Introduction to Electronic Design Automation

Jie-Hong Roland Jiang 江介宏

Department of Electrical Engineering National Taiwan University

Spring 2014

Physical Design

Slides are by Courtesy of Prof. Y.-W. Chang

Physical Design

- Physical design converts a circuit description into a geometric description.
- □ The description is used to manufacture a chip.
- Physical design cycle:
 - 1. Logic partitioning
 - 2. Floorplanning and placement
 - 3. Routing
 - 4. Compaction
- Others: circuit extraction, timing verification and design rule checking

Physical Design Flow

Outline

Partitioning

□ Floorplanning

Placement

Routing

Compaction

Circuit Partitioning

Course contents:

Kernighang-Lin partitioning algorithm

Circuit Partitioning

- Objective: Partition a circuit into parts such that every component is within a prescribed range and the # of connections among the components is minimized.
 - More constraints are possible for some applications.
- Cutset? Cut size? Size of a component?

Problem Definition: Partitioning

- □ *k*-way partitioning: Given a graph G(V, E), where each vertex $v \in V$ has a size s(v) and each edge $e \in E$ has a weight w(e), the problem is to divide the set V into k disjoint subsets $V_1, V_2, ..., V_k$, such that an objective function is optimized, subject to certain constraints.
- **Bounded size constraint:** The size of the *i*-th subset is bounded by B_i (i.e., $\sum_{v \in V_i} s(v) \le B_i$).
 - Is the partition balanced?
- □ Min-cut cost between two subsets: Minimize $\sum_{\forall e=(u,v) \land p(u) \neq p(v)} w(e)$, where p(u) is the partition # of node u.
- The 2-way, balanced partitioning problem is NP-complete, even in its simple form with identical vertex sizes and unit edge weights.

Kernighan-Lin Algorithm

- Kernighan and Lin, "An efficient heuristic procedure for partitioning graphs," *The Bell System Technical Journal*, vol. 49, no. 2, Feb. 1970.
- An iterative, 2-way, balanced partitioning (bi-sectioning) heuristic.
- Till the cut size keeps decreasing
 - Vertex pairs which give the largest decrease or the smallest increase in cut size are exchanged.
 - These vertices are then locked (and thus are prohibited from participating in any further exchanges).
 - This process continues until all the vertices are locked.
 - Find the set with the largest partial sum for swapping.
 - Unlock all vertices.

K-L Algorithm: A Simple Example

Each edge has a unit weight.

- Questions: How to compute cost reduction? What pairs to be swapped?
 - Consider the change of internal & external connections.

Properties

- **Two sets** A and B such that |A| = n = |B| and $A \cap B = \emptyset$.
- **External cost** of $a \in A$: $E_a = \sum_{v \in B} c_{av}$. **Internal cost** of $a \in A$: $I_a = \sum_{v \in A} c_{av}$.
- **D**-value of a vertex a: $D_a = E_a I_a$ (cost reduction for moving a).
- **Cost reduction (gain) for swapping** a and b: $g_{ab} = D_a + D_b 2c_{ab}$.
- If $a \in A$ and $b \in B$ are interchanged, then the new D-values, D', are given by

$$\begin{array}{rcl} D'_x &=& D_x + 2c_{xa} - 2c_{xb}, orall x \in A - \{a\} \ D'_y &=& D_y + 2c_{yb} - 2c_{ya}, orall y \in B - \{b\}. \end{array}$$

A Weighted Example

costs associated with a

Initial cut cost = (3+2+4)+(4+2+1)+(3+2+1) = 22

Iteration 1

 $E_a = 3 + 2 + 4 = 9;$ $I_a = 1 + 2 = 3;$ $D_a = E_a - I_a = 9 - 3 = 6$ $E_b = 4 + 2 + 1 = 7;$ $D_b = E_b - I_b = 7 - 2 = 5$ $I_b = 1 + 1 = 2;$ $D_c = E_c - I_c = 6 - 3 = 3$ $I_c = 2 + 1 = 3;$ $E_c = 3 + 2 + 1 = 6;$ $I_d = 4 + 3 = 7;$ $E_d = 3 + 4 + 3 = 10;$ $D_d = E_d - I_d = 10 - 7 = 3$ $I_e = 4 + 2 = 6; \quad E_e = 2 + 2 + 2 = 6;$ $D_e = E_e - I_e = 6 - 6 = 0$ $I_f = 3 + 2 = 5; \quad E_f = 4 + 1 + 1 = 6;$ $D_f = E_f - I_f = 6 - 5 = 1$

A Weighted Example (cont'd)

Iteration 1: $D_a = E_a - I_a = 9 - 3 = 6$ $I_a = 1 + 2 = 3;$ $E_a = 3 + 2 + 4 = 9;$ $I_b = 1 + 1 = 2;$ $E_b = 4 + 2 + 1 = 7;$ $I_c = 2 + 1 = 3;$ $I_d = 4 + 3 = 7;$ $I_e^{o} = 4 + 2 = 6;$ $D_e^{u} = E_e^{u} - I_e^{u} = 6 - 6 = 0$ $I_f = 3 + 2 = 5;$ $D_f = E_f - I_f = 6 - 5 = 1$ $\Box g_{xv} = D_x + D_v - 2C_{xv}.$ $g_{ad} = D_a + D_d - 2c_{ad} = 6 + 3 - 2 \times 3 = 3$ $= 6+0-2\times 2=2$ 9ae $= 6+1-2 \times 4 = -1$ g_{af} $= 5+3-2\times 4=0$ g_{bd} $= 5+0-2\times 2=1$ g_{be} $= 5+1-2 \times 1 = 4 (maximum) (\hat{g}_1 = 4)$ g_{bf} $= 3 + 3 - 2 \times 3 = 0$ g_{cd} $= 3 + 0 - 2 \times 2 = -1$ 9ce $= 3+1-2 \times 1 = 2$ g_{cf}

Swap b and f.

Kernighan-Lin Algorithm

Algorithm: Kernighan-Lin(G) **Input:** G = (V, E), |V| = 2n. **Output:** Balanced bi-partition A and B with "small" cut cost. 1 begin 2 Bipartition G into A and B such that $|V_A| = |V_B|$, $V_A \cap V_B = \emptyset$, and $V_A \cup V_B = V$. 3 repeat Compute $D_v, \forall v \in V$. 4 5 for i = 1 to n do Find a pair of unlocked vertices $v_{ai} \in V_A$ and $v_{bi} \in V_B$ whose 6 exchange makes the largest decrease or smallest increase in cut cost; Mark v_{ai} and v_{bi} as locked, store the gain $\widehat{g_i}$, and compute 7 the new D_v , for all unlocked $v \in V$; Find k, such that $G_k = \sum_{i=1}^k \hat{g}_i$ is maximized; 8 if $G_k > 0$ then 9 Move v_{a1}, \ldots, v_{ak} from V_A to V_B and v_{b1}, \ldots, v_{bk} from V_B to V_A ; 10 11 Unlock $v, \forall v \in V$. 12 until $G_k \leq 0$; 13 end

Time Complexity

- Line 4: Initial computation of D: $O(n^2)$
- **\Box** Line 5: The **for**-loop: O(n)
- The body of the loop: $O(n^2)$.
 - Lines 6--7: Step *i* takes $(n i + 1)^2$ time.
- Lines 4--11: Each pass of the repeat loop: O(n³).
- Suppose the repeat loop terminates after r passes.

D The total running time: $O(rn^3)$.

Polynomial-time algorithm?

Extensions of K-L Algorithm

Unequal sized subsets (assume $n_1 < n_2$)

- 1. Partition: $|A| = n_1$ and $|B| = n_2$.
- 2. Add $n_2 n_1$ dummy vertices to set *A*. Dummy vertices have no connections to the original graph.
- 3. Apply the Kernighan-Lin algorithm.
- 4. Remove all dummy vertices.

Unequal sized "vertices"

- 1. Assume that the smallest "vertex" has unit size.
- 2. Replace each vertex of size *s* with *s* vertices which are fully connected with edges of infinite weight.
- 3. Apply the Kernighan-Lin algorithm.

k-way partition

- 1. Partition the graph into *k* equal-sized sets.
- 2. Apply the Kernighan-Lin algorithm for each pair of subsets.
- 3. Time complexity? Can be reduced by recursive bi-partition.

Outline

Partitioning

Floorplanning

Placement

Routing

Compaction

Floorplanning

Course contents

- Floorplan basics
- Normalized Polish expression for slicing flooprlans
- B*-trees for non-slicing floorplans
- Reading

Chapter 10

PowerPC 604

Pentium 4

Floorplanning

- Partitioning leads to
 - Blocks with well-defined areas and shapes (rigid/hard blocks).
 - Blocks with approximate areas and no particular shapes (flexible/soft blocks).
 - A **netlist** specifying connections between the blocks.
- Objectives
 - Find **locations** for all blocks.
 - Consider shapes of soft block and pin locations of all the blocks.

Early Layout Decision Example

Early Layout Decision Methodology

- An integrated circuit is essentially a two-dimensional medium; taking this aspect into account in early stages of the design helps in creating designs of good quality.
- Floorplanning gives early feedback: thinking of layout at early stages may suggest valuable architectural modifications; floorplanning also aids in estimating delay due to wiring.
- Floorplanning fits very well in a top-down design strategy, the step-wise refinement strategy also propagated in software design.
- Floorplanning assumes, however, *flexibility* in layout design, the existence of cells that can adapt their shapes and terminal locations to the environment.

Floorplanning Problem

□ Inputs to the floorplanning problem:

- A set of blocks, hard or soft.
- Pin locations of hard blocks.
- A netlist.

Objectives: minimize area, reduce wirelength for (critical) nets, maximize routability (minimize congestion), determine shapes of soft blocks, etc.

An optimal floorplan, in terms of area

A non-optimal floorplan

Floorplan Design

- Area: A=xy
- Aspect ratio: $r \le y/x \le s$

• Module connectivity

Floorplanning Concepts

Leaf cell (block/module): a cell at the lowest level of the hierarchy; it composite cell does not contain any other cell. Composite cell (block/module): a cell that is composed of either leaf cells or composite cells. The entire IC is the highest-level composite cell. leaf cell

Slicing Floorplan + Slicing Tree

- A composite cell's subcells are obtained by a horizontal or vertical *bisection* of the composite cell.
- Slicing floorplans can be represented by a slicing tree.
- In a slicing tree, all cells (except for the top-level cell) have a parent, and all composite cells have children.
- A slicing floorplan is also called a floorplan of order 2.

Skewed Slicing Tree

- Rectangular dissection: Subdivision of a given rectangle by a finite # of horizontal and vertical line segments into a finite # of non-overlapping rectangles.
- Slicing structure: a rectangular dissection that can be obtained by repetitively subdividing rectangles horizontally or vertically.
- Slicing tree: A binary tree, where each internal node represents a vertical cut line or horizontal cut line, and each leaf a basic rectangle.
- Skewed slicing tree: One in which no node and its right child are the same.

Non-slicing floorplan

A slicing tree (skewed)

(non-skewed)

Slicing Floorplan Design by Simulated Annealing

Related work

Wong & Liu, "A new algorithm for floorplan design," DAC-86.

Considers slicing floorplans.

 Wong & Liu, "Floorplan design for rectangular and L-shaped modules," ICCAD'87.
 Also considers L-shaped modules.

Wong, Leong, Liu, Simulated Annealing for VLSI Design, pp. 31--71, Kluwer Academic Publishers, 1988.

Simulated Annealing

- Kirkpatrick, Gelatt, and Vecchi, "Optimization by simulated annealing," *Science*, May 1983.
- Greene and Supowit, "Simulated annealing without rejected moves," ICCD-84.

Simulated Annealing Basics

- □ Non-zero probability for "up-hill" moves.
- Probability depends on
 - 1. magnitude of the "up-hill" movement
 - 2. total search time

 $Prob(S \to S') = \begin{cases} 1 & \text{if } \Delta C \le 0 \ / * \text{``down - hill'' moves * /} \\ e^{-\frac{\Delta C}{T}} & \text{if } \Delta C > 0 \ / * \text{``up - hill'' moves * /} \end{cases}$

□ $\Delta C = cost(S') - Cost(S)$ □ *T*: Control parameter (temperature) □ Annealing schedule: $T = T_0, T_1, T_2, ...,$ where $T_i = r^i T_0$ with r < 1.

Generic Simulated Annealing Algorithm

1 begin 2 Get an initial solution S; 3 Get an initial temperature T > 0; 4 while not yet "frozen" do 5 for $1 \le i \le P$ do 6 Pick a random neighbor S' of S_i 7 $\Delta \leftarrow cost(S') - cost(S);$ /* downhill move */ 8 if $\Delta \leq 0$ then $S \leftarrow S'$ /* uphill move */ if $\Delta > 0$ then $S \leftarrow S'$ with probability $e^{-\frac{\Delta}{T}}$; 9 10 $T \leftarrow rT$; /* reduce temperature */ 11 return S 12 end

Basic Ingredients for Simulated Annealing

□ Analogy:

Physical system	Optimization problem
state	configuration
energy	cost function
ground state	optimal solution
quenching	iterative improvement
careful annealing	simulated annealing

- Basic Ingredients for Simulated Annealing:
 - Solution space
 - Neighborhood structure
 - Cost function
 - Annealing schedule

Solution Representation of Slicing Floorplan

- □ An expression $E = e_1 e_2 \dots e_{2n-1}$, where $e_i \in \{1, 2, \dots, n, H, V\}$, $1 \le i \le 2n-1$, is a **Polish expression** of length 2n-1 iff
 - 1. every operand j, $1 \le j \le n$, appears exactly once in E;
 - 2. (the balloting property) for every subexpression $E_i = e_1 \dots e_i$, $1 \le i \le 2n-1$, # operands > # operators.

16H35V2HV74HV

of operands = 4 $\dots = 7$ # of operators = 2 $\dots = 5$

- **D** Polish expression \leftrightarrow Postorder traversal.
- \Box *ijH*: rectangle *i* on bottom of *j*; *ijV*: rectangle *i* on the left of *j*.

Question: How to eliminate ambiguous representation?

36

Normalized Polish Expression

- □ A Polish expression $E = e_1 e_2 \dots e_{2n-1}$ is called **normalized** iff *E* has no consecutive operators of the same type (*H* or *V*), i.e. skewed.
- Given a normalized Polish expression, we can construct a unique rectangular slicing structure.

E = 16H2V75VH34HVA normalized Polish expression

Neighborhood Structure

Chain: HVHVH ... or VHVHV ...

Adjacent: 1 and 6 are adjacent operands; 2 and 7 are adjacent operands; 5 and V are adjacent operand and operator.

- 3 types of moves:
 - M1 (Operand Swap): Swap two adjacent operands.
 - *M2* (**Chain Invert**): Complement some chain (V = H, H = V).
 - M3 (Operator/Operand Swap): Swap two adjacent operand and operator.

Effects of Perturbation 3 4 2 2 4 3 4 4 1 2 2 1 1 1 **M**2 Ml М3 3 3 12V4H3V 12H34HV 12V3H4V 12H3H4V Question: The balloting property holds during the moves? M1 and M2 moves are OK. Check the M3 moves! Reject "illegal" M3 moves. Check M3 moves: Assume that the M3 move swaps the operand e_i with the operator e_{i+1} , $1 \le i \le k-1$. Then, the swap will not violate the balloting property iff $2N_{i+1} < i$. ■ N_k : # of operators in the Polish expression $E = e_1 e_2 \dots e_{k'}$ 1 ≤

Cost Function

k ≤ 2*n*-1

 $\Box \phi = A + \lambda W.$

- A: area of the smallest rectangle
- W: overall wiring length
- λ : user-specified parameter

- $W = \sum_{ij} c_{ij} d_{ij}.$ $c_{ij}: # of connections between blocks i and j.$
 - **d** \vec{d}_{ij} : center-to-center distance between basic rectangles *i* and *j*.

Area Computation for Hard Blocks

Incremental Computation of Cost Function

- Each move leads to only a minor modification of the Polish expression.
- At most two paths of the slicing tree need to be updated for each move.

Incremental Computation of Cost Function (cont'd)

Annealing Schedule

D Initial solution: $12V_3V \dots nV_{\cdot}$

 $\Box T_i = r^i T_0, \ i = 1, 2, 3, ...; \ r = 0.85.$

\Box At each temperature, try *kn* moves (*k* = 5-10).

- Terminate the annealing process if
 - # of accepted moves < 5%,
 - temperature is low enough, or
 - run out of time.

Wong-Liu Algorithm

```
Input: (P, \varepsilon, r, k)
1 begin
2 E \leftarrow 12V3V4V \dots nV; /* initial solution */

3 Best \leftarrow E; T_0 \leftarrow \frac{\Delta_{avg}}{ln(P)}; M \leftarrow MT \leftarrow uphill \leftarrow 0; N = kn;

4 repeat
4 repeat ln(P)

5 MT \leftarrow uphill \leftarrow reject \leftarrow 0;
5
6
           repeat
SelectMove(M);
ž
                  Case M of

M_1: Select two adjacent operands e_i and e_j; NE \leftarrow \text{Swap}(E, e_i, e_j);

M_2: Select a nonzero length chain C; NE \leftarrow \text{Complement}(E, C);
,
8
9
10
                  \begin{array}{l} M_{3}: \text{ done} \leftarrow \text{FALSE}; \\ \text{while not } (done) \text{ do} \\ \text{ Select two adjacent operand } e_{i} \text{ and operator } e_{i+1}; \\ \text{ if } (e_{i+1} \neq e_{i+1}) \text{ and } (2 \ N_{i+1} < i) \text{ then } done \leftarrow \text{TRUE}; \\ \text{ Select two adjacent operator } e_{i} \text{ and operand } e_{i+1}; \\ \text{ if } (e_{\not \neq} e_{i+2}) \text{ then } done \leftarrow \text{ TRUE}; \\ NE \leftarrow \text{Swap}(E, e_{i}, e_{i+1}); \\ MT \leftarrow MT+1; \ \Delta cost \leftarrow cost(NE) - cost(E); \\ \hline - \underline{\Delta cost} \\ \end{array}
                               done \leftarrow FALSE;
11
12
13
 14
13'
 14'
15
 16
                   if (\Delta cost \le 0) or (Random < e^{-1})
17
                                                                                                                                                      )
                                                                                                                        T
 18
                     then
19
                               if (\Delta cost > 0) then uphill \leftarrow uphill + 1;
20
21
                               E \leftarrow NE;
if cost(E) < cost(best) then best \leftarrow E;
else reject \leftarrow reject + 1;

until (uphill > N) or (MT > 2N);

T \leftarrow rT; /* reduce temperature */

until (reject/MT > 0.95) or (T < \varepsilon) or OutOfTime;
26 end
```

45

Shape Curve

- Flexible cells imply that cells can have different aspect ratios.
- □ The relation between the width x and the height y is: xy = A, or y = A/x. The shape function is a hyperbola.
- Very thin cells are not interesting and often not feasible to design. The shape function is a combination of a hyperbola and two straight lines.
 - Aspect ratio: $r \le y/x \le s$.

Shape Curve (cont'd)

- Leaf cells are built from discrete transistors: it is not realistic to assume that the shape function follows the hyperbola continuously.
- In an extreme case, a cell is rigid: it can only be rotated and mirrored during floorplanning or placement.

The shape function of a 2×4 inset cell.

Shape Curve (cont'd)

- In general, a *piecewise linear* function can be used to approximate any shape function.
- The points where the function changes its direction, are called the corner (*break*) points of the piecewise linear function.

Addition for Vertical Abutment

□ Composition by vertical abutment ⇒ the addition of shape functions.

Deriving Shapes of Children

A choice for the minimal shape of composite cell fixes the shapes of the shapes of its children cells.

Sizing Algorithm for Slicing Floorplans

- The shape functions of all leaf cells are given as piecewise linear functions.
- Traverse the slicing tree in order to compute the shape functions of all composite cells (bottom-up composition).
- Choose the desired shape of the top-level cell; as the shape function is piecewise linear, only the break points of the function need to be evaluated, when looking for the minimal area.
- Propagate the consequences of the choice down to the leaf cells (top-down propagation).
- The sizing algorithm runs in polynomial time for slicing floorplans
 - NP-complete for non-slicing floorplans

Feasible Implementations

Shape curves correspond to different kinds of constraints where the shaded areas are feasible regions.

orientation

orientation

Wheel or Spiral Floorplan

- □ This floorplan is not slicing!
- Wheel is the smallest nonslicing floorplans.
- Limiting floorplans to those that have the slicing property is reasonable: it certainly facilitates floorplanning algorithms.
- Taking the shape of a wheel floorplan and its mirror image as the basis of operators leads to hierarchical descriptions of order 5.

Order-5 Floorplan Examples А С В 5 Е 2 5 D 1 4 3 G F 3 4 Η Ι L J Κ 団 咟 3 Н Е A 3 С Η G F D В L Ι К J 54

General Floorplan Representation: Polar Graphs

vertex: channel segmentedge: cell/block/module

B*-Tree: Compacted Floorplan Representation

- Chang et al., "B*-tree: A new representation for non-slicing floorplans," DAC 2000.
 - Compact modules to left and bottom
 - Construct an ordered binary tree (B*-tree)
 Left child: the lowest, adjacent block on the right (x_j = x_i+w_i)
 Right child: the first block above, with the same x-coordinate (x_j = x_i)

A non-slicing floorplan

Compact to left and down

B*-tree

B*-tree Packing

- x-coordinates can be determined by the tree structure
 - Left child: the lowest, adjacent block on the right $(x_j = x_i + w_i)$
 - Right child: the first block above, with the same x-coordinate (x_j = x_j)
- Y-coordinates?
 - Horizontal contour: Use a doubly linked list to record the current maximum y-coordinate for each x-range
 - Reduce the complexity of computing a y-coordinate to amortized O(1) time

Contour Data Structure

B*-tree Perturbation

- Op1: rotate a macro
- Op2: move a node to another place
- Op3: swap two nodes

Simulated Annealing Using B*-tree

Start □ The cost function is based on problem Initialize B*-tree and Temperature requirements Perturb B*-tree Ν Better Should we solution? accept? ĮΥ Y Keep new B*-tree Recover last B*-tree ╈ Reduce Temperature Ν Cooling enough?

> ¥ Fnd

Strengths of B*-tree

- Binary tree based, efficient and easy
- Flexible to deal with various placement constraints by augmenting the B*-tree data structure (e.g., preplaced, symmetry, alignment, bus position) and rectilinear modules
- Transformation between a tree and its placement takes only linear time
- Operate on only one B*-tree (vs. two O-trees)
- Can evaluate area cost incrementally
- **D** Smaller solution space: only $O(n! 4^n/n^{1.5})$ combinations
- Directly corresponds to hierarchical and multilevel frameworks for large-scale floorplan designs
- Can be extended to 3D floorplanning & related applications

Weaknesses of B*-tree

- Representation may change after packing
- Only a partially topological representation; less flexible than a fully topological representation
 - B*-tree can represent only compacted placement

Outline

Partitioning

□ Floorplanning

Placement

Routing

Compaction

Placement

Course contents:

- Placement metrics
- Constructive placement: cluster growth, min cut
- Iterative placement: force-directed method, simulated annealing
- Reading
 - Chapter 11

Placement

- Placement is the problem of automatically assigning correct positions on the chip to predesigned cells, such that some cost function is optimized.
- Inputs: A set of fixed cells/modules, a netlist.
- Goal: Find the best position for each cell/module on the chip according to appropriate cost functions.
 - Considerations: routability/channel density, wirelength, cut size, performance, thermal issues, I/O pads.

Placement Objectives and Constraints

What does a placement algorithm try to optimize? total area

- total wire length
- number of horizontal/vertical wire segments crossing a line
- Constraints:
 - placement should be routable (no cell overlaps; no density overflow).
 - timing constraints are met (some wires should always be shorter than a given length).

VLSI Placement: Building Blocks

- Different design styles create different placement problems.
 - E.g., building-block, standard-cell, gate-array placement
 Building block: The cells to be placed have arbitrary shapes.

VLSI Placement: Standard Cells

- Standard cells are designed in such a way that power and clock connections run horizontally through the cell and other I/O leaves the cell from the top or bottom sides.
- The cells are placed in rows.
- Sometimes feedthrough cells are added to ease wiring.

Consequences of Fabrication Method

Full-custom fabrication (building block):

- Free selection of aspect ratio (quotient of height and width).
- Height of wiring channels can be adapted to necessity.
- Semi-custom fabrication (gate array, standard cell):
 - Placement has to deal with fixed carrier dimensions.
 - Placement should be able to deal with fixed channel capacities.

Relation with Routing

Ideally, placement and routing should be performed simultaneously as they depend on each other's results. This is, however, too complicated.

P&R: placement and routing

In practice placement is done prior to routing. The placement algorithm estimates the wire length of a net using some *metric*.

Wirelength Estimation

- Semi-perimeter method: Half the perimeter of the bounding rectangle that encloses all the pins of the net to be connected. Most widely used approximation!
- **Steiner-tree approximation:** Computationally expensive.
- **Minimum spanning tree**: Good approximation to Steiner trees.
- Squared Euclidean distance: Squares of all pairwise terminal distances in a net using a quadratic cost function

$$\frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}\gamma_{ij}[(x_i - x_j)^2 + (y_i - y_j)^2]$$

Complete graph: Since #edges in a complete graph is $\left(\frac{n(n-1)}{2}\right)$,

wirelength
$$\approx \frac{2}{n} \sum_{(i, j) \in net} dist(i, j).$$

Wirelength Estimation (cont'd) 10 semi-perimeter len = 11complete graph len * 2/n = 17.5Steiner tree len = 12Spanning tree len = 13

Placement Algorithms

The placement problem is NP-complete Popular placement algorithms: Constructive algorithms: once the position of a cell is fixed, it is not modified anymore. Cluster growth, min cut, etc. Iterative algorithms: intermediate placements are modified in an attempt to improve the cost function. Force-directed method, etc. Nondeterministic approaches: simulated annealing, genetic algorithm, etc. Most approaches combine multiple elements: Constructive algorithms are used to obtain an initial placement. The initial placement is followed by an iterative improvement phase. The results can further be improved by simulated annealing.

Bottom-Up Placement: Clustering

Starts with a single cell and finds more cells that share nets with it.

Placement by Cluster Growth

- Greedy method: Selects unplaced components and places them in available slots.
 - SELECT: Choose the unplaced component that is most strongly connected to all of the placed components (or most strongly connected to any single placed component).
 - PLACE: Place the selected component at a slot such that a certain "cost" of the partial placement is minimized.

Cluster Growth Example

- □ # of other terminals connected: $c_a=3$, $c_b=1$, $c_c=1$, $c_d=1$, $c_e=4$, $c_f=3$, and $c_q=3 \Rightarrow e$ has the most connectivity.
- □ Place e in the center, slot 4. a, b, g are connected to e, and ⇒ Place a next to e (say, slot 3). Continue until all cells are placed.
- Further improve the placement by swapping the gates.

Min-Cut Placement

- Breuer, "A class of min-cut placement algorithms," DAC, 1977.
- Quadrature: suitable for circuits with high density in the center.
- **Bisection:** good for standard-cell placement.
- Slice/Bisection: good for cells with high interconnection on the periphery.

Algorithm for Min-Cut Placement

```
Algorithm: Min_Cut_Placement(N, n, C)
/* N: the layout surface */
/* n : # of cells to be placed */
/* n0: # of cells in a slot */
/* C: the connectivity matrix */
1 begin
2 if (n \le n0) then PlaceCells(N, n, C)
3 else
      (N1, N2) \leftarrow CutSurface(N);
4
5
      (n1, C1), (n2, C2) \leftarrow Partition(n, C);
  Call Min_Cut_Placement(N1, n1, C1);
б
   Call Min_Cut_Placement(N2, n2, C2);
7
8 end
```

79

Quadrature Placement Example

□ Apply the K-L heuristic to partition + Quadrature Placement: Cost $C_1 = 4$, $C_{2L} = C_{2R} = 2$, etc.

Min-Cut Placement with Terminal Propagation

- Dunlop & Kernighan, "A procedure for placement of standard-cell VLSI circuits," IEEE TCAD, Jan. 1985.
- Drawback of the original min-cut placement: Does not consider the positions of terminal pins that enter a region.
 - What happens if we swap {1, 3, 6, 9} and {2, 4, 5, 7} in the previous example?

Terminal Propagation

Terminal Propagation Example

Partitioning must be done breadth-first, not depth-first.

General Procedure for Iterative Improvement

```
Algorithm: Iterative_Improvement()
1
    begin
    s ← initial_configuration();
2
3
    c \leftarrow \text{cost}(s);
    while (not stop()) do
4
5
         s' \leftarrow \text{perturb}(s);
         c' \leftarrow \text{cost}(s');
6
7
         if (accept(c, c'))
8
        then
                 s \leftarrow s';
9
    end
```

Placement by the Force-Directed Method

- Hanan & Kurtzberg, "Placement techniques," in *Design* Automation of Digital Systems, Breuer, Ed, 1972.
- Quinn, Jr. & Breuer, "A force directed component placement procedure for printed circuit boards," *IEEE Trans. Circuits and Systems*, June 1979.
- Reduce the placement problem to solving a set of simultaneous linear equations to determine equilibrium locations for cells.
- Analogy to Hooke's law: F = kd, F: force, k: spring constant, d: distance.
- Goal: Map cells to the layout surface.

85

Finding the Zero-Force Target Location

- Cell *i* connects to several cells *j*'s at distances d_{ij} 's by wires of weights w_{ij} 's. Total force: $F_i = \sum_j w_{ij} d_{ij}$
- The zero-force target location ($\hat{x_i}$, $\hat{y_i}$) can be determined by equating the *x* and *y*-components of the forces to zero:

In the example,

$$\begin{aligned}
\sum_{j} w_{ij} \cdot (x_{j} - \hat{x}_{i}) &= 0 \quad \Rightarrow \quad \hat{x}_{i} = \frac{\sum_{j} w_{ij} x_{j}}{\sum_{j} w_{ij}} \\
\sum_{j} w_{ij} \cdot (y_{j} - \hat{y}_{i}) &= 0 \quad \Rightarrow \quad \hat{y}_{i} = \frac{\sum_{j} w_{ij} y_{j}}{\sum_{j} w_{ij}} \\
\hat{x}_{i} &= \frac{8 \times 0 + 10 \times 2 + 3 \times 0 + 3 \times 2}{8 + 10 + 3 + 3} = 1.083
\end{aligned}$$
and $\hat{y}_{i} = 1.50.$

$$\hat{y}_{i} = \frac{10 \quad \text{out}}{6 \quad (0, 2)} \quad (0, 2) \quad (1, 2) \quad (1, 2) \quad (2, 2) \quad (1, 2) \quad (2, 2) \quad (1, 2) \quad (2, 2$$

Force-Directed Placement

Can be constructive or iterative:
Start with an initial placement.
Select a "most profitable" cell p (e.g., maximum F, critical cells) and place it in its zero-force location.
"Fix" placement if the zero-location has been occupied by another cell q.
Popular options to fix:
Ripple move: place p in the occupied location, compute a new zero-force location for q, ...
Chain move: place p in the occupied location, move q to an adjacent location, ...

Move p to a free location close to q.

Force-Directed Placement

Algorithm: Force-Directed_Placement
1 begin
2 Compute the connectivity for each cell;
3 Sort the cells in decreasing order of their connectivities into list L;
4 while (IterationCount < IterationLimit) do
5 Seed \leftarrow next module from L;
6 Declare the position of the seed vacant;
· · ··································
13 SAME AS PRESENT LOCATION:
14 $EndRipple \leftarrow TRUE; AbortCount \leftarrow 0;$
15 LOCKED:
16 Move selected cell to the nearest vacant location;
17 $EndRipple \leftarrow TRUE; AbortCount \leftarrow AbortCount + 1;$
18 if $(AbortCount > AbortLimit)$ then
19 Unlock all cell locations;
$19 \qquad IterationCount \leftarrow IterationCount + 1;$
20 OCCUPIED AND NOT LOCKED:
21 Select cell as the target location for next move;
22 Move seed cell to target location and lock the target location;
23 $EndRipple \leftarrow FALSE; AbortCount \leftarrow 0;$
26 end

Placement by Simulated Annealing

- Sechen and Sangiovanni-Vincentelli, "The TimberWolf placement and routing package," *IEEE J. Solid-State Circuits*, Feb. 1985; "TimberWolf 3.2: A new standard cell placement and global routing package," DAC-86.
 TimberWolf: Stage 1
 Modules are moved between different rows as well as within the same row.
 Module overlaps are allowed.
 - When the temperature is reached below a certain value, stage 2 begins.
- **TimberWolf:** Stage 2
 - Remove overlaps.
 - Annealing process continues, but only interchanges adjacent modules within the same row.

Solution Space & Neighborhood Structure

Solution Space: All possible arrangements of the modules into rows, possibly with overlaps.

Neighborhood Structure: 3 types of moves

- \blacksquare M_1 : Displace a module to a new location.
- \blacksquare M_2 : Interchange two modules.
- \blacksquare M_3 : Change the orientation of a module.

Neighborhood Structure

- TimberWolf first tries to select a move between M_1 and M_2 : $Prob(M_1) = 0.8$, $Prob(M_2) = 0.2$.
- □ If a move of type M_1 is chosen and it is rejected, then a move of type M_3 for the same module will be chosen with probability 0.1.
- Restrictions: (1) what row for a module can be displaced? (2) what pairs of modules can be interchanged?
- Key: Range Limiter
 - At the beginning, (W_T, H_T) is big enough to contain the whole chip.
 - Window size shrinks as temperature decreases. Height & width ∝ log(T).
 - Stage 2 begins when window size is so small that no inter-row module interchanges are possible.

Cost Function

- **Cost function:** $C = C_1 + C_2 + C_3$.
- \Box C_1 : total estimated wirelength.
 - $C_1 = \sum_{i \in Nets} (\alpha_i W_i + \beta_i h_i)$
 - α_{i} , β_{i} are horizontal and vertical weights, respectively. ($\alpha_{i}=1$, $\beta_{i}=1 \Rightarrow$ half perimeter of the bounding box of Net *i*.)
 - Critical nets: Increase both α_i and β_i .
 - If vertical wirings are "cheaper" than horizontal wirings, use smaller vertical weights: $\beta_i < \alpha_i$.
- \Box C_2 : penalty function for module overlaps.
 - $C_2 = \gamma \sum_{i \neq j} O_{ij'}^2$ γ : penalty weight.
 - O_{ij}: amount of overlaps in the x-dimension between modules i and j.
- \Box C_3 : penalty function that controls the row length.
 - $C_2 = \delta \sum_{r \in Rows} |L_r D_r|$, δ : penalty weight.
 - \square *D_r*: desired row length.
 - L_r : sum of the widths of the modules in row r.

Annealing Schedule

 $\Box T_{k} = r_{k} T_{k-1}, \ k = 1, \ 2, \ 3, \ \dots$

 $\Box r_k$ increases from 0.8 to max value 0.94 and then decreases to 0.8.

- At each temperature, a total # of nP attempts is made.
- □ *n*: # of modules; *P*: user specified constant.

Termination: T < 0.1.

Outline

- Partitioning
- Floorplanning
- Placement
- Routing
 - Global rounting
 - Detailed routing

Compaction

Routing

Course contents:

- Global routing
- Detail routing
- Reading
 - Chapter 12

Routing Constraints

- 100% routing completion + area minimization, under a set of constraints:
 - Placement constraint: usually based on fixed placement
 - Number of routing layers
 - Geometrical constraints: must satisfy design rules
 - Timing constraints (performance-driven routing): must satisfy delay constraints
 - Crosstalk?
 - Process variations?

Geometrical constraint

97

Classification of Routing

Maze Router: Lee Algorithm

- Lee, "An algorithm for path connection and its application," *IRE Trans. Electronic Computer*, EC-10, 1961.
 Discussion mainly on single-layer routing
 Strengths

 Guarantee to find connection between 2 terminals
 - Guarantee minimum path.

Weaknesses

if it exists.

- Requires large memory for dense layout.
- Slow.
- Applications: global routing, detailed routing

Lee Algorithm

\Box Time & space complexity for an $M \times N$ grid: O(MN) (huge!)

Reducing Memory Requirement

Akers's Observations (1967)

- Adjacent labels for *k* are either *k*-1 or *k*+1.
- Want a labeling scheme such that each label has its preceding label different from its succeeding label.
- Way 1: coding sequence 1, 2, 3, 1, 2, 3, ...; states: 1, 2, 3, empty, blocked (3 bits required)
- Way 2: coding sequence 1, 1, 2, 2, 1, 1, 2, 2, ...; states: 1, 2, empty, blocked (need only 2 bits)

Reducing Running Time

- Starting point selection: Choose the point farthest from the center of the grid as the starting point.
- Double fan-out: Propagate waves from both the source and the target cells.
- Framing: Search inside a rectangle area 10--20% larger than the bounding box containing the source and target.
 - Need to enlarge the rectangle and redo if the search fails.

Hadlock's Algorithm

- Hadlock, "A shortest path algorithm for grid graphs," Networks, 1977.
- Uses detour number (instead of labeling wavefront in Lee's router)
 - Detour number, d(P): # of grid cells directed away from its target on path P.
 - **MD**(S, T): the Manhattan distance between S and T.
 - Path length of P, I(P): I(P) = MD(S, T) + 2 d(P).
 - MD(S, T) fixed! \Rightarrow Minimize d(P) to find the shortest path.
 - For any cell labeled *i*, label its adjacent unblocked cells away from *T i*+1; label *i* otherwise.
- Time and space complexities: O(MN), but substantially reduces the # of searched cells.
- □ Finds the shortest path between *S* and *T*.

Hadlock's Algorithm (cont'd)

- \Box d(P): # of grid cells directed **away from** its target on path P.
- \square *MD*(*S*, *T*): the Manhattan distance between *S* and *T*.
- **D** Path length of P, I(P): I(P) = MD(S, T) + 2d(P).
- □ MD(S, T) fixed! \Rightarrow Minimize d(P) to find the shortest path.
- For any cell labeled *i*, label its adjacent unblocked cells **away** from *T i*+1; label *i* otherwise.

		4		4	4	Λ	4	4	4		
	4	4	4 2	4	4	4	4	4	4		
4	3	2	2	2		4	4	4	4		
3	2	1	1	1		4	4	4	Ť		
3	2	1				_		_	_		
3	2	1	S	0	0						
4	3	2	1	1	1						
	4	3	2	2	2						
		4	3	3	3						
			4	4	4						

obstacle

Soukup's Algorithm

- Soukup, "Fast maze router," DAC-78.
- Combined breadth-first and depth-first search.
 - Depth-first (line) search is first directed toward target T until an obstacle or T is reached.
 - Breadth-first (Lee-type) search is used to "bubble" around an obstacle if an obstacle is reached.
- Time and space complexities: O(MN), but 10~50 times faster than Lee's algorithm.
- □ Find **a** path between *S* and *T*, but may not be the shortest!

Mikami-Tabuchi's Algorithm

- Mikami & Tabuchi, "A computer program for optimal routing of printed circuit connectors," *IFIP*, H47, 1968.
- Every grid point is an escape point.

Hightower's Algorithm

- Hightower, "A solution to line-routing problem on the continuous plane," DAC-69.
- □ A single escape point on each line segment.
- If a line parallels to the blocked cells, the escape point is placed just past the endpoint of the segment.

Global Routing Graph

Each cell is represented by a vertex.

Two vertices are joined by an edge if the corresponding cells are adjacent to each other.

Partitioned Layout

Resource Modeling

Global Routing Graph

Global-Routing Problem

□ Given a netlist N={ N_1 , N_2 , ..., N_n }, a routing graph G=(V, E), find a Steiner tree T_i for each net N_i , 1 ≤ *i* ≤ *n*, such that $U(e_j) \le c(e_j)$, $\forall e_j \in E$ and $\sum_i L(T_i)$ is minimized, where

- c(e_i): capacity of edge e_i
- $x_{ij}=1$ if e_i is in T_{i} ; $x_{ij}=0$ otherwise
- $U(e_j) = \sum_i x_{ij}$: # of wires that pass through the channel corresponding to edge e_j
- $L(T_i)$: total wirelength of Steiner tree T_i
- □ For high performance, the maximum wirelength $\max_i L(T_i)$ is minimized (or the longest path between two points in T_i is minimized).

109

Classification of Global-Routing Algorithms

Sequential approach:

- Select a net order and route nets sequentially in the order
- Earlier routed nets might block the routing of subsequent nets
- Routing quality heavily depends on net ordering
- Strategy: Heuristic net ordering + rip-up and rerouting
- Concurrent approach:
 - All nets are considered simultaneously
 E.g., 0-1 integer linear programming (0-1 ILP)

Net Ordering

Net ordering greatly affects routing solutions.

□ In the example, we should route net *b* before net *a*.

route net b before net a

111

Net Ordering (cont'd)

- Order the nets in the ascending order of the # of pins within their bounding boxes.
- Order the nets in the ascending (descending) order of their lengths if routability (timing) is the most critical metric.
- Order the nets based on their timing criticality.

Rip-Up and Re-routing

- Rip-up and re-routing is required if a global or detailed router fails in routing all nets.
- Approaches: the manual approach? the automatic procedure?
- Two steps in rip-up and re-routing
 - 1. Identify bottleneck regions, rip off some already routed nets.
 - Route the blocked connections, and re-route the rippedup connections.
- Repeat the above steps until all connections are routed or a time limit is exceeded.

Top-down Hierarchical Global Routing

Recursively divides routing regions into successively smaller super cells, and nets at each hierarchical level are routed sequentially or concurrently.

Bottom-up Hierarchical Global Routing

- At each hierarchical level, routing is restrained within each super cell individually.
- When the routing at the current level is finished, every four super cells are merged to form a new larger super cell at the next higher level.

The Routing-Tree Problem

Problem: Given a set of pins of a net, interconnect the pins by a "routing tree."

- Minimum Rectilinear Steiner Tree (MRST) Problem: Given n points in the plane, find a minimum-length tree of rectilinear edges which connects the points.
- □ $MRST(P) = MST(P \cup S)$, where P and S are the sets of original points and Steiner points, respectively.

Theoretical Results for the MRST Problem

- Hanan's Thm: There exists an MRST with all Steiner points (set S) chosen from the intersection points of horizontal and vertical lines drawn points of P.
 - Hanan, "On Steiner's problem with rectilinear distance," SIAM J. Applied Math., 1966. Cost(MST(P)) 3
- **I** Hwang's Theorem: For any point set P_i , $\frac{Cost(MBT(P))}{Cost(MRST(P))} \le \frac{3}{2}$
 - Hwang, "On Steiner minimal tree with rectilinear distance," SIAM J. Applied Math., 1976.
- Best existing approximation algorithm: Performance bound 61/48 by Foessmeier *et al.*

Coping with the MRST Problem

- Ho, Vijayan, Wong, "New algorithms for the rectilinear Steiner problem,"
 - 1. Construct an MRST from an MST.
 - 2. Each edge is straight or L-shaped.
 - 3. Maximize overlaps by dynamic programming.

About 8% smaller than Cost(MST).

119

Iterated 1-Steiner Heuristic for MRST

Kahng & Robins, "A new class of Steiner tree heuristics with good performance: the iterated 1-Steiner approach," *ICCAD*-90.

Outline

Partitioning

Floorplanning

Placement

Routing
 Global rounting
 Detailed routing

Compaction

Channel Routing

In earlier process technologies, channel routing was pervasively used since most wires were routed in the free space (*i.e.*, routing channel) between a pair of logic blocks (cell rows)

Routing Region Decomposition

- There are often various ways to decompose a routing region.
- □ The order of routing regions significantly affects the channel-routing process.

channel 1					
	channel 2				

123

Routing Models

Grid-based model:

- A grid is super-imposed on the routing region.
- Wires follow paths along the grid lines.
- Pitch: distance between two gridded lines

Gridless model:

Any model that does not follow this "gridded" approach.

Terminology for Channel Routing

Channel Routing Problem

Assignments of horizontal segments of nets to tracks.

- Assignments of vertical segments to connect the following:
 - horizontal segments of the same net in different tracks, and
 - terminals of the net to horizontal segments of the net.
- Horizontal and vertical constraints must not be violated
 - Horizontal constraints between two nets: the horizontal span of two nets overlaps each other.
 - Vertical constraints between two nets: there exists a column such that the terminal on top of the column belongs to one net and the terminal on bottom of the column belongs to another net.

Objective: Channel height is minimized (i.e., channel area is minimized).

Horizontal Constraint Graph (HCG)

D HCG G = (V, E) is **undirected** graph where

- \blacksquare $V = \{ v_i | v_i \text{ represents a net } n_i \}$
- $E = \{ (v_i, v_j) | a \text{ horizontal constraint exists between } n_i \text{ and } n_j \}.$

□ For graph G: vertices ⇔ nets; edge (i, j) ⇔ net i overlaps net j.

A routing problem and its HCG.

Vertical Constraint Graph (VCG)

 \Box VCG G = (V, E) is **directed** graph where

- $V = \{ v_i | v_i \text{ represents a net } n_i \}$
- $E = \{ (v_i, v_j) | a \text{ vertical constraint exists between } n_i \text{ and } n_j \}.$

□ For graph G: vertices \Leftrightarrow nets; edge $i \rightarrow j \Leftrightarrow$ net i must be above net j.

A routing problem and its VCG.

129

2-Layer Channel Routing: Basic Left-Edge Algorithm

- Hashimoto & Stevens, "Wire routing by optimizing channel assignment within large apertures," DAC-71.
- No vertical constraint.
- HV-layer model is used.
- Doglegs are not allowed.
- Treat each net as an interval.
- Intervals are sorted according to their left-end xcoordinates.
- Intervals (nets) are routed one-by-one according to the order.
- For a net, tracks are scanned from top to bottom, and the first track that can accommodate the net is assigned to the net.
- Optimality: produces a routing solution with the minimum # of tracks (if no vertical constraint).

Basic Left-Edge Algorithm

Algorithm: Basic_Left-Edge(U, track[j])

U: set of unassigned intervals (nets) *I*1, ..., *In*; *Ij*=[*sj*, *ej*]: interval *j* with left-end *x*-coordinate *sj* and right-end *ej*; *track*[*j*]: track to which net *j* is assigned.

1 begin

 $2 U \leftarrow \{ I1, I2, ..., In \};$ 3 *t* ← 0; 4 while $(U \neq \emptyset)$ do $t \leftarrow t + 1;$ 5 watermark $\leftarrow 0$; 6 7 while (there is an $Ij \in U$ s.t. sj > watermark) do Pick the interval $Ij \in U$ with sj > watermark, 8 nearest watermark: 9 $track[j] \leftarrow t;$ 10 watermark \leftarrow ej; $U \leftarrow U - \{Ij\};$ 11 12 end

131

Basic Left-Edge Example

Basic Left-Edge Algorithm

- If there is no vertical constraint, the basic left-edge algorithm is optimal.
- If there is any vertical constraint, the algorithm no longer guarantees optimal solution.

I 0 0 3 3 result from basic left–edge algorithm 3 tracks

optimal routing: 2 tracks

133

Constrained Left-Edge Algorithm

Algorithm: Constrained_Left-Edge(U, track[j])

U: set of unassigned intervals (nets) $I_1, ..., I_n$; $I_j = [s_j, e_j]$: interval *j* with left-end *x*-coordinate s_j and right-end e_j ; *track*[*j*]: track to which net *j* is assigned.

1 begin

 $2 U \leftarrow \{ I_1, I_2, ..., I_n \};$ $3 t \leftarrow 0;$ 4 while $(U \neq \emptyset)$ do 5 $t \leftarrow t + 1;$ 6 watermark $\leftarrow 0$; 7 while (there is an unconstrained $I_i \in U$ s.t. $s_i > watermark$) do 8 Pick the interval $I_i \in U$ that is unconstrained, with s_i > watermark, nearest watermark; 9 $track[j] \leftarrow t;$ 10 watermark $\leftarrow e_{ii}$ 11 $U \leftarrow U - \{I_i\};$ 12 end

Constrained Left-Edge Example

Dogleg Channel Router

Deutch, "A dogleg channel router," 13rd DAC, 1976.
 Drawback of Left-Edge: cannot handle the cases with constraint cycles.

Drawback of Left-Edge: the entire net is on a single track.

- Doglegs are used to place parts of a net on different tracks to minimize channel height.
- Might incur penalty for additional vias.

Dogleg Channel Router

Each multi-pin net is broken into a set of 2-pin nets.
 Modified Left-Edge Algorithm is applied to each subnet.

Dogleg Channel Routing Example

Net	Range
2	[1,4]
1 _a	[2,5]
4	[2,4]
1 _b	[5,7]
3	[6,8]
5	[7,8]

(a) Nets ordered by left-end coordinates

(d) 1_b and 2 are assigned to the 3^{rd} track

137

Modern Routing Considerations

□ Signal/power Integrity

- Capacitive crosstalk
- Inductive crosstalk
- IR drop
- Manufacturability
 - Process variation
 - Optical proximity correction (OPC)
 - Chemical mechanical polishing (CMP)
 - Phase-Shift Mask (PSM)

Reliability

- Double via insertion
- Process antenna effect
- Electromigration (EM)
- Electrostatic discharge (ESD)

Outline

Partitioning

□ Floorplanning

Placement

Routing

Compaction

Layout Compaction

Course contents

- Design rules
- Symbolic layout
- Constraint-graph compaction

141

Design Rules

Design rules: restrictions on the mask patterns to increase the probability of successful fabrication.

- Patterns and design rules are often expressed in λ rules.
- Most common design rules:
 - minimum-width rules (valid for a mask pattern of a specific layer): (a).
 - minimum-separation rules (between mask patterns of the same layer or different layers): (b), (c), (d).
 - minimum-overlap rules (mask patterns in different layers): (e).

CMOS Inverter Layout Example

Symbolic Layout

- Geometric (mask) layout: coordinates of the layout patterns (rectangles) are absolute (or in multiples of λ).
- Symbolic (topological) layout: only relations between layout elements (below, left to, etc.) are known.
 - Symbols are used to represent elements located in several layers, e.g. transistors, contact cuts.
 - The length, width or layer of a wire or other layout element might be left unspecified.
 - Mask layers not directly related to the functionality of the circuit do not need to be specified, e.g. n-well, p-well.
- The symbolic layout can work with a technology file that contains all design rule information for the target technology to produce the geometric layout.

Compaction and its Applications

Aspects of Compaction

Dimension:

1-dimensional (1D) compaction: layout elements only are moved or shrunk in one dimension (x or y direction).

Is often performed first in the x-dimension and then in the y-dimension (or vice versa).

2-dimensional (2D) compaction: layout elements are moved and shrunk simultaneously in two dimensions.

Complexity:

- ID compaction can be done in polynomial time.
- 2D compaction is NP-hard.

2D Compaction

□ Each square is $2 \lambda * 2 \lambda$, minimum separation is 1λ .

D Initially, the layout is $11 \lambda * 11 \lambda$.

D After 2D compaction, the layout size is only $8 \lambda * 8 \lambda$.

Since 2D compaction is NP-complete, most compactors are based on repeated 1D compaction.

149

Inequalities for Distance Constraints

Minimum-distance design rules can be expressed as inequalities.

- For example, if the minimum width is a and the minimum separation is b, then
 - $x_2 x_1 \ge a$ $x_3 - x_2 \ge b$ $x_3 - x_6 \ge b$

The Constraint Graph

- □ The inequalities can be used to construct a constraint graph G(V, E):
 - There is a vertex v_i for each variable x_i .
 - For each inequality $x_j x_i \ge d_{ij}$ there is an edge (v_i, v_j) with weight d_{ij} .
 - There is an extra source vertex, v_0 ; it is located at x = 0; all other vertices are at its right.
- □ If all the inequalities express minimum-distance constraints, the graph is acyclic (DAG).
- The longest path in a constraint graph determines the layout dimension.

Maximum-Distance Constraints

- Sometimes the distance of layout elements is bounded by a maximum, e.g., when the user wants a maximum wire width, maintains a wire connecting to a via, etc.
 - A maximum distance constraint gives an inequality of the form: x_j − x_i ≤ c_{ij} or x_i − x_j ≥ -c_{ij}
 - Consequence for the constraint graph: backward edge
 (v_i, v_i) with weight d_{ii} = -c_{ii}; the graph is not acyclic anymore.
- The longest path in a constraint graph determines the layout dimension.

Longest-Paths in Cyclic Graphs

- Constraint-graph compaction with maximum-distance constraints requires solving the longest-path problem in cyclic graphs.
- Two cases are distinguished:
 - There are positive cycles: No bounded solution for longest paths. (The inequality constraints are conflicting.) We shall detect the cycles.
 - All cycles are negative: Polynomial-time algorithms exist.

Longest and Shortest Paths

- □ Longest paths become shortest paths and vice versa when edge weights are multiplied by −1.
- Situation in DAGs: both the longest and shortest path problems can be solved in linear time.
- Situation in cyclic directed graphs:
 - All weights are positive: shortest-path problem in P (Dijkstra), no feasible solution for the longest-path problem.
 - All weights are negative: longest-path problem in P (Dijkstra), no feasible solution for the shortest-path problem.
 - No positive cycles: longest-path problem is in P.
 - No negative cycles: shortest-path problem is in P.

Remarks on Constraint-Graph Compaction

- Noncritical layout elements: Every element outside the critical paths has freedom on its best position => may use this freedom to optimize some cost function.
- Automatic jog insertion: The quality of the layout can further be improved by automatic jog insertion.

Hierarchy: A method to reduce complexity is hierarchical compaction, e.g., consider cells only.

155

Constraint Generation

- The set of constraints should be irredundant and generated efficiently.
- An edge (v_i, v_j) is redundant if edges (v_i, v_k) and (v_k, v_j) exist and $w((v_i, v_j)) \le w((v_i, v_k)) + w((v_k, v_j))$.
 - The minimum-distance constraints for (A, B) and (B, C) make that for (A, C) redundant.

Doenhardt and Lengauer have proposed a method for irredundant constraint generation with complexity O(n log n).