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Physical Design
 Physical design converts a circuit description into a geometric 

description.
 The description is used to manufacture a chip.
 Physical design cycle:

1. Logic partitioning
2. Floorplanning and placement
3. Routing
4. Compaction

 Others: circuit extraction, timing verification and design rule 
checking

44

Physical Design Flow



55

Outline

Partitioning

Floorplanning

Placement

Routing

Compaction
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Circuit Partitioning

 Course contents:
 Kernighang-Lin partitioning algorithm 
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Circuit Partitioning
 Objective: Partition a circuit into parts such that every 

component is within a prescribed range and the # of 
connections among the components is minimized.
 More constraints are possible for some applications.

 Cutset? Cut size? Size of a component?
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Problem Definition: Partitioning
 k-way partitioning: Given a graph G(V, E), where each 

vertex v  V has a size s(v) and each edge e  E has a 
weight w(e), the problem is to divide the set V into k disjoint 
subsets V1, V2, …, Vk, such that an objective function is 
optimized, subject to certain constraints.

 Bounded size constraint: The size of the i-th subset is 
bounded by Bi (i.e.,                       ).
 Is the partition balanced?

 Min-cut cost between two subsets:
Minimize                         ,  where p(u) is the partition # of 
node u.

 The 2-way, balanced partitioning problem is NP-complete, 
even in its simple form with identical vertex sizes and unit 
edge weights.
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Kernighan-Lin Algorithm
 Kernighan and Lin, “An efficient heuristic procedure for 

partitioning graphs,” The Bell System Technical Journal, vol. 
49, no. 2, Feb. 1970.

 An iterative, 2-way, balanced partitioning (bi-sectioning) 
heuristic.

 Till the cut size keeps decreasing
 Vertex pairs which give the largest decrease or the 

smallest increase in cut size are exchanged.
 These vertices are then locked (and thus are prohibited 

from participating in any further exchanges).
 This process continues until all the vertices are locked.
 Find the set with the largest partial sum for swapping.
 Unlock all vertices.

1010

K-L Algorithm: A Simple Example
 Each edge has a unit weight.

 Questions: How to compute cost reduction? What pairs to 
be swapped?
 Consider the change of internal & external connections.
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Properties
 Two sets A and B such that |A| = n = |B| and A  B = .
 External cost of a  A: Ea =         cav.
 Internal cost of a  A: Ia =         cav.
 D-value of a vertex a: Da = Ea - Ia (cost reduction for moving a).
 Cost reduction (gain) for swapping a and b: gab = Da + Db - 2cab.
 If a  A and b  B are interchanged, then the new D-values, D’, 

are given by

v B
v A
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A Weighted Example

 Iteration 1
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A Weighted Example (cont’d)
 Iteration 1:

 gxy = Dx + Dy - 2cxy.

 Swap b and f. 

1414

A Weighted Example (cont’d)

 D’x = Dx + 2 cxp - 2 cxq,  x  A – {p} (swap p and q, p  A, q  B)

 gxy = D’x + D’y - 2cxy.

 Swap c and e. 
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A Weighted Example (cont’d)

 D’’x = D’x + 2 cxp - 2 cxq,  x  A – {p}

 gxy = D’’x + D’’y - 2cxy.

 Note that this step is redundant

 Summary:       

 Largest partial sum                              (k = 1)  Swap b and f.
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A Weighted Example (cont’d)

 Iteration 2: Repeat what we did at Iteration 1 
(Initial cost  = 22-4 =18).

 Summary:       

 Largest partial sum =                              (k = 3)  Stop!
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Kernighan-Lin Algorithm
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Time Complexity

Line 4: Initial computation of D: O(n2)
Line 5: The for-loop: O(n)
The body of the loop: O(n2).
Lines 6--7: Step i takes (n – i + 1)2 time.

Lines 4--11: Each pass of the repeat loop: 
O(n3).

Suppose the repeat loop terminates after r
passes.

The total running time: O(rn3).
Polynomial-time algorithm?
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Extensions of K-L Algorithm
 Unequal sized subsets (assume n1 < n2)

1. Partition:  |A| = n1 and |B| = n2.
2. Add n2 - n1 dummy vertices to set A. Dummy vertices have no 

connections to the original graph.
3. Apply the Kernighan-Lin algorithm.
4. Remove all dummy vertices.

 Unequal sized “vertices”
1. Assume that the smallest “vertex'' has unit size.
2. Replace each vertex of size s with s vertices which are fully 

connected with edges of infinite weight.
3. Apply the Kernighan-Lin algorithm.

 k-way partition
1. Partition the graph into k equal-sized sets.
2. Apply the Kernighan-Lin algorithm for each pair of subsets.
3. Time complexity? Can be reduced by recursive bi-partition.
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Outline

Partitioning

Floorplanning

Placement

Routing

Compaction
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Floorplanning

 Course contents
 Floorplan basics 
 Normalized Polish expression for slicing flooprlans
 B*-trees for non-slicing floorplans

 Reading
 Chapter 10

Pentium 4
PowerPC 604
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Floorplanning
 Partitioning leads to

 Blocks with well-defined areas and shapes (rigid/hard
blocks).

 Blocks with approximate areas and no particular shapes 
(flexible/soft blocks).

 A netlist specifying connections between the blocks.
 Objectives

 Find locations for all blocks.
 Consider shapes of soft block and pin locations of all the blocks.
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Early Layout Decision Example
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Early Layout Decision Methodology
 An integrated circuit is essentially a two-dimensional 

medium; taking this aspect into account in early stages of 
the design helps in creating designs of good quality.

 Floorplanning gives early feedback: thinking of layout at 
early stages may suggest valuable architectural 
modifications; floorplanning also aids in estimating delay 
due to wiring.

 Floorplanning fits very well in a top-down design strategy, 
the step-wise refinement strategy also propagated in 
software design.

 Floorplanning assumes, however, flexibility in layout design, 
the existence of cells that can adapt their shapes and 
terminal locations to the environment.
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Floorplanning Problem

 Inputs to the floorplanning problem:
 A set of blocks, hard or soft.
 Pin locations of hard blocks.
 A netlist.

Objectives: minimize area, reduce wirelength for 
(critical) nets, maximize routability (minimize 
congestion), determine shapes of soft blocks, etc.

2626

Floorplan Design
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Floorplanning Concepts

 Leaf cell 
(block/module): a 
cell at the lowest level 
of the hierarchy; it 
does not contain any 
other cell.

 Composite cell
(block/module): a 
cell that is composed 
of either leaf cells or 
composite cells. The 
entire IC is the 
highest- level 
composite cell.

leaf cell

composite cell
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Slicing Floorplan + Slicing Tree
 A composite cell’s subcells 

are obtained by a 
horizontal or vertical 
bisection of the composite 
cell.

 Slicing floorplans can be 
represented by a slicing 
tree. 

 In a slicing tree, all cells 
(except for the top-level 
cell) have a parent, and all 
composite cells have 
children.

 A slicing floorplan is also 
called a floorplan of order 
2.

H

V

H

H: horizontal cut
V: vertical cut
different from the definitions in the 
textbook!!
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Skewed Slicing Tree
 Rectangular dissection: Subdivision of a given rectangle by a 

finite # of horizontal and vertical line segments into a finite # of 
non-overlapping rectangles.

 Slicing structure: a rectangular dissection that can be obtained 
by repetitively subdividing rectangles horizontally or vertically.

 Slicing tree: A binary tree, where each internal node represents 
a vertical cut line or horizontal cut line, and each leaf a basic 
rectangle.

 Skewed slicing tree: One in which no node and its right child 
are the same.
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Slicing Floorplan Design by 
Simulated Annealing

Related work
Wong & Liu, “A new algorithm for floorplan 

design,” DAC-86.
Considers slicing floorplans.

Wong & Liu, “Floorplan design for rectangular 
and L-shaped modules,” ICCAD'87.
Also considers L-shaped modules.

Wong, Leong, Liu, Simulated Annealing for 
VLSI Design, pp. 31--71, Kluwer Academic 
Publishers, 1988.
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Simulated Annealing
 Kirkpatrick, Gelatt, and Vecchi, “Optimization by simulated 

annealing,” Science, May 1983.
 Greene and Supowit, “Simulated annealing without rejected 

moves,” ICCD-84.
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Simulated Annealing Basics

 Non-zero probability for “up-hill” moves.
 Probability depends on

1.magnitude of the “up-hill” movement
2.total search time

 C = cost(S') - Cost(S)
 T: Control parameter (temperature)
 Annealing schedule: T=T0, T1, T2, …, where Ti = 

ri T0 with r < 1.
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Generic Simulated Annealing Algorithm

1 begin
2 Get an initial solution S; 
3 Get an initial temperature T > 0; 
4 while not yet “frozen” do
5    for 1  i  P do
6         Pick a random neighbor S' of S;
7           cost(S') - cost(S);

/* downhill move */
8         if   0 then S  S'

/* uphill move */
9         if  > 0 then S  S' with probability           ;
10 T  rT;  /* reduce temperature */  
11 return S
12 end

3434

Basic Ingredients for Simulated 
Annealing

 Analogy:

 Basic Ingredients for Simulated Annealing:
 Solution space
 Neighborhood structure
 Cost function
 Annealing schedule
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Solution Representation of Slicing 
Floorplan 
 An expression E = e1 e2… e2n-1, where ei  {1, 2, …, n, H, V}, 1  i 

2n-1, is a Polish expression of length 2n-1 iff
1. every operand j, 1  j  n, appears exactly once in E;
2. (the balloting property) for every subexpression Ei = e1 … ei, 1  i 

2n-1, # operands > # operators.

 Polish expression  Postorder traversal.
 ijH: rectangle i on bottom of j; ijV: rectangle i on the left of j.

3636

Redundant Representations

 Question: How to eliminate ambiguous representation?
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Normalized Polish Expression

 A Polish expression E = e1 e2 … e2n-1 is called  
normalized iff E has no consecutive operators of 
the same type (H or V), i.e. skewed.

 Given a normalized Polish expression, we can 
construct a unique rectangular slicing structure.

3838

Neighborhood Structure
 Chain: HVHVH … or VHVHV …

 Adjacent: 1 and 6 are adjacent operands; 2 and 7 are 
adjacent operands; 5 and V are adjacent operand and 
operator.

 3 types of moves:
 M1 (Operand Swap): Swap two adjacent operands.
 M2 (Chain Invert): Complement some chain (V = H, H = V).
 M3 (Operator/Operand Swap): Swap two adjacent operand 

and operator.
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Effects of Perturbation

 Question: The balloting property holds during the moves?
 M1 and M2 moves are OK.
 Check the M3 moves! Reject “illegal” M3 moves.

 Check M3 moves: Assume that the M3 move swaps the 
operand ei with the operator ei+1, 1  i  k-1. Then, the 
swap will not violate the balloting property iff 2Ni+1 < i.
 Nk: # of operators in the Polish expression E = e1 e2 … ek, 1 

k  2n-1

1 2
3

4
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Cost Function
  = A +  W.

 A: area of the smallest rectangle
 W: overall wiring length
  : user-specified parameter

 W= ijcij dij.
 cij: # of connections between blocks i and j.
 dij: center-to-center distance between basic rectangles i and j.
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Area Computation for Hard Blocks
 Allow rotation

 Wiring cost?
 Center-to-center interconnection length
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Incremental Computation of Cost 
Function

 Each move leads to only a minor modification of 
the Polish expression.

 At most two paths of the slicing tree need to be 
updated for each move.
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Incremental Computation of Cost 
Function (cont'd)
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Annealing Schedule

 Initial solution: 12V3V … nV.

 Ti = ri T0, i = 1, 2, 3, …; r =0.85.
 At each temperature, try kn moves (k = 5-10).
 Terminate the annealing process if
 # of accepted moves < 5%,
 temperature is low enough, or
 run out of time.
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Wong-Liu Algorithm
Input: (P, , r, k)
1 begin
2 E  12V3V4V … nV; /* initial solution */
3 Best  E; T0  ; M  MT  uphill  0; N = kn; 
4 repeat 
5    MT  uphill  reject  0; 
6    repeat 
7       SelectMove(M); 
8       Case M of 
9       M1:  Select two adjacent operands ei and ej; NE  Swap(E, ei, ej);
10     M2:  Select a nonzero length chain C; NE  Complement(E, C);
11     M3:  done  FALSE;
12         while not (done) do
13              Select two adjacent operand ei and operator ei+1;
14              if (ei-1  ei+1)  and (2 Ni+1 < i) then done  TRUE; 
13’ Select two adjacent operator ei and operand ei+1;
14’ if (ei ei+2) then done  TRUE; 
15         NE  Swap(E, ei, ei+1);
16     MT  MT+1; cost  cost(NE) - cost(E);

17     if (cost  0) or (Random <                    )
18      then
19           if (cost > 0) then uphill  uphill + 1;
20           E  NE;
21           if cost(E) < cost(best) then best  E;
22       else reject  reject + 1; 
23    until (uphill > N) or (MT > 2N); 
24    T  rT; /* reduce temperature */
25 until (reject/MT > 0.95) or (T < ) or OutOfTime; 
26 end
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Shape Curve
 Flexible cells imply that cells can have different aspect 

ratios.
 The relation between the width x and the height y is: xy

= A, or y =A/x. The shape function is a hyperbola. 
 Very thin cells are not interesting and often not feasible 

to design. The shape function is a combination of a 
hyperbola and two straight lines. 
 Aspect ratio: r <= y/x <= s.

y = sx

y = rx

legal 
shapesy

xx

y
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Shape Curve (cont’d)

 Leaf cells are built from discrete transistors: it is 
not realistic to assume that the shape function 
follows the hyperbola continuously.

 In an extreme case, a cell is rigid: it can only be 
rotated and mirrored during floorplanning or 
placement. 

The shape function of a 2  4 inset cell.

y

x
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Shape Curve (cont’d)

 In general, a piecewise linear function can be 
used to approximate any shape function.

 The points where the function changes its 
direction, are called the corner (break) points of 
the piecewise linear function.
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Addition for Vertical Abutment

 Composition by vertical abutment  the addition 
of shape functions.

R1

R2

5050

Deriving Shapes of Children

 A choice for the minimal shape of composite cell 
fixes the shapes of the shapes of its children cells.
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Sizing Algorithm for Slicing Floorplans

 The shape functions of all leaf cells are given as 
piecewise linear functions.

 Traverse the slicing tree in order to compute the 
shape functions of all composite cells (bottom-up 
composition).

 Choose the desired shape of the top-level cell; as 
the shape function is piecewise linear, only the 
break points of the function need to be evaluated, 
when looking for the minimal area.

 Propagate the consequences of the choice down 
to the leaf cells (top-down propagation).

 The sizing algorithm runs in polynomial time for 
slicing floorplans
 NP-complete for non-slicing floorplans

5252

Feasible Implementations
 Shape curves correspond to different kinds of constraints 

where the shaded areas are feasible regions.
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Wheel or Spiral Floorplan
 This floorplan is not slicing!
 Wheel is the smallest non-

slicing floorplans.
 Limiting floorplans to those 

that have the slicing 
property is reasonable: it 
certainly facilitates 
floorplanning algorithms.

 Taking the shape of a 
wheel floorplan and its 
mirror image as the basis 
of operators leads to 
hierarchical descriptions of 
order 5.

5454

Order-5 Floorplan Examples

V

V

H
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General Floorplan Representation: 
Polar Graphs

 vertex: channel segment
 edge: cell/block/module

vertical polar graph

horizontal polar graph
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B*-Tree: Compacted Floorplan 
Representation

 Chang et al., “B*-tree: A new representation for non-slicing 
floorplans,” DAC 2000.
 Compact modules to left and bottom
 Construct an ordered binary tree (B*-tree)

 Left child: the lowest, adjacent block on the right (xj = xi+wi)
 Right child: the first block above, with the same x-coordinate (xj = 

xi)

n1

n2 n3

n4

n5

n6

A non-slicing floorplan Compact to left and down B*-tree

1 2

5
3 4

6

1 2

5
3 4

6
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B*-tree Packing
 x-coordinates can be determined by the tree structure

 Left child: the lowest, adjacent block on the right (xj = xi+wi)
 Right child: the first block above, with the same x-coordinate 

(xj = xi)
 Y-coordinates?

 Horizontal contour: Use a doubly linked list to record the 
current maximum y-coordinate for each x-range

 Reduce the complexity of computing a y-coordinate to 
amortized O(1) time

1 2

5
3 4

6

w1 x2 = x1 + w1
(x1, y1)

x3 = x1

n1

n2 n3

n4

n5

n6

x1

x2 = x1 + w1 x3 = x1

x6 = x3x4 = x3 + w3

x5 = x4 + w4
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Contour Data Structure

1 1
2

1
2

3

1
2

3 4

1
2

3 4
5

1
2

3 4
5

6

(0, 0) (0, 0) (0, 0) (9, 0)

(0, 6)

(9, 0)

(0, 0) (9, 0)

(0, 6)
(3, 6)

(0, 0) (9, 0)

(0, 6)
(3, 6)

(6, 8)

(0, 0) (9, 0)

(0, 6)
(3, 6)

(6, 8)

(0, 13)

C = <(0,0), (0,6), 
(9,6), (9,0),
(∞,0)> 

C = <(0,0), (0,6), (9,6), 
(9,8), (15,8), (15,0), 
(∞,0)>

C = <(0,0), (0,12), 
(3,12), (3,6), (9,6), (9,8), 
(15,8), (15,0), (∞,0)>

C = <(0,0), (0,12), 
(3,12), (3,13), (6,13), 
(6,6), (9,6), (9,8), 
(15,8), (15,0), (∞,0)>

C = <(0,0), (0,12), 
(3,12), (3,13), (6,13),
(12,13), (12,8), (15,8), 
(15,0), (∞,0)>

C = <(0,0), (0,15),
(12,15), (12,13), (12,8),
(15,8), (15,0), (∞,0)>
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B*-tree Perturbation

Op1: rotate a macro
Op2: move a node to another place
Op3: swap two nodes

1
2

4
5

6

1
2

4
5

6

1
2

4
5

6

1
2

3 4
5

6

3

3
3

n1

n2 n3

n4

n5

n6

n1

n2 n3

n4

n5

n6

n1

n2 n3

n5

n4

n6

n2

n1 n3

n5

n4

n6

Op1

Op2

Op3
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Simulated Annealing Using B*-tree

 The cost function is 
based on problem 
requirements
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Strengths of B*-tree

 Binary tree based, efficient and easy
 Flexible to deal with various placement constraints by 

augmenting the B*-tree data structure (e.g., preplaced, 
symmetry, alignment, bus position) and rectilinear modules

 Transformation between a tree and its placement takes 
only linear time

 Operate on only one B*-tree (vs. two O-trees)
 Can evaluate area cost incrementally
 Smaller solution space: only O(n! 4n/n1.5) combinations
 Directly corresponds to hierarchical and multilevel 

frameworks for large-scale floorplan designs
 Can be extended to 3D floorplanning & related applications
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Weaknesses of B*-tree

 Representation may 
change after packing

Only a partially 
topological 
representation; less 
flexible than a fully 
topological 
representation
 B*-tree can represent 

only compacted 
placement

1

3

4

2

n1

n3

n4

n2

1

2 3

4

B*-tree??
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Outline

Partitioning

Floorplanning

Placement

Routing

Compaction
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Placement

 Course contents:
 Placement metrics
 Constructive placement: cluster growth, min cut
 Iterative placement: force-directed method, simulated 

annealing

 Reading
 Chapter 11
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Placement
 Placement is the problem of automatically assigning 

correct positions on the chip to predesigned cells, such that 
some cost function is optimized.

 Inputs: A set of fixed cells/modules, a netlist.
 Goal: Find the best position for each cell/module on the 

chip according to appropriate cost functions.
 Considerations: routability/channel density, wirelength, 

cut size, performance, thermal issues, I/O pads.

66

Placement Objectives and Constraints

 What does a placement algorithm try to optimize? 
 total area
 total wire length
 number of horizontal/vertical wire segments crossing a line

 Constraints:
 placement should be routable (no cell overlaps; no density 

overflow).
 timing constraints are met (some wires should always be 

shorter than a given length).
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VLSI Placement: Building Blocks

 Different design styles create different placement 
problems. 
 E.g., building-block, standard-cell, gate-array placement

Building block: The cells to be placed have arbitrary 
shapes.

building block example
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VLSI Placement: Standard Cells
 Standard cells are designed in such a way that power and 

clock connections run horizontally through the cell and 
other I/O leaves the cell from the top or bottom sides.

 The cells are placed in rows.
 Sometimes feedthrough cells are added to ease wiring.

feedthrough
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Consequences of Fabrication Method

 Full-custom fabrication (building block):
 Free selection of aspect ratio (quotient of height and width).
 Height of wiring channels can be adapted to necessity.

 Semi-custom fabrication (gate array, standard cell):
 Placement has to deal with fixed carrier dimensions.
 Placement should be able to deal with fixed channel capacities.

gate array

70

Relation with Routing

Ideally, placement and routing should be 
performed simultaneously as they depend 
on each other’s results. This is, however, 
too complicated.
 P&R: placement and routing 

In practice placement is done prior to 
routing. The placement algorithm 
estimates the wire length of a net using 
some metric.
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Wirelength Estimation
 Semi-perimeter method: Half the perimeter of the bounding 

rectangle that encloses all the pins of the net to be connected.
Most widely used approximation!

 Steiner-tree approximation: Computationally expensive.
 Minimum spanning tree: Good approximation to Steiner trees.
 Squared Euclidean distance: Squares of all pairwise terminal 

distances in a net using a quadratic cost function

 Complete graph: Since #edges in a complete graph is            ,   

wirelength  (i, j)  netdist(i, j).

( 1)

2

n n  
 
 

2

n
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Wirelength Estimation (cont'd)
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Placement Algorithms
 The placement problem is NP-complete
 Popular placement algorithms:

 Constructive algorithms: once the position of a cell is fixed, 
it is not modified anymore.
Cluster growth, min cut, etc.

 Iterative algorithms: intermediate placements are modified 
in an attempt to improve the cost function.
Force-directed method, etc

 Nondeterministic approaches: simulated annealing, genetic 
algorithm, etc.

 Most approaches combine multiple elements:
 Constructive algorithms are used to obtain an initial 

placement.
 The initial placement is followed by an iterative improvement

phase.
 The results can further be improved by simulated annealing.
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Bottom-Up Placement: Clustering

Starts with a single cell and finds more 
cells that share nets with it.
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Placement by Cluster Growth
 Greedy method: Selects unplaced components and places 

them in available slots.
 SELECT: Choose the unplaced component that is most 

strongly connected to all of the placed components (or 
most strongly connected to any single placed 
component).

 PLACE: Place the selected component at a slot such that 
a certain “cost” of the partial placement is minimized.
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Cluster Growth Example
 # of other terminals connected: ca=3, cb=1, cc=1, cd =1, 

ce=4, cf=3, and cg=3  e has the most connectivity.
 Place e in the center, slot 4. a, b, g are connected to e, and        

 Place a next to e (say, slot 3). Continue until all cells are 
placed.

 Further improve the placement by swapping the gates.
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Top-down Placement: Min Cut

 Starts with the whole circuit and ends with small 
circuits.

 Recursive bipartitioning of a circuit (e.g., K&L) 
leads to a min-cut placement.
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Min-Cut Placement
 Breuer, “A class of min-cut placement algorithms,” DAC, 1977.
 Quadrature: suitable for circuits with high density in the 

center.
 Bisection: good for standard-cell placement.
 Slice/Bisection: good for cells with high interconnection on 

the periphery.
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Algorithm for Min-Cut Placement
Algorithm: Min_Cut_Placement(N, n, C)
/* N: the layout surface */
/* n : # of cells to be placed */
/* n0: # of cells in a slot */ 
/* C: the connectivity matrix */ 

1 begin
2 if (n  n0) then PlaceCells(N, n, C)
3 else
4     (N1, N2)  CutSurface(N);
5     (n1, C1), (n2, C2)  Partition(n, C); 
6  Call Min_Cut_Placement(N1, n1, C1); 
7  Call Min_Cut_Placement(N2, n2, C2); 
8 end
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Quadrature Placement Example

 Apply the K-L heuristic to partition + Quadrature 
Placement: Cost C1 = 4, C2L= C2R = 2, etc.
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Min-Cut Placement with Terminal 
Propagation

 Dunlop & Kernighan, “A procedure for placement of 
standard-cell VLSI circuits,” IEEE TCAD, Jan. 1985.

 Drawback of the original min-cut placement: Does not 
consider the positions of terminal pins that enter a region.
 What happens if we swap {1, 3, 6, 9} and {2, 4, 5, 7} 

in the previous example?
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Terminal Propagation
 We should use the fact that s is in L1!

 When not to use p to bias partitioning? Net s has cells in 
many groups?
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Terminal Propagation Example

 Partitioning must be done breadth-first, not 
depth-first.
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General Procedure for Iterative 
Improvement

Algorithm: Iterative_Improvement()

1  begin

2  s  initial_configuration();

3  c  cost(s);
4  while (not stop()) do

5      s’  perturb(s); 

6      c’  cost(s’); 
7      if (accept(c, c’))

8 then s  s’;
9  end
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Placement by the Force-Directed 
Method

 Hanan & Kurtzberg, “Placement techniques,” in Design 
Automation of Digital Systems, Breuer, Ed, 1972.

 Quinn, Jr. & Breuer, “A force directed component placement 
procedure for printed circuit boards,” IEEE Trans. Circuits and 
Systems, June 1979.

 Reduce the placement problem to solving a set of simultaneous 
linear equations to determine equilibrium locations for cells.

 Analogy to Hooke's law: F = kd, F: force, k: spring constant, d: 
distance.

 Goal: Map cells to the layout surface.
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Finding the Zero-Force Target Location
 Cell i connects to several cells j's at distances dij's by wires of weights 

wij's. Total force: Fi = jwijdij
 The zero-force target location (     ,      ) can be determined by equating 

the x- and y-components of the forces to zero:

 In the example,                                                 and       = 1.50.



87

Force-Directed Placement

Can be constructive or iterative:
Start with an initial placement.
Select a “most profitable” cell  p (e.g., 

maximum F, critical cells) and place it in its 
zero-force location.

 “Fix” placement if the zero-location has been 
occupied by another cell q.
Popular options to fix:

 Ripple move: place p in the occupied location, 
compute a new zero-force location for q, …

 Chain move: place p in the occupied location, move q
to an adjacent location, …

 Move p to a free location close to q.
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Force-Directed Placement
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Placement by Simulated Annealing
 Sechen and Sangiovanni-Vincentelli, “The TimberWolf 

placement and routing package,” IEEE J. Solid-State 
Circuits, Feb. 1985; “TimberWolf 3.2: A new standard cell 
placement and global routing package,” DAC-86.

 TimberWolf: Stage 1
 Modules are moved between different rows as well as 

within the same row.
 Module overlaps are allowed.
 When the temperature is reached below a certain value, 

stage 2 begins.
 TimberWolf: Stage 2

 Remove overlaps.
 Annealing process continues, but only interchanges 

adjacent modules within the same row.

90

Solution Space & Neighborhood 
Structure

 Solution Space: All possible arrangements of 
the modules into rows, possibly with overlaps.

Neighborhood Structure: 3 types of moves
 M1: Displace a module to a new location.
 M2: Interchange two modules.
 M3: Change the orientation of a module.
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Neighborhood Structure
 TimberWolf first tries to select a move between M1 and M2: 

Prob(M1) = 0.8, Prob(M2) = 0.2.
 If a move of type M1 is chosen and it is rejected,  then a move of 

type M3 for the same module will be chosen with probability 0.1.
 Restrictions: (1) what row for a module can be displaced? (2) 

what pairs of modules can be interchanged?
 Key: Range Limiter

 At the beginning, (WT, HT) is big enough to contain the whole chip.
 Window size shrinks as temperature decreases. Height & width 

log(T).
 Stage 2 begins when window size is so small that no inter-row module 

interchanges are possible.
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Cost Function
 Cost function: C = C1 + C2 + C3.
 C1: total estimated wirelength.

 C1 =  i  Nets(i wi + i hi)
 i, i are horizontal and vertical weights, respectively. (i=1, 

i =1  half perimeter of the bounding box of Net i.)
 Critical nets: Increase both i and i .
 If vertical wirings are “cheaper” than horizontal wirings, use 

smaller vertical weights: i < i.
 C2: penalty function for module overlaps.

 C2 =   i  j O2
ij, : penalty weight.

 Oij: amount of overlaps in the x-dimension between modules i
and j.

 C3: penalty function that controls the row length.
 C2 =  r  Rows|Lr - Dr|,  : penalty weight.
 Dr: desired row length.
 Lr: sum of the widths of the modules in row r.
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Annealing Schedule

Tk = rk Tk-1, k = 1, 2, 3, …
rk increases from 0.8 to max value 0.94 

and then decreases to 0.8.
At each temperature, a total # of nP

attempts is made.
n: # of modules; P: user specified 

constant.
Termination: T < 0.1.
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Outline

 Partitioning

 Floorplanning

 Placement

 Routing
 Global rounting
 Detailed routing

 Compaction



95Filling

Routing

Course contents:
Global routing
Detail routing

Reading
Chapter 12

96

Routing
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Routing Constraints
 100% routing completion + area minimization, under a set 

of constraints:
 Placement constraint: usually based on fixed placement
 Number of routing layers
 Geometrical constraints: must satisfy design rules
 Timing constraints (performance-driven routing): must satisfy 

delay constraints
 Crosstalk?
 Process variations?
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Classification of Routing
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Maze Router: Lee Algorithm

 Lee, “An algorithm for path connection and its 
application,” IRE Trans. Electronic Computer, EC-
10, 1961.

 Discussion mainly on single-layer routing
 Strengths
 Guarantee to find connection between 2 terminals 

if it exists.
 Guarantee minimum path.

Weaknesses
 Requires large memory for dense layout.
 Slow.

 Applications: global routing, detailed routing
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Filling

Lee Algorithm
 Find a path from S to T by “wave propagation”.

 Time & space complexity for an M  N grid: O(MN) (huge!)
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Reducing Memory Requirement
 Akers's Observations (1967)

 Adjacent labels for k are either k-1 or k+1.
 Want a labeling scheme such that each label has its preceding label 

different from its succeeding label.
 Way 1: coding sequence 1, 2, 3, 1, 2, 3, …; states: 1, 2, 3, empty, 

blocked (3 bits required)
 Way 2: coding sequence 1, 1, 2, 2, 1, 1, 2, 2, …; states: 1, 2, empty, 

blocked (need only 2 bits)
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Reducing Running Time
 Starting point selection: Choose the point farthest from the 

center of the grid as the starting point.
 Double fan-out: Propagate waves from both the source and 

the target cells.
 Framing: Search inside a rectangle area 10--20% larger 

than the bounding box containing the source and target.
 Need to enlarge the rectangle and redo if the search fails.
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Hadlock's Algorithm
 Hadlock, “A shortest path algorithm for grid graphs,”

Networks, 1977.
 Uses detour number (instead of labeling wavefront in 

Lee's router)
 Detour number, d(P): # of grid cells directed away 

from its target on path P.
 MD(S, T): the Manhattan distance between S and T.
 Path length of P, l(P): l(P) = MD(S, T) + 2 d(P).
 MD(S, T) fixed!  Minimize d(P) to find the shortest 

path.
 For any cell labeled i, label its adjacent unblocked cells 

away from T i+1; label i otherwise.
 Time and space complexities: O(MN), but 

substantially reduces the # of searched cells.
 Finds the shortest path between S and T.
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Hadlock's Algorithm (cont'd)
 d(P): # of grid cells directed away from its target on path P.
 MD(S, T): the Manhattan distance between S and T.
 Path length of P, l(P): l(P) = MD(S, T) + 2d(P).
 MD(S, T) fixed!  Minimize d(P) to find the shortest path.
 For any cell labeled i, label its adjacent unblocked cells away 

from T i+1; label i otherwise.
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Soukup's Algorithm
 Soukup, “Fast maze router,” DAC-78.
 Combined breadth-first and depth-first search.

 Depth-first (line) search is first directed toward target T until 
an obstacle or T is reached.

 Breadth-first (Lee-type) search is used to “bubble” around an 
obstacle if an obstacle is reached.

 Time and space complexities: O(MN), but 10~50 times faster 
than Lee's algorithm.

 Find a path between S and T, but may not be the shortest!
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Mikami-Tabuchi's Algorithm
 Mikami & Tabuchi, “A computer program for optimal routing 

of printed circuit connectors,” IFIP, H47, 1968.
 Every grid point is an escape point.
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Hightower's Algorithm
 Hightower, “A solution to line-routing problem on the 

continuous plane,” DAC-69.
 A single escape point on each line segment.
 If a line parallels to the blocked cells, the escape point is 

placed just past the endpoint of the segment.
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Global Routing Graph

Each cell is represented by a vertex.
Two vertices are joined by an edge if the 

corresponding cells are adjacent to each 
other.
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Global-Routing Problem

 Given a netlist N={N1, N2, …, Nn }, a routing 
graph G=(V,E), find a Steiner tree Ti for each net 
Ni, 1  i  n, such that U(ej)  c(ej),  ej  E and 
i L(Ti) is minimized, where
 c(ej): capacity of edge ej

 xij=1 if ej is in Ti; xij=0 otherwise
 U(ej) = i xij:  of wires that pass through the channel 

corresponding to edge ej

 L(Ti): total wirelength of Steiner tree Ti

 For high performance, the maximum wirelength 
maxi L(Ti) is minimized (or the longest path 
between two points in Ti is minimized).
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Classification of Global-Routing 
Algorithms

 Sequential approach:
 Select a net order and route nets sequentially in the 

order
 Earlier routed nets might block the routing of 

subsequent nets
 Routing quality heavily depends on net ordering
 Strategy: Heuristic net ordering + rip-up and rerouting

 Concurrent approach:
 All nets are considered simultaneously

E.g., 0-1 integer linear programming (0-1 ILP)
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Net Ordering
 Net ordering greatly affects routing solutions.
 In the example, we should route net b before net a.
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Net Ordering (cont’d)

Order the nets in the ascending order of 
the # of pins within their bounding boxes.

Order the nets in the ascending 
(descending) order of their lengths if 
routability (timing) is the most critical 
metric.

Order the nets based on their timing 
criticality.



113

Rip-Up and Re-routing

 Rip-up and re-routing is required if a global or 
detailed router fails in routing all nets.

 Approaches: the manual approach? the automatic 
procedure?

 Two steps in rip-up and re-routing
1.Identify bottleneck regions, rip off some already routed 

nets.
2.Route the blocked connections, and re-route the ripped-

up connections.

 Repeat the above steps until all connections are 
routed or a time limit is exceeded.
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Top-down Hierarchical Global Routing

 Recursively divides routing regions into 
successively smaller super cells, and nets at 
each hierarchical level are routed sequentially or 
concurrently.
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Bottom-up Hierarchical Global Routing

 At each hierarchical level, routing is restrained 
within each super cell individually. 

When the routing at the current level is finished, 
every four super cells are merged to form a new 
larger super cell at the next higher level.
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Hybrid Hierarchical Global Routing

 (1) neighboring propagation, (2) preference 
partitioning, and (3) bounded routing
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The Routing-Tree Problem
 Problem: Given a set of pins of a net, interconnect the pins by a 

“routing tree.”

 Minimum Rectilinear Steiner Tree (MRST) Problem: Given n
points in the plane, find a minimum-length tree of rectilinear 
edges which connects the points.

 MRST(P) = MST(P  S), where P and S are the sets of original 
points and Steiner points, respectively.
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Theoretical Results for the MRST 
Problem

 Hanan’s Thm: There exists an MRST with all Steiner points (set 
S) chosen from the intersection points of horizontal and vertical
lines drawn points of P.
 Hanan, “On Steiner's problem with rectilinear distance,” SIAM 

J. Applied Math., 1966.
 Hwang’s Theorem: For any point set P, 

 Hwang, “On Steiner minimal tree with rectilinear distance,”
SIAM J. Applied Math., 1976.

 Best existing approximation algorithm: Performance bound 61/48 
by Foessmeier et al.
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Coping with the MRST Problem
 Ho, Vijayan, Wong, “New algorithms for the rectilinear 

Steiner problem,”
1.Construct an MRST from an MST.
2.Each edge is straight or L-shaped.
3.Maximize overlaps by dynamic programming.

 About 8% smaller than Cost(MST).
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Iterated 1-Steiner Heuristic for MRST
 Kahng & Robins, “A new class of Steiner tree heuristics with good 

performance: the iterated 1-Steiner approach,” ICCAD-90. 

Algorithm: Iterated_1-Steiner(P)
P: set of n points.
1 begin
2 S  ;

/* H(P  S): set of Hanan points */ 
/* MST(A, B) = Cost(MST(A)) - Cost(MST(A  B)) */ 

3 while (Cand  {x  H(P  S)|  MST(P  S, {x}) > 0 }   ) do
4     Find x  C and which maximizes   MST(P  S), {x}); 
5     S  S  {x}; 
6     Remove points in S which have degree  2 in MST(P  S); 
7 return MST(P  S); 
8 end
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Outline

 Partitioning

 Floorplanning

 Placement

 Routing
 Global rounting
 Detailed routing

 Compaction
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Channel Routing

 In earlier process technologies, channel routing 
was pervasively used since most wires were 
routed in the free space (i.e., routing channel) 
between a pair of logic blocks (cell rows)
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Routing Region Decomposition

There are often various ways to 
decompose a routing region.

The order of routing regions significantly 
affects the channel-routing process. 
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Routing Models

Grid-based model:
 A grid is super-imposed on the routing region.
 Wires follow paths along the grid lines.
 Pitch: distance between two gridded lines

Gridless model:
 Any model that does not follow this “gridded” approach.
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Models for Multi-Layer Routing

Unreserved layer model: Any net segment is 
allowed to be placed in any layer.

Reserved layer model: Certain type of 
segments are restricted to particular layer(s).
 Two-layer: HV (Horizontal-Vertical), VH
 Three-layer: HVH, VHV
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Terminology for Channel Routing

 Local density at 
column i, d(i): total 
# of nets that 
crosses column i.

 Channel density:
maximum local 
density
 # of horizontal 

tracks required 
channel density.
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Channel Routing Problem
 Assignments of horizontal segments of nets to tracks.
 Assignments of vertical segments to connect the following:

 horizontal segments of the same net in different tracks, and
 terminals of the net to horizontal segments of the net.

 Horizontal and vertical constraints must not be violated
 Horizontal constraints between two nets: the horizontal span 

of two nets overlaps each other.
 Vertical constraints between two nets: there exists a column 

such that the terminal on top of the column belongs to one net 
and the terminal on bottom of the column belongs to another 
net.

 Objective: Channel height is minimized (i.e., channel area 
is minimized).
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Horizontal Constraint Graph (HCG)
 HCG G = (V, E) is undirected graph where

 V = { vi | vi represents a net ni}
 E = {(vi, vj)| a horizontal constraint exists between ni

and nj}.

 For graph G: vertices  nets; edge (i, j)  net i overlaps 
net j.



129

Vertical Constraint Graph (VCG)

 VCG G = (V, E) is directed graph where
 V = { vi | vi represents a net ni}
 E = {(vi, vj)| a vertical constraint exists between 

ni and nj}.
 For graph G: vertices  nets; edge i j  net i

must be above net j.
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2-Layer Channel Routing: 
Basic Left-Edge Algorithm

 Hashimoto & Stevens, “Wire routing by optimizing channel 
assignment within large apertures,” DAC-71.

 No vertical constraint.
 HV-layer model is used.
 Doglegs are not allowed.
 Treat each net as an interval.
 Intervals are sorted according to their left-end x-

coordinates.
 Intervals (nets) are routed one-by-one according to the 

order.
 For a net, tracks are scanned from top to bottom, and the 

first track that can accommodate the net is assigned to the 
net.

 Optimality: produces a routing solution with the minimum 
# of tracks (if no vertical constraint).
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Basic Left-Edge Algorithm
Algorithm: Basic_Left-Edge(U, track[j])
U: set of unassigned intervals (nets) I1, …, In;
Ij=[sj, ej]: interval j with left-end x-coordinate sj and right-end ej;
track[j]: track to which net j is assigned.

1 begin
2 U  {I1, I2 , …, In};
3 t  0;
4 while (U   ) do
5     t  t + 1; 
6     watermark  0; 
7     while (there is an Ij  U s.t. sj > watermark) do
8        Pick the interval Ij  U with sj > watermark,

nearest watermark; 
9        track[j]  t; 
10     watermark  ej; 
11     U  U - {Ij}; 
12 end
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Basic Left-Edge Example
 U = {I1, I2, …, I6}; I1 = [1, 3], I2 = [2, 6], I3 = [4, 8], I4 = [5, 

10], I5 = [7, 11], I6 = [9, 12].
 t =1:

 Route I1: watermark = 3;
 Route I3 : watermark = 8;
 Route I6: watermark = 12;

 t = 2:
 Route I2 : watermark = 6;
 Route I5 : watermark = 11;

 t = 3: Route I4
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Basic Left-Edge Algorithm

 If there is no vertical 
constraint, the basic 
left-edge algorithm is 
optimal.

 If there is any vertical 
constraint, the 
algorithm no longer 
guarantees optimal 
solution.
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Constrained Left-Edge Algorithm
Algorithm: Constrained_Left-Edge(U, track[j])
U: set of unassigned intervals (nets) I1, …, In;
Ij=[sj, ej]: interval j with left-end x-coordinate sj and right-end ej;
track[j]: track to which net j is assigned.

1 begin
2 U  { I1, I2, …, In};
3 t  0;
4 while (U  ) do
5     t  t + 1; 
6     watermark  0; 
7      while (there is an unconstrained Ij  U s.t. sj > watermark) do
8     Pick the interval Ij  U that is unconstrained, 

with sj > watermark, nearest watermark; 
9        track[j]   t; 
10      watermark  ej; 
11      U  U - {Ij}; 
12 end
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Constrained Left-Edge Example

 I1 = [1, 3], I2 = [1, 5], I3 = [6, 8], I4 = [10, 11], I5= [2, 
6], I6 = [7, 9].

 Track 1: Route I1 (cannot route I3); Route I6; Route I4.
 Track 2: Route I2; cannot route I3.
 Track 3: Route I5.
 Track 4: Route I3.

136

Dogleg Channel Router
 Deutch, “A dogleg channel router,” 13rd DAC, 1976.
 Drawback of Left-Edge: cannot handle the cases with 

constraint cycles.

 Drawback of Left-Edge: the entire net is on a single track.
 Doglegs are used to place parts of a net on different tracks to 

minimize channel height.
 Might incur penalty for additional vias.
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Dogleg Channel Router
 Each multi-pin net is broken into a set of 2-pin nets.
 Modified Left-Edge Algorithm is applied to each subnet.
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Dogleg Channel Routing Example
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Modern Routing Considerations

 Signal/power Integrity
 Capacitive crosstalk 
 Inductive crosstalk
 IR drop

Manufacturability
 Process variation
 Optical proximity correction (OPC)
 Chemical mechanical polishing (CMP)
 Phase-Shift Mask (PSM)

 Reliability
 Double via insertion
 Process antenna effect
 Electromigration (EM)
 Electrostatic discharge (ESD)
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Outline

Partitioning

Floorplanning

Placement

Routing

Compaction



141

Layout Compaction

Course contents
Design rules
Symbolic layout
Constraint-graph compaction
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Design Rules
 Design rules: restrictions 

on the mask patterns to 
increase the probability of 
successful fabrication. 

 Patterns and design rules 
are often expressed in 
rules. 

 Most common design 
rules:
 minimum-width rules 

(valid for a mask pattern 
of a specific layer): (a).

 minimum-separation rules 
(between mask patterns of 
the same layer or different 
layers): (b), (c), (d).

 minimum-overlap rules 
(mask patterns in different 
layers): (e).
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CMOS Inverter Layout Example

p/n diffusion
polysilicon
contact cut
metal

Symbolic layout
Geometric layout
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Symbolic Layout
 Geometric (mask) layout: coordinates of the layout 

patterns (rectangles) are absolute (or in multiples of ).
 Symbolic (topological) layout: only relations between layout 

elements (below, left to, etc.) are known.
 Symbols are used to represent elements located in several 

layers, e.g. transistors, contact cuts.
 The length, width or layer of a wire or other layout element 

might be left unspecified.
 Mask layers not directly related to the functionality of the 

circuit do not need to be specified, e.g. n-well, p-well.
 The symbolic layout can work with a technology file that 

contains all design rule information for the target 
technology to produce the geometric layout.
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Compaction and its Applications

 A compaction program or compactor generates 
layout at the mask level. It attempts to make the 
layout as dense as possible.

 Applications of compaction:
 Area minimization: remove redundant space in 

layout at the mask level.
 Layout compilation: generate mask-level layout 

from symbolic layout.
 Redesign: automatically remove design-rule 

violations.
 Rescaling: convert mask-level layout from one 

technology to another.
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Aspects of Compaction

 Dimension:
1-dimensional (1D) compaction: layout 

elements only are moved or shrunk in one 
dimension (x or y direction).
Is often performed first in the x-dimension and then 

in the y-dimension (or vice versa).
2-dimensional (2D) compaction: layout 

elements are moved and shrunk 
simultaneously in two dimensions.

 Complexity:
1D compaction can be done in polynomial 

time.
2D compaction is NP-hard.
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1D Compaction: X Followed By Y

 Each square is 2  * 2 , minimum separation is 
1 .

 Initially, the layout is 11  * 11 .
 After compacting along the x direction, then the y

direction, we have the layout size of 8  * 11 .
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1D Compaction: Y Followed By X

 Each square is 2  * 2 , minimum separation is 
1 .

 Initially, the layout is 11  * 11 .
 After compacting along the y direction, then the x

direction, we have the layout size of 11  * 8 .
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2D Compaction
 Each square is 2  * 2 , minimum separation is 1 .
 Initially, the layout is 11  * 11 .
 After 2D compaction, the layout size is only 8  * 8 .

 Since 2D compaction is NP-complete, most compactors are 
based on repeated 1D compaction.
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Inequalities for Distance Constraints

Minimum-distance 
design rules can be 
expressed as 
inequalities.

xj – xi  dij.

 For example, if the 
minimum width is a
and the minimum 
separation is b, then 

x2 – x1  a
x3 – x2  b
x3 – x6  b
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The Constraint Graph
 The inequalities can be used to construct a constraint graph 

G(V, E):
 There is a vertex vi for each variable xi.
 For each inequality xj – xi  dij there is an edge (vi, vj) with 

weight dij .
 There is an extra source vertex, v0; it is located at x = 0 ; all 

other vertices are at its right.
 If all the inequalities express minimum-distance 

constraints, the graph is acyclic (DAG). 
 The longest path in a constraint graph determines the 

layout dimension.

constraint graph
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Maximum-Distance Constraints
 Sometimes the distance of layout elements is bounded by a 

maximum, e.g., when the user wants a maximum wire 
width, maintains a wire connecting to a via, etc.
 A maximum distance constraint gives an inequality of the 

form: xj – xi  cij or xi – xj  -cij
 Consequence for the constraint graph: backward edge

 (vj, vi) with weight dji = -cij; the graph is not acyclic anymore.
 The longest path in a constraint graph determines the 

layout dimension.

d
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Longest-Paths in Cyclic Graphs
 Constraint-graph compaction with maximum-distance 

constraints requires solving the longest-path problem in 
cyclic graphs.

 Two cases are distinguished:
 There are positive cycles: No bounded solution for 

longest paths. (The inequality constraints are 
conflicting.) We shall detect the cycles.

 All cycles are negative: Polynomial-time algorithms 
exist.
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Longest and Shortest Paths

 Longest paths become shortest paths and vice 
versa when edge weights are multiplied by –1.

 Situation in DAGs: both the longest and shortest 
path problems can be solved in linear time.

 Situation in cyclic directed graphs:
 All weights are positive: shortest-path problem in P 

(Dijkstra), no feasible solution for the longest-path 
problem.

 All weights are negative: longest-path problem in P 
(Dijkstra), no feasible solution for the shortest-path 
problem.

 No positive cycles: longest-path problem is in P.
 No negative cycles: shortest-path problem is in P.
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Remarks on Constraint-Graph 
Compaction

 Noncritical layout elements: Every element outside the 
critical paths has freedom on its best position => may use 
this freedom to optimize some cost function.

 Automatic jog insertion: The quality of the layout can 
further be improved by automatic jog insertion.

 Hierarchy: A method to reduce complexity is hierarchical 
compaction, e.g., consider cells only.
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Constraint Generation
 The set of constraints should be irredundant and 

generated efficiently.
 An edge (vi, vj) is redundant if edges (vi, vk) and (vk, vj) 

exist and w((vi, vj))  w((vi, vk)) + w((vk, vj)).
 The minimum-distance constraints for (A, B) and (B, C) 

make that for (A, C) redundant.

 Doenhardt and Lengauer have proposed a method for 
irredundant constraint generation with complexity O(n log 
n).


