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Physical Design
 Physical design converts a circuit description into a geometric 

description.
 The description is used to manufacture a chip.
 Physical design cycle:

1. Logic partitioning
2. Floorplanning and placement
3. Routing
4. Compaction

 Others: circuit extraction, timing verification and design rule 
checking

44

Physical Design Flow
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Circuit Partitioning

 Course contents:
 Kernighang-Lin partitioning algorithm 



77

Circuit Partitioning
 Objective: Partition a circuit into parts such that every 

component is within a prescribed range and the # of 
connections among the components is minimized.
 More constraints are possible for some applications.

 Cutset? Cut size? Size of a component?
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Problem Definition: Partitioning
 k-way partitioning: Given a graph G(V, E), where each 

vertex v  V has a size s(v) and each edge e  E has a 
weight w(e), the problem is to divide the set V into k disjoint 
subsets V1, V2, …, Vk, such that an objective function is 
optimized, subject to certain constraints.

 Bounded size constraint: The size of the i-th subset is 
bounded by Bi (i.e.,                       ).
 Is the partition balanced?

 Min-cut cost between two subsets:
Minimize                         ,  where p(u) is the partition # of 
node u.

 The 2-way, balanced partitioning problem is NP-complete, 
even in its simple form with identical vertex sizes and unit 
edge weights.
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Kernighan-Lin Algorithm
 Kernighan and Lin, “An efficient heuristic procedure for 

partitioning graphs,” The Bell System Technical Journal, vol. 
49, no. 2, Feb. 1970.

 An iterative, 2-way, balanced partitioning (bi-sectioning) 
heuristic.

 Till the cut size keeps decreasing
 Vertex pairs which give the largest decrease or the 

smallest increase in cut size are exchanged.
 These vertices are then locked (and thus are prohibited 

from participating in any further exchanges).
 This process continues until all the vertices are locked.
 Find the set with the largest partial sum for swapping.
 Unlock all vertices.

1010

K-L Algorithm: A Simple Example
 Each edge has a unit weight.

 Questions: How to compute cost reduction? What pairs to 
be swapped?
 Consider the change of internal & external connections.
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Properties
 Two sets A and B such that |A| = n = |B| and A  B = .
 External cost of a  A: Ea =         cav.
 Internal cost of a  A: Ia =         cav.
 D-value of a vertex a: Da = Ea - Ia (cost reduction for moving a).
 Cost reduction (gain) for swapping a and b: gab = Da + Db - 2cab.
 If a  A and b  B are interchanged, then the new D-values, D’, 

are given by

v B
v A
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A Weighted Example

 Iteration 1
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A Weighted Example (cont’d)
 Iteration 1:

 gxy = Dx + Dy - 2cxy.

 Swap b and f. 
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A Weighted Example (cont’d)

 D’x = Dx + 2 cxp - 2 cxq,  x  A – {p} (swap p and q, p  A, q  B)

 gxy = D’x + D’y - 2cxy.

 Swap c and e. 
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A Weighted Example (cont’d)

 D’’x = D’x + 2 cxp - 2 cxq,  x  A – {p}

 gxy = D’’x + D’’y - 2cxy.

 Note that this step is redundant

 Summary:       

 Largest partial sum                              (k = 1)  Swap b and f.
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A Weighted Example (cont’d)

 Iteration 2: Repeat what we did at Iteration 1 
(Initial cost  = 22-4 =18).

 Summary:       

 Largest partial sum =                              (k = 3)  Stop!
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Kernighan-Lin Algorithm
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Time Complexity

Line 4: Initial computation of D: O(n2)
Line 5: The for-loop: O(n)
The body of the loop: O(n2).
Lines 6--7: Step i takes (n – i + 1)2 time.

Lines 4--11: Each pass of the repeat loop: 
O(n3).

Suppose the repeat loop terminates after r
passes.

The total running time: O(rn3).
Polynomial-time algorithm?
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Extensions of K-L Algorithm
 Unequal sized subsets (assume n1 < n2)

1. Partition:  |A| = n1 and |B| = n2.
2. Add n2 - n1 dummy vertices to set A. Dummy vertices have no 

connections to the original graph.
3. Apply the Kernighan-Lin algorithm.
4. Remove all dummy vertices.

 Unequal sized “vertices”
1. Assume that the smallest “vertex'' has unit size.
2. Replace each vertex of size s with s vertices which are fully 

connected with edges of infinite weight.
3. Apply the Kernighan-Lin algorithm.

 k-way partition
1. Partition the graph into k equal-sized sets.
2. Apply the Kernighan-Lin algorithm for each pair of subsets.
3. Time complexity? Can be reduced by recursive bi-partition.
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Floorplanning

 Course contents
 Floorplan basics 
 Normalized Polish expression for slicing flooprlans
 B*-trees for non-slicing floorplans

 Reading
 Chapter 10

Pentium 4
PowerPC 604
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Floorplanning
 Partitioning leads to

 Blocks with well-defined areas and shapes (rigid/hard
blocks).

 Blocks with approximate areas and no particular shapes 
(flexible/soft blocks).

 A netlist specifying connections between the blocks.
 Objectives

 Find locations for all blocks.
 Consider shapes of soft block and pin locations of all the blocks.
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Early Layout Decision Example

2424

Early Layout Decision Methodology
 An integrated circuit is essentially a two-dimensional 

medium; taking this aspect into account in early stages of 
the design helps in creating designs of good quality.

 Floorplanning gives early feedback: thinking of layout at 
early stages may suggest valuable architectural 
modifications; floorplanning also aids in estimating delay 
due to wiring.

 Floorplanning fits very well in a top-down design strategy, 
the step-wise refinement strategy also propagated in 
software design.

 Floorplanning assumes, however, flexibility in layout design, 
the existence of cells that can adapt their shapes and 
terminal locations to the environment.
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Floorplanning Problem

 Inputs to the floorplanning problem:
 A set of blocks, hard or soft.
 Pin locations of hard blocks.
 A netlist.

Objectives: minimize area, reduce wirelength for 
(critical) nets, maximize routability (minimize 
congestion), determine shapes of soft blocks, etc.

2626

Floorplan Design
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Floorplanning Concepts

 Leaf cell 
(block/module): a 
cell at the lowest level 
of the hierarchy; it 
does not contain any 
other cell.

 Composite cell
(block/module): a 
cell that is composed 
of either leaf cells or 
composite cells. The 
entire IC is the 
highest- level 
composite cell.

leaf cell

composite cell
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Slicing Floorplan + Slicing Tree
 A composite cell’s subcells 

are obtained by a 
horizontal or vertical 
bisection of the composite 
cell.

 Slicing floorplans can be 
represented by a slicing 
tree. 

 In a slicing tree, all cells 
(except for the top-level 
cell) have a parent, and all 
composite cells have 
children.

 A slicing floorplan is also 
called a floorplan of order 
2.

H

V

H

H: horizontal cut
V: vertical cut
different from the definitions in the 
textbook!!
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Skewed Slicing Tree
 Rectangular dissection: Subdivision of a given rectangle by a 

finite # of horizontal and vertical line segments into a finite # of 
non-overlapping rectangles.

 Slicing structure: a rectangular dissection that can be obtained 
by repetitively subdividing rectangles horizontally or vertically.

 Slicing tree: A binary tree, where each internal node represents 
a vertical cut line or horizontal cut line, and each leaf a basic 
rectangle.

 Skewed slicing tree: One in which no node and its right child 
are the same.
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Slicing Floorplan Design by 
Simulated Annealing

Related work
Wong & Liu, “A new algorithm for floorplan 

design,” DAC-86.
Considers slicing floorplans.

Wong & Liu, “Floorplan design for rectangular 
and L-shaped modules,” ICCAD'87.
Also considers L-shaped modules.

Wong, Leong, Liu, Simulated Annealing for 
VLSI Design, pp. 31--71, Kluwer Academic 
Publishers, 1988.
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Simulated Annealing
 Kirkpatrick, Gelatt, and Vecchi, “Optimization by simulated 

annealing,” Science, May 1983.
 Greene and Supowit, “Simulated annealing without rejected 

moves,” ICCD-84.
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Simulated Annealing Basics

 Non-zero probability for “up-hill” moves.
 Probability depends on

1.magnitude of the “up-hill” movement
2.total search time

 C = cost(S') - Cost(S)
 T: Control parameter (temperature)
 Annealing schedule: T=T0, T1, T2, …, where Ti = 

ri T0 with r < 1.
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Generic Simulated Annealing Algorithm

1 begin
2 Get an initial solution S; 
3 Get an initial temperature T > 0; 
4 while not yet “frozen” do
5    for 1  i  P do
6         Pick a random neighbor S' of S;
7           cost(S') - cost(S);

/* downhill move */
8         if   0 then S  S'

/* uphill move */
9         if  > 0 then S  S' with probability           ;
10 T  rT;  /* reduce temperature */  
11 return S
12 end

3434

Basic Ingredients for Simulated 
Annealing

 Analogy:

 Basic Ingredients for Simulated Annealing:
 Solution space
 Neighborhood structure
 Cost function
 Annealing schedule
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Solution Representation of Slicing 
Floorplan 
 An expression E = e1 e2… e2n-1, where ei  {1, 2, …, n, H, V}, 1  i 

2n-1, is a Polish expression of length 2n-1 iff
1. every operand j, 1  j  n, appears exactly once in E;
2. (the balloting property) for every subexpression Ei = e1 … ei, 1  i 

2n-1, # operands > # operators.

 Polish expression  Postorder traversal.
 ijH: rectangle i on bottom of j; ijV: rectangle i on the left of j.

3636

Redundant Representations

 Question: How to eliminate ambiguous representation?
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Normalized Polish Expression

 A Polish expression E = e1 e2 … e2n-1 is called  
normalized iff E has no consecutive operators of 
the same type (H or V), i.e. skewed.

 Given a normalized Polish expression, we can 
construct a unique rectangular slicing structure.
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Neighborhood Structure
 Chain: HVHVH … or VHVHV …

 Adjacent: 1 and 6 are adjacent operands; 2 and 7 are 
adjacent operands; 5 and V are adjacent operand and 
operator.

 3 types of moves:
 M1 (Operand Swap): Swap two adjacent operands.
 M2 (Chain Invert): Complement some chain (V = H, H = V).
 M3 (Operator/Operand Swap): Swap two adjacent operand 

and operator.
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Effects of Perturbation

 Question: The balloting property holds during the moves?
 M1 and M2 moves are OK.
 Check the M3 moves! Reject “illegal” M3 moves.

 Check M3 moves: Assume that the M3 move swaps the 
operand ei with the operator ei+1, 1  i  k-1. Then, the 
swap will not violate the balloting property iff 2Ni+1 < i.
 Nk: # of operators in the Polish expression E = e1 e2 … ek, 1 

k  2n-1

1 2
3

4
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Cost Function
  = A +  W.

 A: area of the smallest rectangle
 W: overall wiring length
  : user-specified parameter

 W= ijcij dij.
 cij: # of connections between blocks i and j.
 dij: center-to-center distance between basic rectangles i and j.
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Area Computation for Hard Blocks
 Allow rotation

 Wiring cost?
 Center-to-center interconnection length

4242

Incremental Computation of Cost 
Function

 Each move leads to only a minor modification of 
the Polish expression.

 At most two paths of the slicing tree need to be 
updated for each move.
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Incremental Computation of Cost 
Function (cont'd)

4444

Annealing Schedule

 Initial solution: 12V3V … nV.

 Ti = ri T0, i = 1, 2, 3, …; r =0.85.
 At each temperature, try kn moves (k = 5-10).
 Terminate the annealing process if
 # of accepted moves < 5%,
 temperature is low enough, or
 run out of time.
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Wong-Liu Algorithm
Input: (P, , r, k)
1 begin
2 E  12V3V4V … nV; /* initial solution */
3 Best  E; T0  ; M  MT  uphill  0; N = kn; 
4 repeat 
5    MT  uphill  reject  0; 
6    repeat 
7       SelectMove(M); 
8       Case M of 
9       M1:  Select two adjacent operands ei and ej; NE  Swap(E, ei, ej);
10     M2:  Select a nonzero length chain C; NE  Complement(E, C);
11     M3:  done  FALSE;
12         while not (done) do
13              Select two adjacent operand ei and operator ei+1;
14              if (ei-1  ei+1)  and (2 Ni+1 < i) then done  TRUE; 
13’ Select two adjacent operator ei and operand ei+1;
14’ if (ei ei+2) then done  TRUE; 
15         NE  Swap(E, ei, ei+1);
16     MT  MT+1; cost  cost(NE) - cost(E);

17     if (cost  0) or (Random <                    )
18      then
19           if (cost > 0) then uphill  uphill + 1;
20           E  NE;
21           if cost(E) < cost(best) then best  E;
22       else reject  reject + 1; 
23    until (uphill > N) or (MT > 2N); 
24    T  rT; /* reduce temperature */
25 until (reject/MT > 0.95) or (T < ) or OutOfTime; 
26 end
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Shape Curve
 Flexible cells imply that cells can have different aspect 

ratios.
 The relation between the width x and the height y is: xy

= A, or y =A/x. The shape function is a hyperbola. 
 Very thin cells are not interesting and often not feasible 

to design. The shape function is a combination of a 
hyperbola and two straight lines. 
 Aspect ratio: r <= y/x <= s.

y = sx

y = rx

legal 
shapesy

xx

y
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Shape Curve (cont’d)

 Leaf cells are built from discrete transistors: it is 
not realistic to assume that the shape function 
follows the hyperbola continuously.

 In an extreme case, a cell is rigid: it can only be 
rotated and mirrored during floorplanning or 
placement. 

The shape function of a 2  4 inset cell.

y

x
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Shape Curve (cont’d)

 In general, a piecewise linear function can be 
used to approximate any shape function.

 The points where the function changes its 
direction, are called the corner (break) points of 
the piecewise linear function.
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Addition for Vertical Abutment

 Composition by vertical abutment  the addition 
of shape functions.

R1

R2
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Deriving Shapes of Children

 A choice for the minimal shape of composite cell 
fixes the shapes of the shapes of its children cells.
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Sizing Algorithm for Slicing Floorplans

 The shape functions of all leaf cells are given as 
piecewise linear functions.

 Traverse the slicing tree in order to compute the 
shape functions of all composite cells (bottom-up 
composition).

 Choose the desired shape of the top-level cell; as 
the shape function is piecewise linear, only the 
break points of the function need to be evaluated, 
when looking for the minimal area.

 Propagate the consequences of the choice down 
to the leaf cells (top-down propagation).

 The sizing algorithm runs in polynomial time for 
slicing floorplans
 NP-complete for non-slicing floorplans

5252

Feasible Implementations
 Shape curves correspond to different kinds of constraints 

where the shaded areas are feasible regions.
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Wheel or Spiral Floorplan
 This floorplan is not slicing!
 Wheel is the smallest non-

slicing floorplans.
 Limiting floorplans to those 

that have the slicing 
property is reasonable: it 
certainly facilitates 
floorplanning algorithms.

 Taking the shape of a 
wheel floorplan and its 
mirror image as the basis 
of operators leads to 
hierarchical descriptions of 
order 5.

5454

Order-5 Floorplan Examples

V

V

H
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General Floorplan Representation: 
Polar Graphs

 vertex: channel segment
 edge: cell/block/module

vertical polar graph

horizontal polar graph
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B*-Tree: Compacted Floorplan 
Representation

 Chang et al., “B*-tree: A new representation for non-slicing 
floorplans,” DAC 2000.
 Compact modules to left and bottom
 Construct an ordered binary tree (B*-tree)

 Left child: the lowest, adjacent block on the right (xj = xi+wi)
 Right child: the first block above, with the same x-coordinate (xj = 

xi)

n1

n2 n3

n4

n5

n6

A non-slicing floorplan Compact to left and down B*-tree

1 2

5
3 4

6

1 2

5
3 4

6
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B*-tree Packing
 x-coordinates can be determined by the tree structure

 Left child: the lowest, adjacent block on the right (xj = xi+wi)
 Right child: the first block above, with the same x-coordinate 

(xj = xi)
 Y-coordinates?

 Horizontal contour: Use a doubly linked list to record the 
current maximum y-coordinate for each x-range

 Reduce the complexity of computing a y-coordinate to 
amortized O(1) time

1 2

5
3 4

6

w1 x2 = x1 + w1
(x1, y1)

x3 = x1

n1

n2 n3

n4

n5

n6

x1

x2 = x1 + w1 x3 = x1

x6 = x3x4 = x3 + w3

x5 = x4 + w4
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Contour Data Structure

1 1
2

1
2

3

1
2

3 4

1
2

3 4
5

1
2

3 4
5

6

(0, 0) (0, 0) (0, 0) (9, 0)

(0, 6)

(9, 0)

(0, 0) (9, 0)

(0, 6)
(3, 6)

(0, 0) (9, 0)

(0, 6)
(3, 6)

(6, 8)

(0, 0) (9, 0)

(0, 6)
(3, 6)

(6, 8)

(0, 13)

C = <(0,0), (0,6), 
(9,6), (9,0),
(∞,0)> 

C = <(0,0), (0,6), (9,6), 
(9,8), (15,8), (15,0), 
(∞,0)>

C = <(0,0), (0,12), 
(3,12), (3,6), (9,6), (9,8), 
(15,8), (15,0), (∞,0)>

C = <(0,0), (0,12), 
(3,12), (3,13), (6,13), 
(6,6), (9,6), (9,8), 
(15,8), (15,0), (∞,0)>

C = <(0,0), (0,12), 
(3,12), (3,13), (6,13),
(12,13), (12,8), (15,8), 
(15,0), (∞,0)>

C = <(0,0), (0,15),
(12,15), (12,13), (12,8),
(15,8), (15,0), (∞,0)>
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B*-tree Perturbation

Op1: rotate a macro
Op2: move a node to another place
Op3: swap two nodes

1
2

4
5

6

1
2

4
5

6

1
2

4
5

6

1
2

3 4
5

6

3

3
3

n1

n2 n3

n4

n5

n6

n1

n2 n3

n4

n5

n6

n1

n2 n3

n5

n4

n6

n2

n1 n3

n5

n4

n6

Op1

Op2

Op3
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Simulated Annealing Using B*-tree

 The cost function is 
based on problem 
requirements
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Strengths of B*-tree

 Binary tree based, efficient and easy
 Flexible to deal with various placement constraints by 

augmenting the B*-tree data structure (e.g., preplaced, 
symmetry, alignment, bus position) and rectilinear modules

 Transformation between a tree and its placement takes 
only linear time

 Operate on only one B*-tree (vs. two O-trees)
 Can evaluate area cost incrementally
 Smaller solution space: only O(n! 4n/n1.5) combinations
 Directly corresponds to hierarchical and multilevel 

frameworks for large-scale floorplan designs
 Can be extended to 3D floorplanning & related applications

6262

Weaknesses of B*-tree

 Representation may 
change after packing

Only a partially 
topological 
representation; less 
flexible than a fully 
topological 
representation
 B*-tree can represent 

only compacted 
placement

1

3

4

2

n1

n3

n4

n2

1

2 3

4

B*-tree??
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Placement

 Course contents:
 Placement metrics
 Constructive placement: cluster growth, min cut
 Iterative placement: force-directed method, simulated 

annealing

 Reading
 Chapter 11
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Placement
 Placement is the problem of automatically assigning 

correct positions on the chip to predesigned cells, such that 
some cost function is optimized.

 Inputs: A set of fixed cells/modules, a netlist.
 Goal: Find the best position for each cell/module on the 

chip according to appropriate cost functions.
 Considerations: routability/channel density, wirelength, 

cut size, performance, thermal issues, I/O pads.
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Placement Objectives and Constraints

 What does a placement algorithm try to optimize? 
 total area
 total wire length
 number of horizontal/vertical wire segments crossing a line

 Constraints:
 placement should be routable (no cell overlaps; no density 

overflow).
 timing constraints are met (some wires should always be 

shorter than a given length).
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VLSI Placement: Building Blocks

 Different design styles create different placement 
problems. 
 E.g., building-block, standard-cell, gate-array placement

Building block: The cells to be placed have arbitrary 
shapes.

building block example
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VLSI Placement: Standard Cells
 Standard cells are designed in such a way that power and 

clock connections run horizontally through the cell and 
other I/O leaves the cell from the top or bottom sides.

 The cells are placed in rows.
 Sometimes feedthrough cells are added to ease wiring.

feedthrough
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Consequences of Fabrication Method

 Full-custom fabrication (building block):
 Free selection of aspect ratio (quotient of height and width).
 Height of wiring channels can be adapted to necessity.

 Semi-custom fabrication (gate array, standard cell):
 Placement has to deal with fixed carrier dimensions.
 Placement should be able to deal with fixed channel capacities.

gate array
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Relation with Routing

Ideally, placement and routing should be 
performed simultaneously as they depend 
on each other’s results. This is, however, 
too complicated.
 P&R: placement and routing 

In practice placement is done prior to 
routing. The placement algorithm 
estimates the wire length of a net using 
some metric.
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Wirelength Estimation
 Semi-perimeter method: Half the perimeter of the bounding 

rectangle that encloses all the pins of the net to be connected.
Most widely used approximation!

 Steiner-tree approximation: Computationally expensive.
 Minimum spanning tree: Good approximation to Steiner trees.
 Squared Euclidean distance: Squares of all pairwise terminal 

distances in a net using a quadratic cost function

 Complete graph: Since #edges in a complete graph is            ,   

wirelength  (i, j)  netdist(i, j).

( 1)

2

n n  
 
 

2

n

72

Wirelength Estimation (cont'd)
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Placement Algorithms
 The placement problem is NP-complete
 Popular placement algorithms:

 Constructive algorithms: once the position of a cell is fixed, 
it is not modified anymore.
Cluster growth, min cut, etc.

 Iterative algorithms: intermediate placements are modified 
in an attempt to improve the cost function.
Force-directed method, etc

 Nondeterministic approaches: simulated annealing, genetic 
algorithm, etc.

 Most approaches combine multiple elements:
 Constructive algorithms are used to obtain an initial 

placement.
 The initial placement is followed by an iterative improvement

phase.
 The results can further be improved by simulated annealing.

74

Bottom-Up Placement: Clustering

Starts with a single cell and finds more 
cells that share nets with it.
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Placement by Cluster Growth
 Greedy method: Selects unplaced components and places 

them in available slots.
 SELECT: Choose the unplaced component that is most 

strongly connected to all of the placed components (or 
most strongly connected to any single placed 
component).

 PLACE: Place the selected component at a slot such that 
a certain “cost” of the partial placement is minimized.

76

Cluster Growth Example
 # of other terminals connected: ca=3, cb=1, cc=1, cd =1, 

ce=4, cf=3, and cg=3  e has the most connectivity.
 Place e in the center, slot 4. a, b, g are connected to e, and        

 Place a next to e (say, slot 3). Continue until all cells are 
placed.

 Further improve the placement by swapping the gates.
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Top-down Placement: Min Cut

 Starts with the whole circuit and ends with small 
circuits.

 Recursive bipartitioning of a circuit (e.g., K&L) 
leads to a min-cut placement.

78

Min-Cut Placement
 Breuer, “A class of min-cut placement algorithms,” DAC, 1977.
 Quadrature: suitable for circuits with high density in the 

center.
 Bisection: good for standard-cell placement.
 Slice/Bisection: good for cells with high interconnection on 

the periphery.
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Algorithm for Min-Cut Placement
Algorithm: Min_Cut_Placement(N, n, C)
/* N: the layout surface */
/* n : # of cells to be placed */
/* n0: # of cells in a slot */ 
/* C: the connectivity matrix */ 

1 begin
2 if (n  n0) then PlaceCells(N, n, C)
3 else
4     (N1, N2)  CutSurface(N);
5     (n1, C1), (n2, C2)  Partition(n, C); 
6  Call Min_Cut_Placement(N1, n1, C1); 
7  Call Min_Cut_Placement(N2, n2, C2); 
8 end

80

Quadrature Placement Example

 Apply the K-L heuristic to partition + Quadrature 
Placement: Cost C1 = 4, C2L= C2R = 2, etc.
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Min-Cut Placement with Terminal 
Propagation

 Dunlop & Kernighan, “A procedure for placement of 
standard-cell VLSI circuits,” IEEE TCAD, Jan. 1985.

 Drawback of the original min-cut placement: Does not 
consider the positions of terminal pins that enter a region.
 What happens if we swap {1, 3, 6, 9} and {2, 4, 5, 7} 

in the previous example?
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Terminal Propagation
 We should use the fact that s is in L1!

 When not to use p to bias partitioning? Net s has cells in 
many groups?
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Terminal Propagation Example

 Partitioning must be done breadth-first, not 
depth-first.

84

General Procedure for Iterative 
Improvement

Algorithm: Iterative_Improvement()

1  begin

2  s  initial_configuration();

3  c  cost(s);
4  while (not stop()) do

5      s’  perturb(s); 

6      c’  cost(s’); 
7      if (accept(c, c’))

8 then s  s’;
9  end
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Placement by the Force-Directed 
Method

 Hanan & Kurtzberg, “Placement techniques,” in Design 
Automation of Digital Systems, Breuer, Ed, 1972.

 Quinn, Jr. & Breuer, “A force directed component placement 
procedure for printed circuit boards,” IEEE Trans. Circuits and 
Systems, June 1979.

 Reduce the placement problem to solving a set of simultaneous 
linear equations to determine equilibrium locations for cells.

 Analogy to Hooke's law: F = kd, F: force, k: spring constant, d: 
distance.

 Goal: Map cells to the layout surface.
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Finding the Zero-Force Target Location
 Cell i connects to several cells j's at distances dij's by wires of weights 

wij's. Total force: Fi = jwijdij
 The zero-force target location (     ,      ) can be determined by equating 

the x- and y-components of the forces to zero:

 In the example,                                                 and       = 1.50.
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Force-Directed Placement

Can be constructive or iterative:
Start with an initial placement.
Select a “most profitable” cell  p (e.g., 

maximum F, critical cells) and place it in its 
zero-force location.

 “Fix” placement if the zero-location has been 
occupied by another cell q.
Popular options to fix:

 Ripple move: place p in the occupied location, 
compute a new zero-force location for q, …

 Chain move: place p in the occupied location, move q
to an adjacent location, …

 Move p to a free location close to q.
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Force-Directed Placement
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Placement by Simulated Annealing
 Sechen and Sangiovanni-Vincentelli, “The TimberWolf 

placement and routing package,” IEEE J. Solid-State 
Circuits, Feb. 1985; “TimberWolf 3.2: A new standard cell 
placement and global routing package,” DAC-86.

 TimberWolf: Stage 1
 Modules are moved between different rows as well as 

within the same row.
 Module overlaps are allowed.
 When the temperature is reached below a certain value, 

stage 2 begins.
 TimberWolf: Stage 2

 Remove overlaps.
 Annealing process continues, but only interchanges 

adjacent modules within the same row.
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Solution Space & Neighborhood 
Structure

 Solution Space: All possible arrangements of 
the modules into rows, possibly with overlaps.

Neighborhood Structure: 3 types of moves
 M1: Displace a module to a new location.
 M2: Interchange two modules.
 M3: Change the orientation of a module.
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Neighborhood Structure
 TimberWolf first tries to select a move between M1 and M2: 

Prob(M1) = 0.8, Prob(M2) = 0.2.
 If a move of type M1 is chosen and it is rejected,  then a move of 

type M3 for the same module will be chosen with probability 0.1.
 Restrictions: (1) what row for a module can be displaced? (2) 

what pairs of modules can be interchanged?
 Key: Range Limiter

 At the beginning, (WT, HT) is big enough to contain the whole chip.
 Window size shrinks as temperature decreases. Height & width 

log(T).
 Stage 2 begins when window size is so small that no inter-row module 

interchanges are possible.
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Cost Function
 Cost function: C = C1 + C2 + C3.
 C1: total estimated wirelength.

 C1 =  i  Nets(i wi + i hi)
 i, i are horizontal and vertical weights, respectively. (i=1, 

i =1  half perimeter of the bounding box of Net i.)
 Critical nets: Increase both i and i .
 If vertical wirings are “cheaper” than horizontal wirings, use 

smaller vertical weights: i < i.
 C2: penalty function for module overlaps.

 C2 =   i  j O2
ij, : penalty weight.

 Oij: amount of overlaps in the x-dimension between modules i
and j.

 C3: penalty function that controls the row length.
 C2 =  r  Rows|Lr - Dr|,  : penalty weight.
 Dr: desired row length.
 Lr: sum of the widths of the modules in row r.
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Annealing Schedule

Tk = rk Tk-1, k = 1, 2, 3, …
rk increases from 0.8 to max value 0.94 

and then decreases to 0.8.
At each temperature, a total # of nP

attempts is made.
n: # of modules; P: user specified 

constant.
Termination: T < 0.1.
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Routing

Course contents:
Global routing
Detail routing

Reading
Chapter 12

96

Routing
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Routing Constraints
 100% routing completion + area minimization, under a set 

of constraints:
 Placement constraint: usually based on fixed placement
 Number of routing layers
 Geometrical constraints: must satisfy design rules
 Timing constraints (performance-driven routing): must satisfy 

delay constraints
 Crosstalk?
 Process variations?
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Classification of Routing
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Maze Router: Lee Algorithm

 Lee, “An algorithm for path connection and its 
application,” IRE Trans. Electronic Computer, EC-
10, 1961.

 Discussion mainly on single-layer routing
 Strengths
 Guarantee to find connection between 2 terminals 

if it exists.
 Guarantee minimum path.

Weaknesses
 Requires large memory for dense layout.
 Slow.

 Applications: global routing, detailed routing
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Filling

Lee Algorithm
 Find a path from S to T by “wave propagation”.

 Time & space complexity for an M  N grid: O(MN) (huge!)
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Reducing Memory Requirement
 Akers's Observations (1967)

 Adjacent labels for k are either k-1 or k+1.
 Want a labeling scheme such that each label has its preceding label 

different from its succeeding label.
 Way 1: coding sequence 1, 2, 3, 1, 2, 3, …; states: 1, 2, 3, empty, 

blocked (3 bits required)
 Way 2: coding sequence 1, 1, 2, 2, 1, 1, 2, 2, …; states: 1, 2, empty, 

blocked (need only 2 bits)
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Reducing Running Time
 Starting point selection: Choose the point farthest from the 

center of the grid as the starting point.
 Double fan-out: Propagate waves from both the source and 

the target cells.
 Framing: Search inside a rectangle area 10--20% larger 

than the bounding box containing the source and target.
 Need to enlarge the rectangle and redo if the search fails.
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Hadlock's Algorithm
 Hadlock, “A shortest path algorithm for grid graphs,”

Networks, 1977.
 Uses detour number (instead of labeling wavefront in 

Lee's router)
 Detour number, d(P): # of grid cells directed away 

from its target on path P.
 MD(S, T): the Manhattan distance between S and T.
 Path length of P, l(P): l(P) = MD(S, T) + 2 d(P).
 MD(S, T) fixed!  Minimize d(P) to find the shortest 

path.
 For any cell labeled i, label its adjacent unblocked cells 

away from T i+1; label i otherwise.
 Time and space complexities: O(MN), but 

substantially reduces the # of searched cells.
 Finds the shortest path between S and T.
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Hadlock's Algorithm (cont'd)
 d(P): # of grid cells directed away from its target on path P.
 MD(S, T): the Manhattan distance between S and T.
 Path length of P, l(P): l(P) = MD(S, T) + 2d(P).
 MD(S, T) fixed!  Minimize d(P) to find the shortest path.
 For any cell labeled i, label its adjacent unblocked cells away 

from T i+1; label i otherwise.
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Soukup's Algorithm
 Soukup, “Fast maze router,” DAC-78.
 Combined breadth-first and depth-first search.

 Depth-first (line) search is first directed toward target T until 
an obstacle or T is reached.

 Breadth-first (Lee-type) search is used to “bubble” around an 
obstacle if an obstacle is reached.

 Time and space complexities: O(MN), but 10~50 times faster 
than Lee's algorithm.

 Find a path between S and T, but may not be the shortest!
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Mikami-Tabuchi's Algorithm
 Mikami & Tabuchi, “A computer program for optimal routing 

of printed circuit connectors,” IFIP, H47, 1968.
 Every grid point is an escape point.
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Hightower's Algorithm
 Hightower, “A solution to line-routing problem on the 

continuous plane,” DAC-69.
 A single escape point on each line segment.
 If a line parallels to the blocked cells, the escape point is 

placed just past the endpoint of the segment.
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Global Routing Graph

Each cell is represented by a vertex.
Two vertices are joined by an edge if the 

corresponding cells are adjacent to each 
other.
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Global-Routing Problem

 Given a netlist N={N1, N2, …, Nn }, a routing 
graph G=(V,E), find a Steiner tree Ti for each net 
Ni, 1  i  n, such that U(ej)  c(ej),  ej  E and 
i L(Ti) is minimized, where
 c(ej): capacity of edge ej

 xij=1 if ej is in Ti; xij=0 otherwise
 U(ej) = i xij:  of wires that pass through the channel 

corresponding to edge ej

 L(Ti): total wirelength of Steiner tree Ti

 For high performance, the maximum wirelength 
maxi L(Ti) is minimized (or the longest path 
between two points in Ti is minimized).
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Classification of Global-Routing 
Algorithms

 Sequential approach:
 Select a net order and route nets sequentially in the 

order
 Earlier routed nets might block the routing of 

subsequent nets
 Routing quality heavily depends on net ordering
 Strategy: Heuristic net ordering + rip-up and rerouting

 Concurrent approach:
 All nets are considered simultaneously

E.g., 0-1 integer linear programming (0-1 ILP)
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Net Ordering
 Net ordering greatly affects routing solutions.
 In the example, we should route net b before net a.

112

Net Ordering (cont’d)

Order the nets in the ascending order of 
the # of pins within their bounding boxes.

Order the nets in the ascending 
(descending) order of their lengths if 
routability (timing) is the most critical 
metric.

Order the nets based on their timing 
criticality.
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Rip-Up and Re-routing

 Rip-up and re-routing is required if a global or 
detailed router fails in routing all nets.

 Approaches: the manual approach? the automatic 
procedure?

 Two steps in rip-up and re-routing
1.Identify bottleneck regions, rip off some already routed 

nets.
2.Route the blocked connections, and re-route the ripped-

up connections.

 Repeat the above steps until all connections are 
routed or a time limit is exceeded.

114

Top-down Hierarchical Global Routing

 Recursively divides routing regions into 
successively smaller super cells, and nets at 
each hierarchical level are routed sequentially or 
concurrently.
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Bottom-up Hierarchical Global Routing

 At each hierarchical level, routing is restrained 
within each super cell individually. 

When the routing at the current level is finished, 
every four super cells are merged to form a new 
larger super cell at the next higher level.
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Hybrid Hierarchical Global Routing

 (1) neighboring propagation, (2) preference 
partitioning, and (3) bounded routing
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The Routing-Tree Problem
 Problem: Given a set of pins of a net, interconnect the pins by a 

“routing tree.”

 Minimum Rectilinear Steiner Tree (MRST) Problem: Given n
points in the plane, find a minimum-length tree of rectilinear 
edges which connects the points.

 MRST(P) = MST(P  S), where P and S are the sets of original 
points and Steiner points, respectively.
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Theoretical Results for the MRST 
Problem

 Hanan’s Thm: There exists an MRST with all Steiner points (set 
S) chosen from the intersection points of horizontal and vertical
lines drawn points of P.
 Hanan, “On Steiner's problem with rectilinear distance,” SIAM 

J. Applied Math., 1966.
 Hwang’s Theorem: For any point set P, 

 Hwang, “On Steiner minimal tree with rectilinear distance,”
SIAM J. Applied Math., 1976.

 Best existing approximation algorithm: Performance bound 61/48 
by Foessmeier et al.
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Coping with the MRST Problem
 Ho, Vijayan, Wong, “New algorithms for the rectilinear 

Steiner problem,”
1.Construct an MRST from an MST.
2.Each edge is straight or L-shaped.
3.Maximize overlaps by dynamic programming.

 About 8% smaller than Cost(MST).
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Iterated 1-Steiner Heuristic for MRST
 Kahng & Robins, “A new class of Steiner tree heuristics with good 

performance: the iterated 1-Steiner approach,” ICCAD-90. 

Algorithm: Iterated_1-Steiner(P)
P: set of n points.
1 begin
2 S  ;

/* H(P  S): set of Hanan points */ 
/* MST(A, B) = Cost(MST(A)) - Cost(MST(A  B)) */ 

3 while (Cand  {x  H(P  S)|  MST(P  S, {x}) > 0 }   ) do
4     Find x  C and which maximizes   MST(P  S), {x}); 
5     S  S  {x}; 
6     Remove points in S which have degree  2 in MST(P  S); 
7 return MST(P  S); 
8 end
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Channel Routing

 In earlier process technologies, channel routing 
was pervasively used since most wires were 
routed in the free space (i.e., routing channel) 
between a pair of logic blocks (cell rows)
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Routing Region Decomposition

There are often various ways to 
decompose a routing region.

The order of routing regions significantly 
affects the channel-routing process. 
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Routing Models

Grid-based model:
 A grid is super-imposed on the routing region.
 Wires follow paths along the grid lines.
 Pitch: distance between two gridded lines

Gridless model:
 Any model that does not follow this “gridded” approach.
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Models for Multi-Layer Routing

Unreserved layer model: Any net segment is 
allowed to be placed in any layer.

Reserved layer model: Certain type of 
segments are restricted to particular layer(s).
 Two-layer: HV (Horizontal-Vertical), VH
 Three-layer: HVH, VHV
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Terminology for Channel Routing

 Local density at 
column i, d(i): total 
# of nets that 
crosses column i.

 Channel density:
maximum local 
density
 # of horizontal 

tracks required 
channel density.
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Channel Routing Problem
 Assignments of horizontal segments of nets to tracks.
 Assignments of vertical segments to connect the following:

 horizontal segments of the same net in different tracks, and
 terminals of the net to horizontal segments of the net.

 Horizontal and vertical constraints must not be violated
 Horizontal constraints between two nets: the horizontal span 

of two nets overlaps each other.
 Vertical constraints between two nets: there exists a column 

such that the terminal on top of the column belongs to one net 
and the terminal on bottom of the column belongs to another 
net.

 Objective: Channel height is minimized (i.e., channel area 
is minimized).
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Horizontal Constraint Graph (HCG)
 HCG G = (V, E) is undirected graph where

 V = { vi | vi represents a net ni}
 E = {(vi, vj)| a horizontal constraint exists between ni

and nj}.

 For graph G: vertices  nets; edge (i, j)  net i overlaps 
net j.
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Vertical Constraint Graph (VCG)

 VCG G = (V, E) is directed graph where
 V = { vi | vi represents a net ni}
 E = {(vi, vj)| a vertical constraint exists between 

ni and nj}.
 For graph G: vertices  nets; edge i j  net i

must be above net j.

130

2-Layer Channel Routing: 
Basic Left-Edge Algorithm

 Hashimoto & Stevens, “Wire routing by optimizing channel 
assignment within large apertures,” DAC-71.

 No vertical constraint.
 HV-layer model is used.
 Doglegs are not allowed.
 Treat each net as an interval.
 Intervals are sorted according to their left-end x-

coordinates.
 Intervals (nets) are routed one-by-one according to the 

order.
 For a net, tracks are scanned from top to bottom, and the 

first track that can accommodate the net is assigned to the 
net.

 Optimality: produces a routing solution with the minimum 
# of tracks (if no vertical constraint).
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Basic Left-Edge Algorithm
Algorithm: Basic_Left-Edge(U, track[j])
U: set of unassigned intervals (nets) I1, …, In;
Ij=[sj, ej]: interval j with left-end x-coordinate sj and right-end ej;
track[j]: track to which net j is assigned.

1 begin
2 U  {I1, I2 , …, In};
3 t  0;
4 while (U   ) do
5     t  t + 1; 
6     watermark  0; 
7     while (there is an Ij  U s.t. sj > watermark) do
8        Pick the interval Ij  U with sj > watermark,

nearest watermark; 
9        track[j]  t; 
10     watermark  ej; 
11     U  U - {Ij}; 
12 end
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Basic Left-Edge Example
 U = {I1, I2, …, I6}; I1 = [1, 3], I2 = [2, 6], I3 = [4, 8], I4 = [5, 

10], I5 = [7, 11], I6 = [9, 12].
 t =1:

 Route I1: watermark = 3;
 Route I3 : watermark = 8;
 Route I6: watermark = 12;

 t = 2:
 Route I2 : watermark = 6;
 Route I5 : watermark = 11;

 t = 3: Route I4
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Basic Left-Edge Algorithm

 If there is no vertical 
constraint, the basic 
left-edge algorithm is 
optimal.

 If there is any vertical 
constraint, the 
algorithm no longer 
guarantees optimal 
solution.
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Constrained Left-Edge Algorithm
Algorithm: Constrained_Left-Edge(U, track[j])
U: set of unassigned intervals (nets) I1, …, In;
Ij=[sj, ej]: interval j with left-end x-coordinate sj and right-end ej;
track[j]: track to which net j is assigned.

1 begin
2 U  { I1, I2, …, In};
3 t  0;
4 while (U  ) do
5     t  t + 1; 
6     watermark  0; 
7      while (there is an unconstrained Ij  U s.t. sj > watermark) do
8     Pick the interval Ij  U that is unconstrained, 

with sj > watermark, nearest watermark; 
9        track[j]   t; 
10      watermark  ej; 
11      U  U - {Ij}; 
12 end
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Constrained Left-Edge Example

 I1 = [1, 3], I2 = [1, 5], I3 = [6, 8], I4 = [10, 11], I5= [2, 
6], I6 = [7, 9].

 Track 1: Route I1 (cannot route I3); Route I6; Route I4.
 Track 2: Route I2; cannot route I3.
 Track 3: Route I5.
 Track 4: Route I3.
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Dogleg Channel Router
 Deutch, “A dogleg channel router,” 13rd DAC, 1976.
 Drawback of Left-Edge: cannot handle the cases with 

constraint cycles.

 Drawback of Left-Edge: the entire net is on a single track.
 Doglegs are used to place parts of a net on different tracks to 

minimize channel height.
 Might incur penalty for additional vias.
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Dogleg Channel Router
 Each multi-pin net is broken into a set of 2-pin nets.
 Modified Left-Edge Algorithm is applied to each subnet.
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Dogleg Channel Routing Example
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Modern Routing Considerations

 Signal/power Integrity
 Capacitive crosstalk 
 Inductive crosstalk
 IR drop

Manufacturability
 Process variation
 Optical proximity correction (OPC)
 Chemical mechanical polishing (CMP)
 Phase-Shift Mask (PSM)

 Reliability
 Double via insertion
 Process antenna effect
 Electromigration (EM)
 Electrostatic discharge (ESD)
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Layout Compaction

Course contents
Design rules
Symbolic layout
Constraint-graph compaction
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Design Rules
 Design rules: restrictions 

on the mask patterns to 
increase the probability of 
successful fabrication. 

 Patterns and design rules 
are often expressed in 
rules. 

 Most common design 
rules:
 minimum-width rules 

(valid for a mask pattern 
of a specific layer): (a).

 minimum-separation rules 
(between mask patterns of 
the same layer or different 
layers): (b), (c), (d).

 minimum-overlap rules 
(mask patterns in different 
layers): (e).
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CMOS Inverter Layout Example

p/n diffusion
polysilicon
contact cut
metal

Symbolic layout
Geometric layout
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Symbolic Layout
 Geometric (mask) layout: coordinates of the layout 

patterns (rectangles) are absolute (or in multiples of ).
 Symbolic (topological) layout: only relations between layout 

elements (below, left to, etc.) are known.
 Symbols are used to represent elements located in several 

layers, e.g. transistors, contact cuts.
 The length, width or layer of a wire or other layout element 

might be left unspecified.
 Mask layers not directly related to the functionality of the 

circuit do not need to be specified, e.g. n-well, p-well.
 The symbolic layout can work with a technology file that 

contains all design rule information for the target 
technology to produce the geometric layout.



145

Compaction and its Applications

 A compaction program or compactor generates 
layout at the mask level. It attempts to make the 
layout as dense as possible.

 Applications of compaction:
 Area minimization: remove redundant space in 

layout at the mask level.
 Layout compilation: generate mask-level layout 

from symbolic layout.
 Redesign: automatically remove design-rule 

violations.
 Rescaling: convert mask-level layout from one 

technology to another.
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Aspects of Compaction

 Dimension:
1-dimensional (1D) compaction: layout 

elements only are moved or shrunk in one 
dimension (x or y direction).
Is often performed first in the x-dimension and then 

in the y-dimension (or vice versa).
2-dimensional (2D) compaction: layout 

elements are moved and shrunk 
simultaneously in two dimensions.

 Complexity:
1D compaction can be done in polynomial 

time.
2D compaction is NP-hard.
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1D Compaction: X Followed By Y

 Each square is 2  * 2 , minimum separation is 
1 .

 Initially, the layout is 11  * 11 .
 After compacting along the x direction, then the y

direction, we have the layout size of 8  * 11 .
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1D Compaction: Y Followed By X

 Each square is 2  * 2 , minimum separation is 
1 .

 Initially, the layout is 11  * 11 .
 After compacting along the y direction, then the x

direction, we have the layout size of 11  * 8 .
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2D Compaction
 Each square is 2  * 2 , minimum separation is 1 .
 Initially, the layout is 11  * 11 .
 After 2D compaction, the layout size is only 8  * 8 .

 Since 2D compaction is NP-complete, most compactors are 
based on repeated 1D compaction.
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Inequalities for Distance Constraints

Minimum-distance 
design rules can be 
expressed as 
inequalities.

xj – xi  dij.

 For example, if the 
minimum width is a
and the minimum 
separation is b, then 

x2 – x1  a
x3 – x2  b
x3 – x6  b
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The Constraint Graph
 The inequalities can be used to construct a constraint graph 

G(V, E):
 There is a vertex vi for each variable xi.
 For each inequality xj – xi  dij there is an edge (vi, vj) with 

weight dij .
 There is an extra source vertex, v0; it is located at x = 0 ; all 

other vertices are at its right.
 If all the inequalities express minimum-distance 

constraints, the graph is acyclic (DAG). 
 The longest path in a constraint graph determines the 

layout dimension.

constraint graph
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Maximum-Distance Constraints
 Sometimes the distance of layout elements is bounded by a 

maximum, e.g., when the user wants a maximum wire 
width, maintains a wire connecting to a via, etc.
 A maximum distance constraint gives an inequality of the 

form: xj – xi  cij or xi – xj  -cij
 Consequence for the constraint graph: backward edge

 (vj, vi) with weight dji = -cij; the graph is not acyclic anymore.
 The longest path in a constraint graph determines the 

layout dimension.

d
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Longest-Paths in Cyclic Graphs
 Constraint-graph compaction with maximum-distance 

constraints requires solving the longest-path problem in 
cyclic graphs.

 Two cases are distinguished:
 There are positive cycles: No bounded solution for 

longest paths. (The inequality constraints are 
conflicting.) We shall detect the cycles.

 All cycles are negative: Polynomial-time algorithms 
exist.
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Longest and Shortest Paths

 Longest paths become shortest paths and vice 
versa when edge weights are multiplied by –1.

 Situation in DAGs: both the longest and shortest 
path problems can be solved in linear time.

 Situation in cyclic directed graphs:
 All weights are positive: shortest-path problem in P 

(Dijkstra), no feasible solution for the longest-path 
problem.

 All weights are negative: longest-path problem in P 
(Dijkstra), no feasible solution for the shortest-path 
problem.

 No positive cycles: longest-path problem is in P.
 No negative cycles: shortest-path problem is in P.
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Remarks on Constraint-Graph 
Compaction

 Noncritical layout elements: Every element outside the 
critical paths has freedom on its best position => may use 
this freedom to optimize some cost function.

 Automatic jog insertion: The quality of the layout can 
further be improved by automatic jog insertion.

 Hierarchy: A method to reduce complexity is hierarchical 
compaction, e.g., consider cells only.
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Constraint Generation
 The set of constraints should be irredundant and 

generated efficiently.
 An edge (vi, vj) is redundant if edges (vi, vk) and (vk, vj) 

exist and w((vi, vj))  w((vi, vk)) + w((vk, vj)).
 The minimum-distance constraints for (A, B) and (B, C) 

make that for (A, C) redundant.

 Doenhardt and Lengauer have proposed a method for 
irredundant constraint generation with complexity O(n log 
n).


