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Chapter 1

Introduction

Very simple book. Introduction. Written with starting PhD students in
mind.

Because in no way I could find a book like this.

not too much material. only what looks sensible to me to teach in a one
term intensive course.

very good given together or just after and advanced course in statistical
mechanics (Renormalization Group).

Things in the order in which I teach them. I try not to be boring: some-
times I postpone basic things not to spend too much time on basics without
small adventures in the “exciting” stuff. Sometimes I postpone technical
computations not to have too much of a technical load all together on the
poor students.

I am interested in teaching results, but also in giving tools and techniques
(for example the transfer matrix approach, the use of scaling arguments,
super-symmetry techniques with Parisi-Sourlas).

Lecturing style: I explain in some detail things that the students seem to
be asking more about.

Important ideas are repeated in different chapters of the book, explaining
them at different levels: repetita juvant, as they used to say many years ago.

Student questions and comments have been very useful.

I give many details of the computations. And many explanations about
the reasoning.

Disorder. Scaling. Statistical mechanics. Dilution, RFIM, Spin Glasses
and Parisi theory: phenomenology and paradigm.

The way I discuss Monte Carlo. Very idiosyncratic: mainly for intro-
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ducing dynamics, correlation times, finite size scaling behavior of correlation
times.

Slow dynamics.

Quenched disorder and complexity.

Same chapters can (and maybe should) read in a different order: for
example F'SS and LY theorem maybe before Harris and Griffiths, basics of
Monte Carlo before Griffiths dynamical,...

Main idea of the book. Basis of physics of disordered systems: 1. scaling
theory. 2. Parisi mean field theory 3. RFIM (we do not know what it is). In
the book I discuss 3 before 2 (I do things in order of growing complexity).
I do not enter in “modern” disputes (who is scaling theory, who is Parisi):
I only introduce the basic cases (temperature dilution for scaling, SK for
Parisi) where we are sure about what happens, and I discuss PT of RFIM.

Acknowledgments

all students from the course Physics of Disordered Systems.... during the
years



Chapter 2

An Introduction to Disordered
Systems

2.1 An Application of Mean Field: Minority
Games

2.2 Disorder in the Statistical Mechanics of
Biological Systems: the Example of DNA
and RNA
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Chapter 3

Harris Criterion

Harris Criterion [6] will be one of the building blocks of our construction,
since it will be one of the first tools used to distinguish when quenched
disorder plays a relevant role.

Let us start by state the criterion, that we will then derive in detail in
a more general case, following [7]. Let us consider a d dimensional ferro-
magnetic spin model. If v, the critical exponent of the correlation length
£ ~ror, (T'—T,)™" is such that ¥ < 2 then the critical behavior of the
system diluted with quenched uncorrelated (site or link) disorder is different
(i.e. it has different critical exponents) from the one of the pure system. If
v > % the quenched disorder is, on the contrary, irrelevant. This is Harris cri-
terion. Notice that this is a perturbative statement, valid for small disorder:
for large amount of disorder non-perturbative effects can play an important
role and completely change the nature of the system.

If we use the hyper-scaling relation (that we will derive only in chapter
(5)), telling us that 2—dv = «, where « is the critical exponent of the specific
heat, i.e. Cy ~rop (T —T.) “ we find that |the disorder is relevant | if

2-a _ 2 : :
= < g le

, (3.1)

that is the most standard way to phrase ‘Harris Criterion ‘: if the specific
heat of the pure system diverges at criticality, a small amount of dilution
quenched disorder has to change the critical exponents of the system. For
example this is true for the 3d Ising model.

Harris criterion is very well seen as a consistency requirements: one asks

7
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in which situation it is consistent that the insertion of a small amount of
quenched disorder does not change the universal physics of the system,
i.e. the critical exponents. The answer is, as we have already said, that
if apure < 0 the weakly disordered system can keep the same properties
than the original, pure system. Thinks could very well change before the
point of inconsistency, but on general grounds in physics things happen for
good reasons: if we have not overlooked some important feature the criterion
will give the right prediction. In all cases that can be solved analytically or
understood by different techniques the Harris criterion turns out to give the
correct answer. For example a Renormalization Group approach to the n
component vector spin models in d = 4 — € finds that the crossover derived
through the Harris criterion is indeed the correct one.

3.1 Correlated Impurities

We will derive Harris Criterion in a more general approach than the one
used in the original Harris work. Following Weinrib and Halperin [7] we
will include the case of correlated quenched impurities, when considering the
introduction of a small amount of quenched disorder in a system that when
pure undergoes a second order phase transition.

On general grounds we can think that we have in mind a “random tem-
perature“ type of disorder: different regions of the material feel a different
effective temperature or, in an equivalent way, have a (quasi-) transition at
a different value of the local critical temperature T,(region). This kind of
disorder can be realized in nature in many different ways: one can for ex-
ample have a small density of impurities or a small amount of randomness
in the link interaction, causing in this way a variation of local transition
temperature.

In figure (3.1) we show different small pieces of the system that have a
transition at different values of the temperature. Obviously we know that
finite parts of the system do not have a true transition, but if these elementary
parts (of which we have many) are large enough the observed behavior will
be very similar to the one of a true phase transition. We are not including
in this framework models with random fields and models like spin glasses,
where the disorder can have more subtle effects.

So, as we said we will not consider only uncorrelated dilutions, or very
short range correlations. We will include in our derivation 7, fluctuations due
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Figure 3.1: A system with different local critical temperatures.

to defects with long range correlations, i.e. with correlations that decay as a
function of distance like power laws with not too large exponents (we will see
that the definition of a “not too large exponent” will become quantitative in
the following). In our models:

9 (&~ ) =(TDT))e = (TDT(Y)) —(T)* =T -7,  (32)

where o is a constant exponent and the last relation is valid for large values of
the distance |Z¥—¢|. From the experimental point of view one can think about
models where the fluctuations in the local 7}, depend from many independent
phenomena, characterized from very different typical scales: such a situation
can generate power law correlations on many decades of distances.

So let us try to verify the criterion in a system with “temperature dis-
order” and, as we have define before, with a connected correlation function
9(Z) ~ |Z|~®. Let £ be the correlation length in the pure system. We start by
dividing the system in regions of linear size &, and volume V = £%. We ask
if the typical variation of the critical temperature T, of these regions becomes
small when T — T,: only if this is true the scaling laws can consistently
stay unchanged after adding the quenched disorder. We define a reduced
temperature

T T,
0= T (3.3)
and a local reduced temperature
T—-T.(Z
oz =TT (3.4)

We take as transition temperature of a region of size £ the average of T,(Z)
over this region: this makes sense because spins are correlated up to distance
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of order £. So we write
1
= V/Vddx 0(z) (3.5)

for the reduced temperature of a given spatial domain. #y is a random
variable, of which we can compute the fluctuations AZ:

92V> =gz [ [ d o,
- dd / dy
(<(T 22) () - ()
= oy e [ a (@@L - @@
= T;‘/Q/Vddx /Vddy 9(Z—79) . (3:6)

Now with a change of variables we find that the 2d integrals above give us

V/Vddz 9(7) = ¢ (/ dd_lQ) /:g(p) P dp, (3.7)

where the first integral is the angular integral that gives a constant, and
where in the second integral we have assumed that the function g becomes
isotropic and that £ is large (that is true when T approaches T;). So we have
found that, forgetting irrelevant constants,

pngt | “9(0) 0" dp (3.8)
0 | |

Our hypothesis is that for large p we have that g(p) ~ p~®. So when T" — T,
and £ is large we have to evaluate fof p? %1 dp. We find that

AQ

£ 4. constant for a > d ,
A?~ ¢ 4.10g(€) fora=d, (3.9)
4. gdma fora < d.

Do not forget that for large values of a the model is short ranged, and we
expect to recover the original, a independent Harris criterion. As usual we
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insist on the fact that the use of the logarithm in the marginal case a = d
is close to formal. Consistency criteria give important indications above and
below marginality: in the marginal case different things could happen, and
basically a simple consistency criterion does not tell.

Now we notice that it is consistent that the critical behavior does not
change from the one of the pure system if

AQ

ﬁ —950 0 (310)
i.e. if the local fluctuations of 7, are becoming small on the scale given by
the distance from 7.

Since & ~ 67" (3.9) becomes

A2 gav—2 fora > d
7 = 6% ~2.log(6 ") fora=d, (3.11)
g =2 fora <d.

We can check now when the requirement (3.10) is satisfied. If a > d (i.e. in
the case of a fast decay of correlation functions) the critical point turns out to
be stable if dvpure > 0 i.e. if apure < 0. This is the original Harris criterion.
For a > d the tail of ¢(Z) does not have any effect, since the decay is too
fast. In this way we are also giving a quantitative meaning to a “not too
large exponent”, that is, in this case, an exponent smaller than the spatial
dimensionality of the system, d.

If, on the contrary, a < d we have found that the critical point can be
stable if avpure > 0. This is a different requirement than the original one.
Notice that this requirement is stronger than the original one, since for a < d
one has that avpure — 2 < deure — 2.
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Chapter 4

Griffiths Singularities

We will discuss now a few implications of a crucial result originally due to
Griffiths [8]. We will see that when one considers randomly diluted ferromag-
nets, with dilution p, already beyond the critical temperature of the diluted
system, i.e. for T larger than

1.) < Ty = 1) = 7P

“something” happens to the free energy. This something is not strong enou-
gh, as we will see, to force a phase transition.

In a normal, non disordered spin model, let 7, be the critical point (second
order phase transition). In this case T is the end-point of a line of first order
phase transitions (we have already discussed this issue in same detail). The
line of first order phase transitions is characterized by the presence of a non-
zero order parameter, that goes to zero at the critical point:

+

dm=m" —m~ =2m — -0,

where m¥ are respectively the magnetizations of the plus and of the minus
state, m™ = m = —m . This fact implies, as we have discussed, that the
correlation length is diverging, & — co. In this “usual” situation for 1" > T,
the order parameter has a vanishing expectation value, i.e. m(7T") = 0, and
the free energy density f(7, H) is an analytic function. What we mean is
that at a given fixed T > T, there is “no trace” of the phase transitions:
when changing 7" one can detect that a phase transition is coming since £ is
diverging (there are precursor signs of the phase transition, as opposed to the

13
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case of a first order phase transition where one has no precursor phenomena),
but there are no (even weak) residual singularities after 7" has crossed 7.

We will show here that is a large class of disordered systems things are
different: the value of the so-called Griffiths temperature T, defined as the
temperature where the non-analyticity ends when increasing 7', can be shown
to be strictly larger than T, i.e. T¢ > T, (and typically it coincides with the
critical temperature of the pure model).

Let us start by considering the usual ferromagnetic Ising model (for ex-
ample a simple cubic d dimensional lattice, for example d = 2 or larger, with
a first neighbor interaction). When considering the diluted model some sites
will be empty, with probability (1 — p). Only the occupied sites interact,
with the same interaction of the pure Ising model. The quenched occupation
probability for the site %, p; does not depend on H, on 1" and on the occupa-
tion probabilities of the other sites, p;. We have already discussed in chapter
(2) that the critical temperature of the diluted model, T.(p), decreases with
decreasing p, and that for p smaller than the percolation threshold probabil-
ity, p < p., the model cannot have a ferromagnetic phase transition anymore
(since there is not an infinite cluster anymore: it is clear that there cannot
be a spontaneous magnetization at 7'(p) > 0 if p is smaller of the p. where a
connected infinite cluster appears). One can show that in this situation the
‘ Griffiths Singularities‘ appear:

for each value of the dilution p < 1 the magnetization M is a non-
analytic function of the magnetic field H at H = 0 foreach 7' < Tz =

T.(p=1).

4.1 The Existence of the Singularities: Stat-
ics

We will start by discussing Griffiths Theorem, and the existence of singular-
ities in the free energy density: in this way we will be discussing the static,
equilibrium situation, as opposed to the dynamical regime that we will be
discussing in section (4.2).

We will try to sketch a rigorous proof of Griffiths Theorem (basically the
one given in chapter 2 of [5]) by stressing the ones that appear to be the main
physical issues. We will also use directly the original Griffiths derivation of
the theorem [8] and the version of the theorem proved in [9].



4.1. THE EXISTENCE OF THE SINGULARITIES: STATICS 15

Our discussion will be divided in four main points:

1. we will express the spontaneous magnetization of a spin system as a
sum over the zeroes of a polynomial in the activity p;

2. we will discuss the fact that, because of the Lee-Yang theorem (that we
will prove in chapter (6)), these zeroes have to lie in the unitary circle
in the plane of complex activity;

3. we will exhibit a special class of connected clusters of spins, C;

4. we will show that the presence alone of configurations of the class C
is enough to make an analytic continuation through the unitary circle,

ol =1.

We insist again: we will try to stress the most important physical issues
that allow to give a rigorous proof, without trying to be rigorous ourselves.
So, we will show that in a diluted Ising model there are Griffiths singu-
larities. We will call A a periodic box in Z% We consider the usual Ising

Hamiltonian:
H[O’] = _ZaiJijUj_hZUi . (41)
ij i

The couplings J;; are quenched random variables, that dilute the lattice.
There are two main possible choice for the couplings:

A a site dilution, where the quenched random variables are site variables 7;
and

o = JTZ'T]' 1f|l—j|:1,
Y10 otherwise ,

where the a priori probability of the 7; is P(r; = 1) = p and P(r; =

0) =(1-p).
B a link dilution, where the quenched random variables are defined on links
and
0 ifli—j]>1,
Jij =4 0 if [i — j| =1 with probability (1 —p) ,

J if |i — j| = 1 with probability p .
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The main result one can show rigorously is that for T < T.(p = 1)
but 7 not too small the imaginary axis in the complex h plane (i.e. the
unitary circle in the complex activity plane) contains at least a singularity
at h = 0, but the spontaneous magnetization goes to zero when h — 0
along the real axis. It is also known that in spite of this singularity m can
be C* in h at h = 0 [10] (the magnetization does not have any visible
change at T = T.(p = 1), and it can still be infinitely differentiable). On
one side because of that the standard high temperature expansion ceases
to be absolutely convergent in the Griffiths region: in these conditions it
is interesting to look for improved expansion methods that can converge
even in presence of Griffiths singularities [5]. On the other side the main
physical effects of such dilution disorder and of Griffiths singularities is on
the dynamical behavior of the system. As we will see in the next section the
dynamics of the system becomes very slow, and decays are not exponential
anymore.

We will discuss the case of site dilution (the same kind of treatment works
for link dilution). As from item (1) in our to do list we will start by computing
the magnetization of the site diluted system. Site ¢ is occupied if 7; =1 and
empty if 7; = 0.

A connected cluster C is a group of |C| occupied lattice sites with the
property that all the sites in C' are connected to another occupied site of C'
with a first neighbor link, and they are not connected from a first neighbor
link to any of the occupied sites that do not belong to C. We show in figure
(4.1) a configuration of clusters C' on a (two dimensional) volume A.

Let C' be a connected clusters of occupied sites in A. Let |C| be the
number of sites in C, and Pca the probability of C' (the clusters C' are
constructed by independent site percolation, see the discussion in chapter
(2)). We call m, the average magnetization per site of A (averaged also over
the disorder), and m, the average magnetization per site of the connected
cluster C. Now

ma = A7) Poa me (4.2)
c

were the sum runs over all the connected clusters that can appear in the
region A.
Let the activity p be defined as

P = €72ﬂh (43)

Y
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Figure 4.1: A volume A with a configuration of connected clusters of occupied
sites. Occupied sites are represented with filled dots, empty sites with empty
dots. Connected clusters are enclosed by continuous contours.

and let fo be the free energy density restricted to the connected cluster C,
i.e.
| o= log (Ze)
C =~ A 1084e)
BIC|

where Z¢ is the partition function computed by summing only on the spins
that belong to the connected cluster C'. Now

e _ 00 dle _ g, Ol

oh  Oh Op op

Now we notice that (e’ﬂhm ZC) is a polynomial in p of degree |C|. To show
that we write (as we frequently do in these notes)

e—IBh(n — e,Bh e—/)’h(o’r}—l)

me =

Y

and we notice that taken away the first term in the right hand side of the
equation (it gets canceled by the e #*ICl) we are left with a term that can
take the two values 1 and p: so when we sum over the o; = +1 variables we
obtain a polynomial containing all the powers of p = e 2" up to the term
[ef
Pl
Let us write this polynomial of degree |C| as a product over its zeroes:
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where K is a constant (not relevant here), the power of p at the denominator
leaves us with the polynomial of degree |C|, and where R, (C) is the ath
zero of Z¢. Notice that here we are summing over all zeroes, also coincident
ones, all with multiplicity one.

According to item two of our list we notice that Lee-Yang Theorem, that
we will prove in chapter (6), tells us that

IR,(C) =1 Va, (4.4)

i.e. the zeroes of Z; are on the unitary circle of the activity complex plane.
We have that

afC afc 1 8
= — % —928p 2% =2 ) Zlog(Z
C
2 (0§~ 1
T\ 2% Zp-RO))
i.e.
IC|

and using (4.2) the magnetization per site on A is

IC|
1 1
my = —— E P Cl—2p E —_——
A |A| = C,A | | o p_Ra(C)

To construct my we are considering all connected clusters C' allowed in A,
and weighting their magnetization with the probability for C' to occur. In
this way we have obtained the average magnetization of the diluted lattice A,
that has been obtained by performing both a thermal average and a quenched
disorder average (i.e. an average over the site dilution disorder).

We note now that

1
A 20l Pea=rp. (4.5)
c

i.e. it is equal to the a priori probability for a site to be occupied (this is
clear since it is the expected total number of occupied sites divided times the
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total number of sites in |Al), and

ma(p) =p—2p) Zi(gl , (4.6)

where we have done a number of steps. In first we have summed over the first
term getting p. In the second term we have introduced some major changes:
now the sum runs over all the zeroes that can occur on connected clusters C
defined on A, all of them counted only once with their correct multiplicity.
N, is the finite number of different zeroes that can occur on the connected
clusters on A, and 74 is the residue of the pole A and is defined as

1
na(A) = 0y > ma(C) Pop | >0, (4.7)
¢ for which r, is a zero

where the sum runs over all clusters C' where the partition function Z; has
a zero in R4, and m(C) is the number of times that R4 appears as a zero
of the connected cluster C' (i.e. the multiplicity of the zero R4 on cluster C).
It turns out to be useful to notice that

D na(A) = ﬁz (ZmA(C)> Poy

where the term in round brackets gives |C|, implying that, because of relation
(4.5)

zA:nA (A)=p. (4.8)

Now from equations (4.6) and (4.8) and from Lee-Yang theorem we can
conclude that for |p| # 1 (i.e. if there are no zeroes in the denominator)
ma(p) is bounded uniformly in A. This is true since in this case all n4 are
positive and their sum is finite and equal to p, and because of (4.4) the factors
1/(p — R4) are finite, implying that m, can grow too much.

The fact that the free energy density fa(p) exists in the thermodynamical
limit, i.e. for A — Z¢, the fact that ma(p) = QBp% and standard theorems
tell us that

ma(p) — m(p) for A — Z4if [p| #1 .
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®

Figure 4.2: The complex p plane with the unitary circle, and the construction
where one (wrongly) assumes that it exists a point ¢ with |(| > 1 such that
the Taylor series centered around ( has a convergence radius r that enters
the unitary circle.

Now we are left with the task to show that for T < T.(p = 1) the
magnetization m(p) cannot be analytically continued along the real axis from
the interior of the unit circle of the complex p plane to the region with
|p| > 1. We will prove that by showing that the assumption that an analytic
continuation can be done is false. If we assume that an analytic continuation
is possible we are implying that there exist a point ( > 1 on the real axis in
the p complex plane and a radius r, with ( —r < 1 (i.e. such that the circle
around ¢ of radius r has a non-zero intersection with the unitary circle around
the origin), such that the Taylor series for m(p) around the point p = ( has
a convergence radius 7 (see figure (4.2)). In this case the convergence radius
of the series will contain in its interior an arc D of the unitary circle, i.e.:

D={p=¢€?||g] <@},

for some ® > 0.

Consider now the case where T' < T.(p = 1), and assume ® > 0. Our item
three can be first phrased in a very synthetic way by considering a sequence
of regular clusters C, where all spins are occupied in a d dimensional cube
and all spins are empty out of the cube. The probability of finding such a
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cluster, large at leisure, in the sum over C' that forms my, is finite. For such
regular clusters, since T < T,(1), we have that min(|R —1|) — 0, so that the
point p =1 is an accumulation point of the zeros.

It is interesting to make the point in better detail. To do so we consider a
large volume A, large enough that there are singularities R4 of ma(p) on the
arc D: this is surely true for A large enough, since at T' < T,(1) singularities
from very large compact clusters are approaching the point p = 1. Let n4
the residue of the pole of R4, that can be computed (and we will bound)
through (4.7). Let C4 be the cluster such that Ry is a zero of Z¢,, i.e. such
that m¢, has a singularity at R4. Let A be the smallest cube including
completely C4 (in the simple sequence discussed before it would be the filled
cube itself). Let us take now A as the union of n disjoint translates A(x) of
A (we duplicate A by centering it around points z, such that the different
copies do not overlap). We can get a lower bound for the residue of the pole
at R4 by only including these configurations.

We note that the probability of C4 is

Pe, = plal (1 — p)local |

where 0C4 are the sites in A at distance 1 from C4 and not in C4. This tells
us that sites in the cluster are occupied, and that happens with probability
p, and that the connected cluster is bordered by empty sites, and sites are
empty with probability (1 — p). Now by considering only the n translates we
have just discussed we get that

n 1
nA(A)szCA:ZPcAEH>O’ (49)

i.e. my is strictly positive.
We are left now with the task of completing the discussion of our fourth
item. This is done by proving the Lemma telling us that

I1

na(A)
> >
mA(TRA)_zr—l 27’—1

: (4.10)

for 7 > 1, uniformly in A. So, since II > 0, m diverges as r — 1. This means
that m(p) cannot be holomorphic in any neighborhood of the arc D. Since
the model enjoys an explicit symmetry we know that my(h) = —my(—h),
i.e. ma(p) = —ma(p™'): so m(p) cannot be continued from the interior to
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Y

Figure 4.3: The complex p plane with the unitary circle, and details useful
to prove Lemma (4.10).

the exterior of the unitary p circle (even along the real axis). This proves
our theorem.

We are left with Lemma (4.10) to prove. We define the angle ®4 by
R4 = €'®4, since R, is on the unitary disk. Let r > 1, » € R. As shown in
figure (4.3) for a generic Rg = ¢'®® on the unitary circle we define

Rip €43 =rR, — Rp .

The convexity of the unit circle implies that
T
R
To get convinced of this fact we can first thing about the situation where r =
1 and R4 and Rp are very close on the unitary circle. In this case |®4p — @ 4|
is maximum, close to 5. Now when Rp goes far from R, on the unitary circle
the difference decreases, to reach zero when the two zeroes are opposite on a
diameter. When the two zero approach on the other side |® 45 — ® 4| starts
increasing again to eventually reach 7. When r > 1 keeping R4 and Rp fixed
the resulting ® 45 becomes closer to ®4, making (4.11) still valid.

We also notice that V u = p e € C, ¥ € R,

R (ue®) =R (p ) =p cos(d+v) < |u] . (4.12)

B ap — Dl < (4.11)
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Now we consider the sum that appears in the expression for my, (4.6). We
have that, because of (4.12),

Ny Ny
A , A
S };73(31z zm(ezqmz ];73(3{>,
5o ta— B 5 {ta— B
that by taking out of the sum the term with B = A we can rewrite as

(Pa—PaB)
- A
) | S ( o >)

B#A

Now since all the ng are larger than zero because of (4.7), and (4.11) implies
that all the cosines in the sum are larger than zero, by inserting relation (4.9)
we have shown that

Na

ne(A)
1 TRA - RB

S @) 1 7
—r—1"r-1

that proves Lemma (4.10) and Griffiths theorem.

4.2 Dynamical Effects of Griffiths Singulari-
ties

As we have already suggested Griffiths singularities show their most powerful
effect in changing the nature of the dynamics of diluted systems, making it
far slower than the usual dynamics of magnetic material. We will follow here
the work of references [11, 12, 13] in trying to clarify the nature of these
effects. We will even learn here something more than the physics of Griffiths
singularities, since we will see that in diluted systems already for values of the
temperature that would be in the paramagnetic phase of the pure material
the dynamics deeply changes in nature, ceasing to be a pure exponential
dynamics.

If one considers ferromagnetic systems away from the critical point, or
even typical systems with quenched random disorder at very high temper-
atures, one finds that connected correlation functions decay exponentially,
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i.e.

Cit' —t) = <%Zoi(t)ai(t’)> ~e T

where we have considered the disorder averaged correlation function (this is
irrelevant for systems without quenched disorder). We know that 7 diverges
at the critical point

T ~YT—T, fz )

where z is the dynamical critical exponent.

We will discuss here the fact that, on general grounds, if quenched disorder
is present one can get a more complex behavior. Maybe the main result we
will discuss will be that, in the Griffiths phase, for an Ising model,

C(t) ~ ¢~ Allox() 41 : (4.13)

where d is, as usual, the spatial dimension of the system. This behavior can
be seen as a dynamical signature of the Griffiths singularities. We will discuss
this and related results by using scaling arguments, from [11, 12, 13]: recently
this behavior has been proved rigorously in [14]. The fact that logC ~

—A (log(t))d%1 means that C' decays here more slowly than en exponential
or a stretched exponential (~ exp(—£%)).

An instructive observation is that the behavior of equation (4.13) has not
yet been observed in numerical simulations (even if eventually, for very large
times, it has to emerge since it has been proved rigorously): fits of real exper-
imental data are usually not precise enough to allow a clear cut distinction
of a power of a logarithmic behavior from a power law decay. In numerical

simulations, even on very large time scales (on nowadays computers) one

always observes a stretched exponential: the (log(t))d%1 will only eventually
emerge at larger times. This is instructive about the care that is frequently
needed to rightly interpret data from numerical simulations.

Let us state more precisely the body of results we will discuss here. We
will consider ferromagnetic diluted systems, and we will look both at the
region ' — T (p = 1), i.e. at the paramagnetic phase when 7" approaches
the critical temperature of the pure system (that is larger than the critical
temperature of the diluted system) and at the Griffiths phase , i.e. for T, <
T < T.(p =1). The idea behind these findings is the same that is behind
the static treatment: there exist large, rare regions, that are very ordered
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and sometimes are very weakly connected. These regions relax very slowly
to equilibrium: typically a single region decays exponentially, and the non-
exponential behavior is given by the need to bring the different regions at
thermal equilibrium.

So, we summarize, mainly following Alan Bray [12, 13]. First, defining z,
the dynamical critical exponent of the pure system,

_d
—t zp+d

for T — T."(p=1) =T7 one finds that C(¢) ~ e :

i.e. a slower decay than in the pure system. For large times, and |T;—TG| #0
. . . . G
the scaling function has an atypical form, i.e.

C(t) ~ exp {—tﬁf (wﬁ) }

The argument of function f is ¢/£%%¢, with an atypical dependence over the
dimension d (usually the adimensional argument would be t£~%).
Secondly

in the Griffiths phase, i.e. for T, < T < T,(p = 1), the relaxation
toward equilibrium is even slower.

If we consider |a dynamics without conservation laws‘ (for example the usual
Monte Carlo dynamics where we propose to update spins, one at the time,
but not the Kawasaki flipping dynamics where magnetization is conserved)

we find that in this case, for |t > £»T4¢|

logC(t) ~ —A (log(t))cf%1 for Ising spins , (4.14)
and .

log C(t) ~ —(Bt)2 for Heisenberg spins . (4.15)
Again, to be specific, we will consider an Hamiltonian H = — (i) Jij S;-

—

S;, where the sum runs over first neighbors of a simple cubic d-dimensional
lattice whose sites are labeled from the index 7, the S; are n-dimensional
vector such that \S?Z|2 = 1. For n > 2 these are the so-called Heisenberg of
O(n) (from the global symmetry they enjoy) models. For n = 1 we have that
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S; = %1, i.e. we are dealing with the Ising model. The {.J;;} are indepen-
dent quenched independent random variables, that can carry a site or a link
dilution (see the discussion of the static case) with occupation probability p.
As we have already started to discuss slow anomalous relaxations are implied
from the fact that large regions of the system with a fraction of connected
sites larger than the average (p) appear in a large lattice with finite proba-
bility. These large clusters are typically weakly connected to the rest of the
system. The quenched nature of the disorder implies that these traps cannot
get modified with time, and slow down the dynamics on all time scales.

The main assumption behind our derivation will be that the large time
behavior of the system is determined by some precise class of clusters, of a
given density, size, shape, that we will try to determine. We will also assume
that compact clusters control the long time dynamics (when this assumption
breaks one can get a very different kind of physics).

We will use a saddle point approach to determine the typical size of the
cluster that are dominating the dynamics at time ¢: these will typically be
clusters that will locally have a density p’, larger than the average density
p. In other words: for T' < Tg = Tcpure’ i.e. in the Griffiths phase, the
dynamics at asymptotically long times is governed by cluster with density p’
such that T.(p') > T (remember that the cluster with all occupied sites has
T.=T.(p=1) = Tg). These clusters are regions of local order that does not
change in time (we have quenched noise). We will also see that also in the
paramagnetic phase close to Tg, i.e. for T — T, the dominating clusters
are the ones with density one.

We can start writing that, on general grounds, the time dependent corre-
lation function C'(t) can be written as a sum over clusters of connected spins
of all sizes and densities:

Ct) =Y P(L,p) e @ | (4.16)
L.,p'

where P(L,p') is the probability that a site belongs to a cluster of size L
and density p’, and 7 is the relaxation time of such a cluster. We are looking
at the decay by separating it in different decays over connected clusters of
all possible densities and sizes: each one of these decays is exponential, and
the non-exponential character of the dynamics is given by the sum over a
large number of different decay channels. The fact that the lattice is non-
homogeneous generates the non-exponential decay.
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4.2.1 Dynamics in the Paramagnetic Phase

We start by discussing the paramagnetic phase, when 7" approaches Tz from
above. In this case the Ising model and the Heisenberg model have the same
behavior.

In this situation the slowest mode is given by clusters with p’ = 1. T is
getting close to T from above, where the pure system is critical: because of
that clusters with p’ = 1 are being the first to become critical.

The probability of finding in the lattice a cluster of size L? with all sites
occupied is

1
P(L,1) ~p™ = e ¥ | with ¢= logz—) , (4.17)

since each site is occupied with probability p independently from the others.
The relaxation time of such a cluster (with p’ = 1, i.e. with all occupied

sites) scales as
L
T(L,1) ~ &P f (—) : (4.18)
&p
where §, is the correlation length of the pure system, 2, is the dynamical
critical exponent of the pure system, and f is a scaling function. As usual f
is such that

;0 for L>>¢, ie. for large clusters ,

T(L,1)~{ 4

L#» for L €&, i.e. for a large correlation length .

L, the cluster size, has the role of the lattice size in usual finite size scaling,
and the behavior changes when the correlation length of the fully occupied
connected cluster reaches its size L. So, we have claimed that fully occupied
clusters, i.e. clusters with p’ = 1: we can select the contribution given by
these clusters in equation (4.16), and use a saddle point to determine the
typical size of such clusters. Let us insert the probability (4.17) and the
correlation time (4.18) in (4.16), and find

Ctyme e E) (4.19)
The saddle point is determined by the condition

a%(CLd+t§;zpfl (é)) :chd—1+t§Z)—zp f2 (é) 6—1:0’

P
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_mpHt [
L:t%l & =t g<_) )
&p

where g is a scaling function. By inserting this result in (4.19) we find that

_ d(zp+1) L L _ztl /T,
logC ~ —ctai & <1 g (—) —t & h (td—l & h (—) 5;1) :
& &
(4.20)

where g, h and h are again scaling functions. We will determine the scaling
relation of time and correlation length by looking at the second contribution
to the right hand side of (4.20) (and later we will verify that the first con-
tribution behaves in a consistent way: it better does!). The argument of the
function A is adimensional: since h is also adimensional this implies that

and so

_zpHl 4

e &Y= (t é:p—(zwd))dfll

is adimensional, i.e. that
t~ gt (4.21)

This result is a truly remarkable atypical scaling. We are indeed used to the
fact that the time ¢ scales as a power of the correlation length, but here we
have found an additional precise, explicit dependence over the dimensionality
of the space, d. Now under (4.21) the scaling function h rightly has an
adimensional argument, while the dimensional argument that multiplies it
scales as . .,

tET bt W =t (4.22)

As one would have expected it is trivial to verify that the first contribution
to the sum in the right hand side of (4.20) has the same scaling found in
(4.22): indeed we have that

_ d(zp+1) d(zp+1) d

d d ___%Epma) _a
tﬂ é‘p d—1 ~ tﬂ t (d—l)(zp+d) ~ t2p+d ,

QED. We have established that, in the paramagnetic region, when 7" ap-
proaches T from below,

log C(t) ~ —tarig (¢ &, o) | (4.23)

where ¢ is a scaling function. Now we can discuss the two most relevant

limits. For very large times, i.e. ¢ > ;ﬁ , l.e. times where we are exploring
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distances that are far larger than the correlation length of the problem) the
relevant lengths are of order &, since the typical size of a correlated clusters
has reached &, and has stopped to grow. In these conditions from (4.19) we
find that:

logC(t) ~ —c §g —t &, fort > 5;”‘1 . (4.24)
The opposite limit is the one where the time we have waited has not allowed
to explore lengths of the order of the size determined by &7 *4 In this

regime the scaling function g of equation (4.23) behaves as a constant, i.e.
g(0) ~ constant, and

log C'(t) ~ —tﬁ, for t < &7 . (4.25)

Exactly at T = T equation (4.25) is valid at all times, since &,(T) = oc.

The argument presented in this subsection is valid both for Ising and
Heisenberg like systems: only the value of z, will depend on the details of the
model, but the new features due to the presence of dilution are unchanged.

A few words about the sense of this procedure are in order. We are
working here to connect time scales (the amount of time we have left to the
system to equilibrate in the phase space) and distances (which typical size
of domains we system is exploring at a given time). When we start with, for
example, a high T" disordered sample, spins are uncorrelated, and the corre-
lation length at time zero is of the order of one lattice spacing. Correlation
grows in time, allowing to study regimes of larger distance: eventually this
growth will be saturated when we reach the asymptotic correlation length of
the system, if it is finite.

4.2.2 Dynamics in the Griffiths Phase

We will discuss now what happens in the Griffiths phase, i.e. for T.(p) < T <
Tg = T.(p = 1). Here the result will depend crucially, for reasons we will
discuss, from the details of the model (Ising or Heisenberg). We will assume
in the following that the dynamics does not possess special conservation laws:
our results will be valid, for example, for the usual Glauber dynamics, and for
example for a Metropolis like evolution, while they will not apply, for example
to the spin flip Kawasaki dynamics (that conserves the total magnetization
of the system).
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2 d case:
bulk

+

M 1 dinterface
+

Figure 4.4: A cluster that has to be reversed (2d case): the relevant interac-
tion is on the 1d interface.

Dynamics in the Griffiths Phase: the Ising Case

Here the dominating clusters are again clusters with p’ = 1, i.e. local con-
nected cluster where sites are fully occupied. Let us discuss why.

We start by giving an estimate for 7(L, p), the relaxation time of a cluster
of size L and average density p’. We analyze the p’ = 1 case: for doing that
we have to determine the time needed to flip the full cluster. This time
needed for a coherent reversal of all cluster spin is the mode that determine
the process rate: since spins can only take the values 41 this is the only way
we have to flip the cluster. In order to flip the cluster we will have to pay
the price of breaking an interface of size L¢! (see figure (4.4) for the two
dimensional case). So we find that the relaxation time for flipping a compact
cluster

7(L,1) ~ T, et (4.26)

where 7, is a microscopic time that characterizes a spin flip in the ordered
phase of the pure system, ¢ is the surface tension and oL?~! the free energy
carried by the interface. The 7! factor (Arrhenius law) has been included
in . What is crucial in equation (4.26) is that 7 depends exponentially from
L (we will see that this will be the feature that will select as dominating
clusters the one with p’ = 1).
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The entropic term (that favors clusters with smaller local density) is
log P(L,p'), and it depends on L only like a power: we have already no-
ticed in (4.17) that log (P(L,1)) ~ —cL%. Again, the entropic term that
favors clusters with smaller local density only increases as a power in L,
while the energetic term, that makes cluster with p’ = 1 important grows
as en exponential in L: asymptotically, for large L, fully occupied clusters
will be the most important ones in slowing down the dynamics. So we can
consider clusters with p’ = 1, and inserting (4.17) and (4.26) in (4.16) we
find that

rd—1

)y~ e T (4.27)

L
For large ¢ we have to determine the value of L that maximizes the contri-

1
butions to the sum. For doing that we go to the scaling variable y = 03-1L,
and we solve

cdo a1y —— (d—1) yd_Qe_yd_lzo,

1 d—1
L~ {—log (i Jﬂl)} . (4.28)
o Tp
Now (4.27) and (4.28) give

that gives

log C(t) ~ — B log (Tt—p addl)] T (4.29)

It is interesting to discuss the limit in which T' — T{;, i.e. when the system
is reaching the critical temperature of the pure system from below. In this
limit

o~ & and 1, ~ £

¢ a—1
L~ 5]) log (W) 5
P

_d
t d—1
log C(t) ~ —{f]‘f log (§Zp+d> for t> §;p+d . (4.30)

P

that in (4.28) gives

and in (4.29) gives
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It is interesting that in (4.30) there is no sign of the criticality that the system
undergoes when T — T,(p): the divergence of the correlation length in the
Griffiths phase is controlled by the criticality at T, i.e. by the presence of
large connected clusters of density 1.

Dynamics in the Griffiths Phase: the Heisenberg Case

We will discuss now what happens for Heisenberg models, i.e. when spin are
vectors defined on a n-dimensional sphere, with n > 2. The big difference
is that in this case the elementary spins can be changed with continuity, by
small increments: in this case we do not need a complete flip, 1 — —1 or
vice-versa, to move a spin. Since it is possible to go by using small changes
from one value of a spin to a different value 7(L, p) turns out to be far smaller
than in the Ising case.

The main mechanism behind the relaxation of Heisenberg spins is very
different then for Ising spin: here the thermal noise drives a diffusion of the
order parameter on the n-dimensional sphere. Let us call M_(t) the magneti-
zation of a given connected cluster of spins at time ¢, and §M the variation of
the magnetization in a single time step (where all spins of the cluster change
once). Since the spins are moving thanks to an incoherent thermal noise we
have that in one time step

§M ~ L% . (4.31)

After ¢ steps

d
2

o=

SM(t) ~ L% t7 |

where the power of L is from (4.31), and the power of ¢ is because of the
random walk in time (different time steps are uncorrelated).

Which is the time that a cluster of size L needs to flip completely? It is
the time 7 needed for the change of M to become of order volume, i.e. such
that 6M(7) ~ L%, that is L? 72 ~ L9, i.e.

T~ L%,

We can extend our estimate to the behavior of cluster with density p’ < 1.
In this case we have to remember that the time scale is given by 7(p'), the
relaxation time of a bulk system of density p’, and the length scale is given
by the correlation length of a system at density p/, £ (p'). So the scaling law
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becomes now

(L, p') ~ 7(p) (5(;))1 : (4.32)

Now that we have the behavior of 7(L,p') we need the probability that a

connected cluster composed of N = L¢ sites contains Np' occupied sites. It
is

pl

) PN (1 -pN (4.33)

Developing the Newton binomial we find that

P = (N

!/ 1 o
log P(L,p') ~ —L* (p' log% +(1—p")log ] P > (4.34)

+ sub-leading corrections = —Lf(p') .

It is easy from (4.32) and (4.34) to use a saddle point to compute the asymp-
totic behavior of C(t) (we leave that as an exercise to the reader) and find
that

N[

log C(t) ~ (Bt) (4.35)
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Chapter 5

Scaling Laws

In the following we will discuss the phenomenological theory of scaling. We
will discuss about scale invariance, scaling and hyperscaling, about the role
of fluctuations. We will discuss critical exponents and derive relations among
them.

We have already used the methods that we describe here when discussing,
for example, the dynamical effects of Griffiths singularities, and that chap-
ter should be reread and rethought after a careful reading of the following
sections.

The foundations of the subject can be found in references [15] and [16].
The reprint collection contained in [17] is a very useful tool. We will follow
here closely the way in which [2] deals with the subject: also the discussion
of [1] is very relevant to the points we are making here.

5.1 Scale Invariance

Second order phase transitions and critical phenomena are the main founda-
tion on which our work is built. We are basing the most of our analysis of
disordered systems by studying how criticality is modified by the presence
of disorder, and by generalizing the concept of phase transitions (Parisi the-
ory being the crucial contribution in this direction). Universality is here a
crucial issue. A large number of completely different physical phenomena,
where a correlation length diverges, & — oo for some precise value of the
external parameters that appear in the Hamiltonian, have the same kind of
behavior. On one side the Curie point if transitions from a paramagnetic

35
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to a ferromagnetic regime is a typical example; on the other side the case
of critical opalescence in a gas-liquid transition makes clear the strength of
cooperative effects, since regions of the scale of microns cooperate to pro-
duce a visible effect on a very macroscopic scale. One can easily produce
a large list of very well known and important critical phenomena, ranging
from magnets, to crystalline structures and conductivity in random media,
to super-conductors and super-fluidity, up to polymers, proteins, liquid crys-
tals and percolative phenomena, to end with gauge systems describing the
fundamental physics of elementary particles.

One observation about this list opens an important road. All these phe-
nomena are organized in few universality classes, characterized by the same
critical exponents: non-universal quantities, like the value of the critical tem-
perature (and in general of the critical parameters) or of the amplitude that
multiply the diverging quantities, do depend from the details of the inter-
action, but the exponents of the power divergence only depend from a few
relevant features like the dimensionality of the system, the symmetries of the
Hamiltonian and the space where the order parameter is defined. This cru-
cial fact can be naturally connected to the fact that the physics of the system
is dominated, at criticality, by a diverging correlation length. In these con-
ditions all the small distance structure of the system (like the exact degree
and pattern of connectivity, for example) becomes irrelevant and is forgotten:
only what happens at very large distances is important.

We will try in the following to see how from a few main theoretical hy-
pothesis (mainly the dominance of a single, diverging correlation length at
the critical point and the existence of the thermodynamical limit) one can
derive a number of physical implications. The relation of this scaling theory
to the theory of renormalization group is very reminiscent of the relation
of thermodynamics (a phenomenological theory, where one never says how
things work, but starts from a few principles and use a consistent mathemat-
ical apparatus to derive consequences) to statistical mechanics (where one
use the law of forces together with the law of large numbers).

In the mean field theory, that we have discussed in detail, one finds the
existence of a critical point (and this is a crucial and non-trivial feature),
and a well defined critical behavior. There is an upper critical dimension, d?,
that is equal to 4 for the universality class of the Ising model (¢* theory),
and for d > d} critical exponents do not change, and things remain basically
the same, since fluctuations are not effective (this is connected to the fact
that generically two random travelers never meet in d > 4, where one is very
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lonely).
We start by considering the critical temperature 7, and the effective

temperature

T-T,
T,

For 8 > 0 we are sitting in the disordered, symmetric phase, while when
f# < 0 we move to the ordered phase, where the original symmetry of the
Hamiltonian is broken. In field theory # is connected to m?, a bare squared
mass. In a continuous transition a correlation length & diverges when 6 — 0.
Let a be the elementary lattice spacing of our system.

In this framework let us start by studying the regime where & > a,
i.e. where the correlation length, that diverges at 7, is far larger than the
microscopic scale of the theory. When 6 is small we have a large value of &
(the typical size of a cluster of aligned spins). When # = 0 the scale given
by & disappears, since & — 0o: the theory becomes scale free. We will also
assume that there are no large anisotropies, and that the theory is becoming
isotropic when approaching the critical point.

Let us consider for example a two point correlation function G(Z). For
example for a scalar field ¢(Z) we have

6

Il

(5.1)

=,

G (7) = (4(0) ¢(7))

where lengths are expressed in terms of a. We assume, by ignoring anisotro-
pies, that
G — B — —
g2 (5.2
G(l91) 7" a
i.e. that nothing changes if we double both the length of #, the length of

¢/ and the microscopic scale. Now we use the crucial assumption that the
critical limit exists, i.e. that for fixed |Z| > a and |7] > a and a — 0

G(|Z]) <|f|>
-~ =R| = ) (53)
G(|7]) |
i.e. that in the critical limit the dependence over a disappears (since the

relevant scales are determined by the diverging &). Now because of (5.3) the
obvious relation

a(z) _ a(z)  G(z)
G(lg)  a(2) Gg)
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implies that in the critical limit

#(5)-2(%) (%)
9] |2 |9
that in turn implies that

R(r) ~r",

i.e. that at criticality correlations behave as power laws. In other terms we
have found that, under our hypothesis, at T' =T, i.e. at § = 0 we have that

A
ca=cim (5) (5.4)
|7

that gives the usual definition of the critical exponent 7. 1 has been defined
in (5.4) in such a way to be zero in mean field (where the power exponent
is d — 2 from naive power counting): the anomalous dimension n measures
the deviation from the Gaussian approximation. When 7 # 0 we are dealing
with a scale invariant (since correlations behave as power laws), non-trivial
(since the exponent is different from d — 2) field theory.

5.2 Relevant Parameters, Scaling and Hyper-
scaling

To understand better what is happening let us seat at small § > 0, in the
disordered phase close to the critical point § = 0. Here £ is large, and £ > a,
i.e. the system has developed a correlation length that is far large than
the natural, microscopic scale. In this region we can discuss three different
regimes for the distance |Z|:

1. the region of large correlation length, where & > |Z| > q;
2. a transient region, where £ ~ |Z| > q;

3. the region of large distances, where |Z| > £ > a.

In the three cases we are looking at distances very large on the scale of the
lattice spacing a. When 6 becomes smaller and we approach the critical
point £ increases, enlarging the first region and shrinking the third one, but
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till # > 0 we find the three different regions that we have enumerated: only
exactly at 8 = 0 we are always in the first region. Let us discuss what
happens in the three regions:

1. in the first region we can consider ¢ as infinite. Everything works as if
we were sitting at § = 0;

2. this is the transition region, where we start to observe violations from
the power law behavior. The behavior in this region does not have clear
signatures: things are murky;

3. here correlation function decay exponentially. This region is not feeling
the effects of criticality anymore. On these length scales the system
behaves as a normal paramagnet. There are no traces of the scale
invariant, power law behavior.

This discussion shows that € is a relevant parameter that decides about the
infrared (i.e. at large distances) behavior of the system. When we look at
larger and larger distances the system becomes more and more sensitive to
the fact that 6 # 0, i.e. that T" # T., even of a small amount: when we
look at distances large enough even a small deviation from the exact point
of criticality, # = 0, dramatically change the behavior of the system making
correlation functions to decay exponentially. We can summarize by saying
that

N\ 1 | Z|
607D = s 9 () 55)

where the scaling function g is regular in the origin (the first of our three
regions), and decreases exponentially at infinity (the third region).

A last brief summary of what we have done could maybe help (repetita
juvant). We seat at T very close to T, just slightly above it. We look at
correlation functions, and find that for distances that are not too large they
scale in a way very similar to the critical, 7" = T, one, i.e. they go to zero as
a power law, |#|~(4=2*") times a smooth, regular function. When we increase
the distance we have a crossover region, and for very large distance we do not
feel the critical point anymore, and correlation functions decay exponentially
again.

As 6 — 0 we expect, for example from mean field theory, that the corre-
lation length diverges as a power law, i.e. that

E@)~&E. 07, for—0, (5.6)
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Figure 5.1: The system in a volume 2 is divided in blocks of size &.

that relates a length scale to a temperature scale.

Notice that we have already, in this discussion, introduced two (funda-
mental) critical exponents, n and v. &, is what we have called a critical
amplitude: it is not universal and it depends on the details of the system.

The real meaning of this discussion is found when one assumes that our
main hypothesis of a single diverging correlation length determines the be-
havior of the system for different physical quantities. So we will assume the
‘ scaling hypothesis|:

‘close to the critical point £ is the only relevant length scale. ‘

For our next step we will need an additional, independent hypothesis.
Let us consider the free energy of our system in the volume 2. We divide the
system in blocks of linear size £(f) and volume £(6)? (see figure (5.1)), and
assume that each of these blocks of size £(f)? can be seen as an individual
unit, since they fluctuate coherently (by the definition of correlation length
£)-

Taking completely seriously this statement, and adopting it for evaluat-

ing the fluctuations of the individual blocks, is the so called | hyperscaling
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hypothesis. If we use this hypothesis to estimate the singular part of the free
energy density we find that:

fsingular(e) - Q £(0)¢

_ Fsingular(a) o1 [ Q ] ~ v
(9] ’

where the ratio in square brackets is the number of regions in a given volume
), and the validity of this relation, again, is based on the validity of the
hyperscaling hypothesis. Now we consider for example the specific heat:

of
o0

~ 01/(1—2 ~ e—a

C(0) :
where the last relation comes from the definition we have already given in
former parts of these notes of the exponent that characterizes the singularity
of the specific heat (the specific heat diverges for oz > 0, while it exhibits
a cusp if & < 0). So, we have been able to derive a first implication of the
scaling and hyperscaling hypothesis:

a=2—-vd. (5.7)

When does this result, based on the hyperscaling hypothesis, hold? The two
dimensional Ising model has a logarithmic singularity in the specific heat,
that translates in @ = 0. That makes us to expect from (5.7) v = 2= =1,
that is true. Also the exact computation for the O(n) spin model in the limit
n — oo confirms the validity of hyperscaling.

In mean field theory, on the contrary, there is a problem. Here things
do not work, since for all values of d ayr = 0 and vy r = %: exponents
do not depend on d, and the relation (5.7) is not satisfied in d > d* where
the mean field picture is valid. Thinking about it, this failure turns out
to be deeply justified. Indeed the construction of the mean field has been
based on neglecting fluctuations, so that using their amplitude to determine
criticality appears unreasonable. It is nice, on the contrary, that we can
turn this failure in a success by using the point to estimate the value of
the upper critical dimension d* (in a different way from the usual one based
on the linear response theory). We just notice that d* is the value of the
space dimension where fluctuations start to be relevant: for d > d they are

irrelevant, while at d; they start to be important and change the critical
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behavior of the system. So we can define d > d%as the dimension where in
mean field hyperscaling holds. That gives

_ U
oapyp =2 — VMFdC )

i.e. correctly d¥ = 4, the same result we have obtained when looking at
the point where corrections to mean field explode (the Landau-Ginzburg
criterion).

5.3 Relations Among Critical Exponents

We will now use these ideas to determine a set of relations among different
critical exponents. We will succeed, starting from our hypothesis, in deriving
regular relations that connect singular quantities. Notice that in the following
discussion we will assume that the singularities of the different quantities are
the same above and below T,.. We start by considering the susceptibility x:

X—Woc/d:vG(x),
that because of (5.5) gives

1
= [ 0
7 <£(0) | Z[d=24n
that since
x(0) =677 (5.8)

gives
T=v(2-n). (5.9)

For continuing our discussion we consider the spontaneous magnetization
m(f) = limp_,o+ m(h,6) when we approach the critical temperature from
below. We have a critical behavior:

m(6) ~ (—0)? for § — 0, (5.10)
and for example in mean field one finds By r = % Exactly at # = 0 we have

m(h, 0 = 0) ~p h . (5.11)
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The relations (5.10) and (5.11) tell us that h, m® and (—6)"® scale homoge-
neously. Because of that we can write

h=md f, (9 m‘%) , (5.12)
where fj, is an adimensional scaling function. We also notice that, for § —

0+,
m(f) = x(6) h . (5.13)

We call z the adimensional variable we have used in (5.12), by defining z =
Hmfé, i.e. m® = 2759 672, Now equation (5.12) becomes

h=2"P 05 f,(2), (5.14)
and (5.13) becomes
h=x10)z"6°. (5.15)
From (5.14) and (5.15) we have that
Fl(z) x7H0) = 27P0H 9Pl (5.16)

From (5.8) this implies that
v=p80-1), (5.17)
and looking at the z-dependent part we have that
fa(2) = 27701

We want to derive a last interesting relation. Since we have defined the
exponent @ by Cy ~ 6~“ the singular part of the free energy density will

scale as fsingular ~ 6?7 Now we notice that y = % ~ 677 and since each
derivative with respect to h adds an exponent of (—4 ¢) we find
2—a—280=—7v. (5.18)

So we have derived four relations among six critical exponents: we have
relations (5.7), (5.9), (5.17) and (5.18) among the exponents 7, v, «, 7,
and 0. If we decide to express everything as a function of n and v with a
very simple algebra we find that

= 2—-vd;
= 5(d=2+n);

= v(2-n);
d+2—n
d—24n °

(5.19)

2 ™R
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Thanks to (5.19) we are able to determine all critical exponents from the
knowledge of 7, the exponent of the anomalous scaling of the Green function
at the critical point, and of v, the exponent characterizing the divergence of
the correlation length when 7" — T,. v and 7, together with the scaling and
hyperscaling hypothesis, allow to determine all the critical exponents.

As we have already discussed finite size scaling is a phenomenological
theory, where one never needs to say how things work, but starts from a
set of plausible hypothesis and, by using mathematical consistence, derives
relevant consequences. The theory of renormalization group, that we will
not discuss in this notes (see for example [1, 2, 3] for relevant texts) gives
foundation to these relations, and is a tool to compute critical exponents
and other universal quantities. Other important instruments to do detailed
computations are among others high and low 7" expansions and Monte Carlo
methods.



Chapter 6

Lee-Yang Theorem

We will now discuss and prove Lee-Yang theorem [18]: again, we have post-
poned the discussion of this fundamental tool, that has been already crucial
when proving, for example, Griffiths theorem in chapter (4). The discus-
sion here will again inspired by the one in [2] (that is in turn inspired by
the treatment of Ruelle [19]): the text of Huang [4] also contains a relevant
introductory discussion of the subject.

6.1 A Proof of Lee-Yang Theorem

The approach that we will discuss now is based on determining the position
of the zeroes of the partition function. We have already discussed how the
presence of singularities in the derivatives of the free energy (i.e. critical phe-
nomena) in the infinite volume limit are connected to zeroes of the partition
function for real values of the external parameters of the Hamiltonian. In
their seminal paper [18] Lee and Yang established some crucial facts about
the location of these zeroes.

We will deal with an Ising model on a generic lattice structure. We will
focus on the properties connected to the behavior of the system under the
influence of an external magnetic field h. Since we are interested in analyticity
properties of the thermodynamical functions we will have to consider complex
values of h: we will look for zeroes of partition function in the complex h
plane.

Let us just repeat the basics we have already discussed in the first chap-
ters of these notes. In finite volume the partition function Z cannot have
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zeroes for real values of the parameters (for example temperature 7' and
magnetic field h). There can be zeroes only if the parameters take complex
values. Only in the infinite volume limit can these zeroes migrate on the real
axis, creating singularities in the thermodynamical functions. Here we will
investigate where the zeroes are located in finite volume in the complex h
plane.

The starting point is the key observation that, for real values of the in-
verse temperature 3, but for a non vanishing multiplying factor, the partition
function Z in finite volume is a polynomial in the activity

p=e Ph (6.1)

All that said, we can start by stating | Lee- Yang Theorem |:

the zeroes of the partition function Z lie on the unitary circle of the
plane of complex activity p, or, in other words, on the axis of pure
imaginary magnetic field A.
We can explain better, in these terms, the mechanism that is behind the
birth of a phase transition in the infinite volume limit (but we stress that
the Lee-Yang theorem in itself says nothing about the potential existence of
a phase transition in the infinite volume limit: Lee-Yang theorem only tells
about the locus of the zeroes for finite volume and in the infinite volume
limit). So, in a finite volume V' the partition function Z is, apart from
irrelevant factors, a polynomial in p: this implies that there is a finite number
of zeroes in the p complex plane. The number of zeroes increases with V.
When V' — oo the zeroes “condense” on some subset of the unitary circle.

Now, with an eye to figure (6.1), let us thing about what happens at high
T, i.e. for f < B, (figure (6.1.a)): in this case the region close to h = 0,
ie. to p = 1 is left free of zeroes in the infinite volume limit. The free
energy density is analytic in the thermodynamical limit. When [ increases
and approaches (. the gap closes, while the zeroes approach the real axis
(figure (6.1.b)). At B, the gap closes (figure (6.1.c)), and it forbids analytic
continuation from the A > 0 to the h < 0 region: we have a phase transition
at h = 0. Following this way of thinking one can also see that the transition
is of first order, with a jump in the magnetization dm = m™ — m~ = 2m;
(as we have discussed in detail in the first part of these notes).

We will consider here the Ising model (with spin variables o; = +1) on
an arbitrary graph G with N vertices. There are N spins o0; that seat on
the N vertices. Each couple of vertices is connected at most by one link: in
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Figure 6.1: Location of the zeroes in the complex p plane. a) is for high T,
where the zeroes lie far away from the real axis. b) is for lower T values,
always with 7" > T,: the zeroes are approaching the real axis. ¢) at T =T,
in the infinite volume the zeroes pinch the real axis, creating a singularity in
the thermodynamical functions. We only draw what is typically happening
in the R(p) > 0 region.

this case we call the two vertices first neighbors. We call L the total number
of links of the graph (for example in the case of a simple cubic lattice in d
dimensions we have that L = dN). Let also be h; the magnetic field on site
7, and

p; = e 2Phi r=e . (6.2)

Y

The partition function on G is

Iy = Z e/BZ'UNj+ﬁEihmi
{oi=%1}
= BLHBEhi Z eﬂz'(aiaj—l)‘*‘ﬂzihi(w—l)
——
= ST Pl [))

where the sum Y runs over all the couples of first neighbors of G, and

P(r,{p:}) = Z eP 2 (0igj=1)+B 32, hi(oi—1) (6.3)
{o—i::l:l}
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Figure 6.2: The very simple graphs with two points (on the left) and with
three points (on the right).

is a polynomial in 7 and in all p;.

Obviously for 7 and p; € Rt the polynomial P is positive definite, and
it cannot have zeroes. We will assume in the following that we are in the
ferromagnetic region, i.e. that f € R*, that in turn implies that 0 < 7 < 1.

We will start by computing exactly the partition function (or better its
polynomial part P) on very small graphs. Let us start by the two point graph
sketched in the left part of figure (6.2). Here we have that

P, = Z 6/3[(0102—1)+h101+h202—h1—h2]
01,02=%1
— Z (eﬂ[(02—1)+h202—h2]+eﬂ[(—02—1)—h1+h202—h1—h2])
oo==+1

= 14+ e~ 28—28m + e~ 26—2ph2 + e~ 2Bh1—2Bh;

i.e. that
P12 =1+ 7'(,01 + ,02) + p1p2 . (64)
Now the same computation for the graph with three sites, in the right part
of figure (6.2). First we sum over o; and then over o:
P123 — Z 6/5[(0102—1)+(0203—1)+h101+h202+h303—h1—h2—h3]

01,02 ;0-3::|:1
= E ! (65[(02*1)+(0203*1)+h2027h2+h3037h3]

o2,03=%1
+ 65[(*0'2*1)+(0'20'371)72h1+h20'27h2+h30'37h,3])
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Figure 6.3: caption
= Z (efllostithsos=hs] 4 o=20+5((7—1)=2h1-+haos—hs]
os==+1
+ e—2ﬁ+ﬂ[(—o’3—l)—2h2+h30’3—h3]+6,3[(—(73—1)—2111—2h2+h30’3—h3]) ]

At last we sum over o3, and substituting for 7 and p; we find

P123 =1 + e—2ﬂ—2ﬂh1 4 6—4,8—2,3h,2 + 6—2ﬂ—2,3h,1—2,3h,2 + e—2ﬂ—2ﬂh3
+ e*4,372ﬁh172ﬂh3 +672,372ﬁh272ﬂh3 +e*2ﬁh172,3h2*2ﬁh3

=1 + Tp1+7T°p2+Tpip2+Tps + T2 p1ps + T2 p2ps + TP1p2ps -
Simplifying we have that
Piog = (14 p17) (14 ps7) + p2 (T + p1) (T + p3) (6.5)

that we will use in the following together with (6.4) to check our general
result.

Let us repeat again that but for a regular function the free energy F' is
the logarithm of P: the only potential singularities of the free energy are the
zeroes of the polynomial we are computing.

We will introduce now a systematic procedure to build the polynomial Py
merging together two smaller graphs G; and G,. In this way we will eventually
be able to build step by step the polynomial connected to a generic graph
G. The theorem will be proved by detecting and analyzing some important
properties of this constructive procedure. We start by considering the two
disjoint graphs A and B of figure (6.3): when the consider the graph obtained
as the sum of the two subgraphs (without identifying any couple of points)
the polynomial related to the sum of the two graphs is the product of the
two original polynomials:

P = PsPs .
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d
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Figure 6.4: caption

By using the procedure described in figure (6.4) we generate now a new graph
a=b by selecting two sites a (in the graph A) and b (in the graph B) and
identifying them (the same exact procedure can also be used to create a new
graph by identifying two points of the same graph). The polynomial Py
is linear in p,, and the polynomial Pg is linear in p, (see for example the
detailed computation that has led us to equations (6.4) and (6.5)). In other
terms we have that

PA = A++paA—
Ps = Bi+p B,

where A, is the contribution obtained when o, = +1 (o, is the spin defined
on site a), while A_ is the contribution obtained when o, = —1, and the
same for B, _ and oy.

Now we identify sites a and b, and we impose that o, = g, = o4, i.e.
that the two spins coincide, and that there is a single magnetic field variable
ha: now on the new site a = b there will be a single variable p,,. As far as
the dependence over sites a and b is concerned the polynomial related to the
simple sum over the two disjoint graphs has the form

P=PyPg=AB, +ps A By +py AyB_+ papp A-B_,
while now, after contracting a and b, since o, = 0, = 04, We have that
_Pa:b = A+B_|_ + Pab A_B_ . (66)

This is the summing rule we were looking for. We can use it to contract
arbitrary parts of graphs to build up larger graphs. We can check that the
procedure works in the simple examples we have analyzed before: we contract
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two graphs done of two points to obtain a three point graph. Consider the 2
point graph of equation (6.4), and write its polynomial for the couple of points
(1,2') and for the couple of points (2", 3). By extracting the dependence over
por and over por we have that

Py = (14+7p)+px(T+p1) ,
Pyry = (14 7p3) + par (T +p3) -

Now identifying points 2" and 2" (and calling the new site 2) and using our
rule (6.6) we find that

Prog =1+ 7p1) (L+7p3) + p2 (T +p1) (T +p3)

that coincides with (6.5). The procedure works. This process can be used to
build an arbitrary graph starting from the two point graph.

Let us now analyze in better detail the properties of the polynomial re-
lated to the two point graph, Pjs (6.4). The polynomial has zeroes when

L+7(p1+p2) +pp2=0,

i.e. when

We can look at (6.7) as at a one to one conformal mapping from the complex
plane ps to the complex plane p;: each complex value of p, is transformed in
a complex value of p;. We notice two important facts.

e For real values of 7 the mapping (6.7) leaves invariant the unitary circle
(i.e. the locus of p complex values such that |p| = 1). Indeed, on the
unitary circle we can define p = €*®, and we have that

‘_1"‘702 1

2_ 1+2rcosgp+7%|
T+ p2

| P2+ 2rcosgp+1|

e If asin our hypothesis, 0 < 7 < 1, it is easy to verify that the mapping
(6.7) swaps the interior and the exterior of the unitary circle: the in-
ternal region is mapped in the external region and vice-versa. In other
terms we have that [ps] <1 = |p1| > 1 and |ps| > 1 = |ps| < L.
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So, we have shown that couple of values (py, p2) such that Ps(p1, p2) =0
are or both on the unitary circle of the complex plane or one inside and one
outside it.

The next and last step consists in showing that if for an arbitrary graph
G all the p; are inside or all the p; are outside the unitary circle than Py is
different from zero. This proves Lee-Yang Theorem, and we will do that by
proving that this property survives the contraction rule that we have given.
If this is true we are all set: we have proven that the property is valid for
the simple two points graph, we have a contraction rule that we can use to
build every graph starting from the two point one, and we know that the
contraction rule preserves the property, so that all graphs G will enjoy it.

To prove this last point (i.e. that the property of being non-zero survives
the contraction procedure) we consider a couple of graphs for which we know
that P({p;}) # 0 when |p;| < 1Vi. We make explicit the dependence over the
two sites a and b that we want to contract. As we have already discussed the
non-contracted graph sum of the two elementary graph is characterized by a
factorized polynomial, product of the two elementary polynomial. Here:

P=Aii +A_ypa+ As_py+ A__paps (6.8)

while we had seen that for the contracted graph P,_y = AL + A pap -
Under our hypothesis P # 0 if |p,| < 1 and |py| < 1, and we wonder now
about what happens for P,_,. We are interested to the case of constant
magnetic field, so we can put p, = p» = p. The roots of the equation P =0
are

—(As+ A )+ \/(A—+ + AL —4AL A
Po = 24 ’

and our hypothesis is that |pg| > 1. With some computations one sees that
this implies for us that

[ A > [A_| . (6.9)

But so if we look again at the contracted graph, we find that because of
(6.9) its characteristic polynomial P,y = A, + A pg cannot be zero for
|pay| < 1, that proves our statement: after the contraction the property that
the original graphs were enjoying is still valid for the resulting graph.

We have proved that P cannot have zeroes for [p| < 1 (we are using at
this point an uniform magnetic field, h; = h Vi, and so p; = pVi. Under the



6.2. TWO SIMPLE LIMITING CASES 93

transformation h — —h the quantity p goes to p~'. The explicit symmetry
under inversion of the magnetic field implies for the partition function that

Z(h) =Z(-h),
i.e. that

1
NP P(r, p) = e PN P(1,2) . (6.10)
p

From equation (6.10) it is clear that our result, i.e. the fact that P # 0
for |p| < 1 also implies that P # 0 for |p| > 1. Lee-Yang Theorem
follows: the partition function can only have zeroes on the unitary circle in
the complex plane, |p| = 1.

6.2 Two Simple Limiting Cases

It is worth to discuss two simple and interesting limiting cases.
The first is the one of very high temperature:
T=coc=7=¢P=1.
In this case the partition function is proportional to
P(1,p) = Z ePh2ilei=l) = (1 e‘zﬂh)N =(1+p)" .
{os==%1}
The second interesting limiting case is at zero temperature:
T'=0=7=0.

Here the term e 2(?i%=1) of P(0, p), in the limit 3 — oo, forces all the spin
to be equal, all +1 or all —1. We get

PO = 3 PR (it By w) = 15 1
{Uq;::l:l}

At infinite temperature (large 7, close to 1) we have a single zero with very
high degeneracy equal to N, at p = —1. When 7 is lowered the zero split.
At T = 0 we have an uniform distribution of simple zeroes
im(2k+1)

p(()k) = e%
For finite N there cannot be zeroes at h = 0, i.e. at p = 1. What happens
in the infinite volume limit is a far more complex issue: the existence or the
absence of a phase transition cannot be decided on the basis of the issues
discussed in this chapter.
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Figure 6.5: caption

6.3 The Transfer Matrix: the 1d Ising Model

We will solve here exactly the one dimensional Ising model, and discuss about
the zeroes of the partition function. In order to do that we will introduce
and use the technique of the transfer matrix: this is a crucial technique in
Statistical Physics and in the study of disordered systems, and we consider its
introduction as one of the main reasons for this diversion. The transfer matrix
technique is very direct, as we will see, in one dimensional problems, but it
is also very important when generalized to higher dimensional cases: in two
dimensions it is a very effective technique, while in higher space dimensions
it becomes more complex and time consuming.

We consider a one dimensional linear chain with periodic boundary con-
ditions (see figure (6.5). Inspired from figure (6.5) we write the partition
function by dividing its contribution in different pieces:

253 (eﬂ(awrlH—%(alle—%(arl))
{o}
(eAteros o0t e ) (6.11)
(eﬂ(asa4—1)+%(03—1)+%(a4—1)) o
where we have assigned the different contributions to the links of the chain
(by dividing the magnetic field contribution from a given site among the

two different links that start from the site). Let us look to one of these
contributions, for example to

eBloroz—1)+ 5 (o1-1)+5 (02-1)
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We write a 2 - 2 matrix that contains the values that the contribution 6.3
takes when respectively 0y = +1 or —1 and when o9 = +1 or —1. The
matrix T will have the form

01 +1 —1
02
+1 Ti1 Tio
-1 T21 T22

i.e.
1 e 2—ph 1 7p2
T = 93 _ = , 6.12
( o—28—Bh  ,—2Bh - p (6.12)
that is the transfer matrix of our problem. The crucial point is that now
it is very easy to get convinced that

M

1 N 1 N
Iy = <§€/5+,3h> Py = (§€ﬁ+/3h) Tr (TV) , (6.13)

i.e. Tj; Tjg Ty ... Ty This is thanks to the periodic boundary conditions.
Indeed we start from the link 12, with a term T,, then we use the link 23
by multiplying times Ts3, and so on till the last links that closes the chain
by contributing a factor Ty, and building the Trace operator.

To make the procedure more clear let us be pictorial on what happens
when we contract the first (12) and the second (23) links. We have that

1 2|1 2 2 3|2 3

+1 41|41 -1 +1 4141 -1 .

1 2|1 2 2 3|2 3 o

1411 A \ 1 41| -1 4
1 (22) 3 1 (22) 3 |1 (22) 3 1 (22) 3
+1 (141 41+ 41 (1-1) 41|+l (F1 41D -1+ 41 (-1-1) -1
1 (22) 3 1 (22) 3 |1 (22) 3 1 (22) 3 ’
1 (H1L+D) 41+ 1 ((1-1) 41| -1 (F141) -1+ -1 (1) -1

where with bold symbols we have indicated the site number, in parenthesis
we have the value of the spin 2 that we have summed over with the first
multiplication of our transfer matrix. The successive matrix multiplications
build step by step the partition function: at the end the trace enforces peri-
odic boundary conditions (since we are summing imposing that the last site
coincides with the first one).
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Let us call A\, and A_ the two eigenvalues of T
Tr TV = A7 + AV .

Let us compute the two eigenvalues A\. They are the eigenvalues of the
transfer matrix (6.12), i.e. the solution of the equation

det (T) =X —(1+pA+p(1—-7°)=0.

The solutions are

1 1
A = 5(1+p)i\/z(1—p)2+p72 :
For real values of h (i.e. for p > 0) and for 0 < 7 < 1 in the infinite volume

limit, i.e. for N — oo only the largest eigenvalues, A, contributes to the
partition function. In this limit the free energy density f is given by

f= lim logNZN:(ﬁ(1+h)—log2)+log(1+p+\/(1_p)2+p7'2> .

2 4

This function is singular when the argument of the square root is zero (notice
that we have now already taken the N — oo limit, and we are observing
the situation in the infinite volume limit), i.e. for

p=(1-2r") +i2rvV1—12,
where as usual we are in the region 0 < 7 < 1. So
‘pgi)f = (1 + 47t — 47’2) + 472 (1 - 7'2) =1,
ie.
pE) = etiZhe with cos(2h,) =1—272=1—-2¢ % . (6.14)

This is the main result of this exercise: the finite volume zeroes has conjured
to form a couple of singularities on the unitary circle in the complex p plane.
When T — 0 the singularities go to h, = 0 (T = 0 in the 1d Ising model,
and more in general at the lower critical dimension is somehow like a critical
point).



Chapter 7

T =0 Dynamics and Remanence

The presence of a remanent magnetization and the existence of non-expo-
nential relaxation processes have been some of the first signatures of complex
behaviors in disordered systems. Nowadays experiments, that we will discuss
in some detail later in these notes, do confirm the importance of these fea-
tures, by detecting even more impressive phenomena (like for example the
so-called memory experiments, see chapter (9)).

The main experimental finding that we will discuss here will be the fol-
lowing. When at low values of the temperature we switch off a magnetic field
applied to a spin glass (see chapter (9) for a minimal introductory experi-
mental introduction to spin glasses) we find that the magnetization that was
present in the field does not disappear: it decreases fast to a finite value, the
remanent magnetization, and than it decays very slowly, typically according
to a logarithmic pace, towards zero.

We will discuss here how remanent magnetization and slow relaxation can
be understood in a very simple model, the one dimensional spin glass (that
is not a frustrated model). It is important that these crucial effects emerge
very clearly already in this very simple model, where we will see that exact
computations allow us to get very clear results. We will follow here the very
nice treatment of [23]: for a more advanced discussion of metastable states
see [24].

We will first define the model and discuss general features that will be
relevant for us in introducing the dynamical behavior of spin glasses and,
more in general, of disordered and complex systems. We will discuss how
remanence works, and give a formulation of our problem that leads both to a
clear understanding of remanence and to a closed analytic solution. We will

o7
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compute in detail the values of the 7" = 0 remanent energy and remanent
magnetization. At last we will try to give some arguments to understand
better the reason of slow decays: in our phenomenological picture we will be
able to explain the low temperature logarithmic decay of magnetization and
energy towards their equilibrium value.

7.1 The 1d Ising Spin Glass

Here we will study a very simple model. We will consider an Ising spin glass
in one space dimension. The Hamiltonian of a system with N spins is

N N
H=-— Zaiji0i+1 - hZO'z s (71)
1=1 i=1

where the Ising spins o; can take the two values +1, A is the magnetic field,
the first sum is over the links of the chain and the second over the sites
(they coincide in one dimension, where to each link corresponds a single site,
Niink = Nsite). The couplings J (that we are labelling with the position of
the site from which they originate, pointing in the positive direction of the
chain) are quenched random variables: they are assigned a priori according
to a probability distribution P and they do not change during the dynamics.
We select a Gaussian quenched probability distribution

g2

P(J) xe 277 (7.2)

where AJ is the width of the distribution (in the case of the detailed com-
putation we will discuss now this is technically important).

As we are discussing many times in these notes the presence of quenched
disorder characterizes crucially the physics of the system: the traps cannot
change in times, and the configuration of the disorder can have (and has here)
a dramatic effect. Indeed the approach we will use here for this detailed
computation has the merit to make very transparent the most important
processes that determine the physical behavior of the system.

We start by introducing and discussing some quantities that will be im-
portant in the following (and will come back frequently in the rest of these
notes). Some of these quantities will not be used in this section, but we keep
this discussion as a moment in which we first qualify objects that are very
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important when one talks about disordered systems and that will be very
present in the rest of these notes.

First we introduce a spin-spin correlation function that represents the
overlap among two spin configurations (in the same quenched noise) at dif-
ferent times:

¢i(t) = E (0:(0)0i(t)) = (0:(0)ai(t)) (7.3)

where the thermal average (-) is taken at temperature 7. Since we are in
one dimension we know on general grounds that we cannot have a phase
transition, and

¢i(t) —r500 ¢:(1)0 .

Before continuing to discuss a few general concepts that we want to start to
understand we want to discuss the equilibrium behavior of the system.
Since the system is one dimensional it is easy to compute its thermodynamical
properties. We set now h = 0, and we consider a one dimensional chain with
open boundary conditions. We can easily think about two possible ways to
specify the state of the system:

1. we can give the values of all the spins of the chain. The spin defined
on the first site is +1, the one on the second site is —1, the one on the
third site too, and so on;

2. we can give the value of the first spin and the can tell if, in the specified
realization of the quenched disorder, the links of the system are satisfied
or not. So, assuming for example the case of all couplings equal to +1,
the state of the system of the former specifications can be given by
claiming that the spin defined on the first site is +1, the first link is
broken, the second one is satisfied and so on.

By using this second way to characterize the system
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Chapter 8

The Random Field Ising Model

In the following sections we will discuss about the Random Field Ising Model
(RFIM). We will mainly focus on the “simplest” issue, i.e. the existence
of a phase transition in dimension D). Somehow the Random Field Ising
Model plays a special role among disordered systems, and its nature is not
yet completely clear: it has somehow an intermediate nature among the
simple, diluted models, and the complex, frustrated spin glasses. Even if,
at this point, we know in which conditions a phase transition is present,
the possibility of the presence of more than one phases (for example one
ferromagnetic phase at low 7" and one spin glass phase at intermediate T
values) has not yet been confirmed or excluded (and we will not discuss this
issue here).

We will first discuss the original Imry and Ma argument (in section 8.1).
We will than discuss in section 8.3 the Parisi-Sourlas theorem (a very direct
proof of perturbative dimensional reduction valid at all loops), that we will
also use as a reason to introduce Grassmann algebras and fermionic variables.
We will try here to give all the needed details to follow the computation. We
will end the chapter, in section 8.4, by only sketching the main lines of the
theorem by which Imbrie has settled in a rigorous way the dispute about the
3D model, proving that in 3D the RFIM exhibits long range order at 7" = 0.

8.1 The Imry and Ma Argument

In the pure Ising model, with no disorder, there is a low T ferromagnetic
phase in all dimensions larger than 1: the lower critical dimension here is
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DE =1 (where we know in any case that on very general basis there cannot
be phase transitions for systems with finite range interactions).

In the Random Field Ising Model we add to the Hamiltonian of the usual
Ising model a term containing a magnetic field that is a quenched, site de-
pendent random variable:

!
HRFIM = —JZO'Z'O'J' — Zh’zaz s (81)

where B
hi - 0, hzhj - h25i,j ;

where, as usual, we have denoted by an upper bar the average over the
quenched disorder.

The term containing the random magnetic field disorders the system: now
it is more difficult to get an ordered state. The energy is done of two term,
whose magnitude is controlled by the parameters J and h: when h becomes
very large as compared to J the system becomes disordered even at low 7,
since the random field decides about the spin alignment.

Here we want to discuss what happens at very low 7 and h < J (i.e.
what happens when the start a random field of very small magnitude).

Imry and Ma first have developed in [20] the most direct and intuitive
energetic argument, that we will analyze now. The ‘ Imry and Ma argument‘
says that:

the ferromagnetic ground state becomes unstable with respect to do-
main creation in all dimensions D < 2 (but it is stable in D = 3).

In other terms the system has (at least) a phase transition to a low 7" ferro-
magnetic states in D > 3: the lower critical dimension DX(RFIM) = 2 (i.e.
is equal to one plus the one of the pure Ising model).

The argument is very straightforward. Consider the ground state of a spin
system, and turn a domain of radius R and volume R”. The energetic cost
one has to pay for doing that is proportional to the surface of the domain,
i.e.

AFE ~ JRP— .

In a ferromagnetic system this is the only effect that plays a role. If now we
also have an energetic term related to the presence of the quenched random
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field, as in the Hamiltonian we have defined in 8.1, we have also to consider
that we can also gain some energy, thanks to the presence of the random
magnetic field: by rearranging a domain we pay some energy because of
flipping the boundary, but we can gain some energy in the bulk. How do
we estimate this bulk energy that we can gain? We first notice that even if
h; = 0 the total value of the magnetic field summed over all sites in a region
of size R will fluctuate (it is itself a random variable). Central limit theorem
tells us that
|Egp| ~ hR7 .

In other terms we are arguing that when we divide the system in domains of
size RP we have to pay a surface energy of order O(RP~!) per domain, while
we can gain an energy of order O(Rg) per domain. There is an important
point of detail that we have to clarify. The energy Erpr can be negative or
positive with equal probability: i.e. if we consider a given, precise domain,
when flipping it the energy will typically change of a value of order Egp,
where one time over two the energy will be gained and one time over two it
will be lost. But let us consider one site i : we select the domain we will flip
around this site, with fixed surface. When doing that, for R large enough,
it is always possible to find a region such that Egr > 0: when we flip this
region we gain an energy of order Egp.
So in total the energetic balance gives:

AE(R) ~ JRP™' — hR™ .
So, for large R and h < J

D>2— AFE >0,
D<2=—AF<0.

8.2 Grassmann Algebras
8.3 Parisi-Sourlas Theorem

8.4 The Imbrie Rigorous Result
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