃n ≥ 0 x 7→ n] ∗ x 7→ 0}
V(s);

{s 7→ lock[∃n ≥ 0 x 7→ n]}
(P(s); x++; V(s)) || (P(s); x++; V(s));

{s 7→ lock[∃n ≥ 0 x 7→ n]}
P(s);

{s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n}
assert(x >= 0);

{s 7→ lock[∃n ≥ 0 x 7→ n] ∗ ∃n ≥ 0 x 7→ n}

The above program is safe.

But we can know more about x

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 20 / 32

Threads sharing memory

x = 0;

V(s);

(P(s); x++; V(s)) || (P(s); x++; V(s));

P(s);

assert(x >= 0);

The above program is safe.

But we can know more about x

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 20 / 32

Threads sharing memory

x = 0;

V(s);

(P(s); x++; V(s)) || (P(s); x++; V(s));

P(s);

assert(x >= 0);

The above program is safe.

But we can know more about x

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 20 / 32

Threads sharing memory

x = 0;

V(s);

(P(s); x++; V(s)) || (P(s); x++; V(s));

P(s);

assert(x == 2);

Invariants are not enough.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 21 / 32

Threads sharing memory

x = 0;

V(s);

(P(s); x++; V(s)) || (P(s); x++; V(s));

P(s);

assert(x == 2);

Invariants are not enough.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 21 / 32

Threads sharing memory: ghost variables

x = 0; x1 = 0; x2 = 0;

V(s);

(P(s); x1++; x++; V(s)) || (P(s); x2++; x++; V(s));

P(s);

assert(x == 2);

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 22 / 32

Ghost variables

A new invariant relying on ghost variables: R = ∃n1, n2
x 7→ n1 + n2
∗ x1 7→ n1
∗ x2 7→ n2

{l �→ R ∗ x2 7→ 0}
P(l);

{l �→ R ∗ ∃n1 x2 7→ 0 ∗ x 7→ n1 + 0 ∗ x1 7→ n1}
{l �→ R ∗ x2 7→ 0 ∗ x 7→ n1 + 0 ∗ x1 7→ n1}
x2++;

{l �→ R ∗ x2 7→ 1 ∗ x 7→ n1 + 0 ∗ x1 7→ n1}
x++;

{l �→ R ∗ x2 7→ 1 ∗ x 7→ n1 + 1 ∗ x1 7→ n1}
{l �→ R ∗ x2 7→ 1 ∗R}
V(l);

{l �→ R ∗ x2 7→ 1}

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 23 / 32

Threads sharing memory

{s �→ R ∗ x 7→ }
x = 0; x1 = 0; x2 = 0;

{s �→ R ∗ x 7→ 0 ∗ x1 7→ 0 ∗ x2 7→ 0}
V(s);

{s �→ R ∗ x1 7→ 0 ∗ x2 7→ 0}
(P(s); x1++; x++; V(s)) || (P(s); x2++; x++; V(s));

{s �→ R ∗ x1 7→ 1 ∗ x2 7→ 1}
P(s);

{s �→ R ∗ x 7→ 2 ∗ x1 7→ 1 ∗ x2 7→ 1}
assert(x == 2);

{s �→ R ∗ x 7→ 2 ∗ x1 7→ 1 ∗ x2 7→ 1}

The above program is safe.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 24 / 32

Threads sharing memory

{s �→ R ∗ x 7→ }
x = 0; x1 = 0; x2 = 0;

{s �→ R ∗ x 7→ 0 ∗ x1 7→ 0 ∗ x2 7→ 0}
V(s);

{s �→ R ∗ x1 7→ 0 ∗ x2 7→ 0}
(P(s); x1++; x++; V(s)) || (P(s); x2++; x++; V(s));

{s �→ R ∗ x1 7→ 1 ∗ x2 7→ 1}
P(s);

{s �→ R ∗ x 7→ 2 ∗ x1 7→ 1 ∗ x2 7→ 1}
assert(x == 2);

{s �→ R ∗ x 7→ 2 ∗ x1 7→ 1 ∗ x2 7→ 1}

The above program is safe.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 24 / 32

But
Problems:

unbounded number of ghost variables?

, or thread flow unknown?

erasure theorem on proofs in a shallow embedding?

... isn’t it a logical problem?

Solution:

we use a enriched memory (same as for f : {P} → {Q}):

{∃g g 7→ v ∗ P} c {Q}
{P} c {Q}

{g 7→ v′ ∗ P} c {Q}
{g 7→ v ∗ P} c {Q}

g 7→ v = g 7→ v ∗ g 7→ v

Importantly, when we own g 7→ v or ∃v g 7→ v we know that v is not
modified by another thread.

semantic erasure

infinite number of ghost variables? indexed gi’s?
How to organise them? (we must keep an infinite supply!)

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 25 / 32

But
Problems:

unbounded number of ghost variables, or thread flow unknown?

erasure theorem on proofs in a shallow embedding?

... isn’t it a logical problem?

Solution:

we use a enriched memory (same as for f : {P} → {Q}):

{∃g g 7→ v ∗ P} c {Q}
{P} c {Q}

{g 7→ v′ ∗ P} c {Q}
{g 7→ v ∗ P} c {Q}

g 7→ v = g 7→ v ∗ g 7→ v

Importantly, when we own g 7→ v or ∃v g 7→ v we know that v is not
modified by another thread.

semantic erasure

infinite number of ghost variables? indexed gi’s?
How to organise them? (we must keep an infinite supply!)

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 25 / 32

But
Problems:

unbounded number of ghost variables, or thread flow unknown?

erasure theorem on proofs in a shallow embedding?

... isn’t it a logical problem?

Solution:

we use a enriched memory (same as for f : {P} → {Q}):

{∃g g 7→ v ∗ P} c {Q}
{P} c {Q}

{g 7→ v′ ∗ P} c {Q}
{g 7→ v ∗ P} c {Q}

g 7→ v = g 7→ v ∗ g 7→ v

Importantly, when we own g 7→ v or ∃v g 7→ v we know that v is not
modified by another thread.

semantic erasure

infinite number of ghost variables? indexed gi’s?
How to organise them? (we must keep an infinite supply!)

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 25 / 32

But
Problems:

unbounded number of ghost variables, or thread flow unknown?

erasure theorem on proofs in a shallow embedding?

... isn’t it a logical problem?

Solution:

we use a enriched memory (same as for f : {P} → {Q}):

{∃g g 7→ v ∗ P} c {Q}
{P} c {Q}

{g 7→ v′ ∗ P} c {Q}
{g 7→ v ∗ P} c {Q}

g 7→ v = g 7→ v ∗ g 7→ v

Importantly, when we own g 7→ v or ∃v g 7→ v we know that v is not
modified by another thread.

semantic erasure

infinite number of ghost variables? indexed gi’s?
How to organise them? (we must keep an infinite supply!)

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 25 / 32

But
Problems:

unbounded number of ghost variables, or thread flow unknown?

erasure theorem on proofs in a shallow embedding?

... isn’t it a logical problem?

Solution:

we use a enriched memory (same as for f : {P} → {Q}):

{∃g g 7→ v ∗ P} c {Q}
{P} c {Q}

{g 7→ v′ ∗ P} c {Q}
{g 7→ v ∗ P} c {Q}

g 7→ v = g 7→ v ∗ g 7→ v

Importantly, when we own g 7→ v or ∃v g 7→ v we know that v is not
modified by another thread.

semantic erasure

infinite number of ghost variables? indexed gi’s?
How to organise them? (we must keep an infinite supply!)

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 25 / 32

But
Problems:

unbounded number of ghost variables, or thread flow unknown?

erasure theorem on proofs in a shallow embedding?

... isn’t it a logical problem?

Solution:

we use a enriched memory (same as for f : {P} → {Q}):

{∃g g 7→ v ∗ P} c {Q}
{P} c {Q}

{g 7→ v′ ∗ P} c {Q}
{g 7→ v ∗ P} c {Q}

g 7→ v = g 7→ v ∗ g 7→ v

Importantly, when we own g 7→ v or ∃v g 7→ v we know that v is not
modified by another thread.

semantic erasure

infinite number of ghost variables? indexed gi’s?
How to organise them? (we must keep an infinite supply!)

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 25 / 32

But
Problems:

unbounded number of ghost variables, or thread flow unknown?

erasure theorem on proofs in a shallow embedding?

... isn’t it a logical problem?

Solution:

we use a enriched memory (same as for f : {P} → {Q}):

{∃g g 7→ v ∗ P} c {Q}
{P} c {Q}

{g 7→ v′ ∗ P} c {Q}
{g 7→ v ∗ P} c {Q}

g 7→ v = g 7→ v ∗ g 7→ v

Importantly, when we own g 7→ v or ∃v g 7→ v we know that v is not
modified by another thread.

semantic erasure

infinite number of ghost variables? indexed gi’s?
How to organise them? (we must keep an infinite supply!)

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 25 / 32

But
Problems:

unbounded number of ghost variables, or thread flow unknown?

erasure theorem on proofs in a shallow embedding?

... isn’t it a logical problem?

Solution:

we use a enriched memory (same as for f : {P} → {Q}):

{∃g g 7→ v ∗ P} c {Q}
{P} c {Q}

{g 7→ v′ ∗ P} c {Q}
{g 7→ v ∗ P} c {Q}

g 7→ v = g 7→ v ∗ g 7→ v

Importantly, when we own g 7→ v or ∃v g 7→ v we know that v is not
modified by another thread.

semantic erasure

infinite number of ghost variables?

indexed gi’s?
How to organise them? (we must keep an infinite supply!)

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 25 / 32

But
Problems:

unbounded number of ghost variables, or thread flow unknown?

erasure theorem on proofs in a shallow embedding?

... isn’t it a logical problem?

Solution:

we use a enriched memory (same as for f : {P} → {Q}):

{∃g g 7→ v ∗ P} c {Q}
{P} c {Q}

{g 7→ v′ ∗ P} c {Q}
{g 7→ v ∗ P} c {Q}

g 7→ v = g 7→ v ∗ g 7→ v

Importantly, when we own g 7→ v or ∃v g 7→ v we know that v is not
modified by another thread.

semantic erasure

infinite number of ghost variables? indexed gi’s?

How to organise them? (we must keep an infinite supply!)

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 25 / 32

But
Problems:

unbounded number of ghost variables, or thread flow unknown?

erasure theorem on proofs in a shallow embedding?

... isn’t it a logical problem?

Solution:

we use a enriched memory (same as for f : {P} → {Q}):

{∃g g 7→ v ∗ P} c {Q}
{P} c {Q}

{g 7→ v′ ∗ P} c {Q}
{g 7→ v ∗ P} c {Q}

g 7→ v = g 7→ v ∗ g 7→ v

Importantly, when we own g 7→ v or ∃v g 7→ v we know that v is not
modified by another thread.

semantic erasure

infinite number of ghost variables? indexed gi’s?
How to organise them? (we must keep an infinite supply!)

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 25 / 32

Splitting infinite sets

We can split infinite subsets, e.g. for N:

N = (1 + 2N)] 2N

and more that once:
N =

⊎
k∈N

2k(1 + 2N)− 1

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 26 / 32

We have encountered this problem before!

Permissions shares have been implemented by z, 0 ≤ z ≤ 1, intervals of
[0, 1], subsets of N, ... and finally, trees!

t ::= • | ◦ |
t1 t2

/ • • ≡ •, ◦ ◦ ≡ ◦

Embedding in infinite-or-empty subsets of N:

N• = N N◦ = ∅ N(
t1 t2

) = 2Nt1] (1 + 2Nt2)

Converse (“terminates” on J·K ; f ◦N· is the normalization function for ≡)

f(∅) = ◦ f(N) = •

f(A) =
t1 t2

with t1 = f

(
A ∩ 2N

2

)
and t2 = f

(
A ∩ (1 + 2N)− 1

2

)
These Nt help us embed our ghost state in our memory model.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 27 / 32

We have encountered this problem before!

Permissions shares have been implemented by z, 0 ≤ z ≤ 1, intervals of
[0, 1], subsets of N, ... and finally, trees!

t ::= • | ◦ |
t1 t2

/ • • ≡ •, ◦ ◦ ≡ ◦

Embedding in infinite-or-empty subsets of N:

N• = N N◦ = ∅ N(
t1 t2

) = 2Nt1] (1 + 2Nt2)

Converse (“terminates” on J·K ; f ◦N· is the normalization function for ≡)

f(∅) = ◦ f(N) = •

f(A) =
t1 t2

with t1 = f

(
A ∩ 2N

2

)
and t2 = f

(
A ∩ (1 + 2N)− 1

2

)
These Nt help us embed our ghost state in our memory model.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 27 / 32

We have encountered this problem before!

Permissions shares have been implemented by z, 0 ≤ z ≤ 1, intervals of
[0, 1], subsets of N, ... and finally, trees!

t ::= • | ◦ |
t1 t2

/ • • ≡ •, ◦ ◦ ≡ ◦

Embedding in infinite-or-empty subsets of N:

N• = N N◦ = ∅ N(
t1 t2

) = 2Nt1] (1 + 2Nt2)

Converse (“terminates” on J·K ; f ◦N· is the normalization function for ≡)

f(∅) = ◦ f(N) = •

f(A) =
t1 t2

with t1 = f

(
A ∩ 2N

2

)
and t2 = f

(
A ∩ (1 + 2N)− 1

2

)
These Nt help us embed our ghost state in our memory model.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 27 / 32

We have encountered this problem before!

Permissions shares have been implemented by z, 0 ≤ z ≤ 1, intervals of
[0, 1], subsets of N, ... and finally, trees!

t ::= • | ◦ |
t1 t2

/ • • ≡ •, ◦ ◦ ≡ ◦

Embedding in infinite-or-empty subsets of N:

N• = N N◦ = ∅ N(
t1 t2

) = 2Nt1] (1 + 2Nt2)

Converse (“terminates” on J·K ; f ◦N· is the normalization function for ≡)

f(∅) = ◦ f(N) = •

f(A) =
t1 t2

with t1 = f

(
A ∩ 2N

2

)
and t2 = f

(
A ∩ (1 + 2N)− 1

2

)

These Nt help us embed our ghost state in our memory model.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 27 / 32

We have encountered this problem before!

Permissions shares have been implemented by z, 0 ≤ z ≤ 1, intervals of
[0, 1], subsets of N, ... and finally, trees!

t ::= • | ◦ |
t1 t2

/ • • ≡ •, ◦ ◦ ≡ ◦

Embedding in infinite-or-empty subsets of N:

N• = N N◦ = ∅ N(
t1 t2

) = 2Nt1] (1 + 2Nt2)

Converse (“terminates” on J·K ; f ◦N· is the normalization function for ≡)

f(∅) = ◦ f(N) = •

f(A) =
t1 t2

with t1 = f

(
A ∩ 2N

2

)
and t2 = f

(
A ∩ (1 + 2N)− 1

2

)
These Nt help us embed our ghost state in our memory model.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 27 / 32

Representation of ghost state

g
π7→
ρ
v , ∃(vi)

∏
i∈Nρ

gi
π7→ vi ∧

∑
i∈Nρ

vi = v

Two tree shares:

π: permission (what can we do...)

ρ: location (...to which part)

Composed value:

v (the sum is finite)
(can be any PCM)

π1 ⊕ π2 = π

g
π17→
ρ
v ∗ g π27→

ρ
v = g

π7→
ρ
v

ρ1 ⊕ ρ2 = ρ v1 · v2 = v

g
π7→
ρ1
v1 ∗ g

π7→
ρ2
v2 ` g

π7→
ρ
v

g
π7→
ρ
v ` ∃ρ1, ρ2, v1, v2, ρ1 ⊕ ρ2 = ρ ∧ v1 · v2 = v ∧ g

π7→
ρ1
v1 ∗ g

π7→
ρ2
v2

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 28 / 32

Representation of ghost state

g
π7→
ρ
v , ∃(vi)

∏
i∈Nρ

gi
π7→ vi ∧

∑
i∈Nρ

vi = v

Two tree shares:

π: permission (what can we do...)

ρ: location (...to which part)

Composed value:

v (the sum is finite)
(can be any PCM)

π1 ⊕ π2 = π

g
π17→
ρ
v ∗ g π27→

ρ
v = g

π7→
ρ
v

ρ1 ⊕ ρ2 = ρ v1 · v2 = v

g
π7→
ρ1
v1 ∗ g

π7→
ρ2
v2 ` g

π7→
ρ
v

g
π7→
ρ
v ` ∃ρ1, ρ2, v1, v2, ρ1 ⊕ ρ2 = ρ ∧ v1 · v2 = v ∧ g

π7→
ρ1
v1 ∗ g

π7→
ρ2
v2

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 28 / 32

Representation of ghost state

g
π7→
ρ
v , ∃(vi)

∏
i∈Nρ

gi
π7→ vi ∧

∑
i∈Nρ

vi = v

Two tree shares:

π: permission (what can we do...)

ρ: location (...to which part)

Composed value:

v (the sum is finite)
(can be any PCM)

π1 ⊕ π2 = π

g
π17→
ρ
v ∗ g π27→

ρ
v = g

π7→
ρ
v

ρ1 ⊕ ρ2 = ρ v1 · v2 = v

g
π7→
ρ1
v1 ∗ g

π7→
ρ2
v2 ` g

π7→
ρ
v

g
π7→
ρ
v ` ∃ρ1, ρ2, v1, v2, ρ1 ⊕ ρ2 = ρ ∧ v1 · v2 = v ∧ g

π7→
ρ1
v1 ∗ g

π7→
ρ2
v2

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 28 / 32

Representation of ghost state

g
π7→
ρ
v , ∃(vi)

∏
i∈Nρ

gi
π7→ vi ∧

∑
i∈Nρ

vi = v

Two tree shares:

π: permission (what can we do...)

ρ: location (...to which part)

Composed value:

v (the sum is finite)
(can be any PCM)

π1 ⊕ π2 = π

g
π17→
ρ
v ∗ g π27→

ρ
v = g

π7→
ρ
v

ρ1 ⊕ ρ2 = ρ v1 · v2 = v

g
π7→
ρ1
v1 ∗ g

π7→
ρ2
v2 ` g

π7→
ρ
v

g
π7→
ρ
v ` ∃ρ1, ρ2, v1, v2, ρ1 ⊕ ρ2 = ρ ∧ v1 · v2 = v ∧ g

π7→
ρ1
v1 ∗ g

π7→
ρ2
v2

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 28 / 32

Representation of ghost state

g
π7→
ρ
v , ∃(vi)

∏
i∈Nρ

gi
π7→ vi ∧

∑
i∈Nρ

vi = v

Two tree shares:

π: permission (what can we do...)

ρ: location (...to which part)

Composed value:

v (the sum is finite)
(can be any PCM)

ρ1 ⊕ ρ2 = ρ v1 · v2 = v

g
π7→
ρ1
v1 ∗ g

π7→
ρ2
v2 ` g

π7→
ρ
v

g
π7→
ρ
v ` ∃ρ1, ρ2, v1, v2, ρ1 ⊕ ρ2 = ρ ∧ v1 · v2 = v ∧ g

π7→
ρ1
v1 ∗ g

π7→
ρ2
v2

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 28 / 32

Representation of ghost state

g
π7→
ρ
v , ∃(vi)

∏
i∈Nρ

gi
π7→ vi ∧

∑
i∈Nρ

vi = v

Two tree shares:

π: permission (what can we do...)

ρ: location (...to which part)

Composed value:

v (the sum is finite)
(can be any PCM)

ρ1 ⊕ ρ2 = ρ v1 · v2 = v

g
π7→
ρ1
v1 ∗ g

π7→
ρ2
v2 ` g

π7→
ρ
v

g
π7→
ρ
v ` ∃ρ1, ρ2, v1, v2, ρ1 ⊕ ρ2 = ρ ∧ v1 · v2 = v ∧ g

π7→
ρ1
v1 ∗ g

π7→
ρ2
v2

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 28 / 32

Representation of ghost state

g
π7→
ρ
v , ∃(vi)

∏
i∈Nρ

gi
π7→ vi ∧

∑
i∈Nρ

vi = v

Two tree shares:

π: permission (what can we do...)

ρ: location (...to which part)

Composed value:

v (the sum is finite)
(can be any PCM)

ρ1 ⊕ ρ2 = ρ v1 · v2 = v

g
π7→
ρ1
v1 ∗ g

π7→
ρ2
v2 ` g

π7→
ρ
v

g
π7→
ρ
v ` ∃ρ1, ρ2, ρ1 ⊕ ρ2 = ρ ∧ g

π7→
ρ1
v ∗ g π7→

ρ2
1

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 28 / 32

Representation of ghost state

g
π7→
ρ
v , ∃(vi)

∏
i∈Nρ

gi
π7→ vi ∧

∑
i∈Nρ

vi = v

Two tree shares:

π: permission (what can we do...)

ρ: location (...to which part)

Composed value:

v (the sum is finite)
(can be any PCM)

ρ1 ⊕ ρ2 = ρ v1 · v2 = v

g
π7→
ρ1
v1 ∗ g

π7→
ρ2
v2 ` g

π7→
ρ
v

g
π7→
ρ
v = ∃ρ1, ρ2, v1, v2, ρ1 ⊕ ρ2 = ρ ∧ v1 · v2 = v ∧ g

π7→
ρ1
v1 ∗ g

π7→
ρ2
v2

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 28 / 32

Representation of ghost state

g
π7→
ρ
v , ∃(vi)

∏
i∈Nρ

gi
π7→ vi ∧

∑
i∈Nρ

vi = v

Two tree shares:

π: permission (what can we do...)

ρ: location (...to which part)

Composed value:

v (the sum is finite)
(can be any PCM)

g
π7→
ρ
v = ∃ρ1, ρ2, v1, v2, ρ1 ⊕ ρ2 = ρ ∧ v1 · v2 = v ∧ g

π7→
ρ1
v1 ∗ g

π7→
ρ2
v2

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 28 / 32

Threads sharing memory

{s �→ R ∗ x 7→ 0}

{s �→ R ∗ x 7→ 0 ∗ g 7→ 0}

V(s); R , ∃v x 7→ v ∗ g 7→ v

{s �→ R ∗ g 7→ 0}

{s �→ R ∗ g 7→ 0 ∗ g 7→ 0}
(P(s); x++; V(s)) || (P(s); x++; V(s));

{s �→ R ∗ g 7→ 1 ∗ g 7→ 1}

{s �→ R ∗ g 7→ 2}
P(s);

{s �→ R ∗ x 7→ 2 ∗ g 7→ 2}
{s �→ R ∗ x 7→ 2}
assert(x == 2);

{s �→ R ∗ x 7→ 2} safe!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 29 / 32

Threads sharing memory

{s �→ R ∗ x 7→ 0}
{s �→ R ∗ x 7→ 0 ∗ g 7→ 0}

V(s); R , ∃v x 7→ v ∗ g 7→ v

{s �→ R ∗ g 7→ 0}

{s �→ R ∗ g 7→ 0 ∗ g 7→ 0}
(P(s); x++; V(s)) || (P(s); x++; V(s));

{s �→ R ∗ g 7→ 1 ∗ g 7→ 1}

{s �→ R ∗ g 7→ 2}
P(s);

{s �→ R ∗ x 7→ 2 ∗ g 7→ 2}
{s �→ R ∗ x 7→ 2}
assert(x == 2);

{s �→ R ∗ x 7→ 2} safe!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 29 / 32

Threads sharing memory

{s �→ R ∗ x 7→ 0}
{s �→ R ∗ x 7→ 0 ∗ g 7→ 0}

V(s);

R , ∃v x 7→ v ∗ g 7→ v

{s �→ R ∗ g 7→ 0}

{s �→ R ∗ g 7→ 0 ∗ g 7→ 0}
(P(s); x++; V(s)) || (P(s); x++; V(s));

{s �→ R ∗ g 7→ 1 ∗ g 7→ 1}

{s �→ R ∗ g 7→ 2}
P(s);

{s �→ R ∗ x 7→ 2 ∗ g 7→ 2}
{s �→ R ∗ x 7→ 2}
assert(x == 2);

{s �→ R ∗ x 7→ 2} safe!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 29 / 32

Threads sharing memory

{s �→ R ∗ x 7→ 0}
{s �→ R ∗ x 7→ 0 ∗ g 7→ 0}

V(s); R , ∃v x 7→ v ∗ g 7→ v

{s �→ R ∗ g 7→ 0}

{s �→ R ∗ g 7→ 0 ∗ g 7→ 0}
(P(s); x++; V(s)) || (P(s); x++; V(s));

{s �→ R ∗ g 7→ 1 ∗ g 7→ 1}

{s �→ R ∗ g 7→ 2}
P(s);

{s �→ R ∗ x 7→ 2 ∗ g 7→ 2}
{s �→ R ∗ x 7→ 2}
assert(x == 2);

{s �→ R ∗ x 7→ 2} safe!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 29 / 32

Threads sharing memory

{s �→ R ∗ x 7→ 0}
{s �→ R ∗ x 7→ 0 ∗ g 7→ 0}

V(s); R , ∃v x 7→ v ∗ g 7→ v

{s �→ R ∗ g 7→ 0}

{s �→ R ∗ g 7→ 0 ∗ g 7→ 0}
(P(s); x++; V(s)) || (P(s); x++; V(s));

{s �→ R ∗ g 7→ 1 ∗ g 7→ 1}

{s �→ R ∗ g 7→ 2}
P(s);

{s �→ R ∗ x 7→ 2 ∗ g 7→ 2}
{s �→ R ∗ x 7→ 2}
assert(x == 2);

{s �→ R ∗ x 7→ 2} safe!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 29 / 32

Threads sharing memory

{s �→ R ∗ x 7→ 0}
{s �→ R ∗ x 7→ 0 ∗ g 7→ 0}

V(s); R , ∃v x 7→ v ∗ g 7→ v

{s �→ R ∗ g 7→ 0}

{s �→ R ∗ g 7→ 0 ∗ g 7→ 0}

(P(s); x++; V(s)) || (P(s); x++; V(s));

{s �→ R ∗ g 7→ 1 ∗ g 7→ 1}

{s �→ R ∗ g 7→ 2}
P(s);

{s �→ R ∗ x 7→ 2 ∗ g 7→ 2}
{s �→ R ∗ x 7→ 2}
assert(x == 2);

{s �→ R ∗ x 7→ 2} safe!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 29 / 32

Threads sharing memory

{s �→ R ∗ x 7→ 0}
{s �→ R ∗ x 7→ 0 ∗ g 7→ 0}

V(s); R , ∃v x 7→ v ∗ g 7→ v

{s �→ R ∗ g 7→ 0}

{s �→ R ∗ g 7→ 0 ∗ g 7→ 0}
(P(s); x++; V(s)) || (P(s); x++; V(s));

{s �→ R ∗ g 7→ 1 ∗ g 7→ 1}

{s �→ R ∗ g 7→ 2}
P(s);

{s �→ R ∗ x 7→ 2 ∗ g 7→ 2}
{s �→ R ∗ x 7→ 2}
assert(x == 2);

{s �→ R ∗ x 7→ 2} safe!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 29 / 32

Threads sharing memory

{s �→ R ∗ x 7→ 0}
{s �→ R ∗ x 7→ 0 ∗ g 7→ 0}

V(s); R , ∃v x 7→ v ∗ g 7→ v

{s �→ R ∗ g 7→ 0}

{s �→ R ∗ g 7→ 0 ∗ g 7→ 0}
(P(s); x++; V(s)) || (P(s); x++; V(s));

{s �→ R ∗ g 7→ 1 ∗ g 7→ 1}

{s �→ R ∗ g 7→ 2}
P(s);

{s �→ R ∗ x 7→ 2 ∗ g 7→ 2}
{s �→ R ∗ x 7→ 2}
assert(x == 2);

{s �→ R ∗ x 7→ 2} safe!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 29 / 32

Threads sharing memory

{s �→ R ∗ x 7→ 0}
{s �→ R ∗ x 7→ 0 ∗ g 7→ 0}

V(s); R , ∃v x 7→ v ∗ g 7→ v

{s �→ R ∗ g 7→ 0}

{s �→ R ∗ g 7→ 0 ∗ g 7→ 0}
(P(s); x++; V(s)) || (P(s); x++; V(s));

{s �→ R ∗ g 7→ 1 ∗ g 7→ 1}

{s �→ R ∗ g 7→ 2}

P(s);

{s �→ R ∗ x 7→ 2 ∗ g 7→ 2}
{s �→ R ∗ x 7→ 2}
assert(x == 2);

{s �→ R ∗ x 7→ 2} safe!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 29 / 32

Threads sharing memory

{s �→ R ∗ x 7→ 0}
{s �→ R ∗ x 7→ 0 ∗ g 7→ 0}

V(s); R , ∃v x 7→ v ∗ g 7→ v

{s �→ R ∗ g 7→ 0}

{s �→ R ∗ g 7→ 0 ∗ g 7→ 0}
(P(s); x++; V(s)) || (P(s); x++; V(s));

{s �→ R ∗ g 7→ 1 ∗ g 7→ 1}

{s �→ R ∗ g 7→ 2}
P(s);

{s �→ R ∗ x 7→ 2 ∗ g 7→ 2}
{s �→ R ∗ x 7→ 2}
assert(x == 2);

{s �→ R ∗ x 7→ 2} safe!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 29 / 32

Threads sharing memory

{s �→ R ∗ x 7→ 0}
{s �→ R ∗ x 7→ 0 ∗ g 7→ 0}

V(s); R , ∃v x 7→ v ∗ g 7→ v

{s �→ R ∗ g 7→ 0}

{s �→ R ∗ g 7→ 0 ∗ g 7→ 0}
(P(s); x++; V(s)) || (P(s); x++; V(s));

{s �→ R ∗ g 7→ 1 ∗ g 7→ 1}

{s �→ R ∗ g 7→ 2}
P(s);

{s �→ R ∗ x 7→ 2 ∗ g 7→ 2}

{s �→ R ∗ x 7→ 2}
assert(x == 2);

{s �→ R ∗ x 7→ 2} safe!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 29 / 32

Threads sharing memory

{s �→ R ∗ x 7→ 0}
{s �→ R ∗ x 7→ 0 ∗ g 7→ 0}

V(s); R , ∃v x 7→ v ∗ g 7→ v

{s �→ R ∗ g 7→ 0}

{s �→ R ∗ g 7→ 0 ∗ g 7→ 0}
(P(s); x++; V(s)) || (P(s); x++; V(s));

{s �→ R ∗ g 7→ 1 ∗ g 7→ 1}

{s �→ R ∗ g 7→ 2}
P(s);

{s �→ R ∗ x 7→ 2 ∗ g 7→ 2}
{s �→ R ∗ x 7→ 2}

assert(x == 2);

{s �→ R ∗ x 7→ 2} safe!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 29 / 32

Threads sharing memory

{s �→ R ∗ x 7→ 0}
{s �→ R ∗ x 7→ 0 ∗ g 7→ 0}

V(s); R , ∃v x 7→ v ∗ g 7→ v

{s �→ R ∗ g 7→ 0}

{s �→ R ∗ g 7→ 0 ∗ g 7→ 0}
(P(s); x++; V(s)) || (P(s); x++; V(s));

{s �→ R ∗ g 7→ 1 ∗ g 7→ 1}

{s �→ R ∗ g 7→ 2}
P(s);

{s �→ R ∗ x 7→ 2 ∗ g 7→ 2}
{s �→ R ∗ x 7→ 2}
assert(x == 2);

{s �→ R ∗ x 7→ 2} safe!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 29 / 32

Threads sharing memory

{s �→ R ∗ x 7→ 0}
{s �→ R ∗ x 7→ 0 ∗ g 7→ 0}

V(s); R , ∃v x 7→ v ∗ g 7→ v

{s �→ R ∗ g 7→ 0}

{s �→ R ∗ g 7→ 0 ∗ g 7→ 0}
(P(s); x++; V(s)) || (P(s); x++; V(s));

{s �→ R ∗ g 7→ 1 ∗ g 7→ 1}

{s �→ R ∗ g 7→ 2}
P(s);

{s �→ R ∗ x 7→ 2 ∗ g 7→ 2}
{s �→ R ∗ x 7→ 2}
assert(x == 2);

{s �→ R ∗ x 7→ 2}

safe!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 29 / 32

Threads sharing memory

{s �→ R ∗ x 7→ 0}
{s �→ R ∗ x 7→ 0 ∗ g 7→ 0}

V(s); R , ∃v x 7→ v ∗ g 7→ v

{s �→ R ∗ g 7→ 0}

{s �→ R ∗ g 7→ 0 ∗ g 7→ 0}
(P(s); x++; V(s)) || (P(s); x++; V(s));

{s �→ R ∗ g 7→ 1 ∗ g 7→ 1}

{s �→ R ∗ g 7→ 2}
P(s);

{s �→ R ∗ x 7→ 2 ∗ g 7→ 2}
{s �→ R ∗ x 7→ 2}
assert(x == 2);

{s �→ R ∗ x 7→ 2} safe!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 29 / 32

... we catch back on Nanevski’s subjective views

x

0

0

2

01 011 1
⊕

Thread 1 Shared resource Thread 2

x = 0;

V(s);

P(s);

x++;

V(s);

P(s);

x++;

V(s);

P(s);

assert(x == 2);
Safe!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 30 / 32

... we catch back on Nanevski’s subjective views

x

0

0

2

01 011 1
⊕

Thread 1 Shared resource Thread 2

x = 0;

V(s);

P(s);

x++;

V(s);

P(s);

x++;

V(s);

P(s);

assert(x == 2);
Safe!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 30 / 32

... we catch back on Nanevski’s subjective views

x

0

0

2

01 011 1
⊕

Thread 1 Shared resource Thread 2

x = 0;

V(s);

P(s);

x++;

V(s);

P(s);

x++;

V(s);

P(s);

assert(x == 2);
Safe!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 30 / 32

... we catch back on Nanevski’s subjective views

x

0

0

2

01 011 1
⊕

Thread 1 Shared resource Thread 2

x = 0;

V(s);

P(s);

x++;

V(s);

P(s);

x++;

V(s);

P(s);

assert(x == 2);
Safe!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 30 / 32

... we catch back on Nanevski’s subjective views

x

0

0

2

01 011 1
⊕

Thread 1 Shared resource Thread 2

x = 0;

V(s);

P(s);

x++;

V(s);

P(s);

x++;

V(s);

P(s);

assert(x == 2);
Safe!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 30 / 32

... we catch back on Nanevski’s subjective views

x

0

0

2

01 011 1
⊕

Thread 1 Shared resource Thread 2

x = 0;

V(s);

P(s);

x++;

V(s);

P(s);

x++;

V(s);

P(s);

assert(x == 2);
Safe!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 30 / 32

... we catch back on Nanevski’s subjective views

x

0

0

2

01 011 1
⊕

Thread 1 Shared resource Thread 2

x = 0;

V(s);

P(s);

x++;

V(s);

P(s);

x++;

V(s);

P(s);

assert(x == 2);
Safe!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 30 / 32

... we catch back on Nanevski’s subjective views

x

0

0

2

01 011 1
⊕

Thread 1 Shared resource Thread 2

x = 0;

V(s);

P(s);

x++;

V(s);

P(s);

x++;

V(s);

P(s);

assert(x == 2);
Safe!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 30 / 32

... we catch back on Nanevski’s subjective views

x

0

0

2

01 011 1
⊕

Thread 1 Shared resource Thread 2

x = 0;

V(s);

P(s);

x++;

V(s);

P(s);

x++;

V(s);

P(s);

assert(x == 2);
Safe!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 30 / 32

... we catch back on Nanevski’s subjective views

x

0

0

2

01 011 1
⊕

Thread 1 Shared resource Thread 2

x = 0;

V(s);

P(s);

x++;

V(s);

P(s);

x++;

V(s);

P(s);

assert(x == 2);
Safe!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 30 / 32

... we catch back on Nanevski’s subjective views

x

0

0

2

01 011 1
⊕

Thread 1 Shared resource Thread 2

x = 0;

V(s);

P(s);

x++;

V(s);

P(s);

x++;

V(s);

P(s);

assert(x == 2);
Safe!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 30 / 32

... we catch back on Nanevski’s subjective views

x

0

0

2

01 011 1
⊕

Thread 1 Shared resource Thread 2

x = 0;

V(s);

P(s);

x++;

V(s);

P(s);

x++;

V(s);

P(s);

assert(x == 2);
Safe!

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 30 / 32

Summary

1 sem wait grants access

2 sem post gives it away

3 we want knowledge about x’s value
Concurrent Separation Logic (O’Hearn’04)

4 we can create locks and spawn threads
CSL with first-class locks and threads

(Gotsman’07, Hobor’08)

5 we need to join threads and transfer back
the permissions from f to main.

6 maintaining x >= 0 is one thing, but how
to ensure x == 2 in the end?

Ghost variables (∼folklore)

Subjective CSL (Nanevski’14), Iris (JSS+’15)

' our ghost state

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 31 / 32

Summary

1 sem wait grants access

2 sem post gives it away

3 we want knowledge about x’s value
Concurrent Separation Logic (O’Hearn’04)

4 we can create locks and spawn threads
CSL with first-class locks and threads

(Gotsman’07, Hobor’08)

5 we need to join threads and transfer back
the permissions from f to main.

6 maintaining x >= 0 is one thing, but how
to ensure x == 2 in the end?

Ghost variables (∼folklore)

Subjective CSL (Nanevski’14), Iris (JSS+’15)

' our ghost state

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 31 / 32

Summary

1 sem wait grants access

2 sem post gives it away

3 we want knowledge about x’s value
Concurrent Separation Logic (O’Hearn’04)

4 we can create locks and spawn threads
CSL with first-class locks and threads

(Gotsman’07, Hobor’08)

5 we need to join threads and transfer back
the permissions from f to main.

6 maintaining x >= 0 is one thing, but how
to ensure x == 2 in the end?

Ghost variables (∼folklore)

Subjective CSL (Nanevski’14), Iris (JSS+’15)

' our ghost state

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 31 / 32

Summary

1 sem wait grants access

2 sem post gives it away

3 we want knowledge about x’s value

Concurrent Separation Logic (O’Hearn’04)

4 we can create locks and spawn threads
CSL with first-class locks and threads

(Gotsman’07, Hobor’08)

5 we need to join threads and transfer back
the permissions from f to main.

6 maintaining x >= 0 is one thing, but how
to ensure x == 2 in the end?

Ghost variables (∼folklore)

Subjective CSL (Nanevski’14), Iris (JSS+’15)

' our ghost state

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 31 / 32

Summary

1 sem wait grants access

2 sem post gives it away

3 we want knowledge about x’s value
Concurrent Separation Logic (O’Hearn’04)

4 we can create locks and spawn threads
CSL with first-class locks and threads

(Gotsman’07, Hobor’08)

5 we need to join threads and transfer back
the permissions from f to main.

6 maintaining x >= 0 is one thing, but how
to ensure x == 2 in the end?

Ghost variables (∼folklore)

Subjective CSL (Nanevski’14), Iris (JSS+’15)

' our ghost state

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 31 / 32

Summary

1 sem wait grants access

2 sem post gives it away

3 we want knowledge about x’s value
Concurrent Separation Logic (O’Hearn’04)

4 we can create locks and spawn threads
CSL with first-class locks and threads

(Gotsman’07, Hobor’08)

5 we need to join threads and transfer back
the permissions from f to main.

6 maintaining x >= 0 is one thing, but how
to ensure x == 2 in the end?

Ghost variables (∼folklore)

Subjective CSL (Nanevski’14), Iris (JSS+’15)

' our ghost state

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 31 / 32

Summary

1 sem wait grants access

2 sem post gives it away

3 we want knowledge about x’s value
Concurrent Separation Logic (O’Hearn’04)

4 we can create locks and spawn threads
CSL with first-class locks and threads

(Gotsman’07, Hobor’08)

5 we need to join threads and transfer back
the permissions from f to main.

6 maintaining x >= 0 is one thing, but how
to ensure x == 2 in the end?

Ghost variables (∼folklore)

Subjective CSL (Nanevski’14), Iris (JSS+’15)

' our ghost state

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 31 / 32

Summary

1 sem wait grants access

2 sem post gives it away

3 we want knowledge about x’s value
Concurrent Separation Logic (O’Hearn’04)

4 we can create locks and spawn threads
CSL with first-class locks and threads

(Gotsman’07, Hobor’08)

5 we need to join threads and transfer back
the permissions from f to main.

6 maintaining x >= 0 is one thing, but how
to ensure x == 2 in the end?

Ghost variables (∼folklore)

Subjective CSL (Nanevski’14), Iris (JSS+’15)

' our ghost state

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 31 / 32

Summary

1 sem wait grants access

2 sem post gives it away

3 we want knowledge about x’s value
Concurrent Separation Logic (O’Hearn’04)

4 we can create locks and spawn threads
CSL with first-class locks and threads

(Gotsman’07, Hobor’08)

5 we need to join threads and transfer back
the permissions from f to main.

6 maintaining x >= 0 is one thing, but how
to ensure x == 2 in the end?

Ghost variables (∼folklore)

Subjective CSL (Nanevski’14), Iris (JSS+’15)

' our ghost state

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 31 / 32

Summary

1 sem wait grants access

2 sem post gives it away

3 we want knowledge about x’s value
Concurrent Separation Logic (O’Hearn’04)

4 we can create locks and spawn threads
CSL with first-class locks and threads

(Gotsman’07, Hobor’08)

5 we need to join threads and transfer back
the permissions from f to main.

6 maintaining x >= 0 is one thing, but how
to ensure x == 2 in the end?

Ghost variables (∼folklore)

Subjective CSL (Nanevski’14), Iris (JSS+’15)

' our ghost state

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 31 / 32

Summary

1 sem wait grants access

2 sem post gives it away

3 we want knowledge about x’s value
Concurrent Separation Logic (O’Hearn’04)

4 we can create locks and spawn threads
CSL with first-class locks and threads

(Gotsman’07, Hobor’08)

5 we need to join threads and transfer back
the permissions from f to main.

6 maintaining x >= 0 is one thing, but how
to ensure x == 2 in the end?

Ghost variables (∼folklore)

Subjective CSL (Nanevski’14), Iris (JSS+’15)

' our ghost state

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 31 / 32

Program patterns
We can do:

simple x++||x++ variants,

(some) producer/consumer implementations,

distributed initialize-once.

We expect:

parallel sorting algorithms,

other producer/consumer implementations,

parallel tree/graph traversals,

... waiting from our sponsor to provide program patterns.

We don’t do:

RCU,

races, low-level barriers,

lock-free implementations.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 32 / 32

Program patterns
We can do:

simple x++||x++ variants,

(some) producer/consumer implementations,

distributed initialize-once.

We expect:

parallel sorting algorithms,

other producer/consumer implementations,

parallel tree/graph traversals,

... waiting from our sponsor to provide program patterns.

We don’t do:

RCU,

races, low-level barriers,

lock-free implementations.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 32 / 32

Program patterns
We can do:

simple x++||x++ variants,

(some) producer/consumer implementations,

distributed initialize-once.

We expect:

parallel sorting algorithms,

other producer/consumer implementations,

parallel tree/graph traversals,

... waiting from our sponsor to provide program patterns.

We don’t do:

RCU,

races, low-level barriers,

lock-free implementations.

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 32 / 32

Thank you for having me!

g
π7→
ρ
v

https://github.com/PrincetonUniversity/VST/tree/concurrency

Jean-Marie Madiot (Princeton) Verifying concurrent C programs in Coq Gallium, January 4, 2016 32 / 32

https://github.com/PrincetonUniversity/VST/

	Overview of the project
	How a proof goes in VST
	Example of a concurrent program

