
11

Introduction to Electronic
Design Automation

Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

Spring 2014

22

Physical Design

Logic synthesis

High-level synthesis

Physical design

Slides are by Courtesy of Prof. Y.-W. Chang

33

Physical Design
 Physical design converts a circuit description into a geometric

description.
 The description is used to manufacture a chip.
 Physical design cycle:

1. Logic partitioning
2. Floorplanning and placement
3. Routing
4. Compaction

 Others: circuit extraction, timing verification and design rule
checking

44

Physical Design Flow

55

Outline

Partitioning

Floorplanning

Placement

Routing

Compaction

66

Circuit Partitioning

 Course contents:
 Kernighang-Lin partitioning algorithm

77

Circuit Partitioning
 Objective: Partition a circuit into parts such that every

component is within a prescribed range and the # of
connections among the components is minimized.
 More constraints are possible for some applications.

 Cutset? Cut size? Size of a component?

88

(,) () ()
()

e u v p u p v
w e

   

Problem Definition: Partitioning
 k-way partitioning: Given a graph G(V, E), where each

vertex v  V has a size s(v) and each edge e  E has a
weight w(e), the problem is to divide the set V into k disjoint
subsets V1, V2, …, Vk, such that an objective function is
optimized, subject to certain constraints.

 Bounded size constraint: The size of the i-th subset is
bounded by Bi (i.e.,).
 Is the partition balanced?

 Min-cut cost between two subsets:
Minimize , where p(u) is the partition # of
node u.

 The 2-way, balanced partitioning problem is NP-complete,
even in its simple form with identical vertex sizes and unit
edge weights.

99

Kernighan-Lin Algorithm
 Kernighan and Lin, “An efficient heuristic procedure for

partitioning graphs,” The Bell System Technical Journal, vol.
49, no. 2, Feb. 1970.

 An iterative, 2-way, balanced partitioning (bi-sectioning)
heuristic.

 Till the cut size keeps decreasing
 Vertex pairs which give the largest decrease or the

smallest increase in cut size are exchanged.
 These vertices are then locked (and thus are prohibited

from participating in any further exchanges).
 This process continues until all the vertices are locked.
 Find the set with the largest partial sum for swapping.
 Unlock all vertices.

1010

K-L Algorithm: A Simple Example
 Each edge has a unit weight.

 Questions: How to compute cost reduction? What pairs to
be swapped?
 Consider the change of internal & external connections.

1111

Properties
 Two sets A and B such that |A| = n = |B| and A  B = .
 External cost of a  A: Ea = cav.
 Internal cost of a  A: Ia = cav.
 D-value of a vertex a: Da = Ea - Ia (cost reduction for moving a).
 Cost reduction (gain) for swapping a and b: gab = Da + Db - 2cab.
 If a  A and b  B are interchanged, then the new D-values, D’,

are given by

v B
v A

1212

A Weighted Example

 Iteration 1

1313

A Weighted Example (cont’d)
 Iteration 1:

 gxy = Dx + Dy - 2cxy.

 Swap b and f.

1414

A Weighted Example (cont’d)

 D’x = Dx + 2 cxp - 2 cxq,  x  A – {p} (swap p and q, p  A, q  B)

 gxy = D’x + D’y - 2cxy.

 Swap c and e.

1515

A Weighted Example (cont’d)

 D’’x = D’x + 2 cxp - 2 cxq,  x  A – {p}

 gxy = D’’x + D’’y - 2cxy.

 Note that this step is redundant

 Summary:

 Largest partial sum (k = 1)  Swap b and f.

1616

A Weighted Example (cont’d)

 Iteration 2: Repeat what we did at Iteration 1
(Initial cost = 22-4 =18).

 Summary:

 Largest partial sum = (k = 3)  Stop!

1717

Kernighan-Lin Algorithm

1818

Time Complexity

Line 4: Initial computation of D: O(n2)
Line 5: The for-loop: O(n)
The body of the loop: O(n2).
Lines 6--7: Step i takes (n – i + 1)2 time.

Lines 4--11: Each pass of the repeat loop:
O(n3).

Suppose the repeat loop terminates after r
passes.

The total running time: O(rn3).
Polynomial-time algorithm?

1919

Extensions of K-L Algorithm
 Unequal sized subsets (assume n1 < n2)

1. Partition: |A| = n1 and |B| = n2.
2. Add n2 - n1 dummy vertices to set A. Dummy vertices have no

connections to the original graph.
3. Apply the Kernighan-Lin algorithm.
4. Remove all dummy vertices.

 Unequal sized “vertices”
1. Assume that the smallest “vertex'' has unit size.
2. Replace each vertex of size s with s vertices which are fully

connected with edges of infinite weight.
3. Apply the Kernighan-Lin algorithm.

 k-way partition
1. Partition the graph into k equal-sized sets.
2. Apply the Kernighan-Lin algorithm for each pair of subsets.
3. Time complexity? Can be reduced by recursive bi-partition.

2020

Outline

Partitioning

Floorplanning

Placement

Routing

Compaction

2121

Floorplanning

 Course contents
 Floorplan basics
 Normalized Polish expression for slicing flooprlans
 B*-trees for non-slicing floorplans

 Reading
 Chapter 10

Pentium 4
PowerPC 604

2222

Floorplanning
 Partitioning leads to

 Blocks with well-defined areas and shapes (rigid/hard
blocks).

 Blocks with approximate areas and no particular shapes
(flexible/soft blocks).

 A netlist specifying connections between the blocks.
 Objectives

 Find locations for all blocks.
 Consider shapes of soft block and pin locations of all the blocks.

2323

Early Layout Decision Example

2424

Early Layout Decision Methodology
 An integrated circuit is essentially a two-dimensional

medium; taking this aspect into account in early stages of
the design helps in creating designs of good quality.

 Floorplanning gives early feedback: thinking of layout at
early stages may suggest valuable architectural
modifications; floorplanning also aids in estimating delay
due to wiring.

 Floorplanning fits very well in a top-down design strategy,
the step-wise refinement strategy also propagated in
software design.

 Floorplanning assumes, however, flexibility in layout design,
the existence of cells that can adapt their shapes and
terminal locations to the environment.

2525

Floorplanning Problem

 Inputs to the floorplanning problem:
 A set of blocks, hard or soft.
 Pin locations of hard blocks.
 A netlist.

Objectives: minimize area, reduce wirelength for
(critical) nets, maximize routability (minimize
congestion), determine shapes of soft blocks, etc.

2626

Floorplan Design

2727

Floorplanning Concepts

 Leaf cell
(block/module): a
cell at the lowest level
of the hierarchy; it
does not contain any
other cell.

 Composite cell
(block/module): a
cell that is composed
of either leaf cells or
composite cells. The
entire IC is the
highest- level
composite cell.

leaf cell

composite cell

2828

Slicing Floorplan + Slicing Tree
 A composite cell’s subcells

are obtained by a
horizontal or vertical
bisection of the composite
cell.

 Slicing floorplans can be
represented by a slicing
tree.

 In a slicing tree, all cells
(except for the top-level
cell) have a parent, and all
composite cells have
children.

 A slicing floorplan is also
called a floorplan of order
2.

H

V

H

H: horizontal cut
V: vertical cut
different from the definitions in the
textbook!!

2929

Skewed Slicing Tree
 Rectangular dissection: Subdivision of a given rectangle by a

finite # of horizontal and vertical line segments into a finite # of
non-overlapping rectangles.

 Slicing structure: a rectangular dissection that can be obtained
by repetitively subdividing rectangles horizontally or vertically.

 Slicing tree: A binary tree, where each internal node represents
a vertical cut line or horizontal cut line, and each leaf a basic
rectangle.

 Skewed slicing tree: One in which no node and its right child
are the same.

3030

Slicing Floorplan Design by
Simulated Annealing

Related work
Wong & Liu, “A new algorithm for floorplan

design,” DAC-86.
Considers slicing floorplans.

Wong & Liu, “Floorplan design for rectangular
and L-shaped modules,” ICCAD'87.
Also considers L-shaped modules.

Wong, Leong, Liu, Simulated Annealing for
VLSI Design, pp. 31--71, Kluwer Academic
Publishers, 1988.

3131

Simulated Annealing
 Kirkpatrick, Gelatt, and Vecchi, “Optimization by simulated

annealing,” Science, May 1983.
 Greene and Supowit, “Simulated annealing without rejected

moves,” ICCD-84.

3232

Simulated Annealing Basics

 Non-zero probability for “up-hill” moves.
 Probability depends on

1.magnitude of the “up-hill” movement
2.total search time

 C = cost(S') - Cost(S)
 T: Control parameter (temperature)
 Annealing schedule: T=T0, T1, T2, …, where Ti =

ri T0 with r < 1.

3333

Generic Simulated Annealing Algorithm

1 begin
2 Get an initial solution S;
3 Get an initial temperature T > 0;
4 while not yet “frozen” do
5 for 1  i  P do
6 Pick a random neighbor S' of S;
7   cost(S') - cost(S);

/* downhill move */
8 if   0 then S  S'

/* uphill move */
9 if  > 0 then S  S' with probability ;
10 T  rT; /* reduce temperature */
11 return S
12 end

3434

Basic Ingredients for Simulated
Annealing

 Analogy:

 Basic Ingredients for Simulated Annealing:
 Solution space
 Neighborhood structure
 Cost function
 Annealing schedule

3535

Solution Representation of Slicing
Floorplan
 An expression E = e1 e2… e2n-1, where ei  {1, 2, …, n, H, V}, 1  i 

2n-1, is a Polish expression of length 2n-1 iff
1. every operand j, 1  j  n, appears exactly once in E;
2. (the balloting property) for every subexpression Ei = e1 … ei, 1  i 

2n-1, # operands > # operators.

 Polish expression  Postorder traversal.
 ijH: rectangle i on bottom of j; ijV: rectangle i on the left of j.

3636

Redundant Representations

 Question: How to eliminate ambiguous representation?

3737

Normalized Polish Expression

 A Polish expression E = e1 e2 … e2n-1 is called
normalized iff E has no consecutive operators of
the same type (H or V), i.e. skewed.

 Given a normalized Polish expression, we can
construct a unique rectangular slicing structure.

3838

Neighborhood Structure
 Chain: HVHVH … or VHVHV …

 Adjacent: 1 and 6 are adjacent operands; 2 and 7 are
adjacent operands; 5 and V are adjacent operand and
operator.

 3 types of moves:
 M1 (Operand Swap): Swap two adjacent operands.
 M2 (Chain Invert): Complement some chain (V = H, H = V).
 M3 (Operator/Operand Swap): Swap two adjacent operand

and operator.

3939

Effects of Perturbation

 Question: The balloting property holds during the moves?
 M1 and M2 moves are OK.
 Check the M3 moves! Reject “illegal” M3 moves.

 Check M3 moves: Assume that the M3 move swaps the
operand ei with the operator ei+1, 1  i  k-1. Then, the
swap will not violate the balloting property iff 2Ni+1 < i.
 Nk: # of operators in the Polish expression E = e1 e2 … ek, 1 

k  2n-1

1 2
3

4

4040

Cost Function
  = A +  W.

 A: area of the smallest rectangle
 W: overall wiring length
  : user-specified parameter

 W= ijcij dij.
 cij: # of connections between blocks i and j.
 dij: center-to-center distance between basic rectangles i and j.

4141

Area Computation for Hard Blocks
 Allow rotation

 Wiring cost?
 Center-to-center interconnection length

4242

Incremental Computation of Cost
Function

 Each move leads to only a minor modification of
the Polish expression.

 At most two paths of the slicing tree need to be
updated for each move.

4343

Incremental Computation of Cost
Function (cont'd)

4444

Annealing Schedule

 Initial solution: 12V3V … nV.

 Ti = ri T0, i = 1, 2, 3, …; r =0.85.
 At each temperature, try kn moves (k = 5-10).
 Terminate the annealing process if
 # of accepted moves < 5%,
 temperature is low enough, or
 run out of time.

4545

Wong-Liu Algorithm
Input: (P, , r, k)
1 begin
2 E  12V3V4V … nV; /* initial solution */
3 Best  E; T0  ; M  MT  uphill  0; N = kn;
4 repeat
5 MT  uphill  reject  0;
6 repeat
7 SelectMove(M);
8 Case M of
9 M1: Select two adjacent operands ei and ej; NE  Swap(E, ei, ej);
10 M2: Select a nonzero length chain C; NE  Complement(E, C);
11 M3: done  FALSE;
12 while not (done) do
13 Select two adjacent operand ei and operator ei+1;
14 if (ei-1  ei+1) and (2 Ni+1 < i) then done  TRUE;
13’ Select two adjacent operator ei and operand ei+1;
14’ if (ei ei+2) then done  TRUE;
15 NE  Swap(E, ei, ei+1);
16 MT  MT+1; cost  cost(NE) - cost(E);

17 if (cost  0) or (Random <)
18 then
19 if (cost > 0) then uphill  uphill + 1;
20 E  NE;
21 if cost(E) < cost(best) then best  E;
22 else reject  reject + 1;
23 until (uphill > N) or (MT > 2N);
24 T  rT; /* reduce temperature */
25 until (reject/MT > 0.95) or (T < ) or OutOfTime;
26 end

4646

Shape Curve
 Flexible cells imply that cells can have different aspect

ratios.
 The relation between the width x and the height y is: xy

= A, or y =A/x. The shape function is a hyperbola.
 Very thin cells are not interesting and often not feasible

to design. The shape function is a combination of a
hyperbola and two straight lines.
 Aspect ratio: r <= y/x <= s.

y = sx

y = rx

legal
shapesy

xx

y

4747

Shape Curve (cont’d)

 Leaf cells are built from discrete transistors: it is
not realistic to assume that the shape function
follows the hyperbola continuously.

 In an extreme case, a cell is rigid: it can only be
rotated and mirrored during floorplanning or
placement.

The shape function of a 2  4 inset cell.

y

x

4848

Shape Curve (cont’d)

 In general, a piecewise linear function can be
used to approximate any shape function.

 The points where the function changes its
direction, are called the corner (break) points of
the piecewise linear function.

4949

Addition for Vertical Abutment

 Composition by vertical abutment  the addition
of shape functions.

R1

R2

5050

Deriving Shapes of Children

 A choice for the minimal shape of composite cell
fixes the shapes of the shapes of its children cells.

5151

Sizing Algorithm for Slicing Floorplans

 The shape functions of all leaf cells are given as
piecewise linear functions.

 Traverse the slicing tree in order to compute the
shape functions of all composite cells (bottom-up
composition).

 Choose the desired shape of the top-level cell; as
the shape function is piecewise linear, only the
break points of the function need to be evaluated,
when looking for the minimal area.

 Propagate the consequences of the choice down
to the leaf cells (top-down propagation).

 The sizing algorithm runs in polynomial time for
slicing floorplans
 NP-complete for non-slicing floorplans

5252

Feasible Implementations
 Shape curves correspond to different kinds of constraints

where the shaded areas are feasible regions.

5353

Wheel or Spiral Floorplan
 This floorplan is not slicing!
 Wheel is the smallest non-

slicing floorplans.
 Limiting floorplans to those

that have the slicing
property is reasonable: it
certainly facilitates
floorplanning algorithms.

 Taking the shape of a
wheel floorplan and its
mirror image as the basis
of operators leads to
hierarchical descriptions of
order 5.

5454

Order-5 Floorplan Examples

V

V

H

5555

General Floorplan Representation:
Polar Graphs

 vertex: channel segment
 edge: cell/block/module

vertical polar graph

horizontal polar graph

56

B*-Tree: Compacted Floorplan
Representation

 Chang et al., “B*-tree: A new representation for non-slicing
floorplans,” DAC 2000.
 Compact modules to left and bottom
 Construct an ordered binary tree (B*-tree)

 Left child: the lowest, adjacent block on the right (xj = xi+wi)
 Right child: the first block above, with the same x-coordinate (xj =

xi)

n1

n2 n3

n4

n5

n6

A non-slicing floorplan Compact to left and down B*-tree

1 2

5
3 4

6

1 2

5
3 4

6

57

B*-tree Packing
 x-coordinates can be determined by the tree structure

 Left child: the lowest, adjacent block on the right (xj = xi+wi)
 Right child: the first block above, with the same x-coordinate

(xj = xi)
 Y-coordinates?

 Horizontal contour: Use a doubly linked list to record the
current maximum y-coordinate for each x-range

 Reduce the complexity of computing a y-coordinate to
amortized O(1) time

1 2

5
3 4

6

w1 x2 = x1 + w1
(x1, y1)

x3 = x1

n1

n2 n3

n4

n5

n6

x1

x2 = x1 + w1 x3 = x1

x6 = x3x4 = x3 + w3

x5 = x4 + w4

5858

Contour Data Structure

1 1
2

1
2

3

1
2

3 4

1
2

3 4
5

1
2

3 4
5

6

(0, 0) (0, 0) (0, 0) (9, 0)

(0, 6)

(9, 0)

(0, 0) (9, 0)

(0, 6)
(3, 6)

(0, 0) (9, 0)

(0, 6)
(3, 6)

(6, 8)

(0, 0) (9, 0)

(0, 6)
(3, 6)

(6, 8)

(0, 13)

C = <(0,0), (0,6),
(9,6), (9,0),
(∞,0)>

C = <(0,0), (0,6), (9,6),
(9,8), (15,8), (15,0),
(∞,0)>

C = <(0,0), (0,12),
(3,12), (3,6), (9,6), (9,8),
(15,8), (15,0), (∞,0)>

C = <(0,0), (0,12),
(3,12), (3,13), (6,13),
(6,6), (9,6), (9,8),
(15,8), (15,0), (∞,0)>

C = <(0,0), (0,12),
(3,12), (3,13), (6,13),
(12,13), (12,8), (15,8),
(15,0), (∞,0)>

C = <(0,0), (0,15),
(12,15), (12,13), (12,8),
(15,8), (15,0), (∞,0)>

5959

B*-tree Perturbation

Op1: rotate a macro
Op2: move a node to another place
Op3: swap two nodes

1
2

4
5

6

1
2

4
5

6

1
2

4
5

6

1
2

3 4
5

6

3

3
3

n1

n2 n3

n4

n5

n6

n1

n2 n3

n4

n5

n6

n1

n2 n3

n5

n4

n6

n2

n1 n3

n5

n4

n6

Op1

Op2

Op3

6060

Simulated Annealing Using B*-tree

 The cost function is
based on problem
requirements

6161

Strengths of B*-tree

 Binary tree based, efficient and easy
 Flexible to deal with various placement constraints by

augmenting the B*-tree data structure (e.g., preplaced,
symmetry, alignment, bus position) and rectilinear modules

 Transformation between a tree and its placement takes
only linear time

 Operate on only one B*-tree (vs. two O-trees)
 Can evaluate area cost incrementally
 Smaller solution space: only O(n! 4n/n1.5) combinations
 Directly corresponds to hierarchical and multilevel

frameworks for large-scale floorplan designs
 Can be extended to 3D floorplanning & related applications

6262

Weaknesses of B*-tree

 Representation may
change after packing

Only a partially
topological
representation; less
flexible than a fully
topological
representation
 B*-tree can represent

only compacted
placement

1

3

4

2

n1

n3

n4

n2

1

2 3

4

B*-tree??

63

Outline

Partitioning

Floorplanning

Placement

Routing

Compaction

64

Placement

 Course contents:
 Placement metrics
 Constructive placement: cluster growth, min cut
 Iterative placement: force-directed method, simulated

annealing

 Reading
 Chapter 11

65

Placement
 Placement is the problem of automatically assigning

correct positions on the chip to predesigned cells, such that
some cost function is optimized.

 Inputs: A set of fixed cells/modules, a netlist.
 Goal: Find the best position for each cell/module on the

chip according to appropriate cost functions.
 Considerations: routability/channel density, wirelength,

cut size, performance, thermal issues, I/O pads.

66

Placement Objectives and Constraints

 What does a placement algorithm try to optimize?
 total area
 total wire length
 number of horizontal/vertical wire segments crossing a line

 Constraints:
 placement should be routable (no cell overlaps; no density

overflow).
 timing constraints are met (some wires should always be

shorter than a given length).

67

VLSI Placement: Building Blocks

 Different design styles create different placement
problems.
 E.g., building-block, standard-cell, gate-array placement

Building block: The cells to be placed have arbitrary
shapes.

building block example

68

VLSI Placement: Standard Cells
 Standard cells are designed in such a way that power and

clock connections run horizontally through the cell and
other I/O leaves the cell from the top or bottom sides.

 The cells are placed in rows.
 Sometimes feedthrough cells are added to ease wiring.

feedthrough

69

Consequences of Fabrication Method

 Full-custom fabrication (building block):
 Free selection of aspect ratio (quotient of height and width).
 Height of wiring channels can be adapted to necessity.

 Semi-custom fabrication (gate array, standard cell):
 Placement has to deal with fixed carrier dimensions.
 Placement should be able to deal with fixed channel capacities.

gate array

70

Relation with Routing

Ideally, placement and routing should be
performed simultaneously as they depend
on each other’s results. This is, however,
too complicated.
 P&R: placement and routing

In practice placement is done prior to
routing. The placement algorithm
estimates the wire length of a net using
some metric.

71

Wirelength Estimation
 Semi-perimeter method: Half the perimeter of the bounding

rectangle that encloses all the pins of the net to be connected.
Most widely used approximation!

 Steiner-tree approximation: Computationally expensive.
 Minimum spanning tree: Good approximation to Steiner trees.
 Squared Euclidean distance: Squares of all pairwise terminal

distances in a net using a quadratic cost function

 Complete graph: Since #edges in a complete graph is ,

wirelength  (i, j)  netdist(i, j).

(1)

2

n n  
 
 

2

n

72

Wirelength Estimation (cont'd)

73

Placement Algorithms
 The placement problem is NP-complete
 Popular placement algorithms:

 Constructive algorithms: once the position of a cell is fixed,
it is not modified anymore.
Cluster growth, min cut, etc.

 Iterative algorithms: intermediate placements are modified
in an attempt to improve the cost function.
Force-directed method, etc

 Nondeterministic approaches: simulated annealing, genetic
algorithm, etc.

 Most approaches combine multiple elements:
 Constructive algorithms are used to obtain an initial

placement.
 The initial placement is followed by an iterative improvement

phase.
 The results can further be improved by simulated annealing.

74

Bottom-Up Placement: Clustering

Starts with a single cell and finds more
cells that share nets with it.

75

Placement by Cluster Growth
 Greedy method: Selects unplaced components and places

them in available slots.
 SELECT: Choose the unplaced component that is most

strongly connected to all of the placed components (or
most strongly connected to any single placed
component).

 PLACE: Place the selected component at a slot such that
a certain “cost” of the partial placement is minimized.

76

Cluster Growth Example
 # of other terminals connected: ca=3, cb=1, cc=1, cd =1,

ce=4, cf=3, and cg=3  e has the most connectivity.
 Place e in the center, slot 4. a, b, g are connected to e, and

 Place a next to e (say, slot 3). Continue until all cells are
placed.

 Further improve the placement by swapping the gates.

77

Top-down Placement: Min Cut

 Starts with the whole circuit and ends with small
circuits.

 Recursive bipartitioning of a circuit (e.g., K&L)
leads to a min-cut placement.

78

Min-Cut Placement
 Breuer, “A class of min-cut placement algorithms,” DAC, 1977.
 Quadrature: suitable for circuits with high density in the

center.
 Bisection: good for standard-cell placement.
 Slice/Bisection: good for cells with high interconnection on

the periphery.

79

Algorithm for Min-Cut Placement
Algorithm: Min_Cut_Placement(N, n, C)
/* N: the layout surface */
/* n : # of cells to be placed */
/* n0: # of cells in a slot */
/* C: the connectivity matrix */

1 begin
2 if (n  n0) then PlaceCells(N, n, C)
3 else
4 (N1, N2)  CutSurface(N);
5 (n1, C1), (n2, C2)  Partition(n, C);
6 Call Min_Cut_Placement(N1, n1, C1);
7 Call Min_Cut_Placement(N2, n2, C2);
8 end

80

Quadrature Placement Example

 Apply the K-L heuristic to partition + Quadrature
Placement: Cost C1 = 4, C2L= C2R = 2, etc.

81

Min-Cut Placement with Terminal
Propagation

 Dunlop & Kernighan, “A procedure for placement of
standard-cell VLSI circuits,” IEEE TCAD, Jan. 1985.

 Drawback of the original min-cut placement: Does not
consider the positions of terminal pins that enter a region.
 What happens if we swap {1, 3, 6, 9} and {2, 4, 5, 7}

in the previous example?

82

Terminal Propagation
 We should use the fact that s is in L1!

 When not to use p to bias partitioning? Net s has cells in
many groups?

83

Terminal Propagation Example

 Partitioning must be done breadth-first, not
depth-first.

84

General Procedure for Iterative
Improvement

Algorithm: Iterative_Improvement()

1 begin

2 s  initial_configuration();

3 c  cost(s);
4 while (not stop()) do

5 s’  perturb(s);

6 c’  cost(s’);
7 if (accept(c, c’))

8 then s  s’;
9 end

85

Placement by the Force-Directed
Method

 Hanan & Kurtzberg, “Placement techniques,” in Design
Automation of Digital Systems, Breuer, Ed, 1972.

 Quinn, Jr. & Breuer, “A force directed component placement
procedure for printed circuit boards,” IEEE Trans. Circuits and
Systems, June 1979.

 Reduce the placement problem to solving a set of simultaneous
linear equations to determine equilibrium locations for cells.

 Analogy to Hooke's law: F = kd, F: force, k: spring constant, d:
distance.

 Goal: Map cells to the layout surface.

86

Finding the Zero-Force Target Location
 Cell i connects to several cells j's at distances dij's by wires of weights

wij's. Total force: Fi = jwijdij
 The zero-force target location (,) can be determined by equating

the x- and y-components of the forces to zero:

 In the example, and = 1.50.

87

Force-Directed Placement

Can be constructive or iterative:
Start with an initial placement.
Select a “most profitable” cell p (e.g.,

maximum F, critical cells) and place it in its
zero-force location.

 “Fix” placement if the zero-location has been
occupied by another cell q.
Popular options to fix:

 Ripple move: place p in the occupied location,
compute a new zero-force location for q, …

 Chain move: place p in the occupied location, move q
to an adjacent location, …

 Move p to a free location close to q.

88

Force-Directed Placement

89

Placement by Simulated Annealing
 Sechen and Sangiovanni-Vincentelli, “The TimberWolf

placement and routing package,” IEEE J. Solid-State
Circuits, Feb. 1985; “TimberWolf 3.2: A new standard cell
placement and global routing package,” DAC-86.

 TimberWolf: Stage 1
 Modules are moved between different rows as well as

within the same row.
 Module overlaps are allowed.
 When the temperature is reached below a certain value,

stage 2 begins.
 TimberWolf: Stage 2

 Remove overlaps.
 Annealing process continues, but only interchanges

adjacent modules within the same row.

90

Solution Space & Neighborhood
Structure

 Solution Space: All possible arrangements of
the modules into rows, possibly with overlaps.

Neighborhood Structure: 3 types of moves
 M1: Displace a module to a new location.
 M2: Interchange two modules.
 M3: Change the orientation of a module.

91

Neighborhood Structure
 TimberWolf first tries to select a move between M1 and M2:

Prob(M1) = 0.8, Prob(M2) = 0.2.
 If a move of type M1 is chosen and it is rejected, then a move of

type M3 for the same module will be chosen with probability 0.1.
 Restrictions: (1) what row for a module can be displaced? (2)

what pairs of modules can be interchanged?
 Key: Range Limiter

 At the beginning, (WT, HT) is big enough to contain the whole chip.
 Window size shrinks as temperature decreases. Height & width 

log(T).
 Stage 2 begins when window size is so small that no inter-row module

interchanges are possible.

92

Cost Function
 Cost function: C = C1 + C2 + C3.
 C1: total estimated wirelength.

 C1 =  i  Nets(i wi + i hi)
 i, i are horizontal and vertical weights, respectively. (i=1,

i =1  half perimeter of the bounding box of Net i.)
 Critical nets: Increase both i and i .
 If vertical wirings are “cheaper” than horizontal wirings, use

smaller vertical weights: i < i.
 C2: penalty function for module overlaps.

 C2 =   i  j O2
ij, : penalty weight.

 Oij: amount of overlaps in the x-dimension between modules i
and j.

 C3: penalty function that controls the row length.
 C2 =  r  Rows|Lr - Dr|,  : penalty weight.
 Dr: desired row length.
 Lr: sum of the widths of the modules in row r.

93

Annealing Schedule

Tk = rk Tk-1, k = 1, 2, 3, …
rk increases from 0.8 to max value 0.94

and then decreases to 0.8.
At each temperature, a total # of nP

attempts is made.
n: # of modules; P: user specified

constant.
Termination: T < 0.1.

94

Outline

 Partitioning

 Floorplanning

 Placement

 Routing
 Global rounting
 Detailed routing

 Compaction

95Filling

Routing

Course contents:
Global routing
Detail routing

Reading
Chapter 12

96

Routing

97

Routing Constraints
 100% routing completion + area minimization, under a set

of constraints:
 Placement constraint: usually based on fixed placement
 Number of routing layers
 Geometrical constraints: must satisfy design rules
 Timing constraints (performance-driven routing): must satisfy

delay constraints
 Crosstalk?
 Process variations?

98

Classification of Routing

99

Maze Router: Lee Algorithm

 Lee, “An algorithm for path connection and its
application,” IRE Trans. Electronic Computer, EC-
10, 1961.

 Discussion mainly on single-layer routing
 Strengths
 Guarantee to find connection between 2 terminals

if it exists.
 Guarantee minimum path.

Weaknesses
 Requires large memory for dense layout.
 Slow.

 Applications: global routing, detailed routing

100

Filling

Lee Algorithm
 Find a path from S to T by “wave propagation”.

 Time & space complexity for an M  N grid: O(MN) (huge!)

101

Reducing Memory Requirement
 Akers's Observations (1967)

 Adjacent labels for k are either k-1 or k+1.
 Want a labeling scheme such that each label has its preceding label

different from its succeeding label.
 Way 1: coding sequence 1, 2, 3, 1, 2, 3, …; states: 1, 2, 3, empty,

blocked (3 bits required)
 Way 2: coding sequence 1, 1, 2, 2, 1, 1, 2, 2, …; states: 1, 2, empty,

blocked (need only 2 bits)

102

Reducing Running Time
 Starting point selection: Choose the point farthest from the

center of the grid as the starting point.
 Double fan-out: Propagate waves from both the source and

the target cells.
 Framing: Search inside a rectangle area 10--20% larger

than the bounding box containing the source and target.
 Need to enlarge the rectangle and redo if the search fails.

103

Hadlock's Algorithm
 Hadlock, “A shortest path algorithm for grid graphs,”

Networks, 1977.
 Uses detour number (instead of labeling wavefront in

Lee's router)
 Detour number, d(P): # of grid cells directed away

from its target on path P.
 MD(S, T): the Manhattan distance between S and T.
 Path length of P, l(P): l(P) = MD(S, T) + 2 d(P).
 MD(S, T) fixed!  Minimize d(P) to find the shortest

path.
 For any cell labeled i, label its adjacent unblocked cells

away from T i+1; label i otherwise.
 Time and space complexities: O(MN), but

substantially reduces the # of searched cells.
 Finds the shortest path between S and T.

104

Hadlock's Algorithm (cont'd)
 d(P): # of grid cells directed away from its target on path P.
 MD(S, T): the Manhattan distance between S and T.
 Path length of P, l(P): l(P) = MD(S, T) + 2d(P).
 MD(S, T) fixed!  Minimize d(P) to find the shortest path.
 For any cell labeled i, label its adjacent unblocked cells away

from T i+1; label i otherwise.

105

Soukup's Algorithm
 Soukup, “Fast maze router,” DAC-78.
 Combined breadth-first and depth-first search.

 Depth-first (line) search is first directed toward target T until
an obstacle or T is reached.

 Breadth-first (Lee-type) search is used to “bubble” around an
obstacle if an obstacle is reached.

 Time and space complexities: O(MN), but 10~50 times faster
than Lee's algorithm.

 Find a path between S and T, but may not be the shortest!

106

Mikami-Tabuchi's Algorithm
 Mikami & Tabuchi, “A computer program for optimal routing

of printed circuit connectors,” IFIP, H47, 1968.
 Every grid point is an escape point.

107

Hightower's Algorithm
 Hightower, “A solution to line-routing problem on the

continuous plane,” DAC-69.
 A single escape point on each line segment.
 If a line parallels to the blocked cells, the escape point is

placed just past the endpoint of the segment.

108

Global Routing Graph

Each cell is represented by a vertex.
Two vertices are joined by an edge if the

corresponding cells are adjacent to each
other.

109

Global-Routing Problem

 Given a netlist N={N1, N2, …, Nn }, a routing
graph G=(V,E), find a Steiner tree Ti for each net
Ni, 1  i  n, such that U(ej)  c(ej),  ej  E and
i L(Ti) is minimized, where
 c(ej): capacity of edge ej

 xij=1 if ej is in Ti; xij=0 otherwise
 U(ej) = i xij:  of wires that pass through the channel

corresponding to edge ej

 L(Ti): total wirelength of Steiner tree Ti

 For high performance, the maximum wirelength
maxi L(Ti) is minimized (or the longest path
between two points in Ti is minimized).

110

Classification of Global-Routing
Algorithms

 Sequential approach:
 Select a net order and route nets sequentially in the

order
 Earlier routed nets might block the routing of

subsequent nets
 Routing quality heavily depends on net ordering
 Strategy: Heuristic net ordering + rip-up and rerouting

 Concurrent approach:
 All nets are considered simultaneously

E.g., 0-1 integer linear programming (0-1 ILP)

111

Net Ordering
 Net ordering greatly affects routing solutions.
 In the example, we should route net b before net a.

112

Net Ordering (cont’d)

Order the nets in the ascending order of
the # of pins within their bounding boxes.

Order the nets in the ascending
(descending) order of their lengths if
routability (timing) is the most critical
metric.

Order the nets based on their timing
criticality.

113

Rip-Up and Re-routing

 Rip-up and re-routing is required if a global or
detailed router fails in routing all nets.

 Approaches: the manual approach? the automatic
procedure?

 Two steps in rip-up and re-routing
1.Identify bottleneck regions, rip off some already routed

nets.
2.Route the blocked connections, and re-route the ripped-

up connections.

 Repeat the above steps until all connections are
routed or a time limit is exceeded.

114

Top-down Hierarchical Global Routing

 Recursively divides routing regions into
successively smaller super cells, and nets at
each hierarchical level are routed sequentially or
concurrently.

115

Bottom-up Hierarchical Global Routing

 At each hierarchical level, routing is restrained
within each super cell individually.

When the routing at the current level is finished,
every four super cells are merged to form a new
larger super cell at the next higher level.

116

Hybrid Hierarchical Global Routing

 (1) neighboring propagation, (2) preference
partitioning, and (3) bounded routing

117

The Routing-Tree Problem
 Problem: Given a set of pins of a net, interconnect the pins by a

“routing tree.”

 Minimum Rectilinear Steiner Tree (MRST) Problem: Given n
points in the plane, find a minimum-length tree of rectilinear
edges which connects the points.

 MRST(P) = MST(P  S), where P and S are the sets of original
points and Steiner points, respectively.

118

Theoretical Results for the MRST
Problem

 Hanan’s Thm: There exists an MRST with all Steiner points (set
S) chosen from the intersection points of horizontal and vertical
lines drawn points of P.
 Hanan, “On Steiner's problem with rectilinear distance,” SIAM

J. Applied Math., 1966.
 Hwang’s Theorem: For any point set P,

 Hwang, “On Steiner minimal tree with rectilinear distance,”
SIAM J. Applied Math., 1976.

 Best existing approximation algorithm: Performance bound 61/48
by Foessmeier et al.

119

Coping with the MRST Problem
 Ho, Vijayan, Wong, “New algorithms for the rectilinear

Steiner problem,”
1.Construct an MRST from an MST.
2.Each edge is straight or L-shaped.
3.Maximize overlaps by dynamic programming.

 About 8% smaller than Cost(MST).

120

Iterated 1-Steiner Heuristic for MRST
 Kahng & Robins, “A new class of Steiner tree heuristics with good

performance: the iterated 1-Steiner approach,” ICCAD-90.

Algorithm: Iterated_1-Steiner(P)
P: set of n points.
1 begin
2 S  ;

/* H(P  S): set of Hanan points */
/* MST(A, B) = Cost(MST(A)) - Cost(MST(A  B)) */

3 while (Cand  {x  H(P  S)|  MST(P  S, {x}) > 0 }  ) do
4 Find x  C and which maximizes  MST(P  S), {x});
5 S  S  {x};
6 Remove points in S which have degree  2 in MST(P  S);
7 return MST(P  S);
8 end

121

Outline

 Partitioning

 Floorplanning

 Placement

 Routing
 Global rounting
 Detailed routing

 Compaction

122

Channel Routing

 In earlier process technologies, channel routing
was pervasively used since most wires were
routed in the free space (i.e., routing channel)
between a pair of logic blocks (cell rows)

123

Routing Region Decomposition

There are often various ways to
decompose a routing region.

The order of routing regions significantly
affects the channel-routing process.

124

Routing Models

Grid-based model:
 A grid is super-imposed on the routing region.
 Wires follow paths along the grid lines.
 Pitch: distance between two gridded lines

Gridless model:
 Any model that does not follow this “gridded” approach.

125

Models for Multi-Layer Routing

Unreserved layer model: Any net segment is
allowed to be placed in any layer.

Reserved layer model: Certain type of
segments are restricted to particular layer(s).
 Two-layer: HV (Horizontal-Vertical), VH
 Three-layer: HVH, VHV

126

Terminology for Channel Routing

 Local density at
column i, d(i): total
of nets that
crosses column i.

 Channel density:
maximum local
density
 # of horizontal

tracks required 
channel density.

127

Channel Routing Problem
 Assignments of horizontal segments of nets to tracks.
 Assignments of vertical segments to connect the following:

 horizontal segments of the same net in different tracks, and
 terminals of the net to horizontal segments of the net.

 Horizontal and vertical constraints must not be violated
 Horizontal constraints between two nets: the horizontal span

of two nets overlaps each other.
 Vertical constraints between two nets: there exists a column

such that the terminal on top of the column belongs to one net
and the terminal on bottom of the column belongs to another
net.

 Objective: Channel height is minimized (i.e., channel area
is minimized).

128

Horizontal Constraint Graph (HCG)
 HCG G = (V, E) is undirected graph where

 V = { vi | vi represents a net ni}
 E = {(vi, vj)| a horizontal constraint exists between ni

and nj}.

 For graph G: vertices  nets; edge (i, j)  net i overlaps
net j.

129

Vertical Constraint Graph (VCG)

 VCG G = (V, E) is directed graph where
 V = { vi | vi represents a net ni}
 E = {(vi, vj)| a vertical constraint exists between

ni and nj}.
 For graph G: vertices  nets; edge i j  net i

must be above net j.

130

2-Layer Channel Routing:
Basic Left-Edge Algorithm

 Hashimoto & Stevens, “Wire routing by optimizing channel
assignment within large apertures,” DAC-71.

 No vertical constraint.
 HV-layer model is used.
 Doglegs are not allowed.
 Treat each net as an interval.
 Intervals are sorted according to their left-end x-

coordinates.
 Intervals (nets) are routed one-by-one according to the

order.
 For a net, tracks are scanned from top to bottom, and the

first track that can accommodate the net is assigned to the
net.

 Optimality: produces a routing solution with the minimum
of tracks (if no vertical constraint).

131

Basic Left-Edge Algorithm
Algorithm: Basic_Left-Edge(U, track[j])
U: set of unassigned intervals (nets) I1, …, In;
Ij=[sj, ej]: interval j with left-end x-coordinate sj and right-end ej;
track[j]: track to which net j is assigned.

1 begin
2 U  {I1, I2 , …, In};
3 t  0;
4 while (U  ) do
5 t  t + 1;
6 watermark  0;
7 while (there is an Ij  U s.t. sj > watermark) do
8 Pick the interval Ij  U with sj > watermark,

nearest watermark;
9 track[j]  t;
10 watermark  ej;
11 U  U - {Ij};
12 end

132

Basic Left-Edge Example
 U = {I1, I2, …, I6}; I1 = [1, 3], I2 = [2, 6], I3 = [4, 8], I4 = [5,

10], I5 = [7, 11], I6 = [9, 12].
 t =1:

 Route I1: watermark = 3;
 Route I3 : watermark = 8;
 Route I6: watermark = 12;

 t = 2:
 Route I2 : watermark = 6;
 Route I5 : watermark = 11;

 t = 3: Route I4

133

Basic Left-Edge Algorithm

 If there is no vertical
constraint, the basic
left-edge algorithm is
optimal.

 If there is any vertical
constraint, the
algorithm no longer
guarantees optimal
solution.

134

Constrained Left-Edge Algorithm
Algorithm: Constrained_Left-Edge(U, track[j])
U: set of unassigned intervals (nets) I1, …, In;
Ij=[sj, ej]: interval j with left-end x-coordinate sj and right-end ej;
track[j]: track to which net j is assigned.

1 begin
2 U  { I1, I2, …, In};
3 t  0;
4 while (U  ) do
5 t  t + 1;
6 watermark  0;
7 while (there is an unconstrained Ij  U s.t. sj > watermark) do
8 Pick the interval Ij  U that is unconstrained,

with sj > watermark, nearest watermark;
9 track[j]  t;
10 watermark  ej;
11 U  U - {Ij};
12 end

135

Constrained Left-Edge Example

 I1 = [1, 3], I2 = [1, 5], I3 = [6, 8], I4 = [10, 11], I5= [2,
6], I6 = [7, 9].

 Track 1: Route I1 (cannot route I3); Route I6; Route I4.
 Track 2: Route I2; cannot route I3.
 Track 3: Route I5.
 Track 4: Route I3.

136

Dogleg Channel Router
 Deutch, “A dogleg channel router,” 13rd DAC, 1976.
 Drawback of Left-Edge: cannot handle the cases with

constraint cycles.

 Drawback of Left-Edge: the entire net is on a single track.
 Doglegs are used to place parts of a net on different tracks to

minimize channel height.
 Might incur penalty for additional vias.

137

Dogleg Channel Router
 Each multi-pin net is broken into a set of 2-pin nets.
 Modified Left-Edge Algorithm is applied to each subnet.

138

Dogleg Channel Routing Example

139

Modern Routing Considerations

 Signal/power Integrity
 Capacitive crosstalk
 Inductive crosstalk
 IR drop

Manufacturability
 Process variation
 Optical proximity correction (OPC)
 Chemical mechanical polishing (CMP)
 Phase-Shift Mask (PSM)

 Reliability
 Double via insertion
 Process antenna effect
 Electromigration (EM)
 Electrostatic discharge (ESD)

140

Outline

Partitioning

Floorplanning

Placement

Routing

Compaction

141

Layout Compaction

Course contents
Design rules
Symbolic layout
Constraint-graph compaction

142

Design Rules
 Design rules: restrictions

on the mask patterns to
increase the probability of
successful fabrication.

 Patterns and design rules
are often expressed in 
rules.

 Most common design
rules:
 minimum-width rules

(valid for a mask pattern
of a specific layer): (a).

 minimum-separation rules
(between mask patterns of
the same layer or different
layers): (b), (c), (d).

 minimum-overlap rules
(mask patterns in different
layers): (e).

143

CMOS Inverter Layout Example

p/n diffusion
polysilicon
contact cut
metal

Symbolic layout
Geometric layout

144

Symbolic Layout
 Geometric (mask) layout: coordinates of the layout

patterns (rectangles) are absolute (or in multiples of ).
 Symbolic (topological) layout: only relations between layout

elements (below, left to, etc.) are known.
 Symbols are used to represent elements located in several

layers, e.g. transistors, contact cuts.
 The length, width or layer of a wire or other layout element

might be left unspecified.
 Mask layers not directly related to the functionality of the

circuit do not need to be specified, e.g. n-well, p-well.
 The symbolic layout can work with a technology file that

contains all design rule information for the target
technology to produce the geometric layout.

145

Compaction and its Applications

 A compaction program or compactor generates
layout at the mask level. It attempts to make the
layout as dense as possible.

 Applications of compaction:
 Area minimization: remove redundant space in

layout at the mask level.
 Layout compilation: generate mask-level layout

from symbolic layout.
 Redesign: automatically remove design-rule

violations.
 Rescaling: convert mask-level layout from one

technology to another.

146

Aspects of Compaction

 Dimension:
1-dimensional (1D) compaction: layout

elements only are moved or shrunk in one
dimension (x or y direction).
Is often performed first in the x-dimension and then

in the y-dimension (or vice versa).
2-dimensional (2D) compaction: layout

elements are moved and shrunk
simultaneously in two dimensions.

 Complexity:
1D compaction can be done in polynomial

time.
2D compaction is NP-hard.

147

1D Compaction: X Followed By Y

 Each square is 2  * 2 , minimum separation is
1 .

 Initially, the layout is 11  * 11 .
 After compacting along the x direction, then the y

direction, we have the layout size of 8  * 11 .

148

1D Compaction: Y Followed By X

 Each square is 2  * 2 , minimum separation is
1 .

 Initially, the layout is 11  * 11 .
 After compacting along the y direction, then the x

direction, we have the layout size of 11  * 8 .

149

2D Compaction
 Each square is 2  * 2 , minimum separation is 1 .
 Initially, the layout is 11  * 11 .
 After 2D compaction, the layout size is only 8  * 8 .

 Since 2D compaction is NP-complete, most compactors are
based on repeated 1D compaction.

150

Inequalities for Distance Constraints

Minimum-distance
design rules can be
expressed as
inequalities.

xj – xi  dij.

 For example, if the
minimum width is a
and the minimum
separation is b, then

x2 – x1  a
x3 – x2  b
x3 – x6  b

151

The Constraint Graph
 The inequalities can be used to construct a constraint graph

G(V, E):
 There is a vertex vi for each variable xi.
 For each inequality xj – xi  dij there is an edge (vi, vj) with

weight dij .
 There is an extra source vertex, v0; it is located at x = 0 ; all

other vertices are at its right.
 If all the inequalities express minimum-distance

constraints, the graph is acyclic (DAG).
 The longest path in a constraint graph determines the

layout dimension.

constraint graph

152

Maximum-Distance Constraints
 Sometimes the distance of layout elements is bounded by a

maximum, e.g., when the user wants a maximum wire
width, maintains a wire connecting to a via, etc.
 A maximum distance constraint gives an inequality of the

form: xj – xi  cij or xi – xj  -cij
 Consequence for the constraint graph: backward edge

 (vj, vi) with weight dji = -cij; the graph is not acyclic anymore.
 The longest path in a constraint graph determines the

layout dimension.

d

153

Longest-Paths in Cyclic Graphs
 Constraint-graph compaction with maximum-distance

constraints requires solving the longest-path problem in
cyclic graphs.

 Two cases are distinguished:
 There are positive cycles: No bounded solution for

longest paths. (The inequality constraints are
conflicting.) We shall detect the cycles.

 All cycles are negative: Polynomial-time algorithms
exist.

154

Longest and Shortest Paths

 Longest paths become shortest paths and vice
versa when edge weights are multiplied by –1.

 Situation in DAGs: both the longest and shortest
path problems can be solved in linear time.

 Situation in cyclic directed graphs:
 All weights are positive: shortest-path problem in P

(Dijkstra), no feasible solution for the longest-path
problem.

 All weights are negative: longest-path problem in P
(Dijkstra), no feasible solution for the shortest-path
problem.

 No positive cycles: longest-path problem is in P.
 No negative cycles: shortest-path problem is in P.

155

Remarks on Constraint-Graph
Compaction

 Noncritical layout elements: Every element outside the
critical paths has freedom on its best position => may use
this freedom to optimize some cost function.

 Automatic jog insertion: The quality of the layout can
further be improved by automatic jog insertion.

 Hierarchy: A method to reduce complexity is hierarchical
compaction, e.g., consider cells only.

156

Constraint Generation
 The set of constraints should be irredundant and

generated efficiently.
 An edge (vi, vj) is redundant if edges (vi, vk) and (vk, vj)

exist and w((vi, vj))  w((vi, vk)) + w((vk, vj)).
 The minimum-distance constraints for (A, B) and (B, C)

make that for (A, C) redundant.

 Doenhardt and Lengauer have proposed a method for
irredundant constraint generation with complexity O(n log
n).

