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Abstract— Medical systems and assistive tech-
nologies, human-computer interaction, human-
robot interaction, industrial automation, virtual
environment control, sign language translation,
crisis and disaster management, entertainment
and computer games, and so on all use RGB
cameras for hand gesture recognition. However,
their performance is limited especially in low-
light conditions. In this paper, we propose a
robust hand gesture recognition system based
on high-resolution thermal imaging that is light-
independent. A dataset of 14,400 thermal hand
gestures is constructed, separated into two color
tones. We also propose using a deep CNN to clas-
sify high-resolution hand gestures accurately. The
proposed models were also tested on Raspberry Pi
4 and Nvidia AGX edge computing devices, and the
results were compared to the benchmark models.
The model also achieves an accuracy of 98.81%
and an inference time of 75.138 ms on Nvidia Jet-
son AGX. In contrast to hand gesture recognition
systems based on RGB cameras, which have limited performance in the dark-light conditions, the proposed system based
on reliable high resolution thermal images is well-suited to a wide range of applications.

Index Terms— High resolution thermal imaging, Hand gesture recognition, Thermal sensors, Human-computer interac-
tion, Human-robot interaction, machine learning, Deep CNN.

I. INTRODUCTION

Hand gestures are used in a variety of applications. As
stated in [1], applications include gesture controlling robots,
in various medical systems, control visualization devices, and
many more. Other use areas could be more clearly directed,
for example, to entertainment or to assisting with daily tasks.
Hand gestures help users in many ways, for example human-
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computer interaction (HCI) for disabled and elderly people,
human-robot interaction in many indoor and outdoor applica-
tions. Other applications include hand gesture recognition for
turning on and off some machines, controlling the speed of
the fan, controlling content in television. Many applications
can also be customized to meet the needs of the user and
aid in communication and control of appliances. A hand
movement with a gesture, rather than using voice or electronic
controls, would be very stable and robust in many challenging
environments. Dynamic gestures, which use the movement
of a controller, have been around for a while. Robust hand
gesture recognition is more difficult to develop and will require
more detailed images with all possible practical variations.
The accuracy and speed of a hand gesture recognition system
are determined by the equipment’s quality and algorithms.
A faster computer processes information faster, and a more
detailed/pixelated image usually necessitates more processing
resources but provides greater accuracy. It must be tested and
applied in real-world scenarios to determine the best cost-
benefit ratio.

A smart and sustainable product should be able to evolve.
That is, it should be capable of learning new variations in the
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hand gestures as well as adapting to the current user’s gestures.
This is because cognitive movement differs from person to
person [1].

There are several works based on RGB cameras and ma-
chine learning for hand gestures recognition reported in [2].
A simple and intelligent system to recognize the expression
of speech-disabled people is proposed in [3]. An efficient
interpretation of hand gestures to control smart interactive
television is proposed in [4]. An efficient approach for the
recognition of hand gestures from very low resolution images
is proposed in [5]. Hand gesture recognition and human
pose recognition approaches are similar and are based on
RGB images. Human action recognition based on spatial
distribution, direction pixel and transform has been proposed
in [6]. Abnormal human activity recognition using the changes
in orientation of silhouette in key frames has been proposed
in [7]. Human action recognition using decisive pose has
been proposed in [8]. A multi-resolution descriptor for hu-
man action recognition has been proposed in [9]. A real-
time approach for static hand gesture recognition based on
RGB camera is proposed in [10]. A Robust hand gesture
recognition using multiple shape-oriented visual cues has been
proposed in [11]. However, the performance of RGB cameras-
based hand gesture recognition is limited especially in low-
light and dark-light conditions. A hand gesture recognition
sensor that employs ultra-wideband (UWB) impulse signals
reflected from a hand [12]. A CNN is used to classify
six gestures. It is proposed to use an UWB impulse radar
sensor and an 8x8 pixel thermal sensor to recognize hand
gestures [13]. A deep learning based approach is used in this
work. Surrounding noise may limit the performance of such
systems. A machine learning based multi-features capacitive
sensor has been proposed for hand gesture recognition [14].
The K-Nearest Neighbour (KNN) classifiers are used in this
work. A three-axis accelerometer and gyroscope sensor-based
continuous hand gesture recognition technique in a smart
device is proposed [15]. It is proposed to use simultaneous
pressure sensors to recognize hand gestures [16]. An extreme
learning method is used in this work and 11 gestures were
classified. A deep learning technique called long short-term
memory (LSTM) is used to classify hand gestures using data
from an inertial measurement unit (IMU), electromyographic
(EMG), and finger and palm pressure data [17]. However, most
of these do not fit for many practical applications.

The visibility of objects in an image is controlled by the
background lighting, which varies depending on the working
environment. This impediment has been removed by using
thermal cameras. However, hand gesture recognition has been
attempted using low resolution RGB images under variable
illumination settings [18] and [19], as well as depth images
in low-intensity environments [20]. When the imaging scene
is completely dark, however, RGB cameras fail to record any
item in the imaging scene. The distance at which something
can be detected varies depending on the camera’s quality and
resolution. A thermal camera, on the other hand, can detect
objects in complete darkness as long as the object is not the
same temperature as the background. Thermal cameras rely on
infrared radiation emitted by objects, which does not require
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Fig. 1: A top level system diagram.

energy from external sources such as the sunlight or artificial
light. This means that a thermal camera detects radiation and
return temperature values in human-readable colors (typically
red/purple/yellow). Thermal cameras also have the advantage
of being able to exclude any external disturbances. A thermal
camera doesn’t detect and include objects in RGB images
with many details. They’ll be blended into the background,
highlighting only the warmer/colder objects [21], [22].

Thermal imaging based hand gestures are robust compared
to the RGB based hand gestures [2], [23], [24]. A thermal
images of 32x32 pixels and deep learning is proposed for hand
gestures recognition for sign language digits [2]. However,
the camera used is of very low resolution and performance
is limited for many long-range applications. In addition, such
low-resolution cameras poses several challenges to be able to
design a robust hand gesture recognition systems. To overcome
these challenges, we design a robust hand gesture recognition
system using high resolution thermal imaging along with
deep learning. To create a high resolution thermal imaging
based dataset of hand gestures, FLIRs thermal camera module
Lepton 3.5 [25] with the breakoutboard Purethermal 2 [26]
is used. It has a variation in hand positions in front of the
camera to increase sample variation as well as hand posture.
The Lepton camera has a resolution of 160 x 120 pixels. The
dataset was created by photographing 240 images in grayscale
and plasma colors. Making the entire dataset of 480 images
per person, for a total of 14,400 images.

To the best of our knowledge, this is the first study to
describe high-resolution thermal imaging-based hand gestures
which are independent of background lighting, including dark
light conditions. We also propose a light-weight deep learn-
ing model for classification of hand gestures using images
obtained from a high resolution thermal camera.

II. SYSTEM SETUP AND THERMAL CAMERA DETAILS

A top level system diagram in shown in Fig. 1. Hand
gestures are captured using a thermal imaging system, as can
be seen. For classification, the captured images are fed into
a machine learning model. The control module receives the
classified hand gestures for further actions. Parameters such as
the number of captured images per second and how frequently
the system should be in the idle state can be tailored to meet
the needs of the application. The details of individual modules
are further elaborated in the following sections.

The thermal image dataset was created using a FLIR Lepton
3.5 thermal camera and a Purethermal 2 breakout board. The
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Fig. 2: FLIR Lepton 3.5 in Purethermal 2 breakout board, with
size compared to a 1 Euro coin.

hand gestures are captured using this thermal camera. When
connected to a Raspberry Pi 4, it connects to the camera
module via a USB interface. The breakout board connects to
a micro-USB port and transfers data via inter inter integrated
circuit (I2C) over USB. The Lepton module will be powered
by the Raspberry Pi as well. All connections are made through
this port because Purethermal 2 requires 5V and only has one
connectivity point.

The FLIR Lepton 3.5 module is mounted in the breakout
board’s camera slot, where it is connected to a FLIR Lepton
socket. Thermal camera along with breakout board can be seen
in Fig. 2. The breakout board includes pre-configured firmware
for controlling the Lepton module [27].

Using a USB interface makes it simple to use the module
with different platforms, such a PC, a Raspberry Pi or any
edge computing device with USB port. Before the Raspberry
Pi can be used as a webcamera, the I2C interface and the serial
peripheral interface (SPI) bus must be activated. A custom
software program is made to retrieve images from Lepton
when using a Raspberry Pi. The complete system setup is
shown in Fig. 6, while taking images.

A micro-USB to USB cable is used to connect the thermal
camera to computing unit. This allows for connection to the
vast majority of computing devices while also making reading
and writing the module easier. The software program used to
capture and store images is depicted in Fig. 3. A software
program that will capture the desired number of images with
only two inputs. It saves the images in both a fusion (default)
color version, as well as in a ice fire version as named in
the engineering datasheet [25]. As a result, for each image
taken, the dataset grows by two. If there are any problems,
the software program is also designed to allow for only one
scale, as well as checking the total number of images in the
folders by providing input 5.

Details on the FLIR Lepton 3.5 module and Purethemal
2 breakout boards are presented in the following sections. It
also includes some important features for comprehending the
Lepton module.

A. FLIR Lepton 3.5
FLIR Lepton 3.5 is the thermal camera from FLIR with the

highest resolution Long Wavelength Infrared (LWIR) micro

Fig. 3: Flowchart showing psudo code for capturing the
thermal images with Raspberry Pi. ”X” corresponds to the
number of images the program will take when input is 2.

camera. It has a 160×120 pixel resolution and a radiometric
calibrated array of 19 200 pixels [28]

Lepton 3.5 requires an external power supply ranging from
2.5V to 3.1V and has a nominal power consumption of
160mW. It can reach a peak power of 650mW for about
one second during shutter events, while the low power mode
consumes only 5mW. As a result, it could be used in IoT or
small battery-powered objects. The Field Of View (FOV) is
57◦ (horizontaly). The thermal sensitivity is 50mK and each
pixel is measured individually with a pixel pitch at 12 µm.
Sensing temperature range is between -10◦C to +140◦C, while
operating temperature is from -10◦C to +65◦C. To name a
few integrated functions, there is a digital thermal image pro-
cessing function, automatic environment compensation, noise
filters, and gain control. Images are exported at<9Hz, with
video transmitted via SPI and the module controlled via I2C
[25].

The Flat-Field Correction (FFC) is used by the camera
module to display the heated areas as accurately and distin-
guishably as possible. The FFC will correct the temperatures
that the camera detects in order to produce a more clear and
uniform image. The FFC will re-calibrate to provide the best
image quality [25]. When taking photos, the difference in
image quality is visible, as will be discussed later. An FFC
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is performed during the startup sequence and, if in automatic
mode, at regular intervals (every 3 min as default). This timer
can be adjusted to run more frequently or less frequently as
needed. When turned on, it has some default settings, such
as auto FFC mode with an interval of 180 000 ms, delta
temperature of 150◦C, gain mode set to high, color Fusion
with Raw 14 video output, and radiometry control enabled in
addition to the other settings.

B. Purethermal 2
The Purethermal 2 breakout board is a FLIR Lepton smart

I/O module with pre-configured plug-and-play functionality
via a USB port. The default settings are compatible with
standard webcam applications running on Linux, Windows,
Mac, and Android. If the module is configured to be used
for other purposes, the firmware is open source [29]. For
more information, see Purethermal breakoutboard firmware
github [30]. STM32 ST-LINK Utillity, a software program
for operating STM32 processors, is recommended for flashing
the Purethermal 2 breakout board. A FLIR Lepton device is
required to operate the Purethermal 2 breakout board [31].

Purethermal 2 output is obtained via USB, with data trans-
ferred via I2C, UART, GPIO, or JTAG. It supports both Lepton
2 and 3 versions, with Lepton 3.5 being used to collect data for
this dataset. It employs an STM32F412 processor to process
data and perform calibration. This processor enables image
processing prior to receiving any images, which relieves the
load on the third-party device used to view and store images.
The maximum input voltage is 5.5V, and the nominal power
consumption is 61.1mA, with a peak of 230mA during the
shutter event. The schematics and the firmware are open source
making it easier to customize its use or to create supporting
objects [27].

III. DATASET DETAILS

A. Thermal images capturing
The dataset is captured in both full color and grayscale

because doing so will double the size of the dataset. Despite
the fact that the images are similar, the colors are different. The
hands in images are moved around within the image to capture
several possibilities of gestures. Some of the movements are
caused by people being unable to keep their hands still, and
some are caused by them being told to move. The natural
movement will result from the position in which people are
forced to keep their hands when taking photographs. Some
variations of hand movements are shown in Fig. 4. Fig. 4a
depicts the starting position, Fig. 4b (forced angle) depicts
when the hand is intentionally bent, and Fig. 4c (naturally
moved) depicts when the hand falls towards the body after
being static for a long time. This will result in natural variation,
which increases the number of differences in the dataset for
the same hand gesture.

When connected to the Raspberry Pi, the flowchart in Fig.
3 describes the python script used to capture images for the
dataset. It is a very simple program that makes use of the
Lepton library for Python programming. This library enables
Lepton 3.5 to capture images, which are then stored on the

(a) (b) (c)

Fig. 4: Example of hand movement within frame: (a) Hand
position 1; (b) Hand position 2; (c) Hand position 3;

Raspberry Pi using the OpenCV (cv2) and matplotlib libraries.
The main program is a loop that awaits input in the form of
numbers ranging from one to five. When input equals two,
a new input is required. This second input is the number of
rounds or images it will take before asking for the first input
again.

People’s hand mobility varies in the same way that move-
ment and positioning will increase variation. Fig. 5 shows a
brief example of differences. Where some people can keep
their hands together, as shown in Fig. 5a and 5b, others are
not able to keep their hands completely enclosed as Fig.
5c. The natural variation in this also helps to broaden the
dataset’s diversity by including people with different hand
shapes and mobility. When every gesture has more variations,
then the algorithm will have more things to consider. If the
algorithm has not been trained with enough diverse samples,
it becomes more difficult to read an image in a practical
scenario. The different nationalities of the participants also
increase the likelihood of receiving different gesture shapes.
Their upbringing and occupations may also have an impact on
the shape and mobility of their hands.

The dataset is created in the uniform background. The
uniform background will draw attention to the hand and
emphasize the unique characteristics of each hand. People are
naturally warmer than the inside room where the images were
taken, though the quality of the images may vary depending
on the circumstances. Fig. 5 shows how hand gestures of
some people are shown as cold. Fig. 5d, 5e and 5f show
the problem when the camera is reading the hand as cold. In
fact, their hands/fingers are not cold. The blue fingers may
come from several things, as the images were taken from
January to March and the outside temperature was lower than
in the spring/summer time. If people were walking outside
prior to taking images, their skin might have been colder than
the reference wall behind. Some people might also have a
lower body temperature, depending on location in the world.
Although this should not have any big consequences, a few ◦C
will be shown clearly in thermal images. Personal features may
also play its part, as wet hands will more likely be colder or
closer to the room temperature. Other factors may also have
an influence but it will all create a variation in the dataset,
that makes it harder for computers to learn. That also makes
it better for testing, to check the quality and performance of
the algorithms proposed using such diverse dataset.

While taking the thermal images, people had to hold
their arms to their sides directly in front of the camera in
order to capture images hands properly. Ideally, the people
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(a) (b) (c)

(d) (e) (f)

Fig. 5: Example of difference between images, with position,
gesture and temperature differences: (a) Good temperature
difference, good hand position; (b) Good temperature differ-
ence, good hand gesture; (c) Good temperature difference,
medium hand gesture; (d) Poor temperature difference, good
hand gesture; (e) Poor temperature difference, medium hand
gesture; (f) Poor temperature difference, poor hand gesture;

photographed had their arms to the side, with a 90◦ angle
upwards.The position in which people have been holding their
arms is depicted in Fig. 6. Because the camera tripod is not
very tall, it must be placed at a different height than their
elbows. In some cases, the tripod has been placed on top of
other objects, or it has been raised by placing it on a variable-
height object. Keeping their arms in such static positions may
be too taxing if not supported. As a result, a table or stool
was placed for the people to support their elbows. It was
sometimes necessary to change angles completely and face the
same direction as their hand was pointing with gestures h, i and
j. The Lepton 3.5’s Horizontal FOV (HFOV) is 57◦, indicating
that it was designed to capture more details in images rather
than objects.

All images are taken at roughly the same distance and angle
from the camera. The distance maintained between the camera
and the hand is 40 to 60 cm. It can capture images with a
high level of detail at that distance. However, it is technically
possible to capture images at greater distances as well. Figure
5a is an example of a high-detail image in which different
skin temperatures are clearly visible and all fingers are visible.
Images will begin to lose detail as they are moved further
away, as shown in Fig. 5c. The camera tripod can be adjusted
up and down as well as sideways to point the camera straight
at the hands. Because the tripod is so small, adjusting to a
different setting is simple because the setup is mobile and
portable. Making it easier to meet people close to them and
not being confined to a single location.

The dataset is made up of 14 400 images divided into
two color tones, which are then divided into 10 gestures of
24 images each per person. Fig. 7 and Fig. 8 are both one
set of ten gestures from the same person. All images should
look as close to these gestures as possible, with only the
natural/personal differences for each person. When sorted by
gesture, the dataset contains 720 images of each gesture in

Fig. 6: Image example of how the images were taken. By
placing hand in front of camera with a plain background. The
hand is also supported by another barstool to keep the hand
as stable as possible.

both fusion and grayscale. The size of the images varies from
fusion to grayscale. Fusion colors will be larger, with each
image taking up 25kB and totaling around 18MB. Grayscale
images are smaller, weighing in at 17kB per image and totaling
12.2MB for a single gesture. With 30 people, the total size
of the dataset is around 300MB of data, resulting in some
detailed thermal images suitable for image recognition. The
algorithm will be more accurate with a larger dataset and more
data, but it may slow down in terms of how long it takes to
train. The small amount of memory required to integrate and
store thermal images is advantageous because it will make
integration into any machine learning algorithm and computing
platform easier.

Because the images do not represent any numbers or letters,
the gestures are thought to be similar. Where the gestures
use some of the same fingers but in different positions and
placement. As seen in the first four images of Fig. 7 and
Fig. 8. The palm of the hand is in the center of all of these
images, but the fingers are in various positions. Depending on
the image’s quality and temperature, a small change in position
can be difficult to detect. As a result, having a large number of
images reduces the likelihood of selecting the incorrect label
for the image. The dataset is doubled when images are taken
in two different colors, and the algorithm learns to detect more
images in different colors as well.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Fig. 7: A complete set of fusion colored thermal images: (a)
Fusion image a; (b) Fusion image b; (c) Fusion image c; (d)
Fusion image d; (e) Fusion image e; (f) Fusion image f; (g)
Fusion image g; (h) Fusion image h; (i) Fusion image i; and,
(j) Fusion image j.

B. Thermal imaging in low lighting conditions
Images are captured in various lighting conditions to

demonstrate the robustness of the FLIR Lepton 3.5 thermal
camera. This section shows images of how the camera works
in various lighting conditions, ranging from dim to completely
dark. The Fig. 9 depicts three different light shades in the
room. The images were taken in the same session, and the
lighting was reduced from normal, as shown in Fig. 6. The
hand was kept in the same position to see any differences, as
shown in the Lepton image at the bottom right of Fig. 9.

It can be seen in Fig. 9b, this scenario has less thermal leak-
age than the others, which can occur when the camera is live
streaming and constantly calculating the temperature within
the frame. This could be due to a number of factors, such
as a new temperature sensor calibration or a bias calculation
of the background temperature when the light went off. The
last image taken as shown in Fig. 9c, which can explain the
temperature difference between the hand and the right side of
the image. As the body move closer and the hand warms up
its surroundings.

The fact that all images are captured using the 3D printed
casing shown in Fig. 10 also demonstrates that the camera is
unaffected by external or surrounding light. Because all other
sensors are covered by the casing in this image, only the lens

(a) (b)

(c) (d)

(e) (f) (g)

(h) (i) (j)

Fig. 8: A complete set of grayscale thermal images: (a)
Grayscale image a; (b) Grayscale image b; (c) Grayscale image
c; (d) Grayscale image d; (e) Grayscale image e; (f) Grayscale
image f; (g) Grayscale image g; (h) Grayscale image h; (i)
Grayscale image i; and, (j) Grayscale image j.

will be able to detect any surrounding light. The casing will
provide more stable conditions that will not be affected by
small external temperature changes.

IV. MACHINE LEARNING

A. Preprocessing
The dataset was created as shown in the above sections.

After that we divide the entire dataset into two parts, Train
dataset and Test dataset. The test dataset consists of 20% of the
entire dataset. We further divide the train dataset into two parts
namely, Train dataset and Validation dataset. All the division
of the dataset is done in a manner such that equal number of
samples are taken from each class, so as to avoid an imbalance
distribution. Table I shows the details of the three datasets.

B. Model
The proposed CNN model consists of the following layers
1) Convolution Layer: In this layer the kernel maps (‘k’)

performs the convolution operation on the input feature map.
These layers consists of the following main parameters, di-
mensions of the kernel map i.e (H × W × D). ‘H’ is the
height of kernel map, ‘W’ is the width of the kernel map, ‘D’
is the depth of the kernel map and ‘N’ number of kernel maps.
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(a)

(b) (c)

Fig. 9: Image of how the reflection is in a low light scenario:
(a) Lower light than normal; (b) Almost completely dark; (c)
Without light;

TABLE I: Number of samples per class in Train, Validation
and Test Datasets.

Class Train Dataset Validation Dataset Test Dataset
0 519 57 144
1 519 57 144
2 519 57 144
3 519 57 144
4 519 57 144
5 519 57 144
6 519 57 144
7 519 57 144
8 519 57 144
9 519 57 144

In this work H 6= W i.e a rectangular kernel map. We also
use a stride of 1 for each convolution layer. The convolution

Fig. 10: FLIR Lepton 3.5 in casing.

operation is shown according to equation (1) [32].

yil+1,jl+1,n =

H∑
i=0

W∑
j=0

D∑
d=0

ki,j,d,n × xlil+1+i,jl+1+j,d (1)

In equation (1), xl is the output of the previous layer (l − 1)
which becomes the input feature map to the current layer (l).
‘yil+1,jl+1,n’ is the intermediate output after performing the
convolution operation. We repeat this for for all ‘N’ maps to
obtain ‘Y’. We then input this ‘Y’ to an non linear activation
function, ReLU. The function ReLU is shown in the equation
(2) [32].

f(x) = max(0, x) (2)

Thus the final output from the convolution layer is obtained
as shown in the equation (3) [32].

X l+1 = f(Y ) (3)

2) Max Pool Layer: Pooling layer is used to reduce the
dimensions of the feature map while extracting efficient rep-
resentations. There are different variants available for Pooling
layer namely, Max Pool, Average Pool,etc. In this work we use
Max Pool Layer, whose operation is shown in the equation (4)
[32].

yil+1,jl+1,n = max
0≤i≤H,0≤j≤W

xlil+1×H+i,jl+1×W+j,d (4)

3) Dilated Convolution Layer: This layer is a type of convo-
lution layer whose kernel map’s field of view is ≥ 1 [33]. This
variable length field of view is parameterised by the variable
‘dilation rate’. In this work we use a ‘dilation rate ’ of 2.
Fig. 11, shows the difference between a convolution layer with
dilation rate of 1 (regular convolution layer) and a convolution
layer with dilation rate of 2.

In this work we use 4 convolution layers, 2 with dilation rate
of 1 and 2 with dilation rate of 2. Each of the convolution layer
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Fig. 11: Kernel map’s field of view for convolution layer with
dilation rate of 1 and 2.

Fig. 12: Proposed CNN model architecture. Conv1 and Conv2
corresponds to convolution layers with dilation rate of 1 and
2 respectively.

is followed by a batch normalization operation to improve
training speed and decrease overfitting [34]. We also use 2
Max Pool layers. The entire model architecture is shown in
Table II and Fig. 12.

TABLE II: Architecture details of the proposed CNN model.
Conv1 and Conv2 are convolutioon layers with dilation rate 1
and 2 respectively.

Layer Output Shape Kernel Map Dimension
Input (None,120,160,1) None

Conv1 (None, 118,159,16) (3 × 2 × 16)
Conv1 (None, 116,158,32) (3 × 2 × 32)

Max Pool (None, 38,79,32) (3 × 2)
Conv2 (None, 30, 73, 64) (5 × 4 × 64)
Conv2 (None, 22, 67,128) (5 × 4 × 128)

Max Pool (None, 7, 33, 128) (3 × 2)
Flatten (None, 29568) None
Dense (None,10) None

C. Training

We train the proposed CNN model using ‘Adam Optimizer’
with a learning rate of 0.001 [35] and a batch size of 32. All
the weights were initialized using ‘Kaiming initializer’ [36].
The model was trained using 10 fold cross validation i.e the
entire train dataset was divided into 10 parts and for each
iteration 9 parts were used for training and one part was used
as validation dataset. This procedure was repeated for 10 times
hence the name 10 fold cross validation.

D. Benchmark Model

We compare the proposed CNN model with MobileNetV3
model as benchmark. MobileNetV3 is the ‘3rd’ version among

the MobileNet family of architectures. MobileNet models
are designed for optimised performance on mobile and edge
computing devices. These models are specifically trained to
have low latency while maintaining the accuracy of the model.
There are two variants of MobileNetV3 that was proposed
in [37], MobileNetV3 Small and MobileNetV3 Large. The
difference between the two is the total number of parameters
used to train the model. In this work we use both the variants
of the model pre trained on ImageNet dataset. Before training
the model we first have to slightly modify the benchmark mod-
els to adapt for the given task. We remove the classification
layer (output layer) of the benchmark model and add a new
classification layer with 10 classes for the given task. We also
use a global average operator layer to flatten the output of the
benchmark model. This layer is then to the new classification
layer. We train the benchmark model using transfer learning
technique called as ‘Fine Tuning’ method.

1) Fine Tuning: In this method few layers of the benchmark
model along with the new classification layer are trained on
the given task. This methodology of training can be very
useful as compared to training from scratch. This is because
the benchmark model’s pre-trained weights act as a good
parameter initializer and can optimize better on the given task.

We train both the benchmark models via 10 fold cross
validation method. We also use an RMS Prop optimiser [38]
with a batch size of 32 for training. All the models including
the proposed model are trained on Google Colab i.e on
Nvidia’s T4 GPU with 12 GB GPU RAM, using Keras Deep
Learning Library [39].

V. HARDWARE DEPLOYMENT

We deploy the all the models, Proposed CNN model and
the benchmark models on edge computing devices such as
Raspberry Pi 4 Model B and Nvidia Jetson AGX Xavier.

A. Raspberry Pi 4B
Raspberry Pi is a hardware computer made for development

use, for people to get an affordable and powerful computer
that can be adapted to all situations. The hardware is designed
to implement many types of software, vary much like a full
PC. The operating systems can be chosen depending on the
use case, such that the developer can use whatever operating
system that gains most advantages. For example, Raspberry Pi
foundation has an official operating system called Raspberry
Pi Operating System [40], which is supported and updated for
all versions of Raspberry Pi. Raspberry Pi comes in different
versions, whereas the newest model is 4B, which is shown
in Fig. 13a. It has older versions and smaller computers for
places demanding of taking less space [41].

To use in this machine learning timing, it was used a
Raspberry Pi 4B [42]. This is the newest and most powerful
Raspberry Pi computer, which has an upgraded processor and
the option to configure RAM between 2, 4 or 8 GB. The
computer is powered through a USB-C port with 5.1V and 3A
current in order to get full effect. The new processor allows
for two 4K resolution monitors to be connected, using micro
HDMI ports. As its predecessors it has four USB ports, split in
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(a) (b)

Fig. 13: Images of Raspberry Pi 4B compared to a 1 Euro
coin: (a) Top view of RPi 4B; (b) Plasma colored thermal
image example, gesture 7.

pairs of two. Where one pair is USB v2 and the other two are
USB v3 for even faster transfers. In order to receive Internet
connection, it has WiFi and a Gigabit Ethernet port connection
built in [42].

The main technical specifications tells us that the proces-
sor is a 64-bit Quad core Cortex-A72 (ARMv8) System on
Chip with a clock speed of 1.5GHz. The customizable RAM
is LPDDR4-3200 SDRAM. It has Bluetooth v5 and BLE
(Bluetooth Low Energy), along with IEEE 802.11ac WiFi with
2.4GHz and 5GHz connections. It is supported with OpenGL
ES 3.0 graphics, to help render graphics on the Raspberry
Pi. On the socket, it has a micro-SD card slot for where the
operating system is loaded as well as storage. All these specs
and more documentation can be found on the specification
web page [43].

Depending on the machine learning model complexity, the
operating system required to be run on the Raspberry Pi
may vary. The Raspberry Pi 4B was installed with a 64-bit
Ubuntu 18.04.5 LTS [44]. The 64-bit Ubuntu 18.04 is found
on Ubunut’s homepage under alternative downloads, as the
most common downloads are 32-bit [45].

When installing Tensorflow, it is important ro think of the
version that is being installed. As it needs to be trained and
used with the same versions of Tensorflow. It will therefore
be a problem if the model algorithm is trained on Tensorflow
version 2.2 and then later used with version 2.4. There is
probably some workarounds, but the easiest and sustainable
is to install an operating system with 64-bit when needed. As
is explained by Q-engineering in this article [46].

B. Nvidia Jetson AGX Xavier DK

Nvidia has developed a high-performance, low-powered
computing hardware platform that is designed to use for deep
learning and computer vision, which is the black box in Fig.
14. The hardware platform needs to have a SDK installed,
called JetPack [47]. JetPack will provide an operating system
including CUDA, VisionWorks, OpenCV, TensorRT and many
more, built on top of a LTS Linux kernel [47]. Making it a very
usable Linux machine, that is customizable for individual use.
JetPack along with other development software is available
at [48]. When JetPack is installed, the Jetson AGX will be
available to use as a normal Linux computer with Ubunut.

(a) (b)

(c) (d)

Fig. 14: Images of Jetson AGX Xavier compared to a 1 Euro
coin: (a) Top view of AGX; (b) Plasma colored thermal image,
gesture 7; (c) Sideways view of connections and micro-SD
card; (d) Plasma colored thermal image, gesture 7.

This is very useful, to be able to use the computer for different
use-cases without any modifications.

The Jetson AGX is built on a 512-core Volta GPU with
Tensor Cores, along with 8-core ARM v8.2 64-bit CPU, with
8MB L2 and 4MB L3. It has a large memory of 32GB RAM,
which is 256-bit LPDDR4x and internal storage of 32GB,
type eMMC 5.1. It is installed with a 7-way VLIW Vision
Processor Accelerator as well as two NVDLA Engines for DL
Acceleration. The physical measurments are 105mm x 105mm
x 65mm for the entire module [49].

Before deploying the model on the above mentioned edge
computing devices we convert the models into Tensorflow Lite
version. Tensorflow Lite is a variant of Tensorflow that is built
to provide optimal performance on mobile and edge computing
devices. The Tensorflow Lite version optimises the model’s
size and latency such that deep learning models can easily be
deployed for real world applications. Thus we convert all the
models into their corresponding Tensorflow Lite versions.

VI. RESULTS AND DISCUSSION

We show the 10 fold cross validation results of all the
models in Fig. 15. The average 10 fold validation accuracy for
the proposed model, MobileNetV3 Large and MobileNetV3
Small is 98.42%, 99.42%, 99.86% respectively. We also show
the accuracy plot of the proposed CNN model to show the
convergence after 50 epochs in Fig. 16.

We next compare the models based on their test accuracy.
After 10 fold cross validation we have 10 models available for
each model. We can get the test accuracy by either combining
the results from all the 10 models [50] [51] or obtain a single
model by training the model on the entire train dataset with
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Fig. 15: 10 fold cross validation accuracy of the proposed
model and the benchmark models.

Fig. 16: Training and Validation accuracy of the proposed
CNN model for fold 10.

optimal hyperparamter values obtained during 10 fold cross
validation [52]. We choose the latter method for simplicity
sake, we obtain 3 models corresponding to the Proposed
CNN model, MobileNetV3 Small and MobileNetV3 Large
respectively. We then evaluate these models on the test dataset
to get the test accuracy values. These values are summarised
in Table III.

TABLE III: Test accuracy values of the Proposed CNN model,
MobileNetV3 Small and MobileNetV3 Large models.

Model Test Accuracy
MobileNetV3 Small 99.72%
MobileNetV3 Large 99.98%

Proposed CNN model 98.81%

After this we compare the proposed CNN model with the
benchmark models in terms of model’s size both tensorflow
and tensorflow lite versions and also compare them in terms
of the number of parameters. These results are summarized
in Table IV and V. As seen from Table V, the Proposed
CNN model’s TFLite version is 3 times smaller than the
MobileNetV3 Small model and 8 times smaller than the

Fig. 17: Confusion matrix of the proposed model.

MobileNetV3 Large model.

TABLE IV: Test accuracy values of the Proposed CNN model,
MobileNetV3 Small and MobileNetV3 Large models.

Model Total Parameters Trainable Parameters
MobileNetV3 Small 1,540,218 1,430,058
MobileNetV3 Large 4,239,242 3,725,818

Proposed CNN model 504,858 504,378

TABLE V: Model’s Size of Tensorflow (TF) and Tensorflow
Lite version (TFLite) of the Proposed CNN model, Mo-
bileNetV3 Small and MobileNetV3 Large models. Model size
is measured in MB.

Model TF Model Size (MB) TFLite Model Size (MB)
MobileNetV3 Small 12 6
MobileNetV3 Large 31 16

Proposed CNN model 6 2

We next plot the various performance metrics such as
‘Precision’, ‘Recall’, ‘F1 score’ for the proposed CNN model
[53]. The confusion matrix of the proposed CNN model is
shown in the Fig. 17. The performance metric values are
shown in the Table VI.

We lastly show the inference time of the tensorflow lite
version models deployed on Raspberry Pi 4 Model B and
Nvidia Jetson AGX Xavier. These values are summarized in
Table VII and VIII.

The performance of the proposed model is compared to the
recently reported models for hand gesture recognition using
CNNs. All of these works except [2] are based on RGB
images. The performance of the proposed model is comparable
to the high performance models, [54], [55] and [2].

It’s challenging to recognize hand gestures in complex
backgrounds even with RGB images. For RGB images with
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TABLE VI: Precision, Recall and F1 Score values of the
Proposed CNN model for each class.

Class Precision Recall F1 Score
0 0.99 0.98 0.99
1 0.99 1.0 0.99
2 0.99 0.99 0.99
3 0.98 0.99 0.98
4 0.99 0.97 0.98
5 0.99 0.99 0.99
6 0.99 0.99 0.99
7 0.99 0.99 0.99
8 1.0 0.99 0.99
9 0.98 1.0 0.99

TABLE VII: Inference time of all the models on Raspberry Pi
4B. TFLite is the Tensorflow Lite version of the models.

TFLite model Inference Timing
MobileNetV3 Small 0.033844s
MobileNetV3 Large 0.079605s

Proposed CNN Model 0.140968s

TABLE VIII: Inference time of all the models on Jetson AGX
Xavier. TFLite is the Tensorflow Lite version of the models.

TFLite model Inference time
MobileNetV3 Small 0.013664s
MobileNetV3 Large 0.035300s

Proposed CNN model 0.075138s

complicated backgrounds, some attempts have been made
[18], [20] and [70]. Hand gesture recognition has been done
using low resolution RGB images under variable illumination
settings [18] as well as depth images in low-intensity envi-
ronments [20]. When the imaging scene is completely dark,
however, RGB cameras fail to record any item in the imaging
scene. It will also be challenging for hand gesture recognition
in thermal images in complex backgrounds. We have future
plans to work on this.

VII. CONCLUSION

A complete end-to-end system with a robust hand recogni-
tion model is presented in this paper. The system is designed
to be highly portable, and a thermal dataset is created. The
dataset includes 30 people and 14,400 thermal images of hand
gestures, with 7200 in fusion color and 7200 in grayscale. The
images were then classified into ten different categories. It was
tested with three different machine learning models in this
work. The proposed lightwight CNN model is of size 6MB
only and its tensorflow lite version is only 2MB. The model
also achieves an accuracy of 98.81% and an inference time of
0.075138s on Nvidia Jetson AGX. Because of reliable thermal
imaging, the proposed hand gesture recognition is robust and
unaffected by external light sources.
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TABLE IX: Performance comparison of proposed model and
other models.

S.No Model Accuracy Ref.

1 Proposed Model 98.81% This work

2 3D CNN 77.5% [56]

3 CNN and RNN 85.46% [57]

4 Recurrent 3D CNN 88.4% [58]

5 CNN and RNN 89.5% [59]

6 Deep CNN 90.7% [60]

7 3D CNN 94.4% [61]

8 Deep CNN 94.6% [62]

9 Deep CNN and Im-
age processing

95.61% [63]

10 CNN
w/morphological
filters

96.83% [64]

11 Deep CNN 97.1% [65]

12 CNN w/data augmen-
tation

97. 2% [66]

13 CNN with 3D Recep-
tive fields

97.5% [67]

14 3D CNN and LSTM 97.8% [68]

15 DC CNN 98.02% [69]

16 2D CNN 98.2% [54]

17 Compact CNN 98.81% [55]

18 Deep learning based
CNN

99.52% [2]
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