
UNIX®

TEXT PROCESSING

DALE DOUGHERTY AND TIM O’REILLY
and the staff of O’Reilly & Associates, Inc.

CONSULTING EDITORS:

Stephen G. Kochan and Patrick H. Wood

HAYDEN BOOKS
A Division of Howard W. Sams & Company

4300 West 62nd Street

Indianapolis, Indiana 46268 USA

Copyright © 1987 Dale Dougherty and Tim O’Reilly

FIRST EDITION
SECOND PRINTING — 1988
INTERNET "UTP Revival" RELEASE — 2004

The UTP Revival Release is distributed according to the terms of the Creative Commons Attribution License. A
copy of the license is available at http://creativecommons.org/licenses/by/1.0

International Standard Book Number: 0-672-46291-5
Library of Congress Catalog Card Number: 87-60537

Trademark Acknowledgements

All terms mentioned in this book that are known to be trademarks or service marks are listed below. Neither the au-
thors nor the UTP Revival members can attest to the accuracy of this information. Use of a term in this book should
not be regarded as affecting the validity of any trademark or service mark.

Apple is a registered trademark and Apple LaserWriter is a trademark of Apple Computer, Inc.
devps is a trademark of Pipeline Associates, Inc.
Merge/286 and Merge/386 are trademarks of Locus Computing Corp.
DDL is a trademark of Imagen Corp.
Helvetica and Times Roman are registered trademarks of Allied Corp.
IBM is a registered trademark of International Business Machines Corp.
Interpress is a trademark of Xerox Corp.
LaserJet is a trademark of Hewlett-Packard Corp.
Linotronic is a trademark of Allied Corp.
Macintosh is a trademark licensed to Apple Computer, Inc.
Microsoft is a registered trademark of Microsoft Corp.
MKS Toolkit is a trademark of Mortice Kern Systems, Inc.
Multimate is a trademark of Multimate International Corp.
Nutshell Handbook is a trademark of O’Reilly & Associates, Inc.
PC-Interface is a trademark of Locus Computing Corp.
PostScript is a trademark of Adobe Systems, Incorporated.
PageMaker is a registered trademark of Aldus Corporation.
SoftQuad Publishing Software and SQtroff are trademarks of SoftQuad Inc.
WordStar is a registered trademark of MicroPro International Corp.
UNIX is a registered trademark of The Open Group.
VP/ix is a trademark of Interactive Systems Corp. and Phoenix Technologies, Ltd.

4

CONTENTS

Preface xi

1 From Typewriters to Word Processors 1

A Workspace ..2
Tools for Editing ..3
Document Formatting ..4
Printing...6
Other UNIX Text-Processing Tools ...7

2 UNIX Fundamentals 9

The UNIX Shell ...9
Output Redirection...10
Special Characters..14
Environment Variables ...15
Pipes and Filters...15
Shell Scripts ...16

3 Learning vi 19

Session 1: Basic Commands ..19
Opening a File..20
Moving the Cursor ...22
Simple Edits ...25
Session 2: Moving Around in a Hurry...32
Movement by Screens..32
Movement by Text Blocks ...34
Movement by Searches ..35
Movement by Line Numbers ...37
Session 3: Beyond the Basics ..38
Command-Line Options...38
Customizing vi ...39
Edits and Movement ..42
More Ways to Insert Text...42
Using Buffers ...43
Marking Your Place ...44
Other Advanced Edits ..45

4 nroff and troff 47

What the Formatter Does ...48
Using nroff ...51
Using troff ...51
The Markup Language...54
Turning Filling On and Off ..55

v

vi Unix Text Processing

Controlling Justification...57
Hyphenation...59
Page Layout ...60
Page Transitions ...69
Changing Fonts ..74
A First Look at Macros ..80

5 The ms Macros 83

Formatting a Text File with ms ..83
Page Layout ...84
Paragraphs..85
Changing Font and Point Size..91
Displays..94
Headings ..97
Cover Sheet Macros ...98
Miscellaneous Features..99
Page Headers and Footers ..101
Problems on the First Page ..102
Extensions to ms ..103

6 The mm Macros 105

Formatting a Text File..105
Page Layout ...108
Justification ..112
Word Hyphenation ...112
Displays..113
Changing Font and Point Size..113
More about Displays ..119
Forcing a Page Break ...123
Formatting Lists ...123
Headings ..133
Table of Contents ...137
Footnotes and References ..139
Extensions to mm ..141

7 Advanced Editing 145

The ex Editor ..145
Using ex Commands in vi ...147
Write Locally, Edit Globally..147
Pattern Matching..150
Writing and Quitting Files ...155
Reading In a File..156
Executing UNIX Commands ...156
Editing Multiple Files ..158
Word Abbreviation...160
Saving Commands with map ...161

8 Formatting with tbl 165

Using tbl..166
Specifying Tables...166

Contents vii

A Simple Table Example ...167
Laying Out a Table...168
Describing Column Formats ..169
Changing the Format within a Table..176
Putting Text Blocks in a Column ...178
Breaking Up Long Tables ..180
Putting Titles on Tables..181
A tbl Checklist ..182
Some Complex Tables ...182

9 Typesetting Equations with eqn 187

A Simple eqn Example...187
Using eqn..188
Specifying Equations ...188
Spaces in Equations ...190
Using Braces for Grouping ..192
Special Character Names ...192
Special Symbols...193
Other Positional Notation ..196
Diacritical Marks ...197
Defining Terms ..198
Quoted Text..198
Fine-Tuning the Document ..199
Keywords and Precedence ...200
Problem Checklist..201

10 Drawing Pictures 203

The pic Preprocessor ...203
From Describing to Programming Drawings...224
pic Enhancements ..232

11 A Miscellany of UNIX Commands 233

Managing Your Files..233
Viewing the Contents of a File...237
Searching for Information in a File..238
Proofing Documents ..240
Comparing Versions of the Same Document ...246
Manipulating Data ...254
Cleaning Up and Backing Up ..264
Compressing Files..266
Communications ..266
Scripts of UNIX Sessions ..267

12 Let the Computer Do the Dirty Work 269

Shell Programming ..269
ex Scripts...278
Stream Editing ...282
A Proofreading Tool You Can Build..296

13 The awk Programming Language 301

viii Unix Text Processing

Invoking awk ...301
Records and Fields...302
Testing Fields ...303
Passing Parameters from a Shell Script ...303
Changing the Field Separator...304
System Variables..304
Looping ..305
awk Applications...311
Testing Programs ...318

14 Writing nroff and troff Macros 319

Comments ..319
Defining Macros ..320
Macro Names ...320
Macro Arguments ..322
Nested Macro Definitions ..323
Conditional Execution ...324
Interrupted Lines..327
Number Registers...327
Defining Strings ...332
Diversions ..333
Environment Switching..334
Redefining Control and Escape Characters ...336
Debugging Your Macros ..337
Error Handling ...339
Macro Style..340

15 Figures and Special Effects 343

Formatter Escape Sequences..343
Local Vertical Motions...343
Local Horizontal Motions ..346
Absolute Motions...347
Line Drawing ...347
Talking Directly to the Printer ...356
Marking a Vertical Position ...357
Overstriking Words or Characters..358
Tabs, Leaders, and Fields...362
Constant Spacing ...365
Pseudo-Fonts..366
Character Output Translations ...366
Output Line Numbering...368
Change Bars ...369
Form Letters...369
Reading in Other Files or Program Output ..371

16 What’s in a Macro Package? 373

Just What Is a Macro Package, Revisited ..373
Building a Consistent Framework..375
Page Transitions ...378
Page Transitions in ms ...380
Some Extensions to the Basic Package..384

Contents ix

Other Exercises in Page Transition ..387

17 An Extended ms Macro Package 395

Creating a Custom Macro Package..395
Structured Technical Documents ...397
Figure and Table Headings ..405
Lists, Lists, and More Lists..406
Source Code and Other Examples ...409
Notes, Cautions, and Warnings ..410
Table of Contents, Index, and Other End Lists ..412

18 Putting It All Together 419

Saving an External Table of Contents..420
Index Processing ..423
Let make Remember the Details...434
Where to Go from Here ...437

A Editor Command Summary 439

Pattern-Matching Syntax ...439
The vi Editor ..440
The ex Editor ..445
The sed Editor ..450
awk...452

B Formatter Command Summary 455

nroff/troff Command-Line Syntax...455
nroff/troff Requests..457
Escape sequences ...460
Predefined Number Registers ..461
Special Characters..462
The ms macros ...464
The mm Macros ..467
tbl Command Characters and Words ..473
eqn Command Characters...475
The pic Preprocessor ...477

C Shell Command Summary 483

D Format of troff Width Tables 489

The DESC File ...489
Font Description Files..490
Compiling Font Files ...491
Font Usage Limitations..491

E Comparing mm and ms 493

Paragraphs..493
Justification ..493

x Unix Text Processing

Displays..493
Formatting Lists ...494
Change Font ...494
Change Point Size ..494
Headers and Footers...494
Section Headings ...494
Footnotes..495

F The format Macros 497

Summary of the Macros...497

G Selected Readings 499

Introductory UNIX Texts ...499
Advanced Topics..499

4

PREFACE

Many people think of computers primarily as “number crunchers,” and think of word processors as generating form
letters and boilerplate proposals. That computers can be used productively by writers, not just research scientists,
accountants, and secretaries, is not so widely recognized. Today, writers not only work with words, they work with
computers and the software programs, printers, and terminals that are part of a computer system.

The computer has not simply replaced a typewriter; it has become a system for integrating many other tech-
nologies. As these technologies are made available at a reasonable cost, writers may begin to find themselves in new
roles as computer programmers, systems integrators, data base managers, graphic designers, typesetters, printers,
and archivists.

The writer functioning in these new roles is faced with additional responsibilities. Obviously, it is one thing to
have a tool available and another thing to use it skillfully. Like a craftsman, the writer must develop a number of
specialized skills, gaining control over the method of production as well as the product. The writer must look for
ways to improve the process by integrating new technologies and designing new tools in software.

In this book, we want to show how computers can be used effectively in the preparation of written documents,
especially in the process of producing book-length documents. Surely it is important to learn the tools of the trade,
and we will demonstrate the tools available in the UNIX environment. However, it is also valuable to examine text
processing in terms of problems and solutions: the problems faced by a writer undertaking a large writing project
and the solutions offered by using the resources and power of a computer system.

In Chapter 1, we begin by outlining the general capabilities of word processing systems. We describe in brief
the kinds of things that a computer must be able to do for a writer, regardless of whether that writer is working on a
UNIX system or on an IBM PC with a word-processing package such as WordStar or MultiMate. Then, having de-
fined basic word-processing capabilities, we look at how a text-processing system includes and extends these capa-
bilities and benefits. Last, we introduce the set of text processing tools in the UNIX environment. These tools, used
individually or in combination, provide the basic framework for a text-processing system, one that can be custom-
tailored to supply additional capabilities.

Chapter 2 gives a brief review of UNIX fundamentals. We assume you are already somewhat acquainted with
UNIX, but we included this information to make sure that you are familiar with basic concepts that we will be rely-
ing on later in the book.

Chapter 3 introduces the vi editor, a basic tool for entering and editing text. Although many other editors and
word processing programs are available with UNIX, vi has the advantage that it works, without modification, on al-
most every UNIX system and with almost every type of terminal. If you learn vi, you can be confident that your
text editing skills will be completely transferable when you sit down at someone else’s terminal or use someone
else’s system.

Chapter 4 introduces the nroff and troff formatting programs. Because vi is a text editor, not a word-
processing program, it does only rudimentary formatting of the text you enter. You can enter special formatting
codes to specify how you want the document to look, then format the text using either nroff or troff. (The
nroff formatter is used for formatting documents to the screen or to typewriter-like printers; troff uses much the
same formatting language, but has additional constructs that allow it to produce more elaborate effects on typesetters
and laser printers).

In this chapter, we also describe the different types of output devices for printing your finished documents.
With the wider availability of laser printers, you need to become familiar with many typesetting terms and concepts
to get the most out of troff’s capabilities.

The formatting markup language required by nroff and troff is quite complex, because it allows detailed
control over the placement of every character on the page, as well as a large number of programming constructs that
you can use to define custom formatting requests or macros. A number of macro packages have been developed to
make the markup language easier to use. These macro packages define commonly used formatting requests for

xi

xii Unix Text Processing

different types of documents, set up default values for page layout, and so on.

Although someone working with the macro packages does not need to know about the underlying requests in
the formatting language used by nroff and troff, we believe that the reader wants to go beyond the basics. As a
result, Chapter 4 introduces additional basic requests that the casual user might not need. However, your under-
standing of what is going on should be considerably enhanced.

There are two principal macro packages in use today, ms and mm (named for the command-line options to
nroff and troff used to invoke them). Both macro packages were available with most UNIX systems; now,
however, ms is chiefly available on UNIX systems derived from Berkeley 4.x BSD, and mm is chiefly available on
UNIX systems derived from AT&T System V. If you are lucky enough to have both macro packages on your sys-
tem, you can choose which one you want to learn. Otherwise, you should read either Chapter 5, The ms Macros, or
Chapter 6, The mm Macros, depending on which version you have available.

Chapter 7 returns to vi to consider its more advanced features. In addition, it takes a look at how some of
these features can support easy entry of formatting codes used by nroff and troff.

Tables and mathematical equations provide special formatting problems. The low-level nroff and troff
commands for typesetting a complex table or equation are extraordinarily complex. However, no one needs to learn
or type these commands, because two preprocessors, tbl and eqn, take a high-level specification of the table or
equation and do the dirty work for you. They produce a “script” of nroff or troff commands that can be piped
to the formatter to lay out the table or equations. The tbl and eqn preprocessors are described in Chapters 8 and 9,
respectively.

More recent versions of UNIX (those that include AT&T’s separate Documenter’s Workbench software) also
support a preprocessor called pic that makes it easier to create simple line drawings with troff and include them
in your text. We talk about pic in Chapter 10.

Chapter 11 introduces a range of other UNIX text processing tools—programs for sorting, comparing, and in
various ways examining the contents of text files. This chapter includes a discussion of the standard UNIX spell
program and the Writer’s Workbench programs style and diction.

This concludes the first part of the book, which covers the tools that the writer finds at hand in the UNIX envi-
ronment. This material is not elementary. In places, it grows quite complex. However, we believe there is a funda-
mental difference between learning how to use an existing tool and developing skills that extend a tool’s capabilities
to achieve your own goals.

That is the real beauty of the UNIX environment. Nearly all the tools it provides are extensible, either because
they have built-in constructs for self-extension, like nroff and troff’s macro capability, or because of the won-
derful programming powers of the UNIX command interpreter, the shell.

The second part of the book begins with Chapter 12, on editing scripts. There are several editors in UNIX that
allow you to write and save what essentially amount to programs for manipulating text. The ex editor can be used
from within vi to make global changes or complex edits. The next step is to use ex on its own; and after you do
that, it is a small step to the even more powerful global editor sed. After you have mastered these tools, you can
build a library of special-purpose editing scripts that vastly extend your power over the recalcitrant words you have
put down on paper and now wish to change.

Chapter 13 discusses another program—awk— that extends the concept of a text editor even further than the
programs discussed in Chapter 12. The awk program is really a database programming language that is appropriate
for performing certain kinds of text-processing tasks. In particular, we use it in this book to process output from
troff for indexing.

The next five chapters turn to the details of writing troff macros, and show how to customize the formatting
language to simplify formatting tasks. We start in Chapter 14 by looking at the basic requests used to build macros,
then go on in Chapter 15 to the requests for achieving various types of special effects. In Chapters 16 and 17, we’ll
take a look at the basic structure of a macro package and focus on how to define the appearance of large documents
such as manuals. We’ll show you how to define different styles of section headings, page headers, footers, and so
on. We’ll also talk about how to generate an automatic table of contents and index—two tasks that take you beyond
troff into the world of shell programming and various UNIX text processing utilities.

To complete these tasks, we need to return to the UNIX shell in Chapter 18 and examine in more detail the
ways that it allows you to incorporate the many tools provided by UNIX into an integrated text-processing

Preface xiii

environment.

Numerous appendices summarize information that is spread throughout the text, or that couldn’t be crammed
into it.

* * *

Before we turn to the subject at hand, a few acknowledgments are in order. Though only two names appear on the
cover of this book, it is in fact the work of many hands. In particular, Grace Todino wrote the chapters on tbl and
eqn in their entirety, and the chapters on vi and ex are based on the O’Reilly & Associates’ Nutshell Handbook,
Learning the Vi Editor, written by Linda Lamb. Other members of the O’Reilly & Associates staff—Linda Mui, Va-
lerie Quercia, and Donna Woonteiler—helped tirelessly with copyediting, proofreading, illustrations, typesetting,
and indexing.

Donna was new to our staff when she took on responsibility for the job of copyfitting—that final stage in page
layout made especially arduous by the many figures and examples in this book. She and Linda especially spent
many long hours getting this book ready for the printer. Linda had the special job of doing the final consistency
check on examples, making sure that copyediting changes or typesetting errors had not compromised the accuracy of
the examples.

Special thanks go to Steve Talbott of Masscomp, who first introduced us to the power of troff and who
wrote the first version of the extended ms macros, format shell script, and indexing mechanism described in the
second half of this book. Steve’s help and patience were invaluable during the long road to mastery of the UNIX
text-processing environment.

We’d also like to thank Teri Zak, the acquisitions editor at Hayden Books, for her vision of the Hayden UNIX
series, and this book’s place in it.

In the course of this book’s development, Hayden was acquired by Howard Sams, where Teri’s role was taken
over by Jim Hill. Thanks also to the excellent production editors at Sams, Wendy Ford, Lou Keglovitz, and espe-
cially Susan Pink Bussiere, whose copyediting was outstanding.

Through it all, we have had the help of Steve Kochan and Pat Wood of Pipeline Associates, Inc., consulting
editors to the Hayden UNIX Series. We are grateful for their thoughtful and thorough review of this book for techni-
cal accuracy. (We must, of course, make the usual disclaimer: any errors that remain are our own).

Steve and Pat also provided the macros to typeset the book. Our working drafts were printed on an HP Laser-
Jet printer, using ditroff and TextWare International’s tplus postprocessor. Final typeset output was prepared
with Pipeline Associates’ devps, which was used to convert ditroff output to PostScript, which was used in
turn to drive a Linotronic L100 typesetter.

The UTP Revival

A lot of changes have occurred in the UNIX world since Unix Text Processing was first printed in 1987. In the early
21st century, personal computers have become dirt cheap, and WYSIWYG word processors are everywhere. Tradi-
tional commercial UNIX systems are being rapidly replaced—not only by Microsoft operating systems, but by the
free Linux and BSD implementations of UNIX. The most popular commercial UNIX has become Apple’s MacOS
X (ten). Who could have predicted this in 1987?

While personal computers became cheaper and more powerful, troff became an expensive add-on item to
an increasingly expensive operating system. WYSIWYG word processors were not nearly as powerful as troff,
and only now are beginning to approach troff’s capabilities at the high end, but were easy to learn and available at
low cost. Thus, troff rapidly fell out of favor and nearly disappeared.

In the early 1990’s, James Clark single-handedly created the free groff (GNU roff) typesetting suite, con-
sisting of a ditroff replacement, clones of most of the preprocessors, and independently recreated ms and man
macro packages. In addition, groff provided some significant extensions to ditroff—one of the most signifi-
cant being the elimination of the two-character naming barrier. Some time after James Clark abandoned further
groff development, Werner Lemberg and Ted Harding took on the task of maintaining and further extending the
code.

xiv Unix Text Processing

When Tim O’Reilly and Dale Dougherty decided to make Unix Text Processing available under the Open
Book Project, they were unable to locate a copy of the original troff source for the book. Undaunted, they
scanned a proof copy (as bitmaps) and made that available for download. When the news reached the groff mail-
ing list (groff@ffii.org), some members began discussing the possibility of transcribing the text and recreating
the source code. People started claiming chapters, a list member opened his mouth one time too many and became
project coordinator, and “here we are.” After about a year of manic activity punctuated with long naps, we have fi-
nally restored the book to its 1987 glory.

The following people lent a hand with transcription and markup (in alphabetical order): Ralph Corderoy,
Michael Hobgood (who did the bulk of the work), Larry Kollar, Manas Laha, Heinz-Jürgen Oertel, Jack Redman
(who joined late, yet just in time), Stewart Russell, and Colin Watson. Jon Snader (no stranger to writing books with
troff) recreated a version of the macros used for the original book. Michael Hobgood and Andreas Kähäri have
done most of the proofreading. While we caught and corrected a few typos, we acknowledge that we may have in-
troduced others—thus we now lay claim to any remaining errors.

The PostScript file accompanying this release was built on an Apple iBook running MacOS X 10.2, using
groff 1.19.1; the PDF was then created using ps2pdf13 from AFPL GhostScript 8.00.

Another essential element in the UTP Revival was the emergence of free OCR software. While not quite up to
the commercial offerings, programs like gocr gave more people the opportunity to contribute.

Finally, we should recognize the efforts of the original authors and their gracious donation of their book to the
community. This wouldn’t have happened otherwise.

Larry Kollar
UTP Revival Project Coordinator

May 2004

4Chapter 1

From Typewriters to Word Processors

Before we consider the special tools that the UNIX environment provides for text processing, we need to think about
the underlying changes in the process of writing that are inevitable when you begin to use a computer.

The most important features of a computer program for writers are the ability to remember what is typed and
the ability to allow incremental changes—no more retyping from scratch each time a draft is revised. For a writer
first encountering word processing software, no other features even begin to compare. The crudest command struc-
ture, the most elementary formatting capabilities, will be forgiven because of the immense labor savings that take
place.

Writing is basically an iterative process. It is a rare writer who dashes out a finished piece; most of us work in
circles, returning again and again to the same piece of prose, adding or deleting words, phrases, and sentences,
changing the order of thoughts, and elaborating a single sentence into pages of text.

A writer working on paper periodically needs to clear the deck—to type a clean copy, free of elaboration. As
the writer reads the new copy, the process of revision continues, a word here, a sentence there, until the new draft is
as obscured by changes as the first. As Joyce Carol Oates is said to have remarked: “No book is ever finished. It is
abandoned.”

Word processing first took hold in the office as a tool to help secretaries prepare perfect letters, memos, and
reports. As dedicated word processors were replaced with low-cost personal computers, writers were quick to see
the value of this new tool. In a civilization obsessed with the written word, it is no accident that WordStar, a word
processing program, was one of the first best sellers of the personal computer revolution.

As you learn to write with a word processor, your working style changes. Because it is so easy to make revi-
sions, it is much more forgivable to think with your fingers when you write, rather than to carefully outline your
thoughts beforehand and polish each sentence as you create it.

If you do work from an outline, you can enter it first, then write your first draft by filling in the outline, section
by section. If you are writing a structured document such as a technical manual, your outline points become the
headings in your document; if you are writing a free-flowing work, they can be subsumed gradually in the text as
you flesh them out. In either case, it is easy to write in small segments that can be moved as you reorganize your
ideas.

Watching a writer at work on a word processor is very different from watching a writer at work on a type-
writer. A typewriter tends to enforce a linear flow—you must write a passage and then go back later to revise it. On
a word processor, revisions are constant—you type a sentence, then go back to change the sentence above. Perhaps
you write a few words, change your mind, and back up to take a different tack; or you decide the paragraph you just
wrote would make more sense if you put it ahead of the one you wrote before, and move it on the spot.

This is not to say that a written work is created on a word processor in a single smooth flow; in fact, the writer
using a word processor tends to create many more drafts than a compatriot who still uses a pen or typewriter. In-
stead of three or four drafts, the writer may produce ten or twenty. There is still a certain editorial distance that
comes only when you read a printed copy. This is especially true when that printed copy is nicely formatted and let-
ter perfect.

This brings us to the second major benefit of word-processing programs: they help the writer with simple for-
matting of a document. For example, a word processor may automatically insert carriage returns at the end of each
line and adjust the space between words so that all the lines are the same length. Even more importantly, the text is
automatically readjusted when you make changes. There are probably commands for centering, underlining, and
boldfacing text.

1

2 Unix Text Processing

The rough formatting of a document can cover a multitude of sins. As you read through your scrawled
markup of a preliminary typewritten draft, it is easy to lose track of the overall flow of the document. Not so when
you have a clean copy—the flaws of organization and content stand out vividly against the crisp new sheets of paper.

However, the added capability to print a clean draft after each revision also puts an added burden on the writer.
Where once you had only to worry about content, you may now find yourself fussing with consistency of margins,
headings, boldface, italics, and all the other formerly superfluous impedimenta that have now become integral to
your task.

As the writer gets increasingly involved in the formatting of a document, it becomes essential that the tools
help revise the document’s appearance as easily as its content. Given these changes imposed by the evolution from
typewriters to word processors, let’s take a look at what a word-processing system needs to offer to the writer.

A Workspace

One of the most important capabilities of a word processor is that it provides a space in which you can create docu-
ments. In one sense, the video display screen on your terminal, which echoes the characters you type, is analogous
to a sheet of paper. But the workspace of a word processor is not so unambiguous as a sheet of paper wound into a
typewriter, that may be added neatly to the stack of completed work when finished, or torn out and crumpled as a
false start. From the computer’s point of view, your workspace is a block of memory, called a buffer, that is allo-
cated when you begin a word-processing session. This buffer is a temporary holding area for storing your work and
is emptied at the end of each session.

To save your work, you have to write the contents of the buffer to a file. A file is a permanent storage area on
a disk (a hard disk or a floppy disk). After you have saved your work in a file, you can retrieve it for use in another
session.

When you begin a session editing a document that exists on file, a copy of the file is made and its contents are
read into the buffer. You actually work on the copy, making changes to it, not the original. The file is not changed
until you save your changes during or at the end of your work session. You can also discard changes made to the
buffered copy, keeping the original file intact, or save multiple versions of a document in separate files.

Particularly when working with larger documents, the management of disk files can become a major effort. If,
like most writers, you save multiple drafts, it is easy to lose track of which version of a file is the latest.

An ideal text-processing environment for serious writers should provide tools for saving and managing multi-
ple drafts on disk, not just on paper. It should allow the writer to

• work on documents of any length;

• save multiple versions of a file;

• save part of the buffer into a file for later use;

• switch easily between multiple files;

• insert the contents of an existing file into the buffer;

• summarize the differences between two versions of a document.

Most word-processing programs for personal computers seem to work best for short documents such as the letters
and memos that offices churn out by the millions each day. Although it is possible to create longer documents, many
features that would help organize a large document such as a book or manual are missing from these programs.

However, long before word processors became popular, programmers were using another class of programs
called text editors. Text editors were designed chiefly for entering computer programs, not text. Furthermore, they
were designed for use by computer professionals, not computer novices. As a result, a text editor can be more diffi-
cult to learn, lacking many on-screen formatting features available with most word processors.

Nonetheless, the text editors used in program development environments can provide much better facilities for
managing large writing projects than their office word processing counterparts. Large programs, like large docu-
ments, are often contained in many separate files; furthermore, it is essential to track the differences between ver-
sions of a program.

From Typewriters to Word Processors 3

UNIX is a pre-eminent program development environment and, as such, it is also a superb document develop-
ment environment. Although its text editing tools at first may appear limited in contrast to sophisticated office word
processors, they are in fact considerably more powerful.

Tools for Editing

For many, the ability to retrieve a document from a file and make multiple revisions painlessly makes it impossible
to write at a typewriter again. However, before you can get the benefits of word processing, there is a lot to learn.

Editing operations are performed by issuing commands. Each word-processing system has its own unique set
of commands. At a minimum, there are commands to

• move to a particular position in the document;

• insert new text;

• change or replace text;

• delete text;

• copy or move text.

To make changes to a document, you must be able to move to that place in the text where you want to make your ed-
its. Most documents are too large to be displayed in their entirety on a single terminal screen, which generally dis-
plays 24 lines of text. Usually only a portion of a document is displayed. This partial view of your document is
sometimes referred to as a window.* If you are entering new text and reach the bottom line in the window, the text
on the screen automatically scrolls (rolls up) to reveal an additional line at the bottom. A cursor (an underline or
block) marks your current position in the window.

There are basically two kinds of movement:

• scrolling new text into the window

• positioning the cursor within the window

When you begin a session, the first line of text is the first line in the window, and the cursor is positioned on the first
character. Scrolling commands change which lines are displayed in the window by moving forward or backward
through the document. Cursor-positioning commands allow you to move up and down to individual lines, and along
lines to particular characters.

After you position the cursor, you must issue a command to make the desired edit. The command you choose
indicates how much text will be affected: a character, a word, a line, or a sentence.

Because the same keyboard is used to enter both text and commands, there must be some way to distinguish
between the two. Some word-processing programs assume that you are entering text unless you specify otherwise;
newly entered text either replaces existing text or pushes it over to make room for the new text. Commands are en-
tered by pressing special keys on the keyboard, or by combining a standard key with a special key, such as the con-
trol key (CTRL).

Other programs assume that you are issuing commands; you must enter a command before you can type any
text at all. There are advantages and disadvantages to each approach. Starting out in text mode is more intuitive to
those coming from a typewriter, but may be slower for experienced writers, because all commands must be entered
by special key combinations that are often hard to reach and slow down typing. (We’ll return to this topic when we
discuss vi, a UNIX text editor).

Far more significant than the style of command entry is the range and speed of commands. For example,
though it is heaven for someone used to a typewriter to be able to delete a word and type in a replacement, it is even
better to be able to issue a command that will replace every occurrence of that word in an entire document. And, af-
ter you start making such global changes, it is essential to have some way to undo them if you make a mistake.

*Some editors, such as emacs, can split the terminal screen into multiple windows. In addition, many high-powered UNIX worksta-
tions with large bit-mapped screens have their own windowing software that allows multiple programs to be run simultaneously in
separate windows. For purposes of this book, we assume you are using the vi editor and an alphanumeric terminal with only a single
window.

4 Unix Text Processing

A word processor that substitutes ease of learning for ease of use by having fewer commands will ultimately
fail the serious writer, because the investment of time spent learning complex commands can easily be repaid when
they simplify complex tasks.

And when you do issue a complex command, it is important that it works as quickly as possible, so that you
aren’t left waiting while the computer grinds away. The extra seconds add up when you spend hours or days at the
keyboard, and, once having been given a taste of freedom from drudgery, writers want as much freedom as they can
get.

Text editors were developed before word processors (in the rapid evolution of computers). Many of them
were originally designed for printing terminals, rather than for the CRT-based terminals used by word processors.
These programs tend to have commands that work with text on a line-by-line basis. These commands are often
more obscure than the equivalent office word-processing commands.

However, though the commands used by text editors are sometimes more difficult to learn, they are usually
very effective. (The commands designed for use with slow paper terminals were often extraordinarily powerful, to
make up for the limited capabilities of the input and output device).

There are two basic kinds of text editors, line editors and screen editors, and both are available in UNIX. The
difference is simple: line editors display one line at a time, and screen editors can display approximately 24 lines or
a full screen.

The line editors in UNIX include ed, sed, and ex. Although these line editors are obsolete for general-pur-
pose use by writers, there are applications at which they excel, as we will see in Chapters 7 and 12.

The most common screen editor in UNIX is vi. Learning vi or some other suitable editor is the first step in
mastering the UNIX text-processing environment. Most of your time will be spent using the editor.

UNIX screen editors such as vi and emacs (another editor available on many UNIX systems) lack ease-of-
learning features common in many word processors—there are no menus and only primitive on-line help screens,
and the commands are often complex and nonintuitive—but they are powerful and fast. What’s more, UNIX line ed-
itors such as ex and sed give additional capabilities not found in word processors—the ability to write a script of
editing commands that can be applied to multiple files. Such editing scripts open new ranges of capability to the
writer.

Document Formatting

Text editing is wonderful, but the object of the writing process is to produce a printed document for others to read.
And a printed document is more than words on paper; it is an arrangement of text on a page. For instance, the ele-
ments of a business letter are arranged in a consistent format, which helps the person reading the letter identify those
elements. Reports and more complex documents, such as technical manuals or books, require even greater attention
to formatting. The format of a document conveys how information is organized, assisting in the presentation of
ideas to a reader.

Most word-processing programs have built-in formatting capabilities. Formatting commands are intermixed
with editing commands, so that you can shape your document on the screen. Such formatting commands are simple
extensions of those available to someone working with a typewriter. For example, an automatic centering command
saves the trouble of manually counting characters to center a title or other text. There may also be such features as
automatic pagination and printing of headers or footers.

Text editors, by contrast, usually have few formatting capabilities. Because they were designed for entering
programs, their formatting capabilities tend to be oriented toward the formats required by one or more programming
languages.

Even programmers write reports, however. Especially at AT&T (where UNIX was developed), there was a
great emphasis on document preparation tools to help the programmers and scientists of Bell Labs produce research
reports, manuals, and other documents associated with their development work.

Word processing, with its emphasis on easy-to-use programs with simple on-screen formatting, was in its in-
fancy. Computerized phototypesetting, on the other hand, was already a developed art. Until quite recently, it was

From Typewriters to Word Processors 5

not possible to represent on a video screen the variable type styles and sizes used in typeset documents. As a result,
phototypesetting has long used a markup system that indicates formatting instructions with special codes. These for-
matting instructions to the computerized typesetter are often direct descendants of the instructions that were for-
merly given to a human typesetter—center the next line, indent five spaces, boldface this heading.

The text formatter most commonly used with the UNIX system is called nroff. To use it, you must inter-
sperse formatting instructions (usually one- or two-letter codes preceded by a period) within your text, then pass the
file through the formatter. The nroff program interprets the formatting codes and reformats the document “on the
fly” while passing it on to the printer. The nroff formatter prepares documents for printing on line printers, dot-
matrix printers, and letter-quality printers. Another program called troff uses an extended version of the same
markup language used by nroff, but prepares documents for printing on laser printers and typesetters. We’ll talk
more about printing in a moment.

Although formatting with a markup language may seem to be a far inferior system to the “what you see is
what you get” (wysiwyg) approach of most office word processing programs, it actually has many advantages.

First, unless you are using a very sophisticated computer, with very sophisticated software (what has come to
be called an electronic publishing system, rather than a mere word processor), it is not possible to display everything
on the screen just as it will appear on the printed page. For example, the screen may not be able to represent bold-
facing or underlining except with special formatting codes. WordStar, one of the grandfathers of word-processing
programs for personal computers, represents underlining by surrounding the word or words to be underlined with the
special control character ˆS (the character generated by holding down the control key while typing the letter S). For
example, the following title line would be underlined when the document is printed:

ˆSWord Processing with WordStarˆS

Is this really superior to the following nroff construct?
.ul
Text Processing with vi and nroff

It is perhaps unfair to pick on WordStar, an older word-processing program, but very few word-processing programs
can complete the illusion that what you see on the screen is what you will get on paper. There is usually some mix
of control codes with on-screen formatting. More to the point, though, is the fact that most word processors are ori-
ented toward the production of short documents. When you get beyond a letter, memo, or report, you start to under-
stand that there is more to formatting than meets the eye.

Although “what you see is what you get” is fine for laying out a single page, it is much harder to enforce con-
sistency across a large document. The design of a large document is often determined before writing is begun, just
as a set of plans for a house are drawn up before anyone starts construction. The design is a plan for organizing a
document, arranging various parts so that the same types of material are handled in the same way.

The parts of a document might be chapters, sections, or subsections. For instance, a technical manual is often
organized into chapters and appendices. Within each chapter, there might be numbered sections that are further di-
vided into three or four levels of subsections.

Document design seeks to accomplish across the entire document what is accomplished by the table of con-
tents of a book. It presents the structure of a document and helps the reader locate information.

Each of the parts must be clearly identified. The design specifies how they will look, trying to achieve consis-
tency throughout the document. The strategy might specify that major section headings will be all uppercase, under-
lined, with three blank lines above and two below, and secondary headings will be in uppercase and lowercase, un-
derlined, with two blank lines above and one below.

If you have ever tried to format a large document using a word processor, you have probably found it difficult
to enforce consistency in such formatting details as these. By contrast, a markup language—especially one like
nroff that allows you to define repeated command sequences, or macros—makes it easy: the style of a heading is
defined once, and a code used to reference it. For example, a top-level heading might be specified by the code .H1,
and a secondary heading by .H2. Even more significantly, if you later decide to change the design, you simply
change the definition of the relevant design elements. If you have used a word processor to format the document as
it was written, it is usually a painful task to go back and change the format.

Some word-processing programs, such as Microsoft WORD, include features for defining global document
formats, but these features are not as widespread as they are in markup systems.

6 Unix Text Processing

Printing

The formatting capabilities of a word-processing system are limited by what can be output on a printer. For exam-
ple, some printers cannot backspace and therefore cannot underline. For this discussion, we are considering four
different classes of printers: dot matrix, letter quality, phototypesetter, and laser.

A dot-matrix printer composes characters as a series of dots. It is usually suitable for preparing interoffice
memos and obtaining fast printouts of large files.

This paragraph was printed with a dot-matrix printer. It uses a print
head containing 9 pins, which are adjusted to produce the shape of each
character. More sophisticated dot-matrix printers have print heads
containing up to 24 pins. The greater the number of pins, the finer
the dots that are printed, and the more possible it is to fool the eye
into thinking it sees a solid character. Dot matrix printers are also
capable of printing out graphic displays.

A letter-quality printer is more expensive and slower. Its printing mechanism operates like a typewriter and
achieves a similar result.

This paragraph was printed with a letter-
quality printer. It is essentially a
computer-controlled typewriter and, like a
typewriter, uses a print ball or wheel
containing fully formed characters.

A letter-quality printer produces clearer, easier-to-read copy than a dot-matrix printer. Letter-quality printers are
generally used in offices for formal correspondence as well as for the final drafts of proposals and reports.

Until very recently, documents that needed a higher quality of printing than that available with letter-quality
printers were sent out for typesetting. Even if draft copy was word-processed, the material was often re-entered by
the typesetter, although many typesetting companies can read the files created by popular word-processing programs
and use them as a starting point for typesetting.

This paragraph, like the rest of this book, was phototypeset. In phototypesetting, a
photographic technique is used to print characters on film or photographic paper.
There is a wide choice of type styles, and the characters are much more finely
formed that those produced by a letter-quality printer. Characters are produced by
an arrangement of tiny dots, much like a dot-matrix printer—but there are over
1000 dots per inch.

There are several major advantages to typesetting. The high resolution allows for the design of aesthetically pleas-
ing type. The shape of the characters is much finer. In addition, where dot-matrix and letter-quality type is usually
constant width (narrow letters like i take up the same amount of space as wide ones like m), typesetters use variable-
width type, in which narrow letters take up less space than wide ones. In addition, it’s possible to mix styles (for ex-
ample, bold and italic) and sizes of type on the same page.

Most typesetting equipment uses a markup language rather than a wysiwyg approach to specify point sizes,
type styles, leading, and so on. Until recently, the technology didn’t even exist to represent on a screen the variable-
width typefaces that appear in published books and magazines.

AT&T, a company with its own extensive internal publishing operation, developed its own typesetting markup
language and typesetting program—a sister to nroff called troff (typesetter-roff). Although troff extends the
capabilities of nroff in significant ways, it is almost totally compatible with it.

Until recently, unless you had access to a typesetter, you didn’t have much use for troff. The development
of low-cost laser printers that can produce near typeset quality output at a fraction of the cost has changed all that.

This paragraph was produced on a laser printer. Laser printers produce
high-resolution characters—300 to 500 dots per inch—though they are not
quite as finely formed as phototypeset characters. Laser printers are not only
cheaper to purchase than phototypesetters, they also print on plain paper, just

From Typewriters to Word Processors 7

like Xerox machines, and are therefore much cheaper to operate. However, as
is always the case with computers, you need the proper software to take ad-
vantage of improved hardware capabilities.

Word-processing software (particularly that developed for the Apple Macintosh, which has a high-resolution graph-
ics screen capable of representing variable type fonts) is beginning to tap the capabilities of laser printers. However,
most of the microcomputer-based packages still have many limitations. Nonetheless, a markup language such as
that provided by troff still provides the easiest and lowest-cost access to the world of electronic publishing for
many types of documents.

The point made previously, that markup languages are preferable to wysiwyg systems for large documents, is
especially true when you begin to use variable size fonts, leading, and other advanced formatting features. It is easy
to lose track of the overall format of your document and difficult to make overall changes after your formatted text is
in place. Only the most expensive electronic publishing systems (most of them based on advanced UNIX worksta-
tions) give you both the capability to see what you will get on the screen and the ability to define and easily change
overall document formats.

Other UNIX Text-Processing Tools

Document editing and formatting are the most important parts of text processing, but they are not the whole story.
For instance, in writing many types of documents, such as technical manuals, the writer rarely starts from scratch.
Something is already written, whether it be a first draft written by someone else, a product specification, or an out-
dated version of a manual. It would be useful to get a copy of that material to work with. If that material was pro-
duced with a word processor or has been entered on another system, UNIX’s communications facilities can transfer
the file from the remote system to your own.

Then you can use a number of custom-made programs to search through and extract useful information.
Word-processing programs often store text in files with different internal formats. UNIX provides a number of use-
ful analysis and translation tools that can help decipher files with nonstandard formats. Other tools allow you to “cut
and paste” portions of a document into the one you are writing.

As the document is being written, there are programs to check spelling, style, and diction. The reports pro-
duced by those programs can help you see if there is any detectable pattern in syntax or structure that might make a
document more difficult for the user than it needs to be.

Although many documents are written once and published or filed, there is also a large class of documents
(manuals in particular) that are revised again and again. Documents such as these require special tools for managing
revisions. UNIX program development tools such as SCCS (Source Code Control System) and diff can be used
by writers to compare past versions with the current draft and print out reports of the differences, or generate printed
copies with change bars in the margin marking the differences.

In addition to all of the individual tools it provides, UNIX is a particularly fertile environment for writers who
aren’t afraid of computers, because it is easy to write command files, or shell scripts, that combine individual pro-
grams into more complex tools to meet your specific needs. For example, automatic index generation is a complex
task that is not handled by any of the standard UNIX text-processing tools. We will show you ways to perform this
and other tasks by applying the tools available in the UNIX environment and a little ingenuity.

We have two different objectives in this book. The first objective is that you learn to use many of the tools
available on most UNIX systems. The second objective is that you develop an understanding of how these different
tools can work together in a document preparation system. We’re not just presenting a UNIX user’s manual, but
suggesting applications for which the various programs can be used.

To take full advantage of the UNIX text-processing environment, you must do more than just learn a few pro-
grams. For the writer, the job includes establishing standards and conventions about how documents will be stored,
in what format they should appear in print, and what kinds of programs are needed to help this process take place ef-
ficiently with the use of a computer. Another way of looking at it is that you have to make certain choices prior to
beginning a project. We want to encourage you to make your own choices, set your own standards, and realize the
many possibilities that are open to a diligent and creative person.

8 Unix Text Processing

In the past, many of the steps in creating a finished book were out of the hands of the writer. Proofreaders and
copy editors went over the text for spelling and grammatical errors. It was generally the printer who did the typeset-
ting (a service usually paid by the publisher). At the print shop, a typesetter (a person) retyped the text and specified
the font sizes and styles. A graphic artist, performing layout and pasteup, made many of the decisions about the ap-
pearance of the printed page.

Although producing a high-quality book can still involve many people, UNIX provides the tools that allow a
writer to control the process from start to finish. An analogy is the difference between an assembly worker on a pro-
duction line who views only one step in the process and a craftsman who guides the product from beginning to end.
The craftsman has his own system of putting together a product, whereas the assembly worker has the system im-
posed upon him.

After you are acquainted with the basic tools available in UNIX and have spent some time using them, you
can design additional tools to perform work that you think is necessary and helpful. To create these tools, you will
write shell scripts that use the resources of UNIX in special ways. We think there is a certain satisfaction that comes
with accomplishing such tasks by computer. It seems to us to reward careful thought.

What programming means to us is that when we confront a problem that normally submits only to tedium or
brute force, we think of a way to get the computer to solve the problem. Doing this often means looking at the prob-
lem in a more general way and solving it in a way that can be applied again and again.

One of the most important books on UNIX is The UNIX Programming Environment by Brian W. Kernighan
and Rob Pike. They write that what makes UNIX effective “is an approach to programming, a philosophy of using
the computer.” At the heart of this philosophy “is the idea that the power of a system comes more from the relation-
ships among programs than from the programs themselves.”

When we talk about building a document preparation system, it is this philosophy that we are trying to apply.
As a consequence, this is a system that has great flexibility and gives the builders a feeling of breaking new ground.
The UNIX text-processing environment is a system that can be tailored to the specific tasks you want to accomplish.
In many instances, it can let you do just what a word processor does. In many more instances, it lets you use more
of the computer to do things that a word processor either can’t do or can’t do very well.

4Chapter 2

UNIX Fundamentals

The UNIX operating system is a collection of programs that controls and organizes the resources and activities of a
computer system. These resources consist of hardware such as the computer’s memory, various peripherals such as
terminals, printers, and disk drives, and software utilities that perform specific tasks on the computer system. UNIX
is a multiuser, multitasking operating system that allows the computer to perform a variety of functions for many
users. It also provides users with an environment in which they can access the computer’s resources and utilities.
This environment is characterized by its command interpreter, the shell.

In this chapter, we review a set of basic concepts for users working in the UNIX environment. As we men-
tioned in the preface, this book does not replace a general introduction to UNIX. A complete overview is essential
to anyone not familiar with the file system, input and output redirection, pipes and filters, and many basic utilities.
In addition, there are different versions of UNIX, and not all commands are identical in each version. In writing this
book, we’ve used System V Release 2 on a Convergent Technologies’ Miniframe.

These disclaimers aside, if it has been a while since you tackled a general introduction, this chapter should
help refresh your memory. If you are already familiar with UNIX, you can skip or skim this chapter.

As we explain these basic concepts, using a tutorial approach, we demonstrate the broad capabilities of UNIX
as an applications environment for text-processing. What you learn about UNIX in general can be applied to per-
forming specific tasks related to text-processing.

The UNIX Shell

As an interactive computer system, UNIX provides a command interpreter called a shell. The shell accepts com-
mands typed at your terminal, invokes a program to perform specific tasks on the computer, and handles the output
or result of this program, normally directing it to the terminal’s video display screen.

UNIX commands can be simple one-word entries like the date command:
$ date
Tue Apr 8 13:23:41 EST 1987

Or their usage can be more complex, requiring that you specify options and arguments, such as filenames. Although
some commands have a peculiar syntax, many UNIX commands follow this general form:

command option(s) argument(s)

A command identifies a software program or utility. Commands are entered in lowercase letters. One typical
command, ls, lists the files that are available in your immediate storage area, or directory.

An option modifies the way in which a command works. Usually options are indicated by a minus sign fol-
lowed by a single letter. For example, ls -l modifies what information is displayed about a file. The set of possi-
ble options is particular to the command and generally only a few of them are regularly used. However, if you want
to modify a command to perform in a special manner, be sure to consult a UNIX reference guide and examine the
available options.

An argument can specify an expression or the name of a file on which the command is to act. Arguments may
also be required when you specify certain options. In addition, if more than one filename is being specified, special
metacharacters (such as * and ?) can be used to represent the filenames. For instance, ls -l ch* will display
information about all files that have names beginning with ch.

The UNIX shell is itself a program that is invoked as part of the login process. When you have properly iden-
tified yourself by logging in, the UNIX system prompt appears on your terminal screen.

9

10 Unix Text Processing

The prompt that appears on your screen may be different from the one shown in the examples in this book.
There are two widely used shells: the Bourne shell and the C shell. Traditionally, the Bourne shell uses a dollar sign
($) as a system prompt, and the C shell uses a percent sign (%). The two shells differ in the features they provide
and in the syntax of their programming constructs. However, they are fundamentally very similar. In this book, we
use the Bourne shell.

Your prompt may be different from either of these traditional prompts. This is because the UNIX environment
can be customized and the prompt may have been changed by your system administrator. Whatever the prompt
looks like, when it appears, the system is ready for you to enter a command.

When you type a command from the keyboard, the characters are echoed on the screen. The shell does not in-
terpret the command until you press the RETURN key. This means that you can use the erase character (usually the
DEL or BACKSPACE key) to correct typing mistakes. After you have entered a command line, the shell tries to
identify and locate the program specified on the command line. If the command line that you entered is not valid,
then an error message is returned.

When a program is invoked and processing begun, the output it produces is sent to your screen, unless other-
wise directed. To interrupt and cancel a program before it has completed, you can press the interrupt character
(usually CTRL-C or the DEL key). If the output of a command scrolls by the screen too fast, you can suspend the
output by pressing the suspend character (usually CTRL-S) and resume it by pressing the resume character (usually
CTRL-Q).

Some commands invoke utilities that offer their own environment—with a command interpreter and a set of
special “internal” commands. A text editor is one such utility, the mail facility another. In both instances, you enter
commands while you are “inside” the program. In these kinds of programs, you must use a command to exit and re-
turn to the system prompt.

The return of the system prompt signals that a command is finished and that you can enter another command.
Familiarity with the power and flexibility of the UNIX shell is essential to working productively in the UNIX envi-
ronment.

Output Redirection

Some programs do their work in silence, but most produce some kind of result, or output. There are generally two
types of output: the expected result—referred to as standard output—and error messages—referred to as standard
error. Both types of output are normally sent to the screen and appear to be indistinguishable. However, they can
be manipulated separately—a feature we will later put to good use.

Let’s look at some examples. The echo command is a simple command that displays a string of text on the
screen.

$ echo my name
my name

In this case, the input echo my name is processed and its output is my name. The name of the command—
echo—refers to a program that interprets the command line arguments as a literal expression that is sent to standard
output. Let’s replace echo with a different command called cat:

$ cat my name
cat: Cannot open my
cat: Cannot open name

The cat program takes its arguments to be the names of files. If these files existed, their contents would be dis-
played on the screen. Because the arguments were not filenames in this example, an error message was printed in-
stead.

The output from a command can be sent to a file instead of the screen by using the output redirection operator
(>). In the next example, we redirect the output of the echo command to a file named reminders.

$ echo Call home at 3:00 > reminders
$

No output is sent to the screen, and the UNIX prompt returns when the program is finished. Now the cat command

UNIX Fundamentals 11

should work because we have created a file.
$ cat reminders
Call home at 3:00

The cat command displays the contents of the file named reminders on the screen. If we redirect again to the
same filename, we overwrite its previous contents:

$ echo Pick up expense voucher > reminders
$ cat reminders
Pick up expense voucher

We can send another line to the file, but we have to use a different redirect operator to append (>>) the new line at
the end of the file:

$ echo Call home at 3:00 > reminders
$ echo Pick up expense voucher >> reminders
$ cat reminders
Call home at 3:00
Pick up expense voucher

The cat command is useful not only for printing a file on the screen, but for concatenating existing files (printing
them one after the other). For example:

$ cat reminders todolist
Call home at 3:00
Pick up expense voucher
Proofread Chapter 2
Discuss output redirection

The combined output can also be redirected:
$ cat reminders todolist > do_now

The contents of both reminders and todolist are combined into do_now. The original files remain intact.

If one of the files does not exist, an error message is printed, even though standard output is redirected:
$ rm todolist
$ cat reminders todolist > do_now
cat: todolist: not found

The files we’ve created are stored in our current working directory.

Files and Directories

The UNIX file system consists of files and directories. Because the file system can contain thousands of files, direc-
tories perform the same function as file drawers in a paper file system. They organize files into more manageable
groupings. The file system is hierarchical. It can be represented as an inverted tree structure with the root directory
at the top. The root directory contains other directories that in turn contain other directories.*

On many UNIX systems, users store their files in the /usr file system. (As disk storage has become cheaper
and larger, the placement of user directories is no longer standard. For example, on our system, /usr contains only
UNIX software; user accounts are in a separate file system called /work).

Fred’s home directory is /usr/fred. It is the location of Fred’s account on the system. When he logs in,
his home directory is his current working directory. Your working directory is where you are currently located and
changes as you move up and down the file system.

A pathname specifies the location of a directory or file on the UNIX file system. An absolute pathname spec-
ifies where a file or directory is located off the root file system. A relative pathname specifies the location of a file
or directory in relation to the current working directory.

*In addition to subdirectories, the root directory can contain other file systems. A file system is the skeletal structure of a directory
tree, which is built on a magnetic disk before any files or directories are stored on it. On a system containing more than one disk, or
on a disk divided into several partitions, there are multiple file systems. However, this is generally invisible to the user, because the
secondary file systems are mounted on the root directory, creating the illusion of a single file system.

12 Unix Text Processing

To find out the pathname of our current directory, enter pwd.
$ pwd
/usr/fred

The absolute pathname of the current working directory is /usr/fred. The ls command lists the contents of the
current directory. Let’s list the files and subdirectories in /usr/fred by entering the ls command with the -F
option. This option prints a slash (/) following the names of subdirectories. In the following example, oldstuff
is a directory, and notes and reminders are files.

$ ls -F
reminders
notes
oldstuff/

When you specify a filename with the ls command, it simply prints the name of the file, if the file exists.
When you specify the name of directory, it prints the names of the files and subdirectories in that directory.

$ ls reminders
reminders
$ ls oldstuff
ch01_draft
letter.212
memo

In this example, a relative pathname is used to specify oldstuff. That is, its location is specified in relation to the
current directory, /usr/fred. You could also enter an absolute pathname, as in the following example:

$ ls /usr/fred/oldstuff
ch01_draft
letter.212
memo

Similarly, you can use an absolute or relative pathname to change directories using the cd command. To move from
/usr/fred to /usr/fred/oldstuff, you can enter a relative pathname:

$ cd oldstuff
$ pwd
/usr/fred/oldstuff

The directory /usr/fred/oldstuff becomes the current working directory.

The cd command without an argument returns you to your home directory.
$ cd

When you log in, you are positioned in your home directory, which is thus your current working directory. The
name of your home directory is stored in a shell variable that is accessible by prefacing the name of the variable
(HOME) with a dollar sign ($). Thus:

$ echo $HOME
/usr/fred

You could also use this variable in pathnames to specify a file or directory in your home directory.
$ ls $HOME/oldstuff/memo
/usr/fred/oldstuff/memo

In this tutorial, /usr/fred is our home directory.

The command to create a directory is mkdir. An absolute or relative pathname can be specified.
$ mkdir /usr/fred/reports
$ mkdir reports/monthly

Setting up directories is a convenient method of organizing your work on the system. For instance, in writing this
book, we set up a directory /work/textp and, under that, subdirectories for each chapter in the book
(/work/textp/ch01, /work/textp/ch02, etc.). In each of those subdirectories, there are files that divide
the chapter into sections (sect1, sect2, etc.). There is also a subdirectory set up to hold old versions or drafts of
these sections.

UNIX Fundamentals 13

Copying and Moving Files

You can copy, move, and rename files within your current working directory or (by specifying the full pathname)
within other directories on the file system. The cp command makes a copy of a file and the mv command can be
used to move a file to a new directory or simply rename it. If you give the name of a new or existing file as the last
argument to cp or mv, the file named in the first argument is copied, and the copy given the new name. (If the target
file already exists, it will be overwritten by the copy. If you give the name of a directory as the last argument to cp
or mv, the file or files named first will be copied to that directory, and will keep their original names).

Look at the following sequence of commands:
$ pwd Print working directory
/usr/fred
$ ls -F List contents of current directory
meeting
oldstuff/
notes
reports/
$ mv notes oldstuff Move notes to oldstuff directory
$ ls List contents of current directory
meeting
oldstuff
reports/
$ mv meeting meet.306 Rename meeting
$ ls oldstuff List contents of oldstuff subdirectory
ch01_draft
letter.212
memo
notes

In this example, the mv command was used to rename the file meeting and to move the file notes from
/usr/fred to /usr/fred/oldstuff. You can also use the mv command to rename a directory itself.

Permissions

Access to UNIX files is governed by ownership and permissions. If you create a file, you are the owner of the file
and can set the permissions for that file to give or deny access to other users of the system. There are three different
levels of permission:

r Read permission allows users to read a file or make a copy of it.
w Write permission allows users to make changes to that file.
x Execute permission signifies a program file and allows other

users to execute this program.

File permissions can be set for three different levels of ownership:

owner The user who created the file is its owner.
group A group to which you are assigned, usually made up of those users en-

gaged in similar activities and who need to share files among them-
selves.

other All other users on the system, the public.

Thus, you can set read, write, and execute permissions for the three levels of ownership. This can be repre-
sented as:

rwx rwx rwx
/ | \

owner group other

When you enter the command ls -l, information about the status of the file is displayed on the screen. You can
determine what the file permissions are, who the owner of the file is, and with what group the file is associated.

14 Unix Text Processing

$ ls -l meet.306
-rw-rw-r-- 1 fred techpubs 126 March 6 10:32 meet.306

This file has read and write permissions set for the user fred and the group techpubs. All others can read the
file, but they cannot modify it. Because fred is the owner of the file, he can change the permissions, making it
available to others or denying them access to it. The chmod command is used to set permissions. For instance, if
he wanted to make the file writeable by everyone, he would enter:

$ chmod o+w meet.306
$ ls -l meet.306
-rw-rw-rw- 1 fred techpubs 126 March 6 10:32 meet.306

This translates to “add write permission (+w) to others (o).” If he wanted to remove write permission from a file,
keeping anyone but himself from accidentally modifying a finished document, he might enter:

$ chmod go-w meet.306
$ ls -l meet.306
-rw-r--r-- 1 fred techpubs 126 March 6 10:32 meet.306

This command removes write permission (-w) from group (g) and other (o).

File permissions are important in UNIX, especially when you start using a text editor to create and modify
files. They can be used to protect information you have on the system.

Special Characters

As part of the shell environment, there are a few special characters (metacharacters) that make working in UNIX
much easier. We won’t review all the special characters, but enough of them to make sure you see how useful they
are.

The asterisk (*) and the question mark (?) are filename generation metacharacters. The asterisk matches any
or all characters in a string. By itself, the asterisk expands to all the names in the specified directory.

$ echo *
meet.306 oldstuff reports

In this example, the echo command displays in a row the names of all the files and directories in the current direc-
tory. The asterisk can also be used as a shorthand notation for specifying one or more files.

$ ls meet*
meet.306
$ ls /work/textp/ch*
/work/textp/ch01
/work/textp/ch02
/work/textp/ch03
/work/textp/chapter_make

The question mark matches any single character.
$ ls /work/textp/ch01/sect?
/work/textp/ch01/sectl
/work/textp/ch01/sect2
/work/textp/ch01/sect3

Besides filename metacharacters, there are other characters that have special meaning when placed in a command
line. The semicolon (;) separates multiple commands on the same command line. Each command is executed in
sequence from left to right, one before the other.

$ cd oldstuff;pwd;ls
/usr/fred/oldstuff
ch01_draft
letter.212
memo
notes

Another special character is the ampersand (&). The ampersand signifies that a command should be processed in
the background, meaning that the shell does not wait for the program to finish before returning a system prompt.

UNIX Fundamentals 15

When a program takes a significant amount of processing time, it is best to have it run in the background so that you
can do other work at your terminal in the meantime. We will demonstrate background processing in Chapter 4 when
we look at the nroff/troff text formatter.

Environment Variables

The shell stores useful information about who you are and what you are doing in environment variables. Entering
the set command will display a list of the environment variables that are currently defined in your account.

$ set
PATH .:bin:/usr/bin:/usr/local/bin:/etc
argv ()
cwd /work/textp/ch03
home /usr/fred
shell /bin/sh
status0
TERM wy50

These variables can be accessed from the command line by prefacing their name with a dollar sign:
$ echo $TERM
wy50

The TERM variable identifies what type of terminal you are using. It is important that you correctly define the TERM
environment variable, especially because the vi text editor relies upon it. Shell variables can be reassigned from the
command line. Some variables, such as TERM, need to be exported if they are reassigned, so that they are available
to all shell processes.

$ TERM=tvi925; export TERM Tell UNIX I’m using a Televideo 925

You can also define your own environment variables for use in commands.
$ friends="alice ed ralph"
$ echo $friends
alice ed ralph

You could use this variable when sending mail.
$ mail $friends
A message to friends
<CTRL-D>

This command sends the mail message to three people whose names are defined in the friends environment vari-
able. Pathnames can also be assigned to environment variables, shortening the amount of typing:

$ pwd
/usr/fred
$ book="/work/textp"
$ cd $book
$ pwd
/work/textp

Pipes and Filters

Earlier we demonstrated how you can redirect the output of a command to a file. Normally, command input is taken
from the keyboard and command output is displayed on the terminal screen. A program can be thought of as pro-
cessing a stream of input and producing a stream of output. As we have seen, this stream can be redirected to a file.
In addition, it can originate from or be passed to another command.

A pipe is formed when the output of one command is sent as input to the next command. For example:
$ ls | wc

might produce:

16 Unix Text Processing

10 10 72

The ls command produces a list of filenames which is provided as input to wc. The wc command counts the num-
ber of lines, words, and characters.

Any program that takes its input from another program, performs some operation on that input, and writes the
result to the standard output is referred to as a filter. Most UNIX programs are designed to work as filters. This is
one reason why UNIX programs do not print “friendly” prompts or other extraneous information to the user. Be-
cause all programs expect—and produce—only a data stream, that data stream can easily be processed by multiple
programs in sequence.

One of the most common uses of filters is to process output from a command. Usually, the processing modi-
fies it by rearranging it or reducing the amount of information it displays. For example:

$ who List who is on the system, and at which terminal
peter tty001 Mar 6 17:12
walter tty003 Mar 6 13:51
chris tty004 Mar 6 15:53
val tty020 Mar 6 15:48
tim tty005 Mar 4 17:23
ruth tty006 Mar 6 17:02
fred tty000 Mar 6 10:34
dale tty008 Mar 6 15:26
$ who | sort List the same information in alphabetic order
chris tty004 Mar 6 15:53
dale tty008 Mar 6 15:26
fred ttY000 Mar 6 10:34
peter tty001 Mar 6 17:12
ruth tty006 Mar 6 17:02
tim tty005 Mar 4 17:23
val tty020 Mar 6 15:48
walter tty003 Mar 6 13:51
$

The sort program arranges lines of input in alphabetic or numeric order. It sorts lines alphabetically by de-
fault. Another frequently used filter, especially in text-processing environments, is grep, perhaps UNIX’s most
renowned program. The grep program selects lines containing a pattern:

$ who | grep tty001 Find out who is on terminal 1
peter tty001 Mar 6 17:12

One of the beauties of UNIX is that almost any program can be used to filter the output of any other. The pipe is the
master key to building command sequences that go beyond the capabilities provided by a single program and allow
users to create “custom” programs of their own to meet specific needs.

If a command line gets too long to fit on a single screen line, simply type a backslash followed by a carriage
return, or (if a pipe symbol comes at the appropriate place) a pipe symbol followed by a carriage return. Instead of
executing the command, the shell will give you a secondary prompt (usually >) so you can continue the line:

$ echo This is a long line shown here as a demonstration |
> wc

1 10 49

This feature works in the Bourne shell only.

Shell Scripts

A shell script is a file that contains a sequence of UNIX commands. Part of the flexibility of UNIX is that anything
you enter from the terminal can be put in a file and executed. To give a simple example, we’ll assume that the last
command example (grep) has been stored in a file called whoison:

$ cat whoison
who | grep tty001

UNIX Fundamentals 17

The permissions on this file must be changed to make it executable. After a file is made executable, its name
can be entered as a command.

$ chmod +x whoison
$ ls -l whoison
-rwxrwxr-x 1 fred doc 123 Mar 6 17:34 whois
$ whoison
peter tty001 Mar 6 17:12

Shell scripts can do more than simply function as a batch command facility. The basic constructs of a programming
language are available for use in a shell script, allowing users to perform a variety of complicated tasks with rela-
tively simple programs.

The simple shell script shown above is not very useful because it is too specific. However, instead of specify-
ing the name of a single terminal line in the file, we can read the name as an argument on the command line. In a
shell script, $1 represents the first argument on the command line.

$ cat whoison
who | grep $1

Now we can find who is logged on to any terminal:
$ whoison tty004
chris tty004 Mar 6 15:53

Later in this book, we will look at shell scripts in detail. They are an important part of the writer’s toolbox, because
they provide the “glue” for users of the UNIX system—the mechanism by which all the other tools can be made to
work together.

4Chapter 3

Learning vi

UNIX has a number of editors that can process the contents of readable files, whether those files contain data, source
code, or text. There are line editors, such as ed and ex, which display a line of the file on the screen, and there are
screen editors, such as vi and emacs, which display a part of the file on your terminal screen.

The most useful standard text editor on your system is vi. Unlike emacs, it is available in nearly identical
form on almost every UNIX system, thus providing a kind of text editing lingua franca. The same might be said of
ed and ex, but screen editors are generally much easier to use. With a screen editor you can scroll the page, move
the cursor, delete lines, insert characters, and more, while seeing the results of your edits as you make them. Screen
editors are very popular because they allow you to make changes as you read a file, much as you would edit a
printed copy, only faster.

To many beginners, vi looks unintuitive and cumbersome—instead of letting you type normally and use spe-
cial control keys for word-processing functions, it uses all of the regular keyboard keys for issuing commands. You
must be in a special insert mode before you can type. In addition, there seem to be so many commands.

You can’t learn vi by memorizing every single vi command. Begin by learning some basic commands. As
you do, be aware of the patterns of usage that commands have in common. Be on the lookout for new ways to per-
form tasks, experimenting with new commands and combinations of commands.

As you become more familiar with vi, you will find that you need fewer keystrokes to tell vi what to do.
You will learn shortcuts that transfer more and more of the editing work to the computer—where it belongs. Not as
much memorization is required as first appears from a list of vi commands. Like any skill, the more editing you do,
the more you know about it and the more you can accomplish.

This chapter has three sections, and each one corresponds to a set of material about vi that you should be able
to tackle in a single session. After you have finished each session, put aside the book for a while and do some exper-
imenting. When you feel comfortable with what you have learned, continue to the next session.

Session 1: Basic Commands

The first session contains the basic knowledge you need to operate the vi editor. After a general description of vi,
you are shown some simple operations. You will learn how to

• open and close a file;

• give commands and insert text;

• move the cursor;

• edit text (change, delete, and copy).

You can use vi to edit any file that contains readable text, whether it is a report, a series of shell commands, or a
program. The vi editor copies the file to be edited into a buffer (an area temporarily set aside in memory), displays
as much of the buffer as possible on the screen, and lets you add, delete, and move text. When you save your edits,
vi copies the buffer into a permanent file, overwriting the contents of the old file.

19

20 Unix Text Processing

Opening a File

The syntax for the vi command is:
vi [filename]

where filename is the name of either an existing file or a new file. If you don’t specify a filename, vi will open an
unnamed buffer, and ask you to name it before you can save any edits you have made. Press RETURN to execute
the command.

A filename must be unique inside its directory. On AT&T (System V) UNIX systems, it cannot exceed 14
characters. (Berkeley UNIX systems allow longer filenames). A filename can include any ASCII character except /,
which is reserved as the separator between files and directories in a pathname. You can even include spaces in a file-
name by “escaping” them with a backslash. In practice, though, filenames consist of any combination of uppercase
and lowercase letters, numbers, and the characters . (dot) and _ (underscore). Remember that UNIX is case-sensi-
tive: lowercase filenames are distinct from uppercase filenames, and, by convention, lowercase is preferred.

If you want to open a new file called notes in the current directory, enter:
$ vi notes

The vi command clears the screen and displays a new buffer for you to begin work. Because notes is a new file,
the screen displays a column of tildes (∼) to indicate that there is no text in the file, not even blank lines.

∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
"notes" [New file].

If you specify the name of a file that already exists, its contents will be displayed on the screen. For example:
$ vi letter

might bring a copy of the existing file letter to the screen.

Learning vi 21

Mr. John Fust
Vice President, Research and Development
Gutenberg Galaxy Software
Waltham, Massachusetts 02159

Dear Mr. Fust.

In our conversation last Thursday, we discussed a
documentation project that would produce a user’s manual
on the Alcuin product. Yesterday, I received the product
demo and other materials that you sent me.
∼
∼
∼
∼
"letter" 11 lines, 250 characters

The prompt line at the bottom of the screen echoes the name and size of the file.

Sometimes when you invoke vi, you may get either of the following messages:
[using open mode]

or:
Visual needs addressable cursor or upline capability

In both cases, there is a problem identifying the type of terminal you are using. You can quit the editing session im-
mediately by typing :q.

Although vi can run on almost any terminal, it must know what kind of terminal you are using. The terminal
type is usually set as part of the UNIX login sequence. If you are not sure whether your terminal type is defined cor-
rectly, ask your system administrator or an experienced user to help you set up your terminal. If you know your ter-
minal type (wy50 for instance), you can set your TERM environment variable with the following command:

TERM=wy50; export TERM

vi Commands

The vi editor has two modes: command mode and insert mode. Unlike many word processors, vi’s command
mode is the initial or default mode. To insert lines of text, you must give a command to enter insert mode and then
type away.

Most commands consist of one or two characters. For example:
i insert
c change

Using letters as commands, you can edit a file quickly. You don’t have to memorize banks of function keys or
stretch your fingers to reach awkward combinations of keys.

In general, vi commands

• are case-sensitive (uppercase and lowercase keystrokes mean different things; e.g., I is different from i);

• are not echoed on the screen;

• do not require a RETURN after the command.

There is also a special group of commands that echo on the bottom line of the screen. Bottom-line commands
are indicated by special symbols. The slash (/) and the question mark (?) begin search commands, which are

22 Unix Text Processing

discussed in session 2. A colon (:) indicates an ex command. You are introduced to one ex command (to quit a
file without saving edits) in this chapter, and the ex line editor is discussed in detail in Chapter 7.

To tell vi that you want to begin insert mode, press i. Nothing appears on the screen, but you can now type
any text at the cursor. To tell vi to stop inserting text, press ESC and you will return to command mode.

For example, suppose that you want to insert the word introduction. If you type the keystrokes iintroduc-
tion, what appears on the screen is

introduction

Because you are starting out in command mode, vi interprets the first keystroke (i) as the insert command. All
keystrokes after that result in characters placed in the file, until you press ESC. If you need to correct a mistake
while in insert mode, backspace and type over the error.

While you are inserting text, press RETURN to break the lines before the right margin. An autowrap option
provides a carriage return automatically after you exceed the right margin. To move the right margin in ten spaces,
for example, enter :set wm=10.

Sometimes you may not know if you are in insert mode or command mode. Whenever vi does not respond
as you expect, press ESC. When you hear a beep, you are in command mode.

Saving a File

You can quit working on a file at any time, save the edits, and return to the UNIX prompt. The vi command to quit
and save edits is ZZ. (Note that ZZ is capitalized).

Let’s assume that you create a file called letter to practice vi commands and that you type in 36 lines of
text. To save the file, first check that you are in command mode by pressing ESC, and then give the write and save
command, ZZ. Your file is saved as a regular file. The result is:

"letter" [New file] 36 lines, 1331 characters

You return to the UNIX prompt. If you check the list of files in the directory, by typing ls at the prompt, the new
file is listed.

$ ls
ch01 ch02 letter

You now know enough to create a new file. As an exercise, create a file called letter and insert the text shown in
Figure 3-1. When you have finished, type ZZ to save the file and return to the UNIX prompt.

Moving the Cursor

Only a small percentage of time in an editing session may be spent adding new text in insert mode. Much of the
time, you will be editing existing text.

In command mode, you can position the cursor anywhere in the file. You start all basic edits (changing, delet-
ing, and copying text) by placing the cursor at the text that you want to change. Thus, you want to be able to quickly
move the cursor to that place.

April 1, 1987

Mr. John Fust
Vice President, Research and Development
Gutenberg Galaxy Software
Waltham, Massachusetts 02159

Dear Mr. Fust:

In our conversation last Thursday, we discussed a
documentation project that would produce a user’s

Learning vi 23

manual on the Alcuin product. Yesterday, I received
the product demo and other materials that you sent me.

Going through a demo session gave me a much better
understanding of the product. I confess to being
amazed by Alcuin. Some people around here, looking
over my shoulder, were also astounded by the
illustrated manuscript I produced with Alcuin. One
person, a student of calligraphy, was really impressed.

Today, I’ll start putting together a written plan
that shows different strategies for documenting
the Alcuin product. After I submit this plan, and
you have had time to review it, let’s arrange a
meeting at your company to discuss these strategies.

Thanks again for giving us the opportunity to bid on
this documentation project. I hope we can decide upon
a strategy and get started as soon as possible in order
to have the manual ready in time for the first customer
shipment. I look forward to meeting with you towards
the end of next week.

Sincerely,

Fred Caslon

Figure 3.1 A sample letter entered with vi

There are vi commands to move

• up, down, left, or right, one character at a time;

• forward or backward by blocks of text such as words, sentences, or paragraphs;

• forward or backward through a file, one screen at a time.

To move the cursor, make sure you are in command mode by pressing ESC. Give the command for moving forward
or backward in the file from the current cursor position. When you have gone as far in one direction as possible,
you’ll hear a beep and the cursor stops. You cannot move the cursor past the tildes (∼) at the end of the file.

Single Movements

The keys h, j, k, and l, right under your fingertips, will move the cursor:
h left one space
j down one line
k up one line
l right one space

You could use the cursor arrow keys (-, ↓, →, ←) or the RETURN and BACKSPACE keys, but they are out of the
way and are not supported on all terminals.

You can also combine the h, j, k, and l keys with numeric arguments and other vi commands.

24 Unix Text Processing

Numeric Arguments

You can precede movement commands with numbers. The command 4l moves the cursor (shown as a small box
around a letter) four spaces to the right, just like typing the letter l four times (llll).

I_n our conversation 4l
move right
4 characters

In ou_r conversation

This one concept (being able to multiply commands) gives you more options (and power) for each command. Keep
it in mind as you are introduced to additional commands.

Movement by Lines

When you saved the file letter, the editor displayed a message telling you how many lines were in that file. A
line in the file is not necessarily the same length as a physical line (limited to 80 characters) that appears on the
screen. A line is any text entered between carriage returns. If you type 200 characters before pressing RETURN ,
vi regards all 200 characters as a single line (even though those 200 characters look like several physical lines on
the screen).

Two useful commands in line movement are:
0 <zero> move to beginning of line
$ move to end of line

In the following file, the line numbers are shown. To get line numbers on your screen, enter :set nu.
1 With the screen editor you can scroll the page,
2 move the cursor, _delete lines, and insert characters,

while seeing the results of edits as you make them.
3 Screen editors are very popular.

The number of logical lines (3) does not correspond to the number of physical lines (4) that you see on the screen. If
you enter $, with the cursor positioned on the d in the word delete, the cursor would move to the period following
the word them.

1 With the screen editor you can scroll the page,
2 move the cursor, delete lines, and insert characters,

while seeing the results of edits as you make them_.
3 Screen editors are very popular .

If you enter 0 (zero), the cursor would move back to the letter m in the word move, at the beginning of the line.
1 With the screen editor you can scroll the page,
2 _move the cursor, delete lines, and insert characters,

while seeing the results of edits as you make them.
3 Screen editors are very popular .

If you do not use the automatic wraparound option (:set wm=10) in vi, you must break lines with carriage
returns to keep the lines of manageable length.

Learning vi 25

Movement by Text Blocks

You can also move the cursor by blocks of text (words, sentences, or paragraphs).

The command w moves the cursor forward one word at a time, treating symbols and punctuation marks as
equivalent to words. The following line shows cursor movement caused by ten successive w commands:

m_ove t_he c_ursor,_ d_elete l_ines,_ a_nd i_nsert c_haracters,_

You can also move forward one word at a time, ignoring symbols and punctuation marks, using the command W
(note the uppercase W). It causes the cursor to move to the first character following a blank space. Cursor move-
ment using W looks like this:

m_ove t_he c_ursor, d_elete l_ines, a_nd i_nsert c_haracters,

To move backward one word at a time, use the command b. The B command allows you to move backward one
word at a time, ignoring punctuation.

With either the w, W, b, or B commands, you can multiply the movement with numbers. For example, 2w
moves forward two words; 5B moves back five words, ignoring punctuation. Practice using the cursor movement
commands, combining them with numeric multipliers.

Simple Edits

When you enter text in your file, it is rarely perfect. You find errors or want to improve a phrase. After you enter
text, you have to be able to change it.

What are the components of editing? You want to insert text (a forgotten word or a missing sentence). And
you want to delete text (a stray character or an entire paragraph). You also need to change letters and words (correct
misspellings or reflect a change of mind). You want to move text from one place to another part of your file. And on
occasion, you want to copy text to duplicate it in another part of your file.

There are four basic edit commands: i for insert (which you have already seen), c for change, d for delete, d
then p for move (delete and put), and y for yank (copy). Each type of edit is described in this section. Table 3-1
gives a few simple examples.

Table 3.1 Basic Editing Commands

Object Change Delete Copy(Yank)

One word cw dw yw
Two words 2cW 2dW 2yW
Three words back 3cb 3db 3yb
One line cc dd yy or Y
To end of line c$ or C d$ or D y$
To beginning of line c0 d0 y0
Single character r x yl

Inserting New Text

You have already used the insert command to enter text into a new file. You also use the insert command while edit-
ing existing text to add characters, words, and sentences. Suppose you have to insert Today, at the beginning of a
sentence. Enter the following sequence of commands and text:

26 Unix Text Processing

I’ll start putting
together a written
plan that shows
d_ifferent strategies

3k
move up 3

lines

I_’ll start putting
together a written
plan that shows
different strategies

I_’ll start putting
together a written
plan that shows
different strategies

iToday, <ESC>
insert
Today,

Today,_ I’ll start putting
together a written
plan that shows
different strategies

In the previous example, vi moves existing text to the right as the new text is inserted. That is because we are
showing vi on an “intelligent” terminal, which can adjust the screen with each character you type. An insert on a
“dumb” terminal (such as an adm3a) will look different. The terminal itself cannot update the screen for each char-
acter typed (without a tremendous sacrifice of speed), so vi doesn’t rewrite the screen until after you press ESC.
Rather, when you type, the dumb terminal appears to overwrite the existing text. When you press ESC, the line is
adjusted immediately so that the missing characters reappear. Thus, on a dumb terminal, the same insert would ap-
pear as follows:

I_’ll start putting
together a written
plan that shows
different strategies

iToday,
insert
Today,

Today, a_rt putting
together a written
plan that shows
different strategies

Today, a_rt putting
together a written
plan that shows
different strategies

<ESC>
leave

insert mode

Today,_I’ll start putting
together a written
plan that shows
different strategies

Changing Text

You can replace any text in your file with the change command, c. To identify the amount of text that you want re-
placed, combine the change command with a movement command. For example, c can be used to change text from
the cursor

cw to the end of a word

2cb back two words

c$ to the end of a line

Then you can replace the identified text with any amount of new text: no characters at all, one word, or hundreds of
lines. The c command leaves you in insert mode until you press the ESC key.

Learning vi 27

Words

You can replace a word (cw) with a longer word, a shorter word, or any amount of text. The cw command can be
thought of as “delete the word marked and insert new text until ESC is pressed.”

Suppose that you have the following lines in your file letter and want to change designing to putting to-
gether. You only need to change one word.

I’ll start
d_esigning a

cw
change a

word

I’ll start
d_esignin$ a

Note that the cw command places a $ at the last character of the word to be changed.

I’ll start
d_esignin$ a

putting
together

<ESC>
enter change

I’ll start
putting together_ a

The cw command also works on a portion of a word. For example, to change putting to puts, position the
cursor on the second t, enter cw, then type s and press ESC. By using numeric prefixes, you can change multiple
words or characters immediately. For example:

3cw change three words to the right of the cursor
5cl change five letters to the right of the cursor

You don’t need to replace the specified number of words, characters, or lines with a like amount of text. For exam-
ple:

I’ll start
p_utting together a

2cw
designing
<ESC>

I’ll start
designing_ a

Lines

To replace the entire current line, there is the special change command cc. This command changes an entire line,
replacing that line with the text entered before an ESC. The cc command replaces the entire line of text, regardless
of where the cursor is located on the line.

The C command replaces characters from the current cursor position to the end of the line. It has the same ef-
fect as combining c with the special end-of-line indicator, $ (as in c$).

28 Unix Text Processing

Characters

One other replacement edit is performed with the r command. This command replaces a single character with an-
other single character. One of its uses is to correct misspellings. You probably don’t want to use cw in such an in-
stance, because you would have to retype the entire word. Use r to replace a single character at the cursor:

Ya_sterday, I received re
replace a

with e

Ye_sterday, I received

The r command makes only a single character replacement. You do not have to press ESC to finish the edit. Fol-
lowing an r command, you are automatically returned to command mode.

Deleting Text

You can also delete any text in your file with the delete command, d. Like the change command, the delete com-
mand requires an argument (the amount of text to be operated on). You can delete by word (dw), by line (dd and D),
or by other movement commands that you will learn later.

With all deletions, you move to where you want the edit to take p1ace and enter the delete command (d) fol-
lowed by the amount of text to be deleted (such as a text object, w for word).

Words

Suppose that in the following text you want to delete one instance of the word start in the first line.

Today, I’ll s_tart
start putting together
a written plan
thatth shows different

dw
delete word

Today, I’ll_
start putting together
a written plan
thatth shows different

The dw command deletes from the cursor’s position to the end of a word. Thus, dw can be used to delete a portion
of a word.

thatt_h shows different dw
delete word

thats_hows different

As you can see, dw deleted not only the remainder of the word, but also the space before any subsequent word on
the same line. To retain the space between words, use de, which will delete only to the end of the word.

Learning vi 29

thatt_h shows different de
delete to
word end

that_shows different

You can also delete backwards (db) or to the end or beginning of a line (d$ or d0).

Lines

The dd command deletes the entire line that the cursor is on. Using the same text as in the previous example, with
the cursor positioned on the first line as shown, you can delete the first two lines:
The X command deletes the character before the cursor. Prefix either of these commands with a number to delete
that number of characters. For example, 5X will delete the five characters to the left of the cursor.

Moving Text

You can move text by deleting it and then placing that deleted text elsewhere in the file, like a “cut and paste.” Each
time you delete a text block, that deletion is temporarily saved in a buffer. You can move to another position in the
file and use the put command to place the text in a new position. Although you can move any block of text, this
command sequence is more useful with lines than with words.

The put command, p, places saved or deleted text (in the buffer) after the cursor position. The uppercase ver-
sion of the command, P, puts the text before the cursor. If you delete one or more lines, p puts the deleted text on a
new line(s) below the cursor. If you delete a word, p puts the deleted text on the same line after the cursor.

Suppose that in your file letter you have the following lines and you want to move the fourth line of text.
Using delete, you can make this edit. First delete the line in question:

Today, I’ll start
putting together a
plan for documenting
t_he Alcuin product
that shows

dd
delete line

Today, I’ll start
putting together a
plan for documenting
t_hat shows

Then use p to restore the deleted line at the next line below the cursor:

Today, I’ll start
putting together a
plan for documenting
t_hat shows

p
restore deleted

line

Today, I’ll start
putting together a
plan for documenting
that shows
t_he Alcuin product

You can also use xp (delete character and put after cursor) to transpose two letters. For example, in the word mvoe,
the letters vo are transposed (reversed). To correct this, place the cursor on v and press x then p.

After you delete the text, you must restore it before the next change or delete command. If you make another
edit that affects the buffer, your deleted text will be lost. You can repeat the put command over and over, as long as

30 Unix Text Processing

you don’t make a new edit. In the advanced vi chapter, you will learn how to retrieve text from named and num-
bered buffers.

Copying Text

Often, you can save editing time (and keystrokes) by copying part of your file to another place. You can copy any
amount of existing text and place that copied text elsewhere in the file with the two commands y (yank) and p (put).
The yank command is used to get a copy of text into the buffer without altering the original text. This copy can then
be placed elsewhere in the file with the put command.

Yank can be combined with any movement command (for example, yw, y$, or 4yy). Yank is most frequently
used with a line (or more) of text, because to yank and put a word generally takes longer than simply inserting the
word. For example, to yank five lines of text:

o_n the Alcuin product.
Yesterday, I received
the product demo
and other materials
that you sent me.
∼
∼
∼

5yy
yank 5
lines

o_n the Alcuin product.
Yesterday, I received
the product demo
and other materials
that you sent me.
∼
∼
5 lines yanked

To place the yanked text, move the cursor to where you want to put the text, and use the p command to insert
it below the current line, or P to insert it above the current line.

t_hat you sent me.
∼
∼
∼
∼
∼

P
place yanked

text

that you sent me.
o_n the Alcuin product.
Yesterday, I received
the product demo
and other materials
that you sent me.

5 more lines

The yanked text will appear on the line below the cursor. Deleting uses the same buffer as yanking. Delete and put
can be used in much the same way as yank and put. Each new deletion or yank replaces the previous contents of the
yank buffer. As we’ll see later, up to nine previous yanks or deletions can be recalled with put commands.

Using Your Last Command

Each command that you give is stored in a temporary buffer until you give the next command. If you insert the after
a word in your file, the command used to insert the text, along with the text that you entered, is temporarily saved.
Anytime you are making the same editing command repeatedly, you can save time by duplicating the command with
. (dot). To duplicate a command, position the cursor anywhere on the screen, and press . to repeat your last com-
mand (such as an insertion or deletion) in the buffer. You can also use numeric arguments (as in 2.) to repeat the
previous command more than once.

Learning vi 31

Suppose that you have the following lines in your file letter. Place the cursor on the line you want to
delete:

Yesterday, I received
the product demo.
Y_esterday, I received
other materials

dd
delete line

Yesterday, I received
the product demo.
o_ther materials

Yesterday, I received
the product demo.
o_ther materials

.
repeat last

command (dd)

Yesterday, I received
t_he product demo.

In some versions of vi, the command CTRL-@ (ˆ@) repeats the last insert (or append) command. This is in
contrast to the . command, which repeats the last command that changed the text, including delete or change com-
mands.

You can also undo your last command if you make an error. To undo a command, the cursor can be anywhere
on the screen. Simply press u to undo the last command (such as an insertion or deletion).

To continue the previous example:

Yesterday, I received
t_he product demo.

u
undo last
command

Yesterday, I received
the product demo.
o_ther materials

The uppercase version of u (U) undoes all edits on a single line, as long as the cursor remains on that line. After you
move off a line, you can no longer use U.

Joining Two Lines with J

Sometimes while editing a file, you will end up with a series of short lines that are difficult to read. When you want
to merge two lines, position the cursor anywhere on the first line and press J to join the two lines.

Y_esterday,
I received
the product demo.

J
join lines

Y_esterday, I received
the product demo.

A numeric argument joins that number of consecutive lines.

32 Unix Text Processing

Quitting without Saving Edits

When you are first learning vi, especially if you are an intrepid experimenter, there is one other command that is
handy for getting out of any mess that you might create. You already know how to save your edits with ZZ, but what
if you want to wipe out all the edits you have made in a session and return to the original file?

You can quit vi without saving edits with a special bottom-line command based on the ex line editor. The
ex commands are explained fully in the advanced vi chapter, but for basic vi editing you should just memorize
this command:

:q! <RETURN>

The q! command quits the file you are in. All edits made since the last time you saved the file are lost.

You can get by in vi using only the commands you have learned in this session. However, to harness the real
power of vi (and increase your own productivity) you will want to continue to the next session.

Session 2: Moving Around in a Hurry

You use vi not only to create new files but also to edit existing files. You rarely open to the first line in the file and
move through it line by line. You want to get to a specific place in a file and start work.

All edits begin with moving the cursor to where the edit begins (or, with ex line editor commands, identifying
the line numbers to be edited). This chapter shows you how to think about movement in a variety of ways (by
screens, text, patterns, or line numbers). There are many ways to move in vi, because editing speed depends on get-
ting to your destination with only a few keystrokes.

In this session, you will learn how to move around in a file by

• screens;

• text blocks;

• searches for patterns;

• lines.

Movement by Screens

When you read a book you think of “places” in the book by page: the page where you stopped reading or the page
number in an index. Some vi files take up only a few lines, and you can see the whole file at once. But many files
have hundreds of lines.

You can think of a vi file as text on a long roll of paper. The screen is a window of (usually) 24 lines of text
on that long roll. In insert mode, as you fill up the screen with text, you will end up typing on the bottom line of the
screen. When you reach the end and press RETURN , the top line rolls out of sight, and a blank line for new text ap-
pears on the bottom of the screen. This is called scrolling. You can move through a file by scrolling the screen
ahead or back to see any text in the file.

Scrolling the Screen

There are vi commands to scroll forward and backward through the file by full and halfscreens:
ˆF forward one screen
ˆB backward one screen
ˆD forward halfscreen
ˆU backward halfscreen

Learning vi 33

(The ˆ symbol represents the CTRL key. ˆF means to simultaneously press the CTRL key and the F key).

In our conversation last Thursday, we
discussed a documentation project that would
produce a user’s manual on the Alcuin product.
Yesterday, I received the product demo and
other materials that you sent me.

Going through a d_emo session gave me a
much better understanding of the product. I
confess to being amazed by Alcuin. Some

If you press ˆF, the screen appears as follows:

b_etter understanding of the product. I
confess to being amazed by Alcuin. Some
people around here, looking over my shoulder,
were also astounded by the illustrated
manuscript I produced with Alcuin. One
person, a student of calligraphy, was really
impressed.

Today, I’ll start putting together a written

There are also commands to scroll the screen up one line (ˆE) and down one line (ˆY). (These commands are not
available on small systems, such as the PDP-11 or Xenix for the PC-XT).

Movement within a Screen

You can also keep your current screen or view of the file and move around within the screen using:
H home—top line on screen
M middle line on screen
L last line on screen
nH to n lines below top line
nL to n lines above last line

The H command moves the cursor from anywhere on the screen to the first, or home, line. The M command moves
to the middle line, L to the last. To move to the line below the first line, use 2H.

34 Unix Text Processing

Today, I’ll start
putting together a
written plan that
s_hows the different
strategies for the

2H
move to

second line

Today, I’ll start
p_utting together a
written plan that
shows the different
strategies for the

These screen movement commands can also be used for editing. For example, dH deletes to the top line shown on
the screen.

Movement within Lines

Within the current screen there are also commands to move by line. You have already learned the line movement
commands $ and 0.

RETURN beginning of next line
ˆ to first character of current line
+ beginning of next line
- beginning of previous line

Going through a demo
session gave me_ a much
better understanding
of the product.

-
go to start

of previous
line

G_oing through a demo
session gave me a much
better understanding
of the product.

The ˆ command moves to the first character of the line, ignoring any spaces or tabs. (0, by contrast, moves to the
first position of the line, even if that position is blank).

Movement by Text Blocks

Another way that you can think of moving through a vi file is by text blocks—words, sentences, or paragraphs.
You have already learned to move forward and backward by word (w or b).

e end of word
E end of word (ignore punctuation)
(beginning of previous sentence
) beginning of next sentence
{ beginning of previous paragraph
} beginning of next paragraph

The vi program locates the end of a sentence by finding a period followed by at least two spaces, or a period
as the last nonblank character on a line. If you have left only a single space following a period, the sentence won’t
be recognized.

A paragraph is defined as text up to the next blank line, or up to one of the default paragraph macros (.IP,
.P, .PP, or .QP) in the mm or ms macro packages. The macros that are recognized as paragraph separators can be
customized with the :set command, as described in Chapter 7.

Learning vi 35

In our conversation
last Thursday, we ...

Going through a d_emo
session gave me ...

{
go to start

of previous
paragraph

I_n our conversation
last Thursday, we ...

Going through a demo
session gave me ...

Most people find it easier to visualize moving ahead, so the forward commands are generally more useful.

Remember that you can combine numbers with movement. For example, 3) moves ahead three sentences.
Also remember that you can edit using movement commands. d) deletes to the end of the current sentence, 2y}
copies (yanks) two paragraphs ahead.

Movement by Searches

One of the most useful ways to move around quickly in a large file is by searching for text, or, more properly, for a
pattern of characters. The pattern can include a “wildcard” shorthand that lets you match more than one character.
For example, you can search for a misspelled word or each occurrence of a variable in a program.

The search command is the slash character (/). When you enter a slash, it appears on the bottom line of the
screen; then type in the pattern (a word or other string of characters) that you want to find:

/ text<RETURN> search forward for text

A space before or after text will be included in the search. As with all bottom-line commands, press RETURN to
finish.

The search begins at the cursor and moves forward, wrapping around to the start of the file if necessary. The
cursor will move to the first occurrence of the pattern (or the message “Pattern not found” will be shown on the sta-
tus line if there is no match).

If you wanted to search for the pattern shows:

Today, I’ll start
putting together a
written p_lan that
shows the different
∼
∼
∼

/shows<CR>
search for

shows

Today, I’ll start
putting together a
written plan that
s_hows the different
∼
∼
/shows

Today, I’ll start
putting together a
w_ritten plan that
shows the different
∼
∼
∼

/th<CR>
search for

th

Today, I’ll start
putting together a
written plan t_hat
shows the different
∼
∼
/th

The search proceeds forward from the present position in the file. You can give any combination of characters; a
search does not have to be for a complete word.

You can also search backwards using the ? command:

36 Unix Text Processing

?text<RETURN> search backward for text

The last pattern that you searched for remains available throughout your editing session. After a search, in-
stead of repeating your original keystrokes, you can use a command to search again for the last pattern.

n repeat search in same direction
N repeat search in opposite direction
/<RETURN> repeat search in forward direction
?<RETURN> repeat search in backward direction

Because the last pattern remains available, you can search for a pattern, do some work, and then search again
for the pattern without retyping by using n, N, /, or ?. The direction of your search (/=forwards, ?=backwards) is
displayed at the bottom left of the screen.

Continuing the previous example, the pattern th is still available to search for:

Today, I’ll start
putting together a
written plan t_hat
shows the different

n
search for

next th

Today, I’ll start
putting together a
written plan that
shows t_he different

Today, I’ll start
putting together a
written plan that
shows t_he different
∼
∼
∼

?<CR>
search back

for th

Today, I’ll start
putting together a
written plan t_hat
shows the different
∼
∼
?the

Today, I’ll start
putting together a
written plan t_hat
shows the different

N
repeat search
in opposite
direction

Today, I’ll start
putting together a
written plan that
shows t_he different

This section has given only the barest introduction to searching for patterns. Chapter 7 will teach more about pattern
matching and its use in making global changes to a file.

Current Line Searches

There is also a miniature version of the search command that operates within the current line. The command f
moves the cursor to the next instance of the character you name. Semicolons can then be used to repeat the “find.”
Note, however, that the f command will not move the cursor to the next line.

fx find (move cursor to) next occurrence of x in the line, where x can be any character

; repeat previous find command

Suppose that you are editing on this line:

Learning vi 37

T_oday, I’ll start f’
find first ’

in line

Today, I’_ll start

Use df’ to delete up to and including the named character (in this instance ’). This command is useful in deleting
or copying partial lines.

The t command works just like f, except it positions the cursor just before the character searched for. As
with f and b, a numeric prefix will locate the nth occurrence. For example:

T_oday, I’ll start 2ta
place cursor
before 2nd a

in line

Today, I’ll st_art

Movement by Line Numbers

A file contains sequentially numbered lines, and you can move through a file by specifying line numbers. Line num-
bers are useful for identifying the beginning and end of large blocks of text you want to edit. Line numbers are also
useful for programmers because compiler error messages refer to line numbers. Line numbers are also used by ex
commands, as you will learn in Chapter 7.

If you are going to move by line numbers, you need a way to identify line numbers. Line numbers can be dis-
played on the screen using the :set nu option described in Chapter 7. In vi, you can also display the current line
number on the bottom of the screen.

The command ˆG displays the following on the bottom of your screen: the current line number, the total num-
ber of lines in the file, and what percentage of the total the present line number represents. For example, for the file
letter, ˆG might display:

"letter" line 10 of 40 --25%--

ˆG is used to display the line number to use in a command, or to orient yourself if you have been distracted from
your editing session.

The G (go to) command uses a line number as a numeric argument, and moves to the first position on that line.
For instance, 44G moves the cursor to the beginning of line 44. The G command without a line number moves the
cursor to the last line of the file.

Two single quotes (’’) return you to the beginning of the line you were originally on. Two backquotes (‘‘)
return you to your original position exactly. If you have issued a search command (/ or ?), ‘‘ will return the cursor
to its position when you started the search.

The total number of lines shown with ˆG can be used to give yourself a rough idea of how many lines to
move. If you are on line 10 of a 1000-line file:

"ch01" line 10 of 1000 --1%--

and know that you want to begin editing near the end of that file, you could give an approximation of your destina-
tion with.

800G

Movement by line number can get you around quickly in a large file.

38 Unix Text Processing

Session 3: Beyond the Basics

You have already been introduced to the basic vi editing commands, i, c, d, and y. This session expands on what
you already know about editing. You will learn

• additional ways to enter vi;

• how to customize vi;

• how to combine all edits with movement commands;

• additional ways to enter insert mode;

• how to use buffers that store deletions, yanks, and your last command;

• how to mark your place in a file.

Command-Line Options

There are other options to the vi command that can be helpful. You can open a file directly to a specific line num-
ber or pattern. You can also open a file in read-only mode. Another option recovers all changes to a file that you
were editing when the system crashes.

Advancing to a Specific Place

When you begin editing an existing file, you can load the file and then move to the first occurrence of a pattern or to
a specific line number. You can also combine the open command, vi, with your first movement by search or by line
number. For example:

$ vi +n letter

opens letter at line number n. The following:
$ vi + letter

opens letter at the last line. And:
$ vi +/pattern letter

opens letter at the first occurrence of pattern.

To open the file letter and advance directly to the line containing Alcuin, enter:
$ vi +/Alcuin letter

Today I’ll start putting together a
written plan that presents the different
strategies for the A_lcuin
∼
∼
∼
∼
∼
∼
∼
∼
∼

Learning vi 39

There can be no spaces in the pattern because characters after a space are interpreted as filenames.

If you have to leave an editing session before you are finished, you can mark your place by inserting a pattern
such as ZZZ or HERE. Then when you return to the file, all you have to remember is /ZZZ or /HERE.

Read-Only Mode

There will be times that you want to look at a file, but you want to protect that file from inadvertent keystrokes and
changes. (You might want to call in a lengthy file to practice vi movements, or you might want to scroll through a
command file or program). If you enter a file in read-only mode, you can use all the vi movement commands, but
you cannot change the file with any edits. To look at your file letter in read-only mode, you can enter either:

$ vi -R letter

or:
$ view letter

Recovering a Buffer

Occasionally, there will be a system failure while you are editing a file. Ordinarily, any edits made after your last
write (save) are lost. However, there is an option, -r, which lets you recover the edited buffer at the time of a sys-
tem crash. (A system program called preserve saves the buffer as the system is going down).

When you first log in after the system is running again, you will receive a mail message stating that your
buffer is saved. The first time that you call in the file, use the -r option to recover the edited buffer. For example, to
recover the edited buffer of the file letter after a system crash, enter:

$ vi -r letter

If you first call in the file without using the -r option, your buffered edits are lost.

You can force the system to preserve your buffer even when there is not a crash by using the command :pre.
You may find this useful if you have made edits to a file, then discover you can’t save your edits because you don’t
have write permission. (You could also just write a copy of the file out under another name or in a directory where
you do have write permission.)

Customizing vi

A number of options that you can set as part of your editing environment affect how vi operates. For example, you
can set a right margin that will cause vi to wrap lines automatically, so you don’t need to insert carriage returns.

You can change options from within vi by using the :set command. In addition, vi reads an initialization
file in your home directory called .exrc for further operating instructions. By placing set commands in this file,
you can modify the way vi acts whenever you use it.

You can also set up .exrc files in local directories to initialize various options that you want to use in differ-
ent environments. For example, you might define one set of options for editing text, but another set for editing
source programs. The .exrc file in your home directory will be executed first, then the one on your current direc-
tory.

Finally, if the shell variable EXINIT is set in your environment (with the Bourne shell export command, or
the C shell setenv command), any commands it contains will be executed by vi on startup. If EXINIT is set, it
will be used instead of .exrc; vi will not take commands from both.

40 Unix Text Processing

The set Command

There are two types of options that can be changed with the set command: toggle options, which are either on or
off, and options that take a numeric or string value (such as the location of a margin or the name of a file).

Toggle options may be on or off by default. To turn a toggle option on, the command is:
:set option

To turn a toggle option off, the command is:
:set nooption

For example, to specify that pattern searches should ignore case, you type:
:set ic

If you want vi to return to being case-sensitive in searches, give the command:
:set noic

Some options have values. For example, the option window sets the number of lines shown in the screen
“window.” You set values for these options with an equals sign (=). For example:

:set window=20

During a vi session, you can check what options are available. The command:
:set all

displays the complete list of options, including options that you have set and defaults that vi has chosen. The dis-
play will look something like this:

noautoindent open tabstop=8
autoprint prompt taglength=0
noautowrite noreadonly term=wy50
nobeautify redraw noterse
directory=/tmp /remap timeout
noedcompatible report=5 ttytype=wy50
noerrorbells scrolls=11 warn
hardtabs=8 sections=AhBhChDh window=20
noignorecase shell=/bin/csh wrapscan
nolisp shiftwidth=8 wrapmargin=10
nolist noshowmatch nowriteany
magic noslowopen
mesg paragraphs=IPLPPPQP LIpp1pipbb
number tags=tags /usr/lib/tags
nooptimize

You can also ask about the setting for any individual option by name, using the command:
:set option?

The command :set shows options that you have specifically changed, or set, either in your .exrc file or during
the current session. For example, the display might look like this:

number window=20 wrapmargin=10

See Appendix A for a description of what these options mean.

Learning vi 41

The .exrc File

The .exrc file that controls the vi environment for you is in your home directory. Enter into this file the set op-
tions that you want to have in effect whenever you use vi or ex.

The .exrc file can be modified with the vi editor, like any other file. A sample .exrc file might look like
this:

set wrapmargin=10 window=20

Because the file is actually read by ex before it enters visual mode (vi), commands in .exrc should not have a
preceding colon.

Alternate Environments

You can define alternate vi environments by saving option settings in an .exrc file that is placed in a local direc-
tory. If you enter vi from that directory, the local .exrc file will be read in. If it does not exist, the one in your
home directory will be read in.

For example, you might want to have one set of options for programming:
set number lisp autoindent sw=4 tags=/usr/lib/tags terse

and another set of options for text editing:
set wrapmargin=15 ignorecase

Local .exrc files are especially useful when you define abbreviations, which are described in Chapter 7.

Some Useful Options

As you can see when you type :set all, there are many options. Most options are used internally by vi and
aren’t usually changed. Others are important in certain cases, but not in others (for example, noredraw and win-
dow can be useful on a dialup line at a low baud rate). Appendix A contains a brief description of each option. We
recommend that you take some time to play with option setting—if an option looks interesting, try setting it (or un-
setting it) and watch what happens while you edit. You may find some surprisingly useful tools.

There is one option that is almost essential for editing nonprogram text. The wrapmargin option specifies
the size of the right margin that will be used to autowrap text as you type. (This saves manually typing carriage re-
turns). This option is in effect if its value is set to greater than 0. A typical value is 10 or l5.

set wrapmargin=15

There are also three options that control how vi acts in conducting a search. By default, it differentiates be-
tween uppercase and lowercase (foo does not match Foo), wraps around to the beginning of the file during a search
(this means you can begin your search anywhere in the file and still find all occurrences), and recognizes wildcard
characters when matching patterns. The default settings that control these options are noignorecase, wrap-
scan, and magic, respectively. To change any of these defaults, set the opposite toggles: ignorecase,
nowrapscan, or nomagic.

Another useful option is shiftwidth. This option was designed to help programmers properly indent their
programs, but it can also be useful to writers. The >> and << commands can be used to indent (or un-indent) text by
shiftwidth characters. The position of the cursor on the line doesn’t matter—the entire line will be shifted. The
shiftwidth option is set to 8 by default, but you can use :set to change this value.

Give the >> or << command a numeric prefix to affect more than one line. For example:
10>>

will indent the next 10 lines by shiftwidth.

42 Unix Text Processing

Edits and Movement

You have learned the edit commands c, d, and y, and how to combine them with movements and numbers (such as
2cw or 4dd). Since that point, you have added many more movement commands to your repertoire. Although the
fact that you can combine edit commands with movement is not a “new” concept to you, Table 3-2 gives you a feel
for the many editing options you now have.

Table 3.2 Combining vi Commands

From Cursor to Change Delete Copy

Bottom of screen cL dL yL
Next line c+ d+ y+
Next sentence c) d) y)
Next paragraph c} d} y}
Pattern c/pattern d/pattern y/pattern
End of file cG dG yG
Line number 13 c13G d13G y13G

You can also combine numbers with any of the commands in Table 3-2 to multiply them. For example, 2c)
changes the next two sentences. Although this table may seem forbidding, experiment with combinations and try to
understand the patterns. When you find how much time and effort you can save, combinations of change and move-
ment keys will no longer seem obscure, but will readily come to mind.

More Ways to Insert Text

You have inserted text before the cursor with the sequence:
itext <ESC>

There are many insert commands. The difference between them is that they insert text at different positions relative
to the cursor:

a append text after cursor

A append text to end of current line

i insert text before cursor

I insert text at beginning of line

o open new line below cursor for text

O open new line above cursor for text

R overstrike existing characters with new characters

All these commands leave you in insert mode. After inserting text, remember to press ESC to escape back to com-
mand mode.

The A (append) and I (insert) commands save you from having to move the cursor to the end or beginning of
the line before invoking insert mode. For example, A saves one keystroke over $a. Although one keystroke might
not seem like a timesaver, as you become a more adept (and impatient) editor, you’ll want to omit any unnecessary
keystrokes.

There are other combinations of commands that work together naturally. For example, ea is useful for ap-
pending new text to the end of a word. (It sometimes helps to train yourself to recognize such frequent combina-
tions so that invoking them becomes automatic).

Learning vi 43

Using Buffers

While you are editing, you have seen that your last deletion (d or x) or yank (y) is saved in a buffer (a place in
stored memory). You can access the contents of that buffer and put the saved text back in your file with the put com-
mand (p or P).

The last nine deletions are stored by vi in numbered buffers. You can access any of these numbered buffers
to restore any (or all) of the last nine deletions. You can also place yanks (copied text) in buffers identified by let-
ters. You can fill up to 26 buffers (a through z) with yanked text and restore that text with a put command any time
in your editing session.

The vi program also saves your last edit command (insert, change, delete, or yank) in a buffer. Your last
command is available to repeat or undo with a single keystroke.

Recovering Deletions

Being able to delete large blocks of text at a single bound is all well and good, but what if you mistakenly delete 53
lines that you need? There is a way to recover any of your past nine deletions, which are saved in numbered buffers.
The last deletion is saved in buffer 1; the second-to-last in buffer 2, and so on.

To recover a deletion, type " (quotation mark), identify the buffered text by number, and then give the put
command. For example, to recover your second-to-last deletion from buffer 2, type:

"2p

Sometimes it’s hard to remember what’s in the last nine buffers. Here’s a trick that can help.

The . command (repeat last command) has a special meaning when used with p and u. The p command will
print the last deletion or change, but 2p will print the last two. By combining p, . (dot), and u (undo), you can step
back through the numbered buffers.

The "1p command will put the last deletion, now stored in buffer 1, back into your text. If you then type u, it
will go away. But when you type the . command, instead of repeating the last command ("1p), it will show the
next buffer as if you’d typed "2p. You can thus step back through the buffers. For example, the sequence:

"1pu.u.u.u.u.

will show you, in sequence, the contents of the last six numbered buffers.

Yanking to Named Buffers

With unnamed buffers, you have seen that you must put (p or P) the contents of the buffer before making any other
edit, or the buffer is overwritten. You can also use y with a set of 26 named buffers (a through z), which are specifi-
cally for copying and moving text. If you name a buffer to store the yanked text, you can place the contents of the
named buffer at any time during your editing session.

To yank into a named buffer, precede the yank command with a quotation mark (") and the character for the
name of the buffer you want to load. For example:

"dyy yank current line into buffer d

"a6yy yank next six lines into buffer a

After loading the named buffers and moving to the new position, use p or P to put the text back.

"dP put buffer d before cursor

"ap put buffer a after cursor

44 Unix Text Processing

I_n our conversation last
Thursday, we discussed a
documentation project
that would produce a
user’s manual on the
Alcuin product.

"a6yy
yank 6 lines
to buffer a

I_n our conversation last
Thursday, we discussed a
documentation project
that would produce a
user’s manual on the
Alcuin product.

6 lines yanked

A_lcuin product. "ap
put buffer a
after cursor

Alcuin product.
I_n our conversation last
Thursday, we discussed a
documentation project
that would produce a
user’s manual on the
Alcuin product.

There is no way to put part of a buffer into the text—it is all or nothing.

Named buffers allow you to make other edits before placing the buffer with p. After you know how to travel
between files without leaving vi, you can use named buffers to selectively transfer text between files.

You can also delete text into named buffers, using much the same procedure. For example:

"a5dd delete five lines into buffer a

If you specify the buffer name with a capital letter, yanked or deleted text will be appended to the current contents
of the buffer. For example:

"byy yank current line into buffer b

"B5dd delete five lines and append to buffer b

3} move down three paragraphs

"bP insert the six lines from buffer b above the cursor

When you put text from a named buffer, a copy still remains in that buffer; you can repeat the put as often as you
like until you quit your editing session or replace the text in the buffer.

For example, suppose you were preparing a document with some repetitive elements, such as the skeleton for
each page of the reference section in a manual. You could store the skeleton in a named buffer, put it into your file,
fill in the blanks, then put the skeleton in again each time you need it.

Marking Your Place

During a vi session, you can mark your place in the file with an invisible “bookmark,” perform edits elsewhere,
then return to your marked place. In the command mode:

"mx marks current position with x (x can be any letter)

"´x moves cursor to beginning of line marked by x

"`x moves cursor to character marked by x

Learning vi 45

"`` returns to previous mark or context after a move

Today, I’ll start
putting together a_
written plan that

mxG
mark and move

to end of file

Sincerely,

F_red Caslon

Sincerely,

F_red Caslon

‘x
return to mark

Today, I’ll start
putting together a_
written plan that

Place markers are set only during the current vi session; they are not stored in the file.

Other Advanced Edits

You may wonder why we haven’t discussed global changes, moving text between files, or other advanced ex topics.
The reason is that, to use these tools, it helps to learn more about ex and a set of UNIX pattern-matching tools that
we discuss together in Chapter 7.

4Chapter 4

nroff and troff

The vi editor lets you edit text, but it is not much good at formatting. A text file such as program source code might
be formatted with a simple program like pr, which inserts a header at the top of every page and handles pagination,
but otherwise prints the document exactly as it appears in the file. But for any application requiring the preparation
of neatly formatted text, you will use the nroff (“en-roff”) or troff (“tee-roff”) formatting program.

These programs are used to process an input text file, usually coded or “marked up” with formatting instruc-
tions. When you use a wysiwyg program like most word processors, you use commands to lay out the text on the
screen as it will be laid out on the page. With a markup language like that used by nroff and troff, you enter
commands into the text that tell the formatting program what to do.

Our purpose in this chapter is twofold. We want to introduce the basic formatting codes that you will find use-
ful. But at the same time, we want to present them in the context of what the formatter is doing and how it works. If
you find this chapter rough-going—especially if this is your first exposure to nroff/ troff— skip ahead to either
Chapter 5 or Chapter 6 and become familiar with one of the macro packages, ms or mm; then come back and resume
this chapter. We assume that you are reading this book because you would like more than the basics, that you intend
to master the complexities of nroff/ troff. As a result, this chapter is somewhat longer and more complex than
it would be if the book were an introductory user’s guide.

Conventions

To distinguish input text and requests shown in examples from formatter output, we have adopted the conven-
tion of showing “page corners” around output from nroff or troff. Output from nroff is shown in the same
constant-width typeface as other examples:

Here is an example of nroff output.

Output from troff is shown in the same typeface as the text, but with the size of the type reduced by one point, un-
less the example calls for an explicit type size:

Here is an example of troff output.

In representing output, compromises sometimes had to be made. For example, when showing nroff output, we
have processed the example separately with nroff, and read the results back into the source file. However, from
there, they have been typeset in a constant-width font by troff. As a result, there might be slight differences from
true nroff output, particularly in line length or page size. However, the context should always make clear just
what is being demonstrated.

47

48 Unix Text Processing

What the Formatter Does

Take a moment to think about the things you do when you format a page on a wysiwyg device such as a typewriter:

• You set aside part of the page as the text area. This requires setting top, bottom, left, and right margins.

• You adjust the lines that you type so they are all approximately the same length and fit into the desig-
nated text area.

• You break the text into syntactic units such as paragraphs.

• You switch to a new page when you reach the bottom of the text area.

Left to themselves, nroff or troff will do only one of these tasks: they will adjust the length of the lines in the
input file so that they come out even in the output file. To do so, they make two assumptions:

• They assume that the line length is 6.5 inches.

• They assume that a blank line in the input signals the start of a new paragraph. The last line of the pre-
ceding text is not adjusted, and a blank line is placed in the output.

The process of filling and adjusting is intuitively obvious—we’ve all done much the same thing manually when us-
ing a typewriter or had it done for us by a wysiwyg word processor. However, especially when it comes to a typeset-
ting program like troff, there are ramifications to the process of line adjustment that are not obvious. Having a
clear idea of what is going on will be very useful later. For this reason, we’ll examine the process in detail.

Line Adjustment

There are three parts to line adjustment: filling, justification, and hyphenation. Filling is the process of making all
lines of text approximately equal in length. When working on a typewriter, you do this automatically, simply by typ-
ing a carriage return when the line is full. Most word-processing programs automatically insert a carriage return at
the end of a line, and we have seen how to set up vi to do so as well.

However, nroff and troff ignore carriage returns in the input except in a special “no fill” mode. They re-
format the input text, collecting all input lines into even-length output lines, stopping only when they reach a blank
line or (as we shall see shortly) a formatting instruction that tells them to stop. Lines that begin with one or more
blank spaces are not filled, but trailing blank spaces are trimmed. Extra blank spaces between words on the input
line are preserved, and the formatter adds an extra blank space after each period, question mark, or exclamation
point.

Justification is a closely related feature that should not be confused with filling. Filling simply tries to keep
lines approximately the same length; justification adjusts the space between words so that the ends of the lines match
exactly.

By default, nroff and troff both fill and justify text. Justification implies filling, but it is possible to have
filling without justification. Let’s look at some examples. First, we’ll look at a paragraph entered in vi. Here’s a
paragraph from the letter you entered in the last chapter, modified so that it offers to prepare not just a user’s guide
for the Alcuin illuminated lettering software, but a reference manual as well. In the course of making the changes,
we’ve left a short line in the middle of the paragraph.

In our conversation last Thursday, we discussed a
documentation project that would produce a user’s guide
and reference manual
for the Alcuin product. Yesterday, I received the product
demo and other materials that you sent me.

Now, let’s look at the paragraph after processing by nroff:

nroff and troff 49

In our conversation last Thursday, we discussed a
documentation project that would produce a user’s
guide and reference manual for the Alcuin product.
Yesterday, I received the product demo and other
materials that you sent me.

The paragraph has been both filled and justified. If the formatter were told to fill, but not to justify, the paragraph
would look like this:

In our conversation last Thursday, we discussed a
documentation project that would produce a user’s guide
and reference manual for the Alcuin product. Yesterday,
I received the product demo and other materials that
you sent me.

As you can see, nroff justified the text in the first example by adding extra space between words.

Most typewritten material is filled but not justified. In printer’s terms, it is typed ragged right. Books, maga-
zines, and other typeset materials, by contrast, are usually right justified . Occasionally, you will see printed material
(such as ad copy) in which the right end of each line is justified, but the left end is ragged. It is for this reason that
we usually say that text is right or left justified , rather than simply justified .

When it is difficult to perform filling or justification or both because a long word falls at the end of a line, the
formatter has another trick to fall back on (one we are all familiar with)—hyphenation.

The nroff and troff programs perform filling, justification, and hyphenation in much the same way as a
human typesetter used to set cold lead type. Human typesetters used to assemble a line of type by placing individual
letters in a tray until each line was filled. There were several options for filling as the typesetter reached the end of
the line:

• The next word might fit exactly.

• The next word might fit if the typesetter squeezed the words a little closer together.

• The next word could be hyphenated, with part put on the current 1ine and part on the next line.

If, in addition to being filled, the text was to be justified, there was one additional issue: after the line was approxi-
mately the right length, space needed to be added between each word so that the line length came out even.

Just like the human typesetter they replace, nroff and troff assemble one line of text at a time, measuring
the length of the line and making adjustments to the spacing to make the line come out even (assuming that the line
is to be justified). Input lines are collected into a temporary storage area, or buffer, until enough text has been col-
lected for a single output line. Then that line is output, and the next line collected.

It is in the process of justification that you see the first significant difference between the two programs. The
nroff program was designed for use with typewriter-like printers; troff was designed for use with phototypeset-
ters.

A typewriter-style printer has characters all of the same size—an i takes up the same amount of space as an m.
(Typical widths are 1/10 or 1/12 inch per character). And although some printers (such as daisywheel printers) al-
low you to change the style of type by changing the daisywheel or thimble, you can usually have only one typeface
at a time.

A typesetter, by contrast, uses typefaces in which each letter takes up an amount of space proportional to its
outline. The space allotted for an i is quite definitely narrower than the space allotted for an m. The use of variable-

50 Unix Text Processing

width characters makes the job of filling and justification much more difficult for troff than for nroff. Where
nroff only needs to count characters, troff has to add up the width of each character as it assembles the line.
(Character widths are defined by a “box” around the character, rather than by its natural, somewhat irregular shape).

The troff program also justifies by adding space between words, but because the variable-width fonts it
uses are much more compact, it fits more on a line and generally does a much better job of justification.*

There’s another difference as well. Left to itself, nroff will insert only full spaces between words—that is,
it might put two spaces between one pair of words, and three between another, to fill the line. If you call nroff
with the -e option, it will attempt to make all interword spaces the same size (using fractional spaces if possible).
But even then, nroff will only succeed if the output device allows fractional spacing. The troff program always
uses even interword spacing.

Here’s the same paragraph filled and justified by troff:

In our conversation last Thursday, we discussed a documentation project that
would produce a user’s guide and reference manual for the Alcuin product.
Yesterday, I received the product demo and other materials that you sent me.

To make matters still more difficult, typeset characters come in a variety of different designs, or fonts. A font
is a set of alphabetic, numeric, and punctuation characters that share certain design elements. Typically, fonts come
in families of several related typefaces. For example, this book is typeset for the most part in the Times Roman fam-
ily of typefaces. There are three separate fonts:

roman
bold
italic

Typesetting allows for the use of multiple fonts on the same page, as you can see from the mixture of fonts through-
out this book. Sometimes the fonts are from the same family, as with the Times Roman, Times Bold, and Times
Italic just shown. However, you can see other fonts, such as Helvetica, in the running headers on each page. Bold
and italic fonts are generally used for emphasis; in computer books such as this, a constant-width typewriter font is
used for examples and other “computer voice” statements.

Even within the same font family, the width of the same character varies from font to font. For example, a
bold “m” is slightly wider than a Roman “m.”

To make things still more complicated, the same font comes in different sizes. If you look at this book, you
will notice that the section headings within each chapter are slightly larger for emphasis. Type sizes are measured in
units called points. We’ll talk more about this later, but to get a rough idea of what type sizes mean, simply look at
the current page. The body type of the book is 10-point Times Roman; the next heading is 12-point Times Bold.
The spacing between lines is generally proportional to the point size, instead of fixed, as it is with nroff.

The troff program gets information about the widths of the various characters in each font from tables
stored on the system in the directory /usr/lib/font. These tables tell troff how far to move over after it has
output each character on the line.

We’ll talk more about troff later. For the moment, you should be aware that the job of the formatting pro-
gram is much more complicated when typesetting than it is when preparing text for typewriter-style printers.

*The very best typesetting programs have the capability to adjust the space between individual characters as well. This process is
called kerning. SoftQuad Publishing Software in Toronto sells an enhanced version of troff called SQroff that does support
kerning.

nroff and troff 51

Using nroff

As mentioned previously, left to themselves, nroff and troff perform only rudimentary formatting. They will
fill and justify the text, using a default line length of 6.5 inches, but they leave no margins, other than the implicit
right margin caused by the line length. To make this clearer, let’s look at the sample letter from the last chapter (in-
cluding the edit we made in this chapter) as it appears after formatting with nroff.

First, let’s look at how to invoke the formatter. The nroff program takes as an argument the name of a file to
be formatted:

$ nroff letter

Alternatively, it can take standard input, allowing you to preprocess the text with some other program before format-
ting it:

$ tbl report | nroff

There are numerous options to nroff. They are described at various points in this book (as appropriate to the
topic) and summarized in Appendix B.

One basic option is -T, which specifies the terminal (printer) type for which output should be prepared. Al-
though nroff output is fairly straightforward, some differences between printers can significantly affect the output.
(For example, one printer may perform underlining by backspacing and printing an underscore under each under-
lined letter, and another may do it by suppressing a newline and printing the underscores in a second pass over the
line). The default device is the Teletype Model 37 terminal—a fairly obsolete device. Other devices are listed in
Appendix B. If you don’t recognize any of the printers or terminals, the safest type is probably lp:

$ nroff -Tlp file

In examples in this book, we will leave off the -T option, but you may want to experiment, and use whichever type
gives the best results with your equipment.

Like most UNIX programs, nroff prints its results on standard output. So, assuming that the text is stored in
a file called letter, all you need to do is type:

$ nroff letter

A few moments later, you should see the results on the screen. Because the letter will scroll by quickly, you should
pipe the output of nroff to a paging program such as pg or more:

$ nroff letter | pg

or out to a printer using lp or lpr:
$ nroff letter | lp

Using troff

The chief advantage of troff over nroff is that it allows different types of character sets, or fonts, and so lets
you take full advantage of the higher-quality printing available with typesetters and laser printers. There are a num-
ber of requests, useful only in troff, for specifying fonts, type sizes, and the vertical spacing between lines. Be-
fore we describe the actual requests though, we need to look at a bit of history.

The troff program was originally designed for a specific typesetter, the Wang C/A/T. Later, it was modified
to work with a wide range of output devices. We’ll discuss the original version of troff (which is still in use at
many sites) first, before discussing the newer versions. The C/A/T typesetter was designed in such a way that it
could use only four fonts at one time.

(Early phototypesetters worked by projecting light through a film containing the outline of the various charac-
ters. The film was often mounted on a wheel that rotated to position the desired character in front of the light source
as it flashed, thus photographing the character onto photographic paper or negative film. Lenses enlarged and re-
duced the characters to produce various type sizes. The C/A/T typesetter had a wheel divided into four quadrants,
onto which one could mount four different typefaces).

52 Unix Text Processing

Typically, the four fonts were the standard (roman), bold, and italic fonts of the same family, plus a “special”
font that contained additional punctuation characters, Greek characters (for equations), bullets, rules, and other non-
standard characters. Figure 4-1 shows the characters available in these standard fonts.

The Coming of ditroff

Later, troff was modified to support other typesetters and, more importantly (at least from the perspective of
many readers of this book), laser printers. The later version of troff is often called ditroff (for device-inde-
pendent troff), but many UNIX systems have changed the name of the original troff to otroff and simply
call ditroff by the original name, troff.

The ditroff program has not been universally available because, when it was developed, it was “unbun-
dled” from the basic UNIX distribution and made part of a separate product called Documenter’s Workbench or
DWB. UNIX system manufacturers have the option not to include this package, although increasingly, they have
been doing so. Versions of DWB are also available separately from third party vendors.

The newer version of troff allows you to specify any number of different fonts. (You can mount fonts at up
to ten imaginary “positions” with .fp and can request additional fonts by name).

Times Roman

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
! $ % & () ‘ ’ * + - . , / : ; = ? [] |
• — – _ ¼ ½ ¾ fi fl ° † ´ ¢ ® ©

Times Italic

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
! $ % & () ‘ ’ * + - . , / : ; = ? [] |
• — – _ ¼ ½ ¾ fi fl ° † ´ ¢ ® ©

Times Bold

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
! $ % & () ‘ ’ * + - . , / : ; = ? [] |
• — – _ ¼ ½ ¾ fi fl ° † ´ ¢ ® ©

Special Mathematical Font

" ´ \ ^ ` ~ / 〈 〉 { } # @ + - = ∗
α β γ δ ε ζ η θ ι κ λ µ ν ξ ο π ρ σ ς τ υ φ χ ψ ω
Γ ∆ Θ Λ Ξ Π Σ ϒ Φ Ψ Ω
√ ≥ ≤ ≡ ∼ ≠ → ← - ↓ × ÷ ± ∪ ∩ ⊂ ⊃ ⊆ ⊇ ∞ ∂
§ ∇ ¬ ∫ ∝ ∅ ∈ ‡ + +

Figure 4.1 The Four Standard Fonts

There may also be different font sizes available, and there are some additional commands for line drawing
(ditroff can draw curves as well as straight lines). For the most part, though, ditroff is very similar to the

nroff and troff 53

original program, except in the greater flexibility it offers to use different output devices.

One way to find out which version of troff you have on your system (unless you have a program explicitly
called ditroff) is to list the contents of the directory /usr/lib/font:

$ls -F /usr/lib/font
devlj/
devps/
ftB
ftI
ftR
ftS

If there are one or more subdirectories whose name begins with the letters dev, your system is using ditroff.
Our system supports both ditroff and otroff, so we have both a device subdirectory (for ditroff) and font
files (for otroff) directly in /usr/lib/font.

We’ll talk more about font files later. For the moment, all you need to know is that they contain information
about the widths of the characters in various fonts for a specific output device.

Contrary to what a novice might expect, font files do not contain outlines of the characters themselves. For a
proper typesetter, character outlines reside in the typesetter itself. All troff sends out to the typesetter are charac-
ter codes and size and position information.

However, troff has increasingly come to be used with laser printers, many of which use downloadable
fonts. An electronic image of each character is loaded from the computer into the printer’s memory, typically at the
start of each printing job. There may be additional “font files” containing character outlines in this case, but these
files are used by the software that controls the printer, and have nothing to do with troff itself. In other cases, font
images are stored in ROM (read-only memory) in the printer.

If you are using a laser printer, it is important to remember that troff itself has nothing to do with the actual
drawing of characters or images on the printed page. In a case like this, troff simply formats the page, using ta-
bles describing the widths of the characters used by the printer, and generates instructions about page layout, spac-
ing, and so on. The actual job of driving the printer is handled by another program, generally referred to as a printer
driver or troff postprocessor.

To use troff with such a postprocessor, you will generally need to pipe the output of troff to the post-
processor and from there to the print spooler:

$ troff file | postprocessor | lp

If you are using the old version of troff, which expects to send its output directly to the C/A/T typesetter, you
need to specify the -t option, which tells troff to use standard output. If you don’t, you will get the message:

Typesetter busy.

(Of course, if by any chance you are connected to a C/A/T typesetter, you don’t need this option. There are several
other options listed in Appendix B that you may find useful). When you use ditroff, on the other hand, you will
need to specify the -T command-line option that tells it what device you are using. The postprocessor will then
translate the device-independent troff output into instructions for that particular type of laser printer or typesetter.
For example, at our site, we use troff with an Apple LaserWriter and Pipeline Associates’ devps postprocessor,
which translates troff output for the LaserWriter. Our command line looks something like this:

$ ditroff -Tps files | devps | lp

You can print the same file on different devices, simply by changing the -T option and the postprocessor. For exam-
ple, you can print drafts on a laser printer, then switch to a typesetter for final output without making extensive
changes to your files. (To actually direct output to different printers, you will also have to specify a printer name as
an option to the lp command. In our generic example, we simply use lp without any options, assuming that the ap-
propriate printer is connected as the default printer).

Like all things in life, this is not always as easy as it sounds. Because the fonts used by different output de-
vices have different widths even when the nominal font names and sizes are the same, pagination and line breaks
may be different when you switch from one device to another.

The job of interfacing ditroff to a wide variety of output devices is becoming easier because of the recent
development of industry-wide page description languages like Adobe Systems’ PostScript, Xerox’s Interpress, and

54 Unix Text Processing

Imagen’s DDL. These page description languages reside in the printer, not the host computer, and provide a device-
independent way of describing placement of characters and graphics on the page.

Rather than using a separate postprocessor for each output device, you can now simply use a postprocessor to
convert troff output to the desired page description language. For example, you can use Adobe Systems’ Tran-
Script postprocessor (or an equivalent postprocessor like devps from Pipeline Associates) to convert troff output
to PostScript, and can then send the PostScript output to any one of a number of typesetters or laser printers.

From this point, whenever we say troff, we are generally referring to ditroff. In addition, although we
will continue to discuss nroff as it differs from troff, our emphasis is on the more capable program. It is our
opinion that the growing availability of laser printers will make troff the program of choice for almost all users in
the not too distant future.

However, you can submit a document coded for troff to nroff with entirely reasonable results. For the
most part, formatting requests that cannot be handled by nroff are simply ignored. And you can submit docu-
ments coded for nroff to troff, though you will then be failing to use many of the characteristics that make
troff desirable.

The Markup Language

The nroff and troff markup commands (often called requests) typically consist of one or two lowercase letters
and stand on their own line, following a period or apostrophe in column one. Most requests are reasonably
mnemonic. For example, the request to leave space is:

.sp

There are also requests that can be embedded anywhere in the text. These requests are commonly called escape se-
quences. Escape sequences usually begin with a backslash (\). For example, the escape sequence \l will draw a
horizontal line. Especially in troff, escape sequences are used for line drawing or for printing various special
characters that do not appear in the standard ASCII character set. For instance, you enter \(bu to get •, a bullet.

There are three classes of formatting instructions:

• Instructions that have an immediate one-time effect, such as a request to space down an inch before out-
putting the next line of text.

• Instructions that have a persistent effect, such as requests to set the line length or to enable or disable
justification.

• Instructions that are useful for writing macros. There is a “programming language” built into the for-
matter that allows you to build up complex requests from sequences of simpler ones. As part of this
language there are requests for storing values into variables called strings and number registers, for test-
ing conditions and acting on the result, and so on.

For the most part, we will discuss the requests used to define macros, strings, and number registers later in this
book.

At this point, we want to focus on understanding the basic requests that control the basic actions of the format-
ter. We will also learn many of the most useful requests with immediate, one-time effects. Table 4-1 summarizes
the requests that you will use most often.

Table 4.1 Basic nroff/troff Requests

nroff and troff 55

Request Meaning Request Meaning

.ad Enable line adjustment .na No justification of lines

.br Line break .ne Need lines to end of page

.bp Page break .nf No filling of lines

.ce Center next line .nr Define and set number register

.de Define macro .po Set page offset

.ds Define string .ps Set point size

.fi Fill output lines .so Switch to source file and return

.ft Set current font .sp Space

.in Set indent .ta Set tab stop positions

.ls Set double or triple spacing .ti Set temporary indent

.ll Specify line length .vs Set vertical line spacing

Looking at nroff Output

When we discussed the basic operations of the text formatter, we saw that nroff and troff perform rudimentary
formatting. They will fill and justify the text, using a default line length of 6.5 inches, but they leave no margins,
other than the implicit right margin caused by the line length.

To make this clearer, let’s look at the sample letter from the last chapter as it appears after formatting with
nroff, without any embedded requests, and without using any macro package. From Figure 4-2, you can see im-
mediately that the formatter has adjusted all of the lines, so that they are all the same length—even in the address
block of the letter, where we would have preferred them to be left as they were. Blank lines in the input produce
blank lines in the output, and the partial lines at the ends of paragraphs are not adjusted.

The most noticeable aspect of the raw formatting is a little difficult to reproduce here, though we’ve tried. No
top or left margin is automatically allocated by nroff.

Turning Filling On and Off

Even though filling of uneven text lines resulting from editing is probably the most basic action we want from the
formatter, it is not always desirable. For example, in our letter, we don’t want the address block to be filled. There
are two requests we could use to correct the problem: .br (break) and .nf (no fill).

A .br request following a line outputs the current contents of the line buffer and starts the next line, even
though the buffer is not yet full. To produce a properly formatted address block, we could enter the following re-
quests in the file:

Mr. John Fust
.br
Vice President, Research and Development
.br
Gutenberg Galaxy Software
.br
Waltham, Massachusetts 02159

Each individual input line will be output without filling or justification. We could also use the .nf request, which
tells nroff to stop filling altogether. Text following this request will be printed by the formatter exactly as it ap-
pears in the input file. Use this request when you want text to be laid out as it was typed in.

Because we do want the body of the letter to be filled, we must turn filling back on with the .fi (fill) request:
April 1, 1987

.nf
Mr. John Fust
Vice President, Research and Development
Gutenberg Galaxy Software
Waltham, Massachusetts 02159
.fi

56 Unix Text Processing

Dear Mr. Fust:

April 1, 1987

Mr. John Fust Vice President, Research and
Development Gutenberg Galaxy Software Waltham,
Massachusetts 02159

Dear Mr. Fust:

In our conversation last Thursday, we discussed a
documentation project that would produce a user’s
guide and reference manual for the Alcuin product.
Yesterday, I received the product demo and other
materials that you sent me. After studying them,
I want to clarify a couple of points:

Going through a demo session gave me a much better
understanding of the product. I confess to being
amazed by Alcuin. Some people around here,
looking over my shoulder, were also astounded by
the illustrated manuscript I produced with Alcuin.
One person, a student of calligraphy, was really
impressed.

Tomorrow, I’ll start putting together a written
plan that presents different strategies for
documenting the Alcuin product. After I submit
this plan, and you have had time to review it,
let’s arrange a meeting at your company to discuss
these strategies.

Thanks again for giving us the opportunity to bid
on this documentation project. I hope we can
decide upon a strategy and get started as soon as
possible in order to have the manual ready in time
for first customer ship. I look forward to meeting
with you towards the end of next week.

Sincerely,

Fred Caslon

Figure 4.2 A Raw nroff-formatted File

If you look carefully at the previous example, you will probably notice that we entered the two formatting requests
on blank lines in the letter. If we were to format the letter now, here is what we’d get:

nroff and troff 57

April 1, 1987
Mr. John Fust
Vice President, Research and Development
Gutenberg Galaxy Software
Waltham, Massachusetts 02159
Dear Mr. Fust:

As you may notice, we’ve lost the blank lines that used to separate the date from the address block, and the address
block from the salutation. Lines containing formatting requests do not result in any space being output (unless they
are spacing requests), so you should be sure not to inadvertently replace blank lines when entering formatting codes.

Controlling Justification

Justification can be controlled separately from filling by the .ad (adjust) request. (However, filling must be on for
justification to work at all). You can adjust text at either margin or at both margins.

Unlike the .br and .nf requests introduced, .ad takes an argument, which specifies the type of justification
you want:

l adjust left margin only
r adjust right margin only
b adjust both margins
c center filled line between margins

There is another related request, .na (no adjust). Because the text entered in a file is usually left justified to
begin with, turning justification off entirely with .na produces similar results to .ad l in most cases.

However, there is an important difference. Normally, if no argument is given to the .ad request, both margins
will be adjusted. That is, .ad is the same as .ad b. However, following an .na request, .ad reverts to the value
last specified. That is, the sequence:

.ad r
Some text
.ad l
Some text
.ad
Some text

will adjust both margins in the third block of text. However, the sequence:
.ad r
Some text
.na
Some text
.ad
Some text

will adjust only the right margin in the third block of text.

It’s easy to see where you would use .ad b or .ad l. Let’s suppose that you would like a ragged margin
for the body of your letter, to make it look more like it was prepared on a typewriter. Simply follow the .fi request
we entered previously with .ad l.

Right-only justification may seem a little harder to find a use for. Occasionally, you’ve probably seen ragged-
left copy in advertising, but that’s about it. However, if you think for a moment, you’ll realize that it is also a good
way to get a single line over to the right margin.

For example, in our sample letter, instead of typing all those leading spaces before the date (and having it fail
to come out flush with the margin anyway), we could enter the lines:

58 Unix Text Processing

.ad r
April 1, 1987
.ad b

As it turns out, this construct won’t quite work. If you remember, when filling is enabled, nroff and troff col-
lect input in a one-line buffer and only output the saved text when the line has been filled. There are some non-obvi-
ous consequences of this that will ripple all through your use of nroff and troff. If you issue a request that tem-
porarily sets a formatting condition, then reset it before the line is output, your original setting may have no effect.
The result will be controlled by the request that is in effect at the time the line is output, not at the time that it is first
collected in the line buffer.

Certain requests cause implicit line breaks (the equivalent of carriage returns on a typewriter) in the output,
but others do not. The .ad request does not cause a break. Therefore, a construction like:

.ad r
April 1, 1987
.ad b
Mr. John Fust

will result in the following output:

April 1, 1987 Mr. John Fust

and not:

April 1, 1987
Mr. John Fust

To make sure that you get the desired result from a temporary setting like this, be sure to follow the line to be af-
fected with a condition that will cause a break.* For instance, in the previous example, you would probably follow
the date with a blank line or an .sp request, either of which will normally cause a break. If you don’t, you should
put in an explicit break, as follows:

.ad r
April 1, 1987
.br
.ad b
Mr. John Fust

A final point about justification: the formatter adjusts a line by widening the blank space between words. If you do
not want the space between two words adjusted or split across output lines, precede the space with a backslash. This
is called an unpaddable space.

There are many obscure applications for unpaddable spaces; we will mention them as appropriate. Here’s a
simple one that may come in handy: nroff and troff normally add two blank spaces after a period, question
mark, or exclamation point. The formatter can’t distinguish between the end of a sentence and an abbreviation, so if
you find the extra spacing unaesthetic, you might follow an abbreviation like Mr. with an unpaddable space: Mr.\
John Fust.

*The following requests cause a break:
.bp .br .ce .fi .nf .sp .in .ti

All other requests can be interspersed with text without causing a break. In addition, as discussed later, even these requests can be in-
troduced with a specìal “no break” control character (’ instead of .) so that they too will not cause a break.

nroff and troff 59

Hyphenation

As pointed out previously, hyphenation is closely related to filling and justification, in that it gives nroff and
troff some additional power to produce filled and justified lines without large gaps.

The nroff and troff programs perform hyphenation according to a general set of rules. Occasionally, you
need to control the hyphenation of particular words. You can specify either that a word not be hyphenated or that it
be hyphenated in a certain way. You can also turn hyphenation off entirely.

Specifying Hyphenation for Individual Words

There are two ways to specify that a word be hyphenated a specific way: with the .hw request and with the special
hyphenation indicator \%.

The .hw (hyphenate word) request allows you to specify a small list of words that should be hyphenated a
specific way. The space available for the word list is small (about 128 characters), so you should use this request
only for words you use frequently, and that nroff and troff hyphenate badly.

To use .hw, simply specify the word or words that constitute the exception list, typing a hyphen at the point or
points in the word where you would like it to be hyphenated.

.hw hy-phen-a-tion

You can specify multiple words with one .hw request, or you can issue multiple .hw requests as you need them.

However, if it is just a matter of making sure that a particular instance of a word is hyphenated the way you
want, you can use the hyphenation indication character sequence \%. As you type the word in your text, simply type
the two characters \% at each acceptable hyphenation point, or at the front of the word if you don’t want the word to
be hyphenated at all:

\%acknowledge the word acknowledge will not be hyphenated
ac\%know\%ledge the word acknowledge can be hyphenated only

at the specified points

This character sequence is the first instance we have seen of a formatting request that does not consist of a request
name following a period in column one. We will see many more of these later. This sequence is embedded right in
the text but does not print out.

In general, nroff and troff do a reasonable job with hyphenation. You will need to set specific hyphen-
ation points only in rare instances. In general, you shouldn’t even worry about hyphenation points, unless you notice
a bad break. Then use either .hw or \% to correct it.

The UNIX hyphen command can be used to print out all of the hyphenation points in a file formatted with
nroff or troff -a.

$ nroff options files | hyphen

or:
$ troff options -a files | hyphen

If your system doesn’t have the hyphen command, you can use grep instead:
$ nroff options files | grep ’-$’

(The single quotation marks are important because they keep grep from interpreting the - as the beginning of an
option).

60 Unix Text Processing

Turning Hyphenation Off and On

If you don’t want any hyphenation, use the .nh (no hyphenation) request. Even if you do this, though, you should
be aware that words already containing embedded hyphens, em dashes (—), or hyphen indication characters (\%)
will still be subject to hyphenation.

After you’ve turned hyphenation off, you can turn it back on with the .hy (hyphenate) request. This request
has a few twists. Not only does it allow you to turn hyphenation on, it also allows you to adjust the hyphenation
rules that nroff and troff use. It takes the following numeric arguments:

0 turn hyphenation off
1 turn hyphenation on
2 do not hyphenate the last line on a page
4 do not hyphenate after the first two characters of a word
8 do not hyphenate before the last two characters of a word

Specifying .hy with no argument is the same as specifying .hy 1. The other numeric values are additive.
For example, .hy 12 (.hy 4 plus .hy 8) will keep nroff and troff from breaking short syllables at the be-
ginning or end of words, and .hy 14 will put all three hyphenation restrictions into effect.

Page Layout

Apart from the adjusted address block, the biggest formatting drawback that you probably noticed when we format-
ted the sample letter is that there was no left or top margin. Furthermore, though it is not apparent from our one-
page example, there is no bottom margin either. If there were enough text in the input file to run onto a second page,
you would see that the text ran continuously across the page boundary.

In normal use, these layout problems would be handled automatically by either the ms or mm macro packages
(described later). Here, though, we want to understand how the formatter itself works.

Let’s continue our investigation of the nroff and troff markup language with some basic page layout
commands. These commands allow you to affect the placement of text on the page. Some of them (those whose de-
scriptions begin with the word set) specify conditions that will remain in effect until they are explicitly changed by
another instance of the same request. Others have a one-time effect.

As shown in Table 4-2, there are two groups of page layout commands, those that affect horizontal placement
of text on the page and those that affect vertical placement. A moment’s glance at these requests will tell you that,
before anything else, we need to talk about units.

Table 4.2 Layout Commands

.ll n Set the line length to n

.po n Set the left margin (page offset) to n

.in n Indent the left margin to n

.ti n Temporarily indent the left margin to n

.ce n Center the following n lines

Horizontal Layout

.pl n Set the page length to n

.sp n Insert n spaces

.bp n Start a new page

.wh n Specify when (at what vertical position
on the page) to execute a command

Vertical Layout

nroff and troff 61

Units of Measure

By default, most nroff and troff commands that measure vertical distance (such as .sp) do so in terms of a
number of “lines” (also referred to as vertical spaces, or vs). The nroff program has constant, device-dependent
line spacing; troff has variable line spacing, which is generally proportional to the point size. However, both pro-
grams do allow you to use a variety of other units as well. You can specify spacing in terms of inches and centime-
ters, as well as the standard printer’s measures picas and points. (A pica is 1/6 of an inch; a point is about 1/72 of
an inch. These units were originally developed to measure the size of type, and the relationship between these two
units is not as arbitrary as it might seem. A standard 12-point type is 1 pica high).

Horizontal measures, such as the depth of an indent, can also be specified using any of these measures, as well
as the printer’s measures ems and ens. These are relative measures, originally based on the size of the letters m and
n in the current type size and typeface. By default, horizontal measures are always taken to be in ems.

There is also a relationship between these units and points and picas. An em is always equivalent in width to
the height of the character specified by the point size. In other words, an em in a 12-point type is 12 points wide.
An en is always half the size of an em, or half of the current point size. The advantage of using these units is that
they are relative to the size of the type being used. This is unimportant in nroff, but using these units in troff
gives increased flexibility to change the appearance of the document without recoding.

The nroff and troff programs measure not in any of these units, but in device-dependent basic units. Any
measures you specify are converted to basic units before they are used. Typically, nroff measures in horizontal
units of 1/240 of an inch and otroff uses a unit of 1/432 inch. These units too are not as arbitrary as they may
seem. According to Joseph Osanna’s Nroff/Troff User’s Manual—the original, dense, and authoritative documenta-
tion on troff published by AT&T as part of the UNIX Programmer’s Manual—the nroff units were chosen as
“the least common multiple of the horizontal and vertical resolutions of various typewriter-like output devices.” The
units for otroff were based on the C/A/T typesetter (the device for which troff was originally designed), which
could move in horizontal increments of 1/432 of an inch and in vertical increments of exactly one-third that, or
1/144 inch. Units for ditroff depend on the resolution of the output device. For example, units for a 300 dot-
per-inch (dpi) laser printer will be 1/300 of an inch in either a vertical or a horizontal direction. See Appendix D for
more information on ditroff device units.

You don’t need to remember the details of all these measures now. You can generally use the units that are
most familiar to you, and we’ll come back to the others when we need them.

To specify units, you simply need to add the appropriate scale indicator from Table 4-3 to the numeric value
you supply to a formatting request. For example, to space down 3 inches rather than 3 lines, enter the request:

.sp 3i

The numeric part of any scale indicator can include decimal fractions. Before the specified value is used, nroff
and troff will round the value to the nearest number of device units.

Table 4.3 Units of Measure

Indicator Units

c Centimeters
i Inches
m Ems
n Ens
p Points
P Picas
u Device Units
v Vertical spaces (lines)

none Default

In fact, you can use any reasonable numeric expression with any request that expects a numeric argument.
However, when using arithmetic expressions, you have to be careful about what units you specify. All of the hori-
zontally oriented requests—.ll, .in, .ti, .ta, .po, .lt, and .mc—assume you mean ems unless you specify

62 Unix Text Processing

otherwise.

Vertically oriented requests like .sp assume v’s unless otherwise specified. The only exceptions to this rule
are .ps and .vs, which assume points by default—but these are not really motion requests anyway.

As a result, if you make a request like:
.ll 7i/2

what you are really requesting is:
.ll 7i/2m

The request:
.ll 7i/2i

is not what you want either. In performing arithmetic, as with fractions, the formatter converts scaled values to de-
vice units. In otroff, this means the previous expression is really evaluated as:

.ll (7*432u)/(2*432u)

If you really want half of 7 inches, you should specify the expression like this:
.ll 7i/2u

You could easily divide 7 by 2 yourself and simply specify 3.5i. The point of this example is that when you are do-
ing arithmetic—usually with values stored in variables called number registers (more on these later)—you will need
to pay attention to the interaction between units. Furthermore, because fractional device units are always rounded
down, you should avoid expressions like 7i/2.5u because this is equivalent to 7i/2u.

In addition to absolute values, many nroff and troff requests allow you to specify relative values, by
adding a + or a - before the value. For example:

.ll -.5i

will subtract ½ inch from the current line length, whatever it is.

Setting Margins

In nroff and troff, margins are set by the combination of the .po (page offset) and .ll (line length) requests.
The .po request defines the left margin. The .ll request defines how long each line will be after filling, and so im-
plicitly defines the right margin:

right
margin

po ll

The nroff program’s default line length of 6.5 inches is fairly standard for an 8½-by-11 page—it allows for 1-inch
margins on either side.

Assuming that we’d like 1¼-inch margins on either side of the page, we would issue the following requests:
.ll 6i
.po 1.25i

This will give us 1¼ inches for both the right and left margins. The .po request specifies a left margin, or page off-
set, of 1¼ inches. When the 6-inch line length is added to this, it will leave a similar margin on the rlght side of the
page.

Let’s take a look at how our sample letter will format now. One paragraph of the output should give you the
idea.

nroff and troff 63

In our conversation last Thursday, we
discussed a documentation project that would
produce a user’s guide and reference manual for
the Alcuin product. Yesterday, I received the
product demo and other materials that you sent me.

As we saw earlier, nroff assumes a default page offset of 0. Either you or the macro package you are using must
set the page offset. In troff, though, there is a default page offset of 26/27 inch, so you can get away without set-
ting this value.

(Keep in mind that all nroff output examples are actually simulated with troff, and are reduced to fit on
our own 5-inch wide printed page. As a result, the widths shown in our example output are not exact, but are sug-
gestive of what the actual result would be on an 8½-by-11 inch page).

Setting Indents

In addition to the basic page offset, or left margin, you may want to set an indent, either for a single line or an entire
block of text. You may also want to center one or more lines of text.

To do a single-line indent, as is commonly used to introduce a paragraph, use the .ti (temporary indent) re-
quest. For example, if you followed the blank lines between paragraphs in the sample letter with the request .ti
5, you’d get a result like this from nroff:

...Yesterday, I received the product demo and other
materials that you sent me.

Going through a demo session gave me a
much better understanding of the product. I
confess to being amazed by Alcuin...

The .in request, by contrast, sets an indent that remains in effect until it is changed. For example, if you had en-
tered the line .in 5 between the paragraphs, (instead of .ti 5), the result would have looked like this:

...Yesterday, I received the product demo and other
materials that you sent me.

Going through a demo session gave me a
much better understanding of the product.
I confess to being amazed by Alcuin...

All succeeding paragraphs will continue to be indented, until the indent is reset. The default indent (the value at the
left margin) is 0.

64 Unix Text Processing

These two indent requests can be combined to give a “hanging indent.” Remember that you can specify nega-
tive values to many requests that take numeric arguments. Here is the first case where this makes sense. Let’s say
we would like to modify the letter so that it numbers the points and indents the body of the numbered paragraph:

...Yesterday, I received the product demo and other materials
that you sent me. After studying them, I want to clarify
a couple of points:

.in 4

.ti -4
1. Going through a demo session gave me a much better
understanding of the product. I confess to being amazed by
Alcuin...

The first line will start at the margin, and subsequent lines will be indented:

...Yesterday, I received the product demo and other
materials that you sent me. After studying them,
I want to clarify a couple of points.

1. Going through a demo session gave me a much
better understanding of the product. I confess
to being amazed by Alcuin...

To line up an indented paragraph like this in nroff, just count the number of characters you want to space over,
then use that number as the size of the indent. But this trick is not so simple in troff. Because characters, and
even spaces, are not of constant width, it is more difficult to create a hanging indent. Ens are a good unit to use for
indents. Like ems, they are relative to the point size, but they are much closer to the average character width than an
em. As a result, they are relatively intuitive to work with. An indent of 5n is about where you expect a 5-character
indent to be from familiarity with a typewriter.

Centering Output Lines

Centering is another useful layout tool. To center the next line, use the .ce request:
.ce
This line will be centered.

Here’s the result:

This line will be centered.

Centering takes into account any indents that are in effect. That is, if you have used .in to specify an indent of 1
inch, and the line length is 5 inches, text will be centered within the 4-inch span following the indent.

To center multiple lines, specify a number as an argument to the request:
.ce 3
Documentation for the Alcuin Product

A Proposal Prepared by

nroff and troff 65

Fred Caslon

Here’s the result:

Documentation for the Alcuin Product

A Proposal Prepared by
Fred Caslon

Notice that .ce centered all three text lines, ignoring the blank line between.

To center an indeterminately large number of lines, specify a very large number with the .ce request, then
turn it off by entering .ce 0:

.ce 1000
Many lines of text here.
.ce 0

In looking at the examples, you probably noticed that centering automatically disables filling and justification.
Each line is centered individually. However, there is also the case in which you would like to center an entire filled
and justified paragraph. (This paragraph style is often used to set off quoted material in a book or paper). You can
do this by using both the .in and .ll requests:

I was particularly interested by one comment that I
read in your company literature:

.in +5n

.ll -5n
The development of Alcuin can be traced back to our
founder’s early interest in medieval manuscripts.
He spent several years in the seminary before
becoming interested in computers. After he became
an expert on typesetting software, he resolved to
put his two interests together.
.in -5n
.ll +5n

Here’s the result:

I was particularly interested by one comment that I
read in your company literature:

The development of Alcuin can be traced back to
our founder’s early interest in medieval
manuscripts. He spent several years in the
seminary before becoming interested in comput-
ers. After he became an expert on typesetting
software, he resolved to put his two interests
together.

Remember that a line centered with .ce takes into account any indents in effect at the time. You can visualize the
relationship between page offset, line length, indents, and centering as follows:

66 Unix Text Processing

in ce

ll
po

Setting Tabs

No discussion of how to align text would be complete without a discussion of tabs. A tab, as anyone who has used a
typewriter well knows, is a horizontal motion to a predefined position on the line.

The problem with using tabs in nroff and troff is that what you see on the screen is very different from
what you get on the page. Unlike a typewriter or a wysiwyg word processor, the editor/formatter combination
presents you with two different tab settings. You can set tabs in vi, and you can set them in nroff and troff,
but the settings are likely to be different, and the results on the screen definitely unaesthetic.

However, after you get used to the fact that tabs will not line up on the screen in the same way as they will on
the printed page, you can use tabs quite effectively.

By default, tab stops are set every .8 inches in nroff and every .5 inches in troff. To set your own tab
stops in nroff or troff, use the .ta request. For example:

.ta 1i 2.5i 3i

will set three tab stops, at 1 inch, 2½ inches, and 3 inches, respectively. Any previous or default settings are now no
longer in effect.

You can also set incremental tab stops. The request:
.ta 1i +1.5i +.5i

will set tabs at the same positions as the previous example. Values preceded with a plus sign are added to the value
of the last tab stop.

You can also specify the alignment of text at a tab stop. Settings made with a numeric value alone are left ad-
justed, just as they are on a typewriter. However, by adding either the letter R or C to the definition of a tab stop, you
can make text right adjusted or centered on the stop.

For example, the following input lines (where a tab character is shown by the symbol |——|):
.nf
.ta 1i 2.5i 3.5i
|——|First|——|Second|——|Third
.fi

will produce the following output:

First Second Third

But:
.nf
.ta 1i 2.5iR 3.5iC
|——|First|——|Second|——|Third
.fi

will produce:

First Second Third

nroff and troff 67

Right-adjusted tabs can be useful for aligning numeric data. This is especially true in troff, where all char-
acters (including blank spaces) have different sizes, and, as a result, you can’t just line things up by eye. If the num-
bers you want to align have an uneven number of decimal positions, you can manually force right adjustment of nu-
meric data using the special escape sequence \0, which will produce a blank space exactly the same width as a digit.
For example:

.ta 1iR
|——|500.2\0
|——|125.35
|——|50.\0\0

will produce:

500.2
125.35
50.

As on a typewriter, if you have already spaced past a tab position (either by printing characters, or with an in-
dent or other horizontal motion), a tab in the input will push text over to the next available tab stop. If you have
passed the last tab stop, any tabs present in the input will be ignored.

You must be in no-fill mode for tabs to work correctly. This is not just because filling will override the effect
of the tabs. Using .nf when specifying tabs is an important rule of thumb; we’ll look at the reasoning behind it in
Chapter 15.

Underlining

We haven’t yet described how to underline text, a primary type of emphasis in nroff, which lacks the troff abil-
ity to switch fonts for emphasis.

There are two underlining requests: .ul (underline) and .cu (continuous underline). The .ul request un-
derlines only printable characters (the words, but not the spaces), and .cu underlines the entire text string.

These requests are used just like .ce. Without an argument, they underline the text on the following input
line. You can use a numeric argument to specify that more than one line should be underlined.

Both of these requests produce italics instead of underlines in troff. Although there is a request, .uf, that
allows you to reset the underline font to some other font than italics,* there is no way to have these requests produce
underlining even in troff. (The ms and mm macro packages both include a macro to do underlining in troff, but
this uses an entirely different mechanism, which is not explained until Chapter 15).

Inserting Vertical Space

As you have seen, a blank line in the input text results in a blank line in the output. You can leave blank space on the
page (for example, between the closing of a letter and the signature) by inserting a number of blank lines in the input
text.

However, particularly when you are entering formatting codes as you write, rather than going back to code an
existing file like our sample letter, it is often more convenient to specify the spacing with the .sp request.

* This request is generally used when the document is being typeset in a font family other than Times Roman. It might be used to set
the “underline font” to Helvetica Italic, rather than the standard Italic.

68 Unix Text Processing

For example, you could type:
Sincerely,
.sp 3
Fred Caslon

In troff, the .sp request is even more important, because troff can space in much finer increments.

For example, if we were formatting the letter with troff, a full space between paragraphs would look like
this:

In our conversation last Thursday, we discussed a documentation project that
would produce a user’s guide and reference manual for the Alcuin product.
Yesterday, I received the product demo and other materials that you sent me.

Going through a demo session gave me a better understanding of the product.
I confess to being amazed by Alcuin. Some people around here, looking
over my shoulder, were also astounded by the illuminated manuscript I pro-
duced with Alcuin. One person, a student of calligraphy, was really im-
pressed.

The output would probably look better if there was a smaller amount of space between the lines. If we replace the
line between the paragraphs with the request .sp .5, here is what we will get:

In our conversation last Thursday, we discussed a documentation project that
would produce a user’s guide and reference manual for the Alcuin product.
Yesterday, I received the product demo and other materials that you sent me.

Going through a demo session gave me a much better understanding of the
product. I confess to being amazed by Alcuin. Some people around here,
looking over my shoulder, were also astounded by the illuminated manu-
script I produced with Alcuin. One person, a student of calligraphy, was re-
ally impressed.

Although it may not yet be apparent how this will be useful, you can also space to an absolute position on the page,
by inserting a vertical bar before the distance. The following:

.sp |3i

will space down to a position 3 inches from the top of the page, rather than 3 inches from the current position.

You can also use negative values with ordinary relative spacing requests. For example:
.sp -3

will move back up the page three lines. Of course, when you use any of these requests, you have to know what you
are doing. If you tell nroff or troff to put one line on top of another, that’s exactly what you’ll get. For exam-
ple:

This is the first line.
.sp -2
This is the second line.
.br
This is the third line.

will result in:

nroff and troff 69

This is the first line.
This is the second line.
This is the third line.

Sure enough, the second line is printed above the first, but because we haven’t restored the original position, the
third line is then printed on top of the first.

When you make negative vertical motions, you should always make compensatory positive motions, so that
you end up at the correct position for future output. The previous example would have avoided disaster if it had
been coded:

This is the first line.
.sp -2
This is the second line.
.sp
This is the third line.

(Notice that you need to space down one less line than you have spaced up because, in this case, printing the second
line “uses up” one of the spaces you went back on).

These kind of vertical motions are generally used for line drawing (e.g., for drawing boxes around tables), in
which all of the text is output, and the formatter then goes back up the page to draw in the lines. At this stage, it is
unlikely that you will find an immediate use for this capability. Nonetheless, we are sure that a creative person,
knowing that it is there, will find it just the right tool for a job. (We’ll show a few creative uses of our own later).

You probably aren’t surprised that a typesetter can go back up the page. But you may wonder how a type-
writer-like printer can go back up the page like this. The answer is that it can’t. If you do any reverse line motions
(and you do when you use certain macros in the standard packages, or the tbl and eqn preprocessors), you must
pass the nroff output through a special filter program called col to get all of the motions sorted out beforehand,
so that the page will be printed in the desired order:

$ nroff files | col | lp

Double or Triple Spacing

Both nroff and troff provide a request to produce double- or triple-spaced output without individually adjusting
the space between each line. For example:

.ls 2

Putting this at the top of the file produces double-spaced lines. An argument of 3 specifies triple-spaced lines.

Page Transitions

If we want space at the top of our one-page letter, it is easy enough to insert the command:
.sp 1i

before the first line of the text. However, nroff and troff do not provide an easy way of handling page transi-
tions in multipage documents.

By default, nroff and troff assume that the page length is 11 inches. However, neither program makes
immediate use of this information. There is no default top and bottom margin, so text output begins on the first line,
and goes to the end of the page.

The .bp (break page) request allows you to force a page break. If you do this, the remainder of the current
page will be filled with blank lines, and output will start again at the top of the second page. If you care to test this,
insert a .bp anywhere in the text of our sample letter, then process the letter with nroff. If you save the resulting

70 Unix Text Processing

output in a file:
$ nroff letter > letter.out

you will find that the text following the .bp begins on line 67 (11 inches at 6 lines per inch equals 66 lines per
page).

To automatically leave space at the top and bottom of each page, you need to use the .wh (when) request. In
nroff and troff parlance, this request sets a trap—a position on the page at which a given macro will be exe-
cuted.

You’ll notice that we said macro, not request. There’s the rub. To use .wh, you need to know how to define a
macro. It doesn’t work with single requests.

There’s not all that much to defining macros, though. A macro is simply a sequence of stored requests that
can be executed all at once with a single command. We’ll come back to this later, after we’ve looked at the process
of macro definition.

For the moment, let’s assume that we’ve defined two macros, one containing the commands that will handle
the top margin, and another for the bottom margin. The first macro will be called .TM, and the second .BM. (By
convention, macros are often given names consisting of uppercase letters, to distinguish them from the basic nroff
and troff requests. However, this is a convention only, and one that is not always followed).

To set traps that will execute these macros, we would use the .wh request as follows:
.wh 0 TM
.wh -1i BM

The first argument to .wh specifies the vertical position on the page at which to execute the macro. An argument of
0 always stands for the top of the page, and a negative value is always counted from the bottom of the page, as de-
fined by the page length.

In its simplest form, the .TM macro need only contain the single request to space down 1 inch, and .BM need
only contain the single request to break to a new page. If .wh allowed you to specify a single request rather than a
macro, this would be equivalent to:

.wh 0 .sp 1i

.wh -1i .bp

With an 11-inch page length, this would result in an effective 9-inch text area, because on every page, the formatter’s
first act would be to space down 1 inch, and it would break to a new page when it reached 1 inch from the bottom.

You might wonder why nroff and troff have made the business of page transition more complicated than
any of the other essential page layout tasks. There are two reasons:

• The nroff and troff programs were designed with the typesetting heritage in mind. Until fairly re-
cently, most typesetters produced continuous output on rolls of photographic paper or film. This output
was manually cut and pasted up onto pages.

• Especially in troff, page transition is inherently more complex than the other tasks we’ve described.
For example, books often contain headers and footers that are set in different type sizes or styles. At
every page transition, the software must automatically save information about the current type style,
switch to the style used by the header or footer, and then revert to the original style when it returns to
the main text. Or consider the matter of footnotes—the position at which the page ends is different
when a footnote is on the page. The page transition trap must make some allowance for this.

In short, what you might like the formatter to do during page transitions can vary. For this reason, the developers of
nroff and troff have allowed users to define their own macros for handling this area.

When you start out with nroff or troff, we advise you to use one of the ready-made macro packages, ms
or mm. The standard macro package for UNIX systems based on System V is mm; the standard on Berkeley UNIX
systems is ms. Berkeley UNIX systems also support a third macro package called me. In addition, there are special-
ized macro packages for formatting viewgraphs, standard UNIX reference manual pages (man), and UNIX per-
muted indexes (mptx). Only the ms and mm packages are described in this book. The macro packages have already
taken into account many of the complexities in page transition (and other advanced formatting problems), and pro-
vide many capabilities that would take considerable time and effort to design yourself.

nroff and troff 71

Of course, it is quite possible to design your own macro package, and we will go into all of the details later.
(In fact, this book is coded with neither of the standard macro packages, but with one developed by Steve Kochan
and Pat Wood of Pipeline Associates, the consulting editors of this series, for use specifically with the Hayden UNIX
library).

Page Length Revisited

Before we take a closer look at macros, let’s take a moment to make a few more points about page length, page
breaks, and the like.

Assuming that some provision has been made for handling page transitions, there are several wrinkles to the
requests we have already introduced, plus several new requests that you will probably find useful.

First, let’s talk about page length. It’s important to remember that the printing area is defined by the interac-
tion of the page length and the location of the traps you define. For example, you could define a text area 7.5 inches
high (as we did in preparing copy for this book) either by

• changing the page length to 9.5 inches, and setting 1-inch margins at the top and bottom;

• leaving the page length at 11 inches, and setting 1.75-inch margins at the top and bottom.

In general, we prefer to think of .pl as setting the paper length, and use the page transition traps to set larger or
smaller margins.

However, there are cases where you really are working with a different paper size. A good example of this is
printing addresses on envelopes: the physical paper height is about 4 inches (24 lines on a typewriter-like printer
printing 6 lines per inch), and we want to print in a narrow window consisting of four or five lines. A good set of de-
finitions for this case would be:

.pl 4i

.wh 0 TM

.wh -9v BM

with .TM containing the request .sp 9v, and with .BM, as before, containing .bp.

There is more to say about traps, but it will make more sense later, so we’ll leave the subject for now.

Page Breaks without Line Breaks

Page breaks—we’ve talked about their use in page transition traps, but they also have a common use on their own.
Often, you will want to break a page before it would normally end. For example, if the page breaks right after the
first line of a paragraph, you will probably want to force the line onto the next page, rather than leaving an “or-
phaned” line. Or you might want to leave blank space at the bottom of a page for an illustration. To do this, simply
enter a .bp at the desired point. A new page will be started immediately.

However, consider the case in which you need to force a break in the middle of a paragraph to prevent a “wid-
owed” line at the top of the next page. If you do this:

The medieval masters of calligraphy and illumination
are largely unknown to us. We thankfully have examples
of their work, and even
.bp
marginal notes by the copyists of some manuscripts,
but the men who produced these minute masterpieces
are anonymous.

the .bp request will also cause a line break, and the text will not be filled properly:

72 Unix Text Processing

The medieval masters of calligraphy and illumination
are largely unknown to us. We thankfully have examples
of their work, and even

New page begins here

marginal notes by the copyists of some manuscripts, but
the men who produced these minute masterpieces are
anonymous.

Fortunately, there is a way around this problem. If you begin a request with an apostrophe instead of a period, the
request will not cause a break.

The medieval masters of calligraphy and illumination
are largely unknown to us. We thankfully have examples
of their work, and even
’bp
marginal notes by the copyists of some manuscripts,
but the men who produced these minute masterpieces
are anonymous.

Now we have the desired result:

The medieval masters of calligraphy and illumination
are largely unknown to us. We thankfully have examples

New page begins here

of their work, and even marginal notes by the copyists
of some manuscripts, but the men who produced these
minute masterpieces are anonymous.

(In fact, most page transition macros use this feature to make paragraphs continue across page boundaries. We’ll
take a closer look at this in later chapters).

Another very useful request is the conditional page break, or .ne (need) request. If you want to make sure an
entire block of text appears on the same page, you can use this request to force a page break if there isn’t enough
space left. If there is sufficient space, the request is ignored.

For example, the two requests:
.ne 3.2i
.sp 3i

might be used to reserve blank space to paste in an illustration that is 3 inches high.

The .ne request does not cause a break, so you should be sure to precede it with .br or another request that
causes a break if you don’t want the remnants of the current line buffer carried to the next page if the .ne is trig-
gered.

It is often better to use .ne instead of .bp, unless you’re absolutely sure that you will always want a page
break at a particular point. If, in the course of editing, an .ne request moves away from the bottom of the page, it
will have no effect. But a .bp will always start a new page, sometimes leaving a page nearly blank when the text in
a file has been changed significantly.

nroff and troff 73

There are other special spacing requests that can be used for this purpose. (Depending on the macro package,
these may have to be used). For example, .sv (save space) requests a block of contiguous space. If the remainder
of the page does not contain the requested amount of space, no space is output. Instead, the amount of space re-
quested is remembered and is output when an .os (output saved space) request is encountered.

These are advanced requests, but you may need to know about them because most macro packages include
two other spacing requests in their page transition macros: .ns (no space) and .rs (restore space). An .ns in-
hibits the effect of spacing requests; .rs restores the effectiveness of such requests.

Both the ms and mm macros include an .ns request in their page transition macros. As a result, if you issue a
request like:

.sp 3i

with 1 inch remaining before the bottom of the page, you will not get 1 inch at the bottom, plus 2 inches at the top of
the next page, but only whatever remains at the bottom. The next page will start right at the top. However, both
macro packages also include an .os request in their page top macro, so if you truly want 3 inches, use .sv 3i,
and you will get the expected result.

However, if you use .sv, you will also have another unexpected result: text following the spacing request will
“float” ahead of it to fill up the remainder of the current page.

We’ll talk more about this later. We introduced it now to prevent confusion when spacing requests don’t al-
ways act the way you expect.

Page Numbering

The nroff and troff programs keep track of page numbers and make the current page number available to be
printed out (usually by a page transition macro). You can artificially set the page number with the .pn request:

.pn 5 Set the current page number to 5

.pn +5 Increment the current page number by 5

.pn -5 Decrement the current page number by 5

You can also artificially set the number for the next page whenever you issue a .bp request, simply by adding a nu-
meric argument:

.bp 5 Break the page and set the next page number to 5

.bp +5 Break the page and increment the next page number by 5

.bp -5 Break the page and decrement the next page number by 5

In addition to inhibiting .sp, the .ns request inhibits the action of .bp, unless a page number is specified. This
means (at least in the existing macro packages), that the sequence:

.bp

.bp

will not result in a blank page being output. You will get the same effect as if you had specified only a simple .bp.
Instead, you should specify:

.bp +1

The starting page number (usually 1) can also be set from the command line, using the -n option. For example:
$ nroff -ms -n10 file

will start numbering file at page number 10. In addition, there is a command-line option to print only selected pages
of the output. The -o option takes a list of page numbers as its argument. The entire file (up to the last page num-
ber in the list) is processed, but only the specified pages are output. The list can include single pages separated by
commas, or a range of pages separated by a hyphen, or both. A number followed by a trailing hyphen means to out-
put from that page to the end. For example:

$ nroff -ms -o1,5,7-9,13- file

will output pages 1, 5, 7 through 9, and from 13 to the end of the file. There should be no spaces anywhere in the

74 Unix Text Processing

list.

Changing Fonts

In old troff (otroff), you were limited to four fonts at a time, because the fonts had to be physically mounted
on the C/A/T typesetter. With ditroff and a laser printer or a modern typesetter, you can use a virtually unlimited
number of fonts in the same document.

In otroff you needed to specify the basic fonts that are in use with the .fp (font position) request. Nor-
mally, at the front of a file (or, more likely, in the macro package), you would use this request to specify which fonts
are mounted in each of the four quadrants (positions) of the typesetter wheel. By default, the roman font is mounted
in position 1, the italic font in position 2, the bold font in position 3, and the special font in position 4. That is,
troff acts as though you had included the lines:

.fp 1 R

.fp 2 I

.fp 3 B

.fp 4 S

In ditroff, up to ten fonts are automatically mounted, with the special font in position 10. Which fonts are
mounted, and in which positions, depends on the output device. See Appendix D for details. The font that is
mounted in position 1 will be used for the body type of the text—it is the font that will be used if no other specifica-
tion is given. The special font is also used without any intervention on your part when a character not in the normal
character set is requested.

To request one of the other fonts, you can use either the .ft request, or the inline font-switch escape se-
quence \f.

For example:
.ft B
This line will be set in bold type.
.br
.ft R
This line will again be set in roman type.

will produce:

This line will be set in bold type.
This line will again be set in roman type.

You can also change fonts using an inline font escape sequence. For example, the preceding sentence was coded
like this:

...an inline font \fIescape sequence\fP.

You may wonder at the \fP at the end, rather than \fR. The P command is a special code that can be used with ei-
ther the .ft request or the \f escape sequence. It means “return to the previous font, whatever it was.” This is of-
ten preferable to an explicit font request, because it is more general.

All of this begs the question of fonts different than Times Roman, Bold, and Italic. There are two issues: first,
which fonts are available on the output device, and second, which fonts does troff have width tables for. (As de-
scribed previously, troff uses these tables to determine how far to space over after it outputs each character). For
otroff these width tables are in the directory /usr/lib/font, in files whose names begin with ft. If you list
the contents of this directory, you might see something like this for otroff:

$ ls /usr/lib/font

nroff and troff 75

ftB ftBC ftC ftCE ftCI
ftCK ftCS ftCW ftFD ftG
ftGI ftGM ftGR ftH ftHB
ftHI ftI ftL ftLI ftPA
ftPB ftPI ftR ftS ftSB
ftSI ftSM ftUD

You can pick out the familiar R, I, B, and S fonts, and may guess that ftH, ftHI, and ftHB refer to Helvetica, Hel-
vetica Italic, and Helvetica Bold fonts. However, unless you are familiar with typesetting, the other names might as
well be Greek to you. In any event, these width tables, normally supplied with troff, are for fonts that are com-
monly used with the C/A/T typesetter. If you are using a different device, they may be of no use to you.

The point is that if you are using a different typesetting device, you will need to get information about the font
names for your system from whoever set up the equipment to work with troff. The contents of
/usr/lib/font will vary from installation to installation, depending on what fonts are supported.

For ditroff, there is a separate subdirectory in /usr/lib/font for each supported output device. For
example:

$ ls /usr/lib/font
devlj devps
$ ls /usr/lib/font/devps
B.out BI.out CB.out CI.out CW.out CX.out
DESC.out H.out HB.out HI.out HK.out HO.out
HX.out I.out LI.out PA.out PB.out PI.out
PX.out R.out O.out RS.out S.out S1.out

Here, the font name is followed by the string .out.

Again, the font names themselves are probably Greek to you. However, with ditroff, you can actually use
any of these names, and see what results they give you, because all fonts should be available at any time.

For the sake of argument, let’s assume that your typesetter or other troff-compatible equipment supports the
Helvetica font family shown in Figure 4-3, with the names H, HI, and HB. (This is a fairly reasonable assumption,
because Helvetica is probably the most widely available font family after Times).

When specifying two-character font names with the \f escape sequence, you must add the (prefix as well.
For example, you would specify Helvetica Italic by the inline sequence \f(HI, and Helvetica Bold by \f(HB.

There is another issue when you are using fonts other than the Times Roman family. Assume that you decide
to typeset your document in Helvetica rather than Roman. You reset your initial font position settings to read:

.fp 1 H

.fp 2 HI

.fp 3 HB

.fp 4 S

However, throughout the text, you have requests of the form:
.ft B

or:
\fB

You will need to make a set of global replacements throughout your file. To insulate yourself in a broader way from
overall font change decisions, troff allows you to specify fonts by position, even within .ft and \f requests:

.ft 1 or \f1 Use the font mounted in position 1

.ft 2 or \f2 Use the font mounted in position 2

.ft 3 or \f3 Use the font mounted in position 3

.ft 4 or \f4 Use the font mounted in position 4

Because you don’t need to use the .fp request to set font positions with ditroff, and the range of fonts is much
greater, you may have a problem knowing which fonts are mounted in which positions. A quick way to find out
which fonts are mounted is to run ditroff on a short file, sending the output to the screen. For example:

$ ditroff -Tps junk | more
x T ps
x res 720 1 1
x init
x font l R

76 Unix Text Processing

Helvetica

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
! $ % & () ‘ ’ * + - . , / : ; = ? [] |
• — – _ ¼ ½ ¾ fi fl ° † ´ ® ©

Helvetica Italic

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
! $ % & () ‘ ’ * + - . , / : ; = ? [] |
• — – _ ¼ ½ ¾ fi fl ° † ´ ® ©

Helvetica Bold

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
! $ % & () ‘ ’ * + - . , / : ; = ? [] |
• — – _ ¼ ½ ¾ fi fl ° † ´ ® ©

Special Mathematical Font

" ´ \ ^ ` ~ / 〈 〉 { } # @ + - = ∗
α β γ δ ε ζ η θ ι κ λ µ ν ξ ο π ρ σ ς τ υ φ χ ψ ω
Γ ∆ Θ Λ Ξ Π Σ ϒ Φ Ψ Ω
√ ≥ ≤ ≡ ∼ ≠ → ← - ↓ × ÷ ± ∪ ∩ ⊂ ⊃ ⊆ ⊇ ∞ ∂
§ ∇ ¬ ∫ ∝ ∅ ∈ ‡ + +

Figure 4.3 Helvetica Fonts

x font 2 I
x font 3 B
x font 4 BI
x font 5 CW
x font 6 CB
x font 7 H
x font 8 HB
x font 9 HI
x font 10 S
...

The font positions should appear at the top of the file. In this example, you see the following fonts: (Times) Roman,
(Times) Bold, (Times) Italic, (Times) Bold Italic, Constant Width, Constant Bold, Helvetica, Helvetica Bold, Hel-
vetica Italic, and Special. Which font is mounted in which position is controlled by the file DESC.out in the de-
vice subdirectory of /usr/lib/font. See Appendix D for details.

nroff and troff 77

Special Characters

A variety of special characters that are not part of the standard ASCII character set are supported by nroff and
troff. These include Greek letters, mathematical symbols, and graphic characters. Some of these characters are
part of the font referred to earlier as the special font. Others are part of the standard typesetter fonts.

Regardless of the font in which they are contained, special characters are included in a file by means of special
four-character escape sequences beginning with \(.

Appendix B gives a complete list of special characters. However, some of the most useful are listed in Table
4-4, because even as a beginner you may want to include them in your text. Although nroff makes a valiant effort
to produce some of these characters, they are really best suited for troff.

Table 4.4 Special Characters

Name Escape Sequence Output Character

em dash \(em —
bullet \(bu •
square \(sq
baseline rule \(ru
underrule \(ul
1/4 \(14 ¼
1/2 \(12 ½
3/4 \(34 ¾
degrees \(de °
dagger \(dg †
double dagger \(dd ‡
registered mark \(rg ®
copyright symbol \(co ©
section mark \(sc §
square root \(sr √
greater than or equal \(>= ≥
less than or equal \(<= ≤
not equal \(!= ≠
multiply \(mu ×
divide \(di ÷
plus or minus \(+- ±
right arrow \(-> →
left arrow \(<- ←
up arrow \(ua -
down arrow \(da ↓

We’ll talk more about some of these special characters as we use them. Some are used internally by eqn for
producing mathematical equations. The use of symbols such as the copyright, registered trademark, and dagger is
fairly obvious.

However, you shouldn’t limit yourself to the obvious. Many of these special characters can be put to innova-
tive use. For example, the square root symbol can be used to simulate a check mark, and the square can become an
alternate type of bullet. As we’ll show in Chapter 15, you can create additional, effective character combinations,
such as a checkmark in a box, with overstriking.

The point is to add these symbols to your repertoire, where they can wait until need and imagination provide a
use for them.

78 Unix Text Processing

Type Size Specification

Typesetting also allows for different overall sizes of characters. Typesetting character sizes are described by units
called points. A point is approximately 1/72 of an inch. Typical type sizes range from 6 to 72 points. A few differ-
ent sizes follow:

This line is set in 6-point type.

This line is set in 8-point type.

This line is set in 10-point type.

This line is set in 12-point type.

This line is set in 14-point type.

This line is set in 18-point type.

(The exact size of a typeface does not always match its official size designation. For example, 12-point type is not
always 1/6 inch high, nor is 72-point type 1 inch high. The precise size will vary with the typeface).

As with font changes, there are two ways to make size changes: with a request and with an inline escape se-
quence. The .ps request sets the point size. For example:

.ps 10 Set the point size to 10 points

A .ps request that does not specify any point size reverts to the previous point size setting, whatever it was:
.ps 10

Some text here

.ps Revert to the point size before we changed it

To switch point size in the middle of the line, use the \s escape sequence. For example, many books reduce the
point size when they print the word UNIX in the middle of a line. The preceding sentence was produced by these in-
put lines:

For example, many books reduce the point size when
they print the word \s8UNIX\s0 in the middle of a line.

As you can probably guess from the example, \s0 does not mean to use a point size of 0, but to revert to the previ-
ous size.

In addition, you can use relative values when specifying point sizes. Knowing that the body of the book is set
in 10-point type, we could have achieved the same result by entering:

For example, many books reduce the point size when
they print the word \s-2UNIX\s0 in the middle of a line.

You can increment or decrement point sizes only using a single digit; that is, you can’t increment or decrement the
size by more than 9 points.

Only certain sizes may be available on the typesetter. (Legal point sizes in otroff are 6, 7, 8, 9, 10, 11, 12,
14, 16, 18, 20, 22, 24, 28, and 36. Legal point sizes in ditroff depend upon the output device, but there will gen-
erally be more sizes available). If you request a point size between two legal sizes, otroff will round up to the
next legal point size; ditroff will round to the nearest available size.

nroff and troff 79

Vertical Spacing

In addition to its ability to change typefaces and type sizes on the same page, a typesetter allows you to change the
amount of vertical space between lines. This spacing is sometimes referred to as the baseline spacing because it is
the distance between the base of characters on successive lines. (The difference between the point size and the base-
line spacing is referred to as leading, from the old days when a human compositor inserted thin strips of lead be-
tween successive lines of type).

A typewriter or typewriter-style printer usually spaces vertically in 1/6-inch increments (i.e., 6 lines per inch).
A typesetter usually adjusts the space according to the point size. For example, the type samples shown previously
were all set with 20 points of vertical space. More typically, the vertical space will vary along with the type size,
like this:

This line is set in 6-point type and 8-point spacing.

This line is set in 8-point type and 10-point spacing.

This line is set in 10-point type and 12-point spacing.

This line is set in 12-point type and 14-point spacing.
This line is set in 14-point type and 16-point spacing.

This line is set in 18-point type and 20-poi

Typically, the body of a book is set with a single size of type (usually 9 or 10 point, with vertical spacing set to 11 or
12 points, respectively). Larger sizes are used occasionally for emphasis, for example, in chapter or section head-
ings. When the type size is changed, the vertical spacing needs to be changed too, or the type will overrun the previ-
ous line, as follows, where 14-point type is shown with only 10-point spacing.

Here is type larger than
the space allotted for it.

Vertical spacing is changed with the .vs request. A vertical space request will typically be paired with a
point size request:

.ps 10

.vs 12

After you set the vertical spacing with .vs, this becomes the basis of the v unit for troff. For example, if you en-
ter .vs 12, the request .sp will space down 12 points; the request:

.sp 0.5v

will space down 6 points, or half the current vertical line spacing. However, if you change the baseline vertical spac-
ing to 16, the .sp request will space down 16 points. Spacing specified in any other units will be unaffected. What
all this adds up to is the commonsense observation that a blank line takes up the same amount of space as one con-
taining text.

When you use double and triple spacing, it applies a multiplication factor to the baseline spacing. The request
.ls 2 will double the baseline spacing. You can specify any multiplication factor you like, though 2 and 3 are the
most reasonable values.

80 Unix Text Processing

The .ls request will only affect the spacing between output lines of text. It does not change the definition of
v or affect vertical spacing requests.

A First Look at Macros

Although we won’t go into all the details of macro design until we have discussed the existing macro packages in
the next two chapters, we’ll cover some of the basic concepts here. This will help you understand what the macro
packages are doing and how they work.

To define a macro, you use the .de request, followed by the sequence of requests that you want to execute
when the macro is invoked. The macro definition is terminated by the request .. (two dots). The name to be as-
signed to the macro is given as an argument to the .de request.

You should consider defining a macro whenever you find yourself issuing a repetitive sequence of requests. If
you are not using one of the existing macro packages (which have already taken care of this kind of thing), para-
graphing is a good example of the kind of formatting that lends itself to macros.

Although it is certainly adequate to separate paragraphs simply by a blank line, you might instead want to sep-
arate them with a blank line and a temporary indent. What’s more, to prevent “orphaned” lines, you would like to be
sure that at least two lines of each paragraph appear at the bottom of the page. So you might define the following
macro:

.de P

.sp

.ne 2

.ti 5n

..

This is the simplest kind of macro—a straightforward sequence of stored commands. However, macros can take ar-
guments, take different actions depending on the presence or absence of various conditions, and do many other inter-
esting and wonderful things.

We’ll talk more about the enormous range of potential in macros in later chapters. For the moment, let’s just
consider one or two points that you will need to understand in order to use the existing macro packages.

Macro Arguments

Most basic troff requests take simple arguments—single characters or letters. Many macros take more complex
arguments, such as character strings. There are a few simple pointers you need to keep in mind through the discus-
sion of macro packages in the next two chapters.

First, a space is taken by default as the separator between arguments. If a single macro argument is a string
that contains spaces, you need to quote the entire string to keep it from being treated as a series of separate argu-
ments.

For example, imagine a macro to print the title of a chapter in this book. The macro call looks like this:
.CH 4 "Nroff and Troff"

A second point: to skip an argument that you want to ignore, supply a null string (""). For example:
.CH "" "Preface"

As you can see, it does no harm to quote a string argument that doesn’t contain spaces ("Preface"), and it is
probably a good habit to quote all strings.

nroff and troff 81

Number Registers

When you use a specific value in a macro definition, you are limited to that value when you use the macro. For ex-
ample, in the paragraph macro definition shown previously, the space will always be 1, and the indent always 5n.

However, nroff and troff allow you to save numeric values in special variables known as number regis-
ters. If you use the value of a register in a macro definition, the action of the macro can be changed just by placing a
new value in the register. For example, in ms, the size of the top and bottom margins is not specified with an ab-
solute value, but with a number register. As a result, you don’t need to change the macro definition to change these
margins; you simply reset the value of the appropriate number register. Just as importantly, the contents of number
registers can be used as flags (a kind of message between macros). There are conditional statements in the markup
language of nroff and troff, so that a macro can say: “If number register Y has the value x, then do thus-and-so.
Otherwise, do this.” For example, in the mm macros, hyphenation is turned off by default. To turn it on, you set the
value of a certain number register to 1. Various macros test the value of this register, and use it as a signal to re-en-
able hyphenation.

To store a value into a number register, use the .nr request. This request takes two arguments: the name of a
number register,* and the value to be placed into it.

For example, in the ms macros, the size of the top and bottom margins is stored in the registers HM (header
margin) and FM (footer margin). To reset these margins from their default value of 1 inch to 1.75 inches (thus pro-
ducing a shorter page like the one used in this book), all you would need to do is to issue the requests:

.nr HM 1.75i

.nr FM 1.75i

You can also set number registers with single-character names from the command line by using the -r option. (The
mm macros make heavy use of this capability). For example:

$ nroff -mm -rN1 file

will format file using the mm macros, with number register N set to the value 1. We will talk more about using num-
ber registers later, when we describe how to write your own macros. For the moment, all you need to know is how
to put new values into existing registers. The next two chapters will describe the particular number registers that you
may find useful with the mm and ms macro packages.

Predefined Strings

The mm and ms macro packages also make use of some predefined text strings. The nroff and troff programs
allow you to associate a text string with a one- or two-character string name. When the formatter encounters a spe-
cial escape sequence including the string name, the complete string is substituted in the output.

To define a string, use the .ds request. This request takes two arguments, the string name and the string it-
self. For example:

.ds nt Nroff and Troff

The string should not be quoted. It can optionally begin with a quotation mark, but it should not end with one, or
the concluding quotation mark will appear in the output. If you want to start a string with one or more blank spaces,
though, you should begin the definition with a quotation mark. Even in this case, there is no concluding quotation
mark. As always, the string is terminated by a newline.

You can define a multiline string by hiding the newlines with a backslash. For example:
.ds LS This is a very long string that goes over \
more than one line.

When the string is interpolated, it will be subject to filling (unless no-fill mode is in effect) and may not be broken
into lines at the same points as you’ve specified in the definition. To interpolate the string in the output, you use one
of the following escape sequences:

*Number register names can consist of either one or two characters, just like macro names. However, they are distinct—that is, a
number register and a macro can be given the same name without conflict.

82 Unix Text Processing

*a
*(ab

where a is a one-character string name, and ab is a two-character string name.

To use the nt string we defined earlier, you would type:
*(nt

It would be replaced in the output by the words Nroff and Troff .

Strings use the same pool of names as macros. Defining a string with the same name as an existing macro will
make the macro inoperable, so it is not advisable to go around wildly defining shorthand strings. The vi editor’s ab-
breviation facility (described in Chapter 7) is a more effective way to save yourself work typing.

Strings are useful in macro design in much the same way number registers are—they allow a macro to be de-
fined in a more general way. For example, consider this book, which prints the title of the chapter in the header on
each odd-numbered page. The chapter title is not coded into the page top macro. Instead, a predefined string is in-
terpolated there. The same macro that describes the format of the chapter title on the first page of the chapter also
defines the string that will appear in the header.

In using each of the existing macro packages, you may be asked to define or interpolate the contents of an ex-
isting string. For the most part, though, string definitions are hidden inside macro definitions, so you may not run
across them. However, there are a couple of handy predefined strings you may find yourself using, such as:

*(DY

which always contains the current date in the ms macro package. (The equivalent string in mm is *(DT). For ex-
ample, if you wanted a form letter to contain the date that it was formatted and printed rather than the date it was
written, you could interpolate this string.

Just What Is a Macro Package?

Before leaving the topic of macros, we ought to take a moment to treat a subject we have skirted up to this point: just
what is a macro package?

As the name suggests, a macro package is simply a collection of macro definitions. The fact that there are
command-line options for using the existing packages may seem to give them a special status, but they are text files
that you can read and modify (assuming that your system has the UNIX file permissions set up so you can do so).

There is no magic to the options -ms and -mm. The actual option to nroff and troff is -mx, which tells
the program to look in the directory /usr/lib/tmac for a file with a name of the form tmac.x. As you might
expect, this means that there is a file in that directory called tmac.s or tmac.m (depending on which package you
have on your system). It also means that you can invoke a macro package of your own from the command line sim-
ply by storing the macro definitions in a file with the appropriate pathname. This file will be added to any other files
in the formatting run. This means that if you are using the ms macros you could achieve the same result by includ-
ing the line:

.so /usr/lib/tmac/tmac.s

at the start of each source file, and omitting the command-line switch -ms. (The .so request reads another file into
the input stream, and when its contents have been exhausted, returns to the current file. Multiple .so requests can
be nested, not just to read in macro definitions, but also to read in additional text files).

The macros in the standard macro packages are no different (other than in complexity) than the macros you
might write yourself. In fact, you can print out and study the contents of the existing macro packages to learn how
they work. We’ll be looking in detail at the actions of the existing macro packages, but for copyright reasons we
can’t actually show their internal design. We’ll come back to all this later. For now, all you need to know is that
macros aren’t magic—just an assemblage of simple commands working together.

4Chapter 5

The ms Macros

The UNIX shell is a user interface for the kernel, the actual heart of the operating system. You can choose the C
shell or Korn shell instead of the Bourne shell, without worrying about its effects on the low-level operations of the
kernel. Likewise, a macro package is a user interface for accessing the capabilities of the nroff/troff formatter.
Users can select either the ms or mm macro packages (as well as other packages that are available on some systems)
to use with nroff/troff.

The ms package was the original Bell labs macro package, and is available on many UNIX systems, but it is
no longer officially supported by AT&T. Our main reason for giving ms equal time is that many Berkeley UNIX
systems ship ms instead of mm. In addition, it is a less complex package, so it is much easier to learn the principles
of macro design by studying ms than by studying mm.

A third general-purpose package, called me, is also distributed with Berkeley UNIX systems. It was written
by Eric Allman and is comparable to ms and mm. (Mark Horton writes us: I think of ms as the FORTRAN of
nroff, mm as the PL/I, and me as the Pascal). The me package is not described in this book.

In addition, there are specialized packages—mv, for formatting viewgraphs, mptx, for formatting the per-
muted index found in the UNIX Reference Manual, and man, for formatting the reference pages in that same man-
ual. These packages are simple and are covered in the standard UNIX documentation.

Regardless of which macro package you choose, the formatter knows only to replace each call of a macro with
its definition. The macro definition contains the set of requests that the formatter executes. Whether a definition is
supplied with the text in the input file or found in a macro package is irrelevant to nroff/troff. The formatter
can be said to be oblivious to the idea of a macro package.

You might not expect this rather freely structured arrangement between a macro package and nroff/troff.
Macros are application programs of sorts. They organize the types of functions that you need to be able to do.
However, the actual work is accomplished by nroff/troff requests.

In other words, the basic formatting capabilities are inherent in nroff and troff; the user implementation
of these capabilities to achieve particular formats is accomplished with a macro package. If a macro doesn’t work
the way you expect, its definition may have been modified. It doesn’t mean that nroff/troff works differently
on your system. It is one thing to say“ nroff/troff won’t let me do it,” and another to say “I don’t have the
macro to do it (but I could do it, perhaps).”

A general-purpose macro package like ms provides a way of describing the format of various kinds of docu-
ments. Each document presents its own specific problems, and macros help to provide a simple and flexible solu-
tion. The ms macro package is designed to help you format letters, proposals, memos, technical papers, and reports.

For simple documents such as letters, ms offers few advantages to the basic format requests described in
Chapter 4. But as you begin to format more complex documents, you will quickly see the advantage of working
with a macro package, which provides specialized tools for so many of the formatting tasks you will encounter.

A text file that contains ms macros can be processed by either nroff or troff, and the output can be dis-
played on a terminal screen or printed on a line printer, a laser printer, or a typesetter.

Formatting a Text File with ms

If you want to format an ms document for a line printer or for a terminal screen, enter this command line:
$ nroff -ms file(s)

To format for a laser printer or typesetter, enter this command line:
$ troff -ms file(s) | device postprocessor

83

84 Unix Text Processing

Be sure to redirect the output to a file or pipe it to the printer; if you do not, the output will be sent to your terminal
screen.

Problems in Getting Formatted Output

There are two ways for a program to handle errors. One is to have the program terminate and issue an error mes-
sage. The other way is to have it keep going in hopes that the problems won’t affect the rest of the output. The ms
macros take this second approach.

In general, ms does its best to carry on no matter how scrambled the output looks. Sometimes the problems
do get corrected within a page or two; other times the problem continues, making the remaining pages worthless.
Usually, this is because the formatter had a problem executing the codes as they were entered in the input file. Most
of the time input errors are caused by not including one of the macros that must be used in pairs.

Because ms allows formatting to continue unless the error is a “fatal” one, error correction is characteristic of
the ms macro definitions. Apart from the main function of the macro, some of them, such as the paragraph macro,
also invoke another macro called .RT to restore certain default values.

Thus, if you forget to reset the point size or indentation, you might notice that the problem continues for a
while and then stops.

Page Layout

As suggested in the last chapter, one of the most important functions of a macro package is that it provides basic
page layout defaults. This feature makes it worthwhile to use a macro package even if you don’t enter a single
macro into your source file.

At the beginning of Chapter 4, we showed how nroff alone formatted a sample letter. If we format the same
letter with ms, the text will be adjusted on a page that has a default top and bottom margin of 1 inch, a default left
margin, or page offset, of about 1 inch, and a default line length of 6 inches.

All of these default values are stored in number registers so that you can easily change them:

LL Line Length
HM Header (top) Margin
FM Footer (bottom) Margin
PO Page offset (left margin)

For example, if you like larger top and bottom margins, all you need to do is insert the following requests at
the top of your file:

.nr HM 1.5i

.nr FM 1.5i

Registers such as these are used internally by a number of ms macros to reset the formatter to its default state.
They will not take effect until one of those “reset” macros is encountered. In the case of HM and FM, they will not
take effect until the next page unless they are specified at the very beginning of the file.*

*These “reset” macros (those that call the internal macro .RT) include .LP, .PP, .IP, .QP, .SH, .NH, .RS, .RE, .TS, and .TE.
The very first reset macro calls a special initialization macro called .BG that is used only once, on the first page. This macro prints
the cover sheet, if any (see “Cover Sheet Macros” later in this chapter), as well as performing some special first-page initialization.

The ms Macros 85

Paragraphs

As we saw in the last chapter, paragraph transitions are natural candidates for macros because each paragraph gener-
ally will require several requests (spacing, indentation) for proper formatting.

There are four paragraph macros in ms:

.LP Block paragraph

.PP First line of paragraph indented

.QP Paragraph indented from both margins

.IP Paragraph with hanging indent (list item)

The .LP macro produces a justified, block paragraph. This is the type of paragraph used for most technical
documentation. The .PP macro produces a paragraph with a temporary indent for the first line. This paragraph
type is commonly used in published books and magazines, as well as in typewritten correspondence.

Let’s use the same letter to illustrate the use of these macros. In the original example (in Chapter 4), we left
blank lines between paragraphs, producing an effect similar to that produced by the .LP macro.

In contrast, .PP produces a standard indented paragraph. Let’s code the letter using .PP macros. Because
this is a letter, let’s also disable justification with an .na request. And of course, we want to print the address block
in no-fill mode, as shown in Chapter 4. Figure 5-1 shows the coded letter and Figure 5-2 shows the formatted out-
put.

Spacing between Paragraphs

With nroff, all of the paragraph macros produce a full space between paragraphs. However, with troff, the
paragraph macros output a blank space of 0.3v. Basically, this means that a blank line will output one full space and
the paragraph macros will output about a third of that space.

The amount of spacing between paragraphs is contained in the number register PD (paragraph distance). If
you want to change the amount of space generated by any of the paragraph macros, simply change the contents of
this register.

For example, if you don’t want to leave any space between paragraphs in the letter, you could put the follow-
ing line at the start of your file:

.nr PD 0

This flexibility afforded by macro packages is a major advantage. It is often possible to completely change the ap-
pearance of a coded document by resetting only a few number registers at the start of a file. (As we’ll see, this state-
ment is even more true of mm than of ms).

86 Unix Text Processing

.ad r
April 1, 1987
.sp 2
.ad
.nf
Mr. John Fust
Vice President, Research and Development
Gutenberg Galaxy Software
Waltham, Massachusetts 02159
.fi
.sp
.na
Dear Mr. Fust:
.PP
In our conversation last Thursday, we discussed a documentation
project that would produce a user’s manual on the Alcuin
product. Yesterday, I received the product demo and other
materials that you sent me.
.PP
Going through a demo session gave me a much better understanding
of the product. I confess to being amazed by Alcuin.
Some people around here, looking over my shoulder, were also
astounded by the illustrated manuscript I produced with Alcuin.
One person, a student of calligraphy, was really impressed.
.PP
In the next couple of days, I’ll be putting together a written
plan that presents different strategies for documenting the
Alcuin product. After I submit this plan, and you have had time
to review it, let’s arrange a meeting at your company to discuss
these strategies.
.PP
Thanks again for giving us the opportunity to bid on this
documentation project. I hope we can decide upon a strategy
and get started as soon as possible in order to have the manual
ready in time for the first customer shipment. I look forward to
meeting with you towards the end of next week.
.sp
Sincerely,
.sp 3
Fred Caslon

Figure 5.1 Letter Coded with ms Macros

The ms Macros 87

April 1, 1987

Mr. John Fust
Vice President, Research and Development
Gutenberg Galaxy Software
Waltham, Massachusetts 02159

Dear Mr. Fust:

In our conversation last Thursday, we discussed
a documentation project that would produce a user’s
manual on the Alcuin product. Yesterday, I received
the product demo and other materials that you sent
me.

Going through a demo session gave me a much
better understanding of the product. I confess to
being amazed by Alcuin. Some people around here,
looking over my shoulder, were also astounded by the
illustrated manuscript I produced with Alcuin. One
person, a student of calligraphy, was really
impressed.

In the next couple of days, I’ll be putting
together a written plan that presents different
strategies for documenting the Alcuin product. After
I submit this plan, and you have had time to review
it, let’s arrange a meeting at your company to dis-
cuss these strategies.

Thanks again for giving us the opportunity to
bid on this documentation project. I hope we can
decide upon a strategy and get started as soon as
possible in order to have the manual ready in time
for the first customer shipment. I look forward to
meeting with you towards the end of next week.

Sincerely,

Fred Caslon

Figure 5.2 Formatted Output

Quoted Paragraphs

A paragraph that is indented equally from the left and right margins is typically used to display quoted material. It is
produced by .QP. For example:

.QP
In the next couple of days, I’ll be putting together a ...

The .QP macro produces a paragraph indented on both sides. The pair of macros .QS and .QE can be used to mark
a section longer than one paragraph that is indented. This is useful in reports and proposals that quote at length from

88 Unix Text Processing

another source.
.LP
I was particularly interested in the following comment
found in the product specification:
.QS
Users first need a brief introduction to what
the product does. Sometimes this is more for the
benefit of people who haven’t yet bought the
product, and are just looking at the manual.
However, it also serves to put the rest of the
manual, and the product itself, in
the proper context.
.QE

The result of formatting is:

I was particularly interested in the following comment
found in the product specification:

Users first need a brief introduction to what
the product does. Sometimes this is more for
the benefit of people who haven’t yet bought
the product, and are just looking at the man-
ual. However, it also serves to put the rest
of the manual, and the product itself, in the
proper context.

Use the .QP macro inside a .QS/.QE block to break up paragraphs.

Indented Paragraphs

The .IP macro produces an entire paragraph indented from the left margin. This is especially useful for construct-
ing lists, in which a mark of some kind (e.g., a letter or number) extends into the left margin. We call these labeled
item lists.

The .IP macro takes three arguments. The first argument is a text label; if the label contains spaces, it should
be enclosed within quotation marks. The second argument is optional and specifies the amount of indentation; a de-
fault of 5 is used if the second argument is not specified. A third argument of 0 inhibits spacing before the indented
paragraph.

Item lists are useful in preparing command reference pages that describe various syntax items, and in glos-
saries that present a term in one column and its definition in the other. The following example shows a portion of the
input file for a reference page:

.IP figure 10
is the name of a cataloged figure. If
a figure has not been cataloged, you need to use
the LOCATE command.
.IP f:p 10
is the scale of the
figure in relation to the page.
.IP font 10
is the two-character abbreviation or
full name of one of the available fonts
from the Alcuin library.

The ms Macros 89

The following item list is produced:

figure is the name of a cataloged figure. If a figure
has not been cataloged, you need to use the
LOCATE command.

f:p is the scale of the figure in relation to the
page.

font is the two-character abbreviation or full name
of one of the available fonts from the Alcuin
library.

An .LP or .PP should be specified after the last item so that the text following the list is not also indented.

If you want to indent the label as well as the paragraph, you can use the .in request around the list. The fol-
lowing example:

.in 10

.IP figure 10
is the name of a cataloged figure. If
a figure has not been cataloged, you need to use
the LOCATE command.
.in 0

will produce:

figure is the name of a cataloged figure. If a
figure has not been cataloged, you need to
use the LOCATE command.

You can specify an absolute or relative indent. To achieve the effect of a nested list, you can use the .RS (you can
think of this as either relative start or right shift) and .RE (relative end or retreat) macros:

.IP font 10
is the two-character abbreviation or
full name of one of the available fonts
from the Alcuin library.
.RS
.IP CU
Cursive
.IP RS
Slanted
.RS
.IP LH 5 0
Left handed
.IP RH 5 0
Right handed
.RE
.IP BL
Block
.RE

90 Unix Text Processing

The labels on the second level are aligned with the indented left margin of paragraphs on the first level.

font is the two-character abbreviation or full name of
one of the available fonts from the Alcuin
library.

CU Cursive

RS Slanted

LH Left handed
RH Right handed

BL Block

One thing you need to watch out for in using the .IP macro is not to include space in the label argument. Because
of the way the macro is coded, the space may be expanded when the finished line is adjusted. The first line will not
be aligned with the rest. For example:

.IP "font name" 10
is the two-character abbreviation or full name . . .

might produce the following:

font name is the two-character abbreviation or full
name of one of the available fonts from the
Alcuin library.

To avoid this problem, always use an unpaddable space (a backslash followed by a space) to separate words in the
label argument to .IP. This caution applies to many other formatting situations as well.

Automatically numbered and alphabetized lists are not provided for in ms. (Chapter 16 shows how to write
your own macros for this). However, by specifying the number or letter as a label, you can make do with the .IP
macro. For example:

User-oriented documentation recognizes three things:
.in +3n
.IP 1) 5n
that a new user needs
to learn the system in stages, getting a sense of the
system as a whole while becoming proficient in performing
particular tasks;
.IP 2) 5n
that there are different levels of users, and not
every user needs to learn all the capabilities
of the system in order to be productive;
.IP 3) 5n
that an experienced user must be able to rely on
the documentation for accurate and thorough reference
information.
.in -3n

The ms Macros 91

This produces:

User-oriented documentation recognizes three things:

1) that a new user needs to learn the system in
stages, getting a sense of the system as a
whole while becoming proficient in performing
particular tasks;

2) that there are different levels of users, and
not every user needs to learn all the capabil-
ities of the system in order to be productive;

3) that an experienced user must be able to rely on
the documentation for accurate and thorough
reference information.

The number is indented three ens and the text is indented five more ens. (Note: If you are using nroff, you don’t
need to specify units on the indents. However, if you are using troff, the default scaling for both the .IP macro
and the .in requests shown in the previous example is ems. Remember that you can append a scaling indicator to
the numeric arguments of most macros and troff requests).

Changing Font and Point Size

When you format with nroff and print on a line printer, you can put emphasis on individual words or phrases by
underlining or overstriking. When you are using troff and send your output to a laser printer or typesetter, you
can specify variations of type, font, and point size based on the capabilities of the output devices.

Roman, Italic, and Bold Fonts

Most typefaces have at least three fonts available: roman, bold, and italic. Normal body copy is printed in the ro-
man font. You can change temporarily to a bold or italic font for emphasis. In Chapter 4, you learned how to spec-
ify font changes using the .ft request and inline \f requests. The ms package provides a set of mnemonic macros
for changing fonts:

.B bold

.I italic

.R roman

Each macro prints a single argument in a particular font. You might code a single sentence as follows:
.B Alcuin
revitalizes an
.I age-old
tradition.

The printed sentence has one word in bold and one in italic.

92 Unix Text Processing

Alcuin revitalizes an age-old tradition.

If no argument is specified, the selected font is current until it is explicitly changed:
The art of
.B
calligraphy
.R
is, quite simply,
.I
beautiful
.R
handwriting;

The example produces:

The art of calligraphy is, quite simply, beautiful handwriting;

You’ve already seen that the first argument is changed to the selected font. If you supply a second argument, it
is printed in the previous font. (You are limited to two arguments, set off by a space; a phrase must be enclosed
within quotation marks to be taken as a single argument). A good use for the alternate argument is to supply punctu-
ation, especially because of the restriction that you cannot begin a line with a period.

its opposite is
.B cacography .

This example produces:

its opposite is cacography.

If the second argument is a word or phrase, you must supply the spacing:
The ink pen has been replaced by a
.I light " pen."

This produces:

The ink pen has been replaced by a light pen.

If you are using nroff, specifying a bold font results in character overstrike; specifying an italic font results in an
underline for each character (not a continuous rule). Overstriking and underlining can cause problems on some
printers and terminals.

The ms Macros 93

The chief advantage of these macros over the corresponding troff constructs is the ease of entry. It is easier
to type:

.B calligraphy

than:
\fBcalligraphy\fP

However, you’ll notice that using these macros changes the style of your input considerably. As shown in the exam-
ples on the preceding pages, these macros require you to code your input file using short lines that do not resemble
the resulting filled output text.

This style, which clearly divorces the form of the input from the form of the output, is recommended by many
nroff and troff users. They recommend that you use macros like these rather than inline codes, and that you
begin each sentence or clause on a new line. There are advantages in speed of editing. However, there are others
(one of the authors included) who find this style of input unreadable on the screen, and prefer to use inline codes,
and to keep the input file as readable as possible. (There is no difference in the output file).

Underlining

If you want to underline a single word, regardless of whether you are using nroff or troff, use the .UL macro:
the
.UL art
of calligraphy.

It will print a continuous rule beneath the word. You cannot specify more than a single word with this macro.

Changing Point Size

As discussed in Chapter 4, you can change the point size and vertical spacing with the .ps and .vs requests. How-
ever, if you do this in ms, you will find that the point size and vertical spacing revert to 10 and 12 points, respec-
tively, after the next paragraph macro. This is because the paragraph macro, in addition to other tasks, resets the
point size and vertical spacing (along with various other values) to default values stored in number registers.

The default point size and vertical spacing for a document are kept in the registers PS and VS, respectively. If
you want to change the overall point size or vertical spacing, change the value in these registers. (The default values
are 10 and 12, respectively). For example, to change the body type to 8 points and the spacing to 10 points, enter the
following requests at the top of your document:

.nr PS 8

.nr VS 10

At the top of a document, these settings will take effect immediately. Otherwise, you must wait for the next para-
graph macro for the new values to be recognized. If you need both immediate and long-lasting effects, you may
need a construct like:

.ps 8

.nr PS 8

.vs 10

.nr VS 10

There are also several macros for making local point size changes. The .LG macro increases the current point size
by 2 points; the .SM macro decreases the point size by 2 points. The new point size remains in effect until you
change it. The .NL macro changes the point size back to its default or normal setting. For example:

.LG
Alcuin
.NL
is a graphic arts product for

94 Unix Text Processing

.SM
UNIX
.NL
systems.

The following line is produced:

Alcuin is a graphic arts product for UNIX systems.

The .LG and .SM macros simply increment or decrement the current point size by 2 points. Because you
change the point size relative to the current setting, repeating a macro adds or subtracts 2 more points. If you are go-
ing to change the point size by more than 2, it makes more sense to use the .ps request. The .NL macro uses the
value of the number register PS to reset the normal point size. Its default value is 10.

In the following example, the .ps request changes the point size to 12. The .LG and .SM macros increase
and decrease the point size relative to 12 points. The .NL macro is not used until the end because it changes the
point size back to 10.

.ps 12

.LG
Alcuin
.SM
is a graphic arts product for
.SM
UNIX
.LG
systems.
.NL

It produces the following line:

Alcuin is a graphic arts product for UNIX systems.

A change in the point size affects how much vertical space is needed for the larger or smaller characters. Vertical
spacing is usually 2 points larger than the point size (10 on 12). Use the vertical spacing request to temporarily
change the vertical spacing, if necessary.

Displays

A document often includes material—such as tables, figures, or equations—that are not part of the running text, and
must be kept together on the page. In ms and mm, such document elements are referred to generically as displays.

The macros .DS, .DE, .ID, .CD, .BD, and .LD are used to handle displays in ms. The display macros can
be relied upon to provide

• adequate spacing before and after the display;

• horizontal positioning of the display as a left-justified, indented, or centered block;

• proper page breaks, keeping the entire display together.

The ms Macros 95

The default action of the .DS macro is to indent the block of text without filling lines:
Some of the typefaces that are currently available are:
.DS
Roman
Caslon
Baskerville
Helvetica
.DE

This produces:

Some of the typefaces that are currently available are:

Roman
Caslon
Baskerville
Helvetica

You can select a different format for a display by specifying a left-justified or centered display with one of the
following arguments:

I Indented (default)
L Left-justified
C Center each line
B Block (center entire display)

The L argument can be used for formatting an address block in a letter:
.DS L
Mr. John Fust
Vice President, Research and Development
Gutenberg Galaxy Software
Waltham, Massachusetts 02154
.DE

The display macro prevents these lines from being filled; it “protects” the carriage returns as they were entered in the
file.

A display can be centered in two ways: either each individual line in the display is centered (C), or the entire
display is centered as a block (B) based on the longest line of the display.

The use of tabs often presents a problem outside of displays. Material that has been entered with tabs in the
input file should be formatted in no-fill mode, the default setting of the display macros. The following table was de-
signed using tabs to provide the spacing.

.DS L
Dates Description of Task

June 30 Submit audience analysis
July 2 Meeting to review audience analysis
July 15 Submit detailed outline
August 1 Submit first draft
August 5 Return of first draft
August 8 Meeting to review comments

and establish revisions
.DE

This table appears in the output just as it looks in the file. If this material had not been processed inside a display,
the columns would be improperly aligned.

96 Unix Text Processing

Static and Floating Displays

One of the basic functions of a display is to make sure the displayed material stays together on one page. If the dis-
play is longer than the distance to the bottom of the page, there is a page break.

If the display is large, causing a page break can leave a large block of white space at the bottom of the page.
To avoid this problem, ms provides a set of macros for floating displays, as well as macros for the static displays
we’ve already discussed. If a floating display doesn’t fit on the page, the formatter doesn’t force a page break. In-
stead, it simply holds the displayed text in reserve while it fills up the remainder of the page with the text following
the display. It prints the display at the top of the next page, then continues where it left off.

We have already used .DS and .DE to mark the beginning and end of a static display. To specify a floating
display, the closing mark is the same but the beginning is marked by a different macro:

.ID Same as .DS I (indented) but floating

.LD Same as .DS L (left justified) but floating

.CD Same as .DS C (center each line) but floating

.BD Same as .DS B (center display) but floating

In the following example of an input file, numbers are used instead of actual lines of text to make the place-
ment of the display more obvious:

1
2
3
4
5
.LD
Long Display
.DE
6
7
8
9
10

The following two formatted pages might be produced, assuming that there are a sufficient number of lines to cause
a page break:

- 1 -

1
2
3
4
5
6
7

- 2 -

Long Display

8
9
10

If there had been room on page 1 to fit the display, it would have been placed there, and lines 6 and 7 would have
followed the display, as they did in the input file.

If a static display had been specified in the previous example, the display would be placed in the same position
on the second page, and lines 6 and 7 would have followed it, leaving extra space at the bottom of page 1. A floating
display attempts to make the best use of the available space on a page.

The formatter maintains a queue to hold floating displays that it has not yet output. When the top of a page is
encountered, the next display in the queue is output. The queue is emptied in the order in which it was filled (first
in, first out).

The ms Macros 97

The macros called by the display macros to control output of a block of text are available for other uses. They
are known as “keep and release” macros. The pair .KS/.KE keep a block together and output it on the next avail-
able page. The pair .KF/.KE specify a floating keep; the block saved by the keep can float and lines of text follow-
ing the block may appear before it in the text.

Headings

In ms, you can have numbered and unnumbered headings. There are two heading macros: .NH for numbered head-
ings and .SH for unnumbered section headings.

Let’s first look at how to produce numbered headings. The syntax for the .NH macro is:
.NH [level]
[heading text]
.LP

(The brackets indicate optional arguments). You can supply a numerical value indicating the level of the heading. If
no value is provided for level, then a top-level heading is assumed. The heading text begins on the line following
the macro and can extend over several lines. You have to use one of the paragraph macros, either .LP or .PP, after
the last line of the heading. For example:

.NH
Quick Tour of Alcuin
.LP

The result is a heading preceded by a first-level heading number:

1. Quick Tour of Alcuin

The next time you use this macro the heading number will be incremented to 2, and after that, to 3.

You can add levels by specifying a numeric argument. A second-level heading is indicated by 2:
.NH 2
Introduction to Calligraphy
.LP

The first second-level heading number is printed:
1.1 Introduction to Calligraphy

When another heading is specified at the same level, the heading number is automatically incremented. If the next
heading is at the second level:

.NH 2
Digest of Alcuin Commands
.LP

ms produces:

1.2 Digest of Alcuin Commands

98 Unix Text Processing

Each time you go to a new level, .1 is appended to the number representing the existing level. That number is incre-
mented for each call at the same level. When you back out of a level (for instance, when you go from level 5 to level
4) the counter for the level (in this case level 5) is reset to 0.

The macro for unnumbered headings is .SH:
.SH
Introduction to Calligraphy
.LP

Unnumbered headings and numbered headings can be intermixed without affecting the numbering scheme:

1. Quick Tour of Alcuin

Introduction to Calligraphy

1.1 Digest of Alcuin Commands

Headings are visible keys to your document’s structure. Their appearance can contribute significantly to a
reader recognizing that organization. If you are using unnumbered headings, it becomes even more important to
make headings stand out. A simple thing you can do is use uppercase letters for a first-level heading.

Cover Sheet Macros

In their original incarnation at Bell Laboratories, the ms macros were called on to format many internal AT&T docu-
ments. Accordingly, it is not surprising that there were quite a few macros that controlled the format of specific in-
ternal document types. What is surprising is that these macros are still present in copies of the ms macros distrib-
uted outside of AT&T.

You have the option of specifying that your document contains Engineer’s Notes (.EG), an Internal Memoran-
dum (.IM), a Memorandum for Record (.MR), a Memorandum for File (.MF), a Released Paper (.RP), a Technical
Report (.TR), or a letter (.LT).

Many of these formats are quite useless outside of AT&T, unless you customize them heavily for other institu-
tions. We prefer simply to ignore them.

In general, what these document type macros control is the appearance of the document’s cover sheet. The
content of that cover sheet is specified using the following macros:

.TL Title

.AU Author

.AI Author’s Institution

.AB Abstract Start

.AE Abstract End

These macros are general enough that you can still use them even if you aren’t from Bell Laboratories.

Each macro takes its data from the following line(s) rather than from an argument. They are typically used to-
gether. For example:

.TL
UNIX Text Processing
.AU
Dale Dougherty
.AU
Tim O’Reilly

The ms Macros 99

.AI
O’Reilly & Associates, Inc.
.AB
This book provides a comprehensive introduction to the major
UNIX text-processing tools. It includes a discussion of
vi, ex, nroff, and troff, as
well as many other text-processing programs.
.AE
.LP

Exactly how the output will look depends on which document type you have selected. If you don’t specify any of
the formats, you will get something like this:

UNIX Text Processing

Dale Dougherty

Tim O’Reilly

O’Reilly & Associates, Inc.

ABSTRACT

This book provides a comprehensive introduction to
the major UNIX text-processing tools. It includes a
discussion of vi, ex, nroff, and troff, as
well as many other text-processing programs.

You can specify as many title lines as you want following .TL. The macro will be terminated by any of the other
cover sheet macros, or by any paragraph macro. For multiple authors, .AU and .AI can be repeated up to nine
times.

The cover sheet isn’t actually printed until a reset (such as that caused by any of the paragraph macros) is en-
countered, so if you want to print only a cover page, you should conclude it with a paragraph macro even if there is
no following text.

In addition, if you use these macros without one of the overall document type macros like .RP, the cover
sheet will not be printed separately. Instead, the text will immediately follow. Insert a .bp if you want a separate
cover sheet.

Miscellaneous Features

Putting Information in a Box

Another way of handling special information is to place it in a box. Individual words can be boxed for emphasis us-
ing the .BX command:

To move to the next menu, press the
.BX RETURN
key.

This draws a box around the word RETURN.
To move to the next menu, press the
RETURN

100 Unix Text Processing

key.

As you can see, it might be a good idea to reduce the point size of the boxed word.

You can enclose a block of material within a box by using the pair of macros .B1 and .B2:
.B1
.B
.ce
Note to Reviewers
.R
.LP
Can you get a copy of a manuscript without annotations?
It seems to me that you should be
able to mark up a page with comments or
other scribbles while in Annotation Mode and
still obtain a printed copy without these marks.
Any ideas?
.sp
.B2

This example produces the following boxed section in troff:

Note to Reviewers

Can you get a copy of a manuscript without annotations? It seems to me that you should be able to mark up a
page with comments or other scribbles while in Annotation Mode and still obtain a printed copy without these
marks. Any ideas?

You may want to place boxed information inside a pair of keep or display macros. This will prevent the box macro
from breaking if it crosses a page boundary. If you use these macros with nroff, you must also pipe your output
through the col postprocessor as described in Chapter 4.

Footnotes

Footnotes present special problems—the main is printing the text at the bottom of the page. The .FS macro indi-
cates the start of the text for the footnote, and .FE indicates the end of the text for the footnote. These macros sur-
round the footnote text that will appear at the bottom of the page. The .FS macro is put on the line immediately fol-
lowing some kind of marker, such as an asterisk, that you supply in the text and in the footnote.

... in an article on desktop publishing.*

.FS
* "Publish or Perish: Start-up grabs early page language
lead," Computerworld, April 21, 1986, p. 1.
.FE

All the footnotes are collected and output at the bottom of each page underneath a short rule. The footnote text is
printed in smaller type, with a slightly shorter line length than the body text. However, you can change these if you
want.

Footnotes in ms use an nroff/troff feature called environments (see Chapter 14), so that parameters like
line length or font that are set inside a footnote are saved independently of the body text. So, for example, if you is-
sued the requests:

.FS

.ft B

.ll -5n

.in +5n
Some text
∼
∼
∼

The ms Macros 101

.FE

the text within the footnote would be printed in boldface, with a 5-en indent, and the line length would be shortened
by 5 ens. The text following the footnote would be unaffected by those formatting requests. However, the next time
a footnote was called, that special formatting would again be in effect.

* "Publish or Perish: Start-up grabs early page language
lead," Computerworld,April 21, 1986, p. 1.

If a footnote is too long to fit on one page, it will be continued at the bottom of the next page.

Two-Column Processing

One of the nice features of the ms macros is the ease with which you can create multiple columns and format docu-
ments, such as newsletters or data sheets, that are best suited to a multicolumn format.

To switch to two-column mode, simply insert the .2C macro. To return to single-column mode, use .1C.
Because of the way two-column processing works in ms, you can switch to two-column mode in the middle of a
page, but switching back to a single column forces a page break. (You’ll understand the reason for this when we re-
turn to two-column processing in Chapter 16).

The default column width for two-column processing is 7/15th of the line length. It is stored in the register CW
(column width). The gutter between the columns is 1/15th of the line length, and is stored in the register GW (gutter
width). By changing the values in these registers, you can change the column and gutter width.

For more than two columns, you can use the .MC macro. This macro takes two arguments, the column width
and the gutter width, and creates as many columns as will fit in the line length. For example, if the line lengths are 7
inches, the request:

.MC 2i .3i

would create three columns 2 inches wide, with a gutter of .3 inches between the columns.

Again, .1C can be used to return to single-column mode. In some versions of ms, the .RC macro can be used
to break columns. If you are in the left column, following text will go to the top of the next column. If you are in
the right column, .RC will start a new page.

Page Headers and Footers

When you format a page with ms, the formatter is instructed to provide several lines at the top and the bottom of the
page for a header and a footer. Beginning with the second page, a page number appears on a single line in the
header and only blank lines are printed for the footer.

The ms package allows you to define strings that appear in the header or footer. You can place text in three lo-
cations in the header or footer: left justified, centered, and right justified. For example, we could place the name of
the client, the title of the document, and the date in the page header and we could place the page number in the
footer.

102 Unix Text Processing

.ds LH GGS

.ds CH Alcuin Project Proposal

.ds RH *(DY

.ds CF Page %

You may notice that we use the string DY to supply today’s date in the header. In the footer, we use a special symbol
(%) to access the current page number. Here are the resulting header and footer:

GGS Alcuin Project Proposal April 26, 1987
.
.
.

Page 2

Normally, you would define the header and footer strings at the start of the document, so they would take effect
throughout. However, note that there is nothing to prevent you from changing one or more of them from page to
page. (Changes to a footer string will take effect on the same page; changes to a header string will take effect at the
top of the next page).

Problems on the First Page

Because ms was originally designed to work with the cover sheet macros and one of the standard Bell document
types, there are a number of problems that can occur on the first page of a document that doesn’t use these macros.*

First, headers are not printed on the first page, nor is it apparent how to get them printed there if you want
them. The trick is to invoke the internal .NP (new page) macro at the top of your text. This will not actually start a
new page, but will execute the various internal goings-on that normally take place at the top of a page.

Second, it is not evident how to space down from the top if you want to start your text at some distance down
the page. For example, if you want to create your own title page, the sequence:

.sp 3i

.ce
\s16The Invention of Movable Type\s0

will not work.

The page top macro includes an .ns request, designed to ensure that all leftover space from the bottom of one
page doesn’t carry over to the next, so that all pages start evenly. To circumvent this on all pages after the first one,
precede your spacing request with an .rs (restore spacing) request. On the first page, a .fl request must precede
a .rs request.

*This problem actually can occur on any page, but is most frequently encountered on the first page.

The ms Macros 103

Extensions to ms

In many ways, ms can be used to give you a head start on defining your own macro package. Many of the features
that are missing in ms can be supplied by user-defined macros. Many of these features are covered in Chapters 14
through 18, where, for example, we show macros for formatting numbered lists.

4Chapter 6

The mm Macros

A macro package provides a way of describing the format of various kinds of documents. Each document presents
its own specific problems, and macros help to provide a simple and flexible solution. The mm macro package is de-
signed to help you format letters, proposals, memos, technical papers, and reports. A text file that contains mm
macros can be processed by either nroff or troff, the two text formatting programs in UNIX. The output from
these programs can be displayed on a terminal screen or printed on a line printer, a laser printer, or a typesetter.

Some users of the mm macro package learn only a few macros and work productively. Others choose from a
variety of macros to produce a number of different formats. More advanced users modify the macro definitions and
extend the capabilities of the package by defining their own special-purpose macros.

Macros are the words that make up a format description language. Like words, the result of a macro is often
determined by context. That is, you may not always understand your output by looking up an individual macro, just
like you may not understand the meaning of an entire sentence by looking up a particular word. Without examining
the macro definition, you may find it hard to figure out which macro is causing a particular result. Macros are inter-
related; some macros call other macros, like a subroutine in a program, to perform a particular function.

After finding out what the macro package allows you to do, you will probably decide upon a particular format
that you like (or one that has evolved according to the decisions of a group of people). To describe that format, you
are likely to use only a few of the macros, those that do the job. In everyday use, you want to minimize the number
of codes you need to format documents in a consistent manner.

Formatting a Text File

To figure out the role of a macro package such as mm, it may help to consider the distinction between formatting and
format. Formatting is an operation, a process of supplying and executing instructions. You can achieve a variety of
results, some pleasing, some not, by any combination of formatting instructions. A format is a consistent product,
achieved by a selected set of formatting instructions. A macro package makes it possible for a format to be recreated
again and again with minimal difficulty. It encourages the user to concentrate more on the requirements of a docu-
ment and less on the operations of the text formatter.

Working with a macro package will help reduce the number of formatting instructions you need to supply.
This means that a macro package will take care of many things automatically. However, you should gradually be-
come familiar with the operations of the nroff/troff formatter and the additional flexibility it offers to define
new formats. If you have a basic understanding of how the formatter works, as described in Chapter 4, you will find
it easier to learn the intricacies of a macro package.

Invoking nroff/troff with mm

The mm command is a shell script that invokes the nroff formatter and reads in the files that contain the mm macro
definitions before processing the text file(s) specified on the command line.

$ mm option(s) filename(s)

If more than one file is specified on the command line, the files are concatenated before processing. There are a va-
riety of options for invoking preprocessors and postprocessors, naming an output device, and setting various number
registers to alter default values for a document. Using the mm command is the same as invoking nroff explicitly
with the -mm option.

105

106 Unix Text Processing

Unless you specify otherwise, the mm command sets nroff’s -T option to the terminal type set in your login
environment. By default, output is sent to the terminal screen. If you have problems viewing your output, or if you
have a graphics terminal, you may want to specify another device name using the -T option. For a list of available
devices, see .Appendix B The mm command also has a -c option, which invokes the col filter to remove reverse
linefeeds, and options to invoke tbl (-t) and eqn (-e).

When you format a file to the screen, the output usually streams by too swiftly to read, just as when you cat a
file to the screen. Pipe the output of the mm command through either of the paging programs, pg or more, to view
one screenful at a time. This will give you a general indication that the formatting commands achieved the results
you had expected. To print a file formatted with mm, simply pipe the output to the print spooler (e.g., lp) instead of
to a screen paging program.

Many of the actions that a text formatter performs are dependent upon how the document is going to be
printed. If you want your document to be formatted with troff instead of nroff, use the mmt 129 [mmt] com-
mand %key mmt command command (another shell script) or invoke troff directly, using the -mm option. The
mmt command prepares output for laser printers and typesetters. The formatted output should be piped directly to
the print spooler (e.g., lp) or directed to a file and printed separately. You will probably need to check at your site
for the proper invocation of mmt if your site supports more than one type of laser printer or typesetter.

If you are using otroff, be sure you don’t let troff send the output to your terminal because, in all proba-
bility, it will cause your terminal to hang, or at least to scream and holler.

In this chapter, we will generally show the results of the mm command, rather than mmt—that is, we’ll be
showing nroff rather than troff. Where the subject under discussion is better demonstrated by troff, we will
show troff output instead. We assume that by now, you will be able to tell which of the programs has been used,
without our mentioning the actual commands.

Problems in Getting Formatted Output

When you format an mm-coded document, you may only get a portion of your formatted document. Or you may get
none of it. Usually, this is because the formatter has had a problem executing the codes as they were entered in the
input file. Most of the time it is caused by omitting one of the macros that must be used in pairs.

When formatting stops like this, one or more error messages might appear on your screen, helping you to di-
agnose the problems. These messages refer to the line numbers in the input file where the problems appear to be,
and try to tell you what is missing:

ERROR:(filename) line number
Error message

Sometimes, you won’t get error messages, but your output will break midway. Generally, you have to go in the file
at the point where it broke, or before that point, and examine the macros or a sequence of macros. You can also run
a program on the input file to examine the code you have entered. This program, available at most sites, is called
checkmm.

Default Formatting

In Chapter 4, we looked at a sample letter formatted by nroff. It might be interesting, before putting any macros
in the file, to see what happens if we format letter as it is, this time using the mm command to read in the mm
macro package.

Refer to Figure 6-1 and note that

• a page number appears in a header at the top of the page;

• the address block still forms two long lines;

• lines of input text have been filled, forming block paragraphs;

• the right margin is ragged, not justified as with nroff;

The mm Macros 107

• the text is not hyphenated;

• space has been allocated for a page with top, bottom, left, and right margins.

- 1 -

April 1, 1987

Mr. John Fust Vice President, Research and
Development Gutenberg Galaxy Software Waltham,
Massachusetts 02159

Dear Mr. Fust:

In our conversation last Thursday, we discussed a
documentation project that would produce a user’s
manual on the Alcuin product. Yesterday, I
received the product demo and other materials that
you sent me.

Going through a demo session gave me a much better
understanding of the product. I confess to being
amazed by Alcuin. Some people around here,
looking over my shoulder, were also astounded by
the illustrated manuscript I produced with Alcuin.
One person, a student of calligraphy, was really
impressed.

In the next couple of days, I’ll be putting
together a written plan that presents different
strategies for documenting the Alcuin product.
After I submit this plan, and you have had time to
review it, let’s arrange a meeting at your company
to discuss these strategies.

Thanks again for giving us the opportunity to bid
on this documentation project. I hope we can
decide upon a strategy and get started as soon as
possible in order to have the manual ready in time
for the first customer shipment. I look forward to
meeting with you towards the end of next week.

Sincerely,

Fred Caslon

Figure 6.1 A Raw mm-formatted File

108 Unix Text Processing

Page Layout

When you format a page with mm, the formatter is instructed to provide several lines at the top and the bottom of the
page for a header and a footer. By default, a page number appears on a single line in the header and only blank lines
are printed for the footer.

There are basically two different ways to change the default header and footer. The first way is to specify a
command-line parameter with the mm or mmt commands to set the number register N. This allows you to affect how
pages are numbered and where the page number appears. The second way is to specify in the input file a macro that
places text in the header or footer. Let’s look at both of these techniques.

Setting Page Numbering Style

When you format a document, pages are numbered in sequence up to the end of the document. This page number is
usually printed in the header, set off by dashes.

-1-

Another style of page numbering, used in documents such as technical manuals, numbers pages specific to a section.
The first page of the second section would be printed as:

2-1

The other type of change affects whether or not the page number is printed in the header at the top of the first page.

The number register N controls these actions. This register has a default setting of 0 and can take values from
0 through 5. Table 6-1 shows the effect of these values.

Table 6.1 Page Number Styles, Register N

Value Action

0 The page number prints in the header on all pages. This is the default
page numbering style.

1 On page 1, the page number is printed in place of the footer.
2 On page 1, the page number is not printed.

3 All pages are numbered by section, and the page number appears in the
footer. This setting affects the defaults of several section-related regis-
ters and macros. It causes a page break for a top-level heading (Ej=1),
and invokes both the .FD and .RP macros to reset footnote and refer-
ence numbering.

4 The default header containing the page number is suppressed, but it has
no effect on a header supplied by a page header macro.

5 All pages are numbered by section, and the page number appears in the
footer. In addition, labeled displays (.FC, .TB, .EX, and .EC) are
also numbered by section.

The register N can be set from the command line using the -r option. If we set it to 2, no page number will
appear at the top of page 1 when we print the sample letter:

$ mm -rN2 letter | lp

The mm Macros 109

Header and Footer Macros

The mm package has a pair of macros for defining what should appear in a page header (.PH) and a page footer
(.PF). There is also a set of related macros for specifying page headers and footers for odd-numbered pages (.OH
and .OF) or for even numbered pages (.EH and .EF). All of these macros have the same form, allowing you to
place text in three places in the header or footer: left justified, centered, and right justified. This is specified as a sin-
gle argument in double quotation marks, consisting of three parts delimited by single quotation marks.

’left’center’right’

For example, we could place the name of a client, the title of the document, and the date in the page header, and we
could place the page number in the footer:

.PH "’GGS’Alcuin Project Proposal’*(DT’"

.PF "’’Page % ’’"

You may notice that we use the string DT to supply today’s date in the header. The following header appears at the
top of the page.

GGS Alcuin Project Proposal April 26, 1987

In the footer, we use a special symbol (%) to access the current page number. Only text to be centered was specified;
however, the four delimiters were still required to place the text correctly. This footer appears at the bottom of the
page:

.

.

.
Page 2

The header and footer macros override the default header and footer.

Setting Other Page Control Registers

The mm package uses number registers to supply the values that control line length, page offset, point size, and page
length, as shown in Table 6-2.

Table 6.2 Number Registers

Register Contains troff Default nroff Default

O Page offset (left margin) .75i .5i
N Page numbering style 0 0
P Page length 66v 66 lines
S Point size (troff only) 10 NA
W Line length or width 6i 60

110 Unix Text Processing

These registers must be defined before the mm macro package is read by nroff or troff. Thus, they can be
set from the command line using the -r option, as we showed when we gave a new value for register N. Values of
registers O and W for nroff must be given in character positions (depending on the character size of the output de-
vice for nroff, .5i might translate as either 5 or 6 character positions), but troff can accept any of the units de-
scribed in Chapter 4. For example:

$ mm -rN2 -rW65 -rO10 file

but:
$ mmt -rN2 -rW6.5i -rO1i file

Or the page control registers can be set at the top of your file, using the .so request to read in the mm macro pack-
age, as follows:

.nr N 2

.nr W 65

.nr O 10

.so /usr/lib/tmac/tmac.m

If you do it this way, you cannot use the mm command. Use nroff or troff without the -mm option. Specifying
-mm would cause the mm macro package to be read twice; mm would trap that error and bail out.

Paragraphs

The .P macro marks the beginning of a paragraph.
.P
In our conversation last Thursday, we discussed a

This macro produces a left-justified, block paragraph. A blank line in the input file also results in a left-justified,
block paragraph, as you saw when we formatted an uncoded file.

However, the paragraph macro controls a number of actions in the formatter, many of which can be changed
by overriding the default values of several number registers. The .P macro takes a numeric argument that overrides
the default paragraph type, which is a block paragraph. Specifying 1 results in an indented paragraph:

.P 1
Going through a demo session gave me a much better

The first three paragraphs formatted for the screen follow:

In our conversation last Thursday, we discussed a
documentation project that would produce a user’s manual
on the Alcuin product. Yesterday, I received the product
demo and other materials that you sent me.

Going through a demo session gave me a much better
understanding of the product. I confess to being amazed
by Alcuin. Some people around here, looking over my
shoulder, were also astounded by the illustrated
manuscript I produced with Alcuin. One person, a student
of calligraphy, was really impressed.

In the next couple of days, I’ll be putting together a
written plan that presents different strategies for
documenting the Alcuin product. After I submit this plan,
and you have had time to review it, let’s arrange a
meeting at your company to discuss these strategies.

The mm Macros 111

The first line of the second paragraph is indented five spaces. (In troff the default indent is three ens). Notice that
the paragraph type specification changes only the second paragraph. The third paragraph, which is preceded in the
input file by .P without an argument, is a block paragraph.

If you want to create a document in which all the paragraphs are indented, you can change the number register
that specifies the default paragraph type. The value of Pt is 0 by default, producing block paragraphs. For indented
paragraphs, set the value of Pt to 1. Now the .P macro will produce indented paragraphs.

.nr Pt 1

If you want to obtain a block paragraph after you have changed the default type, specify an argument of 0:
.P 0

When you specify a type argument, it overrides whatever paragraph type is in effect.

There is a third paragraph type that produces an indented paragraph with some exceptions. If Pt is set to 2,
paragraphs are indented except those following section headings, lists, and displays. It is the paragraph type used in
this book.

The following list summarizes the three default paragraph types.

0 Block
1 Indented
2 Indented with exceptions

Vertical Spacing

The paragraph macro also controls the spacing between paragraphs. The amount of space is specified in the number
register Ps. This amount differs between nroff and troff.

With nroff, the .P macro has the same effect as a blank line, producing a full space between paragraphs.
However, with troff, the .P macro outputs a blank space that is equal to one-half of the current vertical spacing
setting. Basically, this means that a blank line will cause one full space to be output, and the .P macro will output
half that space.

The .P macro invokes the .SP macro for vertical spacing. This macro takes a numeric argument requesting
that many lines of space.

Sincerely,
.SP 3
Fred Caslon

Three lines of space will be provided between the salutation and the signature lines.

You do not achieve the same effect if you enter .SP macros on three consecutive lines. The vertical space
does not accumulate and one line of space is output, not three.

Two or more consecutive .SP macros with numeric arguments results in the spacing specified by the greatest
argument. The other arguments are ignored.

.SP 5

.SP

.SP 2

In this example, five lines are output, not eight.

Because the .P macro calls the .SP macro, it means that two or more consecutive paragraph macros will
have the same effect as one.

112 Unix Text Processing

The .SP Macro versus the .sp Request

There are several differences between the .SP macro and the .sp request. A series of .sp requests does cause ver-
tical spacing to accumulate. The following three requests produce eight blank lines:

.sp 5

.sp

.sp 2

The argument specified with the .SP macro cannot be scaled nor can it be a negative number. The .SP
macro automatically works in the scale (v) of the current vertical spacing. However, both .SP and .sp accept
fractions, so that each of the following codes has the same result:

.sp .3v .SP .3 .sp .3

Justification

A document formatted by nroff with mm produces, by default, unjustified text (an uneven or ragged-right margin).
When formatted by troff, the same document is automatically justified (the right margin is even).

If you are using both nroff and troff, it is probably a good idea to explicitly set justification on or off
rather than depend upon the default chosen by the formatter. Use the .SA macro (set adjustment) to set document-
wide justification. An argument of 0 specifies no justification; 1 specifies justification.

If you insert this macro at the top of your file:
.SA 1

both nroff and troff will produce right-justified paragraphs like the following:

In our conversation last Thursday, we discussed
a documentation project that would produce a user’s
manual on the Alcuin product. Yesterday, I received the
product demo and other materials that you sent me.

Word Hyphenation

One way to achieve better line breaks and more evenly filled lines is to instruct the formatter to perform word hy-
phenation.

Hyphenation is turned off in the mm macro package. This means that the formatter does not try to hyphenate
words to make them fit on a line unless you request it by setting the number register Hy to 1. If you want the for-
matter to automatically hyphenate words, insert the following line at the top of your file:

.nr Hy 1

Most of the time, the formatter breaks up a word correctly when hyphenating. Sometimes, however, it does not and
you have to explicitly tell the formatter either how to split a word (using the .hy request) or not to hyphenate at all
(using the .nh request).

The mm Macros 113

Displays

When we format a text file, the line breaks caused by carriage returns are ignored by nroff/troff. How text is
entered on lines in the input file does not affect how lines are formed in the output. It doesn’t really matter whether
information is typed on three lines or four; it appears the same after formatting.

You probably noticed that the name and address at the beginning of our sample file did not come out in block
form. The four lines of input ran together and produced two filled lines of output:

Mr. John Fust Vice President, Research and Development
Gutenberg Galaxy Software Waltham, Massachusetts 02159

The formatter, instead of paying attention to carriage returns, acts on specific macros or requests that cause a break,
such as .P, .SP, or a blank line. The formatter request .br is probably the simplest way to break a line:

Mr. John Fust
.br
Vice President, Research and Development

The .br request is most appropriate when you are forcing a break of a single line. For larger blocks of text, the mm
macro package provides a pair of macros for indicating that a block of text should be output just as it was entered in
the input file. The .DS (display start) macro is placed at the start of the text, and the .DE (display end) macro is
placed at the end:

.DS
Mr. John Fust
Vice President, Research and Development
Gutenberg Galaxy Software
Waltham, Massachusetts 02159
.DE

The formatter does not fill these lines, so the address block is output on four lines, just as it was typed. In addition,
the .DE macro provides a line of space following the display.

Our Coding Efforts, So Far

We have pretty much exhausted what we can do using the sample letter. Before going on to larger documents, you
may want to compare the coded file in Figure 6-2 with the nroff-formatted output in Figure 6-3. Look them over
and make sure you understand what the different macros are accomplishing.

We have worked through some of the problems presented by a very simple one-page letter. As we move on,
we will be describing specialized macros that address the problems of multiple page documents, such as proposals
and reports. In many ways, the macros for more complex documents are the feature performers in a macro package,
the ones that really convince you that a markup language is worth learning.

Changing Font and Point Size

When you format with nroff and print on a line printer, you can put emphasis on individual words or phrases by
underlining or overstriking. When you are using troff and send your output to a laser printer or typesetter, you
can specify variations of type, font, and point size based on the capabilities of the output device.

114 Unix Text Processing

.nr Pt 1

.SA 1
April 1, 1987

.SP 2

.DS
Mr. John Fust
Vice President, Research and Development
Gutenberg Galaxy Software
Waltham, Massachusetts 02159
.DE
Dear Mr. Fust:
.P
In our conversation last Thursday, we discussed a
documentation project that would produce a user’s manual
on the Alcuin product. Yesterday, I received the product
demo and other materials that you sent me.
.P
Going through a demo session gave me a much better
understanding of the product. I confess to being amazed
by Alcuin. Some people around here, looking over my
shoulder, were also astounded by the illustrated
manuscript I produced with Alcuin. One person, a student
of calligraphy, was really impressed.
.P
In the next couple of days, I’ll be putting together a
written plan that presents different strategies for
documenting the Alcuin product. After I submit this plan,
and you have had time to review it, let’s arrange a
meeting at your company to discuss these strategies.
.P
Thanks again for giving us the opportunity to bid on this
documentation project. I hope we can decide upon a
strategy and get started as soon as possible in order to
have the manual ready in time for the first customer
shipment. I look forward to meeting with you towards the
end of next week.
.SP

Sincerely,
.SP 2

Fred Caslon

Figure 6.2 Coded File

Roman, Italic, and Bold Fonts

Most typefaces have at least three fonts available: roman, bold, and italic. Normal body copy is printed in the ro-
man font. You can change temporarily to a bold or italic font for emphasis. In Chapter 4, you learned how to spec-
ify font changes using the .ft request and inline \f requests. The mm package provides a set of mnemonic macros
for changing fonts:

.B Bold

.I Italic

.R Roman

Each macro prints a single argument in a particular font. You might code a single sentence as follows:
.B Alcuin
revitalizes an
.I age-old
tradition.

The printed sentence has a word in bold and one in italic. (In nroff, bold space is simulated by overstriking, and
italics by underlining).

The mm Macros 115

- 1 -

April 1, 1987

Mr. John Fust
Vice President, Research and Development
Gutenberg Galaxy Software
Waltham, Massachusetts 02159

Dear Mr. Fust:

In our conversation last Thursday, we
discussed a documentation project that would
produce a user’s manual on the Alcuin product.
Yesterday, I received the product demo and other
materials that you sent me.

Going through a demo session gave me a much
better understanding of the product. I confess to
being amazed by Alcuin. Some people around here,
looking over my shoulder, were also astounded by
the illustrated manuscript I produced with Alcuin.
One person, a student of calligraphy, was really
impressed.

In the next couple of days, I’ll be putting
together a written plan that presents different
strategies for documenting the Alcuin product.
After I submit this plan, and you have had time to
review it, let’s arrange a meeting at your company
to discuss these strategies.

Thanks again for giving us the opportunity to
bid on this documentation project. I hope we can
decide upon a strategy and get started as soon as
possible in order to have the manual ready in time
for the first customer shipment. I look forward to
meeting with you towards the end of next week.

Sincerely,

Fred Caslon

Figure 6.3 Formatted Output

Alcuin revitalizes an age-old tradition.

If no argument is specified, the selected font is current until it is explicitly changed:
The art of
.B
calligraphy
.R
is, quite simply,

116 Unix Text Processing

.I
beautiful
.R
handwriting;

The previous example produces:

The art of calligraphy is, quite simply, beautiful handwriting;

You’ve already seen that the first argument is changed to the selected font. If you supply a second argument, it
is printed in the previous font. Each macro takes up to six arguments for alternating font changes. (An argument is
set off by a space; a phrase must be enclosed within quotation marks to be taken as a single argument). A good use
for the alternate argument is to supply punctuation, especially because of the restriction that you cannot begin an in-
put line with a period.

its opposite is
.B cacography .

This example produces:

its opposite is cacography.

If you specify alternate arguments consisting of words or phrases, you must supply the spacing:
The ink pen has been replaced by a
.I light " pen."

This produces:

The ink pen has been replaced by a light pen.

Here’s an example using all six arguments:
Alcuin uses three input devices, a
.B "light pen" ", a " "mouse" ", and a " "graphics tablet."

This produces:

Alcuin uses three input devices, a light pen, a mouse, and a graphics tablet.

There are additional macros for selecting other main and alternate fonts. These macros also take up to six argu-
ments, displayed in alternate fonts:

The mm Macros 117

.BR Alternate bold and roman

.IB Alternate italic and bold

.RI Alternate roman and italic

.BI Alternate bold and italic

.IR Alternate italic and roman

.RB Alternate roman and bold

If you are using nroff, specifying a bold font results in character overstrike; specifying an italic font results in an
underline for each character (not a continuous rule). Overstriking and underlining can cause problems on some
printers and terminals.

Changing Point Size

When formatting with troff, you can request a larger or smaller point size for the type. A change in the point size
affects how much vertical space is needed for the larger or smaller characters. Normal body copy is set in 10-point
type with the vertical spacing 2 points larger.

You learned about the .ps (point size) and .vs (vertical spacing) requests in Chapter 4. These will work in
mm; however, mm also has a single macro for changing both the point size and vertical space:

.S [point size] [vertical spacing]

The values for point size and vertical spacing can be set in relation to the current setting: + increments and - decre-
ments the current value. For example, you could specify relative point size changes:

.S +2 +2

or absolute ones:
.S 12 14

By default, if you don’t specify vertical spacing, a relation of 2 points greater than the point size will be maintained.
A null value ("") does not change the current setting.

The new point size and vertical spacing remain in effect until you change them. Simply entering the .S
macro without arguments restores the previous settings:

.S

The mm package keeps track of the default, previous, and current values, making it easy to switch between different
settings using one of these three arguments:

D Default
P Previous
C Current

To restore the default values, enter:
.S D

The point size returns to 10 points and the vertical spacing is automatically reset to 12 points. To increase the verti-
cal space to 16 points while keeping the point size the same, enter:

.S C 16

In the following example for a letterhead, the company name is specified in 18-point type and a tag line in 12-point
type; then the default settings are restored:

.S 18
Caslon Inc.
.S 12
Communicating Expertise
.S D

118 Unix Text Processing

The result is:

Caslon Inc.
Communicating Expertise

You can also change the font along with the point size, using the .I macro described previously. Following is the tag
line in 12-point italic.

Communicating Expertise

A special-purpose macro in mm reduces by 1 point the point size of a specified string. The .SM macro can be fol-
lowed by one, two, or three strings. Only one argument is reduced; which one depends upon how many arguments
are given. If you specify one or two arguments, the first argument will be reduced by 1 point:

using
.SM UNIX ,
you will find

The second argument is concatenated to the first argument, so that the comma immediately follows the word UNIX :

using UNIX, you will find

If you specify three arguments:
.SM [UNIX]

The second argument is reduced by one point, but the first and third arguments are printed in the current point size,
and all three are concatenated:

[UNIX]

The mm Macros 119

More about Displays

Broadly speaking, a display is any kind of information in the body of a document that cannot be set as a normal
paragraph. Displays can be figures, quotations, examples, tables, lists, equations, or diagrams.

The display macros position the display on the page. Inside the display, you might use other macros or pre-
processors such as tbl or eqn. You might simply have a block of text that deserves special treatment.

The display macros can be relied upon to provide

• adequate spacing before and after the display;

• horizontal positioning of the display as a left justified, indented, or centered block;

• proper page breaks by keeping the entire display together.

The default action of the .DS macro is to left justify the text block in no-fill mode. It provides no indentation from
the current margins.

You can specify a different format for a display by specifying up to three arguments with the .DS macro. The
syntax is:

.DS [format] [fill mode] [right indent]

The format argument allows you to specify an indented or centered display. The argument can be set by a numeric
value or a letter corresponding to the following options:

0 L No indent (default)
1 I Indented
2 C Center each line
3 CB Center entire display

For consistency, the indent of displays is initially set to be the same as indented paragraphs (five spaces in nroff
and three ens in troff), although these values are maintained independently in two different number registers, Pi
and Si. (To change the defaults, simply use the .nr request to put the desired value in the appropriate register).

A display can be centered in two ways: either each individual line in the display is centered (C) or the entire
display is centered as a block based on the longest line of the display (CB).

For instance, the preceding list was formatted using tbl, but its placement was controlled by the display
macro.

.DS CB

.TS
table specifications
.TE
.DE

The fill mode argument is represented by either a number or a letter.

0 N No-fill mode (default)
1 P Fill mode

The right indent argument is a numeric value that is subtracted from the right margin. In nroff, this value is
automatically scaled in ens. In troff, you can specify a scaled number; otherwise, the default is ems.

The use of fill mode, along with other indented display options, can provide a paragraph indented on both
sides. This is often used in reports and proposals that quote at length from another source. For example:

.P
I was particularly interested in the following comment
found in the product specification:
.DS I F 5
Users first need a brief introduction to what the product
does. Sometimes this is more for the benefit of people
who haven’t yet bought the product, and
are just looking at the manual.
However, it also serves to put the rest of

120 Unix Text Processing

the manual, and the product itself, in the proper context.
.DE

The result of formatting is:

I was particularly interested in the following comment
found in the product specification:

Users first need a brief introduction to
what the product does. Sometimes this is
more for the benefit of people who haven’t
yet bought the product, and are just looking
at the manual. However, it also serves to
put the rest of the manual, and the product
itself, in the proper context.

The use of tabs often presents a problem outside of displays. Material that has been entered with tabs in the
input file should be formatted in no-fill mode, the default setting of the display macros. The following table was de-
signed using tabs to provide the spacing:

.DF I
Dates Description of Task

June 30 Submit audience analysis
July 2 Meeting to review audience analysis
July 15 Submit detailed outline
August 1 Submit first draft
August 5 Return of first draft
August 8 Meeting to review comments
.DE

This table appears in the output just as it looks in the file. If this material had not been processed inside a display in
no-fill mode, the columns would be improperly aligned.

Static and Floating Displays

There are two types of displays, static and floating. The difference between them has to do with what happens
when a display cannot fit in its entirety on the current page. Both the static and the floating display output the block
at the top of the next page if it doesn’t fit on the current page; however, only the floating display allows text that fol-
lows the display to be used to fill up the preceding page. A static display maintains the order in which a display was
placed in the input file.

We have already used .DS and .DE to mark the beginning and end of a static display. To specify a floating
display, the closing mark is the same, but the beginning is marked by the .DF macro. The options are the same as
for the .DS macro.

In the following example of an input file, numbers are used instead of actual lines of text:
1
2
3
4
5
.DF
Long Display

The mm Macros 121

.DE
6
7
8
9
10

The following two formatted pages might be produced, assuming that there are a sufficient number of lines in the
display to cause a page break:

- 1 -

1
2
3
4
5
6
7

- 2 -

Long Display

8
9
10

If there had been room on page 1 to fit the display, it would have been placed there, and lines 6 and 7 would have
followed the display, as they did in the input file.

If a static display had been specified, the display would be placed in the same position on page 2, and lines 6
and 7 would have to follow it, leaving extra space at the bottom of page 1. A floating display attempts to make the
best use of the available space on a page.

The formatter maintains a queue to hold floating displays that it has not yet output. When the top of a page is
encountered, the next display in the queue is output. The queue is emptied in the order in which it was filled, (first
in, first out). Two number registers, De and Df, allow you to control when displays are removed from the queue and
placed in position.

At the end of a section, as indicated by the section macros .H and .HU (which we will see shortly), or at the
end of the input file, any floating displays that remain in the queue will be placed in the document.

Display Labels

You can provide a title or caption for tables, equations, exhibits, and figures. In addition, the display can be labeled
and numbered in sequence, as well as printed in a table of contents at the end of the file. The following group of
macros are available:

.EC Equation

.EX Exhibit

.FG Figure

All of these macros work the same way and are usually specified within a pair of .DS/.DE macros, so that the
title and the display appear on the same page. Each macro can be followed by a title. If the title contains spaces, it
should be enclosed within quotation marks. The title of a table usually appears at the top of a table, so it must be
specified before the .TS macro that signals to tbl the presence of a table (see Chapter 8).

.TB "List of Required Resources"

.TS

The label is centered:

122 Unix Text Processing

Table 1. List of Required Resources

If the title exceeds the line length, then it will be broken onto several lines. Additional lines are indented and
begin at the first character of the title.

Table 1. List of Required Resources
Provided by Gutenberg Galaxy
Software

The label for equations, exhibits, and figures usually follows the display. The following:
.FG "Drawing with a Light Pen"

produces a centered line:

Figure 1. Drawing with a Light Pen

The default format of the label can be changed slightly by setting the number register Of to 1. This replaces
the period with a dash.

Figure 1 — Drawing with a Light Pen

Second and third arguments, specified with the label macros, can be used to modify or override the default
numbering of displays. Basically, the second argument is a literal and the third argument a numeric value that speci-
fies what the literal means.

If the third argument is

0 then the second argument will be treated as a prefix;

1 then the second argument will be treated as a suffix;

2 then the second argument replaces the normal table number.

Thus, a pair of related tables could be specified as 1a and 1b using the following labels:
.TB "Estimated Hours: June, July, and August" a 1
.TB "Estimated Hours: September and November," 1b 2

(These labels show two different uses of the third argument. Usually, you would consistently use one technique or
the other for a given set of tables).

For tbl, the delimiters for tables are .TS/.TE. For eqn, the delimiters for equations are .EQ/.EN. For
pic, the delimiters for pictures or diagrams are .PS/.PE. These pairs of delimiters indicate a block to be

The mm Macros 123

processed by a specific preprocessor. You will find the information about each of the preprocessors in Chapters 8
through 10. As mentioned, the preprocessor creates the display, the display macros position it, and the label macros
add titles and a number.

Although it may seem a minor point, each of these steps is independent, and because they are not fully inte-
grated, there is some overlap.

The label macros, being independent of the preprocessors, do not make sure that a display exists or check
whether a table has been created with tbl. You can create a two-column table using tabs or create a figure using
character symbols and still give it a label. Or you can create a table heading as the first line of your table and let
tbl process it (tbl won’t provide a number and the table won’t be collected for the table of contents).

In tbl, you can specify a centered table and not use the .DS/.DE macros. But, as a consequence,
nroff/troff won’t make a very good attempt at keeping the table together on one page, and you may have to
manually break the page. It is recommended that you use the display macros throughout a document, regardless of
whether you can get the same effect another way, because if nothing else you will achieve consistency.

Forcing a Page Break

Occasionally, you may want to force a page break, whether to ensure that a block of related material is kept together
or to allow several pages for material that will be manually pasted in, such as a figure. The .SK (skip) macro forces
a page break. The text following this macro is output at the top of the next page. If supplied with an argument
greater than 0, it causes that number of pages to be skipped before resuming the output of text. The “blank” pages
are printed, and they have the normal header and footer.

On the next page, you will find a sample page from an
Alcuin manuscript printed with a 16-color plotter.
.SK 1

Formatting Lists

The mm macro package provides a variety of different formats for presenting a list of items. You can select from
four standard list types:

• bulleted

• dashed

• numbered

• alphabetized

In addition, you have the flexibility to create lists with nonstandard marks or text labels. The list macros can also be
used to produce paragraphs with a hanging indent.

Each list item consists of a special mark, letter, number, or label in a left-hand column with a paragraph of text
indented in a right-hand column.

Structuring a List

The list macros help to simplify what could be a much larger and tedious formatting task. Here’s the coding for the
bulleted list just shown:

.BL

.LI
bulleted
.LI

124 Unix Text Processing

dashed
.LI
numbered
.LI
alphabetized
.LE

The structure of text in the input file has three parts: a list-initialization macro (.BL), an item-mark macro (.LI),
and a list-end macro (.LE).

First, you initialize the list, specifying the particular macro for the type of list that you want. For instance, BL
initializes a bulleted list.

You can specify arguments with the list-initialization macro that change the indentation of the text and turn off
the automatic spacing between items in the list. We will examine these arguments when we look at the list-initial-
ization macros in more detail later.

Next, you specify each of the items in the list. The item-mark macro, .LI, is placed before each item. You
can enter one or more lines of text following the macro.

.BL

.LI
Item 1
.LI
Item 2
.LI
Item 3

When the list is formatted, the .LI macro provides a line of space before each item. (This line can be omitted
through an argument to the list-initialization macro if you want to produce a more compact list. We’ll be talking
more about this in a moment).

The .LI macro can also be used to override or prefix the current mark. If a mark is supplied as the only argu-
ment, it replaces the current mark. For example:

.LI o
Item 4

If a mark is supplied as the first argument, followed by a second argument of 1, then the specified mark is prefixed to
the current mark. The following:

.LI - 1
Item 5

would produce:

-• Item 5

A text label can also be supplied in place of the mark, but it presents some additional problems for the proper
alignment of the list. We will look at text labels for variable-item lists.

The .LI macro does not automatically provide spacing after each list item. An argument of 1 can be speci-
fied if a line of space is desired.

The end of the list is marked by the list-end macro .LE. It restores page formatting settings that were in ef-
fect prior to the invocation of the last list-initialization macro. The .LE macro does not output any space following
the list unless you specify an argument of 1. (Don’t specify this argument when the list is immediately followed by
a macro that outputs space, such as the paragraph macro).

Be sure you are familiar with the basic structure of a list. A common problem is not closing the list with .LE.
Most of the time, this error causes the formatter to quit at this point in the file. A less serious, but nonetheless

The mm Macros 125

frequent, oversight is omitting the first .LI between the list-initialization macro and the first item in the list. The
list is output but the first item will be askew.

Here is a sample list:
.BL
.LI
Item 1
.LI
Item 2
.LI
Item 3
.LI o
Item 4
.LI - 1
Item 5
.LE

The troff output produced by the sample list is:

• Item 1
• Item 2
• Item 3
o Item 4
-• Item 5

Complete list structures can be nested within other lists up to six levels. Different types of lists can be nested,
making it possible to produce indented outline structures. But, like nested if-then structures in a program, make sure
you know which level you are at and remember to close each list.

For instance, we could nest the bulleted list inside a numbered list. The list-initialization macro .AL gener-
ates alphabetized and numbered lists.

.AL

.LI
Don’t worry, we’ll get to the list-initialization macro .AL.
You can specify five different variations of
alphabetic and numbered lists.
.BL
.LI
Item 1
.LI
Item 2
.LI
Item 3
.LE
.LI
We’ll also look at variable-item lists.
.LE

This input produces the following formatted list from troff:

126 Unix Text Processing

1. Don’t worry, we’ll get to the list-initialization macro .AL.
You can specify five different variations of alphabetic and
numbered lists.

• Item 1

• Item 2

• Item 3

2. We’ll also look at variable-item lists.

You may already realize the ease with which you can make changes to a list. The items in a list can be easily
put in a new order. New items can be added to a numbered list without readjusting the numbering scheme. A bul-
leted list can be changed to an alphabetized list by simply changing the list-initialization macro. And you normally
don’t have to be concerned with a variety of specific formatting requests, such as setting indentation levels or speci-
fying spacing between items.

On the other hand, because the structure of the list is not as easy to recognize in the input file as it is in the for-
matted output, you may find it difficult to interpret complicated lists, in particular ones that have been nested to sev-
eral levels. The code checking program, checkmm, can help; in addition, you may want to format and print repeat-
edly to examine and correct problems with lists.

Marked Lists

Long a standby of technical documents, a marked list clearly organizes a group of related items and sets them apart
for easy reading. A list of items marked by a bullet (•) is perhaps the most common type of list. Another type of
marked list uses a dash (—). A third type of list allows the user to specify a mark, such as a square (). The list-ini-
tialization macros for these lists are:

.BL [text indent] [1]

.DL [text indent] [1]

.ML [mark] [text indent] [1]

With the .BL macro, the text is indented the same amount as the first line of an indented paragraph. A single space
is maintained between the bullet and the text. The bullet is right justified, causing an indent of several spaces from
the left margin.

As you can see from this nroff-formatted output, the bullet is simulated in nroff by a + overstriking an o:

Currently, the following internal documentatation is
available on the Alcuin product:

o+ GGS Technical Memo 3200

o+ GGS Product Marketing Spec

o+ Alcuin/UNIX interface definition

o+ Programmer’s documentation for Alcuin

The mm Macros 127

If you specify a text indent, the first character of the text will start at that position. The position of the bullet is rela-
tive to the text, always one space to its left.

If the last argument is 1, the blank line of space separating items is omitted. If you want to specify only this
argument, you must specify either a value or a null value ("") for a text indent.

.BL "" 1

It produces a much more compact list:

o+ GGS Technical Memo 3200
o+ GGS Product Marketing Spec
o+ Alcuin/UNIX interface definition
o+ Programmer’s documentation for Alcuin

Because the bullets produced by nroff are not always appropriate due to the overstriking, a dashed list pro-
vides a suitable alternative. With the .DL macro, the dash is placed in the same position as a bullet in a bulleted list.
A single space is maintained between the dash and the text, which, like the text with a bulleted list, is indented by
the amount specified in the number register for indented paragraphs (Pi).

The nroff formatter supplies a dash that is a single hyphen, and troff supplies an em dash. Because the
em dash is longer, and the dash is right justified, the alignment with the left margin is noticeably different. It ap-
pears left justified in troff; in nroff, the dash appears indented several spaces because it is smaller.

The third chapter on the principles of computerized
font design should cover the following topics:

- Building a Font Dictionary

- Loading a Font

- Scaling a Font

You can specify a text indent and a second argument of 1 to inhibit spacing between items.

With the .ML macro, you have to supply the mark for the list. Some possible candidates are the square (enter
\(sq to get), the square root (enter \(sr to get √), which resembles a check mark, and the gradient symbol (en-
ter \(gr to get ∇). The user-specified mark is the first argument.

.ML \(sq

Not all of the characters or symbols that you can use in troff will have the same effect in nroff.

Unlike bulleted and dashed lists, text is not automatically indented after a user specified mark. However, a
space is added after the mark. The following example of an indented paragraph and a list, which specifies a square
as a mark, has been formatted using nroff. The square appears as a pair of brackets.

128 Unix Text Processing

[] Remove old initialization files.

[] Run install program.

[] Exit to main menu and choose selection 3.

The user-supplied mark can be followed by a second argument that specifies a text indent and a third argument of 1
to omit spacing between items.

The following example was produced using the list-initialization command:
.ML \(sq 5 1

The specified indent of 5 aligns the text with an indented paragraph:

Check to see that you have completed the following
steps:

[] Remove old initialization files.

[] Run install program.

[] Exit to main menu and choose selection 3.

Numbered and Alphabetic Lists

The .AL macro is used to initialize automatically numbered or alphabetized lists. The syntax for this macro is:
.AL [type] [text indent] [1]

If no arguments are specified, the .AL macro produces a numbered list. For instance, we can code the following
paragraph with the list-initialization macro .AL:

User-oriented documentation recognizes three things:
.AL
.LI
that a new user needs to learn the system in stages,
getting a sense of the system as a whole while becoming
proficient in performing particular tasks;
.LI
that there are different levels of users, and not every
user needs to learn all the capabilities of the system
in order to be productive;
.LI
that an experienced user must be able to rely on the
documentation for accurate and thorough reference
information.
.LE

to produce a numbered list:

The mm Macros 129

User-oriented documentation recognizes three things:

1. that a new user needs to learn the system in stages,
getting a sense of the system as a whole while
becoming proficient in performing particular tasks;

2. that there are different levels of users, and not
every user needs to learn all the capabilities of
the system in order to be productive;

3. that an experienced user must be able to rely on the
documentation for accurate and thorough reference
information.

The number is followed by a period, and two spaces are maintained between the period and the first character of
text.

The level of text indent, specified in the number register Li, is 6 in nroff and 5 in troff. This value is
added to the current indent. If a text indent is specified, that value is added to the current indent, but it does not
change the value of Li.

The third argument inhibits spacing between items in the list. Additionally, the number register Ls can be set
to a value from 0 to 6 indicating a nesting level. Lists after this level will not have spacing between items. The de-
fault is 6, the maximum nesting depth. If Ls were set to 2, lists only up to the second level would have a blank line
of space between items.

Other types of lists can be specified with .AL, using the first argument to specify the list type, as follows:

Value Sequence Description
1 1, 2, 3 Numbered
A A, B, C Alphabetic (uppercase)
a a, b, c Alphabetic (lowercase)
I I, II, III Roman numerals (uppercase)
i i, ii, iii Roman numerals (lowercase)

You can produce various list types by simply changing the type argument. You can create a very useful outline for-
mat by nesting different types of lists. The example we show of such an outline is one that is nested to four levels
using I, A, 1, and a, in that order. The rather complicated looking input file is shown in Figure 6-4 (indented for
easier viewing of each list, although it could not be formatted this way), and the nroff-formatted output is shown
in Figure 6-5.

Another list-initialization macro that produces a numbered list is .RL (reference list). The only difference is
that the reference number is surrounded by brackets ([]).

.RL [text indent] [1]

The arguments have the same effect as those specified with the .AL macro. To initialize a reference list with no
spacing between items, use:

.RL "" 1

It produces the following reference list:

130 Unix Text Processing

[1] The Main Menu
[2] Menus or Commands?
[3] Error Handling
[4] Getting Help
[5] Escaping to UNIX

.AL I

.LI
Quick Tour of Alcuin

.AL A

.LI
Introduction to Calligraphy
.LI
Digest of Alcuin Commands

.AL 1

.LI
Three Methods of Command Entry

.AL a

.LI
Mouse
.LI
Keyboard
.LI
Light Pen
.LE

.LI
Starting a Page
.LI
Drawing Characters

.AL a

.LI
Choosing a Font
.LI
Switching Fonts
.LE

.LI
Creating Figures
.LI
Printing
.LE

.LI
Sample Illuminated Manuscripts
.LE

.LI
Using Graphic Characters

.AL A

.LI
Modifying Font Style
.LI
Drawing Your Own Font
.LE

.LI
Library of Hand-Lettered Fonts
.LE

Figure 6.4 Input for a Complex List

The mm Macros 131

- 1 -

I. Quick Tour of Alcuin

A. Introduction to Calligraphy

B. Digest of Alcuin Commands

1. Three Methods of Command Entry

a. Mouse

b. Keyboard

c. Light Pen

2. Starting a Page

3. Drawing Characters

a. Choosing a Font

b. Switching Fonts

4. Creating Figures

5. Printing

C. Sample Illuminated Manuscripts

II. Using Graphic Characters

A. Modifying Font Style

B. Drawing Your Own Font

III. Library of Hand-Lettered Fonts

Figure 6.5 Output of a Complex List

Variable-Item Lists

With a variable-item list, you do not supply a mark; instead, you specify a text label with each .LI. One or more
lines of text following .LI are used to form a block paragraph indented from the label. If no label is specified, a
paragraph with a hanging indent is produced. The syntax is:

.VL text indent [label indent] [1]

Unlike the other list-initialization macros, a text indent is required. By default, the label is left justified, unless a la-
bel indent is given. If you specify both a text indent and a label indent, the indent for the text will be added to the
label indent.

Variable-item lists are useful in preparing command reference pages, which describe various syntax items, and
glossaries, which present a term in one column and its definition in the other. The text label should be a single word
or phrase. The following example shows a portion of the input file for a reference page:

132 Unix Text Processing

.VL 15 5

.LI figure
is the name of a cataloged figure. If
a figure has not been cataloged, you need to use
the LOCATE command.
.LI f:p
is the scale of the
figure in relation to the page.
.LI font
is the two-character abbreviation or
full name of one of the available fonts
from the Alcuin library.
.LE

The following variable-item list is produced:

figure is the name of a cataloged figure. If a
figure has not been cataloged, you need to
use the LOCATE command.

f:p is the scale of the figure in relation to
the page.

font is the two-character abbreviation or full
name of one of the available fonts from the
Alcuin library.

If you don’t provide a text label with .LI or give a null argument (""), you will get a paragraph with a hang-
ing indent. If you want to print an item without a label, specify a backslash followed by a space (\) or \0 after
.LI. Similarly, if you want to specify a label that contains a space, you should also precede the space with a back-
slash and enclose the label within quotation marks:

.LI "point\ size"

or simply substitute a \0 for a space:
.LI point\0size

The first line of text is left justified (or indented by the amount specified in label indent) and the remaining lines will
be indented by the amount specified by text indent. This produces a paragraph with a hanging indent:

.VL 15

.LI
There are currently 16 font dictionaries in the Alcuin
library. Any application may have up to 12 dictionaries
resident in memory at the same time.
.LE

When formatted, this item has a hanging indent of 15:

There are currently 16 font dictionaries in the Alcuin
library. Any application may have up to
12 dictionaries resident in memory at the
same time.

The mm Macros 133

Headings

Earlier we used the list macros to produce an indented outline. That outline, indented to four levels, is a visual rep-
resentation of the structure of a document. Headings perform a related function, showing how the document is orga-
nized into sections and subsections. In technical documentation and book-length manuscripts, having a structure
that is easily recognized by the reader is very important.

Numbered and Unnumbered Headings

Using mm, you can have up to seven levels of numbered and unnumbered headings, with variable styles. There are
two heading macros: .H for numbered headings and .HU for unnumbered headings. A different style for each level
of heading can be specified by setting various number registers and defining strings.

Let’s first look at how to produce numbered headings. The syntax for the .H macro is:
.H level [heading text] [heading suffix]

The simplest use of the .H macro is to specify the level as a number between 1 and 7 followed by the text that is
printed as a heading. If the heading text contains spaces, you should enclose it within quotation marks. A heading
that is longer than a single line will be wrapped on to the next line. A multiline heading will be kept together in case
of a page break.

If you specify a heading suffix, this text or mark will appear in the heading but will not be collected for a table
of contents.

A top-level heading is indicated by an argument of 1:
.H 1 "Quick Tour of Alcuin"

The result is a heading preceded by a heading-level number. The first-level heading has the number 1.
1. Quick Tour of Alcuin

A second-level heading is indicated by an argument of 2:
.H 2 "Introduction to Calligraphy"

The first second-level heading number is printed:
1.1 Introduction to Calligraphy

When another heading is specified at the same level, the heading-level number is automatically incremented. If the
next heading is at the second level:

.H 2 "Digest of Alcuin Commands"

it produces:
1.2 Digest of Alcuin Commands

Each time you go to a new (higher-numbered) level, .1 is appended to the number representing the existing level.
That number is incremented for each call at the same level. When you back out of a level (for instance, from level 5
to 4), the counter for the level (in this case level 5), is reset to 0.

An unnumbered heading is really a zero-level heading:
.H 0 "Introduction to Calligraphy"

A separate macro, .HU, has been developed for unnumbered headings, although its effect is the same.
.HU "Introduction to Calligraphy"

Even though an unnumbered heading does not display a number, it increments the counter for second-level headings.
Thus, in the following example, the heading “Introduction to Calligraphy” is unnumbered, but it has the same effect
on the numbering scheme as if it had been a second-level heading (1.1).

134 Unix Text Processing

1. Quick Tour of Alcuin

Introduction to Calligraphy

1.2 Digest of Alcuin Commands

If you are going to intermix numbered and unnumbered headings, you can change the number register Hu to
the lowest-level heading that is in the document. By changing Hu from 2 to a higher number:

.nr Hu 5

.H 1 "Quick Tour of Alcuin"

.HU "Introduction to Calligraphy"

.H 2 "Digest of Alcuin Commands"

the numbering sequence is preserved for the numbered heading following an unnumbered heading:

1. Quick Tour of Alcuin

Introduction to Calligraphy

1.1 Digest of Alcuin Commands

Headings are meant to be visible keys to your document’s structure. If you are using unnumbered headings, it be-
comes even more important to make headings stand out. A simple thing you can do is use uppercase letters for a
first-level heading.

Here is a list of some of the other things you can do to affect the appearance of headings, although some of the
items depend upon whether you are formatting with nroff or troff:

• change to roman, italic, or bold font

• change the point size of the heading

• adjust spacing after the heading

• center or left justify the heading

• change the numbering scheme

• select a different heading mark

The basic issue in designing a heading style is to help the reader distinguish between different levels of headings.
For instance, in an outline form, different levels of indent show whether a topic is a section or subsection. Using
numbered headings is an effective way to accomplish this. If you use unnumbered headings, you probably want to
vary the heading style for each level, although, for practical purposes, you should limit yourself to two or three lev-
els.

First, let’s look at what happens if we use the default heading style.

The first two levels of headings are set up to produce italicized text in troff and underlined text in nroff.
After the heading, there is a blank line before the first paragraph of text. In addition, a top-level heading has two
blank lines before the heading; all the other levels have a single line of space.

The mm Macros 135

1.2 Introduction to Calligraphy

Alcuin revitalizes an age-old tradition. Calligraphy, quite simply, is the art of
beautiful handwriting.

Levels three through seven all have the same appearance. The text is italicized or underlined and no line break oc-
curs. Two blank lines are maintained before and after the text of the heading. For example:

1.2.1.3 Light Pen The copyist’s pen and ink has been replaced by a light pen.

To change the normal appearance of headings in a document, you specify new values for the two strings:

HF Heading font
HP Heading point size

You can specify individual settings for each level, up to seven values.

The font for each level of heading can be set by the string HF. The following codes are used to select a font:

1 Roman
2 Italic
3 Bold

By default, the arguments for all seven levels are set to 2, resulting in italicized headings in troff and underlining
in nroff. Here the HF string specifies bold for the top three levels followed by two italic levels:

.ds HF 3 3 3 2 2

If you do not specify a level, it defaults to 1. Thus, in the previous example, level 6 and 7 headings would be printed
in a roman font.

The point size is set by the string HP. Normally, headings are printed in the same size as the body copy, ex-
cept for bold headings. A bold heading is reduced by 1 point when it is a standalone heading, as are the top-level
headings. The HP string can take up to seven arguments, setting the point size for each level.

.ds HP 14 14 12

If an argument is not given, or a null value or 0 is given, the default setting of 10 points is used for that level. Point
size can also be given relative to the current point size:

.ds HP +4 +4 +2

A group of number registers control other default formats of headings:

Ej Eject page
Hb Break follows heading
Hc Center headings
Hi Align text after heading
Hs Vertical spacing after heading

For each of these number registers, you specify the number of the level at which some action is to be turned on or
off.

The Ej register is set to the highest-level heading, usually 1, that should start on a new page. Its default set-
ting is 0. This ensures that the major sections of a document will begin on their own page.

.nr Ej 1

136 Unix Text Processing

The Hb register determines if a line break occurs after the heading. The Hs register determines if a blank line is out-
put after the heading. Both are set to 2 by default. Settings of 2 mean that, for levels 1 and 2, the section heading is
printed, followed by a line break and a blank line separating the heading from the first paragraph of text. For lower-
level headings (an argument greater than 2), the first paragraph follows immediately on the same line.

The Hc register is set to the highest-level heading that you want centered. Normally, this is not used with
numbered headings and its default value is 0. However, unnumbered heads are often centered. A setting of 2 will
center first- and second-level headings:

.nr Hc 2

With unnumbered headings, you also have to keep in mind that the value of Hc must be greater than or equal to Hb
and Hu. The heading must be on a line by itself; therefore a break must be set in Hb for that level. The Hu register
sets the level of an unnumbered heading to 2, requiring that Hc be at least 2 to have an effect on unnumbered head-
ings.

There really is no way, using these registers, to get the first and second levels left justified and have the rest of
the headings centered.

The number register Hi determines the paragraph type for a heading that causes a line break (Hb). It can be
set to one of three values:

0 Left justified
1 Paragraph type determined by Pt
2 Indented to align with first character in heading

If you want to improve the visibility of numbered headings, set Hi to 2:
.nr Hi 2

It produces the following results:

4.1 Generating Output

An Alcuin manuscript is a computer representation
that has to be converted for output on various kinds
of devices, including plotters and laser printers.

Changing the Heading Mark

Remember how the list-initialization macro .AL allowed you to change the mark used for a list, producing an alpha-
betic list instead of a numbered list? These same options are available for headings using the .HM macro.

The .HM macro takes up to seven arguments specifying the mark for each level. The following codes can be
specified:

1 Arabic
001 Arabic with leading zeros
A Uppercase alphabetic
a Lowercase alphabetic
I Uppercase roman
i Lowercase roman

If no mark is specified, the default numbering system (arabic) is used. Uppercase alphabetic marks can be used in
putting together a series of appendices. You can specify A for the top level:

The mm Macros 137

.HM A

and retain the default section numbering for the rest of the headings. This could produce sections in the following
series:

A, A.1, A.2, A.2.1, etc.

Marks can be mixed for an outline style similar to the one we produced using the list macros:
.HM I A 1 a i

Roman numerals can be used to indicate sections or parts. If you specify:
.HM I i

the headings for the first two levels are marked by roman numerals. A third-level heading is shown to demonstrate
that the heading mark reverted to arabic by default:

I. Quick Tour of Alcuin

I.i Introduction to Calligraphy

I.ii Digest of Alcuin Commands

I.ii.1 Three Methods of Command Entry

When you use marks consisting of roman numerals or alphabetic characters, you might not want the mark of the cur-
rent level to be concatenated to the mark of the previous level. Concatenation can be suppressed by setting the num-
ber register Ht to 1:

.HM I i

.nr Ht 1

Now, each heading in the list has only the mark representing that level:

I. Quick Tour of Alcuin

i. Introduction to Calligraphy

ii. Digest of Alcuin Commands

1. Three Methods of Command Entry

Table of Contents

Getting a table of contents easily and automatically is almost reason enough to justify all the energy, yours and the
computer’s, that goes into text processing. You realize that this is something that the computer was really meant to
do.

When the table of contents page comes out of the printer, a writer attains a state of happiness known only to a
statistician who can give the computer a simple instruction to tabulate vast amounts of data and, in an instant, get a

138 Unix Text Processing

single piece of paper listing the results.

The reason that producing a table of contents seems so easy is that most of the work is performed in coding
the document. That means entering codes to mark each level of heading and all the figures, tables, exhibits, and
equations. Processing a table of contents is simply a matter of telling the formatter to collect the information that’s
already in the file.

There are only two simple codes to put in a file, one at the beginning and one at the end, to generate a table of
contents automatically.

At the beginning of the file, you have to set the number register Cl to the level of headings that you want col-
lected for a table of contents. For example, setting Cl to 2 saves first- and second-level headings.

Place the .TC macro at the end of the file. This macro actually does the processing and formatting of the ta-
ble of contents. The table of contents page is output at the end of a document.

A sample table of contents page follows. The header “CONTENTS” is printed at the top of the page. At the
bottom of the page, lowercase roman numerals are used as page numbers.

CONTENTS

1. Quick Tour of Alcuin ... 1
1.1 Introduction to Calligraphy... 3
1.2 Digest of Alcuin Commands... 8
1.3 Sample Illuminated Manuscripts .. 21

2. Using Graphic Characters .. 31
2.1 Scaling a Font ... 33
2.2 Modifying Font Style.. 37
2.3 Drawing Your Own Font... 41

3. Library of Hand-Lettered Fonts ... 51

- i -

One blank line is output before each first-level heading. All first-level headings are left justified. Lower-level head-
ings are indented so that they line up with the start of text for the previous level.

If you have included various displays in your document, and used the macros .FG, .TB, and .EX to specify
captions and headings for the displays, this information is collected and output when the .TC macro is invoked. A
separate page is printed for each accumulated list of figures, tables, and exhibits. For example:

LIST OF TABLES

TABLE 1. List of Required Resources 7

TABLE 2. List of Available Resources.............................. 16

If you want the lists of displays to be printed immediately following the table of contents (no page breaks), you can
set the number register Cp to 1.

If you want to suppress the printing of individual lists, you can set the following number registers to 0:

The mm Macros 139

Lf If 0, no figures
Lt If 0, no tables
Lx If 0, no exhibits

In addition, there is a number register for equations that is set to 0 by default. If you want equations marked by .EC
to be listed, specify:

.nr Le 1

There are a set of strings, using the same names as the number registers, that define the titles used for the top of the
lists:

Lf LIST OF FIGURES
Lt LIST OF TABLES
Lx LIST OF EXHIBITS
Le LIST OF EQUATIONS

You can redefine a string using the .ds (define string) request. For instance, we can redefine the title for figures as
follows:

.ds Lf LIST OF ALCUIN DRAWINGS

Footnotes and References

Footnotes and references present special problems, as anyone who has ever typed a term paper knows. Fortunately,
mm has two pairs of specialized macros. Both of them follow a marker in the text and cause lines of delimited text to
be saved and output either at the bottom of the page, as a footnote, or at end of the document, as a reference.

Footnotes

A footnote is marked in the body of a document by the string *F. It follows immediately after the text (no spaces).
in an article on desktop publishing.*F

The string F supplies the number for the footnote. It is printed (using troff) as a superscript in the text and its
value is incremented with each use.

The .FS macro indicates the start, and .FE the end, of the text for the footnote. These macros surround the
footnote text that will appear at the bottom of the page. The .FS macro is put on the line immediately following the
marker.

.FS
"Publish or Perish: Start-up grabs early page language lead,"
\fIComputerworld\fR, April 21, 1986, p. 1.
.FE

You can use labels instead of numbers to mark footnotes. The label must be specified as a mark in the text and as an
argument with .FS.

...in accord with the internal specs.[APS]

.FS [APS]
"Alcuin Product Specification," March 1986
.FE

You can use both numbered and labeled footnotes in the same document. All the footnotes are collected and output
at the bottom of each page underneath a short line rule. If you are using troff, the footnote text will be set in a
type size 2 points less than the body copy.

If you want to change the standard format of footnotes, you can specify the .FD macro. It controls hyphen-
ation, text adjustment, indentation, and justification of the label.

140 Unix Text Processing

Normally, the text of a footnote is indented from the left margin and the mark or label is left justified in rela-
tion to the start of the text. It is possible that a long footnote could run over to the next page. Hyphenation is turned
off so that a word will not be broken at a page break. These specifications can be changed by giving a value between
0 and 11 as the first argument with .FD, as shown in Table 6-3.

Table 6.3 .FD Argument Values

Text Label
Argument Hyphenation Adjust Indent Justification

0 no yes yes left
1 yes yes yes left
2 no no yes left
3 yes no yes left
4 no yes no left
5 yes yes no left
6 no no no left
7 yes no no left
8 no yes yes right
9 no yes yes right

10 no no yes right
11 yes no yes right

The second argument for .FD, if 1, resets the footnote numbering counter to 1. This can be invoked at the end
of a section or paragraph to initialize a new numbering sequence. If specified by itself, the first argument must be
null:

.FD "" 1

References

A reference differs from a footnote in that all references are collected and printed on a single page at the end of the
document. In addition, you can label a reference so that you can refer to it later.

A reference is marked where it occurs in the text with *(Rf. The formatter converts the string into a value
printed in brackets, such as [1]. The mark is followed by a pair of macros surrounding the reference text. The .RS
macro indicates the start, and .RF the end, of the text for the reference.

You will find information on this page description language
in their reference manual, which has been published
as a book.*(Rf
.RS
Adobe Systems, Inc. PostScript Reference Manual.
Reading, Massachusetts: Addison-Wesley; 1985.
.RF

You can also give as a string label argument to .RS the name of a string that will be assigned the current reference
number. This string can be referenced later in the document. For instance, if we had specified a string label in the
previous example:

.RS As

We could refer back to the first reference in another place:
The output itself is a readable file which you can interpret
with the aid of the PostScript manual.*(As

At the end of the document, a reference page is printed. The title printed on the reference page is defined in
the string Rp. You can replace “REFERENCES” with another title simply by redefining this string with .ds.

The mm Macros 141

REFERENCES

1. Adobe Systems, Inc.; PostScript Reference Manual.
Reading, Massachusetts: Addison-Wesley; 1985.

In a large document, you might want to print a list of references at the end of a chapter or a long section. You can
invoke the .RP macro anywhere in a document.

.RP

.H 1 "Detailed Outline of User Guide"

It will print the list of references on a separate page and reset the reference counter to 0. A reset argument and a
paging argument can be supplied to change these actions. The reset argument is the first value specified with the
.RP macro. It is normally 0, resetting the reference counter to 1 so that each section is numbered independently. If
reference numbering should be maintained in sequence for the entire document, specify a value of 1.

The paging argument is the second value specified. It controls whether or not a page break occurs before and
after the list. It is normally set to 0, putting the list on a new page. Specifying a value of 3 suppresses the page
break before and after the list; the result is that the list of references is printed following the end of the section and
the next section begins immediately after the list. A value of 1 will suppress only the page break that occurs after
the list and a value of 2 will suppress only the page break that occurs before the list.

If you want an effect opposite that of the default settings, specify:
.RP 1 3

The first argument of 1 saves the current reference number for use in the next section or chapter. The second argu-
ment of 3 inhibits page breaks before and after the list of references.

Extensions to mm

So far, we have covered most but not all of the features of the mm macro package.

We have not covered the Technical Memorandum macros, a set of specialized macros for formatting technical
memos and reports. Like the ones in the ms macro package, these macros were designed for internal use at AT&T’s
Bell Laboratories, reflecting a company-wide set of standards. Anyone outside of Bell Labs will want to make some
modifications to the macros before using them. The Technical Memorandum macros are a good example of employ-
ing a limited set of user macros to produce a standard format. Seeing how they work will be especially important to
those who are responsible for implementing documentation standards for a group of people, some of whom under-
stand the basics of formatting and some of whom do not.

Writing or rewriting macros is only one part of the process of customizing mm. The mm macros were designed
as a comprehensive formatting system. As we’ve seen, there are even macros to replace common primitive requests,
like .sp. The developers of mm recommend, in fact, that you not use nroff or troff requests unless absolutely
necessary, lest you interfere with the action of the macros.

Furthermore, as you will see if you print out the mm macros, the internal code of mm is extraordinarily dense,
and uses extremely un-mnemonic register names. This makes it very difficult for all but the most experienced user
to modify the basic structure of the package. You can always add your own macros, as long as they don’t conflict
with existing macro and number register names, but you can’t easily go in and change the basic macros that make up
the mm package.

At the same time, the developers of mm have made it possible for the user to make selective modifications—
those which mm has allowed mechanisms for in advance. There are two such mechanisms:

• mm’s use of number registers to control all aspects of document formatting

• mm’s invocation of undefined (and therefore user-definable) macros at various places in the mm code

142 Unix Text Processing

The mm package is very heavily parameterized. Almost every feature of the formatting system—from the fonts in
which different levels of heading are printed to the size of indents and the amount of space above and below dis-
plays—is controlled by values in number registers. By learning and modifying these number registers, you can
make significant changes to the overall appearance of your documents.

In addition, there are a number of values stored in strings. These strings are used like number registers to sup-
ply default values to various macros.

The registers you are most likely to want to change follow. Registers marked with a dagger can only be
changed on the command line with the -r option (e.g., -rN4).

Cl Level of headings saved for table of contents. See .TC macro. Default is 2.

Cp If set to 1, lists of figures and tables appear on same page as table of contents.
Otherwise, they start on a new page. Default is 1.

Ds Sets the pre- and post-space used for static displays.

Fs Vertical spacing between footnotes.

Hb Level of heading for which break occurs before output of body text. Default is 2
lines.

Hc Level of heading for which centering occurs. Default is 0.

Hi Indent type after heading. Default is 1 (paragraph indent). Legal values are:
0=left justified (default); 1=indented; 2=indented except after .H, .LC, .DE.

Hs Level of heading for which space after heading occurs. Default is 2, i.e., space
will occur after first- and second-level headings.

Hy Sets hyphenation. If set to 1, enables hyphenation. Default is 0.

L† Sets length of page. Default is 66v.

Li Default indent of lists. Default is 5.

Ls List spacing between items by level. Default is 6, which is spacing between all
levels of list.

N† Page numbering style. 0=all pages get header; 1=header printed as footer on
page 1; 2=no header on page 1; 3=section page as footer; 4=no header unless
.PH defined; 5=section page and section figure as footer. Default is 0.

Np Numbering style for paragraphs. 0=unnumbered; 1=numbered.

O Offset of page. For nroff, this value is an unscaled number representing char-
acter positions. (Default is 9 characters; about .75i). For troff, this value is
scaled (.5i).

Of Figure caption style. 0=period separator; 1=hyphen separator. Default is 0.

Pi Amount of indent for paragraph. Default is 5 for nroff, 3n for troff.

Ps Amount of spacing between paragraphs. Default is 3v.

Pt Paragraph type. Default is 0.

S† Default point size for troff. Default is 10. Vertical spacing is \nS+2.

Si Standard indent for displays. Default is 5 for nroff, 3 for troff.

W Width of page (line and title length). Default is 6 in troff, 60 characters in
nroff.

There are also some values that you would expect to be kept in number registers that are actually kept in
strings:

HF Fonts used for each level of heading (1=roman, 2=italic, 3=bold)
HP Point size used for each level of heading

The mm Macros 143

For example, placing the following register settings at the start of your document:
.nr Hc 1
.nr Hs 3
.nr Hb 4
.nr Hi 2
.ds HF 3 3 3 3 2 2 2
.ds HP 16 14 12 10 10 10 10

will have the following effects:

• Top-level headings (generated by .H1) will be centered.

• The first three levels of heading will be followed by a blank line.

• The fourth-level heading will be followed by a break.

• Fifth- through seventh-level headings will be run-in with the text.

• All headings will have the following text indented under the first word of the heading, so that the section
number hangs in the margin.

• The first five levels of heading will be in bold type; the sixth and seventh will be italic.

• A first-level heading will be printed in 16-point type; a second-level heading in 14-point type; a third-
level heading in 12-point type; and all subsequent levels in 10-point type.

There isn’t space in this book for a comprehensive discussion of this topic. However, a complete list of user-settable
mm number registers is given in Appendix B. Study this list, along with the discussion of the relevant macros, and
you will begin to get a picture of just how many facets of mm you can modify by changing the values in number reg-
isters and strings.

The second feature—the provision of so-called “user exit macros” at various points—is almost as ingenious.
The following macros are available for user definition:

.HX .HY .HZ .PX .TX .TY

The .HX, .HY, and .HZ macros are associated with headings. The .HX macro is executed at the start of each head-
ing macro, .HY in the middle (to allow you to respecify any settings, such as temporary indents, that were lost be-
cause of mm’s own processing), and .HZ at the end.

By default, these macros are undefined. And, when troff encounters an undefined macro name, it simply
ignores it. These macros thus lie hidden in the code until you define them. By defining these macros, you can sup-
plement the processing of headings without actually modifying the mm code. Before you define these macros, be
sure to study the mm documentation for details of how to use them.

Similarly, .PX is executed at the top of each page, just after .PH. Accordingly, it allows you to perform addi-
tional top-of-page processing. (In addition, you can redefine the .TP macro, which prints the standard header, be-
cause this macro is relatively self-contained).

There is a slightly different mechanism for generalized bottom-of-page processing. The .BS/.BE macro pair
can be used to enclose text that will be printed at the bottom of each page, after any footnotes but before the footer.
To remove this text after you have defined it, simply specify an empty block.

The .VM (vertical margins) macro allows you to specify additional space at the top of the page, bottom of the
page, or both. For example:

.VM 3 3

will add three lines each to the top and bottom margins. The arguments to this macro should be unscaled. The first
argument applies to the top margin, the second to the bottom.

The .TX and .TY macros allow you to control the appearance of the table of contents pages. The .TX macro
is executed at the top of the first page of the table of contents, above the title; .TY is executed in place of the stan-
dard title (“CONTENTS”).

In Chapter 14, you will learn about writing macro definitions, which should give you the information you need
to write these supplementary “user exit macros.”

144 Unix Text Processing

4Chapter 7

Advanced Editing

Sometimes, in order to advance, you have to go backward. In this chapter, we are going to demonstrate how you can
improve your text-editing skills by understanding how line editors work. This doesn’t mean you’ll have to abandon
full-screen editing. The vi editor was constructed on top of a line editor named ex, which was an improved version
of another line editor named ed. So in one sense we’ll be looking at the ancestors of vi. We’ll look at many of the
ways line editors attack certain problems and how that applies to those of us who use full-screen editors.

Line editors came into existence for use on “paper terminals”, which were basically printers. This was before
the time of video display terminals. A programmer, or some other person of great patience, worked somewhat inter-
actively on a printer. Typically, you saw a line of your file by printing it out on paper; you entered commands that
would affect just that line; then you printed out the edited line again. Line editors were designed for this kind of
process, editing one line at a time.

People rarely edit files on paper terminals any more, but there are diehards who still prefer line editors. For
one thing, it imposes less of a burden on the computer. Line editors display the current line; they don’t update the
entire screen.

On some occasions, a line editor is simpler and faster than a full-screen editor. Sometimes, a system’s re-
sponse can be so slow that it is less frustrating to work if you switch to a line editor. Or you may have occasion to
work remotely over a dial-up line operating at a baud rate that is too slow to work productively with a full-screen ed-
itor. In these situations, a line editor can be a way to improve your efficiency. It can reduce the amount of time you
are waiting for the computer to respond to your commands.

The truth is, however, that after you switch from a screen editor to a line editor, you are likely to feel deprived.
But you shouldn’t skip this chapter just because you won’t be using a full-screen editor. The purpose of learning ex
is to extend what you can do in vi.

The ex Editor

The ex editor is a line editor with its own complete set of editing commands. Although it is simpler to make most
edits with vi, the line orientation of ex is an advantage when you are making large-scale changes to more than one
part of a file. With ex, you can move easily between files and transfer text from one file to another in a variety of
ways. You can search and replace text on a line-by-line basis, or globally. You can also save a series of editing
commands as a macro and access them with a single keystroke.

Seeing how ex works when it is invoked directly will help take some of the “mystery” out of line editors and
make it more apparent to you how many ex commands work.

Let’s open a file and try a few ex commands. After you invoke ex on a file, you will see a message about the
total number of lines in the file, and a colon command prompt. For example:

$ ex intro
"intro" 20 lines, 731 characters

:

You won’t see any lines in the file, unless you give an ex command that causes one or more lines to be printed.

All ex commands consist of a line address, which can simply be a line number, and a command. You com-
plete the command with a carriage return. A line number by itself is equivalent to a print command for that line. So,
for example, if you type the numeral 1 at the prompt, you will see the first line of the file:

:1
Sometimes, to advance,
:

145

146 Unix Text Processing

To print more than one line, you can specify a range of lines. Two line numbers are specified, separated by commas,
with no spaces in between them:

:1,3
Sometimes, to advance,
you have to go backward.
Alcuin is a computer graphics tool

The current line is the last line affected by a command. For instance, before we issued the command 1,3, line 1
was the current line; after that command, line 3 became the current line. It can be represented by a special symbol, a
dot (.).

:.,+3
that lets you design and create hand-lettered, illuminated
manuscripts, such as were created in the Middle Ages.

The previous command results in three more lines being printed, starting with the current line. A + or - specifies a
positive or negative offset from the current line.

The ex editor has a command mode and an insert mode. To put text in a file, you can enter the append or a
command to place text on the line following the current line. The insert or i command places text on the line
above the current line. Type in your text and when you are finished, enter a dot (.) on a line by itself:

:a
Monks, skilled in calligraphy,
labored to make copies of ancient
documents and preserve in a
library the works of many Greek and
Roman authors.
.
:

Entering the dot takes you out of insert mode and puts you back in command mode.

A line editor does not have a cursor, and you cannot move along a line of text to a particular word. Apart from
not seeing more of your file, the lack of a cursor (and therefore cursor motion keys) is probably the most difficult
thing to get used to. After using a line editor, you long to get back to using the cw command in vi.

If you want to change a word, you have to move to the line that contains the word, tell the editor which word
on the line you want to change, and then provide its replacement. You have to think this way to use the substi-
tute or s command. It allows you to substitute one word for another.

We can change the last word on the first line from tool to environment:
:1
Alcuin is a computer graphics tool
:s/tool/environment/
Alcuin is a computer graphics environment
:

The word you want to change and its replacement are separated by slashes (/). As a result of the substitute com-
mand, the line you changed is printed.

With a line editor, the commands that you enter affect the current line. Thus, we made sure that the first line
was our current line. We could also make the same change by specifying the line number with the command:

:1s/environment/tool/
Alcuin is a computer graphics tool

If you specify an address, such as a range of line numbers, then the command will affect the lines that you specify:
:1,20s/Alcuin/ALCUIN/
ALCUIN is named after an English scholar

The last line on which a substitution was made is printed.

Remember, when using a line editor, you have to tell the editor which line (or lines) to work on as well as
which command to execute.

Advanced Editing 147

Another reason that knowing ex is useful is that sometimes when you are working in vi, you might unex-
pectedly find yourself using “open mode”. For instance, if you press Q while in vi, you will be dropped into the ex
editor. You can switch to vi by entering the command vi at the colon prompt:

:vi

After you are in vi, you can execute any ex command by first typing a : (colon). The colon appears on the
bottom of the screen and what you type will be echoed there. Enter an ex command and press RETURN to execute
it.

Using ex Commands in vi

Many ex commands that perform normal editing operations have equivalent vi commands that do the job in a sim-
pler manner. Obviously, you will use dw or dd to delete a single word or line rather than using the delete com-
mand in ex. However, when you want to make changes that affect numerous lines, you will find that the ex com-
mands are very useful. They allow you to modify large blocks of text with a single command.

Some of these commands and their abbreviations follow. You can use the full command name or the abbrevia-
tion, whichever is easier to remember.

delete d Delete lines
move m Move lines
copy co Copy lines
substitute s Substitute one string for another

The substitute command best exemplifies the ex editor’s ability to make editing easier. It gives you the ability to
change any string of text every place it occurs in the file. To perform edits on a global replacement basis requires a
good deal of confidence in, as well as full knowledge of, the use of pattern matching or “regular expressions”. Al-
though somewhat arcane, learning to do global replacements can be one of the most rewarding experiences of work-
ing in the UNIX text-processing environment.

Other ex commands give you additional editing capabilities. For all practical purposes, they can be seen as an
integrated part of vi. Examples of these capabilities are the commands for editing multiple files and executing
UNIX commands. We will look at these after we look at pattern-matching and global replacements.

Write Locally, Edit Globally

Sometimes, halfway through a document or at the end of a draft, you recognize inconsistencies in the way that you
refer to certain things. Or, in a manual, some product that you called by name is suddenly renamed (marketing!).
Often enough, you have to go back and change what you’ve already written in several places.

The way to make these changes is with the search and replace commands in ex. You can automatically re-
place a word (or string of characters) wherever it occurs in the file. You have already seen one example of this use
of the substitute command, when we replaced Alcuin with ALCUIN .

:1,20s/Alcuin/ALCUIN/

There are really two steps in using a search and replace command. The first step is to define the area in which a
search will take place. The search can be specified locally to cover a block of text or globally to cover the entire file.
The second step is to specify, using the substitute command, the text that will be removed and the text that will re-
place it.

At first, the syntax for specifying a search and replace command may strike you as difficult to learn, especially
when we introduce pattern matching. Try to keep in mind that this is a very powerful tool, one that can save you a
lot of drudgery. Besides, you will congratulate yourself when you succeed, and everyone else will think you are
very clever.

148 Unix Text Processing

Searching Text Blocks

To define a search area, you need to be more familiar with how line addressing works in ex. A line address simply
indicates which line or range of lines an ex command will operate on. If you don’t specify a line address, the com-
mand only affects the current line. You already know that you can indicate any individual line by specifying its
number. What we want to look at now are the various ways of indicating a block of text in a file.

You can use absolute or relative line numbers to define a range of lines. Identify the line number of the start
of a block of text and the line number of the end of the block. In vi, you can use ˆG to find the current line number.

There are also special symbols for addressing particular places in the file:

. Current line
$ Last line
% All lines (same as 1,$)

The following are examples that define the block of text that the substitute command will act upon:

:.,$s Search from the current line to the end of the file
:20,.s Search from line 20 through the current line
:.,.+20s Search from the current line through the next 20 lines
:100,$s Search from line 100 through the end of the file
:%s Search all lines in the file

Within the search area, as defined in these examples, the substitute command will look for one string of text and re-
place it with another string.

You can also use pattern matching to specify a place in the text. A pattern is delimited by a slash both before
and after it.

/pattern1/,/pattern2/s Search from the first line containing pattern1 through the first line con-
taining pattern2

:.,/pattern/s Search from the current line through the line containing pattern

It is important to note that the action takes place on the entire line containing the pattern, not simply the text up to
the pattern.

Search and Replace

You’ve already seen the substitute command used to replace one string with another one. A slash is used as a delim-
iter separating the old string and the new. By prefixing the s command with an address, you can extend its range be-
yond a single line:

:1,20s/Alcuin/ALCUIN/

Combined with a line address, this command searches all the lines within the block of text. But it only replaces the
first occurrence of the pattern on each line. For instance, if we specified a substitute command replacing roman with
Roman in the following line:

after the roman hand. In teaching the roman script

only the first, not the second, occurrence of the word would be changed.

To specify each occurrence on the line, you have to add a g at the end of the command:
:s/roman/Roman/g

This command changes every occurrence of roman to Roman on the current line.

Using search and replace is much faster than finding each instance of a string and replacing it individually. It
has many applications, especially if you are a poor speller.

Advanced Editing 149

So far, we have replaced one word with another word. Usually, it’s not that easy. A word may have a prefix or
suffix that throws things off. In a while, we will look at pattern matching. This will really expand what you are able
to do. But first, we want to look at how to specify that a search and replace take place globally in a file.

Confirming Substitutions

It is understandable if you are over-careful when using a search and replace command. It does happen that what you
get is not what you expected. You can undo any search and replacement command by entering u. But you don’t al-
ways catch undesired changes until it is too late to undo them. Another way to protect your edited file is to save the
file with :w before performing a replacement. Then, at least you can quit the file without saving your edits and go
back to where you were before the change was made. You can also use :e! to read in the previous version of the
buffer.

It may be best to be cautious and know exactly what is going to be changed in your file. If you’d like to see
what the search turns up and confirm each replacement before it is made, add a c at the end of the substitute com-
mand:

:1,30s/his/the/gc

It will display the entire line where the string has been located and the string itself will be marked by a series of
carets (ˆˆˆ).

copyists at his school
ˆˆˆ

If you want to make the replacement, you must enter y and press RETURN .

If you don’t want to make a change, simply press RETURN .
this can be used for invitations, signs, and menus.
ˆˆˆ

The combination of the vi commands // (repeat last search) and . (repeat last command) is also an extraordinarily
useful (and quick) way to page through a file and make repetitive changes that require a judgment call rather than an
absolute global replacement.

Global Search and Replace

When we looked at line addressing symbols, the percent symbol, %, was introduced. If you specify it with the sub-
stitute command, the search and replace command will affect all lines in the file:

:%s/Alcuin/ALCUIN/g

This command searches all lines and replaces each occurrence on a line.

There is another way to do this, which is slightly more complex but has other benefits. The pattern is specified
as part of the address, preceded by a g indicating that the search is global:

:g/Alcuin/s//ALCUIN/g

It selects all lines containing the pattern Alcuin and replaces every occurrence of that pattern with ALCUIN . Be-
cause the search pattern is the same as the word you want to change, you don’t have to repeat it in the substi-
tute command.

The extra benefit that this gives is the ability to search for a pattern and then make a different substitution. We
call this context-sensitive replacement.

The gist of this command is globally search for a pattern:
:g/pattern/

Replace it:
:g/pattern/s//

150 Unix Text Processing

or replace another string on that line:
:g/pattern/s/string/

with a new string:
:g/pattern/s/string/new/

and do this for every occurrence on the line.
:g/pattern/s/string/new/g

For example, we use the macro .BX to draw a box around the name of a special key. To show an ESCAPE key in a
manual, we enter:

.BX Esc

Suppose we had to change Esc to ESC, but we didn’t want to change any references to Escape in the text. We could
use the following command to make the change:

:g/BX/s/Esc/ESC/

This command might be phrased: “Globally search for each instance of BX and on those lines substitute the Esc
with ESC”. We didn’t specify g at the end of the command because we would not expect more than one occurrence
per line.

Actually, after you get used to this syntax, and admit that it is a little awkward, you may begin to like it.

Pattern Matching

If you are familiar with grep, then you know something about regular expressions. In making global replacements,
you can search not just for fixed strings of characters, but also for patterns of words, referred to as regular expres-
sions.

When you specify a literal string of characters, the search might turn up other occurrences that you didn’t
want to match. The problem with searching for words in a file is that a word can be used in many different ways.
Regular expressions help you conduct a search for words in context.

Regular expressions are made up by combining normal characters with a number of special characters. The
special characters and their use follow.*

. Matches any single character except newline.

* Matches any number (including 0) of the single character (including a character
specified by a regular expression) that immediately precedes it. For example,
because . (dot) means any character, .* means match any number of any char-
acter.

[...] Matches any one of the characters enclosed between the brackets. For example,
[AB] matches either A or B. A range of consecutive characters can be specified
by separating the first and last characters in the range with a hyphen. For exam-
ple, [A-Z] will match any uppercase letter from A to Z and [0-9] will match
any digit from 0 to 9.

\{n,m}\ Matches a range of occurrences of the single character (including a character
specified by a regular expression) that immediately precedes it. The n and m are
integers between 0 and 256 that specify how many occurrences to match.
\{n\} will match exactly n occurrences, \{n,\} will match at least n occur-
rences, and \{n,m\} will match any number of occurrences between n and m.
For example, A\{2,3\} will match either AA (as in AARDVARK) or AAA but
will not match the single letter A.

* \(and \), and \{n,m\} are not supported in all versions of vi. \<, \>, \u, \U, \l, and \L are supported only in vi/ex, and
not in other programs using regular expressions.

Advanced Editing 151

ˆ Requires that the following regular expression be found at the beginning of the
line.

$ Requires that the preceding regular expression be found at the end of the line.

\ Treats the following special character as an ordinary character. For example, \.
stands for a period and * for an asterisk.

\(Saves the pattern enclosed between \(and \) in a special holding space. Up to
nine patterns can be saved in this way on a single line. They can be “replayed”
in substitutions by the escape sequences \1 to \9.

\n Matches the nth pattern previously saved by \(and \), where n is a number
from 0 to 9 and previously saved patterns are counted from the left on the line.

\< \> Matches characters at the beginning (\<) or at the end (\>) of a word. The ex-
pression \<ac would only match words that begin with ac, such as action but
not react.

& Prints the entire search pattern when used in a replacement string.

\u Converts the first character of the replacement string to uppercase.

\U Converts the replacement string to uppercase as in :/Unix/\U&/.

\l Converts the first character of the replacement string to lowercase, as in
:s/ Act/\l&/.

\L Converts the replacement string to lowercase.

Unless you are already familiar with UNIX’s wildcard characters, this list of special characters probably looks com-
plex. A few examples should make things clearer. In the examples that follow, a square () is used to mark a blank
space.

Let’s follow how you might use some special characters in a replacement. Suppose you have a long file and
you want to substitute the word balls for the word ball throughout that file. You first save the edited buffer with :w,
then try the global replacement:

:g/ball/s//balls/g

When you continue editing, you notice occurrences of words such as ballsoon, globallsy, and ballss. Returning to
the last saved buffer with :e!, you now try specifying a space after ball to limit the search:

:g/ball /s//balls /g

But this command misses the occurrences ball., ball,, ball:, and so on.
:g/\<ball\>/s//balls/g

By surrounding the search pattern with \< and \>, we specify that the pattern should only match entire words, with
or without a subsequent punctuation mark. Thus, it does not match the word balls if it already exists.

Because the \< and \> are only available in ex (and thus vi), you may have occasions to use a longer form:
:g/ball\([,.;:!?]\)/s//balls\1/g

This searches for and replaces ball followed by either a space (indicated by) or any one of the punctuation charac-
ters , . ; : ! ?. Additionally, the character that is matched is saved using \(and \) and restored on the
right-hand side with \1. The syntax may seem complicated, but this command sequence can save you a lot of work
in a similar replacement situation.

152 Unix Text Processing

Search for General Classes of Words

The special character & is used in the replacement portion of a substitution command to represent the pattern that
was matched. It can be useful in searching for and changing similar but different words and phrases.

For instance, a manufacturer decides to make a minor change to the names of their computer models, necessi-
tating a change in a marketing brochure. The HX5000 model has been renamed the Series HX5000, along with the
HX6000 and HX8500 models. Here’s a way to do this using the & character:

:g/HX[568][05]00/s//Series &/g

This changes HX8500 to Series HX8500. The & character is useful when you want to replay the entire search pat-
tern and add to it. If you want to capture only part of the search pattern, you must use \(and \) and replay the
saved pattern with \1 ... \n.

For instance, the same computer manufacturer decides to drop the HX from the model numbers and place Se-
ries after that number. We could make the change using the following command:

:g/\(Series\) HX\([568])[05]00\)/s//\2 \1/g

This command replaces Series HX8500 with 8500 Series.

Suppose you have subroutine names beginning with the prefixes mgi, mgr, and mga.
mgibox routine
mgrbox routine
mgabox routine

If you want to save the prefixes, but want to change the name box to square, either of the following replacement
commands will do the trick:

:g/mg\([iar]\)box/s//mg\1square/

The global replacement keeps track of whether an i, a, or r is saved, so that only box is changed to square. This
has the same effect as the previous command:

:g/mg[iar]box/s/box/square/g

The result is:
mgisquare routine
mgrsquare routine
mgasquare routine

Block Move by Patterns

You can edit blocks of text delimited by patterns. For example, assume you have a 150 page reference manual. All
reference pages are organized in the same way: a paragraph with the heading SYNTAX , followed by DESCRIP-
TION , followed by PARAMETERS. A sample of one reference page follows:

.Rh 0 "Get status of named file" "STAT"

.Rh "SYNTAX"

.nf
integer*4 stat, retval
integer*4 status(11)
character*123 filename
...
retval = stat (filename, status)
.fi
.Rh "DESCRIPTION"
Writes the fields of a system data structure into the
status array. These fields contain (among other
things) information about the file’s location, access
privileges, owner, and time of last modification.
.Rh "PARAMETERS"

Advanced Editing 153

.IP "filename" 15n
A character string variable or constant containing
the UNIX pathname for the file whose status you want
to retrieve. You can give the...

Suppose that you decide to move DESCRIPTION above the SYNTAX paragraph. With pattern matching, you can
move blocks of text on all 150 pages with one command!

:g/SYNTAX/,/DESCRIPTION/-1,mo/PARAMETERS/-1

This command moves the block of text between the line containing the word SYNTAX and the line just before the
word DESCRIPTION (/DESCRIPTION/-1) to the line just before PARAMETERS. In a case like this, one com-
mand literally saves hours of work.

This applies equally well to other ex commands. For example, if you wanted to delete all DESCRIPTION
paragraphs in the reference chapter, you could enter:

:g/DESCRIPTION/,/PARAMETERS/-1,d

This very powerful kind of change is implicit in the ex editor’s line addressing syntax, but is not readily apparent.
For this reason, whenever you are faced with a complex, repetitive editing task, take the time to analyze the problem
and find out if you can apply pattern-matching tools to do the job.

More Examples

Because the best way to learn pattern matching is by example, the following section gives a list of examples with
brief explanations. Study the syntax carefully, so that you understand the principles at work. You should then be
able to adapt them to your situation.

1. Delete all blank lines:
:g/ˆ$/d

What you are matching is the beginning of the line followed by the end of the line, with
nothing in between.

2. Put troff italic codes around the word RETURN :
:g/RETURN/s//\\fIRETURN\\fR/g

Notice that two backslashes (\\) are needed in the replacement, because the backslash in
the troff italic code will be interpreted as a special character. (\fI alone would be in-
terpreted as fI; it takes \\fI to get \fI).

3. Modify a list of pathnames in a file:
:g/\/usr\/tim/s//\/usr\/linda/g

A slash (used as a delimiter in the global replacement sequence) must be escaped with a
backslash when it is part of the pattern or replacement; use \/ to get /. Another way to
achieve this same effect is to use a different character as the pattern delimiter. For exam-
ple, you could make the previous replacement as follows:

:g:/usr/tim:s::/usr/linda:g

4. Change all periods to semicolons in lines 1 to 10:
:1,10g/\./s//;/g

A period is a special character and must be escaped with a backslash.

154 Unix Text Processing

5. Reverse the order of all hyphen-separated items in a list:
:g/\(.*\) - \(.*\)/s//\2 - \1/

The effect of this command on several items is:
more - display files becomes display files - more
lp - print files becomes print files - lp

6. Standardize various uses of a word or heading:
:g/ˆExample[s:]/s//Examples: /g

Note that the brackets enclose three characters: a space (represented in the example by
), a colon, and the letter s. Therefore, this command searches for Example , Exam-

ples, or Example: at the beginning of a line and replaces it with Examples:. (If you don’t
include the space, Examples would be replaced with Exampless:).

As another similar example, change all occurrences of the word help (or Help) to HELP:
:g/[Hh]elp/s//HELP/g

7. Replace one or more spaces with a single space:
:g/ */s// /g

Make sure you understand how the asterisk works as a special character. An asterisk fol-
lowing any character (or any regular expression that matches a single character, such as .
or [a-z]) matches zero or more instances of that character. Therefore, you must specify
two spaces followed by an asterisk to match one or more spaces (one plus zero or more).

8. Replace one or more spaces following a colon with two spaces:
:g/: */s//: /g

9. Replace one or more spaces following a period or a colon with two spaces:
:g/\([:.]\) */s//\1 /g

Either of the two characters within brackets can be matched. This character is saved, us-
ing parentheses, and restored on the right-hand side as 1. Note that a special character
such as a period does not need to be escaped within brackets.

10. Delete all leading blanks on a line:
:g/ˆ *\(.*\)/s//\1/g

Search for one or more blanks at the beginning of a line; save the rest of the line and re-
place it without any leading blanks.

11. Delete all trailing blanks:
:g/ *$/s///

12. Remove manual numbering from section headings (e.g., 1.1 Introduction) in a document:
:g/[1-9]\.[1-9]*\(.*\)/s//\1/g

A hyphen-separated pair of letters or digits enclosed in square brackets (e.g., [1-9])
specifies a range of characters.

13. Change manually numbered section heads (e.g., 1.1, 1.2) to a troff macro (e.g., .Ah
for an A-level heading):

:g/ˆ[1-9]\.[1-9]/s//\.Ah/

Advanced Editing 155

14. Show macros in the output by protecting them from interpretation. Putting \& in front of
a macro prevents troff from expanding them. This command was used frequently
throughout this book to print an example that contained macros. Three backslashes are
needed in the replacement pattern: two to print a backslash and one to have the first am-
persand interpreted literally:

:g/ˆ\./s//\\\&&/

Writing and Quitting Files

You have learned the vi command ZZ to quit and write (save) your file. But you will usually want to exit a file us-
ing ex commands, because these commands give you greater control.

:w Writes (saves) the buffer to the file but does not exit. You can use :w throughout your editing
session to protect your edits against system failure or a major editing error.

:q Quits the file (and returns to the UNIX prompt).

:wq Both writes and quits the file.

The vi editor protects existing files and your edits in the buffer. For example, if you want to write your buffer
to an existing file, vi will give you a warning, because this would delete the original file. Likewise, if you have in-
voked vi on a file, made edits, and want to quit without saving the edits, vi will give you an error message such as:

No write since last change.

These warnings can prevent costly mistakes, but sometimes you want to proceed with the command anyway. An ex-
clamation mark (!) after your command overrides this warning:

:w! filename
:q!

The :q! command is an essential editing command that allows you to quit without affecting the original file, re-
gardless of any changes you made in the session. The contents of the buffer are discarded.

Renaming the Buffer

You can also use :w to save the entire buffer (the copy of the file you are editing) under a new filename.

Suppose that you have a file letter that contains 600 lines. You call in a copy and make extensive edits.
You want to quit and save both the old version of letter and your new edits for comparison. To rename your
buffer letter.new, give the command:

:wq letter.new

Saving Part of a File

In an editing session, you will sometimes want to save just part of your file as a separate, new file. For example, you
might have entered formatting codes and text that you want to use as a header for several files.

You can combine ex line addressing with the write command, w, to save part of a file. For example, if you are
in the file letter and want to save part of letter as the file newfile, you could enter:

:230,$w newfile

which saves from line 230 to the end of the file, or:
:.,600w newfile

which saves from the current line to line 600 in newfile.

156 Unix Text Processing

Appending to a Saved File

You can use the UNIX redirect and append operator (>>) with w to append the contents of the buffer to an existing
file. For example:

:1,10w newfile
:340,$w>>newfile

The existing file, newfile, will contain lines 1 through 10, and from line 340 to the end of the buffer.

Reading In a File

Sometimes you want to copy text or data already entered on the system into the file you are editing. In vi, you can
read in the contents of another file with the ex command:

:read filename

or:
:r filename

This reads in the contents of filename on the line after the cursor position in the file.

Let’s suppose that you are editing the file letter, and want to read in data from a file in another directory
called /work/alcuin/ch01. Position the cursor just above the line where you want the new data inserted, and
enter:

:r /work/alcuin/ch01

The entire contents of /work/alcuin/ch01 are read into letter, beginning below your cursor position.

Executing UNIX Commands

You can also display or read in the results of any UNIX command while you are editing in vi. An exclamation
mark (!) tells ex to create a shell and regard what follows as a UNIX command.

:!command

So, if you are editing and want to check the time or date without exiting vi, you can enter:
:!date

The time and date will appear on your screen; press RETURN to continue editing at the same place in your file. If
you want to give several UNIX commands in a row, without returning to vi in between, you can create a shell with
the ex command:

:sh

When you want to exit the shell and return to vi, press ˆD.

You can combine :read with a call to UNIX, to read the results of a UNIX command into your file. As a
very simple example:

:r !date

This will read in the system’s date information into the text of your file.

Suppose that you are editing a file, and want to read in four phone numbers from a file called phone, but in
alphabetical order. The phone file is in the following order:

Willing, Sue 333-4444
Walsh, Linda 555-6666
Quercia, Valerie 777-8888

Advanced Editing 157

Dougherty, Nancy 999-0000

The command:
:r !sort phone

reads in the contents of phone after they have been passed through the sort filter:
Dougherty, Nancy 999-0000
Quercia, Valerie 777-8888
Walsh, Linda 555-6666
Willing, Sue 333-4444

Suppose that you are editing a file and want to insert text from another file in the directory, but you can’t remember
the new file’s name.

You could perform this task the long way: exit your file, give the ls command, note the correct filename,
reenter your file, and search for your place.

Or, you could do the task in fewer steps. The command :!ls will display a list of files in the directory. Note
the correct filename. Press RETURN to continue editing.

file1
file2
letter
newfile

The command:
:r newfile

will read in the new file:
"newfile" 35 lines, 949 characters

Filtering Text through a Command

You can also send a block of text as standard input to a UNIX command. The output from this command replaces
the block of text in the buffer. Filtering text through a command can be done either from ex or vi. The main dif-
ference between the two methods is that the block of text is indicated with line addresses in ex and with text objects
in vi.

The first example demonstrates how to do this with ex. Assume that instead of being contained in a separate
file called phone, the list of names in the preceding example was already contained in the current file, on lines 96 to
99.

You simply type the addresses of the lines you want affected, followed by an exclamation mark and the UNIX
command line to be executed. For example, the command:

:96,99!sort

will pass lines 96 to 99 through the sort filter, and replace those lines with the output of sort.

In vi, this sequence is invoked by typing an exclamation mark followed by any vi objects that indicate a
block of text, and then the UNIX command line to be executed. For example:

!)command

will pass the next sentence through command .

There are some unusual features about how vi acts when you use this feature. First, the exclamation mark
that you type is not echoed right away. When you type the symbol for the text object to be affected, the exclamation
mark appears at the bottom of the screen, but the symbol you type to reference the object does not.

Second, only objects that refer to more than one line of text (G, {}, (), []) can be used. A number may pre-
cede either the exclamation mark or the object to repeat the effect. Objects such as w do not work unless enough of
them are specified so as to exceed a single line. A slash (/) followed by a pattern and a RETURN can also be

158 Unix Text Processing

specified, taking the text up to the pattern as input to the command.

Third, there is a special object that is used only with this command syntax. The current line can be specified
by entering a second exclamation mark:

!!command

Either the entire sequence or the text object can be preceded by a number to repeat the effect. For instance, to
change the same lines as in the previous example, you could position the cursor on line 96, and enter:

4!!sort

or:
!4!sort

As another example, assume you have a portion of text in a file that you want to change from lowercase to up-
percase letters. You could process that portion with the tr command. In these examples, the second sentence is the
block of text that will be filtered to the command. An exclamation mark appears on the last line to prompt you for
the UNIX command:

of the product.
I_ confess to being
amazed by Alcuin.
Some people around

!)
!appears on

last line

of the product.
I_ confess to being
amazed by Alcuin.
Some people around
!_

Enter the UNIX command and press RETURN . The input is replaced by the output.

of the product.
I_ confess to being
amazed by Alcuin.
Some people around

tr’[a-z]’
’[A-Z]’

input replaced
by output

of the product.
I_ CONFESS TO BEING
AMAZED BY ALCUIN.
Some people around

To repeat the previous command, the syntax is:
!block!

It is sometimes useful to send sections of a coded document to nroff to be replaced by formatted output. How-
ever, remember that the “original” input is replaced by the output.

If there is a mistake, such as an error message being sent instead of the expected output, you can undo the
command and restore the lines.

Editing Multiple Files

The ex commands enable you to edit multiple files. The advantage to editing multiple files is speed. When you are
sharing the system with other users, it takes time to exit and reenter vi for each file you want to edit. Staying in the
same editing session and traveling between files is not only faster in access time: you save abbreviations and com-
mand sequences you have defined and keep named buffers so that you can copy text from one file to another.

Advanced Editing 159

Invoking vi on Multiple Files

When you first invoke vi, you can name more than one file to edit files sequentially, and then use ex commands to
travel between the files. The following:

$ vi file1 file2

invokes file1 first. After you have finished editing the first file, the ex command :w writes (saves) file1, and :n
calls in the next file (file2).

Suppose that you know you want to edit two files, letter and note. Open the two files by typing:
$ vi letter note

The message:
Two files to edit

appears on the screen. The first named file, letter, appears. Perform your edits to letter, and then save it with
the ex command :w. Call in the next file, note, with the ex command :n and press RETURN . Perform any edits
and use :wq to quit the editing session.

There is no practical limit to the number of files you can invoke vi on at one time. You can use any of the
shell’s pattern-matching characters, or even more complex constructions. Suppose you were writing a program, and
wanted to change the name of a function call, for example, getcursor. The command:

$ vi ‘grep -l getcursor *‘

would invoke vi on all of the files in the current directory containing the string getcursor. The command:
$ grep -l

prints the names of all files containing a string; using a command enclosed in backquotes (``) as an argument to an-
other command causes the shell to use the output of the command in backquotes as the argument list for the first
command.

The vi editor will print a message similar to:
5 files to edit

before displaying the first file.

If you try to quit without editing all of the files, vi will issue a warning message:
4 more files to edit

You must type :q! if you want to exit without editing all of the files.

Calling In New Files

You don’t have to call in multiple files at the beginning of your editing session. Any time in vi, you can switch to
another file with the ex command :e. If you want to edit another file within vi, first save your current file (:w),
then give the command:

:e filename

Suppose that you are editing the file letter, and want to edit the file note and then return to letter.

Save letter with w and press RETURN . The file letter is saved and remains on the screen. You can
now switch to another file, because your edits are saved. Call in the file note with :e and press RETURN .

The vi editor “remembers” two filenames at a time as the current and alternate filenames. These can be re-
ferred to by the symbols % (current filename) and # (alternate filename). The # symbol is particularly useful with
:e, because it allows you to switch easily back and forth between files. In the example just given, you could return
to the first file, letter, by typing the command :e#.

160 Unix Text Processing

If you have not first saved the current file, vi will not allow you to switch files with :e or :n unless you tell
it imperatively to do so by adding an exclamation mark after the command. For example, if after making some edits
to note, you wanted to discard the edits and return to letter, you could type :e!#.

The command:
e!

is also useful. It discards your edits and returns to the last saved version of the current file. The % symbol, by con-
trast, is useful mainly when writing out the contents of the buffer to a new file. For example, a few pages earlier we
showed how to save a second version of the file letter with the command:

:w letter.new

This could also have been typed:
:w %.new

Edits between Files

Named buffers provide one convenient way to move text from one file to another. Named buffers are not cleared
when a new file is loaded into the vi buffer with the :e command. Thus, by yanking text in one file (into multiple
named buffers if necessary), reading in a new file with :e, and putting the named buffer into the new file, material
can be transferred selectively between files.

The following example illustrates transferring text from one file to another.

I_n our conversation
last Thursday, we
discussed a
documentation project
that would produce a
user’s manual on the...

"f6yy
yank 6 lines
to buffer f

I_n our conversation
last Thursday, we
discussed a
documentation project
that would produce a
user’s manual on the...

6 lines yanked

Save the file with the :w command. Enter the file note with :e, and move the cursor to where the copied text will
be placed.

D_ear Mr. Caslon,
Thank you...

"fp
put yanked text
below cursor

Dear Mr. Caslon,
I_n our conversation
last Thursday, we
discussed a
documentation project
that would produce a
user’s manual on the...
Thank you...

Advanced Editing 161

Word Abbreviation

Often, you will type the same long phrases over and over in a file. You can define abbreviations that vi will auto-
matically expand into the full text whenever you type the abbreviation in insert mode. To define an abbreviation, use
the ex command:

:ab abbr phrase

Where abbr is an abbreviation for the specified phrase. The sequence of characters that make up the abbreviation
will be expanded in insert mode only if you type it as a full word; abbr will not be expanded within a word.

Suppose that in the file letter you want to enter text that contains a frequently recurring phrase, such as a
difficult product or company name. The command:

:ab IMRC International Materials Research Center

abbreviates International Materials Research Center to the initials IMRC.

Now when you type IMRC in insert mode:
i the IMRC

IMRC expands to the full text:
the International Materials Research Center

When you are choosing abbreviations, select combinations of characters that don’t ordinarily occur while you are
typing text.

Saving Commands with map

While you are editing, you may use a particular command sequence frequently, or you may occasionally use a very
complex command sequence. To save keystrokes, or the time that it takes to remember the sequence, you can assign
the sequence to an unused key.

The map command acts a lot like ab except that you define a macro for command mode instead of insert
mode.

:map x sequence Define character x as a sequence of editing commands
:unmap x Disable the sequence defined for x
:map List the characters that are currently mapped

Before you can start creating your own maps, you need to know the keys not used in command mode that are avail-
able for user-defined commands:

ˆA g K ˆK
ˆO q ˆT v
V ˆW ˆX ˆZ
* \ _ (underscore)

Depending on your terminal, you may also be able to associate map sequences with special function keys. With
maps, you can create simple or complex command sequences. As a simple example, you could define a command to
reverse the order of words. In vi, with the cursor as shown:

you can t_he scroll page

the sequence to put the after scroll would be dwelp: delete word, dw; move to the end of next word, e; move one
space to the right, l; put the deleted word there, p. Saving this sequence:

:map v dwelp

enables you to reverse the order of two words anytime in the editing session with the single keystroke v.

Note that when defining a map, you cannot simply type certain keys, such as RETURN , ESC, TAB, BACK-
SPACE, and DELETE, as part of the map command. If you want to include one of these keys as part of the

162 Unix Text Processing

command sequence, preface that key with a ˆV. The keystroke ˆV appears in the map as the ˆ character. Charac-
ters following the ˆV also do not appear as you expect. For example, a carriage return appears as ˆM, escape as ˆ[,
tab as ˆI, and so on.

You can undo the effect of any map sequence with the u command. Fortunately, the undo restores the file as it
was before you executed the map sequence, treating the series of commands as though it were a single vi com-
mand.

Unless you use unmap to remove a mapped key, its special meaning is in effect for as long as your current
session, even if you move between files. It can therefore be a convenient way of making the same edits in a number
of files.

All the vi and ex commands can be used in map sequences, with the exception that the p or put command
cannot be used to replace entire lines yanked in the same mapping. If you try to yank and then put back a deleted
line within a map, you will get the error message:

Cannot put inside global macro.

If you want to move lines from one place to another within a mapping, you can usually get around this restriction us-
ing the ex editor’s copy or co command.

Complex Mapping Example

Assume that you have a glossary with entries like this:
map - an ex command that allows you to associate
a complex command sequence with a single key.

You would like to convert this glossary list to nroff format, so that it looks like this:
.IP "map" 10n
An ex command...

The best way to do this is to perform the edit on one of the entries and write down the sequence of commands. You
want to:

1. Insert the macro for an indented paragraph at the beginning of the line.

2. Press ESC to terminate insert mode.

3. Move to the end of the word and add the size of the indent.

4. Press RETURN to insert a new line.

5. Press ESC to terminate insert mode.

6. Remove the hyphen and capitalize the next word.

That’s quite an editing chore if you have to repeat it more than a few times! With :map, you can save the entire se-
quence so that it can be re-executed with a single key-stroke.

:map z I.IP "ˆ[ea" 10nˆMˆ[3x∼

The sequence ˆ[appears when you type ˆV followed by ESC. The sequence ˆM is shown when you type ˆV RE-
TURN .

Now, simply typing z will perform the entire series of edits. On a slow terminal, you can actually see the ed-
its happening individually. On a fast terminal, it will seem to happen by magic.

Don’t be discouraged if your first attempt at key mapping fails. A small error in defining the map can give
you very different results than you expect. Simply type u to undo the edit, and try again.

Remember, the best way to define a complex map is to do the edit once manually, writing down each key-
stroke that you must type.

Advanced Editing 163

Mapping Keys for Insert Mode

Normally, maps apply only to command mode—after all, in insert mode, keys stand for themselves, and shouldn’t be
mapped as commands.

However, by adding an exclamation mark (!) to the map command, you can force it to override the ordinary
meaning of a key and produce the map in insert mode. You may find this feature appropriate for tying character
strings to special keys that you wouldn’t otherwise use. It is especially useful with programmable function keys, as
we’ll see in a minute. Many terminals have programmable function keys. You can usually set up these keys to print
whatever character or characters you want using a special setup mode on the terminal. But this will limit you to a
particular terminal, and may limit the actions of programs that want to set up those function keys themselves.

The ex editor allows you to map function keys by number, using the syntax:
:map #1 commands

for function key number 1, and so on. (It can do this because the editor has access to the entry for that terminal
found in either the termcap or terminfo database and knows the escape sequence normally output by the func-
tion key).

As with other keys, maps apply by default to command mode, but by using the map! commands as well, you
can define two separate values for a function key—one to use in command mode, the other in insert mode. For ex-
ample, if you are a troff user, you might want to put font-switch codes on function keys. For example:

:map #1 i\fIˆ[
:map! #1 \fI

If you are in command mode, the first function key will enter insert mode, type in the three characters \fI, and re-
turn to command mode. If you are already in insert mode, the key will simply type the three-character troff code.

Note: If function keys have been redefined in the terminal’s setup mode, the #n syntax might not work be-
cause the function keys no longer put out the expected control or escape sequence as described in the terminal data-
base entry. You will need to examine the termcap entry (or terminfo source) for your terminal and check the
definitions for the function keys. The terminal capabilities k1, k2 through k9, k0 describe the first ten function
keys. The capabilities l1, l2 through l9, l0 describe the remaining function keys. Using your terminal’s setup
mode, you can change the control or escape sequence output by the function key to correspond with the termcap
or terminfo entry. (If the sequence contains ˆM, which is a carriage return, press ˆM, not the RETURN key.) For
instance, to have function key 1 available for mapping, the terminal database entry for your terminal must have a de-
finition of k1, such as k1=ˆA@. In turn, the definition ˆA@ must be what is output when you press that key. To test
what the function key puts out, press the key at the UNIX prompt, followed by a RETURN if necessary. The shell
should display the sequence output by the function key after trying unsuccessfully to execute it as a command.

@ Functions

Named buffers provide yet another way to create macros—complex command sequences that you can repeat with
only a few keystrokes.

If you type a command line in your text (either a vi sequence or an ex command preceded by a colon), then
yank or delete it into a named buffer, you can execute the contents of that buffer with the @ command. It works in
the same way as a map sequence, except that you enter the command line in the file instead of at the colon prompt;
this is helpful if the command sequence is long and might need editing to work properly. Let’s look at a simple but
not very useful example of an @ function. In your file, enter this key sequence:

cw\fIgadfly\fRˆVESC

This will appear on your screen as:
cw\fIgadfly\fRˆ[

Then delete your command line into buffer g by typing "gdd. Now, whenever you place the cursor at the beginning
of a word and type @g, that word in your text will be changed to gadfly. Because @ is interpreted as a vi command,

164 Unix Text Processing

. will repeat the entire sequence, even if it is an ex command. The command @@ repeats the last @, and u or U can
be used to undo the effect of @. The @ function is useful because you can create very specific commands. It is espe-
cially useful when you are making specific editing commands between files, because you can store the commands in
named buffers and access them in any file you edit.

4Chapter 8

Formatting with tbl

Some information is best presented in tabular format, that is, displayed in rows and columns. You can structure data
in columns using tabs, but that can be difficult, especially if the table consists of long lines of text. The tbl pre-
processor was designed to make it easier to prepare complicated tables, such as the following.

Production of Audio Equipment
(units: 1000 sets)

Product 1984 1985

General radio 8,895 8,770
Clock radio 5,467 6,500
Radio/cassette 29,734 27,523
Tape deck 11,788 14,300
Car radio 9,450 10,398
Car stereo 15,670 17,456

With tbl, you can center, left justify, and right justify columns of data or align numeric data within a column.
You can put headings that span one or more columns or rows, and draw horizontal and vertical lines to box individ-
ual entries or the whole table. An entry may contain equations or consist of several lines of text, as is usually the
case with descriptive tables. A table can have as many as 35 columns and essentially an unlimited number of rows.

When you use tbl, you should have an idea or, better still, a written design of the table. Then, using a few
tbl specifications, you can define how a formatted table should look. The data is entered row by row; each column
is separated by ordinary tabs.

For example, the tbl description for the previous table looks like this:
.TS
center,box;
c s s
c s s
c c c
l r r.
Production of Audio Equipment
(units:1000 sets)
_
Product 1984 1985
_
General radio 8,895 8,770
Clock radio 5,467 6,500
Radio/cassette 29,734 27,523
Tape deck 11,788 14,300
Car radio 9,450 10,398
Car stereo 15,670 17,456
.TE

When tbl processes the specifications, it calculates all the values needed to produce the table and passes these val-
ues to nroff or troff, which formats or outputs the final table.

In this chapter, we will show you how to use tbl to specify the general appearance of a table. We begin with
some very simple examples, then gradually work up to more complicated ones to show all of tbl’s capabilities.

165

166 Unix Text Processing

Using tbl

The tbl description can be written in a file or as part of a larger file that contains other tables and text. You can for-
mat a table in a file using the tbl command as in the following:

$ tbl file | troff
$ tbl file | nroff

The tbl command writes its results to standard output. Because you will probably not be interested in the gener-
ated formatting requests, you would normally pipe the output to nroff or troff and then to a printer.

The tbl command also accepts a list of filenames as input and processes them one by one in the order in
which they are named on the command line. If you don’t give any filenames, tbl reads from standard input. The
standard input may also be read in the middle of a list of files by typing a minus sign at the desired place.

If you’re using a line printer that doesn’t have fractional or reverse line motions, use the -T option of nroff
and give the type of output device you’re using. This is important when you’re using nroff together with tbl to
create boxed tables. For example, if you’re using a regular line printer, the option should read -Tlp. You must also
pipe the nroff output to a program called col, which filters the reverse linefeeds. The command line for a table
with boxes would then read:

$ tbl file | nroff -Tlp | col

tbl with eqn

When you have equations within your table and you use the eqn preprocessor to format them, invoke tbl before
eqn. The tbl command usually executes faster because eqn normally produces a larger amount of output. To use
eqn with tbl, use the following command line:

$ tbl file | eqn | troff

There is a possible complication that can occur with any of the preprocessors (tbl,eqn, or pic). If you
read in subsidiary files with the .so request, those files will never be passed through the preprocessor, since the
.so request has not been encountered yet by the preprocessor. Some UNIX systems support a program called
soelim, which works just like cat, except that it reads in files called by .so requests. If any subsidiary files
contain data that must be processed, start your command line with soelim:

$ soelim file | tbl | eqn ... | nroff

Specifying Tables

A table is always indicated by a .TS (table start) at the beginning of the table description and a .TE (table end) at
the end. The general format of each table looks like this:

.TS
global options line;
format section.
data
.TE

These delimiters serve two functions. First, they signal to tbl the beginning and end of the table description. The
tbl program processes the table, and enables formatting requests into the text of the table. The .TS and .TE lines
remain after processing by tbl. This allows them to be used as macro calls by nroff and troff. Both ms and
mm define these macros; however, an enterprising user can redefine them, and surround a table with consistent for-
matting effects. If the macros are undefined, tbl will not suffer in any way because the use of .TS/.TE as delim-
iters is separate from their secondary use as macros.

Formatting with tbl 167

As you can see from the general format, tbl sees a table in terms of three distinct parts:

1. The overall layout of the table described in the global options line. For example, this line describes
whether the table is to be centered on the page or made as wide as the rest of the document. The global
options line is optional.

2. The layout of each column in the table described in the format section. For example, in this section,
you specify whether a column is to be left or right justified. The format section is required and may
contain one or more format lines.

3. The actual text or numbers, data, to be entered in the table.

A Simple Table Example

Let’s start with a simple table like the following to show the different parts of the tbl description:

1 User console
2 Monochromatic graphics terminal
3 Color graphics terminal
4 Line printer
5 Digitizer
6 Laser printer
7 Unallocated

You can lay out this table using the following tbl requests:

.TS Table Start macro
tab (@); Options line
c l. Format line
1@User console
2@Monochromatic graphics terminal
3@Color graphics terminal
4@Line printer
5@Digitizer Table entries
6@Laser printer
7@Unallocated
.TE Table End macro

Now let’s see what these lines mean:

1. The .TS at the beginning says that a table follows.

2. The options line applies to the layout of the table as a whole. The option tab(@) means that you will
be using the @ character as a tab character when you input data to the table. Normally, tbl expects the
columns in the table to be separated by actual tabs. But it is much easier to figure out whether you have
the right number of columns if you use a visible character that is not part of the data. This is useful in
debugging a table error when the formatted data doesn’t appear in the proper columns. The options line
always ends with a semicolon (;).

3. The format section applies to the lines of data in the table. Each format line contains a key letter for
each column of the table. The layout of the key letters resembles the layout of actual data in the table.

Each format line corresponds to a single line in the table. However, you can have fewer format lines
than lines in the table. In this case, the last line of the description applies to all remaining lines of data.
In our example, we have only one format line, so all lines in the table will follow this format. For exam-
ple:

c l.
means that there are two columns in each line. The first column will be centered (c), and the second
left justified (l). The format section ends with a period at the end of the last format line.

168 Unix Text Processing

4. The data itself. Each line of data corresponds to one line in the table. If you have very long input lines,
they can be broken into smaller line segments. A backslash (\) at the end of a line segment means that
it continues to the next line and is part of a longer input line. Each of the columns in our table is sepa-
rated by an @ sign, which we are using in place of a tab character, as we have specified in the options
line.

5. A .TE signals the end of the table description.

Laying Out a Table

The global options line is an optional line that controls the overall appearance of the table. Normally, a table is posi-
tioned on the left-hand side of the page. Because the table is probably part of a larger document, you may want to
center the table and enclose it in a box to make it stand out. Let’s modify the options line in our example to produce
this new layout:

.TS
center,box,tab(@); New options line
c l.
1@User console
2@Monochromatic graphics terminal
3@Color graphics terminal

etc.

When formatted, the table looks like this:

1 User console
2 Monochromatic graphics terminal
3 Color graphics terminal
4 Line printer
5 Digitizer
6 Laser printer
7 Unallocated
8 Pen plotter
9 Raster plotter

10,11,12 Unallocated

Now you know how to use three of the option names: center,box, and tab(). If you use one or more
option names, they must be separated by spaces, tabs, or commas. The options line, if present, must immediately
follow the .TS line. There are other options that you can use:

expand Make the table as wide as the current line length

allbox Enclose each item in the table in a box

doublebox Box the whole table with a double line

linesize (n) Set lines (for box, allbox, and doublebox) in n-
point type

delim (xy) Set x and y as eqn delimiters. See Chapter 9 for in-
formation on the equation preprocessor eqn.

The difference between a table that is centered or left justified and one that is expanded is the amount of space
between columns. If you specify center or the default, the width between columns will be three ens. If you spec-
ify expand, tbl will expand the width of the overall columns until the table is as wide as the current margins.

If the overall width of the table calculated by tbl is greater than the width of the text, nroff/troff will
ignore any positioning option you specify. The table will be printed as is necessary to fit everything, even if the ta-
ble runs to the edge of the paper.

Formatting with tbl 169

The linesize option changes the width of the lines used in enclosing tables to a given point size. Nor-
mally, the lines are 10 point. You can specify an absolute line size, such as linesize (24), to print thicker box
lines, or a relative size, such as linesize (+14), to produce the same effect.

Let’s try one more example by enclosing all the data entries in boxes. The options line for the table now
reads:

center,allbox,tab(@);

The new table would look like this:

1 User console

2 Monochromatic graphics terminal

3 Color graphics terminal

4 Line printer

5 Digitizer

6 Laser printer

7 Unallocated

8 Pen plotter

9 Raster plotter

10,11,12 Unallocated

The tbl program isn’t very good at keeping boxed tables on one page. If you have a long table, tbl may
break it up at an awkward point (for example, placing the last line of a table on another page). To keep a boxed table
together on one page, enclose it in a .DS/.DE macro pair (in either ms or mm). Alternatively, you can give tbl the
latitude to split a table and print each section with its own table heading using the .TS H macro, as you will see
later.

Describing Column Formats

Each column in the table is described by a key letter in the format section. Key letters are separated from each other
by spaces or tabs for readability. The basic set of key letters includes:

L or l Left justify the data within a column.

R or r Right justify the data within a column.

C or c Center the data within a column.

S or s Extend data in the previous column to this column (horizontal span).

N or n Align numbers by their decimal points. If there are no decimal points align them
by the units digit.

A or a Indent characters in the column from the standard left alignment by one em.

ˆ Extend entry from previous row down through this row (vertical span). Text will
be centered between the specified rows.

T or t Also vertical span, but text will appear at the top of the column instead of midway
within the specified area.

If all columns of the table follow the same format, you need only one format line for the entire table. How-
ever, not all tables contain the same number of columns throughout. For example, you might have a table where the
upper half consists of three columns, and the lower half contains only two.

The rule in writing format lines is to specify key letters for the largest number of columns in the table and
carry that number for all format lines. That way, if you specify three columns, and you’re using only two, you can
use two consecutive tab characters (with nothing in between) to denote an empty field for the unused column. The
longest format line defines the number of columns in the table.

170 Unix Text Processing

Suppose you defined four columns in the first format line, and then defined only three columns in the succeed-
ing lines. The tbl program will still format your table, but it assumes that the undefined column is left justified.

In the following sections, we will show some typical applications of these and other key letters to format table
headings and columns of data.

Tables with Headers

You can think of a table header as an extra row of data that may or may not have the same format as the actual data.
If the format of the header is different, you must add another line at the beginning of your format section to describe
the header.

For example, we’ll change the first column in the previous table to have the header Port and the second to
have the header Device, so that we get the following table.

Port Device

1 User console
2 Monochromatic graphics terminal
3 Color graphics terminal
4 Line printer
5 Digitizer
6 Laser printer
7 Unallocated
8 Pen plotter
9 Raster plotter

10,11,12 Unallocated

The relevant lines that produced this table follow:
.TS
center, box, tab(@);
c c
c l.
Port@Device
.sp
1@User console
2@Monochromatic graphics terminal

etc.

The first line of the format description (c c) says that there are two columns of data, each one centered within each
column. (Note that there is no period at the end of this line). Because this is the first line of the format description,
it applies to the first line of our data, which happens to be the table heading. This means that the words Port and
Device will be centered in each column. The second (and last) format line is the same as in the previous example
and applies to the rest of the table. Note the period at the end of this line.

We used .sp to produce a blank line after the table header. The tbl command assumes that any non-nu-
meric string preceded by a dot is a troff or nroff request and passes it unchanged to the formatter. Thus, you
can vary spacing between rows, or use other nroff/troff commands within a table.

Tables with Spanned Headers

Our previous table now contains a header for each column. We now want to have an overall title or header that
spans the width of the table. As before, you can think of the spanned header as an extra data line with its own for-
mat description.

Formatting with tbl 171

We want the header to be only one column, centered across the whole table like the following.

Output Device Configuration

Port Device

1 User console
2 Monochromatic graphics terminal
3 Color graphics terminal
4 Line printer
5 Digitizer
6 Laser printer
7 Unallocated
8 Pen plotter
9 Raster plotter

10,11,12 Unallocated

Because we should keep the number of columns the same throughout the table, we use the span format option
(s) to tell tbl that the entry in a preceding column continues on to the other columns. The relevant portion of our
table description contains the following lines:

.TS
center, box, tab (@);
c s
c c
c l.
Output Device Configuration
.sp .5v
Port@Device
.sp .5v
1@User console

etc.

We now have three format lines: the first describes the main header, the second describes each column header, and
the third applies to the rest of the data in the table.

Numeric and Alphabetic Columns

You can align numeric data by the decimal point or the units digit using the key letter n in the format line. When
you use n, numbers in a column will be aligned as follows:

23.6
155

98.08.6
5.26

12798
0.2365

980.

You should never enter non-numeric data in a column that is designated as n. On the other hand, you can en-
ter numbers in columns that are aligned using any of the other key letters. The numbers will just be treated as if they
were ordinary alphabetic characters. Thus, a column of numbers might also be centered, left justified, or right justi-
fied.

You should also avoid putting equations in numeric columns because tbl attempts to split numeric format
items into two parts. To prevent this from happening, use the delim (xy) global option. For example, if the eqn
delimiters are $$, a delim ($$) option causes a numeric column such as:

79.909 $+- .157$

to be divided after 79.909 and not after .157.

172 Unix Text Processing

Columns designated as a are always slightly indented relative to left-justified columns. If necessary, tbl in-
creases the column width to force this. Data in an a format is positioned so that the widest entry is centered within
the column.

A note about n and a: when you have several command lines, do not use both n and a to format different rows
in the same column. For example, the format lines:

r n r
r a r

are not allowed. This is because n and a share the same number register location in nroff/troff’s memory.

The special nonprinting character string \& may be used to override the normal alignment of numeric or al-
phabetic data. For example, if you use \& before a digit, then the digit will line up with the decimal point and \&
will not appear in the output. The effect of \& is as follows.

Input Form Output

9.65 9.65
12.4.8 12.4.8
15.\&7.32 15.7.32
2\&0.9.19 20.9.19
processor processor
half half
half\& half

Vertically Spanned Columns

Let’s see how the vertical span key (ˆ) is used in a table like the following.

kcal/
gram mol. wt.

Fuel Substance

Hydrogen 68.4
Methane 211
Butane 680
Ethane 368

Gases

Benzene 782
Ethyl alcohol 328
Methyl alcohol 171

Liquids

The tbl description for this table is:
.TS
tab(@);
c c c
ˆ ˆ c
l l n.
Fuel@Substance@kcal/
@@gram mol. wt.
.sp
Gases@Hydrogen@68.4
\ˆ@Methane@211
\ˆ@Butane@680
\ˆ@Ethane@368
.sp
Liquids@Benzene@782
\ˆ@Ethyl alcohol@328
\ˆ@Methyl alcohol@171
.TE

There are three lines in the format section: the first two describe the column headings, and the last describes the

Formatting with tbl 173

format of the data.

We can imagine the first line of the header as consisting of the words Fuel Substance kcal/ and the second line
as Fuel Substance gram mol. wt. The words Fuel Substance don’t actually appear twice, but are centered relative to
the two lines that form the third column header. We use the caret key (ˆ) in the second format line to tell tbl that
these two column names vertically span their respective columns. Note the first two data lines that correspond to the
first two format lines.

We could have also used the same approach to describe the rest of the data, but this would mean writing seven
more format lines, one for each of the lines of data. The table really has three columns with the same format
throughout, so you can use just one format line to describe all of them. Then you can enter the characters \ˆ in
place of a column entry to tell tbl that the entry in the previous row for that column vertically spans this row also.

You can use the ˆ key letter in the format section and at the same time enter \ˆ in the data section as we did
previously. You don’t lose anything by doing this and tbl doesn’t complain.

Another way of describing a vertically spanned column is by using the key letter t (or T) in the format line.
Any corresponding vertically spanned item will begin at the top of its range. Thus, if we specify t instead of ˆ in
the format line, the words Fuel and Substance will be in line with kcal/ .

Drawing Lines in Tables

Horizontal rules are specified by underscores and by equal signs entered between the appropriate lines of data. An
underscore on a line by itself entered between two rows of data produces a single rule running the whole width of
the table. An equal sign on a line by itself produces a double rule.

If you want a horizontal rule to be only as wide as the contents of the column, enter an underscore or equal
sign in that column as part of the data. The underscore or equal sign must be separated from the other columns by
tabs or the tab character we’ve specified in the options line. To print these characters explicitly, they should be pre-
ceded by a \& or followed by a space before the usual tab or newline character.

You can also use these two characters in place of a key letter in the format line. If an adjacent column con-
tains a horizontal or vertical line, the horizontal line is extended to meet nearby lines. If you enter any data in this
column, the data will be ignored and you will get a warning message. The following table has a fairly complicated
heading:

1984 (Jan.-July)

1984/1983
(%)

Items Units

TV 3,889,543 145.7
Color 2,766,004 110.7
B/W 1,123,539 12.5

The tbl description for this table looks like this:
.TS
center,box,tab(@);
c s s
c c _
ˆ ˆ | c
ˆ ˆ | c
l r n.
1984 (Jan.-July)
Items@Units
@@1984/1983
@@(%)
_
TV@3,889,543@145.7
Color@2,766,004@110.7
B/W@1,123,539@12.5

174 Unix Text Processing

.TE

As you can see from the preceding description, vertical lines are drawn by specifying bars within the format lines.
A single vertical bar between two key letters draws a single vertical line between those two columns in the table.
You can enter the bar after the first key letter or before the second key letter. A vertical bar to the left of the first key
letter or to the right of the last one produces a vertical line at the edge of the table. Two vertical bars (||) draw a
double rule.

These characters are really more useful for drawing lines inside the table rather than for manually enclosing a
table in a box because there are global options that automatically do this. To draw vertical and horizontal lines in
our table “Fuels,” we modify the relevant format and data lines as follows:

c | |c |c
ˆ | |ˆ |c
l | |l |n.
Fuel@Substance@kcal/
@@gram mol. wt.
=
Gases@Hydrogen@68.4

etc.
_
Liquids@Benzene@782

etc

This input produces the following table:

kcal/
gram mol. wt.

Fuel Substance

Hydrogen 68.4
Methane 211
Butane 680
Ethane 368

Gases

Benzene 782
Ethyl alcohol 328
Methyl alcohol 171

Liquids

Changing Fonts and Sizes

The tbl program assumes that the table is always set in roman type. However, you can always change the typeface
of all entries in a column to italic or boldface. You can add one of the following letters after the column key letter:

fb fB b B Boldface
fi fI i I Italic
fcw fCW cw CW Constant width

If you want to change the font of only some of the entries, you should use explicit nroff/troff requests rather
than specifying the font in the format line. For example, let’s change the headers in the previous table to boldface
and the words Gases and Liquids to italic. The format lines would look like this:

c | |cB |cB
ˆ | |ˆ |cB
l | |l |n.

Gases will be written as \fIGases\fR and Liquids as \fILiquids\fR. The effect would be as follows:

Formatting with tbl 175

kcal/
gram mol. wt.

Fuel Substance

Hydrogen 68.4
Methane 211
Butane 680
Ethane 368

Gases

Benzene 782
Ethyl alcohol 328
Methyl alcohol 171

Liquids

The type size in which headings and data are printed is normally 10 points. You can also change the size of
the type by using the key letter p and an absolute or relative point size. To specify a change in size relative to the ex-
isting point size, use a + or - before the value. For example, a column specification of cp12 or cp+2 will both re-
sult in a centered column using 12-point type.

Changing the Column Width

When you’re not using the expand option, the normal spacing between any two columns is three ens. You can
change the spacing by specifying a numeric value between the key letters representing those columns. The number
specifies the separation in ens. When you’re using the expand option and you specify a column space, the number
is multiplied by a constant such that the table is as wide as the current line length.

If you don’t want any spaces between the columns, simply write 0, as in:
r0 l

which yields:

Hydrogen68.4
Methane211

Butane680

These spacings are only nominal spacings. The data may be so irregular in length that no two columns will
actually appear to be separated by the specified distance. However, varying the amount of separation between two
columns still leaves tbl free to make each column as wide or as narrow as is necessary.

You can specify a minimum width for any column by entering the letter w (or W) after the key letter, followed
by the desired width in parentheses. You can use any unit of measurement recognized by nroff/troff when
specifying a width dimension. You can also enter a value without a unit of measurement, in which case tbl as-
sumes the value is in ens. Thus the format:

rw (15)

specifies a column that is 15 ens wide with the text right justified within the column, and:
lw(2.25i)

specifies a left-justified column that is 2.25 inches wide.

You can also force tbl to make the width of particular columns equal by using the letter e (or E) after the key
letter for those columns. This allows a group of regularly spaced columns.

To show that tbl can be used for any text that needs to be laid out in columns (as opposed to tables), we can
print the following text:

Signature

August 31, J. White K. Kimura
1987

using this tbl description:

176 Unix Text Processing

.TS
expand, tab(@);
c c c
cew(1.3i) ce ce.
Signature@@
@@_
August 31,@J. White@K. Kimura
1987@@
.TE

In the last format line, we specified that all three columns be 1.3i wide. Because all columns will be of equal width,
we need to specify the width only once.

Other Key Letters

We already showed you some of the more widely used key letters. Additional features that can be used with the ba-
sic set of key letters are:

V or v Used with a number to indicate the vertical line spacing used within a table entry.
Used only with text blocks (discussed in a later section).

U or u Move the corresponding entry up by one-half line to produce staggered columns.
This doesn’t work with the allbox global option.

Z or z Ignore the data entry in calculating column width. This is useful in allowing head-
ings to run across adjacent columns where spanned headings might be inappropri-
ate.

Key letters for a column can be written in any order. They do not need to be separated, except when you spec-
ify both a point size (p) and a column separation number. Thus, a numeric column entered in bold 18-point type
with a minimum column width of 1.5 inches and separated from the next column by 12 ens can be written as:

np18w(1.5i)B 12

Two or more format lines can also be written on one line by separating them with commas. For example, the format
lines:

c c c
l l n.

can be written as:
c c c, l l n.

Changing the Format within a Table

All our examples so far have shown tables that consist of somewhat complicated headings followed by identical
rows of data. Thus, we can keep the number of format lines comparatively small. This may not be the case when a
table is divided into sections, each of which has its own heading. Let’s look at the following table (from AT&T’s
Documenter’s Workbench Text Formatter’s Reference):

Formatting with tbl 177

Horizontal Local Motions
Effect in

troff nroff
Function

\h’N’ Move distance N
\(space) Unpaddable space-size space

\0 Digit-size space

\| 1/6 em space ignored
\ˆ 1/12 em space ignored

It has both a main header and column headers. The body of the table is divided into two parts. The upper part
contains two columns, and the lower part contains three. To format each part correctly, we must enter a command
line for each row of data so that tbl can keep track of which rows of the table have which format. This process is
tedious and prone to error. Fortunately, tbl has a way around this.

To change the format of columns within a table, tbl has the table continue request .T&. We can change the
format of a table at any time by entering .T& followed by the new format line(s) and the additional data. The gen-
eral format for the tbl description is as follows:

.TS
option line;
format section.
data
.T&
new format section.
data
.T&
another new format section.
data
.TE

There are two things we cannot change after a .T& request: the global options line and the number of columns spec-
ified. Our original options line holds for the entire table.

Let’s see how we can use the .T& request to produce the previous table:
.TS
center,box,linesize (6),tab(@);
cB s s.
Horizontal Local Motions
_
.T&
cI | cI s
cI | cI s
cI | cI | cI
c | l s.
Function@Effect in
\eˆ@_
\eˆ@troff@nroff
_
\eh’N’@Move distance N
\e(space)@Unpaddable space-size space
\e0@Digit-size space
_
.T&
c | l | l.
\e|@1/6 em space@ignored
\eˆ@1/12 em space@ignored
.TE

We take the largest number of columns in the table, which is three. We have two .T& requests to break up the table
into three parts with their own format sections. The first part applies to the main header only. The second describes
the column headers and the three-column segment of the table. Finally, the lower part applies to the last part of the
table.

178 Unix Text Processing

Although you can have hundreds of lines in a table, tbl uses only the first 200 lines to set up the table. Any
format changes you make after the 200th line will not be processed by tbl. In this case, you should break up the
table into smaller table segments.

Should you specify .TS H but forget to follow it with .TH, some strange things will happen. One recent in-
stance of this caused the table to be output in a nearly endless succession of pages. (In troff terms, a diversion
created to capture the table heading filled up with the table instead; this caused the first page break that triggered the
output of the diversion at the top of the next page; each time the diversion was output, it caused a new page break
and the diversion was output again).

Putting Text Blocks in a Column

Some tables consist of column entries that cannot be conveniently typed as a simple string between tabs. Descrip-
tive tables, for example, require ordinary flowing text justified between the margins of the specific column in which
it appears in the table. These section of flowing text are called text blocks.

Each block of text is preceded by a T{ and followed by a T}. The T{ marker must be at the end of a line, and
the T} must be at the start of a line:

...T{
Block of
text
T}...

When a text block is included in a row that contains other columns of data or text, the T{ that marks the beginning
of the text block must appear at the end of the line in the text. Even a single blank space following the T{ will cause
the table to fail. Likewise, the T} symbol must always begin the line:

... Data@T{
Block of
text
T}@data ...

This makes it easy for you to revise text when necessary and also allows you to insert any special nroff/troff
commands before or after the text block.

Let’s lay out the following table:

Formatting with tbl 179

Some Pattern-Matching Characters in vi

Special Characters Usage

. Matches any single character except newline.

* Matches any number (including zero) of the single char-
acter (including a character specified by a regular expres-
sion) that immediately precedes it.

[...] Matches any one of the characters enclosed between the
brackets. A range of consecutive characters can be speci-
fied by separating the first and last characters in the range
with a hyphen.

$ Requires that the preceding regular expression be found at
the end of the line.

\{n,m\} Matches a range of occurrences of the single character
(including a character specified by a regular expression)
that immediately precedes it. n and m are integers be-
tween 0 and 256 that specify how many occurrences to
match.

The tbl description of this table is:
.TS
box,tab(@);
cb s
cI| cI
cw(1.25i) | lw(3.25i).
Some Pattern-Matching Characters in \fIvi\fR
_
Special Characters@Usage
_
\fI.\fR@Matches any single character\
except \fInewline\fR.

*@T{
Matches any number (including zero) of the
single character (including
a character specified by a regular expression)
that immediately precedes it.
T}

[...]@T{
Matches any \fIone\fR of the characters enclosed
between the brackets.
A range of consecutive characters can be
specified by separating the
first and last characters in the range with a hyphen.
T}

$@T{
Requires that the preceding regular
expression be found at the end of the line.
T}

\{\fIn,m\fR\}@T{
Matches a range of occurrences of the
single character (including a
character specified by a regular expression)
that immediately precedes

180 Unix Text Processing

it. \fIn\fR and \fIm\fP are integers between
0 and 256 that specify how many occurrences to match.
T}
.TE

What might confuse you about this source text is that each block of text occupies two or more lines. Just think of
everything that comes between a T{ and a T} as a single entry that occupies a single column in that row. It is sepa-
rated from its neighbors by tabs. If you keep track of the tabs, you will be able to sort out quite easily the sequence
of columns.

In the previous description, we specified a minimum width for each column. If a width is not given, tbl uses
the default:

L * C/(N+1)

where L is the current line length, C is the number of table columns spanned by the text, and N is the total number
of columns in the table. It is sometimes better to define a column width because tbl might make the table too nar-
row by default.

You can also use the nroff/troff commands .na and .ad to left justify text blocks if the output doesn’t
come out fully justified. The tbl description would be:

... T{

.na
Block of
text
.ad
T}

The nroff and troff formatters can accept only about twenty or thirty small text blocks in a table without ex-
ceeding certain internal limits. If the limits are exceeded, you will get error messages like “too many string/macro
names” or “too many number registers.”

In this case, you should divide the table into two or more independent tables, each with its own .TS and .TE
requests. The final formatted sections can be “joined” and made to appear as one table by inserting minus .sp re-
quests (such as .sp -12p) between the sections. This will cause the formatter to draw them together.

You can also change the vertical line spacing within a text block using a key letter followed by v (or V) and a
number. The number may be a signed digit and is taken as an increase or decrease from the current vertical spacing.

Breaking Up Long Tables

If you have a very long table that will fill many pages, it might be helpful to break up the table into several smaller
ones, with the main heading reproduced at the top of each page. Then the reader doesn’t have to keep returning to
the first page to see what the columns indicate. The tbl program also automatically breaks a boxed table if it runs
over one page.

You can use the .TS H and .TH macros to reproduce the original heading at the top of each page of the table:
.TS H
options;
format section.
main header
.TH
data
.TE

The .TH (table header) macro is a feature of the ms macro package (not tbl). This macro can take the letter N as
an argument; this causes the table header to be printed only if it is the first table header on a page. This is useful
when you have to build a long table from smaller .TS H/.TE segments. For example:

.TS H
global options;
format section.
main header

Formatting with tbl 181

.TH
data
.TE
.TS H
global options;
format section.
main header
.TH N
data
.TE

This causes the table header to appear at the top of the first table segment. The header will not appear on top of the
second segment when both segments appear on the same page. If the table continues to another page, the heading
will still appear at the top of the new page. This feature is useful when breaking a long complex table into segments.

Putting Titles on Tables

The mm macro .TB can be used to automatically number and title a table. All tables with .TB are numbered con-
secutively. The title is centered above the table if it can fit on one line. If the title is longer than one line, all suc-
ceeding lines of the title are indented to line up with the first character of the title. The .TB macro is normally used
inside a .DS/.DE pair.

The .TB macro is not part of tbl. Thus, it can be used to generate titles or headers for tables that are created
using only tabs and none of the tbl commands. The general format of the .TB macro is:

.TB [title] [n] [flag]

where n is used to override the normal numbering. The flag option can take one of the following values:
0 n is used as a prefix to the normal table number
1 n is used as a suffix to the normal table number
2 n replaces the normal table number

If you put the .TB macro before the .TS macro, the title is placed above the table. You can also put the title below
the table by using the .TB macro after .TE.

For example, we can modify one of our tables by adding a title and labeling it as Table 5. We add the follow-
ing lines before the .TS:

.DS

.TB "Horizontal Local Motions" "5" "2"

.sp

And we add a .DE after the .TE. The table now looks like this.

Table 5. Horizontal Local Motions

Effect in

troff nroff
Function

\h’N’ Move distance N
\(space) Unpaddable space-size space

\0 Digit-size space

\| 1/6 em space ignored
\ˆ 1/12 em space ignored

Another useful mm macro is the .TC macro. The .TC macro is placed at the end of the file. When the file is
formatted, .TC collects the titles of tables that were generated using .TB for the table of contents. Thus, if we had
used .TB to put headers in our examples, the table of contents might look like this:

LIST OF TABLES

TABLE 1. Production of Audio Equipment........2

182 Unix Text Processing

TABLE 2. Output Device Configuration...........14

TABLE 3. Heating Value of Fuels.....................17

A tbl Checklist

Most table formatting errors come from specifying too few columns in the format section, forgetting a tab character
between column entries in a table, or omitting one or more of the characters that tbl expects in a table description.
After you’ve finished laying out a table, check that you have the following:

• a .TS with a .TE

• a .TH with a .TS H

• a semicolon at the end of the options line (if there is one)

• a period at the end of the last format line (including format sections with a .T&)

• in the format section, an item for each column and a format line for each line of the table

• a tab symbol for each column in each line of the table, except for the first column when horizontally
spanning, and within text blocks

• for text blocks, a T{ with every T}

• no extra blanks after:
any .TS, .TE, .TS H, .TH, or .T&
the end of the options and format lines
any T{ or T}

• no periods at the beginning of any “data” text lines (add a \& before the period, if necessary)

• a space after each table entry of _ and = unless you want the lines to extend across the column

Some Complex Tables

Surely, the best way to learn more about tbl is to study tables of greater complexity than the ones we’ve looked at
so far. The tbl article by M.E. Lesk in the UNIX Programmer’s Manual provides many fine examples of difficult
tables. Look at the formatted tables and try to “break” the code that produced them. In this section, you’ll find two
complicated tables followed by the tbl input for you to decipher.

The weight table shown in Figure 8-1 is taken from a manual that describes the safe operation of mobile
cranes. This table was coded by an associate, Daniel Gilly, over several hours. The code is listed in Figure 8-2.
Look at how the vertical line indicator (|) is used between entries to draw a line at the end of each column. Note
also the use of the alphabetic (a) format specification to produce indented text.

The financial table shown in Figure 8-3 is adapted from a prospectus prepared by troff users at a large New
York law firm. The code for this table is listed in Figure 8-4. Note the use of a leader character (\a) in the first en-
try, coupled with a fixed width specification for the first column, to produce leaders that fill out the column. Also,
notice how the table headings are printed in a smaller point size than the rest of the table, using the format specifica-
tion (p8).

Formatting with tbl 183

WEIGHTS OF MATERIALS (Based On Volume)

Approx. Approx.
Weight, Weight,
Lbs. Per Lbs. Per

Cubic Foot Cubic Foot

Material Material

METALS TIMBER, AIR-DRY
Aluminum 165 Cedar 22
Brass 535 Fir, Douglas, seasoned 34
Bronze 500 Fir, Douglas, unseasoned 40
Copper 560 Fir, Douglas, wet 50
Iron 480 Fir, Douglas, glue
Lead 710 laminated 34
Steel 490 Hemlock 30
Tin 460 Pine 30

MASONRY Poplar 30
Ashlar masonry 140-160 Spruce 28
Brick masonry, soft 110 LIQUIDS
Brick masonry, com- Alcohol, pure 49

mon (about 3 tons Gasoline 42
per thousand) 125 Oil 58

Brick masonry, pressed 140 Water 62
Clay tile masonry, EARTH

average 60 Earth, wet 100
Rubble masonry 130-155 Earth, dry (about 2050
Concrete, cinder, lbs. per cu. yd.) 75

haydite 100-110 Sand and gravel, wet 120
Concrete, slag 130 Sand and gravel, dry 105
Concrete, stone 144 River sand (about 3240
Concrete, stone, lbs. per cu. yd.) 120

reinforced (4050 lbs. VARIOUS BUILDING
per cu. yd.) 150 MATERIALS

ICE AND SNOW Cement, Portland, loose 94
Ice 56 Cement, Portland, set 183
Snow, dry, fresh fallen 8 Lime, gypsum, loose 53-64
Snow, dry, packed 12-25 Mortar, cement-lime,
Snow, wet 27-40 set 103

MISCELLANEOUS Crushed rock (about
Asphalt 80 2565 lbs. per
Tar 75 cu. yd.) 90-110
Glass 160
Paper 60

Figure 8.1 A Complex Table

.ps 8

.vs 10

.TS
center,box,tab(@);
cb s s s
c|c|c|c
ˆ|c|ˆ|c
ˆ|c|ˆ|c
ˆ|c|ˆ|c.
WEIGHTS OF MATERIALS (Based On Volume)
_
Material@Approx.@Material@Approx.
@Weight,@@Weight,
@Lbs. Per@@Lbs. Per
@Cubic Foot@@Cubic Foot
_
.sp .5
.T&
lb|c|lb|c.
METALS@@TIMBER, AIR-DRY@

184 Unix Text Processing

.T&
a|c|a|c.
Aluminum@165@Cedar@\022
Brass@535@Fir, Douglas, seasoned@\034
Bronze@500@Fir, Douglas, unseasoned@\040
Copper@560@Fir, Douglas, wet@\050
Iron@480@Fir, Douglas, glue@
Lead@710@\0\0laminated@\034
Steel@490@Hemlock@\030
Tin@460@Pine@\030
.T&
lb|c|a|c.
MASONRY@@Poplar@\030
.T&
a|c|a|c.
Ashlar masonry@140-160@Spruce@\028
.T&
a|c|lb|c.
Brick masonry, soft@110@LIQUIDS@
.T&
a|c|a|c.
Brick masonry, com-@@Alcohol, pure@\049
\0\0mon (about 3 tons@@Gasoline@\042
\0\0per thousand)@125@Oil@\058
Brick masonry, pressed@140@Water@\062
.T&
a|c|lb|a.
Clay tile masonry,@@EARTH@
.T&
a|c|a|c.
\0\0average@\060@Earth, wet@100
Rubble masonry@130-155@Earth, dry (about 2050@
Concrete, cinder,@@\0\0lbs. per cu. yd.)@\075
\0\0haydite@100-110@Sand and gravel, wet@120
Concrete, slag@130@Sand and gravel, dry@105
Concrete, stone@144@River sand (about 3240@
Concrete, stone,@@\0\0lbs. per cu. yd.)@120
.T&
a|c|lb|c.
\0\0reinforced (4050 lbs.@@VARIOUS BUILDING@
\0\0per cu. yd.)@150@\0\0MATERIALS@
.T&
lb|c|a|c.
ICE AND SNOW@@Cement, Portland, loose@\094
.T&
a|c|a|c.
Ice@\056@Cement, Portland, set@183
Snow, dry, fresh fallen@\0\08@Lime, gypsum, loose@53-64
Snow, dry, packed@12-25@Mortar, cement-lime,@
Snow, wet@27-40@\0\0set@103
.T&
lb|c|a|c.
MISCELLANEOUS@@Crushed rock (about@
.T&
a|c|a|c.
Asphalt@\080@\0\02565 lbs. per@
Tar@\075@\0\0cu. yd.)@90-110
Glass@160@@
Paper@\060@@
.sp .5
.TE

Figure 8.2 Input for Figure 8-1

Formatting with tbl 185

Year Ending December 31

1986 1985 1984 1983

(Dollars in millions)

Premiums.. $ 10,922.7 $ 10,330.7 $ 9,252.4 $ 9,071.8
Investment income................................ 3,671.7 3,146.0 2,749.7 2,308.9
Federal income taxes 24.4 91.6 71.9 20.8
Operating income 359.8 346.1 342.6 309.6
Realized gains (losses) 15.4 27.0 (30.2) (15.2)
Net income ... 375.2 373.1 312.4 295.8
Cash provided by operations 4,123.2 3,560.8 3,514.9 3,067.4
Assets ... 41,645.8 34,434.7 32,876.6 27,987.6

Figure 8.3 Financial Table

.TS
expand, tab(@);
lw(13P) cbp8 s s s
lw(13P) c s s s
lw(13P) cbp8 cbp8 cbp8 cbp8
lw(13P) cbp8 s s s
lw(13P) n n n n.
@Year Ending December 31
.sp .2v
@_
@1986@1985@1984@1983
@(Dollars in millions)
.sp .5v
Premiums\a@$\010,922.7@$\010,330.7@$\0\09,252.4@$\0\09,071.8
Investment income\a@3,671.7@3,146.0@2,749.7@2,308.9
Federal income taxes\a@24.4@91.6@71.9@20.8
Operating income\a@359.8@346.1@342.6@309.6
Realized gains (losses)\a@15.4@27.0@(30.2)@(15.2)
Net income\a@375.2@373.1@312.4@295.8
Cash provided by operations\a@4,123.2@3,560.8@3,514.9@3,067.4
Assets\a@41,645.8@34,434.7@32,876.6@27,987.6
.TE

Figure 8.4 Input for Figure 8-3

4Chapter 9

Typesetting Equations with eqn

Typesetting mathematical equations has always been a problem for users who have a limited knowledge of mathe-
matics or typesetting. This is because mathematical expressions are often a mixture of standard text and special
characters in different point sizes. For example, the equation:

∞

i=0
Σ ci =

m→∞
lim

m

i=0
Σ ci

requires three special characters (Σ, ∞ , and →) and roman and italic characters in two different sizes. Expressions
also may require horizontal and vertical printing motions (as in subscripts and superscripts).

You could code this example using troff requests, but the syntax for describing the printing motions, sizes,
and fonts are difficult to learn and difficult to type in correctly. UNIX has formatting tools specifically designed for
documents containing mathematical symbols—the programs eqn and neqn. The eqn program is a preprocessor
for troff; neqn is a preprocessor for nroff.

With eqn you can typeset both inline equations and equations that are set off from the body of the text like the
example shown. It takes an English-like description of a mathematical equation and generates a troff script. You
don’t need to understand what you are typing.

The eqn preprocessor was designed to be easy to learn and even easier to use. This implies that normal math-
ematical conventions such as operator precedence and parentheses cannot be used. Nor does eqn assume that
parentheses are always balanced, or that an expression is better written in another form. There are only a few rules,
keywords, special symbols, and operators to remember. If something works in one situation, it should work every-
where.

This section shows you how to typeset mathematical equations using a set of special words that belong to the
eqn vocabulary. With eqn, you can format the following quite easily:

• the Greek alphabet

• special symbols, such as summations (Σ), products (Π),integrals (∫), and square roots (√)

• positional notation, such as subscripts and superscripts, fractions, matrices, and vertical piles

• diacritical marks

• sizes and fonts

• horizontal and vertical spacing

You can even define a string that appears repeatedly throughout the document so that you do not need to type it in
each time it appears.

A Simple eqn Example

To best illustrate how eqn works and how easy it is to learn the syntax, let’s take a simple example:
a2

b

If you were to read this mathematical expression aloud to another person, you might say “a sub 2 over b.” This is
exactly how you would describe the expression to eqn. The word sub denotes a subscript; the word over denotes
a fraction. You will see the other words that eqn treats as special (i.e., that belong to the eqn vocabulary) as we
move along in this section.

187

188 Unix Text Processing

When you use eqn, it assumes that you have a two-dimensional picture of how the equation should appear in
the document. The key in writing the eqn description is to familiarize yourself with the special words used by eqn
in printing mathematical characters. Then, describe the equation as if you were reading it aloud to another person.

The eqn preprocessor takes care of the standard things that you would expect to happen automatically, such
as printing superscripts and subscripts in an appropriately smaller size, and adjusting the length and size of fraction
bars. Following mathematical convention, variables are made italic, parentheses, operators, and digits are made ro-
man, and normal spacing is automatically adjusted to make the expression look better.

Using eqn

The eqn preprocessor is used not only for typesetting equations, but also for typesetting nontechnical documents.
For example, many documents contain subscripted or superscripted words. Using eqn can be easier than formatting
the subscript or superscript using troff commands.

To format a document with eqn, you would enter:
$ eqn /usr/pub/eqnchar files | troff [options]

You can then pipe the output to the desired printer. The file /usr/pub/eqnchar contains definitions of addi-
tional special characters that can be used by eqn. It is not essential that you use it, but you may get better results
with certain equations if you do.

If you use eqn with the tbl preprocessor to print tables containing mathematical expressions, invoke tbl
before eqn to minimize the data passed through the pipe:

$tbl /usr/pub/eqnchar file | eqn | troff

If you are using nroff instead of troff, you can get a reasonable approximation of eqn output by using neqn.
However, printers used with nroff may be unable to print many of the special characters used in equations.

Specifying Equations

Mathematical documents contain both displayed equations and standard text mixed with mathematical expressions.
The eqn preprocessor allows you to typeset both forms.

Displayed Equations

For equations that appear outside the body of the text, mark the beginning of each equation with an .EQ and the end
with an .EN. Note that these delimiters may or may not also be defined as macros. They are recognized by eqn as
flags to begin and end processing.

If they are not defined as macros by the package you are using, you can define them yourself, or can simply
supplement them with troff requests (such as .ce to center the equation) as desired.

If you are using the ms macro package, .EQ and .EN are defined as macros, and the equation is centered by
default. Thus, if you type:

.EQ
C=Ax+By
.EN

the output will be:

C = Ax + By

In ms, you can also left justify the equation using .EQ L or indent it using .EQ I. You can further specify
an arbitrary equation number or label that will be printed at the right margin. For example, the lines:

Typesetting Equations with eqn 189

.EQ I (13a)
C=Ax+By
.EN

produce the following:

C = Ax + By (13a)

The mathematical symbols +, -, = and () are typed in just as they appear in the equation.

If you’re using the mm macro package, put the .EQ/.EN pair inside a .DS/.DE pair so that the format looks
like this:

.DS

.EQ
equation
.EN
.DE

This automatically centers the displayed equation. You can also use a break producing request (such as .br or
.sp) immediately following the .DS macro but before the .EQ macro to display the equation at the left margin of
the text.

Inline Expressions

If you are using ms or mm, .EQ and .EN imply a displayed equation and so cannot be used for short inline expres-
sions. But eqn provides a shorthand notation for displaying this type of expression. You can define any two charac-
ters as delimiters to mark the beginning and end of an inline equation, and then type the expression right in the mid-
dle of the text. To do this, define the equation delimiters within an .EQ and an .EN at the beginning of your file.

For example, to set both delimiters to #, add the following lines:
.EQ
delim ##
.EN

If you’re using mm, do not use the .DS/.DE pair to enclose a .EQ/.EN pair that only defines the delimiters for
inline equations. If you do, extra blank lines will appear in the output.

Do not use braces ({}), a circumflex (ˆ), a tilde (∼), or double quotation marks (") as delimiters because
these have a special meaning to eqn. Choose characters that you are unlikely to use within any equation in the doc-
ument. After you have defined your delimiter, you can begin using it within a line of text as in the following exam-
ple:

The possible prices of an ice cream cone in cents are
#y sub 1 = 75#, #y sub 2 = 85#, and #y sub 3 = 95#.

This produces the line:
The possible prices of an ice cream cone in cents are
y1 = 75, y2 = 85, and y3 = 95.

The eqn program leaves enough room before and after a line containing inline expressions with fractions or large
characters so that they don’t interfere with the surrounding lines.

To turn off the delimiters, use:
.EQ
delim off
.EN

Throughout this section, we will use the delimiters ## in our eqn examples. However, we will typically show the
results as a displayed equation.

190 Unix Text Processing

Spaces in Equations

You may have noticed in the previous example that the word sub is surrounded by blanks, and the subscript is sepa-
rated from the = sign with a blank. Spaces and new lines are used to tell eqn that certain words belong to the eqn
vocabulary and deserve special treatment. The spaces and new lines that you type in the input equation do not ap-
pear in the printed output.

For example, all of the following equations:
#C=Ax+By#
#C = Ax + By#
#C= A x +

By#

produce the same output:

C = Ax + By

Note that the spaces and newlines were ignored by eqn.

You should use spaces as freely as possible to break up more complex equations and make your input more
readable and easier to edit. Remember that any spaces or newlines you enter within an equation are not printed out.
This is often a point of confusion for new users. If your equation doesn’t turn out the way it should, chances are you
missed typing in a space somewhere. A useful rule of thumb is: when in doubt, use a space.

Printing Spaces in the Output

You may want to fine-tune the printed appearance of an equation by adding spaces between groups of terms. If you
want to print spaces in the output, use a tilde (∼) for each space. A circumflex (ˆ) gives a space half the width of a
tilde. For example:

#C∼=∼Ax∼+∼By#

yields:

C = Ax + By

and:
#Cˆ=ˆAxˆ+ˆBy#

yields:

C = Ax + By

You can also use tabs to separate parts of an equation, but the tab stops must be set by the troff .ta request. For
example:

.ta 1i 1.5i 2i 2.5i

.EQ
x sub 1
+x sub 2
+s sub 1
=10
.EN
.EQ
-2x sub 1
+s sub 1
=42
.EN

yields:
x1 + x2 + s1 = 10
−2x1 + s1 = 42

(Note that each equation must have its own pair of .EQ/.EN delimiters). Another way of aligning equations uses

Typesetting Equations with eqn 191

the eqn words mark and lineup, as you will see later.

Subscripts and Superscripts: A Common Use

Perhaps the most common application of eqn is in generating subscripts and superscripts within a line of text or a
table. As you have seen in previous examples, subscripts are denoted by the word sub. Superscripts are designated
by sup. For example:

#y sub 1 = x sup 2ˆ+ˆ1#

yields:

y1 = x2 + 1

There are two simple rules to remember in writing subscripts and superscripts:

1. Put at least one space or space delimiter (such as ˆ or ∼) before and after the words sup and sub.

2. Leave at least one space or space delimiter after the subscript or superscript.

Let’s see the effect on the output when you omit necessary spaces. For example:
#y sub 1 =x sup2ˆ+ˆ1#

yields:

y1 = xsup2 + 1

and
#y sub 1 =x sup 2+ˆ1#

yields:

y1 = x2+ 1

If you don’t leave a space after sub or sup (as in the first example), eqn will not recognize them as special words,
and so will not produce a subscript or superscript. Also, if you don’t leave a space after the subscript or superscript,
eqn thinks that the character(s) following it are still part of the subscript or superscript. This is a very common mis-
take made by new users.

You can also write subscripted subscripts and superscripted superscripts. If a superscript and subscript both
appear for the same item, sub should come before sup. Therefore:

#a sub k sup 2#

yields:

a2
k

Reversing the order of the words:
#a sup 2 sub k#

yields:

a2k

Some equations also require you to type chemical symbols like:

2 He4

Because sup technically means a superscript on something, you must use a placeholder (a pair of double quotation
marks) before the word sup and write this expression as:

#"" sup 2 He sub 4#

192 Unix Text Processing

Using Braces for Grouping

Normally, you would use a blank or a space delimiter to signal the end of a subscript or superscript. But if your sub-
script or superscript consists of two or more characters or words separated by blanks, or if you are writing nested
subscripts or superscripts, this will not work. In this case, use braces to mark the beginning and end of your sub-
script or superscript.

For example, the line:
#r sub {i=5;t=10ˆyears}#

yields:

ri=5;t=10 years

In contrast, this line without the braces:
#r sub i=5;t=10ˆyears#

yields:

ri=5;t=10 years

In the first example, we used braces to force eqn to treat the string:
i=5;t=10 years

as a subscript. Use braces to make your intent perfectly clear whenever you are unsure of how eqn will treat the
equation. You can also use braces within braces, as in the line:

#e sup {i sup {k+1}}#

which yields:

eik+1

Make sure that a left brace always has a corresponding right brace.

If you have to print braces in your document, enclose them in double quotation marks like "{" and "}".

Special Character Names

In many mathematical equations, you use the Greek alphabet to define variables. To print Greek letters, spell them
out in the case that you want. For example, delta produces δ, and DELTA gives ∆ . Thus, you only need to spell
out the character π, as in:

#pi r sup 2#

to print:

πr2

Note that special names don’t exist for all uppercase Greek letters, such as ALPHA or ETA, because they are
identical to the equivalent English letters. See Table 9-1 for a list of Greek letters.

Typesetting Equations with eqn 193

Table 9.1 Names for Greek Letters

Name Character Name Character

DELTA ∆ iota ι
GAMMA Γ kappa κ
LAMBDA Λ lambda λ
OMEGA Ω mu µ
PHI Φ nu ν
PI Π omega ω
PSI Ψ omicron ο
SIGMA Σ phi φ
THETA Θ pi π
UPSILON ϒ psi ψ
XI Ξ rho ρ
alpha α sigma σ
beta β tau τ
chi χ theta θ
delta δ upsilon υ
epsilon ε xi ξ
eta η zeta ζ
gamma γ

A common mistake is to forget to put a space around the Greek name. For example, typing:
#f(theta)#

yields:

f (theta)

and not:

f (θ)

which is what we want. Because there are no spaces surrounding the word theta, eqn doesn’t recognize it as a
special word.

You can also use troff four-character names for characters, as in the description:
#c = a \(pl b#

which yields:

c = a + b

Special Symbols

The eqn program recognizes the sequences in Table 9-2 as belonging to the eqn vocabulary, and translates them to
the appropriate symbols.

194 Unix Text Processing

Table 9.2 eqn Special Symbols

Sequence Symbol Sequence Symbol
>= ≥ approx ≈
<= ≤ nothing
== ≡ cdot ⋅
!= ≠ times ×
+- ± del ∇
-> → grad ∇
<- ←
<< << ,..., , . . . ,
>> >> sum Σ
inf ∞ int ∫

partial ∂ prod Π
half 1

2 union ∪
prime ′ inter ∩

The following examples illustrate the use of these character sequences.
#C sub O prime#

yields:

CO′

and:
#0 <= a <= 1#

yields:

0 ≤ a ≤ 1

and:
#del y / del x#

yields:

∇y/∇x

and:
#partial x / partial t#

yields:

∂x/∂t

Digits, parentheses, brackets, punctuation marks, and the following mathematical words are converted into roman
font instead of the italic font used for other text:

sin cos tan sinh cosh tanh arc
max min lim log ln exp
Re Im and if for det

Summations, Integrals, Products, and Limits

Summations, integrals, products, and limits often require an upper and lower part around the symbol. The word
from indicates the character sequence to be entered at the lower part; the word to indicates the upper part. These
parts are both optional, but if they are used, they should appear in that order. For example, you would type:

#Expected∼Value∼=∼sum from {i=1} to inf pi sub i X sub i#

to print the following expression:

Typesetting Equations with eqn 195

Expected Value =
∞

i=1
Σ πi Xi

Notice that we used braces around the from part although this was not necessary because there were no embedded
blanks in the string i=1. But if the from and to parts contain any blanks to separate special words, you must use
braces around them.

A from does not necessarily need an accompanying to, as you will see in the following example:
#lim from {m -> inf} sum from i=0 to m c sup i#

which yields:

m→∞
lim

m

i=0
Σ ci

Square Root Signs

To draw a square root sign, use the word sqrt. For example:
#sqrt {b sup 2 - 4ac}#

yields:

√b2 − 4ac

Square roots of tall quantities appear too dark and heavy. Big square root quantities are better written to the power
½, as in:

2Co/D
1
2

Creating a cube root or a higher root sign requires a little imagination. You can think of a cube root sign, for exam-
ple, as consisting of two parts: a superscript 3 (with nothing before it) and a square root sign. However, you can’t
type:

#sup 3 sqrt x#

because a sup is a superscript on something. You must use a pair of double quotation marks as a placeholder for
sup. For example:

#"" sup 3 sqrt x#

yields:

3√x

Enclosing Braces and Brackets

You can generate big brackets [], braces {}, parentheses (), and bars | around quantities by using the words
left and right, followed by the desired character. For example:

#P∼=∼R∼left [1ˆ-ˆ{1+i sup n } over i right]#

yields:

P = R

1 −

1 + in

i

The resulting brackets (and any character you specify) are made big enough to enclose the quantity. (Braces are typ-
ically bigger than brackets and parentheses). Note the spaces surrounding the words left and right and the
character to be expanded.

Two other characters that you can use are the floor and ceiling characters shown in the following exam-
ple:

#left floor a over b right floor !=
left ceiling x over y right ceiling#

which yields:

196 Unix Text Processing

a

b

≠

x

y

A left does not need a corresponding right. If the right part is omitted, use braces to enclose the quantity
that you want the left bracket to cover. This is useful when you are making piles, as you will see in the next section.

You can also omit the left part, although technically you can’t have a right without an accompanying
left. To get around this, you must type:

#left "" expression right)#

The left "" in this equation means a “left nothing”.

Other Positional Notation

1

0

1
2

−1

This produces a matrix with the first column left justified and the second column right justified. Each item is sepa-
rated from the item below it by the word above. You can also center the columns using ccol. You can adjust
each column separately and use as many columns as you like. However, each column must have the same number
of items in it as the other columns.

A matrix should be used when the items in the columns don’t all have the same height (for example, when you
have fractions mixed with whole numbers). This forces the items to line up because matrix looks at the entire
structure before deciding what spacing to use.

Vertical Piles

To make vertical piles or columns of items, use the word pile before the equation description and the keyword
above to separate the items. You can also enclose the piles in big braces or big brackets. For example:

.EQ
P∼=∼left [

pile { nu sub 1 above nu sub 2 above cdot
above cdot above cdot above nu sub N }

right]
.EN

yields:

P =

ν1

ν2

⋅
⋅
⋅

νN

The items are centered one above the other and separated by the word above. Braces enclose the entire pile list.
The items in the pile can themselves contain piles.

You can left justify (lpile), right justify (rpile), or center (cpile), the elements of the pile. (A cpile
is the same as a regular pile). However, the vertical spacing you get using these three forms will be somewhat larger
than the normal pile. For example:

.EQ
f sub x (x)ˆ=ˆleft {

rpile { 0 above 2x above 0 }
∼∼lpile { x < 0 above 0 <= x <= 1 above x > 1}

Typesetting Equations with eqn 197

.EN

yields:

f x(x) =

0

2x

0

x < 0

0 ≤ x ≤ 1

x > 1

Note that in this example, we have a left brace without a corresponding right brace.

Diacritical Marks

With eqn, writing diacritical marks on top of letters is straightforward. The words known by eqn follow, with ex-
amples of how they appear on top of the letter x:

bar x
under x
dot ẋ
dotdot ẍ
hat x̂
tilde x̃
vec →x
dyad ↔x

The following examples show how these keywords are used:
#cr e hat pes#

yields:

crê pes

and:
#Citr o dotdot en#

yields:

Citr öen

and:
#a vec + b vec#

yields:

→a +
→
b

and:
#X bar sub st#

yields:

Xst

The eqn program positions the diacritical marks at the appropriate height. It also makes bar and under the right
length to cover the entire item. Other marks are centered above the character(s).

Typing words with diacritical marks may seem confusing at first because you have to leave spaces around the
letter and its corresponding mark. Just remember that eqn doesn’t print the spaces you type in.

198 Unix Text Processing

Defining Terms

In some documents, you type a string of characters often, either within the text or within several equations. If you
notice a string that is frequently used, you can name it using a define statement within an .EQ and .EN. Then
you can use the name within an expression instead of typing the whole string.

Suppose you notice that the string 2 sup i appears repeatedly in equations. You can avoid retyping by
naming it 2i, for example, as in the following commands:

.EQ
define 2i ’2 sup i’
.EN

You should enclose the string between single quotation marks or between any two characters that don’t appear inside
the definition. After you’ve defined a term, you can use it as a convenient shorthand in other equations, just as if it
were one of eqn’s special keywords.

A note about using definitions: although a definition can use a previous definition, do not define something in
terms of itself. Thus:

.EQ
define 2i ’2 sup i’
define 1/2i ’1 over 2i’
.EN

is acceptable, but:
.EQ
define X ’X bar’
.EN

is not because X is defined in terms of itself. If you want to do this, protect the X in the definition with double quota-
tion marks, as in:

.EQ
define X ’ "X" bar ’
.EN

You can also redefine eqn keywords. For example, you can make / mean over by typing:
.EQ
define / ’over’
.EN

Quoted Text

You have seen the use of double quotation marks as placeholders (in the sup, sqrt, and define examples) when
eqn needs something grammatically but you don’t want anything in the output. Quotation marks are also used to
get braces and other eqn keywords printed in the output. For example:

#"{ size beta }"#

prints the words:

{ size beta }

instead of looking up the two words size and beta in the eqn vocabulary and converting them. (The word size
is used to change the size of the characters from the 10 point default).

Any string entirely within quotation marks is not subject to font changes and spacing adjustments normally
done by troff or nroff on the equation. This provides for individual spacing and adjusting, if needed. Thus, the
line:

#italic "cos(x)" + cos (x)#

yields:

Typesetting Equations with eqn 199

cos(x) + cos(x)

To print a literal quotation mark, you must escape it with a backslash character in the form \".

Fine-Tuning the Document

Typesetting a technical document is not only a matter of getting the eqn vocabulary right so you can print the appro-
priate mathematical expressions. Although eqn tries to make some actions automatic and puts items in the proper
places, some fine-tuning is occasionally needed. With eqn, you can line up equations, define font sizes and types,
and vary horizontal and vertical spacing.

Lining Up Equations

Earlier we showed you how to line up pieces of an equation using tabs. Another method of doing this is to use the
commands mark and lineup. This is useful when you have to line up a series of equations at some horizontal po-
sition, often at an equal sign.

For example, you would type in:
.EQ
mu∼mark =∼lambda t
.EN
.EQ
lineup =∼int from 0 to t lambda dz
.EN

to line up the two equations:

µ = λt

=
t

0
∫ λdz

The word mark can appear only once at any place in an equation. Successive equations should also contain
lineup only once. Thus, when you have a series of equations that require you to line up items in more than one
position, like the following:

a1 + a2 +x1 + x2 = 34
2a1 +4a2 = 28
3a1 +4x2 = 56

it might be better to line up the pieces of the equation on the left-hand side using tabs, and those on the right-hand
side using mark and lineup.

If at all possible, you should type in the longest expression first to serve as the marking point. If you type in
shorter expressions first, mark will not have enough room to line up successive longer expressions.

Changing Fonts and Sizes

In eqn, equations are automatically set in 10-point type, with standard mathematical conventions to write some
characters as roman or italic. To change sizes and fonts, use the following keywords:

size Change to any of the following legal sizes:

12, 14, 16, 18, 20, 22, 24, 28, 36

200 Unix Text Processing

You can also change the size by a relative amount, such as size +2 to make a
character 2 points bigger, or size -2 to make it 2 points smaller.

bold Change to bold.

fat Widen the current font by overstriking.

italic Change to italic.

roman Change to roman.

Like sup and sub, these keywords only apply to the character(s) immediately following them, and revert to
the original size and font at the next space. To affect more complex or longer strings (such as a whole equation), use
braces. Consider the following examples:

#bold qP# qP
#roman alpha∼beta# α β
#fat half# 1

2
1
2

#size +3 x =y# x = y
#size 8 {A + B}# A + B

If the entire paper is to be typeset in a nonstandard size or format, you can avoid redefining each and every character
sequence by setting a global size (gsize) or font (gfont) that will affect the whole document. You can set this up
at the top of your file (or wherever the font and size changes begin) within an .EQ and .EN.

For example, to change the fonts to roman and the size to 12, you could enter:
.EQ
gfont R
gsize 12
.EN

The rest of the equations in the document (up to another gfont or gsize) will be set in 12-point roman type. You
can use any other troff font names in place of R.

Horizontal and Vertical Motions

You have already learned how to obtain small extra horizontal spaces in the output using ∼ and ˆ. To move terms at
some arbitrary length backward or forward, use the commands back n and fwd n, where n denotes how far you
want to move, in 1/100s of an em. (An em is about the width of the letter m).

You can also move items up or down using up n or down n, where n is the same unit of measure as de-
scribed. These local horizontal and vertical motions affect only the character(s) next to the keyword. To move
larger strings or whole expressions, enclose them in braces.

Keywords and Precedence

Braces are used to group items or change the precedence of operations if you are unsure of how eqn will treat multi-
ple keywords in a single expression. If you don’t use braces, eqn performs the operations in the following order:

dyad vec under bar tilde hat dot dotdot
fwd back down up
fat roman italic bold size
sub sup sqrt over
from to

All operations group to the right, except for the following, which group to the left:
over sqrt left right

Typesetting Equations with eqn 201

Problem Checklist

The eqn program usually displays self-explanatory messages when it encounters a syntax error or any other format-
ting error. To check a document before printing, type:

$ eqn files > /dev/null

This discards the output but prints the error message. Some of the error messages you might encounter are:
eqn: syntax error between lines 14 and 42, file book

A syntax error (such as leaving out a brace, having one too many braces, having a sup with nothing before it, or us-
ing a wrong delimiter) has occurred between lines 14 and 42, approximately, in the file book. These line numbers
are not accurate, so you have to look at nearby lines as well. If the following message is displayed:

word overflow

you have exceeded the limits of troff’s internal buffer. If you print the equation as a displayed equation, this mes-
sage will usually go away. If the message is line overflow, the only solution is to break up the equation across
multiple lines, marking each with a separate .EQ and .EN. The eqn program does not warn about equations that
are too long for one line. If the following message is displayed:

eqn: fatal error: Unexpected end of input at 2 sub a

you forgot to put a closing quotation mark after the string 2 sub a when you named it in the define statement.

It is also easy to leave out an ending delimiter in an equation. In this case, eqn thinks that successive charac-
ter sequences (which may run to hundreds of lines) are still part of the inline expression. You may then get an over-
flow error or a garbled document. The checkeq program checks for misplaced or missing inline delimiters and
similar problems.

For example, when run on a draft of this chapter, checkeq produced the following report:
$ checkeq sect1
sect1:

New delims ##, line 6
2 line ##, lines 618-619
2 line ##, lines 619-620
2 line ##, lines 620-621

.

.

.
EQ in ##, line 689
EN in ##, line 691
13 line ##, lines 709-721

.

.

.
2 line ##, lines 1300-1301
2 line ##, lines 1301-1302
Unfinished ##

This report (which ran to 66 lines) was telling us that somewhere before line 618 there was an unclosed inline equa-
tion using the delimiter #. Sure enough, the following error was found:

B#f(theta)

Because there was only one delimiter, eqn gets “out of phase” and all subsequent delimiters are misplaced. After
we fixed this one error, checkeq printed the following “null” report:

$ checkeq sect1
sect1:

Because a simple problem like the one shown here can cause every subsequent equation in the file to be garbled, and
can waste an entire formatting run, it makes sense to run checkeq before you format any files containing equa-
tions.

4Chapter 10

Drawing Pictures

If you are one of those who can’t draw a straight line, let alone a decent picture or graph, you probably replace pic-
tures with verbal descriptions. Perhaps you know what it is like to describe a drawing to a person who knows how to
draw. The pic preprocessor requires you to follow the process of using “words” to describe something pictorial.

The pic preprocessor has a dual purpose. The first is to provide a “natural language” method of describing
simple pictures and graphs in your documents. The second is to offer a “programming language” for generating pic-
tures and graphs with minimal user input. Learning pic is an iterative process: describe what you want and then
look at what you get. We have included many examples that show both the description and the resulting picture or
graph. Take the time to create variations of these descriptions, making modifications and improvements.

The pic preprocessor was designed to produce output on a typesetter, which makes pic expensive and diffi-
cult to learn. Fortunately, some graphics terminals and most laser printers can be set up to display or print pic
drawings. Access to one or the other is essential if you are going to get enough practice to know how pic responds.

As a preprocessor, pic is a program that processes a specific portion of an input file before the whole docu-
ment goes to the troff formatter. (The nroff formatter cannot produce pic output for terminals or line print-
ers). The preprocessors translate your description into low-level formatter requests for troff.

Just like with tbl and eqn, a pair of macros in the input file mark the beginning and end of input to be
processed by pic. The delimiters for pic are:

.PS
pic description
.PE

When you format a document that contains pic descriptions, you must invoke the pic preprocessor as follows:
$ pic file | troff | device

The pic Preprocessor

Imagine that you have to describe over the telephone the following picture:

You might say: “There’s an ellipse at the top. Arrows are connected to two boxes and a circle below it.” Now, think
about describing this picture to someone who is attempting to draw it. No matter how careful you are, you realize
that it is difficult to translate a drawing into words.

203

204 Unix Text Processing

“First, draw an ellipse. Move down and draw a circle below it. Then draw one box to the left and draw
another box of the same size to the right. Then draw an arrow from the bottom of the ellipse to the top
of the left-hand box. Then draw a line from the bottom of the ellipse to the top of the right-hand box.
The last thing to do is draw a line between the circle and the ellipse and put arrowheads on both ends.”

Here’s what the actual pic description looks like:
.PS
down
ellipse
move down 1.25
circle radius .35
move left 1i from left of last circle; box
move right 1i from right of last circle; box
arrow from lower left of last ellipse to top of 1st box
arrow from lower right of last ellipse to top of 2nd box
arrow <-> from bottom of last ellipse to top of last circle
.PE

Even though you may know nothing about pic, you should be able to make some sense out of this description. It
names several objects: an ellipse, two boxes, a circle, and three arrows. It specifies motion in inches as well as
changes in direction. It also arranges some objects in relation to others, locating the boxes to the left and right of the
circle and drawing arrows between the ellipse and the circle.

Having seen a full description of a pic drawing in this example, you should be able to get something of the
flavor of pic. The simpler the drawing, the less explaining you have to do. We won’t go into any more detail about
this pic description right now. We’ll look at it later in this chapter after we’ve covered the basics of the pic lan-
guage.

Naming Objects

The pic program is easy to use if you are describing only a single box or a circle. To draw a circle, you name that
object within the .PS/.PE macros:

.PS
circle
.PE

When this description is processed by pic it produces:

There are seven graphic primitives: arc, arrow, box, circle, ellipse, line, and spline. We will
show these primitives in examples that present additional aspects of pic.

In using a computer language, you have to be precise, using as few words as possible to get the picture you
want. This means that you allow the program to make as many of the decisions about the drawing as is practical.
After you understand pic’s normal behavior, you will know what pic will do on its own.

For instance, we didn’t specify the size of the circle in the last example. By default, pic draws a circle with a
diameter of ½ inch (or a radius of .25 inch). You can get a circle of a different size, but you have to specify the size.

.PS
circle radius .5
.PE

The pic program understands any number to be in inches. You specify the size of a circle by giving its radius,
which can be abbreviated as rad, or its diameter, which can be abbreviated as diam. The previous input pro-
duces a circle twice the size of the standard circle:

Drawing Pictures 205

Similarly, if you specify box, you will get a box with a height of .5 inch and a width of .75 inch. You can get
a larger or smaller box by changing its dimensions:

.PS
box height 1i width .5
.PE

The output for this example is a box twice as high as it is wide:

You can also use the abbreviations ht and wid for these attributes. The order in which you specify the di-
mensions does not matter, and you can change one attribute without changing the other. That is how we can draw a
square:

.PS
box ht .75
.PE

The default width is already .75 inch, so this pic description produces:

With the attribute same, you can reuse the dimensions specified for a previous object of the same type. For
instance, after you had described the square box, box same would duplicate a square of the same size.

Labeling Objects

To provide a label for any object, specify the text within double quotation marks after the name of the object. The
label is placed at the center of the object.

.PS
box ht .75 "Square One"
.PE

This pic description produces:

Square One

206 Unix Text Processing

Even if a label does not contain blank spaces, you must enclose it within double quotation marks. Each individually
quoted item will be output on a new line.

box wid .5 "Second" "Square"

This description produces:

Second
Square

Because troff, not pic, actually handles the text, pic doesn’t really try to fit a label inside an object. You must
determine the amount of text that will fit. The pic program ignores lines beginning with a period, permitting you to
use troff requests to change the point size, font, or typeface. It is best to avoid spacing requests, and be sure to re-
set any change in point size.

When you specify a single text label with a line, pic centers it on the line. For instance, inline troff re-
quests can be used to print a label in 14-point italic (i.e., 4 points larger than the current point size).

.PS
line "\fI\s14pic\s10\fR"
.PE

It produces:

4pic0

Because the standard placement of labels is not always useful, you can specify the attributes above or below. In
the following example, the point size is specified using the following .ps request:

.ps +2
line "\fIPIC\fR" above
.ps -2

It produces:

PIC

If you supply two quoted arguments with line, the first will be printed above the line and the second printed below.

You can also select a line or box that is dotted or dashed, as you can see in the next example:
box dotted "\f(CWbox dotted\fP" above

Note the inline request to invoke the constant-width font for the label. The above keyword places the label above
the center line of the box. This description produces:

box dotted

The box, composed of dots, contains a label printed in constant-width font. It is obvious here that pic made no at-
tempt to fit the label “inside” the box. The above attribute does not place text above the box, but rather above the
center of the box. The description:

line dashed "sign here" below

produces a dashed line:

sign here

If the attributes of texture are followed by a value, pic will try to keep that amount of spacing between the dashes

Drawing Pictures 207

or dots. The description dashed .1 will result in dashes spaced .1 inch apart.

pic’s Drawing Motion

After you have named an object and determined its size, you have to think about where pic is going to draw it. (In-
dentation and other matters concerning the placement of the drawing on the page are supplied by either the
.PS/.PE or .DS/.DE macros. The pic program places a single object at the left margin. If you name three ob-
jects in the same description, where will pic draw them?

.PS
circle "A"
line "1" "2"
box "B"
.PE

The following output is produced:

A

1

2

B

Objects are placed one after another from left to right. The pic program assumes that objects should be connected,
as in the following example:

.PS
box ht 1.25
box ht 1
box ht .75
box ht .5
.PE

This description produces a row of boxes of decreasing size:

If you don’t want objects to be connected, you can move before specifying the next object. In the next example,
move places a box to the right of a circle:

.PS
circle "A" ; move ; box "B"
.PE

As shown in this example, pic commands can be entered on the same line, separated by semicolons, instead of on
separate lines. This description produces:

A B

208 Unix Text Processing

Changing Direction

As you have seen, pic places objects in a continuous motion from left to right. You can also get pic to change di-
rection using the attributes left, right, up, or down. We’ll see examples of their use shortly.

The distance of a move is the same length as a line (.5 inch). If you want to change the distance of a move
or the length of a line, then the change must be accompanied by an attribute of direction. Although it seems nat-
ural to write:

line 2; move 1; arrow 1 Wrong

pic does not accept this command unless you specify directions for all three cases. When pic objects to your
choice of words, it will display the offending line, using a caret (ˆ) to mark the error.

pic: syntax error near line 1, file test
context is

line 2 ˆ; move 1

Only the first error on the line is marked. (It is acceptable to write line; move, using the standard length and dis-
tance). The next example shows how to draw a line of a specified length and how to move a specified distance. The
pic program assumes that any value is in inches; thus you can say 2i or simply 2 to indicate 2 inches.

line up 2; move down 1; arrow right 1

Note that the attribute of direction precedes the distance. The preceding description produces:

You cannot specify down 1 or right 1 without also specifying either a line or move. These attributes change
the direction of the motion used to draw objects. They do not cause movement. The attributes of direction affect the
position of the objects that follow it, as shown in the next example.

.PS
down; circle "A"; line; box "B"
.PE

These objects are drawn from top to bottom:

A

B

Drawing Pictures 209

If you describe a change of motion, it affects the points where objects are connected. Look what happens if
we specify the attribute down after the circle:

.PS
circle "A"; down; line; box "B"
.PE

Now the line begins at a different position:

A

B

The pic program keeps track of the start and end points for each object, and their relationship to the direction
in which objects are being drawn. The next object is drawn from the exit point of the previous object. Entry and
exit points may seem obvious for a line, but not so obvious with circles. When the motion is from left to right, a cir-
cle’s entry point is at 9 o’clock and its exit point is at 3 o’clock. When we specified down after the circle in the
first example, the exit point of the circle did not change; only the direction in which the line was drawn from that
point changed. Entry and exit points are reversed when the motion is from right to left, as specified by the left at-
tribute.

left; arrow; circle "A"; arrow; box "B"

This description produces:

AB

You can draw a diagonal line by applying two changes in direction. Look at how we describe a right triangle:
.PS
line down 1i
line right 1i
line up 1i left 1i
.PE

This description produces:

The diagonal line is drawn by combining two attributes of direction, up and left. You can describe a continuous
line using then. In the next example we use arrow to demonstrate that we are describing a single object.

.PS
arrow down 1i then right 1i then up 1i left 1i
.PE

When using then, you have to define the motion on a single line or escape the end of the line with a backslash (\).

210 Unix Text Processing

It produces:

If the description ended with:
then up 1i then left 1i

we would have a 1-inch square instead of a right triangle.

An arc is a portion of a circle. Naming four arcs consecutively will draw a circle. An arc is drawn counter-
clockwise from the current position (from 6 o’clock to 3 o’clock, for instance). The next example uses arcs to pro-
duce a box with rounded corners:

line right 1; arc; line up ; arc
line left 1; arc; line down; arc

This description starts with the bottom line of the curved box. The motion is counterclockwise.

The attribute cw draws an arc in a clockwise direction:
arc "A"; arc "B" cw

This description produces:

A B

Note that text is placed at what pic considers to be the center of the arc, which is the center of the corresponding
circle.

A spline is a cross between an arc and a line. It is used to draw smoothed curves. In this example, a
spline traces a path between two circles.

circle rad .25
spline right 1 then down .5 left 1 then right 1
circle same

This description produces:

Drawing Pictures 211

A spline is used in the same way as a line. When drawn continuously using then, a spline that changes di-
rection draws a curve. (Similarly, a line would produce an angle). We’ll see more examples of spline later.

Placing Objects

It isn’t always useful to place objects in a continuous motion. Look at the following example, which seems like it
ought to work but doesn’t:

.PS
down; arrow; box
right; arrow; ellipse; arrow
.PE

This pic description produces:

Note the short arrow, drawn from the box to the circle. What happened? The end point of the box was not on the
right, but on the bottom, because the motion in effect where the box is drawn is down. Changing direction (right)
affects only the direction in which the arrow is drawn; it does not change where the arrow begins. Thus, the arrow is
drawn along the bottom line of the box.

Sometimes, it is best to place an object in relation to previously placed objects. The pic program provides a
natural way to locate objects that have been drawn. For example, the attribute first locates the first occurrence of
an object, and the attribute from specifies that the object serves as a starting point for the next object drawn.

.PS
circle ; move; circle ; arrow up from first circle
.PE

It produces:

You can reference each type of object using an ordinal number. Referring to the order in which an object is drawn,
you can say first box (1st box is also acceptable) or 2nd circle. You can also work back from the last
object, specifying the last box or 2nd last box.

The center of each object is used as the reference point. In the last example, the arrow was drawn from the
center of the circle. The attribute chop can be used to chop off the part of the line that would extend to the center of
each circle. In the next example, a chopped line is drawn between the first and third circles:

.PS
circle "1" ; move down from last circle
circle "2" ; move right from last circle; circle "3"
line from 1st circle to last circle chop
.PE

212 Unix Text Processing

This description produces:

1

2 3

The amount that is chopped is by default equal to the radius of the circle. You can specify how much of the line is
chopped, for use with other objects or text, by supplying either one or two values after the attribute. If a single value
is given, then both ends of the line are chopped by that amount. If two values are given, the start of the line is
chopped by the first amount and the end of the line chopped by the second amount.

It is important to remember that movement from a referenced object is measured from its center, unless oth-
erwise specified. Look at these four circles:

1 2 3

4

The second circle is produced by the description:
move right from last circle; circle "2"

Because the distance (.5 inch by default) is measured from the center of the circle, there is only .25 inch between the
two circles. The third circle is produced by the description:

move right from right of last circle; circle "3"

Now the distance is measured from the right of the second circle. There is twice as much space between the second
and third circle as between the first and second. The fourth circle is produced by the description:

move right from bottom of last circle; circle "4"

The starting point of the fourth circle (its left “side”) is .5 inch from the bottom of the previous circle.

Using bottom, top, right, and left, you can locate specific points on any object. In the next example,
we solve the problem of turning a corner by specifying the place from which the arrow will be drawn:

.PS
down; arrow; box
right; arrow from right of last box; ellipse; arrow ; box
up; arrow from top of last box
.PE

In our earlier example, the arrow was drawn from the bottom of the box; now we change the starting point of the ar-
row to the right of the previous box. This description produces:

Drawing Pictures 213

With boxes and ellipses, you can refer to an upper or lower position:
.PS
box; arrow from upper right of last box;
arrow down from lower left of last box
.PE

This description produces:

With objects like lines and arcs, it is more useful to refer to the start and end of the object. For example, here’s
another way to draw a triangle:

.PS
line down 1i
line right
line from start of 1st line to end of 2nd line
.PE

The last line could also be written:
line to start of 1st line

The pic description produces:

You now know enough of the basic features of pic to benefit from a second look at the pic description shown at
the beginning of this chapter. The only thing we haven’t covered is how to get a double-headed arrow. Because an
arrow can also be specified as line -> or line <-, you can get a double-headed arrow with line <->.

.PS
1 down
2 ellipse
3 move down 1.25
4 circle radius .35
5 move left 1i from left of last circle; box
6 move right 1i from right of last circle; box
7 arrow from lower left of last ellipse to top of \

1st box
8 arrow from lower right of last ellipse to top of \

2nd box
9 line <-> from bottom of last ellipse to top of last \

circle
.PE

The lines in this description are numbered for easy reference in the following exercise.

As is true with almost anything you describe, a pic description could be written in several different ways. In
fact, you will learn a lot about pic by making even minor changes and checking the results. See if you can answer
these questions:

214 Unix Text Processing

• Why is down specified before the ellipse? If you removed down, would the circle be centered un-
derneath the ellipse?

• down changes direction of movement. Does pic allow you to say move 1.25 as well as move
down 1.25?

• Where is the exit point of the circle when it is drawn with a downward motion in effect? If lines 5
and 6 were replaced by:

move left 1i; box
move right 2i; box

where would the boxes be drawn?

• There is 1 inch between the circle and each box. How much space would there be if lines 5 and 6 were
replaced by:

move left from last circle; box
move right from last circle; box

Hint: The distance of a move is .5 inch, and this would be measured from the center of the circle, which
has a radius of .35 inch.

• Line 8 draws an arrow from the lower right of the ellipse to the top of the right-hand box. If it were
simplified to:

arrow from last ellipse to 2nd box

where would the beginning and ending of the arrow be?

• This drawing can present an interesting problem if the circle is omitted. How would you draw the two
boxes if the circle was not there as a reference point?

Fortunately, there is a simple way to deal with the problem presented in the last question. Lacking a reference ob-
ject, you can create an invisible one using the invis attribute. This lets you specify a circle that is not drawn but
still holds a place that you can reference.

.PS
down
ellipse
move down 1.25
circle radius .35 invis
move left 1i from left of last circle; box
move right 1i from right of last circle; box
arrow from lower left of last ellipse to top of 1st box
arrow from lower right of last ellipse to top of 2nd box
.PE

This pic description produces:

Drawing Pictures 215

One thing that seems hard to get used to is that your current position always changes after an object is drawn, based
on the motion in effect. This means you have to keep in mind the location of the starting point for the next object
that you are going to draw.

You can use braces to enclose an object (or a series of objects or motions) so that the starting point is un-
changed. In the last drawing, if the invis attribute didn’t solve the problem so easily, we could have used braces to
maintain a central point below the ellipse from which you can move to draw the boxes. Here’s a different example
that illustrates how braces can be used to control your position:

.PS
{arrow down}
{arrow up}
{arrow left}
arrow right
.PE

Each object, except the last, is enclosed in braces; all objects share the same starting point. This description pro-
duces:

Placing Text

Text can be placed in a drawing just like an object. You have to take care in placing text, as in the next example,
where we specify a move so that the compass points are not drawn on top of the arrowheads:

.PS
{arrow down; move; "S" }
{arrow up; move; "N" }
{arrow left; move; "W" }
{arrow right; move; "E" }
.PE

Notice that the attributes of direction cause the object to be drawn in that direction and establish a new motion for
successive objects. This description produces:

S

N

W E

As mentioned, pic does not really handle text, allowing troff to do the work. In some ways, this is unfortunate.

216 Unix Text Processing

The thing to remember is that pic does not know where the text begins or ends. (You can use the attributes ljust
or rjust to have the text left justified—the first character is positioned at that point—or right justified—the last
character is at that point. These attributes can also be used with text labels).

The pic program does not keep track of the start and the end of a text object. It only knows a single point
which is the point where troff centers the text. In other words, a text item does not cause a change in position.
Two consecutive quoted items of text (not used as labels to another object) will overwrite one another. Objects are
drawn without regard to where the text item is, as shown in the next example:

"Start"; line;arrow;line; "Finish"

This description produces:

Start Finish

This example can be improved by right justifying the first text item ("Start" rjust) and left justifying the last
text item ("Finish" ljust). As you’ll notice, though, the picture starts at the margin, and the label is forced out
where it doesn’t belong.

Start Finish

The location of the point that pic knows about is unchanged. Most of the time, you will have to use the move
command before and after inserting text.

Because pic works better with objects than text, the invis attribute can be used to disguise the object be-
hind the text, and give you a way to place text where you can point to it.

.PS
down
ellipse invis "DECISION?"
move down 1.25
circle rad .35 invis "Maybe"
move left 1i from left of last circle; box invis "Yes"
move right 1i from right of last circle; box invis "No"
arrow from lower left of last ellipse to top of 1st box
arrow from lower right of last ellipse to top of 2nd box
line <-> from bottom of last ellipse to top of last circle
.PE

This description produces:

DECISION?

MaybeYes No

You may have recognized that the description for this drawing is basically the same one that produced the drawing at
the beginning of this chapter. The invis attribute makes text labels, not objects, the subject of this picture. This
should lead you to the idea that pic descriptions can be reused. Try to think of the form of a drawing separately

Drawing Pictures 217

from its content. Most drawings contain forms that can be reworked in the service of new material.

Place and Position Notation

Can you locate the starting points of the arrows on this ellipse?

To write the description for this example is a test of patience and thoroughness, if nothing else. We start at the up-
per left of the ellipse and move clockwise around the ellipse.

.PS
ellipse
arrow up left from upper left of last ellipse
arrow up from top of last ellipse
arrow up right from upper right of last ellipse
arrow right from right of last ellipse
arrow right down from lower right of last ellipse
arrow down from bottom of last ellipse
arrow left down from lower left of last ellipse
arrow left from left of last ellipse
.PE

Although you can say upper left or lower left, you cannot say top left or bottom right.

Sometimes pic’s English-like input can get to be cumbersome. Fortunately, pic supports several different
kinds of place and position notations that shorten descriptions.

You can reduce the phrase:
from bottom of last ellipse

to either of the following:
from .b of last ellipse
from last ellipse.b

You can use this notation for the primary points of any object. You can also refer to the compass points of an object,
which provides a way to specify corners. Table 10-1 lists the placename notations.

Table 10.1 pic Placename Notations

218 Unix Text Processing

Value Position

t Top
b Bottom
l Left
r Right
n North
e East
w West
s South
nw Northwest
sw Southwest
ne Northeast
se Southeast

Instead of writing:
from lower left of last ellipse

you might write:
from last ellipse.sw

Another simple way to shorten a description is to give an object its own name. The name must begin with an upper-
case letter. If we assign the placename Elp to the ellipse:

Elp: ellipse

then we have either of the following ways to refer to specific points:
arrow up left from upper left of Elp
arrow up left from Elp.nw

Here’s the condensed version of the description for the previous example:
.PS
Elp: ellipse
arrow up left from Elp.nw
arrow up from Elp.n
arrow up right from Elp.ne
arrow right from Elp.e
arrow right down from Elp.se
arrow down from Elp.s
arrow left down from Elp.sw
arrow left from Elp.w
.PE

At least it helps to keep you from confusing the placement of the arrow with the drawing motion.

If you want to specify a point that is not at one of the compass points, you can indicate a point somewhere in
between two places. You can use the following kind of construction:

fraction of the way between first.position and second.position

or use the following notation:
fraction < first.position,second.position >

The following example shows both forms:
box
arrow down left from 1/2 of the way between last box.sw \
and last box.w
arrow down right from 1/2 < last box.se, last box.e >

Although you may not want to intermix different forms for the sake of someone reading the description, pic does
allow it. The preceding description produces:

Drawing Pictures 219

The at attribute can be used to position objects in a drawing.
box "A"; box with .se at last box.nw "B"
box with .sw at last box.ne "C"

This description produces:

A

B

C

The next example illustrates again the problem of placing text. This time we want to position callouts above
and below the text.

PATH=.:/bin:/usr/bin:/usr/local/bin:/usr/fred/bin

Current

Directory

UNIX System

Programs

Site-Specific

Programs

We position the text inside a long box. Because the callout lines will point to the box that surrounds the text rather
than to the text itself, we try to specify approximately where to draw the lines.

.PS
"#" introduces a comment
#
Describe box; escape end of line to include
text on separate line
#

Path: box ht .25 wid 4 \
"\f(CWPATH=.:/bin:/usr/bin:/usr/local/bin:/usr/fred/bin\fR"

#
Describe line down from box and put top of ellipse
at end of last line; label will be printed
in 9-point italic.
#

line down from 1/3 <Path.sw, Path.s>
ellipse "\fI\s9Current" "Directory\s0\fP" with .t at \
end of last line

#
Describe two lines, one up from box
and a second down to the point right of it.
#

220 Unix Text Processing

line up from 1/2 <Path.nw, Path.n>
line to 2/3 <Path.nw, Path.n>
ellipse "\fI\s9UNIX System" "Programs\s0\fP" with .b at \
start of last line

#
Describe the third callout below the box.
#

line down from Path.s
ellipse "\fI\s9Site-Specific" "Programs\s0\fP" with .t at \
end of last line
.PE

Admittedly, positioning callouts is guesswork; it took several iterations to align the callouts with the appropriate
text.

Defining Object Blocks

You can describe any sequence of motions or objects as a block. A block is defined between a pair of brackets ([]).
You can also give the block a placename, beginning with an uppercase letter. Some of the objects that we have cre-
ated in this chapter, such as a square, triangle, or compass, could be defined as blocks and named so that we can re-
fer to each one as a single object.

Rtriangle: [
linewid = 1
line down then right then up left
]

.ps 18

.ft I
"1" at Rtriangle.w
"2" at Rtriangle.s
"3" at Rtriangle
.ft R
.ps 10

This description produces:

1
2
3

We are able to refer to the compass points of the block, although these points may not always be where you expect.
The number 3 is printed at the center of Rtriangle according to pic. But in fact its position is the side opposite
the right angle. The “center” of this block is at the center of a box that shares the bottom and left sides of the right
triangle.

You can also refer to positions for a single block using brackets. The reference [].w is a position at the west
end of the block.

In this example, instead of specifying individual line lengths, we redefined the variable linewid. This is the
variable that pic accesses to determine how long a line should be. Shortly, we’ll look at all the variables preset by
pic. Generally, what you describe within a block remains local to the block. Thus, linewid would not affect
other lines outside the block. Otherwise, resetting a variable has an effect not only on other objects in that drawing
but also on other drawings in that file.

The best use of blocks in a drawing is to define significant portions so that you can position them accurately.
Blocks usually relate to the content of a drawing. In the next example, we describe a two-dimensional box to repre-
sent a modem.

MOD: [
BOXA: box wid 1 ht .25 " \(bu \(bu \(bu \(bu \(bu "
line from BOXA.nw up 1 right .5

Drawing Pictures 221

then right 1 then down 1 left .5 to BOXA.ne
line from BOXA.se up 1 right .5 then up .25
]

The block, named MOD, consists of a box followed by a series of lines. The box is given a name, BOXA. The special
character sequence \(bu represents a bullet (interpreted by troff, not pic). This description produces:

• • • • •

The next block, named WALL, describes a drawing of a telephone wall socket. It contains two objects, a box named
BOXB and a circle inside the box named CIR.

WALL: [
BOXB: box wid .25 ht .5
CIR: circle at center of BOXB radius .05
] with .s at MOD.ne + (.5,1)

To position this block in relation to MOD, we describe a position 1 inch up and .5 inch to the left of the top right-hand
corner of MOD. Then we draw a spline from the modem to the wall socket. This introduces us to the fact that no
matter how we specify an object, pic locates that object in a Cartesian coordinate system. We’ll look at this in
more detail in a later section. For now, it is sufficient to note how we change position by adding or subtracting from
the position on the x-axis and y-axis. MOD.ne+(.5,1) adds .5 to the x-axis (moving to the right) and 1 to the y-
axis (moving up) from the coordinates of MOD.ne.

spline from MOD.n up .25 right .5 then right 1 to center \
of WALL.CIR

Notice that we can refer to objects inside a block. If we had not named the circle, we could still refer to it as
WALL.circle.

The last thing to do is to position the text:
move right 1 from WALL.e; " Telephone Line"
move down .5 from MOD.s "Modem"

222 Unix Text Processing

This entire description produces the following drawing:

• • • • •

Telephone Line

Modem

Resetting Standard Dimensions

The pic program has a number of built-in variables that define the values used to draw standard pic objects.

Refer to Table 10-2. You can redefine these variables anywhere in a pic description. A variable set inside
one pic description will remain in effect for other descriptions within the same file. One exception is a variable de-
fined within a block; that definition is local to the block.

Table 10.2 pic System Variables

Variable Default Value Meaning

arcrad .25 Radius of arc
arrowwid .05 Width or thickness of arrowhead
arrowht .1 Height or length of arrowhead
boxwid .75 Width of box
boxht .5 Height of box
circlerad .25 Radius of circle
dashwid .05 Width of dash
ellipseht .5 Height of ellipse
linewid .5 Length of horizontal line
lineht .5 Length of vertical line
movewid .5 Distance of horizontal motion
moveht .5 Distance of vertical motion
scale 1 Scale dimensions
textwid 0 Width of area used for drawing
textht 0 Height of area used for drawing

For instance, we can specify an oversize arrow by changing the following variables:
arrowwid = 1

Drawing Pictures 223

arrowht = 1
linewid = 2
arrow

It produces the following pic drawing:

Controlling the Dimensions of a Drawing

The textwid and textht variables control the width and height respectively, of the area use by pic on a page.
(It doesn’t refer to the amount of space occupied by an item of text). These values can also be set as arguments to
the .PS macro.

.PS width height

When you specify the width or height or both, pic scales the drawing to that size regardless of the absolute dimen-
sions that are specified within the drawing. The only thing it doesn’t scale adequately is text. It can be easier to de-
scribe a drawing with simple units and have them scaled more precisely to fit on the page than to work with exact
sizes.

A good example of scaling is turning the rounded box described previously in this chapter into a representa-
tion of a terminal screen.

.PS 2 4
line right 1; arc; line up ; arc
line left 1; arc; line down; arc
.PE

Although the pic description is made up of 1-inch lines, the actual screen produced by pic will be 4 inches wide
and 2 inches high.

Normally, you want troff to output the regular lines of text on lines that follow the pic drawing. If the
.PF (F for flyback) macro is used in place of .PE, troff will return to the position it held before the pic draw-
ing was output. This feature is useful if we want to put formatted text within our large screen.

.PS 2 4
line right 1; arc; line up ; arc
line left 1; arc; line down; arc
.PE
.ft CW
.sp 2
Alcuin Development System 5/31/87
.sp
Please login:
.sp 6

This description produces:

224 Unix Text Processing

Alcuin Development System 5/31/87

Please login:

You have to remember to provide the space after the text to push the current position past the end of the screen. Oth-
erwise subsequent text will also appear within the box.

Debugging pic Descriptions

You can invoke the pic preprocessor on its own to have it check through your file and report any syntax errors.
This can save a lot of time, especially if your file contains other text that will be sent to troff, assuming that you
wouldn’t want the file processed unless the pic descriptions succeeded. If you have the file circles, for exam-
ple, that contains a pic description, you can invoke pic as:

$ pic circles

If processing is successful, pic output will stream past on your terminal screen. If pic finds an error in your de-
scription, it will print the error message.

If you have several pic descriptions in a file, or you have regular text surrounding a pic description, you can
send the output to /dev/null, and only the error messages will be displayed on your screen.

You may want to invoke pic on its own simply to look at the output pic produces. For a discussion of the
output that pic sends to troff, read about line drawing in Chapter 14.

From Describing to Programming Drawings

As we look at more advanced examples of pic, you may begin to question the amount of description that is re-
quired to produce a drawing. You may be amazed that drawings that look so simple require so many words. After
you realize that you are approaching the limits of what can be described using an English-like syntax, you may want
to look at pic from another perspective. You can view pic as a programming language for generating graphics.

Looking at this other side of pic, you will find that the descriptions are perhaps more difficult to read but
much easier to write. The purpose of a “programmed” pic description is not to imitate a verbal description, but to
minimize user input, to provide structures that can be used to produce several kinds of drawings and to make it eas-
ier to change a drawing.

The focus of the rest of this chapter will be to introduce many of these special features of pic, including vari-
ables, expressions, and macros. But there are more possibilities than we can attempt to describe. The pic program
follows the general UNIX philosophy that any program should be able to accept input from any program and direct
its output to another program, troff. Thus, pic descriptions can be built by other UNIX utilities. For instance,
you might develop an awk program specifically designed for creating flow charts.

Drawing Pictures 225

Locating Objects Using Cartesian Coordinates

For more exact positioning of objects and text, pic uses a standard Cartesian coordinate system. The first object
drawn, including a move, starts at position 0,0. The x and y position of a circle, an ellipse, or a box is at the center
of the object. For lines, this position refers to the beginning. For arcs, this position is at the center point of the re-
lated circle. You can position objects using the at attribute:

circle "0,0" at 0,0
circle "1,1" at 1,1
circle "1,0" at 1,0
circle "2,1" at 2,1

This description produces:

0,0

1,1

1,0

2,1

The center of the circle is placed at the specified coordinates. You could also write:
circle with .t at 1,1

and it would place the top of the circle at that position. A reference to last circle would still locate the center
of the circle, but a line drawn from 1,1 would begin at the top of the circle.

Note that the position of 0,0 will not always be the same place on the page. The first object drawn is the point
of reference; movement to the left of that point will cause 0,0 to be moved over toward the center of the page.

box ht 0.3 wid 0.3 "0,0"
move to 1,0
box "1,0" same
move to -1,0
box "-1,0" same

This description produces:

0,0 1,0-1,0

It may be helpful to sketch a drawing on graph paper and then translate it into a pic description. Standard graph
paper is divided into quarter-inch squares. When you use graph paper, you might find it useful to set the scale
variable to 4. All dimensions and positions will be divided by the value of scale, which is 1 by default.

It is much easier to describe a drawing in full units rather than fractions. Look at the following description:
scale=4
line from 0,0 to 0,3 then to 6,3 then to 6,0 then to 0,0
line from 6,0 to 8,1 then to 8,4 then to 2,4 then to 0,3
line from 6,3 to 8,4

The distance between 0 and 1 is normally 1 inch. Because we are scaling this drawing by 4, the actual distance is ¼
inch. It seems easier to describe a point as 2,3 rather than 5,.75. This description produces a two-dimensional box:

226 Unix Text Processing

Although pic scales the location of text, it is your responsibility to reduce the size of the text to fit a scaled
object. You can also use scale to change the basic unit of measurement from inches to any other unit. For in-
stance, setting scale to 6 will cause all dimensions and coordinates to be interpreted in picas (6 picas to the inch).

Splines and arcs are much easier to draw using coordinates. In the following example, we use a spline to draw
a smooth curve between several points on a crude graph.

The graph is produced by the following description:
scale=4
line from 0,0 to 0,4
line from 0,0 to 9,0
spline from 0,0 to 3,3 then to 5,.25 then to 8,1.5

You can also specify relative coordinates as an expression within parentheses. It has the effect of adding or
subtracting from the absolute coordinates of a particular place.

circle rad .5
circle same at last circle+(.25,0)

The same attribute allows us to duplicate the size of a previous object. The expression circle same means “the
same size as the last circle.” This description produces:

Similarly, you can achieve finer control over positioning by moving from a compass point:
box with .sw at last box.ne+(.05,-.05)

Expressions and User-Defined Variables

An expression can be used to supply the dimensions or the position of an object. Any of the following operators can
be used in an expression: +, -, *, /, and % (modulo). Expressions can be used to manipulate the built-in variables as
follows:

circle rad circlerad/2

This will draw a circle with a radius that is half the size of the default radius. An expression can also refer to the
value of placenames. The coordinates of any object can be specified as .x and .y. Here’s a list of some of the pos-
sibilities:

BoxA.x The x-coordinate of the center of BoxA
last box.y The y-coordinate of the center of the last box
BoxA.s.y The y-coordinate of the southern compass point of BoxA
BoxA.wid The width of BoxA

Drawing Pictures 227

last circle.rad The radius of the last circle

The next description defines a box and then divides the specified height and width of that box to produce a second
box half that size.

Boxa: box ht 2 wid 3; arrow
box ht Boxa.ht/2 wid Boxa.wid/2

The pic program also has a number of functions that can be evaluated in an expression, as shown in Table 10-3:

Table 10.3 pic Functions

Function Description

sin(a) Sine of a
cos(a) Cosine of a
atan2(a,b) Arctangent of a/b
log(a) Natural logarithm of a
sqrt(a) Square root of a
int(a) Integer a
max(a,b) Maximum value of a,b
min(a,b) Minimum value of a,b
rand(a) Random number generator

In giving the size or length of an object, you can name and define your own variables. A variable is any low-
ercase name that is not reserved as part of the pic language. A variable can be defined as a constant or an expres-
sion.

a=ellipsewid*3
b=ellipseht/2
ellipse wid a ht b

This description produces:

Defining Macros

With macros, you can predefine a series of objects or motions that will be included in the description each time you
refer to the macro by name.

define name %
definition

%

A percent sign (%) is used here as the delimiter but any character not in the definition can be used. The format of
the define statement is shown on three lines for readability only; a simple macro could be put on a single line.
The definition can extend across as many lines as necessary.

When you refer to name in your description, the pic program will replace it with the definition.

Macros can also take arguments. These arguments are specified in the definition as $1 thru $9. They will be
replaced by the arguments supplied when the macro is invoked.

name(arg1, arg2, arg3)

A macro does not exist as a place or position as far as pic is concerned. The pic program simply replaces the
macro name with the lines defined in the macro. You cannot refer to the macro as you would refer to a block. How-
ever, you can set positions from within a macro.

228 Unix Text Processing

In the following example, the “tail” hanging down from the box and the list of items drawn to the right of it
were produced by a macro.

Alcuin Product Operation

Controller

Marketing

Engineering

Documentation

Quality Assurance

Customer Support

In the pic description that produced this drawing, the box is drawn explicitly and a short line is started down from
the bottom of the box. Then a macro named dept is invoked to produce each item on the list.

define dept %
line down .25

{ line right .15; move right .2; "$1" ljust }
%

In this macro, after a line down is described, the rest of the description is put within braces to reserve the starting po-
sition for the next macro call. A short line is drawn, followed by a move to place the text in the correct position.
Quotation marks are placed around the argument because the argument will contain a text label.

This macro is invoked for the first item as:
dept(Controller)

Controller is supplied as the first argument, which the macro inserts as a text object. Notice that the argument
in the definition is quoted ("$1") so that the actual text when specified does not have to be quoted.

The previous drawing was modeled after an example shown in Estimating Illustration Costs: A Guide pub-
lished by the Society for Technical Communication. The guide considered this drawing to be of medium difficulty
and estimated that it would require an hour of an illustrator’s time. It took ten to fifteen minutes to design and exe-
cute this description for pic, including correcting some syntax errors and formatting for the laser printer. Here’s the
complete description of the drawing:

.PS
box ht .75 wid 1.75 "Alcuin Product Operation"
line down .25 from bottom of last box
define dept %

line down .25
{ line right .15; move right .2; "$1" ljust }
%

dept(Controller)
dept(Marketing)
dept(Engineering)
dept(Documentation)
dept(Quality Assurance)
dept(Customer Support)
.PE

The second example of macro use is probably harder to read than it is to write. Let’s look at it in portions.
The purpose of the drawing is to represent a network of computers. We decided to use three types of objects to rep-
resent each type of computer: a square, a triangle, and small circle. These objects will appear in a hierarchy and

Drawing Pictures 229

lines will be drawn to connect an object on one level with an object on the level below it. Before starting to describe
it in pic terms, we prepared a rough sketch of the drawing on graph paper. This made us realize that we could eas-
ily determine the coordinate points of objects; thus, all the macros are set up to accept coordinate positions.

Comments, beginning with #, describe the user-supplied arguments. Following are the definitions for three
macros: backbone (a box), local (a triangle), and endpt (a small circle).

scale = 4
top = 10
define backbone %

$1 = x coordinate ; $2 = label
ycoord = top-2
BB$1: box wid 1 ht 1 with .sw at $1,ycoord
"$2" at ($1,ycoord)+(2,1) ljust
%

define local %
$1 = x coordinate; $2 = label
ycoord = top-5
LO$1: move to $1,ycoord
line down 1 left 1 then right 2 then up 1 left 1
"$2" at ($1,ycoord)-(0,.7)
%

define endpt %
$1 = x coordinate
ycoord = top-8
circle rad .125 with .n at $1,yccord
EP$1: last circle.n
%

Because each type of object maintained the same height (or position on the y-axis), a variable ycoord was set up to
supply that position from the top of the drawing. (The top of the drawing is defined by another variable).

Each of these macros requires that you supply an x-axis coordinate as the first argument. This argument is
also used to assign a unique placename that is used later when we draw lines between objects.

The backbone and local macros also take a second argument for a label. Handling text inside a macro
definition is especially convenient if you are going to change the font and point size.

The next task is to connect the backbone systems to the local systems and the local systems to endpoints. Al-
though we know which types of objects are connected, not all objects are connected in the same way. We decided
that the macros require two arguments to supply the x-coordinate for each of the two objects.

define BtoL %
$1 = x coord of backbone; $2 = x coord of
local
line from BB$1-(0,.5) to LO$2
%

define LtoE %
$1 = x coord of local; $2 = x coord of endpt
line from LO$1-(0,1) to EP$2
%

The BtoL and LtoE macros draw lines between the placenames set up by the backbone, local, and endpt
macros.

Here are the actual macro calls:
backbone(10,IBM/370)
backbone(18,DEC VAX)
local(8,68K-1)
local(13,68K-2)
local(17,68K-3)
endpt(7)
endpt(9)
endpt(12)
endpt(13)
endpt(14)
endpt(16)

230 Unix Text Processing

endpt(18)
BtoL(10,8)
BtoL(10,13)
BtoL(18,17)
LtoE(8,7); LtoE(8,9)
LtoE(13,12); LtoE(13,13); LtoE(13,14)
LtoE(17,16); LtoE(17,18)
line from LO13 to LO17
"\s8Personal Computers\s0" at 13,1
"\s12\fBA Network of Computers\s0\fR" ljust at 10,top

Notice that arguments supplied to a macro are separated by commas and that an argument may contain a space.
Here’s what the description produces:

IBM/370 DEC VAX

68K-1 68K-2 68K-3

Personal Computers

2A Network of Computers

Twelve objects are specified and eleven lines are drawn between the objects. One line is explicitly drawn connecting
the second triangle to the third triangle. It didn’t make sense to define a macro for this single instance. But if you
were setting this up for others to use, such a macro would be necessary.

Shortly, we will be looking at several relatively new features that make pic even more powerful for generat-
ing pictures. In particular, these features allow us to improve our effort to generate a diagram of a computer net-
work.

pic’s Copy Facility

The pic program provides an interesting copy facility that has two different uses: it allows you to read a pic de-
scription from a remote file, and it allows you to read lines of data and pass them as individual arguments to a
macro.

If you are going to use pic regularly, you should think about maintaining a macro library. You might define
frequently used objects, such as triangles, and place them in their own file. You can include the file in your descrip-
tion with the following line:

copy "/usr/lib/macros/pic/triangles"

Putting the filename in double quotation marks is required. Any .PS/.PE macros that are found in the remote file
are ignored.

You might also define a set of related macros for a particular type of drawing, such as an organizational chart
or a flow diagram. After you have taken the time to create and test a description, you should consider structuring it
so that the forms can be easily used in other drawings.

This copy facility replaces an older construct that allowed you to redirect input from another file through the
.PS macro.

.PS < triangles

Drawing Pictures 231

A second use of the copy facility is to read data through a macro. We’ll show how the endpt macro from our
last example can be designed to use this facility. In a file where we had already defined a macro named endpt, we
could invoke this macro with the following command:

copy thru endpt
7
9
12
13
14
16
18

The pic program reads each line of data up to the .PE and replaces each argument in the macro definition with the
corresponding field from each line. In this example, the macro is executed seven times, once for each line of data.

We could put the data in a separate file, named endpt.d, for example. Then you enter this version of the
copy command:

copy "endpt.d" thru endpt

The double quotation marks are required. Now the endpt macro will be executed for each line in the file
endpt.d. (The filename suffix .d is optional and signifies that the file contains data for a macro call).

You can specify a string that pic will recognize in the remote file as a signal to stop reading input. Used with
copy thru, until is followed by the string. In the following example, the word STOP is used as the string:

copy "endpt.d" thru endpt until STOP

You can also use until when you are taking input from the same file:
copy thru local until STOP
8 68K-1
13 68K-2
17 68K-3
STOP

In both cases, pic will read lines of data until it comes across the string STOP.

Another way to use copy thru is to supply the macro definition. This is a compact, single-step method:
copy "endpt.d" thru %

$1 = x coordinate
ycoord = top-8
circle rad .125 with .n at $1,ycoord
EP$1: last circle.n

%

Although the percent sign is used as the delimiter, any character not found in the definition could be used. The
copy thru statement with the macro definition can be put on a single line, which is helpful for short definitions.

copy thru % box at $1,$2 %
1 1
1 2
1 3
1 4

Because you can get a description down to this level, basically consisting of functions, you could have a standard de-
scription file associated with independent data files. You could write a program to build the data files from user in-
put or from some other source.

Executing UNIX Commands

You can execute any UNIX command from pic, using the following syntax:
sh % command %

Again, the percent sign represents any valid delimiter character. The pic program submits this command to the
shell for execution and then returns to interpret the next line of the description. You could issue a command to

232 Unix Text Processing

obtain data from another file:
sh % awk -F: {print$1} /etc/passwd %

pic Enhancements

Most of the enhancements found in new versions of pic are aimed at developing pic as a graphics programming
language. Additional capabilities include for loops and if conditional statements. A for loop allows one or
more pic commands to be executed as long as a condition is met

for i=1 to 3 by .05
do%
box ht i;move
%

Each time through the loop the value of the variable i is incremented by .05, producing five boxes of increasing
height. The by clause specifies the amount that the variable is incremented each time through the loop. If the by
clause is omitted, then the variable is incremented by 1. The % is used as the delimiter marking the commands to be
executed on each pass.

The if statement evaluates an expression to determine if it is true or false. If true, then specified pic com-
mands are executed. If false, the then clause is not acted upon; instead, an else clause, if specified, is read and
commands specified inside it are executed.

if x > y then % x = y % else % x = x + 1%

This conditional statement evaluates the expression x > y. If true, x is set to y; if false, the value of x is incre-
mented by 1. The % is a delimiter marking the beginning and end of the commands specified for both then and
else clauses. The expression inside an if statement can use any of the relational operators that are shown in Table
10-4.

Table 10.4 pic Relational Operators

Operator Meaning

== Equal to
!= Not equal to
> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to
&& And
| Or
! Not

In addition to enhancements that add more graphics programming features to pic, progress has been made in
allowing input to be taken from bit-mapped graphic terminals and translated into pic output. A separate program
called cip, available on some systems, allows users to create drawings using a mouse (a la MacDraw for the Macin-
tosh). The cip program generates a pic description of a drawing that can be included in any file to be processed
by troff.

4Chapter 11

A Miscellany of UNIX Commands

In this chapter, we present a miscellany of UNIX programs with text-processing applications. In addition, we intro-
duce several UNIX utilities for communications and for reading and writing to tapes and floppy disks. These utili-
ties are not specifically designed for text processing, but we have found them necessary for working in the UNIX en-
vironment. Although you can find more detailed information on these utilities in books aimed at a general audience,
we’ve included brief discussions of them to encourage you to learn them.

UNIX has many standard programs, as a run-down of the table of contents for the UNIX Reference Manual
will demonstrate. The challenge of UNIX is knowing which programs are appropriate for a specific situation. No
one learns all the commands, but becoming familiar with a great number of them can be helpful. It is rather like
those of us who collect far more books on our shelves than are “needed,” knowing the reward of finding the right
book for the right occasion.

At times, you will be surprised when you discover a program with rather unusual or specialized capabilities; at
other times, you may be frustrated by a demanding program or confused by inconsistencies from one program to the
next. These qualities seem to originate from the open design of UNIX, and serve to distinguish this text processing
environment from the closed systems of most word processors.

In some ways, what we are trying to do in this chapter is to address problems that arise in typical documenta-
tion projects and show how one or more UNIX programs can be applied as solutions to these problems. The empha-
sis is on the interactive use of these programs, although many of them can be used effectively in shell scripts or as
parts of other programs. (In the next chapter, we go into more detail about shell scripts). The commands are pre-
sented in sections, grouped by function.

Managing Your Files

One of the realities of using a computer is that you begin to think of a document in terms of files, rather than chap-
ters or sections. You edit and print files; create and copy files; delete files accidentally and lose your edits; and look
through files to find the information that is contained in them. Increasingly, files contain the goods that you trade.
You exchange not only printed copies of documents, but using floppy disks, tapes, or modems, you take files off one
system and put them on another system. Learning to organize and maintain files is essential to working on a com-
puter.

Using the File System to Your Advantage

One obvious feature of UNIX that makes it easy to handle large numbers of files is the hierarchical file system. With
carefully named files and directories, the pathname, which specifies a file’s unique place in the file system hierarchy,
can tell a lot about not only how to get at the file, but its contents as well. For example, on our system, we keep all
source files for various books in progress on a file system called /work; work for a given client is kept in a direc-
tory named for the client, with a subdirectory for each separate manual. Within each manual’s subdirectory, individ-
ual chapters are named consistently, ch01, ch02, and so on. As a result, it is easy both to locate a file (Chapter I of
the FORTRAN manual for ABC Corp. can predictably be found in /work/abc/fortran/ch01) and to guess
its contents.

If you are using the C shell, you can create an alias that provides a shorthand way of entering a command. In
the following example, the alias allows you to think in terms of manuals instead of directories.

% alias fortran "cd /work/abc/fortran; pwd"
% pwd

233

234 Unix Text Processing

/work/fred
% fortran

/work/abc/fortran

You can place an alias definition in your .cshrc file so that it becomes part of your environment.

In the Bourne shell, you achieve a similar result by using an environment variable called CDPATH to define a
search path for the cd command. For example:

$ CDPATH=/work/abc:/work/textp:/usr
$ cd fortran
/work/abc/fortran
$ cd jane
/usr/jane
$ cd ch03
/work/textp/ch03

When you issue a cd command, the shell searches for a subdirectory with that name under any of the directories in
the path, changes to it, and prints the full directory name.

The search directories in CDPATH are specified between colons. Directories listed in CDPATH are searched in
order from left to right.

Shell Filename Metacharacters

Even with files organized into directories, you can still accumulate a lot of files. Developing some consistent nam-
ing conventions that take advantage of shell metacharacters (wildcards) can save you a lot of trouble. Most users are
familiar with metacharacters but many don’t make full use of them.

In UNIX, you can match any part of a filename with a wildcard. Remember that * matches zero or more char-
acters. This gives you more power to select a specific group of files out of a directory. In the following example, as-
sume that you want to delete the files lock, filelocks, and lock.release, but ignore the files filelist,
lecture, and stocks.c.

$ ls
filelist
filelocks
lecture
lock
lock.release
stocks.c
$ rm *lock*

Because * can match zero characters, *lock* will match lock as well as filelocks.

The shell interprets the pattern-matching character ? to match any single character, and the construct [m-n] to
match a range of consecutive characters.

If you name your files consistently, you can use these characters to select groups of files. For example, in a di-
rectory containing a BASIC manual, you might have the following list of files:

$ ls
appa
appb
changes
ch01
ch01.old
ch02
ch03
ch03.examples
ch03.out
ch04
ch04.examples
ch05
letter.613

A Miscellany of UNIX Commands 235

As usual in any directory, there are a number of auxiliary files. Some of these files apply to the work on this
project, but they are not actually part of the book. If you’ve carefully chosen the names of related files, you can use
metacharacters to select only the files in a particular group. For example:

$ ls ch0?
ch01
ch02
ch03
ch04
ch05

You could select a range of files, using brackets:
$ ls ch0[3-5]
ch03
ch04
ch05

If you had entered ch0*, miscellaneous files such as ch01.old would have been included. (Note that whenever
you use numbers in filenames, as shown here, to consistently name a group of related files, you should begin the
numbering sequence with 01, 02 . . . rather than 1, 2 . . . This will cause ls to list the files in proper alphabetical or-
der. Otherwise, ls will list ch1, then ch11, ch12 ... ch2, ch20 ... and so on.)

Metacharacters have broader applications than for simply listing files. Look at this example of running
spell on an entire book:

$ spell ch0? app? > spell.out

(We’ll be looking at the spell command later in the section “Proofing Documents.”) This command is run on the
seven files that match one of the two patterns specified on the command line.

Metacharacters are also useful in moving and copying files from one directory to another:
$ cp basic/ch0? /work/backup

Locating Files

Although a hierarchical file system with consistent naming conventions helps a lot, it is still easy to lose track of
files, or just to have difficulty specifying the ones you want to manipulate. The number of files contained on even a
small hard disk can be enormous, and complex directory hierarchies can be difficult to work with.

It is possible to lose a file on the file system when you have forgotten in which directory you put it. To look
through an entire file system or a large directory hierarchy, you need a utility called find. The find utility looks
at the external characteristics of a file—who created it, when it was last accessed, its name, and so on.

The find utility probably wins top honors for having the most cumbersome command-line syntax in UNIX.
It’s not that find is a difficult command; its syntax is simply difficult to recall. You might expect that all you have
to enter is find and the name of the file that you want to look for. This is not the way it works, however, which is a
nuisance to new users. The find command requires repeated trips to the UNIX Reference Manual before you grasp
its atypical format.

To use find, specify the pathnames of the directories that you want to search; then place one or more condi-
tions upon the search. The name of a particular file that you want to search for is considered one of these conditions.
It is expressed as:

-name filename

To obtain a listing of the pathnames of files that are found, you have to specify the -print condition as well
(-name must precede -print).

If you wanted to find any file named notes on the /work file system, here’s the command to enter:
$ find /work -name notes -print
/work/alcuin/notes
/work/textp/ch02/notes

The output is the pathname (starting with the specified file system or directory) of each file that is found. More than

236 Unix Text Processing

one pathname can be supplied. A slash (/) represents the root directory and thus is used if you want to search the
entire file system. Note that the search can take some time, and that if you do not have read permissions to a direc-
tory you will get a message saying that it cannot be opened.

In the next example, we add another condition, -user, and limit the search to files named memo that are
owned by the user fred. This is helpful when you are searching for a file that has a fairly common name and might
exist in several users’ accounts. Filename metacharacters can be used but they must be protected from the shell us-
ing backslashes or single quotation marks. (If you don’t do this, the metacharacters will be interpreted by the shell
as referring to files in the current directory, and will not be passed to the find command.)

$ find /work /usr -name ’memo*’ -user fred -print
/usr/fred/alcuin/memo
/work/alcuin/memo.523
/work/caslon/memo.214

Two directory hierarchies are searched, /work and /usr. If you did not specify the -name condition, this com-
mand would locate all the files owned by fred in these two file systems.

Many find conditions have uses for other tasks besides locating files. For instance, it can be useful to de-
scend a directory hierarchy, using find to print the complete pathname of each file, as in the following example:

$ find /work/alcuin -print
/work/alcuin
/work/alcuin/ch01
/work/alcuin/ch01.old
/work/alcuin/commands/open
/work/alcuin/commands/stop
...

This usage provides a kind of super ls that will list all files under a given directory, not just those at the current di-
rectory level. As you’ll see, this becomes very useful when it comes time to back up your files.

The longer you work with a UNIX system, the more you will come to appreciate find. Don’t be put off by
its awkward syntax and many options. The time you spend studying this command will be well repaid.

File Characteristics

Most of us are concerned only with the contents of a file. However, to look at files from UNIX’s point of view, files
are labeled containers that are retrieved from storage and soon put back in the same place. It might be said that the
operating system reads (and writes) the label but doesn’t really care to look inside the container. The label describes
a set of physical or external characteristics for each file. This information is displayed when the ls command pro-
duces a long listing.

$ ls -l /work/textp/ch01
total 20
-rw-rw-r-- 1 fred doc 9496 Jun 10 15:18 ch01

To the operating system, the file (ch01) contains a certain number of bytes (9496), each representing a character.
The date and time (Jun 10 15:18) refer to the last time the file was modified. The file has an owner (fred),
who is usually the person who created the file. The owner belongs to a group of users (doc) who can be given dif-
ferent permissions from all other users. The operating system keeps track of the file permissions (-rw-rw-r--)
for the owner, group, and other users—determining who can read, write, or execute the file.

All of these characteristics can be modified either by use of the file or by commands such as chmod (change
permissions) and chown (change owner). You may need to become a super-user to change these characteristics.

There are some options for ls that allow you to make use of this information. For instance, if you had re-
cently made some changes to a set of files, but couldn’t remember which ones, you could use the -t option to sort a
list of files with the most recently modified files first. The -r option reverses that order, so that ls -rt produces a
list with the oldest files first.

In addition, find has a number of options that make use of external file characteristics. As we’ve seen, you
can look for files that belong to a particular user. You can also look for files that are larger than a particular size, or
have been modified more recently than a certain date.

A Miscellany of UNIX Commands 237

Don’t get stuck thinking that the only handle you can pick a file up with is the file’s name.

Viewing the Contents of a File

You are probably familiar with a number of UNIX commands that let you view the contents of a file. The cat com-
mand streams a file to the screen at a rate that is usually too swift. The pg and more commands display a file one
page at a time. They are frequently used as filters, for instance, to supply paging for nroff output.

$ nroff -mm ch01 | pg

You can also use these commands to examine unformatted files, proofing formatting codes as well as text. Although
these are frequently used commands, not everyone is aware that they have interactive subcommands, too. You can
search for a pattern; execute a UNIX command; move to another file specified on the command line; or go to the end
of the file.

You can list these subcommands by entering h when the program pauses at the bottom of a page. Here’s the
help screen pg provides.

h help
q or Q quit
<blank> or \n next page
l next line
d or ˆD display half a page more
. or ˆL redisplay current page
f skip the next page forward
n next file
p previous file
$ last page
w or z set window size and display next page
s savefile save current file in savefile
/pattern/ search forward for pattern
?pattern? or
ˆpatternˆ search backward for pattern
!command execute command
Most commands can be preceded by a number, as in:
+1\n (next page); -1\n (previous page); 1\n (page 1).
See the manual page for more detail.

One advantage of pg is that you can move backward as well as forward when going through a file. A special feature
of more is the ability to invoke vi at the current point in the file. When you quit vi, more resumes paging
through the rest of the file.

Another command used for examining a file is pr. Its most common use is to perform minor page formatting
for a file on the way to a line printer. It breaks the input file into pages (66 lines to a page) and supplies a header that
contains the date, the name of the file, and the current page number. Top, bottom, and side margins are also added.

The pr command also has many options that can be used to perform some oddball tasks. For example, the -n
option adds line numbers:

$ pr -n test

The following is displayed:
Jul 4 14:27 1987 test Page 1

1 apples
2 oranges
3 walnuts
4 chestnuts

You can adjust the page length using the -l option. If you are printing to a terminal, the -p option specifies a pause
at the beginning of each page. You can also display an input file in -n columns.

238 Unix Text Processing

The -m option simultaneously merges two or more files and prints each of them, one per column:
$ pr -m -t test*

In this example, we display four files side-by-side:
apples apples apples oranges
oranges oranges oranges walnuts
walnuts walnuts grapes chestnuts
chestnuts

The test* file specification is expanded to four filenames: test, test1, test2, and test3. The -t op-
tion suppresses the heading and does not print linefeeds to fill a page, which is especially useful when you are send-
ing the output of pr to a file or the terminal.

We found a use for pr when working on this book. We wanted to include nroff-formatted examples in the
text. We had difficulty because nroff inserts tabs, instead of spaces, to optimize horizontal positioning on printers.
To remove the tabs, we used pr with the -e option to expand the tabs to their equivalent in blank spaces. The fol-
lowing shell script implements this process so that it can be invoked as a single command.

$ nroff -mm -rO0 examples/$1 | -pr -e -t

The pr command works as a filter for nroff. The -r option is used with nroff to set register O (page offset or
left margin) to zero.

Sometimes it can be useful to examine just the beginning or the end of a file. Two commands, head and
tail, print the first or last ten lines of a file. The head command can be used to look at the initial settings of num-
ber registers and strings that are often set at the top of a file.

$ head ch02
.nr W 65
.nr P 3
.nr L 60
.so /usr/lib/tmac/tmac.m
.nr Pt 2
.ds Ux \s-2UNIX\s0
.ds HP 3321
.H1 "Product Overview"
.ds HM 11A
.

This output could be redirected to a file as a way of starting a new chapter. The tail command has the same syn-
tax; it can save time when you want to check the end of a large file.

Searching for Information in a File

The many benefits provided by grep to the user who doesn’t remember what his or her files contain are well
known. Even users of non-UNIX systems who make fun of its obscure name wish they had a utility with its power
to search through a set of files for an arbitrary text pattern, known as a regular expression. We have already dis-
cussed regular expressions and their use in search and replace commands in vi (see Chapter 7). In this section, we
show some of the ways to perform pattern-matching searches using grep and its siblings, egrep and fgrep.

The main function of grep is to look for strings matching a regular expression and print only those lines that
are found. Use grep when you want to look at how a particular word is used in one or more files.

$ grep "run[-]time" ch04
This procedure avoids run-time errors for not-assigned
and a run-time error message is produced.
run-time error message is produced.
program aborts and a run-time error message is produced.
DIMENSION statement in BASIC is executable at run time.
This means that arrays can be redimensioned at run time.
accessible or not open, the program aborts and a run-time

This example lists the lines in the file ch04 that contain either run-time or run time.

A Miscellany of UNIX Commands 239

Another common use is to look for a specific macro in a file. In a file coded with mm macros, the following
command will list top-level and second-level headings:

$ grep "ˆ\.H[12]" ch0[12]
ch01:.H1 "Introduction"
ch01:.H1 "Windows, Screens, and Images"
ch01:.H2 "The Standard Screen-stdscr"
ch01:.H2 "Adding Characters"
...
ch02:.H1 "Introduction"
ch02:.H1 "What Is Terminal Independence?"
ch02:.H2 "Termcap"
ch02:.H2 "Terminfo"

In effect, it produces a quick outline of the contents of these files. When more than one file is specified, the name of
the file appears with each line. Note that we use brackets as metacharacters both in the regular expression and when
specifying the filename. Because metacharacters (and spaces) have meaning to the shell, they will be interpreted as
such unless the regular expression is placed within quotation marks.

There are several options commonly used with grep. The -i option specifies that the search ignore the dis-
tinction between uppercase and lowercase. The -c option tells grep to return only a count of the number of lines
matched. The -l option returns only the name of the file when grep finds a match. This can be used to prepare a
list of files for another command.

The shell construct command1 ‘command2‘ causes the output of command2 to be used as an argument to
command1. For example, assume that you wanted to edit any file that has a reference to a function call named
getcursor. The command:

$ vi ‘grep -l getcursor *‘

would invoke vi on all of the files in the current directory containing the string getcursor. Because the grep
command is enclosed in single backquotes (‘ ‘), its output becomes the list of files to be edited.

The grep command can work on the results of a find command. You can use find to supply a list of file-
names and grep to search for a pattern in those files. For example, consider the following command, which uses
find to look for all files in the specified directory hierarchy and passes the resulting names to grep to scan for a
particular pattern:

$ find /work/docbook -exec grep "[aA]lcuin" {} \;
Alcuin product. Yesterday, I received the product demo
Alcuin. Some people around here, looking over my shoulder,
with Alcuin. One person, a student of calligraphy,
presents different strategies for documenting the Alcuin
The development of Alcuin can be traced to our founder’s
the installation file "alcuin.install"> and the font
configuration file "alcuin.ftables."

The -exec condition allows you to specify a command that is executed upon each file that is found ({} indicates
the pathname of the file). The command must end with an escaped semicolon.

Although this is a good way to introduce the very useful -exec option to find, it is actually not the best
way to solve the problem. You’ll notice that even though grep is working on more than one file, the filenames are
not printed because the data is actually passed to grep from a pipe. The reason is that grep is being invoked many
times (once for each file that is found), and is not really working on many files at once. If you wanted to produce a
list of the selected files, you could use the -l option with grep. But more to the point, this is a very inefficient way
to do the job.

In this case, it would be preferable to write:
$ grep "[aA]lcuin" ‘find /work/docbook -print‘

Because grep is invoked only once, this command will run much faster.

There is a potential danger in this approach. If the list of files is long, you may exceed the total allowable
length of a command line. The best approach uses a command we haven’t shown yet—xargs. This command pro-
vides an extended version of the same function the shell provides with backquotes. It converts its input into a form
that can be used as an argument list by another command. The command to which the argument list is passed is
specified as the first argument to xargs. So, you would write:

240 Unix Text Processing

$ find /work/docbook -print | xargs grep "[aA]lcuin"

Or you could generalize this useful tool and save it as the following shell script, which could be called mfgrep
(multifile grep). This script takes the pathname for find as the first argument and the pattern for grep as the sec-
ond. The list of files found is passed to grep by xargs:

find $1 | xargs grep "$2"

The fgrep (fast grep)* command performs the same function as grep, except it searches for a fixed string rather
than a regular expression. Because it doesn’t interpret metacharacters, it often does a search faster than grep. For
interactive use, you may not find enough difference to keep this command in your active repertoire. However, it may
be of more benefit inside shell scripts.

The egrep command is yet another version of grep, one that extends the syntax of regular expressions. A +
following a regular expression matches one or more occurrences of the regular expression; a ? matches zero or one
occurrences. In addition, regular expressions can be nested within parentheses.

$ egrep "Lab(oratorie)?s" name.list
AT&T Bell Laboratories
AT&T Bell Labs

Parentheses surround a second regular expression and ? modifies this expression. The nesting helps to eliminate
unwanted matches; for instance, the word Labors or oratories would not be matched.

Another special feature of egrep is the vertical bar (|), which serves as an or operator between two expres-
sions. Lines matching either expression are printed, as in the next example:

$ egrep "stdscr|curscr" ch03
into the stdscr, a character array.
When stdscr is refreshed, the
stdscr is refreshed.
curscr.
initscr() creates two windows: stdscr
and curscr.

Remember to put the expression inside quotation marks to protect the vertical bar from being interpreted by the shell
as a pipe symbol. Look at the next example:

$ egrep "Alcuin (User|Programmer)(’s)? Guide" docguide
Alcuin Programmer’s Guide is a thorough
refer to the Alcuin User Guide.
Alcuin User’s Guide introduces new users to

You can see the flexibility that egrep’s syntax can give you, matching either User or Programmer and matching
them if they had an ’s or not.

Both egrep and fgrep can read search patterns from a file using the -f option.

Proofing Documents

There are no computer tools that completely replace the close examination of final printed copy by the human eye.
However, UNIX does include a number of proofing aids, ranging from a simple spelling checker to programs for
checking style and diction, and even sexist usage.

We’ll look at some of these programs in this section. Not all of the programs we’ll discuss are available on all
UNIX systems. Keep in mind, though, that grep is also a very powerful proofing aid, which you can use to check
for consistent usage of words and phrases.

* Despite what the documentation says, egrep is usually the fastest of the three grep programs.

A Miscellany of UNIX Commands 241

Looking For Spelling Errors

The spell command reads one or more files and prints a list of words that are possibly misspelled. You can redi-
rect the output to a file, then use grep to locate each of the words, and vi or ex to make the edits. In the next
chapter, though, we introduce a shell script named proof for running spell interactively and correcting spelling
errors in place in a file. You will probably prefer to use spell in that manner rather than invoking it manually.

Even if you do build that script, you can use spell on its own if you are unsure about which of two possible
spellings is right. Type the name of the command, followed by a RETURN , then type the alternative spellings you
are considering. Press ˆD (on a line by itself) to end the list. The spell command will echo back the word(s) in
the list that it considers to be in error.

$ spell
misspelling
mispelling
ˆD
mispelling

You can invoke spell in this way from within vi, by typing the ex colon prompt, an exclamation point, and the
name of the spell command.

When you run spell on a file, the list of words it produces usually includes a number of legitimate words or
terms that the program does not recognize. You must cull out the proper nouns and other words spell doesn’t
know about to arrive at a list of true misspellings. For instance, look at the results on this sample sentence:

$ cat sample
Alcuin uses TranScript to convert ditroff into
PostScript output for the LaserWriter printerr.
$ spell sample
Alcuin
ditroff
printerr
LaserWriter
PostScript
TranScript

Only one word in this list is actually misspelled.

On many UNIX systems, you can supply a local dictionary file so that spell recognizes special words and
terms specific to your site or application. After you have run spell and looked through the word list, you can cre-
ate a file containing the words that were not actual misspellings. The spell command will check this list after it
has gone through its own dictionary.

If you added the special terms in a file named dict, you could specify that file on the command line using the
+ option:

$ spell +dict sample
printerr

The output is reduced to the single misspelling.

The spell command will also miss words specified as arguments to nroff or troff macros, and, like any
spelling checker, will make some errors based on incorrect derivation of spellings from the root words contained in
its dictionary. If you understand how spell works, you may be less surprised by some of these errors.

The directory /usr/lib/spell contains the main program invoked by the spell command along with
auxiliary programs and data files.

$ ls -l /usr/lib/spell
total 604
-rwxr-xr-x 1 bin bin 20176 Mar 9 1985 hashcheck
-rwxr-xr-x 1 bin bin 14352 Mar 9 1985 hashmake
-rw-r--r-- 1 bin bin 53872 Mar 9 1985 hlista
-rw-r--r-- 1 bin bin 53840 Mar 9 1985 hlistb
-rw-r--r-- 1 bin bin 6328 Mar 9 1985 hstop
-rw-rw-rw- 1 root root 102892 Jul 12 16:10 spellhist
-rwxr-xr-x 1 bin bin 23498 Mar 9 1985 spellin

242 Unix Text Processing

-rwxr-xr-x 1 bin bin 27064 Mar 9 1985 spellprog

The spell command pipes its input through deroff -w and sort -u to remove formatting codes and prepare
a sorted word list, one word per line. (The deroff and sort commands are discussed later in this chapter.) Two
separate spelling lists are maintained, one for American usage and one for British usage (invoked with the -b option
to spell). These lists, hlista and hlistb, cannot be read or updated directly. They are compressed files, com-
piled from a list of words represented as nine-digit hash codes. (Hash-coding is a special technique for quick search
of information.)

The main program invoked by spell is spellprog. It loads the list of hash codes from either hlista or
hlistb into a table, and looks for the hash code corresponding to each word on the sorted word list. This elimi-
nates all words (or hash codes) actually found in the spelling list. For the remaining words, spellprog tries to see
if it can derive a recognizable word by performing various operations on the word stem, based on suffix and prefix
rules. A few of these manipulations follow:

-y+iness
+ness
-y+i+less
+less
-y+ies
-t+ce
-t+cy

The new words created as a result of these manipulations will be checked once more against the spell table. How-
ever, before the stem-derivative rules are applied, the remaining words are checked against a table of hash codes
built from the file hstop. The stop list contains typical misspellings that stem-derivative operations might allow
to pass. For instance, the misspelled word thier would be converted into thy using the suffix rule -y+ier. The
hstop file accounts for as many cases of this type of error as possible.

The final output consists of words not found in the spell list, even after the program tried to search for their
stems, and words that were found in the stop list.

You can get a better sense of these rules in action by using the -v or -x option.

The -v option eliminates the last lookup in the table, and produces a list of words that are not actually in the
spelling list along with possible derivatives. It allows you to see which words were found as a result of stem-deriva-
tive operations, and prints the rule used.

$ spell -v sample
Alcuin
ditroff
LaserWriter
PostScript
printerr
TranScript
+out output
+s uses

The -x option makes spell begin at the stem-derivative stage, and prints the various attempts it makes to find the
word stem of each word.

$ spell -x sample
...
=into
=LaserWriter
=LaserWrite
=LaserWrit
=laserWriter
=laserWrite
=laserWrit
=output
=put
...
LaserWriter
...

The stem is preceded by an equals sign. At the end of the output are the words whose stem does not appear in the

A Miscellany of UNIX Commands 243

spell list.

One other file you should know about is spellhist. Each time you run spell, the output is appended
through a command called tee into spellhist, in effect creating a list of all the misspelled or unrecognized
words for your site. The spellhist file is something of a “garbage” file that keeps on growing. You will want to
reduce it or remove it periodically. To extract useful information from this spellhist, you might use the sort
and uniq -c commands shown later in this chapter to compile a list of misspelled words or special terms that oc-
cur most frequently. It is possible to add these words back into the basic spelling dictionary, but this is too complex
a process to describe here.

Checking Hyphenation

The hyphen command is used on nroff-formatted files to print a list of words that have been hyphenated at the
end of a line. You can check that nroff has correctly hyphenated words.

$ hyphen ch03.out
ch03.out:
applica-tion
pro-gram
charac-ter

If you disagree with the hyphenation of a word, you can go back into your source file and use either the .hw request
to specify hyphenation points or the .nh request to inhibit hyphenation of the word. If you don’t have the hyphen
command on your system, you can print the lines ending in hyphens using grep:

$ grep ’-$’ ch03.out

This will not display the second half of the hyphenated word on the following line, but it should give you enough of
an idea. Alternatively, you could use awk or sed, described in the next chapter, to create a version of this command
that would print both lines.

Counting Words

In the past, writers were paid by the word. The wc command will count words for you.
$ wc ch01
180 1529 9496 ch01

The three numbers printed represent the number of lines, words, and characters, respectively. (The presence of for-
matting commands in the input file will make this measurement somewhat inaccurate).

Writer’s Workbench

No book on UNIX text processing can avoid some discussion of Writer’s Workbench (WWB), a collection of
programs for the analysis of writing style.

Unfortunately, unlike most of the programs described in this book, the Writer’s Workbench is not available on
all UNIX systems. It was originally developed for internal use at Bell Labs, and was available in early releases of
UNIX to the academic community. But it was made into a separate product when UNIX was commercially released.

The three original programs, style, diction, and explain, are available in Berkeley UNIX systems and
in Xenix, but not in System V.

AT&T has released a greatly improved and expanded version, including additional programs for proofreading,
that is controlled from a master program called wwb. However, this version is only available as a separately priced
package for 3B2 and 3B5 computers. The unfortunate result is that one of UNIX’s most unusual contributions to
text processing is not officially part of UNIX and has never been ported to many UNIX systems.

244 Unix Text Processing

In this section, we’ll describe the original style and diction programs, with a brief discussion of wwb.

The style program analyzes a document’s style and computes readability indexes based on several algo-
rithms widely accepted in the academic community. For example, when run on a draft of this section, style gave
the following report:

readability grades:
(Kincaid) 11.1 (auto) 11.6 (Coleman-Liau) 11.0
(Flesch) 11.5 (52.7)

sentence info:
no. sent 53 no. wds 1110
av sent leng 20.9 av word leng 4.79
no. questions 0 no. imperatives 0
no. nonfunc wds 624 56.2% av leng 6.25
short sent (<16) 34% (18) long sent (>31) 17% (9)
longest sent 46 wds at sent 4;
shortest sent 5 wds at sent 47

sentence types:
simple 32% (17) complex 47% (25)
compound 4% (2) compound-complex 17% (9)

word usage:
verb types as % of total verbs
tobe 29% (33) aux 28% (32) inf 15% (17)
passives as % of non-inf verbs 9% (9)
types as % of total
prep 12.0% (133) conj 3.6% (40) adv 5.0% (56)
noun 26.8% (298) adj 15.5% (172) pron 7.3% (81)
nominalizations 3% (30)

sentence beginnings:
subject opener: noun (22) pron (5) pos (1) adj (2)

art (4) tot 64%
prep 17% (9) adv 9% (5)
verb 0% (0) sub_conj 6% (3) conj 0% (0)
expletives 4% (2)

Even if you aren’t an English teacher and don’t know the Kincaid algorithm from the Flesch, this report can be very
useful.

First, regardless of the differences between the algorithms, they all give you a general idea of the required
reading level for what you have written. It is up to you to adjust your style according to the audience level you want
to reach. This may not be a trivial task; however, it may be a vital one if you are writing a book for a specific audi-
ence. For example, if you were writing an instruction manual for heavy equipment to be used by people reading at
the sixth-grade level, a style report like the one shown would be a dire warning that the manual would not be suc-
cessful.

In general, to lower the reading level of a document, use shorter sentences and simpler constructions. (Inci-
dentally, most writing in newspapers and general circulation magazines is at the sixth-grade level. But you shouldn’t
get the impression that text written for a lower reading level is better. Writing can be clear and effective at any level
of complexity. At the same time, each of us must recognize, and adjust for, the skills of our intended reader.)

The analysis of reading level is only a small part of what style offers. The detailed analysis of sentence
length and type, word usage, and sentence beginnings can give you considerable insight into your writing. If you
take the time to read the report carefully at the same time as you reread your text, you will begin to see patterns and
can make intelligent decisions about editorial changes.

As an exercise, run style on a short passage you have written, read the report carefully, then rewrite your
work based on the report. See what difference this makes to the style report. You will eventually get a feel for
what the program provides.

In some cases, diction, the other major program in the Writer’s Workbench, can also help you find areas to
change.

The diction program relies on a library of frequently misused words and phrases. It relentlessly searches
out these words and flags them as inappropriate by enclosing them in brackets. For example, when run on a previ-
ous draft of this section, diction made the following recommendations:

A Miscellany of UNIX Commands 245

wwb
style performs stylistic analysis of a document and
computes readability indexes based on a[number of]
algorithms widely accepted in the academic community.

this may not be a trivial task however it may be a
[vital] one if you are writing a book with a specific
target audience.

for example if you were writing an instruction manual
for heavy equipment to be used by people reading at the
sixth grade level a style report like the one shown above
would be a dire warning that the manual would not be
[very]successful.

[in some cases] diction the other major program in the
writer’s workbench can help you to find possible areas to
change.

in the latest official release of wwb there are a
[number of] additional programs including .

morestyle which looks for abstract words as well as
listing the frequency with which each word is used
and the word diversity the[number of]different words
divided by the total[number of] words.

morestyle also gives a count of the[number of]negative
constructions contained in your writing.

spellwwb which lists possible spelling errors in a
slightly more usable format than the standard spell
program and spelladd which allows you to build a local
dictionary word of spelling exceptions words that spell
regards as errors but[which]you know to be correct.

you can run these programs individually or using one of
several [overall]control programs.

running wwb will run[all of]these programs.

number of sentences 37 number of hits 10

The diction program lists “problem” sentences from your source file, with words or phrases it has taken excep-
tion to enclosed in brackets. You can redirect this output to a file, or page through it on the screen. Punctuation and
macros are first stripped by the deroff program, which explains the odd appearance of the text.

We find that we ignore diction’s advice much of the time—the exception list is applied across the board,
without regard for context. For example, you’ll notice that it flagged the phrase number of several times, though
that was exactly what we meant in all but one case. However, the twenty percent of its recommendations that we
agree with are worth the effort of running the program.

If you don’t understand why diction complains about a phrase, you can use explain to ask for help. For
example:

$ explain
phrase?
which
use "that" when clause is restrictive for "which"
use "when" for "at which time"
phrase?
number of
use "many" for "a large number of"
use "several, many, some" for "a number of"
use "usually" for "except in a small number of cases"
use "some" for "in a number of cases"

246 Unix Text Processing

use "enough" for "sufficient number of"
use "often" for "in a considerable number of cases"
phrase?
perform
use "do" for "perform"
use "measure" for "perform a measurement"
phrase?
ˆD

The official release of WWB for 3B computers contains improved versions of style and diction, as well
as many additional programs. These programs include

• abst, which evaluates the abstractness of your writing.

• acro, which looks for acronyms (any word printed in all capital letters) so you can check that they
have been properly defined.

• dictadd, which allows you to add to the dictionaries used by diction, spell, and sexist.

• double, which looks for double words.

• findbe, which looks for syntax that may be difficult to understand.

• morestyle, which looks for abstract words and lists the frequency with which each word is used and
the word diversity (the number of different words divided by the total number of words). The
morestyle program also gives a count of the number of negative constructions contained in your
writing.

• org, which prints the first and last sentence of each paragraph, so you can analyze paragraph transitions
and the flow of ideas within your writing.

• punct, which checks punctuation (e.g., the placement of commas and periods with quotation marks).

• sexist, which checks your writing against a dictionary of sexist words and phrases.

• spellwwb, which lists possible spelling errors in a slightly more usable format than the standard
spell program, and spelladd, which allows you to build a local dictionary of spelling exceptions
(words that spell regards as errors, but that you know to be correct).

• splitrules, which finds split infinitives.

• syl, which prints the average number of syllables in the words you use.

You can run these programs individually or use one of several control programs. The wwb program will run just
about everything. The proofr program will run those programs that help you proofread (such as spell, dou-
ble, punct, and diction). The prose program will run those that analyze style (such as style and sex-
ist).

There is also an interactive version of proofr called proofvi, which stores its output in a temporary file
and then allows you to edit your original, stepping through each flagged problem.

Comparing Versions of the Same Document

UNIX provides a number of useful programs for keeping track of different versions of documents contained in two
or more files:

• the diff family of programs, which print out lines that are different between two or more files

• the SCCS system, which lets you keep a compact history of differences between files, so that you can go
back and reconstruct any previous version

• the make program, which keeps track of a predefined list of dependencies between files

A Miscellany of UNIX Commands 247

Checking Differences

The diff command displays different versions of lines that are found when comparing two files. It prints a mes-
sage that uses ed-like notation (a for append, c for change, and d for delete) to describe how a set of lines has
changed. This is followed by the lines themselves. The < character precedes lines from the first file and > precedes
lines from the second file.

Let’s create an example to explain the output produced by diff. Look at the contents of three sample files:

TESTl TEST2 TEST3

apples apples oranges
oranges oranges walnuts
walnuts grapes chestnuts

When you run diff on these files, the following output is produced:
$ diff test1 test2
3c3
< walnuts

> grapes

The diff command displays the only line that differs between the two files. To understand the report, remember
that diff is prescriptive, describing what changes need to made to the first file to make it the same as the second
file. This report specifies that only the third line is affected, exchanging walnuts for grapes. This is more apparent if
you use the -e option, which produces an editing script that can be submitted to ed, the UNIX line editor. (You
must redirect standard output to capture this script in a file.)

$ diff -e test1 test2
3c
grapes
.

This script, if run on test1, will bring test1 into agreement with test2. (Later in this section, we’ll look at
how to get ed to execute this script.) If you compare the first and third files, you find more differences:

$ diff test1 test3
1d0
< apples
3a3
> chestnuts

To make test1 the same as test3, you’d have to delete the first line (apples) and append the third line from
test3 after the third line in test1. Again, this can be seen more clearly in the editing script produced by the -e
option. Notice that the script specifies editing lines in reverse order; otherwise, changing the first line would alter all
succeeding line numbers.

$ diff -e test1 test3
3a
chestnuts
.
1d

You can use the diff3 command to look at differences between three files. For each set of differences, it
displays a row of equals signs (====) followed by l, 2, or 3, indicating which file is different; if no number is speci-
fied, then all three files differ. Then, using ed-like notation, the differences are described for each file.

$ diff3 test1 test2 test3
====3
1:1c
2:1c

apples
3:0a
====3
1:3c

248 Unix Text Processing

2:3c
grapes

3:2,3c
walnuts
chestnuts

With the output of diff3, it is easy to keep track of which file is which; however, the prescription given is a little
harder to decipher. To bring these files into agreement, you would have to add apples at the beginning of the third
file; change line 3 of the second file to line 3 of the first file; and change lines 2 and 3 of the third file, effectively
dropping the last line.

The diff3 command also has a -e option for creating an editing script for ed. It doesn’t quite work the way
you might think. Basically, it creates a script for building the first file from the second and third files.

$ diff3 -e test1 test2 test3
3c
walnuts
chestnuts
.
1c
.
w
q

If you reverse the second and third files, a different script is produced:
$ diff3 -e test1 test3 test2
3c
grapes
.
w
q

As you might guess, this is basically the same output as doing a diff on the first and third files. (The only differ-
ence in the output is the result of a rather errant inconsistency between diff and diff3. The latter produces an
ed script that ends with the commands that save the edited version of the file; diff requires that you supply them.)
Another useful program is sdiff (side-by-side diff). Its most straightforward use is to display two files in two
columns on the screen. In a gutter between the two columns, the program displays a < if the line is unique to the
first file, a > if the line is unique to the second file, and a | if the line is different in both files. Because the default
line length of this program (130 characters) is too wide for most terminals, it is best to use the -w option to specify a
smaller width. Here are the results of running sdiff on two different pairs of files:

$ sdiff -w60 test1 test2
apples apples
oranges oranges
walnuts | grapes
$ sdiff -w60 test1 test3
apples <
oranges oranges
walnuts walnuts

> chestnuts

The -s option to the sdiff command only shows the differences between the two files. Identical lines are sup-
pressed. One of the most powerful uses of sdiff is interactive, building an output file by choosing between differ-
ent versions of two files. You have to specify the -o option and the name of an output file to be created. The sd-
iff command then displays a % prompt after each set of differences. You can compare the different versions and
select the one that will be sent to the output file. Some of the possible responses are l to choose the left column, r
to choose the right column, and q to exit the program.

$ sdiff -w60 -o test test1 test3
apples <
% l
oranges oranges
walnuts walnuts

> chestnuts
% r
$ cat test

A Miscellany of UNIX Commands 249

apples
oranges
walnuts
chestnuts

Having looked at these commands in simplified examples, let’s now consider some practical applications for com-
paring documents.

When working on a document, it is not an uncommon practice to make a copy of a file and edit the copy rather
than the original. This might be done, for example, if someone other than the writer is inputting edits from a written
copy. The diff command can be used to compare the two versions of a document. A writer could use it to proof
an edited copy against the original.

$ diff brochure brochure.edits
49c43,44
< environment for program development and communications,

> environment for multiprocessing, program development
> and communications, programmers
56c51
< offering even more power and productivity for commericial

> offering even more power and productivity for commercial
76c69
< Languages such as FORTRAN, COBOL, Pascal, and C can be

> Additional languages such as FORTRAN, COBOL, Pascal, and

Using diff in this manner is a simple way for a writer to examine changes without reading the entire document.
By capturing diff output in a file, you can keep a record of changes made to any document.

As another example, suppose a company has a number of text files that comprise its help facility. These files
are shipped with the product and maintained online by the customer. When there is a documentation update, these
files also need to be updated. One way to accomplish this is to replace each text file in its entirety, but that involves
distributing a lot of material that remains unchanged. Another way is to use diff and simply send a record of
changes between the old and the new. The -e option creates an editing script for ed that can be used to recreate the
second file from the first.

$ diff -e help.txt help.new > help.chgs
$ cat help.chgs
153,199d
65c
$INCLUDE {filename} program.name
.
56a
.Rh 0 "" "$CHAIN Statement"
.Rh "Syntax"
.in 5n
.nf
$CHAIN {filename} program.name
.fi
.in 0
.Rh "Description"
Use the $CHAIN statement to direct the compiler to read
source code from program.name and compile it along
....

The company could ship the file help.chgs with instructions on how to input this editing script to ed. You’d
want to create a shell script to automate this process, but that is really an extension of knowing how it might be done
from the command line. The following command pipes the editing script to ed:

$ (cat help.chgs; echo ’w’) | ed - help.txt

To save the changes, a w command is submitted through echo. (In fact, if you have any concern about sparing the
original file, you could change the w to 1,$p, which will cause the edited contents to be printed to standard output,
but not saved in the file. Redirect standard output to a new file to keep both copies.)

250 Unix Text Processing

As a further example, let’s take the instance where two people have made copies of a file and made changes to
their own copies, and now you want to compare them both against the original. In this example, ch01 is the origi-
nal; ch01.tom contains edits made by Tom; and ch01.ann contains changes made by Ann.

$ diff3 ch01 ch01.ann ch01.tom
====3
1:56a
2:56a
3:57,103c

.mc |

.Rh 0 "" "$CHAIN Statement"

.XX "BASIC statements, $CHAIN"

.XX "$CHAIN statement"

.Rh "Syntax"

.UN

.in 5n

.nf
$CHAIN {file} program.name
.fi
.in 0
.Rh "Description"
Use the $CHAIN statement to direct the compiler to read
source code from program.name and compile it along
....

====3
1:65c
2:65c

$INCLUDE {file}
3:112c

$INCLUDE {file} program.name
====2
1:136c
2:136c

Nesting of $INSERT statements is not permitted.
3:183c

Nesting of $INSERT statements is permitted.
====
1:143,144c

program.name is converted to a valid UNIX filename.
.LP

2:143,152c
program.name is converted to a valid UNIX filename using
the following conversion rules:
.TS
center, tab(@);
c l c.
/@is converted to@?
?@is converted to@??
Null@is converted to@?0
An initial .@is converted to@?.
.TE

3:190,191c
program.name is converted to a valid UNIX filename using
a set of conversion rules.

You often find that one version has some things right and another version has other things right. What if you wanted
to compile a single version of this document that reflects the changes made to each copy? You want to select which
version is correct for each set of differences. One effective way to do this would be to use sdiff.

We’ll use the -s option to suppress the printing of identical lines. To make the example fit on the printed
page, we specify a 45-character line length. (You would generally use an 80-character line length for the screen.)
Because the total line length is limited to 45 characters, sdiff will be able to display only the first 15 or so charac-
ters of the line for each file; the rest of the line will be truncated.

$ sdiff -w45 -s -o ch01.new ch01.ann ch01.tom
56a57,103

A Miscellany of UNIX Commands 251

> .Rh 0 "" "$CHAIN Statement"
> .XX "BASIC statements, $CHAIN"
> .XX "$CHAIN statement"
> .Rh "Syntax"
> .UN
> .in 5n
> .nf
> $CHAIN {\fIfile\fP} \fI
> .fi
> .in 0
> .Rh "Description"
> Use the $CHAIN statement to de
> code from \fIprogram.name\fP

.......
% r
65c112
$ INCLUDE {\fIfile\fP} | $INCLUDE {\fIfile\fP}
% r
% 143,152c190,191
\fIprogram.name\fP is | \fIprogram.name\fP is
following rules. | following rules.
.TS <
center, tab(@); <
c l c. <
/@is converted to@? <
?@is converted to@?? <
Null@is converted to@?0 <
An initial .@is converted<
.TE <
% l

The file ch01.new contains the portions of each file that were selected along with all the lines that both files have
in common.

Another program worth mentioning is bdiff (big file diff). It is used on files too large for diff. This
program breaks up a large file into smaller segments and then passes each one through diff. It maintains line num-
bering as though diff were operating on one large file.

SCCS

We’ve shown an example using diff to produce a file that described the changes made to a text file for a help facil-
ity. It allowed the distribution of a smaller file describing changes instead of a wholly new version of the file. This
indicates a potential application for diff, which is fully realized in the Source Code Control System or SCCS.
SCCS is a facility for keeping track of the changes to files that take place at different stages of a software develop-
ment or documentation project.

Suppose you have a first draft of a manual. (This is referred to as a delta when it is saved in a special SCCS
format.) The second draft, of course, is based on changes to the first draft.

When you make the delta for the second draft, SCCS, instead of keeping a separate copy for each draft, uses
diff to record the changes to the first draft that resulted in the second draft. Only the changes, and the instructions
for having an editor make them, need to be maintained. SCCS allows you to regenerate earlier drafts, which saves
disk space.

SCCS is quite complex—too complex to describe here—but we seriously suggest that you investigate it if you
are working on a large, frequently-revised or multiple author writing project.

252 Unix Text Processing

Using make

The make program is a UNIX facility for describing dependencies among a group of related files, usually ones that
are part of the same project. This facility has enjoyed widespread use in software development projects. Program-
mers use make to describe how to “make” a program—what source files need to be compiled, what libraries must
be included, and which object files need to be linked. By keeping track of these relationships in a single place, indi-
vidual members of a software development team can make changes to a single module, run make, and be assured
that the program reflects the latest changes made by others on the team.

We group make with the other commands for keeping track of differences between files only by a leap of the
imagination. However, although it does not compare two versions of the same source file, it can be used to compare
versions such as a source file and the formatted output.

Part of what makes UNIX a productive environment for text processing is discovering other uses for standard
programs. The make utility has many possible applications for a documentation project. One such use is to main-
tain up-to-date copies of formatted files that make up a single manual and provide users with a way of obtaining a
printed copy of the entire manual without having to know which preprocessors or nroff/troff options need to
be invoked.

The basic operation that make performs is to compare two sets of files, for example, formatted files and unfor-
matted files, and determine if any members of one set, the unformatted files, are more recent than their counterpart
in the other set, the formatted files. This is accomplished by simply comparing the date or time stamp of pairs of
files. If the unformatted source file has been modified since the formatted file was made, make executes the speci-
fied command to “remake” the formatted file.

To use make, you have to write a description file, usually named makefile (or Makefile), that resides in
the working directory for the project. The makefile specifies a hierarchy of dependencies among individual files,
called components. At the top of this hierarchy is a target. For our purposes, you can think of the target as a printed
copy of a book; the components are formatted files generated by processing an unformatted file with nroff.

Here’s the makefile that reflects these dependencies.
manual: ch01.fmt ch02.fmt ch03.fmt

lp ch0[1-3].fmt
ch01.fmt: ch01

nroff -mm ch01 > ch01.fmt
ch02.fmt: ch02

tbl ch02 | nroff -mm > ch02.fmt
ch03.fmt: ch03a ch03b ch03c

nroff -mm ch03? > ch03.fmt

This hierarchy can be represented in a diagram:

A Miscellany of UNIX Commands 253

Manual

ch01.fmt ch02.fmt ch03.fmt

nroff -mm tbl | nroff -mm nroff -mm

ch01 ch02 ch03a ch03b ch03c

The target is manual and it is made up of three formatted files whose names appear after the colon. Each of these
components has its own dependency line. For instance, ch01.fmt is dependent upon a coded file named ch01.
Underneath the dependency line is the command that generates ch01.fmt. Each command line must begin with a
tab.

When you enter the command make, the end result is that the three formatted files are spooled to the printer.
However, a sequence of operations is performed before this final action. The dependency line for each component is
evaluated, determining if the coded file has been modified since the last time the formatted file was made. The for-
matting command will be executed only if the coded file is more recent. After all the components are made, the lp
command is executed.

As an example of this process, we’ll assume that all the formatted files are up-to-date. Then by editing the
source file ch03a, we change the modification time. When you execute the make command, any output files de-
pendent on ch03a are reformatted.

$ make
nroff -mm ch03? > ch03.fmt
lp ch0[1-3].fmt

Only ch03.fmt needs to be remade. As soon as that formatting command finishes, the command underneath the
target manual is executed, spooling the files to the printer.

Although this example has actually made only limited use of make’s facilities, we hope it suggests more ways
to use make in a documentation project. You can keep your makefiles just this simple, or you can go on to learn
additional notation, such as internal macros and suffixes, in an effort to generalize the description file for increased
usefulness. We’ll return to make in Chapter 18.

254 Unix Text Processing

Manipulating Data

Removing Formatting Codes

The deroff command removes nroff/troff requests, macros, inline backslash sequences, and eqn and tbl
specifications.

$ cat temp
.CH 11 "A Miscellany of UNIX Commands"
In this chapter, we present a miscellany of \s-2UNIX\s0
programs with text-processing applications.
.P
In addition, we introduce several \s-2UNIX\s0 utilities
$ deroff temp
Miscellany UNIX Commands
In this chapter, we present a miscellany of UNIX programs
with text-processing applications.
In addition, we introduce several UNIX utilities

Special rules are applied to text specified as arguments to a macro so that they are not passed through deroff. A
word in a macro call must contain at least three letters. Thus, A and of are omitted.

The deroff -w command is used by spell to remove troff requests and place each word on a separate
line. You can use deroff in a similar manner to prepare a word list.

$ deroff -w temp
Miscellany
UNIX
Commands
In
this
chapter
we
present
miscellany
of
UNIX
programs
with
text
processing
applications
In
addition

Again, not all “words” are recognized as words. The deroff command requires that a word consist of at least two
characters, which may be letters, numerals, ampersands, or apostrophes. (As mentioned above, it applies slightly
different rules to text specified as an argument to a macro.)

We had hoped deroff might be useful for our clients who wanted online copies of a document but used a
word processor. Because deroff drops words, it was not practical for stripping out troff-specific constructs.
Perhaps the best way to do this is to use nroff to process the file, and then use a combination of terminal filters to
strip out tabs, backspaces (overstrikes), and reverse linefeeds.

The sort and uniq Commands

The sort command puts lines of a file in alphabetic or numeric order. The uniq command eliminates duplicate
lines in a file.

The sort command works on each line of a text file. Normally, it is used to order the contents of files con-
taining data such as names, addresses, and phone numbers. In the following example, we use grep to search for

A Miscellany of UNIX Commands 255

index entries, coded with the macro .XX or .XN, and sort the output in alphabetic order.
$ grep ".X[XN]" ch04 | sort -df
.XX "ABORT statement"
.XX "ASSIGNMENT statement"
.XX "BASIC statements, ABORT"
.XX "BASIC statements, ASSIGNMENT"
.XX "BASIC statements, BEGIN CASE"

The -f option folds uppercase and lowercase words together (that is, it ignores case when performing the sort). The
-d option sorts in dictionary order, ignoring any special characters.

The uniq command works only on sorted files, comparing each adjacent line. The sort command has a -u
option for removing all but one identical set of lines. Usually this is sufficient, but uniq does have several options,
which gives you additional flexibility. For example, here’s the sorted output of four files:

$ sort test*
apples
apples
apples
chestnuts
chestnuts
grapes
oranges
oranges
oranges
oranges
walnuts
walnuts
walnuts

The -d option prints one line for each duplicate line, but does not print lines that are unique.
$ sort test* | uniq -d
apples
chestnuts
oranges
walnuts

In this example, grapes has been filtered out. The -u option prints only unique lines. If we used the -u option,
only grapes would appear.

You wouldn’t expect sort to be useful on a document containing long lines of text. However, if you both-
ered to start sentences on a new line when creating the input file (as we recommended in Chapter 3), scanning a
sorted file can produce some interesting things. The following command sorts the contents of ch03 and pipes the
output through pg:

$ sort -u ch03 | pg

Looking at the results gives you a slightly turned about view of your document. For instance, you might notice in-
consistencies among arguments to formatter requests:

.sp

.sp .2i

.sp .3v

.sp .5

Or you could check the frequency with which sentences begin in the same manner:
It is dangerous to use mvcur()
It is designed so that each piece of code
It is possible that some programs

In the next example, we use deroff to create a word list. Then we sort it and use uniq to remove dupli-
cates. The -c option with uniq provides a count of the occurrences of identical lines. (It overrides -u and -d.)

$ deroff -w ch03 | sort -fd | uniq -c
1 abort
1 aborted
3 about
4 above

256 Unix Text Processing

1 absolute
1 absorb
1 accepting
1 accomplishes
1 active
2 actual
5 actually
2 Add
7 add

...
68 you
3 Your
13 your
2 zero

In the next example, we repeat the previous command, this time adding another sort at the end to order the
words by frequency. The -r option is used to reverse the comparison, putting the greatest number first.

$ deroff -w ch03 | sort -fd | uniq -c | sort -rfd
666 the
234 to
219 is
158 window
156 of
148 and
114 in
111 screen
105 that
83 character
76 are

...
1 aborted
1 abort

You will find other examples of sort in the next section, where we look at sorting particular fields. Be sure to read
the UNIX command pages for sort and uniq and experiment using different options.

The join Command

The join command compares lines contained in separate files and joins lines that have the same key. (When you
use sort or join, each line is separated into fields by blanks or tabs. Normally, the first field is the key field, on
which the sort or join is performed. However, there are options that allow you to change the key field.) The file
must be sorted in ascending ASCII sequence before being processed by join.

$ cat 85
jan 19
feb 05
mar 14
apr 15
may 15
jun 18
jul 19
aug 20
sep 19
nov 18
dec 18
$ cat 86
jan 09
feb 15
mar 04
apr 06
may 14
jun 13

A Miscellany of UNIX Commands 257

jul 13
aug 10
sep 14
nov 13
dec 12
$ sort 85 > 85.temp; sort 86 > 86.temp

First we sort both of these files, creating temporary files. Then we perform the join, followed by a sort with the
-M option, to reorder them by month.

$ join 85.temp 86.temp | sort -M > joiner
$ cat joiner
jan 19 09
feb 05 15
mar 14 04
apr 15 06
may 15 14
jun 18 13
jul 19 13
aug 20 10
sep 19 14
nov 18 13
dec 18 12
$

After the data is joined in this manner, it can be sorted by field. Fields are separated by blank spaces or tabs. The
sort can be performed on specific fields, using + to indicate the first sort field and - to indicate the last sort field.
The first field is +0. To sort on the second field, use +1.

$ sort +1 joiner
feb 05 15
mar 14 04
apr 15 06
may 15 14
dec 18 12
jun 18 13
nov 18 13
jan 19 09
jul 19 13
sep 19 14
aug 20 10

The comm Command

The comm command reads the contents of two sorted files and produces for output a three-column listing of lines
that are found

• only in the first file;

• only in the second file;

• in both the first and second files.

For example, let’s suppose that we had generated a list of UNIX commands found in Berkeley 4.2 and another list of
commands found in AT&T System V.2. We can use comm to produce a compact listing of commands found exclu-
sively in one version and commands common to both. For obvious reasons, this example uses only the beginning of
the list.

$ cat bsd4.2
adb
addbib
apply
apropos
ar
as

258 Unix Text Processing

at
awk

$ cat attV.2
adb
admin
ar
as
asa
at
awk

Note that both files have already been sorted.
$ comm bsd4.2 attV.2

adb
addbib

admin
apply
apropos

ar
as

asa
at
awk

Commands found only on systems running Berkeley 4.2 are in the left-hand column, and those found only on AT&T
System V.2 are in the center column. Commands found in both versions are listed in the right-hand column.

You can also suppress the display of one or more columns. For instance, if you wanted to display only the
commands that were found on both systems, you’d enter.

$ comm -l2 bsd4.2 attV.2

Only the third column would be shown.

By specifying - instead of a filename, you can also use standard input. In the next example, we produce a list-
ing of filenames from two directories on the system, sort them, and compare them against the commands named in
the bsd4.2 file. This allows us to compare commands found on our system with those on the list of Berkeley com-
mands.

$ (cd /bin ; ls ; cd /usr/bin ; ls) | sort | comm - bsd4.2
acctcom

adb
addbib

admin
apnum

apply
apropos

ar
as

asa
at

awk

Parentheses are used to group a series of commands, combining their output into a single stream; we want a list of
command names without pathnames from several directories. Because a new shell is created to execute these com-
mands, notice that we do not change our current working directory when the commands in parentheses have finished
executing.

A Miscellany of UNIX Commands 259

The cut and paste Commands

The cut and paste commands modify a table or any other data in fields or columns. You can extract specific
columns of data using cut, and join them horizontally using paste.

For our examples, we’ll make use of a portion of a table of ASCII characters that specifies their decimal and
hexadecimal values. (This example is probably unnecessarily complex; you can use cut and paste for much sim-
pler jobs than this!) Here’s what the table looks like to begin with:

$ cat appc
.TS
center, box;
cb cb cb
n n l.
Decimal Hexadecimal ASCII
=
000 00 NUL
001 01 SO
002 02 STX
003 03 ETX
004 04 EOT
005 05 ENQ
006 06 ACK
007 07 BEL
008 08 BS
009 09 HT
.TE

Each column is separated by a tab. A tab is the default field delimiter for cut; the -d option can be used to change
it. The -c option allows you to specify character positions or ranges. The command cut -c6-80 would print
characters beginning at position 6 through 80, truncating the first five characters. The -f option is used to specify
one or more fields that are passed to standard output. (Given the name of the command, one might reasonably think
you’d specify the fields or column position you wanted cut out, but ...)

In the next example we extract the third field, which contains the ASCII names.
$ cut -f3 -s appc
ASCII
NUL
SO
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT

We use the -s option to remove all lines that do not have any delimiters, thus dropping the tbl constructs from the
output. Normally, cut passes lines without delimiters straight through, and that is what we really want for our next
feat. We are going to reorder the table so that it can be referenced by the ASCII name rather than by decimal num-
ber. All of this can be done from the command line, with only a brief entry into the editor at the end.

We’ll look at this in stages. First, we extract the third column and send it along to paste:
$ cut -f3 appc | paste - appc
.TS .TS
center, box; center, box;
cb cb cb cb cb cb
n n l. n n l.
ASCII Decimal Hexadecimal ASCII
= =
NUL 000 00 NUL
SO 001 01 SO
STX 002 02 STX

260 Unix Text Processing

ETX 003 03 ETX
EOT 004 04 EOT
ENQ 005 05 ENQ
ACK 006 06 ACK
BEL 007 07 BEL
BS 008 08 BS
HT 009 09 HT
.TE .TE

The paste command reads one or more files or standard input (the - option) and replaces the newline with a tab in
all but the last file. This gives us four columns. (Yes, it doubled the tbl specifications, but we have an editor.)
Now, all we have to do is extract the first three columns from the output. Only cut -f1,2,3 has been added to
the previous command, and the output is redirected to a file.

$ cut -f3 appc | paste - appc | cut -f1,2,3 > ascii.table
$ cat ascii.table
.TS .TS
center, box; center, box;
cb cb cb cb cb cb
n n l. n n l.
ASCII Decimal Hexadecimal
= =
NUL 000 00
SO 001 01
STX 002 02
ETX 003 03
EOT 004 04
ENQ 005 05
ACK 006 06
BEL 007 07
BS 008 08
HT 009 09
.TE .TE

This gives us three columns in the correct order. We can go into vi to rearrange the tbl constructs and execute a
sort command on just the data portion of the table to bring it all together.

$ cat ascii.table
.TS
center, box;
cb cb cb
n n l.
ASCII Decimal Hexadecimal
=
ACK 006 06
BEL 007 07
BS 008 08
ENQ 005 05
EOT 004 04
ETX 003 03
HT 009 09
NUL 000 00
SO 001 01
STX 002 02
.TE

The paste command can be used in several interesting ways. Normally, in order to merge two files, paste re-
places the newline in the first file with a tab. The -d option allows you to specify a substitute for the tab. This can
be any single character or a list of characters. Special characters can be represented as follows: newline (\n), tab
(\t), backslash (\\), and empty string (\0). Each character in the list is assigned in sequence to replace a newline,
and the list is recycled as many times as necessary. We can use paste to present our three-column table in six
columns:

$ paste -s -d"\t\n" appci
.TS center, box;
cb cb cb n n l.
Decimal Hexadecimal ASCII =

A Miscellany of UNIX Commands 261

000 00 NUL 001 01 SO
002 02 STX 003 03 ETX
004 04 EOT 005 05 ENQ
006 06 ACK 007 07 BEL
008 08 BS 009 09 HT
.TE

The -s option is used when only a single file is specified. It tells paste to merge subsequent lines in the same file
rather than to merge one line at a time from several files. In this example, the first line’s newline is replaced by a tab
while the second line retains the newline. To get nine columns out of three-column input, you’d specify
-d"\t\t\n".

A little work needs to be done to the tbl specifications. You could also execute the paste command from
within vi so that it only affects the data portion.

You would probably want to go to this much trouble for a large table (or many small tables) rather than the
small examples shown here. A more practical example that uses paste alone would be to construct a multi-column
table from a single long list of words. Simply split the list into equal-sized chunks, then paste them together side by
side.

The tr Command

The tr command is a character translation filter, reading standard input and either deleting specific characters or
substituting one character for another.

The most common use of tr is to change each character in one string to the corresponding character in a sec-
ond string. (A string of consecutive ASCII characters can be represented as a hyphen-separated range.)

For example, the command:
$ tr "A-Z" "a-z" < file

will convert all uppercase characters in file to the equivalent lowercase characters. The result is printed on standard
output.

As described in Chapter 7, this translation (and the reverse) can be useful from within vi for changing the
case of a string. You can also delete specific characters. The -d option deletes from the input each occurrence of
one or more characters specified in a string (special characters should be placed within quotation marks to protect
them from the shell). For instance, the following command passes to standard output the contents of file with all
punctuation deleted:

$ cat file | tr -d ",.!?;:"

The -s (squeeze) option of tr removes multiple consecutive occurrences of the same character. For example, the
command:

$ tr -s " " < file

will print on standard output a copy of file in which multiple spaces in sequence have been replaced with a single
space.

We’ve also found tr useful when converting documents created on other systems for use under UNIX. For
example, one of our writers created some files using an IBM PC word processor. When we uploaded the files to our
system, and tried to edit them with vi, we got the message:

Not an ascii file

and a blank screen. The vi editor could not read the file. However, using a programming utility that lists the actual
binary values that make up the contents of a file (od, or octal dump), we were able to determine that the word
processor used nulls (octal 000) instead of newlines (octal 012) to terminate each line.

The tr command allows you to specify characters as octal values by preceding the value with a backslash, so
the command:

$ tr ’\000’ ’\012’

was what we needed to convert the file into a form that could be edited with vi.

262 Unix Text Processing

Splitting Large Files

Splitting a single large file into smaller files can be done out of necessity—when you come across a program that
can’t handle a large file—or as a matter of preference—when you find it easier to work with smaller files. UNIX of-
fers two different programs for breaking up files, split and csplit.

The split command divides a file into chunks, consisting of the same number of lines. This is 1000 lines,
unless specified differently. In the following example of split, we break up a 1700-line file into 500-line chunks.
The wc command supplies a summary of the number of lines, words, and characters in a text file.

$ wc ch03
1708 8962 59815 ch03
$ split -500 ch03
$ wc ch03*
500 2462 16918 ch03aa
500 2501 16731 ch03ab
500 2976 19350 ch03ac
208 1023 6816 ch03ad
1708 8962 59815 ch03

The split command created four files. It appended aa, ab, ac, etc. to the end of the original filename to create a
unique filename for each file. You can also specify, as a third argument, a different filename to be used instead of the
original filename.

Look at the end of one of these files:
$ tail ch03ac
.Bh "Miscellaneous Functions"
.in 5n
.TS
tab(@);
l l l.

Unfortunately, the file breaks in the middle of a table. The split command pays no attention to content, making it
inadequate for breaking a file into manageable, but complete, sections.

The csplit command offers an alternative, allowing you to break a file in context. There are two ways to
use it. The first is to supply one or more line numbers. You could enter the following command:

$ csplit ch03 100 145 200

Four files would be created (0-99, 100-144, 145-199, 200-end). The naming convention for files created by
csplit is different than split. Files are named xx00, xx01, xx02 and so on. If you want to specify a prefix
that is different than xx, you can do so with the -f option.

Because we do not know in advance which line numbers to specify, we can use grep to get this information.
The -n option to grep causes line numbers to be returned. In this example, we specify a pattern to match the sec-
tion header macros, Ah and Bh:

$ grep -n ".[AB]h" ch03

It produces the following listing:
5:.Ah "Introduction"
30:.Ah "Using the Curses Library"

175:.Ah "The Curses Functions"
398:.Bh "Adding Characters to the Screen Image"
638:.Bh "Standout Mode"
702:.Bh "Getting Characters from the Terminal"
777:.Bh "Input Modes"
958:.Bh "Erasing and Clearing"

1133:.Bh "Creating and Removing Multiple Windows"
1255:.Bh "Window-Specific Functions"
1301:.Bh "Manipulating Multiple Windows"
1654:.Bh "Terminal Manipulation"

From this listing, we select the appropriate places at which to split the file and supply these numbers to split. The
-f option is used to supply a filename prefix.

A Miscellany of UNIX Commands 263

$ csplit -f ch03. ch03 175 1133
6803 Number of bytes in each segment
32544
20468
$ ls ch03.*
ch03.00
ch03.01
ch03.02

The csplit command prints a character count for each of the three files it created. (This count can be suppressed
using the -s option.)

The second way to use csplit is to supply a list of patterns. For instance, if you had prepared an outline
that you wanted to break into files corresponding to sections I, II, and III, you could specify:

$ csplit -s -f sect. outline /I./ /II./ /III./
S ls sect.*
sect.01
sect.02
sect.03

You can also repeat a pattern. In one project we were working on, one large file contained a number of com-
mands in reference page format. We decided it would be easier if we put each command in its own file. The begin-
ning of a reference header was marked by the macro .Rh 0. First, we used grep to determine the number of times
this macro occurred.

$ grep -c ".Rh 0" ch04
43

We reduce this number by 1 and surround it with braces:
$ csplit -s -f ch04. ch04 "/.Rh 0/" {42}

The pattern is enclosed within double quotation marks because it contains a space. (If you use the C shell, you must
protect the braces from being interpreted by placing them in double quotation marks as well.) This command cre-
ates 43 files:

$ ls ch04*
ch04
ch04.00
ch04.01
ch04.02
ch04.03
...
ch04.39
ch04.40
ch04.41
ch04.42
ch04.43

The only task remaining is to rename the files, using the name of the command listed as the first argument to the
.Rh macro. (We’d have to write an awk or shell script to do this automatically.)

After you have divided a large file into a number of smaller files, you might organize them in a subdirectory.
Let’s look at a small example of this.

$ mkdir ch04.files
$ mv ch04.?? ch04.files

Again, the usefulness of filename metacharacters is apparent, giving us the ability to move 43 files without typing 43
filenames.

264 Unix Text Processing

Encryption

The cloak-and-dagger set and the security conscious will find uses for the encryption facilities of UNIX. (These fa-
cilities are not available on UNIX systems sold outside the United States.) The crypt command reads a file from
standard input, asks you to supply a key for encoding the file, and passes to standard output an encrypted version of
the file. You should redirect standard output to a new file because the encrypted file is not readable text.

$ cat message | crypt > encrypted.msg

Enter key:alabaster

Just as when you enter a password, the key does not appear on the screen as you enter it. If you prefer, you can enter
the key as an argument to crypt. To decode an encrypted file, you simply cat the file to crypt and supply the
key.

The UNIX editors ed, ex, and vi, can be invoked with the -x option to read or edit an encrypted file. (Some
versions of these programs recognize this option but do not support the encryption feature.) Of course, you have to
supply the correct key.

Cleaning Up and Backing Up

In this section, we show some procedures for backing up active files to some other medium such as tape or floppy
disk. At many sites, backups are the responsibility of one person, who performs these tasks on a regular basis to en-
sure that users can recover much of their data in case there is a serious system crash. At other sites, individual users
might be responsible for doing their own backups, especially if there are only a few users on the system. Whoever
does it must ensure that backups of important files are made periodically.

A second reason for learning a backup procedure is to enable you to store files on an off-line medium. For
users of PCs, this is the standard method of operation (and therefore much simpler to do), but all UNIX systems
have hard disks as the primary storage medium. No matter how large a disk drive is, sooner or later, users will fill it
to capacity. Frequently, there are useless files that can be deleted. Other inactive files, such as an early draft of a
document, might be removed from the system after you have made a copy on floppy disk or tape. After a project is
finished, you probably want to make several copies of all important files. At a later time, should you need files that
have been stored off-line, you can easily restore them to the system.

We are going to describe how to use the cpio command for backing up one or more working directories.
There are other UNIX commands that might be used as well (tar and dd, for instance). At your site, you may even
have simpler shell scripts that prevent you from having to deal with cpio directly. Ask an expert user at your site
about backup procedures and go through it once or twice. Apart from learning about cpio, you will need:

1. The UNIX filename of the device (/dev/xxxx) to which you are directing the output of the cpio com-
mand.

2. Familiarity with operating the device, such as being able to load a tape in the tape drive and knowing
how to format a floppy disk prior to use.

You can use cpio in two basic ways, either to back up or to restore files. You use cpio with the -o option and >
to redirect output to the device for backup, or with the -i option and < to redirect input from the device to restore
files.

Unlike many of the commands we’ve looked at, cpio depends exclusively on reading a list of filenames from
standard input. This list identifies the files that will be backed up. For practical purposes, this involves doing an ls
command on the directory you want backed up and piping the results to cpio.

You need to know the UNIX filename for the backup device. This name is site specific, so you need to check
with a knowledgeable user. At our site, we have a floppy disk drive named /dev/rfp021. A tape drive might
be named /dev/mt0.

After you have loaded the tape in the tape drive or placed the floppy disk in the disk drive, you can perform
the backup using your own version of this command:

A Miscellany of UNIX Commands 265

$ ls /work/docbook/ch13 | cpio -ov > /dev/rfp021
sect3
dict
shellstuff
...
384 blocks

The -v (verbose) option prints a list of filenames on the screen.

The -i option to cpio reads or restores files from a tape or floppy disk device. Sometimes, before you actu-
ally restore files, you want to list the contents of the tape or disk. The -t option prints a table of contents but does
not actually read these files onto the system.

$ cpio -it < /dev/rfp021
384 blocks
sect3
dict
shellstuff
...

Using the -v option along with the -t option produces a long (verbose) listing of files, as if you had entered ls
-l.

You don’t have to extract all the files from disk or tape. You can specify certain files, using filename
metacharacters to specify a pattern.

$ cpio -iv "sect?" < /dev/rfp021
No match.

Remember to refer to the full pathname if the files were saved using a complete pathname, and to put pathnames that
include metacharacters within double quotation marks.

$ cpio -i "/work/docbook/ch13/sect?" < /dev/rfp021
384 blocks
sect3
sect2
sectl

Before restoring a file, cpio checks to see that it won’t overwrite an existing file of the same name that has been
modified more recently than the file being read.

You can also use the find command with the -cpio condition to do a back up. The advantage of using
find is that it descends all the way down a directory hierarchy.

$ find /work/docbook/ch13 -cpio /dev/rfp021

To restore a directory hierarchy, use the -d option to cpio. Administrators frequently use find to generate a list
of files that have been modified within a certain time period. The conditions -mtime (modification time) and
-atime (access time) can be followed by a number indicating a number of days. This number can be preceded by
a plus sign, indicating more than that number of days, or a minus sign, indicating less than that many days. If there
is no sign, the condition indicates exactly that number of days.

This example uses find to produce a list of files that have been modified within the last seven days. These
active files are good candidates for backups.

$ find /work/docbook -mtime -7 -print
/work/docbook
/work/docbook/oshell
/work/docbook/ch01
...

Don’t forget you have to specify -print to see the results of a find command.

You could work up your own version of this command to look for your own files that have not been accessed
in the last 21 days. Add the option -atime with an argument of +21 to list the files and directories that have not
been accessed in over 21 days. Add the -user option to look only for your own files, the -cpio option to backup
these files, and the -ok option to execute an rm command to delete them from the system after they’ve been backed
up.

$ find /work -atime +21 -user -cpio /dev/rfp021 -ok rm {} \;

266 Unix Text Processing

The -ok option is the same as the -exec option; however, instead of executing the command specified within
parentheses on all files selected by find, it prompts you first to approve the command for each file.

Compressing Files

You can conserve the amount of disk space that text files take up by storing some of your files in a compressed form.
The pack command can be used to compress a file. It generally reduces a text file by 25 to 40 percent.

$ ls -l ch04/sect1
-rw-rw-rw- 1 fred doc 29350 Jun 10 15:22 ch04/sect1
$ pack ch04/sect1
pack: ch04/sect1: 39.9% Compression

The original file is replaced by a packed file with a .z appended to the original filename.
$ ls -l ch04/sect1.z
-rw-rw-rw- 1 fred doc 17648 Jun 10 15:29 ch04/sect1.z

The pack command reduced the size of this file from 29K to 17K bytes. If used system-wide, it could save a sig-
nificant amount of disk space, although the amount of compression will vary from file to file. Obviously, there is
less benefit in packing small files.

To expand a packed file, use the unpack command. You can specify the name of the file with or without the
.z suffix.

$ unpack ch04/sect1
unpack: ch04/sect1: unpacked

Another way to temporarily unpack a file is to use a special version of cat for packed files, called pcat. Use this
command to view a packed file (pipe it through more or pg) or send it as input to another command, as in the fol-
lowing example:

$ pcat ch04/sect1 | nroff -mm

Communications

More and more, we find that our projects require us to work on several different computer systems, some of them
UNIX systems, some not. Given this situation, the ability to work remotely on other systems and to transfer files has
been essential. Fortunately, a number of useful communications programs are part of the standard UNIX shipment.

Two basic types of connections between computer systems are a dial-up line, using a modem to communicate
across phone lines, and a direct line, when two computer systems are in close proximity and can be connected by a
single cable. The uucp and cu commands establish communication links using both types of connections. The cu
command (Berkeley’s version is called tip) is a UNIX program for conducting a login session on a remote com-
puter system. UUCP (UNIX-to-UNIX copy) is a series of related programs for transforming files between UNIX
systems. Its main program is called uucp.

We cannot provide full descriptions of these facilities here. A good way to learn is to ask an expert user to
help you transfer files or begin a remote login session. Keep notes on the procedure and when following it, if things
don’t work as expected, get more help.

The UUCP programs are quite straightforward and easy to use after you are accustomed to the conventions.
Each system on the UUCP network has a file that describes the other systems linked to it and what types of links are
available. This file is created by the system administrator of each system. You can find out the names of these re-
mote systems by entering the uuname command. If your system is properly configured and you have a login on a
remote system, such as boston, you can begin a remote session by entering:

$ cu boston

After you are connected to the remote system, you should get a login message. To quit a remote session, log out and
then enter ˜. (tilde dot) to return to your own machine.

A Miscellany of UNIX Commands 267

There are a number of commands you can enter while under the control of cu, permitting, for instance, the ex-
ecution of commands on the local system while you are still logged in to the remote system. Check the reference
page in your UNIX documentation.

You can also dial direct to a non-UNIX system by specifying a telephone number on the command line (pro-
viding, of course, that the files accessed by these communications programs have been properly configured by the
system administrator).

You can send mail to users on these remote systems and transfer files. Generally, file transfers take place be-
tween public directories on both systems, usually /usr/spool/uucppublic. File transfers between other di-
rectories will contend with file and directory access permissions as well as uucp permissions set by the system ad-
ministrator. The character ˜ serves as a shorthand for the public directory.

For instance, when working on site for a client, we often create files that we want to send to our own system.
If we are logged in on their system, we can send the file outline to our system named ora by entering:

$ uucp -m outline ora!˜/fred/

The UUCP facility is batch oriented, accepting requests and acting upon them in the order in which they are re-
ceived. Although it may execute your request immediately, if it is busy or encounters difficulty making the connec-
tion, UUCP will carry out the request at a later time.

The -m option is used so that we are sent mail when the copy is actually completed. The system name is fol-
lowed by an exclamation mark (if you use the C shell, escape ! with a backslash). Then you specify a tilde (˜) fol-
lowed by the user’s name. Putting a slash after the user name (fred) ensures that the user name will be interpreted
as a directory (or a directory will be created if one does not exist).

Occasionally, you will need to transfer a large number of files or, perhaps, an entire directory hierarchy. There
are some simple tricks you can use to combine multiple files into a single file, making it easier to transmit to another
system. They are especially helpful when you transfer between public directories.

You must first create a list of the files to be included. (You can do this either manually or with a command
like ls or find.) Then use cpio to create what we can call a file archive on standard output rather than on a
backup device. Redirect standard output to a file, then use UUCP to send the archive. Use the same backup pro-
gram on the target system to restore the archive. For example, if you had a book made up of files ch01, ch02, etc.,
you could “package” that book for transfer to another system using cpio.

boston$ cd /usr/proj/book
boston$ find . -name ’ch0?’ -print | cpio -oc > book.archive

or using a manually generated list of filenames:
boston$ ls ch0? > filelist
boston$ cpio -oc < filelist > book.archive

Then, after transferring book.archive (instead of numerous individual files) to the remote system with UUCP, a
user can restore the archive:

calif$ mkdir /usr/proj/book
calif$ mv /usr/spool/uucppublic/book.archive /usr/proj/book
calif$ cd /usr/proj/book
calif$ cpio -icd < book.archive

(The -c option of cpio writes header information in ASCII for portability; -d tells cpio to create directories if
needed when doing the restore.)

(On Berkeley UNIX systems, you can do something similar with tar. See your UNIX manual for details.)

Scripts of UNIX Sessions

Throughout this chapter, we have provided examples of UNIX commands. These examples were made using a com-
mand called script (which is not a standard System V command). The script command allows you to make a
file copy of a UNIX session. Without this facility, we’d have to simulate the examples by hand.

268 Unix Text Processing

After you invoke script, your input and output is copied to a file. By default, the name of this file is
typescript, but you can supply a different name on the command line.

$ script
Script started on Thu Jul 10 12:49:57 1987
$ echo hello
hello
$

To quit, you enter CTRL-D.
$ cat typescript
Script started on Thu Jul 10 12:49:57 1987
$ echo hello
hello
$
script done on Thu Jul 10 12:50:11 1987

After we make a script, we simply read the file into our text using vi.

Keeping a script of a procedure is also a good start for building a shell script that performs a routine task auto-
matically.

4Chapter 12

Let the Computer Do the Dirty Work

Computers are very good at doing the same thing repeatedly, or doing a series of very similar things one after an-
other. These are just the kinds of things that people hate to do, so it makes sense to learn how to let the computer do
the dirty work.

As we discussed in Chapter 7, you can save ex commands in a script, and execute the script from within vi
with the :so command. It is also possible to apply such a script to a file from the outside—without opening the file
with vi. As you can imagine, when you apply the same series of edits to many different files, you can work very
quickly using a script.

In addition, there is a special UNIX editor, called sed (stream editor), that only works with scripts. Although
sed can be used to edit files (and we will show many useful applications in this chapter), it has a unique place in the
UNIX editing pantheon not as a file editor, but as a filter that performs editing operations on the fly, while data is
passed from one program to another through a pipe.

The sed editor uses an editing syntax that is similar to that used by ex, so it should not be difficult to learn
the basics.

The awk program, which is discussed in the next chapter, is yet another text-processing program. It is similar
to sed, in that it works from the outside and can be used as a filter, but there the resemblance ends. It is really not
an editor at all, but a database manipulation program that can be turned into an editor. Its syntax goes beyond the
global substitution/regular expression syntax we’ve already seen, and so awk may be the last thing that many writers
learn. Nonetheless, it has some important capabilities that you may want to be familiar with.

Finally, to make best use of these tools, you need to know a bit about shell programming. In fact, because the
shell provides a framework that you can use to put all these other tools together, we need to discuss it first.

If you are a programmer, and have already worked with the shell, this discussion may be too elementary; how-
ever, we are assuming that many of our readers are writers with only minimal exposure to programming. They, like
us when we started working with UNIX, need encouragement to branch out into these untried waters that have so lit-
tle apparent connection to the task at hand.

This chapter is different from those in the first part of the book in that it not only teaches the basics of some
new programs, but also puts them to work building some useful text-processing tools. At times, material is orga-
nized according to what is needed to build the tools, rather than as a comprehensive attempt to teach the program it-
self. As a result, the material presented on sed, for example, is less complete than our earlier treatment of vi.
We cover the most important points, but in many ways this chapter is suggestive. If you come away with a sense of
possibility, it has done its job.

Shell Programming

A shell script, or shell program, can be no more than a sequence of stored commands, entered in a file just as you
would type them yourself to the shell.

There are two shells in common use in the UNIX system, the Bourne shell (sh), championed by AT&T, and
the C shell (csh), developed at the University of California at Berkeley. Although the C shell has many features
that make it preferable for interactive use, the Bourne shell is much faster, so it is the tool of choice for writing shell
scripts. (Even if you use the C shell, scripts written using Bourne shell syntax will be executed in the Bourne shell).

We discuss the Bourne shell exclusively in this chapter, although we make reference to differences from the C
shell on occasion. This should pose no problem to C shell users, however, because the basic method of issuing com-
mands is identical. The differences lie in more advanced programming constructs, which we will not introduce in
detail here.

269

270 Unix Text Processing

Stored Commands

The .profile (or .login if you use the C shell) file in your home directory is a good example of a shell pro-
gram consisting only of stored commands. A simple .profile might look like this:

stty erase ’ˆH’ echoe kill ’ˆX’ intr ’ˆC’
PATH=/bin:/usr/bin:/usr/local/bin:.; export PATH
umask 2
date
mail

This file does some automatic housekeeping to set up your account environment every time you log in. Even if you
aren’t familiar with the commands it contains, you can get the basic idea. The commands are executed one line at a
time; it is a tremendous time saving to be able to type one command instead of five.

You can probably think of many other repetitive sequences of commands that you’d rather not type one at a
time. For example, let’s suppose you were accustomed to working on an MS-DOS system, and wanted to create a
dir command that would print out the current directory and the names and sizes of all of your files, rather than just
the names. You could save the following two commands in a file called dir:

pwd
ls -l

To execute the commands saved in a file, you can simply give its name as an argument to the sh command. For ex-
ample:

$ sh dir
/work/docbook/ch13
total 21
-rw-rw-r-- 3 fred doc 263 Apr 12 09:17 abbrevs
-rw-rw-r-- 1 fred doc 10 May 1 14:01 dir
-rw-rw-r-- 1 fred doc 6430 Apr 12 15:00 sect1
-rw-rw-r-- 1 fred doc 14509 Apr 15 16:29 sect2
-rw-rw-r-- 1 fred doc 1024 Apr 28 10:35 stuff
-rw-rw-r-- 1 fred doc 1758 Apr 28 10:00 tmp

Or you can make a file executable by changing its file permissions with the chmod command:
$ ls -l dir
-rw-rw-r-- 1 fred doc 10 May 1 14:01 dir
$ chmod +x dir
$ ls -l dir
-rwxrwxr-x 1 fred doc 10 May 1 14:01 dir

After a file has executable permission, all you need to do to execute the commands it contains is to type the file’s
name:

$ dir
/work/docbook/ch13
total 21
-rw-rw-r-- 3 fred doc 263 Apr 12 09:17 abbrevs
-rwxrwxr-x 1 fred doc 10 May 1 14:01 dir
-rw-rw-r-- 1 fred doc 6430 Apr 12 15:00 sect1
-rw-rw-r-- 1 fred doc 14509 Apr 15 16:29 sect2
-rw-rw-r-- 1 fred doc 1024 Apr 28 10:35 stuff
-rw-rw-r-- 1 fred doc 1758 Apr 28 10:00 tmp

The next step is to make the shell script accessible from whatever directory you happen to be working in. The
Bourne shell maintains a variable called PATH, which is set up during the login process, and contains a list of direc-
tories in which the shell should look for executable commands. This list is usually referred to as your search path.

To use the value of a variable, simply precede its name with a dollar sign ($). This makes it easy to check the
value of a variable like PATH — simply use the echo command:

$ echo $PATH
/bin:/usr/bin:/usr/local/bin:.

Let the Computer Do the Dirty Work 271

The Bourne shell expects the list of directory names contained in the PATH variable to be separated by colons. If
your search path is defined as shown, the following directories will be searched, in order, whenever you type the
name of a command:

/bin
/usr/bin
/usr/local/bin
. (shorthand for the current directory)

The allocation of system commands to the three bin directories is historical and somewhat arbitrary, although
/usr/local/bin tends to contain commands that are local to a specific implementation of UNIX. It is some-
times called /usr/lbin or some other name.

To ensure that any shell scripts you create are automatically found whenever you type their names, you can do
one of two things:

1. You can add shell scripts to one of the directories already in your search path. However, in most cases,
these directories are only writable by the super-user, so this option is not available to all users.

2. You can create a special “tools” directory of your own, and add the name of that directory to your search
path. This directory might be a subdirectory of your own home directory, or could be a more globally
available directory used by a group of people.

For example, you could put the following line in your .profile:
PATH=/usr/fred/tools:.:/bin:/usr/bin:/usr/local/bin:

The /usr/fred/tools directory would be searched before any of the standard search directories. (This means
that you can define an alternate command with the same name as an existing command. The version found first in
the search path is executed, and the search is stopped at that point. You should not put local directories before the
standard directories if you are concerned at all with system security, because doing so creates a loophole that can be
exploited by an intruder).

If you are using the C shell, the search path is stored in a variable called path, and has a different format; see
your UNIX documentation for details. In addition, you must use the rehash command whenever you add a com-
mand to one of the search directories.

Passing Arguments to Shell Scripts

The previous example is very simple; the commands it used took no arguments. In contrast, consider a case in
which you want to save a single complex command line in a file. For example, if you use tbl and eqn with
nroff, your typical command line might look like this:

$ tbl file | eqn | nroff -ms | col | lp

How much easier it would be to save that whole line in a single file called format, and simply type:
$ format file

The question then becomes: how do you tell your format script where in the command line to insert the file argu-
ment?

Because all of the programs in the script are designed to read standard input as well as take a filename argu-
ment, we could avoid the problem by writing the script thus:

tbl | eqn | nroff -ms | col | lp

and using it like this:
$ cat file | format

or like this:
$ format < file

272 Unix Text Processing

But this still begs the question of how to pass an argument to a shell script.

Up to nine arguments can be represented by positional notation. The first argument is represented in the shell
script by the symbol $1, the second by $2, and so on.

So, for example, we could write our script:
tbl $1 | eqn | nroff -ms | col | lp

When specified as an argument to the format command:
$ format ch01

the filename would be substituted in the script for the symbol $1.

But what if you want to specify several files at once? The symbol $* means “use all arguments,” so the script:
tbl $* | eqn | nroff -ms | col | lp

will allow us to write:
$ format file1 file2 ...

Now consider the slightly more complex case in which you’d like to support either the ms or the mm macros.
You could write the script like this:

tbl $2 | eqn | nroff $1 | col | lp

The first argument will now follow the invocation of nroff, and the second will represent the filename:
$ format -ms file

However, at this point we have lost the ability to specify “all arguments,” because the first argument is used differ-
ently than all the rest. There are several ways to handle this situation, but we need to learn a few things first.

Conditional Execution

Commands in a shell script can be executed conditionally using either the if...then...else or case com-
mand built into the shell. However, any conditional commands require the ability to test a value and make a choice
based on the result. As its name might suggest, the test command does the trick.

There are different kinds of things you can test, using various options to the command. The general form of
the command is:

$ test condition

Condition is constructed from one or more options; some of the most useful are listed in Table 12-1.

Table 12.1 Useful test Options

Let the Computer Do the Dirty Work 273

Option Meaning

-d file True if file exists and is a directory
-f file True if file exists and is a regular file
-n s1 True if the length of string s1 is nonzero
-r file True if file exists and is readable
-s file True if file exists and has a size greater than zero
-w file True if file exists and is writable
-x file True if file exists and is executable
-z s1 True if the length of string s1 is zero
str1 = str2 True if strings str1 and str2 are identical
str1 != str2 True if strings str1 and str2 are not identical
str1 True if string str1 is not the null string
n1 -eq n2 True if the integers n1 and n2 are algebraically

equal (any of the comparisons -ne, -gt, -ge,
-lt, and -le may be used in place of -eq)

The test command has a special form just for use in shell scripts. Instead of using the word test, you can
simply enclose condition in square brackets. The expression must be separated from the enclosing brackets by
spaces.

So, for example, to return to our format script, we could write:
if ["$1" = "-mm"]
then

tbl $2 | eqn | nroff -mm | col | lp
else

tbl $2 | eqn | nroff -ms | col | lp
fi

We’ve simply used the test command to compare the value of two strings—the first argument, and the string
"-mm"—and executed the appropriate command line as a result. If the strings are equal, the first command line is
executed; if they are not equal, the second line is executed instead. (Notice that there are spaces surrounding the
equals sign in the test).

The syntax of if...then...else clauses can get confusing. One trick is to think of each keyword (if,
then, and else) as a separate command that can take other commands as its argument. The else clause is op-
tional. (That is, you can say, “if the condition is met, do this,” and give no alternatives. If the condition is not met,
the script will simply go on to the next line, or exit if there is no next line). The entire sequence is terminated with
the fi keyword.

After you realize that each part of the sequence is really just a separate command, like other UNIX com-
mands, the abbreviated form, which uses semicolons rather than newlines to separate the commands, will also make
sense:

if condition; then command; fi

An if...then...else clause allows you to make a choice between at most two options. There is also an
elif statement that allows you to create a sequence of if clauses to deal with more conditions. For example, sup-
pose your system supports a third macro package—one you’ve written yourself, and called mS because it’s a super-
set of ms. (More on this in Chapter 17!) You could write the script like this:

if ["$1" = "-mm"]
then tbl $2 | eqn | nroff -mm | col | lp
elif ["$1" = "-ms"]
then tbl $2 | eqn | nroff -ms | col | lp
elif ["$1" = "-mS"]
then tbl $2 | eqn | nroff -mS | col | lp
fi

This syntax can get awkward for more than a few conditions. Fortunately, the shell provides a more compact way to
handle multiple conditions: the case statement. The syntax of this statement looks complex (even in the slightly
simplified form given here):

274 Unix Text Processing

case value in
pattern) command;;
..
pattern) command;;
esac

In fact, the statement is quite easy to use, and is most easily shown by example. We could rewrite the previous script
as follows:

case $1 in
-mm) tbl $2 | eqn | nroff -mm | col | lp;;
-ms) tbl $2 | eqn | nroff -ms | col | lp;;
-mS) tbl $2 | eqn | nroff -mS | col | lp;;

esac

This form is considerably more compact, especially as the number of conditions grows. (Be sure to note the ;; at
the end of each line. This is an important part of the syntax).

Here’s how the case statement works. Each value in turn is compared (using standard shell metacharacters
like * and ?, if present) against the pattern before the close parenthesis at the start of each line. If the pattern
matches, the line is executed. If not, the script tries again with the next line in the case statement. After the value
has been compared against each case, the process starts over with the next value (if more than one has been speci-
fied).

Discarding Used Arguments

All of the conditions we’ve tested for so far are mutually exclusive. What if you want to include more than one po-
tentially true condition in your script? The trick to dealing with this situation requires two more shell commands:
while and shift.

Consider the following example. You realize that it is inefficient to pass your files through eqn every time
you use format. In addition, you sometimes use pic. You want to add options to your format shell script to
handle these cases as well.

You could decree that the macro package will always be the first argument to your script, the name of the pre-
processor the second, and the file to be formatted the third. To delay execution of the command until all of the op-
tions have been assembled, you can use the case statement to set shell variables, which are evaluated later to make
up the actual command line. Here’s a script that makes these assumptions:

case $1 in
-mm) macros="-mm";;
-ms) macros="-ms";;
-mS) macros="-mS";;

esac
case $2 in

-E) pre="| eqn"
-P) pre="| pic"

esac
tbl $3 $pre | nroff $macros | col | lp

But what if you don’t want either preprocessor, or want both eqn and pic? The whole system breaks down. We
need a more general approach.

There are several ways to deal with this. For example, there is a program called getopt that can be used for
interpreting command-line options. However, we will use another technique—discarding an argument after it is
used, and shifting the remaining arguments. This is the function of the shift command.

This command finds its most elementary use when a command needs to take more than nine arguments.
There is no $10, so a script to echo ten arguments might be written:

echo The first nine arguments: $1 $2 $3 $4 $5 $6 $7 $8 $9
shift
echo The tenth argument: $9

Let the Computer Do the Dirty Work 275

After the shift command, the old $1 has disappeared, as far as the shell is concerned, and the remaining argu-
ments are all shifted one position to the left. (The old $2 is the current $1, and so on). Take a moment to experi-
ment with this if you want.

Shifting works well with conditional statements, because it allows you to test for a condition, discard the first
argument, and go on to test the next argument, without requiring the arguments to be in a specific order. However,
we still can’t quite get the job done, because we have to establish a loop, and repeat the case statement until all of
the arguments are used up.

Repetitive Execution

As we suggested at the start of this chapter, the real secret of programming is to get the computer to do all the repeti-
tive, boring tasks. The basic mechanism for doing this is the loop—an instruction or series of instructions that cause
a program to do the same thing over and over again as long as some condition is true.

The while command is used like this:
while condition
do
commands
done

In the script we’re trying to write, we want to repeatedly test for command-line arguments as long as there are argu-
ments, build up a command line using shell variables, and then go ahead and issue the command. Here’s how:

while [$# -gt 0]
do

case $1 in
-E) eqn="| eqn";;
-P) pic="| pic";;
-*) options="$options $1";;
*) files="$files $1";;

esac
shift

done
tbl $files $eqn $pic | nroff $options | col | lp

The special shell variable $# always contains the number of arguments given to a command. What this script is say-
ing in English is: As long as there is at least one argument

• test the first argument against the following list of possibilities; if there is a match, set the variable as in-
structed;

• throw away the argument now that you’ve used it, and shift the remaining arguments over one place;

• decrement the shell variable $#, which contains the number of arguments;

• go back to the first line following the do statement, and start over.

The loop will continue as long as the condition specified in the while statement is met—that is, until all the argu-
ments have been used up and shifted out of existence.

As you’ve no doubt noticed, to make this work, we had to account for all of the arguments. We couldn’t leave
any to be interpreted in the command line because we had to use them all up to satisfy the while statement. That
meant we needed to think about what other kinds of arguments there might be and include them in the case state-
ment. We came up with two possibilities: additional nroff options and files.

In addition, because of the pattern-matching flexibility in the case statement, we don’t need to call out each
of the macro packages separately, but can just treat them as part of a more general case. Any argument beginning
with a minus sign is simply assumed to be an nroff option.

You’ll notice that we used a somewhat different syntax for assigning these last two potential groups of argu-
ments to variables:

variable="$variable additional_value"

276 Unix Text Processing

Or, as shown in the script:
options="$options $1"
files="$files $1"

This syntax is used to add a value to a variable. We know that we can expect at least one option to nroff, so we
simply add any other options to the same variable. Similarly, there may be more than one filename argument. The
*) case can be executed any number of times, each time adding one more filename to the variable.

If you want to become more familiar with how this works, you can simulate it on the command line:
$ files=sect1
$ files="$files sect2"
$ echo $files
sect1 sect2

As you’ve seen, in the script we used the standard shell metacharacter *, which means “any number of any
characters,” right in the pattern-matching part of the case statement. You can use any of the shell metacharacters
that you can type on the command line equally well in a shell script. However, be sure you realize that when you do
this, you’re making assumptions—that any option not explicitly tested for in the case statement is an nroff op-
tion, and that any argument not beginning with a minus sign is a filename.

This last assumption may not be a safe one—for example, one of the filenames may be mistyped, or you may
not be in the directory you expect, and the file will not be found. We may therefore want to do a little defensive pro-
gramming, using another of the capabilities provided by the test command:

*) if [-f $1]
then
files="$files $1"
else echo "format: $1: file not found"; exit
fi;;

The [-f] test checks to see whether the argument is the name of an existing file. If it is not, the script prints an in-
formative message and exits. (The exit command is used to break out of a script. After this error occurs, we don’t
want to continue with the loop, or go on to execute any commands).

This example is also instructive in that it shows how each element in the case statement’s condition list does
not need to be on a single line. A line can contain a complex sequence of commands, separated by semicolons or
newlines or both, and is not terminated till the concluding ;; is encountered.

Setting Default Values

We’ve considered the case where multiple values are stored in the same variable. What about the other extreme,
where no value is stored?

If an option, such as -E for eqn, is not specified on the command line, the variable will not be defined. That
is, the variable will have no value, and the variable substitution $eqn on the final line of the script will have no ef-
fect—it is as if it isn’t there at all.

On the other hand, it is possible to export a variable, so that it will be recognized not just in the shell that
created it, but in any subshell. This means that the commands:

$ eqn="| eqn"; export eqn
$ format -ms myfile

will have the same effect as:
$ format -ms -E myfile

Although there are occasions where you might want to do this sort of thing, you don’t want it to happen unexpect-
edly. For this reason, it is considered good programming practice to initialize your variables—that is, to set them to
a predefined value (or in many cases, a null value) to minimize random effects due to interaction with other pro-
grams.

Let the Computer Do the Dirty Work 277

To set a shell variable to a null value, simply equate it to a pair of quotation marks with nothing in between.
For example, it would be a good idea to start off the format script with the line:

eqn="";pic="";options=""

In addition to setting arguments to null values, we can also set them to default values—that is, we can give them val-
ues that will be used unless the user explicitly requests otherwise. Let’s suppose that we want the script to invoke
troff by default, but also provide an option to select nroff. We could rewrite the entire script like this:

eqn=""; pic=""; roff="ditroff -Tps"; post="| devps"
lp="lp -dlaser"
while [$# -gt 0]
do

case $1 in
-E) eqn="| eqn";;
-P) pic="| pic";;
-N) roff="nroff"; post="| col"; lp="lp -dline";;
-*) options="$options $1";;
*) if [-f $1]; then

files="$files $1"
else echo "format: $1: file not found"; exit
fi;;

esac
shift

done
eval "tbl $files $eqn $pic | $roff $options $post | $lp"

The troff output needs to be passed through a postprocessor before it can be sent to a printer. (We use devps,
but there are almost as many different postprocessors as there are possible output devices). The nroff output, for
some printers, needs to be passed through col, which is a special filter used to remove reverse linefeeds. Likewise,
the lp command will need a “destination” option. We’re assuming that the system has a printer called laser for
troff output, and one called line for line printer output from nroff. The default case (troff) for both the
postprocessor and destination printer is set in the variables at the start of the file. The -N option resets them to alter-
nate values if nroff is being used. The eval command is necessary in order for the pipes to be evaluated cor-
rectly inside a variable substitution.

What We’ve Accomplished

You might wonder if this script really saved you any time. After all, it took a while to write, and it seems almost as
complex to use as just typing the appropriate command line. After all, was it worth all that work, just so that we can
type:

$ format -ms -E -P -N myfile

instead of:
$ tbl myfile | eqn | pic | nroff -ms | lp

There are two answers to that question. First, many of the programs used to format a file may take options of their
own—options that are always the same, but always need to be specified—and, especially if you’re using troff, a
postprocessor may also be involved. So your actual command line might work out to be something like this:

$ tbl myfile | eqn | pic -T720 -D | ditroff -ms -Tps |
> devps | lp

That’s considerably more to type! You could just save your most frequently used combinations of commands into
individual shell scripts. But if you build a general tool, you’ll find that it gives you a base to build from, and opens
up additional possibilities as you go on. For example, later in this book we’ll show how to incorporate some fairly
complex indexing scripts into format—something that would be very difficult to do from the command line. That
is the far more important second reason for taking the time to build a solid shell script when the occasion warrants.

As this chapter goes on, we’ll show you many other useful tools you can build for yourself using shell scripts.
Many of them will use the features of the shell we introduced in this section, although a few will rely on additional

278 Unix Text Processing

features we’ve yet to learn.

ex Scripts

We’ve discussed ex already in Chapter 7. As we pointed out, any command, or sequence of commands, that you
can type at ex’s colon prompt can also be saved in a file and executed with ex’s :so command.

This section discusses a further extension of this concept—how to execute ex scripts from outside a file and
on multiple files. There are certain ex commands that you might save in scripts for use from within vi that will be
of no use from the outside—maps, abbreviations, and so on. For the most part, you’ll be using substitute commands
in external scripts.

A very useful application of editing scripts for a writer is to ensure consistency of terminology—or even of
spelling—across a document set. For the sake of example, let’s assume that you’ve run spell, and it has printed
out the following list of misspellings:

$ spell sect1 sect2
chmod
ditroff
myfile
thier
writeable

As is often the case, spell has flagged a few technical terms and special cases it doesn’t recognize, but it has also
identified two genuine spelling errors.

Because we checked two files at once, we don’t know which files the errors occurred in, or where in the files
they are. Although there are ways to find this out, and the job wouldn’t be too hard for only two errors in two files,
you can easily imagine how the job could grow time consuming for a poor speller or typist proofing many files at
once.

We can write an ex script containing the following commands:
g/thier/s//their/g
g/writeable/s//writable/g
wq

Then we can edit the files as follows:
$ ex - sect1 < exscript
$ ex - sect2 < exscript

(The minus sign following the invocation of ex tells it to accept its commands from standard input).

If the script were longer than the one in our simple example, we would already have saved a fair amount of
time. However, given our earlier remarks about letting the computer do the dirty work, you might wonder if there
isn’t some way to avoid repeating the process for each file to be edited. Sure enough, we can write a shell script that
includes the invocation of ex, but generalizes it, so that it can be used on any number of files.

Looping in a Shell Script

One piece of shell programming we haven’t discussed yet is the for loop. This command sequence allows you to
apply a sequence of commands for each argument given to the script. (And, even though we aren’t introducing it
until this late in the game, it is probably the single most useful piece of shell programming for beginners. You will
want to remember it even if you don’t write any other shell programs).

Here’s the syntax of a for loop:
for variable in list
do
commands

Let the Computer Do the Dirty Work 279

done

For example:
for file in $*

do
ex - $file < exscript

done

(The command doesn’t need to be indented; we indented for clarity). Now (assuming this shell script is saved in a
file called correct), we can simply type:

$ correct sect1 sect2

The for loop in correct will assign each argument (each file in $*) to the variable file and execute the ex
script on the contents of that variable.

It may be easier to grasp how the for loop works with an example whose output is more visible. Let’s look
at a script to rename files:

for file in $*
do

mv $file $file.x
done

Assuming this script is in an executable file called move, here’s what we can do:
$ ls
ch01 ch02 ch03 move
$ move ch??
$ ls
ch01.x ch02.x ch03.x move

With a little creativity, you could rewrite the script to rename the files more specifically:
for nn in $*
do

mv ch$nn sect$nn
done

With the script written this way, you’d specify numbers instead of filenames on the command line:
$ ls
ch01 ch02 ch03 move
$ move 01 02 03
$ ls
sect01 sect02 sect03 move

The for loop need not take $* (all arguments) as the list of values to be substituted. You can specify an explicit list
as well, or substitute the output of a command. For example:

for variable in a b c d

will assign variable to a, b, c, and d in turn. And:
for variable in ‘grep -l "Alcuin"‘

will assign variable in turn to the name of each file in which grep finds the string Alcuin.

If no list is specified:
for variable

the variable will be assigned to each command-line argument in turn, much as it was in our initial example. This is
actually not equivalent to for variable in $* but to for variable in $@, which has a slightly differ-
ent meaning. The symbols $* expand to $1, $2, $3, etc., but $@ expands to "$1", "$2", "$3" , etc. Quotation
marks prevent further interpretation of special characters.

Let’s return to our main point, and our original script:
for file in $*
do

280 Unix Text Processing

ex - $file < exscript
done

It may seem a little inelegant to have to use two scripts—the shell script and the ex script. And in fact, the shell
does provide a way to include an editing script directly into a shell script.

Here Documents

The operator << means to take the following lines, up to a specified string, as input to a command. (This is often
called a here document). Using this syntax, we could include our editing commands in correct like this:

for file in $*
do
ex - $file << end-of-script
g/thier/s//their/g
g/writeable/s//writable/g
wq
end-of-script
done

The string end-of-script is entirely arbitrary—it just needs to be a string that won’t otherwise appear in the in-
put and can be used by the shell to recognize when the here document is finished. By convention, many users spec-
ify the end of a here document with the string EOF, or E-O-F, to indicate end of file.

There are advantages and disadvantages to each approach shown. If you want to make a one-time series of ed-
its and don’t mind rewriting the script each time, the here document provides an effective way to do the job.

However, writing the editing commands in a separate file from the shell script is more general. For example,
you could establish the convention that you will always put editing commands in a file called exscript. Then,
you only need to write the correct script once. You can store it away in your personal “tools” directory (which
you’ve added to your search path), and use it whenever you like.

ex Scripts Built by diff

A further example of the use of ex scripts is built into a program we’ve already looked at—diff. The -e option to
diff produces an editing script usable with either ed or ex, instead of the usual output. This script consists of a
sequence of a (add), c (change), and d (delete) commands necessary to recreate file1 from file2 (the first and sec-
ond files specified on the diff command line).

Obviously, there is no need to completely recreate the first file from the second, because you could do that eas-
ily with cp. However, by editing the script produced by diff, you can come up with some desired combination of
the two versions.

It might take you a moment to think of a case in which you might have use for this feature. Consider this one:
two people have unknowingly made edits to different copies of a file, and you need the two versions merged. (This
can happen especially easily in a networked environment, in which people copy files between machines. Poor coor-
dination can easily result in this kind of problem).

To make this situation concrete, let’s take a look at two versions of the same paragraph, which we want to
combine:

Version 1:
The Book of Kells, now one of the treasures of the Trinity
College Library in Dublin, was found in the ancient
monastery at Ceannanus Mor, now called Kells. It is a
beautifully illustrated manuscript of the Latin Gospels,
and also contains notes on local history.
It was written in the eighth century.
The manuscript is generally regarded as the finest example
of Celtic illumination.

Let the Computer Do the Dirty Work 281

Version 2:
The Book of Kells was found in the ancient
monastery at Ceannanus Mor, now called Kells. It is a
beautifully illustrated manuscript of the Latin Gospels,
and also contains notes on local history.
It is believed to have been written in the eighth century.
The manuscript is generally regarded as the finest example
of Celtic illumination.

As you can see, there is one additional phrase in each of the two files. We would like to merge them into one file
that incorporates both edits.

Typing:
$ diff -e version1 version2 > exscript

will yield the following output in the file exscript:
6c
It is believed to have been written in the eighth century.
.
1, 2c
The Book of Kells was found in the ancient
.

You’ll notice that the script appears in reverse order, with the changes later in the file appearing first. This is essen-
tial whenever you’re making changes based on line numbers; otherwise, changes made earlier in the file may change
the numbering, rendering the later parts of the script ineffective.

You’ll also notice that, as mentioned, this script will simply recreate version 1, which is not what we want.
We want the change to line 5, but not the change to lines 1 and 2. We want to edit the script so that it looks like this:

6c
It is believed to have been written in the eighth century.
.
w

(Notice that we had to add the w command to write the results of the edit back into the file). Now we can type:
$ ex - version1 < exscript

to get the resulting merged file:
The Book of Kells, now one of the treasures of the Trinity
College Library in Dublin, was found in the ancient
monastery at Ceannanus Mor, now called Kells. It is a
beautifully illustrated manuscript of the Latin Gospels,
and also contains notes on local history.
It is believed to have been written in the eighth century.
The manuscript is generally regarded as the finest example
of Celtic illumination.

Using diff like this can get confusing, especially when there are many changes. It is very easy to get the direction
of changes confused, or to make the wrong edits. Just remember to do the following:

• Specify the file that is closest in content to your eventual target as the first file on the diff command
line. This will minimize the size of the editing script that is produced.

• After you have corrected the editing script so that it makes only the changes that you want, apply it to
that same file (the first file).

Nonetheless, because there is so much room for error, it is better not to have your script write the changes back di-
rectly into one of your source files. Instead of adding a w command at the end of the script, add the command 1,$p
to write the results to standard output. This is almost always preferable when you are using a complex editing script.

If we use this command in the editing script, the command line to actually make the edits would look like this:
$ ex - version1 < exscript > version3

282 Unix Text Processing

The diff manual page also points out another application of this feature of the program. Often, as a writer, you
find yourself making extensive changes, and then wishing you could go back and recover some part of an earlier ver-
sion. Obviously, frequent backups will help. However, if backup storage space is at a premium, it is possible
(though a little awkward) to save only some older version of a file, and then keep incremental diff -e scripts to
mark the differences between each successive version.

To apply multiple scripts to a single file, you can simply pipe them to ex rather than redirecting input:
cat script1 script2 script3 | ex - oldfile

But wait! How do you get your w (or 1,$p) command into the pipeline? You could edit the last script to include
one of these commands. But, there’s another trick that we ought to look at because it illustrates another useful fea-
ture of the shell that many people are unaware of.

If you enclose a semicolon-separated list of commands in parentheses, the standard output of all of the com-
mands are combined, and can be redirected together. The immediate application is that, if you type:

cat script1 script2 script3; echo ’1,$p’ | ex - oldfile

the results of the cat command will be sent, as usual, to standard output, and only the results of echo will be piped
to ex. However, if you type:

(cat script1 script2 script3; echo ’1,$p’) | ex - oldfile

the output of the entire sequence will make it into the pipeline, which is what we want.

Stream Editing

We haven’t seen the sed program yet. Not only is it a line editor rather than a screen editor, but it takes the process
one step further: it is a “noninteractive” line editor. It can only be used with editing scripts. It was developed in
1978 as an extension to ed for three specific cases (according to the original documentation):

• to edit files too large for comfortable interactive editing

• to edit any size file when the sequence of editing commands is too complicated to be comfortably typed
in interactive mode

• to perform multiple “global” editing functions efficiently in one pass through the input

All of these are still good reasons for using sed. But these cases can be solved by the scripting ability of ex that we
have already looked at. Why learn yet another editor?

One answer lies in the third point. Because it was specifically designed to work with scripts, sed is consider-
ably faster than ex when used with a comparable script.

The other answer lies in sed’s unique capability to be used as an editing filter—a program that makes edits
on the fly as data is being passed through a pipe on its way to other programs.

The sed program uses a syntax that is very similar to that used by ex, so it is not very difficult to learn.
However, there are some critical differences, which make it inadvisable for an experienced ed or ex user to just
blindly jump in.

We’re going to take a close look at sed, not as a general-purpose editor, but as a tool to accomplish specific
tasks. As a result, we won’t cover every command, but only those that differ significantly from their ex equivalents
or offer specific benefits that we want to utilize.

First, a brief note on usage. The sed command has two forms:
sed -e command editfiles
sed -f scriptfile editfiles

The first form, using -e, allows you to specify an editing command right on the command line. Multiple -e options
can be specified on the same line.

The second form, using -f, takes the name of a script containing editing commands. We prefer this form for
using sed.

Let the Computer Do the Dirty Work 283

In addition, you can specify an entire multiline editing script as an argument to sed, like this:
sed ’

Editing script begins here
.
.
.

Editing script ends here’ editfiles

This last form is especially useful in shell scripts, as we shall see shortly. However, it can also be used interactively.
The Bourne shell will prompt for continuation lines after it sees the first single quotation mark.

You can also combine several commands on the same line, separating them with semicolons:
sed -e ’command1; command2; ...’ editfiles

One last point: when using sed -e, you should enclose the expression in quotation marks. Although this is
not absolutely essential, it can save you from serious trouble later.

Consider the following example:
$ sed -e s/thier/their own/g myfile

The expression s/thier/their own/g will work correctly in a sed script used with the -f option. But from
the command line it will result in the message “Command garbled,” because the shell interprets the space as a sepa-
rator between arguments, and will parse the command expression as s/thier/their and treat the remainder of
the line as two filenames, own/g and myfile. Lacking a closing / for the s command, sed will complain and
quit.

Differences between ex and sed

The first difference between sed and interactive line editors like ed and ex is the way lines are addressed. In ex,
the default is to affect only a specifically addressed line; therefore, commands like g exist to address multiple lines.
The sed program, on the other hand, works by default on all lines, so it needs commands that allow it to bypass se-
lected lines. The sed program is implicitly global. In ex, the default is to edit the current line, and you must ex-
plicitly request global edits, or address particular lines that you want to have edited. In sed, the default is to edit
every line, and line addresses are used to restrict the operation of the edit.

For example, consider the difference between ex and sed in how they interpret a command of the form:
/pattern/s/oldstring/newstring/

In ex, this means to locate the first line matching pattern and, on that line, perform the specified substitution. In
sed, the same command matches every line containing pattern, and makes the specified edits. In other words, this
command in sed works the same as ex’s global flag:

g/pattern/s/oldstring/newstring/

In both sed and ex, a command of the form:
/pattern1/,/pattern2/command

means to make the specified edits on all lines between pattern1 and pattern2.

Although you can use absolute line number addresses in sed scripts, you have to remember that sed has the
capability to edit multiple files at once in a stream. And in such cases, line numbers are consecutive throughout the
entire stream, rather than restarted with each new file.

Besides its addressing peculiarities, you also need to get used to the fact that sed automatically writes to stan-
dard output. You don’t need to issue any special commands to make it print the results of its edits; in fact, you need
to use a command-line option to make it stop.

To make this point clear, let’s consider the following admittedly artificial example. Your file contains the fol-
lowing three lines:

The files were writeable by thier owner, not by all.

284 Unix Text Processing

The files were writeable by thier owner, not by all.
The files were writeable by thier owner, not by all.

You use the following editing script (in a file called edscript):
/thier/s//their/
/writeable/s//writable/
1,$p

Here are the very different results with ex and sed:
$ ex - junk < edscript
The files were writeable by their owner, not by all.
The files were writable by thier owner, not by all.
The files were writeable by thier owner, not by all.

$ sed -f edscript junk
The files were writable by their owner, not by all.
The files were writable by their owner, not by all.
The files were writable by their owner, not by all.
The files were writable by their owner, not by all.
The files were writable by their owner, not by all.
The files were writable by their owner, not by all.

The ex command, lacking the g prefix to make the edits global, applies the first line in the script to the first line in
the file, and then goes to the second line, to which it applies the second line in the script. No edits are performed on
the third line. The contents of the buffer are printed to standard output by the final line in the script. This is analo-
gous to what would happen if you issued the same commands manually in ex.

The sed command, in contrast, applies each line in the script to every line in the file, and then sends the re-
sults to standard output. A second copy of the input is printed to standard output by the final line in the script.

Although the same script almost works for ex and sed, the sed script can be written more simply as:
s/thier/their/
s/writeable/writable/

Because edits are applied by default to every line, we can skip the initial pattern address and simply give the s com-
mand. And we want to omit the print command, which gave us the annoying second copy of the input.

There are also some special added commands that support sed’s noninteractive operation. We will get to
these commands in due course. However, in some ways, the special commands are easier to learn than the familiar
ones. The cautionary example shown was intended to underline the fact that there is a potential for confusion when
commands that look identical produce very different results.

Some Shell Scripts Using sed

The sed command you are most likely to start with is s (or substitute) because you can put it to work without
knowing anything about sed’s advanced control structures. Even if you learn no other sed commands, you should
read this section, because this command is easy to learn and will greatly extend your editing power.

Within the constraints just outlined, the s command works similarly to its ex equivalent. Let’s look at several
shell scripts that use sed.

First, because speed is definitely a factor when you’re making large edits to a lot of files, we might want to
rewrite the correct script shown previously with ex as follows:

for file in $*
do

sed -f sedscr $file > $file.tmp
mv $file.tmp $file

done

This script will always look for a local editing script called sedscr, and will apply its edits to each file in the argu-
ment list given to correct. Because sed sends the result of its work to standard output, we capture that output in

Let the Computer Do the Dirty Work 285

a temporary file, then move it back to the original file.

As it turns out, there is a real danger in this approach! If there is an error in the sed script, sed will abort
without producing any output. As a result, the temporary file will be empty and, when copied back onto the original
file, will effectively delete the original.

To avoid this problem, we need to include a test in the correct shell script:
for file in $*
do

sed -f sedscr $file > $file.tmp
if [-s $file.tmp]
then

mv $file.tmp $file
else

echo "Sed produced an empty file."
fi

done

The [-s] test checks to see whether or not a file is empty—a very useful thing indeed when you are using editing
scripts.

You might want to create another simple shell script that uses sed to correct simple errors. We’ll call this one
change:

sed -e "s/$1/$2/g" $3 > $3.tmp
if [-s $3.tmp]
then

mv $3.tmp $3
else

echo "Possible error using regular expression syntax."

This script will simply change the first argument to the second in the file specified by the third argument.
$ change mispeling misspelling myfile

(Because we control the actual editing script, the most likely errors could come from faulty regular expression syn-
tax in one of the first two arguments; thus, we changed the wording of the error message).

Integrating sed into format

Let’s consider a brief application that shows sed in its role as a true stream editor, making edits in a pipeline—edits
that are never written back into a file.

To set the stage for this script, we need to turn back briefly to typesetting. On a typewriter-like device (includ-
ing a CRT), an em dash is typically typed as a pair of hyphens (--). In typesetting, it is printed as a single, long dash
(—). The troff program provides a special character name for the em dash, but it is inconvenient to type \(em in
your file whenever you want an em dash.

Suppose we create a sed script like this:
s/--/\\(em/g

and incorporate it directly into our format script? We would never need to worry about em dashes—sed would
automatically insert them for us. (Note that we need to double the backslash in the string \(em because the back-
slash has meaning to sed as well as to troff, and will be stripped off by sed).

The format script might now look like this:
eqn=""; pic=""; macros="ms"; col=""; roff="ditroff -Tlj"
sed="| sed -e ’s/--/\\(em/g’"
while [$# -gt 0]
do

case $1 in
-E) eqn="| eqn";;
-P) pic="| pic";;

286 Unix Text Processing

-N) roff="nroff"; col="| col"; sed="";;
-*) options="$options $1";;
*) if [-f $1]; then

files="$files $1"
else echo "format: $1: file not found"; exit
fi;;

esac
shift

done
eval "cat $files $sed | tbl $eqn $pic | $roff $options $col | lp"

(Notice that we’ve set up the -N option for nroff so that it sets the sed variable to null, because we only want to
make this change if we are using troff).

Excluding Lines from Editing

Before we go any further, let’s take a moment to be sure the script is complete.

What about the case in which someone is using hyphens to draw a horizontal line? We want to exclude from
the edit any lines containing three or more hyphens together. To do this, we use the ! (don’t!) command:

/---/!s/--/\(em/g

It may take a moment to understand this syntax. It says, simply, “If you find a line containing three hyphens to-
gether, don’t make the edit.” The sed program will treat all other lines as fair game. (It’s important to realize that
the ! command applies to the pattern match, not to the s command itself. Although, in this case, the effect might
seem to be the same whether you read the command as “Don’t match a line containing ---” or “Match a line con-
taining ---, and don’t substitute it,” there are other cases in which it will be very confusing if you don’t read the
line the same way that sed does).

We might also take the opportunity to improve the aesthetics even further, by putting in a very small space be-
tween the ends of the dash and the preceding and following words, using the troff construct \ˆ, which produces a
1/12-em space:

/---/!s/--/\\ˆ\\(em\\ˆ/g

As it turns out, changing hyphens to em dashes is not the only “prettying up” edit we might want to make when
typesetting. For example, some laser printers do not have a true typeset quotation mark (“ and ” as opposed to " and
"). If you are using an output device with this limitation, you could use sed to change each double quotation mark
character to a pair of single open or close quotation marks (depending on context), which, when typeset, will pro-
duce the appearance of a proper double quotation mark.

This is a considerably more difficult edit to make because there are many separate cases that we need to ac-
count for using regular expression syntax. Our script might need to look like this:

s/ˆ"/‘‘/
s/"$/’’/
s/"? /’’? /g
s/"?$/’’?/g
s/ "/ ‘‘/g
s/" /’’ /g
s/|——|"/|——|‘‘/g
s/"|——|/’’|——|/g
s/")/’’)/g
s/"]/’’]/g
s/("/(‘‘/g
s/\["/\[‘‘/g
s/";/’’;/g
s/":/’’:/g
s/,"/,’’/g
s/",/’’,/g
s/\."/.\\\&’’/g
s/"\./’’.\\\&/g

Let the Computer Do the Dirty Work 287

s/"\\ˆ\\(em/’’\\(em/g
s/\\(em\\ˆ"/\\(em‘‘/g
s/"\\(em/’’\\(em/g
s/\\(em"/\\(em‘‘/g

(This list could be shortened by judicious application of \([...]\) regular expression syntax, but it is shown in
its long form for effect. Note that the symbol |——| represents a tab).

Branching to Selective Parts of a Script

In technical books like this, it is usually desirable to show examples in a constant-width font that clearly shows each
character as it actually appears. A pair of single quotation marks in a constant-width font will not appear at all simi-
lar to a proper typeset double quotation mark in a variable-width font. In short, it is not always desirable to make the
substitutions shown previously.

However, we can assume that examples will be set off by some sort of macro pair (in this book, we used .ES
and .EE, for example start and example end), and we can use those as the basis for exclusion. There are two ways
to do this:

• Use the ! command, as we did before.

• Use the b (branch) command to skip portions of the editing script.

Let’s look at how we’d use the ! command first.

We could apply the ! command to each individual line:
/ˆ\.ES/,/ˆ\.EE/!s/ˆ"/‘‘/
/ˆ\.ES/,/ˆ\.EE/!s/"$/’’/
/ˆ\.ES/,/ˆ\.EE/!s/"? /’’? /g

.

.

.

But there has to be a better way, and there is. The sed program supports the flow control symbols { and } for
grouping commands. So we simply need to write:

/ˆ\.ES/,/ˆ\.EE/!{
s/ˆ"/‘‘/
s/"$/’’/
s/"? /’’? /g

.

.

.
s/\\(em\\ˆ"/\\(em‘‘/g
s/"\\(em/’’\\(em/g
s/\\(em"/\\(em‘‘/g
}

All commands enclosed in braces will be subject to the initial pattern address.

There is another way we can do the same thing. The sed program’s b (branch) command allows you to
transfer control to another line in the script that is marked with an optional label. Using this feature, we could write
the previous script like this:

/ˆ\.ES/,/ˆ\.EE/bend
s/ˆ"/‘‘/
s/"$/’’/
s/"? /’’? /g

.

.

.
s/\\(em\\ˆ"/\\(em‘‘/g
s/"\\(em/’’\\(em/g
s/\\(em"/\\(em‘‘/g

288 Unix Text Processing

:end

A label consists of a colon, followed by up to eight characters. If the label is missing, the b command branches to
the end of the script. (Because we don’t have anything past this point at the moment, we don’t actually need the la-
bel in this case. That is the form we will use from now on).

The b command is designed for flow control within the script. It allows you to create subscripts that will only
be applied to lines matching certain patterns and will not be applied elsewhere. However, as in this case, it also
gives you a powerful way to exempt part of the text from the action of a single-level script.

The advantage of b over ! for our application is that we can more easily specify multiple conditions to avoid.
The ! symbol can apply to a single command, or can apply to a set of commands enclosed in braces that immedi-
ately follows. The b command, on the other hand, gives you almost unlimited control over movement around the
script.

For example, if we are using multiple macro packages, there may be other macro pairs besides .ES and .EE
that enclose text that we don’t want to apply the sed script to. So, for example, we can write:

/ˆ.ES/,/ˆ.EE/b
/ˆ.PS/,/ˆ.PE/b
/ˆ.G1/,/ˆ.G2/b

In addition, the quotation mark is used as part of troff’s own comment syntax (\" begins a comment), so we
don’t want to change quotation marks on lines beginning with either a . or a ’:

/ˆ[.’]/b

It may be a little difficult to grasp how these branches work unless you keep in mind how sed does its work:

1. It reads each line in the file into its buffer one line at a time.

2. It then applies all commands in the script to that one line, then goes to the next line.

When a branch dependent on a pattern match is encountered, it means that if a line that matches the pattern is read
into the buffer, the branch command will cause the relevant portion of the script to be skipped for that line. If a la-
bel is used, the script will continue at the label; if no label is used, the script is effectively finished for that line. The
next line is read into the buffer, and the script starts over.

The previous example shows how to exempt a small, clearly delineated portion of a file from the action of a
sed script. To achieve the opposite effect—that is, to make a sed script affect only a small part of a file and ignore
the rest—we can simply anchor the desired edits to the enclosing pattern.

For example, if there were some edits we wanted to make only within the confines of our .ES and .EE
macros, and not elsewhere, we could do it like this:

/ˆ\.ES/,/ˆ\.EE/{
Editing commands here
}

If the script is sufficiently complex that you’d rather have a more global method of exclusion, you can reverse the
sense of a branch by combining it with !:

/ˆ\.ES/,/ˆ\.EE/!b

When the first line in the script is applied to each line in the input, it says: “Does the line match the pattern? No?
Branch to the end of the script. (That is, start over on the next line of the input). Yes? Go on to the next line in the
script, and make the edits.”

Back to format

The edits we’ve shown using sed are very useful, so we want to be sure to properly integrate them with format.
Because we are now making a large series of edits rather than just one, we need to use sed with a script file rather
than a single-line script using -e. As a result, we’ll change the variable assignment in format to:

sed="| sed -f /usr/local/cleanup.sed"

Let the Computer Do the Dirty Work 289

where cleanup.sed is the name of the script containing the editing commands, and /usr/local could be any
generally accessible directory. We’ll add additional formatting cleanup commands to this file later.

Inserting Lines of Text

The sed program, like ex and vi, has commands for inserting new lines of text. The i (insert) command adds text
before the current line; a (append) adds text after the current line. In ex, after you enter insert mode, you can type
as long as you like, breaking lines with carriage returns.* Insert mode is terminated by typing a period at the start of
a line, followed immediately by a carriage return. In sed, you must instead type a backslash at the end of each in-
serted line. Insert mode is terminated by the first newline that is not “escaped” with a backslash in this way. For ex-
ample, the sed script:

1a\
The backslash is a ubiquitous escape character used by\
many UNIX programs. Perhaps its most confusing appearance\
is at the end of a line, when it is used to "hide a\
newline." It appears to stand alone, when in fact it is\
followed by a nonprinting character-a newline.

will append the five lines shown in the example following line 1 in the file to which the sed script is applied. The
insert ends on the fifth line, when sed encounters a newline that is not preceded by a backslash.

A sed Script For Extracting Information From a File

The -n option to sed suppresses normal output and causes sed to print only the output you explicitly ask for using
the p command.

There are two forms of the p command:

• As an absolute print command. For example:
/pattern/p

will always print the line(s) matched by pattern.

• In combination with a substitute command, in which case the line will only be printed if a substitution is
actually made. For example:

/pattern/s/oldstring/newstring/gp

will not be printed if a line containing pattern is found but oldstring was not replaced with newstring.

This becomes much clearer if you realize that a line of the form:
s/oldstring/newstring/p

is unrestricted—it matches every line in the file—but you only want to print the result of successful substitutions.

Using sed -n with the p command gives you a grep-like facility with the ability to select not just single
lines but larger blocks of text.

For example, you could create a simple online quick-reference document, in which topics are delineated by an
initial heading and a distinct terminating string, as in the following abbreviated example:

$ cat alcuin_online
.
.
.

*The terms “carriage return” and “newline” are used somewhat loosely here. They are actually distinct characters in the ASCII char-
acter set—equivalent to ˆM (carriage return) and ˆJ (linefeed). The confusion arises because UNIX changes the carriage return (ˆM)
generated by the carriage return key to a linefeed (ˆJ) on input. (That is, when you type a carriage return when editing a file, what is
actually stored is a linefeed). On output, the linefeed is mapped to both characters—that is, a ˆJ in a file actually is output to the ter-
minal as a carriage return/linefeed pair (ˆMˆJ).

290 Unix Text Processing

Output Devices

Alcuin requires the use of a graphics device with at least
300 dpi resolution, and the ability to store at least
one-half page of graphics at that resolution ...
%%%%

.

.

.
Type Styles

There are a number of ornamental type styles available on
many typesetters. For example, many have an Old English
font. But no typesetter currently on the market has the
capability of Alcuin to create unique characters in the
style of medieval illuminated manuscripts.
%%%%

.

.

.
$

A shell program like the following is all you need to display entries from this “full text database”:
pattern=$*
sed -n "/$pattern/,/%%%%/p" alcuin_online

(The entire argument list supplied to the command ($*) is assigned to the variable pattern, so that the user can
type a string including spaces without having to type quotation marks).

We’ll give an example that is perhaps a bit more realistic. Consider that when you are developing macros for
use with an existing package, you may often need to consult macros in the package you are either using or worried
about affecting. Of course, you can simply read in the entire file with the editor. However, to make things easier,
you can use a simple shell script that uses sed to print out the definition of the desired macro. We use a version of
this script on our own system, where we call it getmac:

mac="$2"
case $1 in
-ms) file="/usr/lib/macros/tmac.s";;
-mm) file="/usr/lib/macros/mmt";;
-man) file="/usr/lib/macros/an";;

esac
sed -n -e "/ˆ\.de *$mac/,/ˆ\.\.$/p" $file
done

There are a couple of things about this script that bear mention. First, the name of a macro does not need to be sepa-
rated from the .de request by a space. The ms package uses a space, but mm and man do not. This is the reason the
search pattern includes a space followed by an asterisk (this pattern matches zero or more spaces).

Second, we use the -n option of sed to keep it from printing out the entire file. It will now print out only the
lines that match: the lines from the start of the specified macro definition (.de *$mac) to the .. that ends the def-
inition.

(If you are new to regular expressions, it may be a little difficult to separate the regular expression syntax from
troff and shell special characters, but do make the effort, because this is a good application of sed and you
should add it to your repertoire).

The script prints the result on standard output, but it can easily be redirected into a file, where it can become
the basis for your own redefinition. We’ll find good use for this script in later chapters.

Yet another example of how we can use sed to extract (and manipulate) information from a file is provided
by the following script, which we use to check the structure of documents we are writing.

The script assumes that troff macros (in this case, the macros used to format this book) are used to delin-
eate sections, and prints out the headings. To make the structure more apparent, the script removes the section
macros themselves, and prints the headings in an indented outline format.

Let the Computer Do the Dirty Work 291

There are three things that sed must accomplish:

1. Find lines that begin with the macro for chapter (.CH) or section headings (.H1 or .H2).

2. Make substitutions on those lines, replacing macros with text.

3. Print only those lines.

The sed command, do.outline, operates on all files specified on the command line ($*). It prints the result to
standard output (without making any changes within the files themselves).

sed -n ’/ˆ\.[CH][H12]/ {
s/"//g
s/ˆ\.CH /\

CHAPTER /
s/ˆ\.H1/ A. /
s/ˆ\.H2/ B. /
p

}’ $*

The sed command is invoked with the -n option, which suppresses the automatic printing of lines. Then we spec-
ify a pattern that selects the lines we want to operate on, followed by an opening brace ({). This signifies that the
group of commands up to the closing brace (}) are applied only to lines matching the pattern. This construct isn’t as
unfamiliar as it may look. The global regular expression of ex could work here if we only wanted to make one sub-
stitution (g/ˆ\.[CH][H12]/s/"//g). The sed command performs several operations:

1. It removes double quotation marks.

2. It replaces the macro for chapter headings with a newline (to create a blank line) followed by the word
CHAPTER.

3. It replaces the section heading with an appropriate letter and tabbed indent.

4. It prints the line.

The result of do.outline is as follows:
$ do.outline ch13/sect1

CHAPTER 13 Let the Computer Do the Dirty Work
A. Shell Programming

B. Stored Commands
B. Passing Arguments to Shell Scripts
B. Conditional Execution
B. Discarding Used Arguments
B. Repetitive Execution
B. Setting Default Values
B. What We’ve Accomplished

Because the command can be run on a series of files or “chapters,” an outline for an entire book can be produced in a
matter of seconds. We could easily adapt this script for ms or mm section heading macros, or to include a C-level
heading.

The Quit Command

The q command causes sed to stop reading new input lines (and to stop sending them to the output). So, for exam-
ple, if you only want some initial portion of your file to be edited, you can select a pattern that uniquely matches the
last line you want affected, and include the following command as the last line of your script:

/pattern/q

After the line matching pattern is reached, the script will be terminated.*

*You need to be very careful not to use q in any program that writes its edits back to the original file (like our correct shell script
shown previously). After q is executed, no further output is produced. It should not be used in any case where you want to edit the
front of the file and pass the remainder through unchanged. Using q in this case is a very dangerous beginner’s mistake.

292 Unix Text Processing

This command is not really useful for protecting portions of a file. But, when used with a complex sed
script, it is useful for improving the performance of the script. Even though sed is quite fast, in an application like
getmac there is some inefficiency in continuing to scan through a large file after sed has found what it is looking
for.

So, for example, we could rewrite getmac as follows:
mac="$2"
case $1 in
-ms) file="/usr/lib/macros/tmac.s";;
-mm) file="/usr/lib/macros/mmt";;
-man) file="/usr/lib/macros/an";;

esac
shift
sed -n "
/ˆ\.de *$mac/,/ˆ\.\./{
p
/ˆ\.\./q
}" $file
done

The grouping of commands keeps the line:
/ˆ\.\./q

from being executed until sed reaches the end of the macro we’re looking for. (This line by itself would terminate
the script at the conclusion of the first macro definition). The sed program quits on the spot, and doesn’t continue
through the rest of the file looking for other possible matches.

Because the macro definition files are not that long, and the script itself not that complex, the actual time
saved from this version of the script is negligible. However, with a very large file, or a complex, multiline script that
needs to be applied to only a small part of the file, this script could be a significant timesaver.

For example, the following simple shell program uses sed to print out the top ten lines of a file (much like the
standard UNIX head program):

for file
do
sed 10q $file
done

This example shows a dramatic performance gain over the same script written as follows:
for file
do
sed -n 1,10p $file
done

Matching Patterns across Two Lines

One of the great weaknesses of line-oriented editors is their helplessness in the face of global changes in which the
pattern to be affected crosses more than one line.

Let me give you an example from a recent manual one of our writers was working on. He was using the ms
.BX macro (incorrectly, it turns out) to box the first letter in a menu item, thus graphically highlighting the sequence
of menu selections a user would select to reach a given command. For example:

M ain menu
P ortfolio commands

E valuate portfolios
S hock factors

He had created a menu reference divided into numerous files, with hundreds of commands coded like this:
.in 5n

Let the Computer Do the Dirty Work 293

.BX "\s-2M\s0"\c
ain menu
.in +5n
.BX "\s-2P\s0"\c
ortfolio commands
.in +5n
.BX "\s-2E\s0"\c
valuate portfolios
.in +5n
.BX "\s-2S\s0"\c
hock factors
.in 0

Suddenly, the writer realized that the M in Main Menu should not be boxed because the user did not need to press
this key. He needed a way to remove the box around the M if—and only if—the next line contained the string ain
menu.

(A troff aside: The \c escape sequence brings text from the following line onto the current line. You
would use this, for example, when you don’t want the argument to a macro to be separated from the first word on the
next line by the space that would normally be introduced by the process of filling. The fact that the .BX macro al-
ready makes provision for this case, and allows you to supply continued text in a second optional argument, is some-
what irrelevant to this example. The files had been coded as shown here, the mistake had been made, and there were
hundreds, perhaps thousands, of instances to correct).

The N command allows you to deal with this kind of problem using sed. This command temporarily “joins”
the current line with the next for purposes of a pattern match. The position of the newline in the combined line can
be indicated by the escape sequence \n. In this case, then, we could solve the problem with the following two-line
sed script:

/.BX "\s-2M\s0"/N
s/.BX "\s-2M\s0"\c\nain Menu/Main Menu/

We search for a particular pattern and, after we find it, “add on” the next line using N. The next substitution will
now apply to the combined line.

Useful as this solution was, the number of cases in which you know exactly where in the input a newline will
fall are limited. Fortunately, sed goes even further, providing commands that allow you to manipulate multiline
patterns in which the newline may occur at any point. Let’s take a look at these commands.

The Hold Space and the Pattern Space

The next set of commands— hold (h or H), get (g or G), and exchange (x)— can be difficult to understand, espe-
cially if you have read the obscure documentation provided with most UNIX systems. It may help to provide an
analogy that reviews some of the points we’ve already made about how sed works.

The operations of sed can be explained, somewhat fancifully, in terms of an extremely deliberate scrivener or
amanuensis toiling to make a copy of a manuscript. His work is bound by several spacial restrictions: the original
manuscript is displayed in one room; the set of instructions for copying the manuscript are stored in a middle room;
and the quill, ink, and folio are set up in yet another room. The original manuscript as well as the set of instructions
are written in stone and cannot be moved about. The dutiful scrivener, being sounder of body than mind, is able to
make a copy by going from room to room, working on only one line at a time. Entering the room where the original
manuscript is, he removes from his robe a scrap of paper to take down the first line of the manuscript. Then he
moves to the room containing the list of editing instructions. He reads each instruction to see if it applies to the sin-
gle line he has scribbled down.

Each instruction, written in special notation, consists of two parts: a pattern and a procedure. The scrivener
reads the first instruction and checks the pattern against his line. If there is no match, he doesn’t have to worry about
the procedure, so he goes to the next instruction. If he finds a match, then the scrivener follows the action or actions
specified in the procedure.

294 Unix Text Processing

He makes the edit on his piece of paper before trying to match the pattern in the next instruction. Remember,
the scrivener has to read through a series of instructions, and he reads all of them, not just the first instruction that
matches the pattern. Because he makes his edits as he goes, he is always trying to match the latest version against
the next pattern; he doesn’t remember the original line.

When he gets to the bottom of the list of instructions, and has made any edits that were necessary on his piece
of paper, he goes into the next room to copy out the line. (He doesn’t need to be told to print out the line). After that
is done, he returns to the first room and takes down the next line on a new scrap of paper. When he goes to the sec-
ond room, once again he reads every instruction from first to last before leaving.

This is what he normally does, that is, unless he is told otherwise. For instance, before he starts, he can be
told not to write out every line (the -n option). In this case, he must wait for an instruction that tells him to print
(p). If he does not get that instruction, he throws away his piece of paper and starts over. By the way, regardless of
whether or not he is told to write out the line, he always gets to the last instruction on the list.

Let’s look at other kinds of instructions the scrivener has to interpret. First of all, an instruction can have zero,
one, or two patterns specified:

• If no pattern is specified, then the same procedure is followed for each line.

• If there is only one pattern, he will follow the procedure for any line matching the pattern.

• If a pattern is followed by a !, then the procedure is followed for all lines that do not match the pattern.

• If two patterns are specified, the actions described in the procedure are performed on the first matching
line and all succeeding lines until a line matches the second pattern.

The scrivener can work only one line at a time, so you might wonder how he handles a range of lines. Each time he
goes through the instructions, he only tries to match the first of two patterns. Now, after he has found a line that
matches the first pattern, each time through with a new line he tries to match the second pattern. He interprets the
second pattern as pattern!, so that the procedure is followed only if there is no match. When the second pattern is
matched, he starts looking again for the first pattern.

Each procedure contains one or more commands or actions. Remember, if a pattern is specified with a proce-
dure, the pattern must be matched before the procedure is executed. We have already shown many of the usual com-
mands that are similar to other editing commands. However, there are several highly unusual commands.

For instance, the N command tells the scrivener to go, right now, and get another line, adding it to the same
piece of paper. The scrivener can be instructed to “hold” onto a single piece of scrap paper. The h command tells
him to make a copy of the line on another piece of paper and put it in his pocket. The x command tells him to ex-
change the extra piece of paper in his pocket with the one in his hand. The g command tells him to throw out the
paper in his hand and replace it with the one in his pocket. The G command tells him to append the line he is hold-
ing to the paper in front of him. If he encounters a d command, he throws out the scrap of paper and begins again at
the top of the list of instructions. A D command has effect when he has been instructed to append two lines on his
piece of paper. The D command tells him to delete the first of those lines.

If you want the analogy converted back to computers, the first and last rooms in this medieval manor are stan-
dard input and standard output. Thus, the original file is never changed. The line on the scrivener’s piece of scrap
paper is in the pattern space; the line on the piece of paper that he holds in his pocket is in the hold space. The hold
space allows you to retain a duplicate of a line while you change the original in the pattern space. Let’s look at a
practical application, a sed program that searches for a particular phrase that might be split across two lines.

As powerful as regular expressions are, there is a limitation: a phrase split across two lines will not be
matched. As we’ve shown, even though you can specify a newline, you have to know between which two words the
newline might be found. Using sed, we can write instructions for general-purpose pattern matching across two
lines.

N
h
s/ *\n/ /
/pattern-matching syntax/{
g
p
d

Let the Computer Do the Dirty Work 295

}
g
D

This sed script will recognize the phrase pattern-matching syntax even when it’s in the input file on two lines.
Let’s see how the pattern space and hold space allow this to be done.

At the start, there is one line in the pattern space. The first action (N) is to get another line and append it to the
first. This gives us two lines to examine, but there is an embedded newline that we have to remove (otherwise we’d
have to know where the newline would fall in the pattern). Before that, we copy (h) the contents of the pattern space
into the hold space so that we can have a copy that retains the newline. Then we replace the embedded newline
(\n), and any blank spaces that might precede it, with a single blank. (The sed command does not remove a new-
line when it terminates the line in the pattern space). Now we try to match the phrase against the contents of the pat-
tern space. If there is a match, the duplicate copy that still contains the newline is retrieved from the hold space (g)
and printed (p). The d command sends control back to the top of the list of instructions so that another line is read
into the pattern space, because no further editing is attempted “on the corpse of a deleted line” (to use the phrasing
of the original sed documentation). If, on the other hand, there is no match, then the contents of the hold buffer are
replaced (g) with the contents of the pattern space. Now we have our original two lines in the pattern space, sepa-
rated by a newline. We want to discard the first of these lines, and retain the second in order to pair it up with the
next line. The D command deletes the pattern space up to the newline and sends us back to the top to append the
next line.

This script demonstrates the limits of flow control in sed. After the first line of input is read, the action N is
responsible for all input. And, using d and D to avoid ever reaching the bottom of the instruction list, sed does not
print the line automatically or clear the pattern space (regardless of the -n option). To return to our analogy, after
the scrivener enters the second room, an instruction is always telling him which room to go to next and whether to
get another line or to write it out, for as long as there are lines to be read from the manuscript.

As we have emphasized, you can always refine a script, perfecting the way it behaves or adding features.
There are three problems with the way this script works. First and most important, it is not general enough because
it has been set up to search for a specific string. Building a shell script around this sed program will take care of
that. Second, the program does not “go with the flow” of sed. We can rewrite it, using the b (branch) command,
to make use of sed’s default action when it reaches the bottom of its instruction list. Last, this program always prints
matching lines in pairs, even when the search string is found in its entirety on a single line of input. We need to
match the pattern before each new line of input is paired with the previous line.

Here’s a generalized version of this sed script, called phrase, which allows you to specify the search string
as a quoted first argument. Additional command-line arguments represent filenames.

search=$1
shift
for file
do

sed ’
/’"$search"’/b
N
h
s/.*\n//
/’"$search"’/b
g
s/ *\n/ /
/’"$search"’/ {
g
b
}
g
D’ $file

done

A shell variable defines the search string as the first argument on the command line. Now the sed program tries to
match the search string at three different points. If the search string is found in a new line read from standard input,
that line is printed. We use the b command to drop to the bottom of the list; sed prints the line and clears the

296 Unix Text Processing

pattern space. If the single line does not contain the pattern, the next input line is appended to the pattern space.
Now it is possible that this line, by itself, matches the search string. We test this (after copying the pattern space to
the hold space) by removing the previous line up to the embedded newline. If we find a match, control drops to the
bottom of the list and the line is printed. If no match is made, then we get a copy of the duplicate that was put in the
hold space. Now, just as in the earlier version, we remove the embedded newline and test for the pattern. If the
match is made, we want to print the pair of lines. So we get another copy of the duplicate because it has the new-
line, and control passes to the bottom of the script. If no match is found, we also retrieve the duplicate and remove
the first portion of it. The delete action causes control to be passed back to the top, where the N command causes
the next line to be appended to the previous line.

Here’s the result when the program is run on this section:
$ phrase "the procedure is followed" sect3
If a pattern is followed by a \f(CW!\fP, then the procedure
is followed for all lines that do \fInot\fP match the
so that the procedure is followed only if there is

In Conclusion

The examples given here only begin to touch on the power of sed’s advanced commands. For example, a variant of
the hold command (H) appends matched lines to the hold space, rather than overwriting the initial contents of the
hold space. Likewise, the G variant of the get command appends the contents of the hold space to the current line,
instead of replacing it. The X command swaps the contents of the pattern space with the contents of the hold space.
As you can imagine, these commands give you a great deal of power to make complex edits.

However, it’s important to remember that you don’t need to understand everything about sed to use it. As
we’ve shown, it is a versatile editor, fast enough to recommend to beginners for making simple global edits to a large
set of files, yet complex enough to tackle tasks that you’d never think to accomplish with an editor.

Although the syntax is convoluted even for experienced computer users, sed does have flow control mecha-
nisms that, given some thought and experimentation, allow you to devise editing programs. It is easy to imagine
(though more difficult to execute) a sed script that contains editing “subroutines,” branched to by label, that per-
form different actions on parts of a file and quit when some condition has been met.

Few of us will go that far, but it is important to understand the scope of the tool. You never know when, faced
with some thorny task that would take endless repetitive hours to accomplish, you’ll find yourself saying: “Wait! I
bet I could do that with sed.”*

A Proofreading Tool You Can Build

Now let’s look at a more complex script that makes minimal use of sed but extensive use of shell programming. It
is the first example of a full-fledged tool built with the shell that offers significantly greater functionality than any of
the individual tools that make it up.

We call this script proof. It uses spell to check for misspelled words in a file, shows the offending lines in
context, and then uses sed to make the corrections. Because many documents contain technical terms, proper
names, and so on that will be flagged as errors, the script also creates and maintains a local dictionary file of excep-
tions that should not be flagged as spelling errors.

This script was originally published with the name spellproofer in Rebecca Thomas’s column in the
June 1985 issue of UNIX World , to which it was submitted by Mike Elola. The script as originally published con-
tained several errors, for which we submitted corrections. The following script, which incorporates those correc-
tions, was published in the January 1986 issue, and is reprinted with permission of UNIX World . (Actually, we’ve
added a few further refinements since then, so the script is not exactly as published).

*The preceding sections have not covered all sed commands. See Appendix A for a complete list of sed commands.

Let the Computer Do the Dirty Work 297

Because the contents of the script will become clearer after you see it in action, let’s work backward this time,
and show you the results of the script before we look at what it contains. The following example shows a sample
run on an early draft of Chapter 2. In this example, <CR> indicates that the user has typed a carriage return in re-
sponse to a prompt.

$ proof sect1
Do you want to use a local dictionary? If so, enter
the name or press RETURN for the default dictionary: <CR>

Using local dictionary file dict
working ...
The word Calisthentics appears to be misspelled.
Do you want to see it in context (y or n)?
n

Press RETURN for no change or replace "Calisthentics" with:
Calisthenics

.H1 "UNIX Calisthenics"
Save corrections in "sect1" file (y or n)?
y

The word metachacters appears to be misspelled.
Do you want to see it in context (y or n)?
n

Press RETURN for no change or replace "metachacters" with:
metacharacters

generation metacharacters. The asterisk matches any or all
Save corrections in "sect1" file (y or n)?
y

The word textp appears to be misspelled.
Do you want to see it in context (y or n)?
y
a directory "/work/textp" and under that directories for
each of the chapters in the book, "/work/textp/ch01",
$ cp notes /work/textp/ch01
name in the directory /work/textp/ch01.
$ ls /work/textp/ch*
$ ls /work/textp/ch01/sect?
cwd /work/textp/ch03
$ book="/work/textp"
/work/textp

Press RETURN for no change or replace ’textp’ with: <CR>

You left the following words unchanged
textp

Do you wish to have any of the above words entered
into a local dictionary file (y/n)?
y
Append to dict (y/n)?
y
Do you wish to be selective (y/n)?
y
Include textp (y/n)?
y

Done.
$

298 Unix Text Processing

Now let’s look at the script. Because it is more complex than anything we have looked at so far, we have printed line
numbers in the margin. These numbers are not part of the script but are used as a reference in the commentary that
follows. You will find that the indentation of nested loops and so forth will make the program much easier to read.

1 echo "Do you want to use a local dictionary? If so, enter"
2 echo "the name or press RETURN for the default dictionary: "
3 read localfile
4 if [-z "$localfile"]; then
5 localfile=dict
6 echo Using local dictionary file $localfile
7 fi
8 echo "working ..."
9 touch $localfile

10 filelist="$*"; excused=""
11 if [-z "$filelist"]; then
12 echo ’Usage: proof file...’
13 exit 1
14 fi
15 for word in ‘spell $filelist‘
16 do
17 found=‘grep "ˆ$word$" $localfile
18 if [-z "$found"] ; then
19 echo
20 echo "The word $word appears to be misspelled."
21 echo "Do you want to see it in context (y or n)? "
22 read context
23 if ["$context" = y]; then
24 grep $word $filelist
25 fi
26 echo
27 echo "Press RETURN for no change or replace \"$word\" with:"
28 read correction
29 if [-n "$correction"]; then
30 hitlist="‘grep -l $word $filelist‘"
31 for file in $hitlist
32 do
33 echo
34 sed -n -e "s/$word/$correction/gp" <$file
35 echo "Save corrections in \"$file\" file (y or n)? "
36 read response
37 if ["$response" = y]; then
38 sed -e "s/$word/$correction/g" <$file>/usr/tmp/$file
39 if test -s /usr/tmp/$file; then
40 mv /usr/tmp/$file $file
41 fi
42 fi
43 done
44 else
45 excused="$excused $word"
46 fi
47 fi
48 done
49 echo;echo;echo
50 if [-n "$excused"]; then
51 echo "You left the following words unchanged"
52 echo $excused | tr "\ " "\012" | pr -5 -t
53 echo
54 echo "Do you wish to have any of the above words entered"
55 echo "into a local dictionary file (y/n)? "
56 read response
57 if ["$response" = "y"]; then
58 if [-n "$localfile"]; then
59 echo "Append to $localfile (y/n)? "
60 read response
61 if ["$response" != y]; then

Let the Computer Do the Dirty Work 299

62 echo "Enter new/alternate local dictionary file: "
63 read localfile
64 fi
65 fi
66 echo
67 echo "Do you wish to be selective (y/n)? "
68 read select
69 for word in $excused
70 do
71 if ["$select" = y]; then
72 echo "Include $word (y/n)? "
73 read response
74 if test "$response" = y; then
75 echo $word >>$localfile
76 fi
77 else
78 echo $word >>$localfile
79 fi
80 done
81 fi
82 fi
83 echo
84 echo "Done."

1-8 The UNIX programming philosophy is to create small programs as general-purpose tools that can be
joined in pipelines. Because of this, programs generally don’t do prompting, or other “user-friendly”
things that will limit the program to interactive operation. However, there are times, even in UNIX (!),
when this is appropriate.

The shell has commands to handle prompting and reading the resulting responses into the file, as demon-
strated here. The echo command prints the prompt, and read assigns whatever is typed in response (up
to a carriage return) to a variable. This variable can then be used in the script.

The lines shown here prompt for the name of the local dictionary file, and, if none is supplied, use a de-
fault dictionary in the current directory called dict. In the sample run, we simply typed a carriage return,
so the variable localfile is set to dict.

9 If this is the first time the script has been run, there is probably no local dictionary file, and one must be
created. The touch command is a good way to do this because if a file already exists, it will merely up-
date the access time that is associated with the file (as listed by ls -l). If the file does not exist, how-
ever, the touch command will create one.

Although this line is included in the script as a sanity check, so that the script will work correctly the first
time, it is preferable to create the local dictionary manually, at least for large files. The spell program
tends to flag as errors many words that you want to use in your document. The proof script handles the
job of adding these words to a local dictionary, but doing this interactively can be quite time-consuming.
It is much quicker to create a base dictionary for a document by redirecting the output of spell to the
dictionary, then editing the dictionary to remove authentic spelling errors and leave only the exception list.
The errors can then be corrected with proof without the tedium of endlessly repeating n for words that
are really not errors.

If you use this script, you should run spell rather than proof on the first draft of a document, and cre-
ate the dictionary at that time. Subsequent runs of proof for later drafts will be short and to the point.

10-14 In these lines, the script sets up some variables, in much the same way as we’ve seen before. The lines:
filelist="$*"
if [-z "$filelist"]; then

echo "Usage: proof file ..."
exit 1

fi

have much the same effect as the test of the number of arguments greater than zero that we used in earlier
scripts. If filelist is a null string, no arguments have been specified, and so it is time to display an er-
ror message and end the program, using the shell’s exit command.

300 Unix Text Processing

15 This line shows a feature of the shell we’ve seen before, but it is still worthy of note because it may take a
while to remember. The output of a command enclosed in backquotes (‘‘) can be substituted for the ar-
gument list of another command. That is what is happening here; the output of the spell command is
used as the pattern list of a for loop.

17-18 You’ll notice that spell still flags all of the words it finds as errors. But the for loop then uses grep to
compare each word in the list generated by spell with the contents of the dictionary. Only those words
not found in the dictionary are submitted for correction.

The pattern given to grep is “anchored” by the special pattern-matching characters ˆ and $ (beginning
and end of line, respectively), so that only whole words in the dictionary are matched. Without these an-
chors, the presence of the word ditroff in the list would prevent the discovery of misspellings like
trof.

20-25 Sometimes it is difficult to tell beforehand whether an apparent misspelling is really an error, or if it is cor-
rect in context. For example, in our sample run, the word textp appeared to be an error, but was in fact
part of a pathname, and so correct. Accordingly, proof (again using grep) gives you the opportunity to
look at each line containing the error before you decide to change it or not.

As an aside, you’ll notice a limitation of the script. If, as is the case in our example, there are multiple oc-
currences of a string, they must all be changed or left alone as a set. There is no provision for making in-
dividual edits.

26-48 After a word is offered as an error, you have the option to correct it or leave it alone. The script needs to
keep track of which words fall into each category, because words that are not corrected may need to be
added to the dictionary.

If you do want to make a correction, you type it in. The variable correction will now be nonzero and
can be used as the basis of a test (test -n). If you’ve typed in a correction, proof first checks the files
on the command line to see which ones (there can be more than one) can be corrected. (grep -l just
gives the names of files in which the string is found into the variable hitlist, and the script stores the
names). The edit is then applied to each one of these files.

35 Just to be on the safe side, the script prints the correction first, rather than making any edits. (The -n op-
tion causes sed not to print the entire file on standard output, but only to print lines that are explicitly re-
quested for printing with a p command). Used like this, sed performs much the same function as grep,
only we are making an edit at the same time.

37-42 If the user approves the correction, sed is used once again, this time to actually make the edit. You
should recognize this part of the script. Remember, it is essential in this application to enclose the expres-
sion used by sed in quotation marks.

50-84 If you’ve understood the previous part of the shell script, you should be able to decipher this part, which
adds words to the local dictionary. The tr command converts the spaces separating each word in the ex-
cused list into carriage returns. They can then be printed in five tab-separated columns by pr. Study
this section of the program until you do, because it is an excellent example of how UNIX programs that
appear to have a single, cut-and-dry function (or no clear function at all to the uninitiated) can be used in
unexpected but effective ways.

4Chapter 13

The awk Programming Language

A program is a solution to a problem, formulated in the syntax of a particular language. It is a small step from writ-
ing complex editing scripts with sed to writing programs with awk, but it is a step that many writers may fear to
take. “Script” is less loaded a term than “program” for many people, but an editing script is still a program.

Each programming language has its own “style” that lends itself to performing certain tasks better than other
languages. Anyone can scan a reference page and quickly learn a language’s syntax, but a close examination of pro-
grams written in that language is usually required before you understand how to apply this knowledge. In this sense,
a programming language is simply another tool; you need to know not only how to use it but also when and why it is
used.

We recommend that you learn more than one programming language. We have already looked at a number of
different programs or scripts written for and executed by the shell, ex, and sed. As you learn the awk program-
ming language, you will notice similarities and differences. Not insignificantly, an awk script looks different from a
shell script. The awk language shares many of the same basic constructs as the shell’s programming language, yet
awk requires a slightly different syntax. The awk program’s basic operations are not much different from sed’s:
reading standard input one line at a time, executing instructions that consist of two parts, pattern and procedure, and
writing to standard output.

More importantly, awk has capabilities that make it the tool of choice for certain tasks. A programming lan-
guage is itself a program that was written to solve certain kinds of problems for which adequate tools did not exist.
The awk program was designed for text-processing applications, particularly those in which information is struc-
tured in records and fields. The major capabilities of awk that we will demonstrate in upcoming pages are as fol-
lows:

• definable record and field structure

• conditional and looping constructs

• assignment, arithmetic, relational, and logical operators

• numeric and associative arrays

• formatted print statements

• built-in functions

A quick comparison of a single feature will show you how one programming language can differ from another. You
will find it much easier to perform arithmetic operations in awk than in the shell. To increment the value of x by 1
using the shell, you’d use the following line:

x=‘expr $x + 1‘

The expr command is a UNIX program that is executed as a separate process returning the value of its arguments.
In awk, you only have to write:

++x

This is the same as x = x + 1. (This form could also be used in awk).

Invoking awk

The awk program itself is a program that, like sed, runs a specified program on lines of input. You can enter awk
from the command line, or from inside a shell script.

$]awk ’program’ files

301

302 Unix Text Processing

Input is read a line at a time from one or more files. The program, enclosed in single quotation marks to protect it
from the shell, consists of pattern and procedure sections. If the pattern is missing, the procedure is performed on
all input lines:

$ awk ’{print}’ sample Prints all lines in sample file

The procedure is placed within braces. If the procedure is missing, lines matching the pattern are printed:
$ awk ’/programmer’s guide/’ sample Prints lines matching pattern

in sample file

The awk program allows you to specify zero, one, or two pattern addresses, just like sed. Regular expres-
sions are placed inside a pair of slashes (/). In awk, patterns can also be made up of expressions. An expression (or
a primary expression so as not to confuse it with a regular expression) can be a string or numeric constant (for exam-
ple, red or 1), a variable (whose value is a string or numeric), or a function (which we’ll look at later).

You can associate a pattern with a specific procedure as follows:
/pattern1/ {

procedure1
}

/pattern2/ {
procedure2

}
{ procedure 3 }

Like sed, only the lines matching the particular pattern are the object of a procedure, and a line can match more
than one pattern. In this example, the third procedure is performed on all input lines. Usually, multi-line awk
scripts are placed in a separate file and invoked using the -f option:

$ awk -f awkscript sample

Records and Fields

Perhaps the most important feature of awk is that it divides each line of input into fields. In the simplest case, each
field contains a single word, delimited by a blank space. The awk program allows you to reference these fields by
their position in the input line, either in patterns or procedures. The symbol $0 represents the entire input line. $1,
$2, ... refer, by their position in the input line, to individual fields.

We’ll demonstrate some of these capabilities by building an awk program to search through a list of acronyms
in a file. Each acronym is listed along with its meaning. If we print the first field of each line, we’ll get the name of
the acronym:

$ awk ’{print $1}’ sample
BASIC
CICS
COBOL
DBMS
GIGO
GIRL

We can construct a useful program that would allow you to specify an acronym and get its description. We could
use awk just like grep:

$ awk ’/BASIC/’ sample
BASIC Beginner’s All-Purpose Symbolic Instruction Code

However, there are three things we’d like to do to improve this program and make better use of awk’s capabilities:

1. Limit the pattern-matching search.

2. Make the program more general and not dependent on the particular acronym that is the subject of the
search.

3. Print only the description.

The awk Programming Language 303

Testing Fields

The pattern as specified will match the word BASIC anywhere on the line. That is, it might match BASIC used in a
description. To see if the first field ($1) matches the pattern, we write:

$1 == "BASIC"

The symbol == is a relational operator meaning “equal to” and is used to compare the first field of each line with the
string BASIC. You could also construct this test using a given regular expression that looks for the acronym at the
beginning of the line.

$1 ˜ /ˆBASIC/

The pattern-matching operator ˜ evaluates as true if an expression ($1) matches a regular expression. Its opposite,
!˜, evaluates true if the expression does not match the regular expression.

Although these two examples look very similar, they achieve very different results. The relational operator ==
evaluates true if the first field is BASIC but false if the first field is BASIC, (note the comma). The pattern-matching
operator ˜ locates both occurrences.

Pattern-matching operations must be performed on a regular expression (a string surrounded by slashes).
Variables cannot be used inside a regular expression with the exception of shell variables, as shown in the next sec-
tion. Constants cannot be evaluated using the pattern-matching operator.

Passing Parameters from a Shell Script

Our program is too specific and requires too much typing. We can put the awk script in a file and invoke it with the
-f option. Or we can put the command inside a shell script, named for the function it performs. This shell script
should be able to read the first argument from the command line (the name of the acronym) and pass it as a parame-
ter to awk. We’ll call the shell script awkronym and set it up to read a file named acronyms. Here’s the simplest
way to pass an argument into an awk procedure:

$ cat awkronym
awk ’$1 == search’ search=$1 acronyms

Parameters passed to an awk program are specified after the program. The search variable is set up to pass the first
argument on the command line to the awk program. Even this gets confusing, because $1 inside the awk program
represents the first field of each input line, while $1 in the shell represents the first argument supplied on the com-
mand line. Here’s how this version of the program works:

$ awkronym CICS
CICS Customer Information Control System

By replacing the search string BASIC with a variable (which could be set to the string CICS or BASIC), we have a
program that is fairly generalized.

Notice that we had to test the parameter as a string ($1 == search). This is because we can’t pass the pa-
rameter inside a regular expression. Thus, the expressions ‘‘$1 ˜ /search/’’ or ‘‘$1 ˜ search’’ will pro-
duce syntax errors.

As an aside, let’s look at another way to import a shell variable into an awk program that even works inside a
regular expression. However, it looks complicated:

search=$1
awk ’$1 ˜ /’"$search"’/’ acronyms

This program works the same as the prior version (with the exception that the argument is evaluated inside a regular
expression). Note that the first line of the script makes the variable assignment before awk is invoked. In the awk
program, the shell variable is enclosed within single, then double, quotation marks. These quotes cause the shell to
insert the value of $search inside the regular expression before it is interpreted by awk. Therefore, awk never
sees the shell variable and evaluates it as a constant string.

304 Unix Text Processing

You will come upon situations when you wish it were possible to place awk variables within regular expres-
sions. As mentioned in the previous section, pattern matching allows us to search for a variety of occurrences. For
instance, a field might also include incidental punctuation marks and would not match a fixed string unless the string
included the specific punctuation mark. Perhaps there is some undocumented way of getting an awk variable inter-
preted inside a regular expression, or maybe there is a convoluted work-around waiting to be figured out.

Changing the Field Separator

The awk program is oriented toward data arranged in fields and records. A record is normally a single line of input,
consisting of one or more fields. The field separator is a blank space or tab and the record separator is a newline.
For example, here’s one record with five fields:

CICS Customer Information Control System

Field three or $3 is the string Information. In our program, we like to be able to print the description as a field. It is
obvious that we can’t just say print $2 and get the entire description. But that is what we’d like to be able to do.

This will require that we change the input file using another character (other than a blank) to delimit fields. A
tab is frequently used as a field separator. We’ll have to insert a tab between the first and second fields:

$ cat acronyms
awk Aho, Weinstein & Kernighan
BASIC Beginner’s All-Purpose Symbolic Instruction Code
CICS Customer Information Control System
COBOL Common Business Orientated Language
DBMS Data Base Management System
GIGO Garbage In, Garbage Out
GIRL Generalized Information Retrieval Language

You can change the field separator from the command line using the -F option:
$ awk -F"|——|" ’$1 == search {print $2}’ search=$1 acronyms

Note that |——| is entered by typing a double quotation mark, pressing the TAB key, and typing a double quotation
mark. This makes the tab character (represented in the example as |——|) the exclusive field separator; spaces no
longer serve to separate fields. Now that we’ve implemented all three enhancements, let’s see how the program
works:

$ awkronym GIGO
Garbage In, Garbage Out

System Variables

The awk program defines a number of special variables that can be referenced or reset inside a program. See Table
13-1.

Table 13.1 awk System Variables

System Variable Meaning

FILENAME Current filename
FS Field separator (a blank)
NF Number of fields in the current record
NR Number of the current record
OFS Output field separator (a blank)
ORS Output record separator (a newline)
RS Record separator (a newline)

The awk Programming Language 305

The system variable FS defines the field separator used by awk. You can set FS inside the program as well as
from the command line.

Typically, if you redefine the field or record separator, it is done as part of a BEGIN procedure. The BEGIN
procedure allows you to specify an action that is performed before the first input line is read.

BEGIN { FS = "|——|" }

You can also specify actions that are performed after all input is read by defining an END procedure.

The awk command sets the variable NF to the number of fields on the current line. Try running the following
awk command on any text file:

$ awk ’{print $NF}’ test

If there are five fields in the current record, NF will be set to five; $NF refers to the fifth and last field. Shortly, we’ll
look at a program, double, that makes good use of this variable.

Looping

The awkronym program can print field two because we restructured the input file and redefined the field separator.
Sometimes, this isn’t practical, and you need another method to read or print a number of fields for each record. If
the field separator is a blank or tab, the two records would have six and five fields, respectively.

BASIC Beginner’s All-Purpose Symbolic Instruction Code
CICS Customer Information Control System

It is not unusual for records to have a variable number of fields. To print all but the first field, our program would re-
quire a loop that would be repeated as many times as there are fields remaining. In many awk programs, a loop is a
commonly used procedure.

The while statement can be employed to build a loop. For instance, if we want to perform a procedure three
times, we keep track of how many times we go through the loop by incrementing a variable at the bottom of the
loop, then we check at the top of the loop to see if that variable is greater than 3. Let’s take an example in which we
print the input line three times.

{ i = 1
while (i <= 3) {

print
++i
}

}

Braces are required inside the loop to describe a procedure consisting of more than a single action. Three operators
are used in this program: = assigns the value 1 to the variable i; <= compares the value of i to the constant 3; and
++ increments the variable by 1. The first time the while statement is encountered, i is equal to 1. Because the
expression i <= 3 is true, the procedure is performed. The last action of the procedure is to increment the variable
i. The while expression is true after the end of the second loop has incremented i to 3. However, the end of the
third loop increments i to 4 and the expression evaluates as false.

A for loop serves the same purpose as a while loop, but its syntax is more compact and easier to remember
and use. Here’s how the previous while statement is restructured as a for loop:

for (i = 1; i <= 3; i++)
print

The for statement consists of three expressions within parentheses. The first expression, i = 1, sets the initial
value for the counter variable. The second expression states a condition that is tested at the top of the loop. (The
while statement tested the condition at the bottom of the loop). The third expression increments the counter.

Now, to loop through remaining fields on the line, we have to determine how many times we need to execute
the loop. The system variable NF contains the number of fields on the current input record. If we compare our
counter (i) against NF each time through the loop, we’ll be able to tell when all fields have been read:

306 Unix Text Processing

for (i = 1; i <= NF; i++)

We will print out each field ($i), one to a line. Just to show how awk works, we’ll print the record and field number
before each field.

awk ’{ for (i = 1; i <= NF; i++)
print NR":"i, $i } ’ $*

Notice that the print statement concatenates NR, a colon, and i. The comma produces an output field separator,
which is a blank by default.

This program produces the following results on a sample file:
1:1 awk
1:2 Aho,
1:3 Weinstein
1:4 &
1:5 Kernighan
2:1 BASIC
2:2 Beginner’s
2:3 All-Purpose
2:4 Symbolic
2:5 Instruction
2:6 Code

Symbolic is the fourth field of the second record. You might note that the sample file is acronyms, the one in
which we inserted a tab character between the first and second fields. Because we did not change the default field
separator, awk interpreted the tab or blank as a field separator. This allows you to write programs in which the spe-
cial value of the tab is ignored.

Conditional Statements

Now let’s change our example so that when given an argument, the program returns the record and field number
where that argument appears.

Essentially, we want to test each field to see if it matches the argument; if it does, we want to print the record
and field number. We need to introduce another flow control construct, the if statement. The if statement evalu-
ates an expression—if true, it performs the procedure; if false, it does not.

In the next example, we use the if statement to test whether the current field is equal to the argument. If it is,
the current record and field number are printed.

awk ’{ for (i = 1; i <= NF; i++) {
if ($i == search) {

print NR":"i
}

}
} ’ search=$1 acronyms

This new procedure prints 2:1 or 3:4 and isn’t very useful by itself, but it demonstrates that you can retrieve and test
any single field from any record.

The next program, double, checks if the first word on a line is a duplicate of the last word on the previous
line. We use double in proofing documents and it catches a surprisingly common typing mistake.

awk ’
NF > 0 {

if ($1 == lastword) {
print NR ": double " $1
}
lastword = $NF

}’ $1

When the first line of input is read, if the number of fields is greater than 0, then the expression in the if statement
is evaluated. Because the variable lastword has not been set, it evaluates to false. The final action assigns the

The awk Programming Language 307

value of $NF to the variable lastword. ($NF refers to the last field; the value of NF is the number of the last
field). When the next input line is read, the first word is compared against the value of lastword. If they are the
same, a message is printed.

double sect1
15: double the
32: double a

This version of double is based on the program presented by Kernighan and Pike in The UNIX Programming Envi-
ronment. (Writer’s Workbench now includes this program). Kernighan and Pike’s program also checks for dupli-
cate words, side-by-side, in the same line. You might try implementing this enhancement, using a for loop and
checking the current field against the previous field. Another feature of Kernighan and Pike’s double is that you
can run the program on more than one file. To allow for additional files, you can change the shell variable from $1
to $* but the record or line number printed by NR will correspond to consecutive input lines. Can you write a proce-
dure to reset NR to 0 before reading input from a new file?

Arrays

The double program shows us how we can retain data by assigning it to a variable. In awk, unlike several other
programming languages, variables do not have to be initialized before they are referenced in a program. In the pre-
vious program, we evaluated lastword at the top, although it was not actually assigned a value until the bottom of
the program. The awk program initialized the variable, setting it to the null string or 0, depending upon whether the
variable is referenced as a string or numeric value.

An array is a variable that allows you to store a list of items or elements. An array is analogous to a restaurant
menu. Each item on this menu is numbered:

#1 tuna noodle casserole

#2 roast beef and gravy

#3 pork and beans

One way of ordering roast beef is to say simply “Number 2.” Using ordinary variables, you would have had to de-
fine a variable two and assign it the value roast beef and gravy. An array is a way of referencing a group of related
values. This might be written:

menu[choice]

where menu is the name of the array and choice is the subscript used to reference items in the array. Thus,
menu[1] is equal to tuna noodle casserole. In awk, you don’t have to declare the size of the array; you only have
to load the array (before referencing it). If we put our three menu choices on separate lines in a file, we could load
the array with the following statement:

menu[NR] = $0

The variable NR, or record number, is used as the subscript for the array. Each input line is read into the next ele-
ment in the array. We can print an individual element by referring to the value of the subscript (not the variable that
set this value).

print menu[3]

This statement prints the third element in the array, which is pork and beans. If we want to refer to all the elements
of this array, we can use a special version of the for loop. It has the following syntax:

for (element in array)

This statement can be used to descend the array to print all of the elements:
for (choice in menu)

print menu[choice]

308 Unix Text Processing

Each time through the loop, the variable choice is set to the next element in the array. The menu array is an ex-
ample of an array that uses a numeric subscript as an index to the elements.

Now, let’s use arrays to increase the functionality of awkronym. Our new version will read acronyms from a
file and load them into an array; then we’ll read a second file and search for the acronyms. Basically, we’re reading
one input file and defining keywords that we want to search for in other files. A similar program that reads a list of
terms in a glossary might show where the words appear in a chapter. Let’s see how it works first:

$ awkronym sect1
exposure to BASIC programming.
in COBOL and take advantage of a DBMS environment.
in COBOL and take advantage of a DBMS environment .
Of the high-level languages, BASIC is probably

Let’s look at the program carefully.
awk ’ {
if (FILENAME == "acronyms") {

acro_desc[NR] = $1
next
}

for (name in acro_desc)
for (i = 1; i <= NF; i++)

if ($i == acro_desc[name]) {
print $0
}

}’ acronyms $*

The current filename is stored in the system variable FILENAME. The procedure within the first conditional state-
ment is only performed while input is taken from acronyms. The next statement ends this procedure by reading
the next line of input from the file. Thus, the program does not advance beyond this procedure until input is taken
from a different file.

The purpose of the first procedure is to assign each acronym ($1) to an element of the array acro_desc; the
record number (NR) indexes the array.

In the second half of the program, we start comparing each element in the array to each field of every record.
This requires two for loops, one to cycle through the array for each input line, and one to read each field on that
line for as many times as there are elements in the array. An if statement compares the current field to the current
element of the array; if they are equal, then the line is printed.

The line is printed each time an acronym is found. In our test example, because there were two acronyms on a
single line, the one line is duplicated. To change this, we could add next after the print statement.

What if we changed awkronym so that it not only scanned the file for the acronym, but printed the acronym
with the description as well? If a line refers to BASIC, we’d like to add the description (Beginner’s All-Purpose
Symbolic Instruction Code). We can design such a program for use as a filter that prints all lines, regardless of
whether or not a change has been made. To change the previous version, we simply move the print statement out-
side the conditional statement. However, there are other changes we must make as well. Here’s the first part of the
new version.

awk ’ {
if (FILENAME == "acronyms") {
split ($0, fields, "|——|")
acro_desc[fields[1]] = fields[2]
next
}

The records in acronyms use a tab as a field separator. Rather than change the field separator, we use the split
function (we’ll look at the syntax of this function later on) to give us an array named fields that has two elements,
the name of the acronym and its description. This numeric array is then used in creating an associative array named
acro_desc. An associative array lets us use a string as a subscript to the elements of an array. That is, given the
name of the acronym, we can locate the element corresponding to the description. Thus the expression
acro_desc[GIGO] will access Garbage In, Garbage Out.

The awk Programming Language 309

Now let’s look at the second half of the program:
for (name in acro_desc)

for (i = 1 ; i <= NF; i++)
if ($i == name) {

$i = $i " ("acro_desc[name]")"
}

print $0

Just like the previous version, we loop through the elements of the array and the fields for each record. At the
heart of this section is the conditional statement that tests if the current field ($i) is equal to the subscript of the ar-
ray (name). If the value of the field and the subscript are equal, we concatenate the field and the array element. In
addition, we place the description in parentheses.

It should be clear why we make the comparison between $i and name, and not acro_desc[name]; the
latter refers to an element, while the former refers to the subscript, the name of the acronym.

If the current field ($i) equals BASIC and the index of the array (name) is the string BASIC, then the value
of the field is set to:

BASIC (Beginner’s All-Purpose Symbolic Instruction Code)

For this program to be practical, the description should be inserted for the first occurrence of an acronym, not
each time. (After we’ve inserted the description of the acronym, we don’t need the description any more). We could
redefine that element in the array after we’ve used it.

acro_desc[name] = name

In this instance, we simply make the element equal to the subscript. Thus, acro_desc[BASIC] is equal to Be-
ginner’s All-Purpose Symbolic Instruction Code at the beginning of the procedure, and equal to BASIC if a match
has been made. There are two places where we test the element against the subscript with the expression
‘‘(acro_desc[name] != name).’’ The first place is after the for loop has read in a new element from
acro_desc; a conditional statement ensures that we don’t scan the next input record for an acronym that has al-
ready been found. The second place is when we test $i to see if it matches name; this test ensures that we don’t
make another match for the same acronym on that line.

if ($i == name && acro_desc[name] != name)

This conditional statement evaluates a compound expression. The && (and) boolean operator states a condition that
both expressions have to be true for the compound expression to be true.

Another problem that we can anticipate is that we might produce lines that exceed 80 characters. After all, the
descriptions are quite long. We can find out how many characters are in a string, using a built-in awk function,
length. For instance, to evaluate the length of the current input record, we specify:

length($0)

The value of a function can be assigned to a variable or put inside an expression and evaluated.
if (length($0) > 70) {

if (i > 2)
$i = "\n" $i

if (i+1 < NF)
$(i+1) = "\n" $(i+1)

}

The length of the current input record is evaluated after the description has been concatenated. If it is greater than
70 characters, then two conditions test where to put the newline. The first procedure concatenates a newline and the
current field; thus we only want to perform this action when we are not near the beginning of a line (field greater
than 2). The second procedure concatenates the newline and the next field (i+1) so that we check that we are not
near the end of the line. The newline precedes the field in each of these operations. Putting it at the end of the field
would result in a new line that begins with a space output with the next field.

Another way to handle the line break, perhaps more efficiently, is to use the length function to return a
value for each field. By accumulating that value, we could specify a line break when a new field causes the total to
exceed a certain number. We’ll look at arithmetic operations in a later section.

310 Unix Text Processing

Here’s the full version of awkronyms:
awk ’ {

if (FILENAME == "acronyms") {
split ($0, fields, "|——|")
acro_desc[fields[1]]=fields[2]
next
}

for (name in acro_desc)
if (acro_desc[name] != name)
for (i = 1; i <= NF; i++)

if ($i == name && acro_desc[name] != name) {
$i = $i " ("acro_desc[name]")"
acro_desc[name] = name
if (length ($0) > 70) {

if (i > 2)
$i = "\n" $i

if (i+1 < NF)
$(i+1) = "\n" $(i+1)

}
}

print $0
}’ acronyms $*

And here’s one proof that it works:
$ cat sect1
Most users of microcomputers have had some
exposure to BASIC programming.
Many data-processing applications are written
in COBOL and take advantage of a DBMS environment.
C, the language of the UNIX environment,
is used by systems programmers.
Of the high-level languages, BASIC is probably
the easiest to learn, and C is the most difficult.
Nonetheless, you will find the fundamental programming
constructs common to most languages.

$ awkronym sect1
Most users of microcomputers have had some
exposure to
BASIC (Beginner’s All-Purpose Symbolic Instruction Code)
programming. Many data-processing applications are
written in COBOL (Common Business Orientated Language)
and take advantage of a
DBMS (Data Base Management System) environment.
C, the language of the UNIX environment,
is used by systems programmers.
Of the high-level languages, BASIC is probably
the easiest to learn, and C is the most difficult.
Nonetheless, you will find the fundamental programming
constructs common to most languages.

Notice that the second reference to BASIC has not been changed. There are other features we might add to this pro-
gram. For instance, we could use awk’s pattern-matching capabilities so that we don’t make the change on lines
containing macros, or on lines within pairs of certain macros, such as .DS/.DE.

Another version of this program could trademark certain terms or phrases in a document. For instance, you’d
want to locate the first occurrence of UNIX and place \(rg after it.

The awk Programming Language 311

awk Applications

A shell program is an excellent way to gather data interactively and write it into a file in a format that can be read by
awk. We’re going to be looking at a series of programs for maintaining a project log. A shell script collects the
name of a project and the number of hours worked on the project. An awk program totals the hours for each project
and prints a report.

The file day is the shell script for collecting information and appending it to a file named daily in the user’s
home directory.

$ cat /usr/local/bin/day
case $# in
0) echo "Project: \c"; read proj; echo "Hours: \c"; read hrs;;
1) proj=$1; echo "Hours: \c"; read hrs;;
2) proj=$1; hrs=$2;;
esac
set ‘who am i‘; name=$1; month=$3; day=$4;
echo $name"\t"$month $day"\t"$hrs"\t"$proj>>$HOME/daily

The case statement checks how many arguments are entered on the command line. If an argument is missing, the
user is prompted to enter a value. Prompting is done through a pair of statements: echo and read. The echo
command displays the prompt on the user’s terminal; \c suppresses the carriage return at the end of the prompt.
The read command waits for user input, terminated by a carriage return, and assigns it to a variable. Thus, the
variables proj and hrs are defined by the end of the case statement.

The set command can be used to divide the output of a command into separate arguments ($1, $2, $3...).
By executing the command who am i from within set, we supply the user’s name and the day’s date automati-
cally. The echo command is used to write the information to the file. There are four fields, separated by tabs. (In
the Bourne shell, the escape sequence \t produces a tab; you must use quotation marks to keep the backslash from
being stripped off by the shell).

Here’s what daily contains for one user at the end of a week:
$ cat /usr/fred/daily
fred Aug 4 7 Course Development
fred Aug 5 4 Training class
fred Aug 5 4 Programmer’s Guide
fred Aug 6 2 Administrative
fred Aug 6 6 Text-processing book
fred Aug 7 4 Course Development
fred Aug 7 4 Text-processing book
fred Aug 8 4 Training class
fred Aug 8 3 Programmer’s Guide

There are nine records in this file. Obviously, our input program does not enforce consistency in naming projects by
the user.

Given this input, we’d like an awk program that reports the total number of hours for the week and gives us a
breakdown of hours by project. At first pass, we need only be concerned with reading fields three and four. We can
total the number of hours by accumulating the value of the third field.

total += $3

The += operator performs two functions: it adds $3 to the current value of total and then assigns this value to
total. It is the same as the statement:

total = total + $3

We can use an associative array to accumulate hours ($3) by project ($4).
hours[$4] += $3

Each time a record is read, the value of the third field is added to the accumulated value of project[$4].

We don’t want to print anything until all input records have been read. An END procedure prints the accumu-
lated results. Here’s the first version of tot:

312 Unix Text Processing

awk ’
BEGIN { FS="|——|" }

{
total += $3
hours[$4] += $3

}
END {

for (project in hours)
print project, hours[project]
print
print "Total Hours:" , total

} ’ $HOME/daily

Let’s test the program:
$ tot
Course Development 11
Administrative 2
Programmer’s Guide 7
Training class 8
Text-processing book 10

Total Hours: 38

The program performs the arithmetic tasks well, but the report lacks an orderly format. It would help to change the
output field separator (OFS) to a tab. But the variable lengths of the project names prevent the project hours from
being aligned in a single column. The awk program offers an alternative print statement, printf, which is bor-
rowed from the C programming language.

Formatted Print Statements

The printf statement has two parts: the first is a quoted expression that describes the format specifications; the
second is a sequence of arguments such as variable names. The two main format specifications are %s for strings
and %d for decimals. (There are additional specifications for octal, hexadecimal, and non-integer numbers). Unlike
the regular print statement, printf does not automatically supply a newline. This can be specified as \n. A tab
is specified as \t.

A simple printf statement containing string and decimal specifications is:
printf "%s\t%d\n" , project, hours[project]

First project is output, then a tab (\t), the number of hours, and a newline (\n). For each format specification,
you must supply a corresponding argument.

Unfortunately, such a simple statement does not solve our formatting problem. Here are sample lines that it
produces:

Course Development 11
Administrative 2
Programmer’s Guide 7

We need to specify a minimum field width so that the tab begins at the same position. The printf statement al-
lows you to place this specification between the % and the conversion specification. You would use %-20s to spec-
ify a minimum field width of 20 characters in which the value is left justified. Without the minus sign, the value
would be right justified, which is what we want for a decimal value.

END {
for (project in hours)
printf "%-20s\t%2d\n", project, hours[project]
printf "\n\tTotal Hours:\t%2d\n", total
}

Notice that literals, such as the string Total Hours, are placed in the first part, with the format specification.

The awk Programming Language 313

Just as we use the END procedure to print the report, we can include a BEGIN procedure to print a header for
the report:

BEGIN { FS="|——|"
printf "%20s%s\n\n", "PROJECT ", " HOURS"
}

This shows an alternative way to handle strings. The following formatted report is displayed:
PROJECT HOURS

Course Development 11
Administrative 2
Programmer’s Guide 7
Training class 8
Text-processing book 10

Total Hours: 38

Defensive Techniques

After you have accomplished the basic task of a program—and the code at this point is fairly easy to understand—it
is often a good idea to surround this core with “defensive” procedures designed to trap inconsistent input records and
prevent the program from failing. For instance, in the tot program, we might want to check that the number of
hours is greater than 0 and that the project description is not null for each input record. We can use a conditional ex-
pression, using the logical operator &&.

$3 > 0 && $4 != "" {
procedure

}

Both conditions must be true for the procedure to be executed. The logical operator && signifies that if both condi-
tions are true, the expression is true.

Another aspect of incorporating defensive techniques is error handling. In other words, what do we want to
have happen after the program detects an error? The previous condition is set up so that if the procedure is not exe-
cuted, the next line of input is read. In this example the program keeps going, but in other cases you might want the
program to print an error message and halt if such an error is encountered.

However, a distinction between “professional” and “amateur” programmers might be useful. We are definitely
in the latter camp, and we do not always feel compelled to write 100% user-proof programs. For one thing, defen-
sive programming is quite time consuming and frequently tedious. Second, an amateur is at liberty to write pro-
grams that perform the way he or she expects them to; a professional has to write for an audience and must account
for their expectations. Consider the possible uses and users of any program you write.

awk and nroff/troff

It is fairly easy to have an awk program generate the necessary codes for form reports. For instance, we enhanced
the tot program to produce a troff-formatted report:

awk ’ BEGIN { FS = "|——|"
print ".ce"
print ".B "
print "PROJECT ACTIVITY REPORT"
print ".R"
print ".sp 2"

}
NR == 1 {

begday = $2
}

314 Unix Text Processing

$3 > 0 && $4 != "" {
hours[$4] += $3
total += $3
endday = $2
logname = $1

}
END {

printf "Writer: %s\n", logname
print ".sp"
printf "Period: %s to %s\n", begday, endday
print ".sp"
printf "%20s%s\n\n", "PROJECT ", " HOURS"
print ".sp"
print ".nf"
print ".na"

for (project in hours)
printf "%-20s\t%2d\n", project, hours[project]
print ".sp"
printf "Total Hours:\t %2d\n", total
print ".sp"
}’ $HOME/daily

We incorporated one additional procedure in this version to determine the weekly period. The start date of the week
is taken from the first record (NR == 1). The last record provides the final day of the week.

As you can see, awk doesn’t mind if you mix print and printf statements. The regular print com-
mand is more convenient for specifying literals, such as formatting codes, because the newline is automatically pro-
vided. Because this program writes to standard output, you could pipe the output directly to nroff/troff.

You can use awk to generate input to tbl and other troff preprocessors such as pic.

Multiline Records

In this section, we are going to take a look at a set of programs for order tracking. We developed these programs to
help operate a small, mail-order publishing business. These programs could be easily adapted to track documents in
a technical publications department.

Once again, we used a shell program, take.orders, for data entry. The program has two purposes: The
first is to enter the customer’s name and mailing address for later use in building a mailing list. The second is to dis-
play seven titles and prompt the user to enter the title number, the number of copies, and the price per copy. The
data collected for the mailing list and the customer order are written to separate files.

Two sample customer order records follow:
Charlotte Smith
P.O N61331 87 Y 045 Date: 03/14/87
#1 3 7.50
#2 3 7.50
#3 1 7.50
#4 1 7.50
#7 1 7.50

Martin S. Rossi
P.O NONE Date: 03/14/87
#1 2 7.50
#2 5 6.75

These are multiline records, that is, a newline is used as the field separator. A blank line separates individual
records. For most programs, this will require that we redefine the default field separator and record separator. The
field separator becomes a newline, and the record separator is null.

BEGIN { FS = "\n"; RS = "" }

The awk Programming Language 315

Let’s write a simple program that multiplies the number of copies by the price. We want to ignore the first two lines
of each record, which supply the customer’s name, a purchase order number, and the date of the order. We only
want to read the lines that specify a title. There are a few ways to do this. With awk’s pattern-matching capabilities,
we could select lines beginning with a hash (#) and treat them as individual records, with fields separated by spaces.

awk ’ /ˆ#/ {
amount = $2 * $3
printf "%s %6.2f\n", $0, amount
next

}
{print}’ $*

The main procedure only affects lines that match the pattern. It multiplies the second field by the third field, assign-
ing the value to the variable amount. The printf conversion %f prints a floating-point number; 6.2 specifies a
minimum field width of 6 and a precision of 2. Precision is the number of digits to the right of the decimal point;
the default for %f is 6. We print the current record along with the value of the variable amount. If a line is printed
within this procedure, the next line is read from standard input. Lines not matching the pattern are simply passed
through. Let’s look at how addem works:

$ addem orders
Charlotte Smith
P.O N61331 87 Y 045 Date: 03/14/87
#1 3 7.50 22.50
#2 3 7.50 22.50
#3 1 7.50 7.50
#4 1 7.50 7.50
#7 1 7.50 7.50

Martin S. Rossi
P.O NONE Date: 03/14/87
#1 2 7.50 15.00
#2 5 6.75 33.75

Now, let’s design a program that reads multiline records and accumulates order information for a report. This report
should display the total number of copies and the total amount for each title. We also want totals reflecting all
copies ordered and the sum of all orders.

We know that we will not be using the information in the first two fields of each record. However, each record
has a variable number of fields, depending upon how many titles have been ordered. First, we check that the input
record has at least three fields. Then a for loop reads all of the fields beginning with the third field:

NF >= 3 {
for (i = 3; i <= NF; ++i)

In database terms, each field has a value and each value can be further broken up into subvalues. That is, if the value
of a field in a multiline record is a single line, subvalues are the words on that line. You have already seen the
split function used to break up an input record; now we’ll see it used to subdivide a field. The split function
loads any string into an array, using a specified character as the subvalue separator.

split(string, array, separator)

The default subvalue separator is a blank. The split function returns the number of elements loaded into the ar-
ray. The string can be a literal (in quotation marks) or a variable. For instance, let’s digress a minute and look at an
isolated use of split. Here’s a person’s name and title with each part separated by a comma:

title="George Travers, Research/Development, Alcuin Inc."

We can use split to divide this string and print it on three lines.
need = split (title, name, ",")

print ".ne ", need
for (part in name)

print name[part]

This procedure prints each part on a separate line. The number of elements in the array (3) is saved in the variable
need. This variable is passed as an argument to an .ne request, which tells troff to make sure there are at least

316 Unix Text Processing

three lines available at the bottom of the page before outputting the first line.

The awk program has twelve built-in functions, as shown in Table 13-2. Four of these are specialized arith-
metic functions for cosine, sine, logarithm, and square root. The rest of these functions manipulate strings. (You
have already seen how the length function works). See Appendix A for the syntax of these functions.

Going back to our report generator, we need to split each field into subvalues. The variable $i will supply the
value of the current field, subdivided as elements in the array order.

sv = split ($i, order)
if (sv == 3) {

procedure
}
else print "Incomplete Record"

Table 13.2 awk Built-in Functions

Function Description

cos Cosine
exp Exponent
getline Read input line
index Return position of substring in string
int Integer
length Length of string
log Logarithm
sin Sine
split Subdivide string into array
sprintf Format string like printf
sqrt Square root
substr Substring extraction

The number of elements returned by the function is saved in the sv variable. This allows us to test that there are
three subvalues. If there are not, the else statement is executed, printing the error message to the screen.

Next, we assign the individual elements of the array to a specific variable. This is mainly to make it easier to
remember what each element represents.

title = order[1]
copies = order[2]
price = order[3]

Then a group of arithmetic operations are performed on these values.
amount = copies * price
total_vol += copies
total_amt += amount
vol[title] += copies
amt[title] += amount

These values are accumulated until the last input record is read. The END procedure prints the report.

Here’s the complete program:
awk ’ BEGIN { FS = "\n"; RS = "" }
NF >= 3 {
for (i = 3; i <= NF; ++i) {

sv = split ($i, order)
if (sv == 3) {

title = order[1]
copies = order[2]
price = order[3]
amount = copies * price
total_vol += copies
total_amt += amount
vol[title] += copies

The awk Programming Language 317

amt[title] += amount
}

else print "Incomplete Record"
}

}
END {

printf "%5s\t%10s\t%6s\n\n", "TITLE", \
"COPIES SOLD", "TOTAL"
for (title in vol)

printf "%5s\t%10d\t$%7.2f\n", title, vol[title], \
amt[title]
"printf" " "%s\n", "-------------"

printf "\t%s%4d\t$%7.2f\n", "Total " , total_vol, total_amt}’
$*

In awk, arrays are one dimensional; a two-dimensional array stores two elements indexed by the same subscript.
You can get a pseudo two-dimensional array in awk by defining two arrays that have the same subscript. We only
need one for loop to read both arrays.

The addemup file, an order report generator, produces the following output:
$ addemup orders.today
TITLE COPIES SOLD TOTAL

#1 5 $ 37.50
#2 8 $ 56.25
#3 1 $ 7.50
#4 1 $ 7.50
#7 1 $ 7.50

Total 16 $ 116.25

After you solve a programming problem, you will find that you can re-use that approach in other programs. For in-
stance, the method used in the awkronym program to load acronyms into an array could be applied in the current
example to read the book titles from a file and print them in the report. Similarly, you can use variations of the same
program to print different reports. The construction of the next program is similar to the previous program. Yet the
content of the report is quite different.

awk ’ BEGIN { FS = "\n" ; RS = ""
printf "%-15s\t%10s\t%6s\n\n", "CUSTOMER", "COPIES SOLD", \

"TOTAL"
}

NF >= 3 {
customer = $1

total_vol = 0
total_amt = 0

for (i = 3; i <= NF; ++i) {
split ($i, order)
title = order[1]
copies = order[2]
price = order[3]
amount = copies * price
total_vol += copies
total_amt += amount

}
printf "\t%s%4d\t$%7.2f\n", "Total ", total_vol, total_amt}’
}’ $*

In this program, named summary, we print totals for each customer order. Notice that the variables total_vol
and total_amt are reset to 0 whenever a new record is read. In the previous program, these values accumulated
from one record to the next.

The summary program, reading a multiline record, produces a report that 1ists each record on a single line:
$ summary orders
CUSTOMER COPIES SOLD TOTAL

318 Unix Text Processing

J. Andrews 7 $ 52.50
John Peterson 4 $ 30.00
Charlotte Miller 11 $ 82.50
Dan Aspromonte 105 $ 787.50
Valerie S. Rossi 4 $ 30.00
Timothy P. Justice 4 $ 30.00
Emma Fleming 25 $ 187.50
Antonio Pollan 5 $ 37.50
Hugh Blair 15 $ 112.50

Testing Programs

Part of writing a program is designing one or more test cases. Usually this means creating a sample input file. It is a
good idea to test a program at various stages of development. Each time you add a function, test it. For instance, if
you implement a conditional procedure, test that the procedure is executed when the expression is true; test what
happens when it is false. Program testing involves making sure that the syntax is correct and that the problem has
been solved.

When awk encounters syntax errors it will tell you that it is “bailing out.” Usually it will print the line num-
ber associated with the error. Syntax errors can be caused by a variety of mistakes, such as forgetting to quote
strings or to close a procedure with a brace. Sometimes, it can be as minor as an extra blank space. The awk pro-
gram’s error messages are seldom helpful, and a persistent effort is often required to uncover the fault.

You might even see a UNIX system error message, such as the dreadful declaration:
Segmentation fault-core dumped.

Not to worry. Although your program has failed badly, you have not caused an earthquake or a meltdown. An im-
age of “core” memory at the time of the error is saved or dumped in a file named core. Advanced programmers
can use a debugging program to examine this image and determine where in memory the fault occurred. We just
delete core and re-examine our code.

Again, check each construct as you add it to the program. If you wait until you have a large program, and it
fails, you will often have difficulty finding the error. Not only that, but you are likely to make unnecessary changes,
fixing what’s not broken in an attempt to find out what is.

Checking that you have solved the problem you set out to tackle is a much larger issue. After you begin test-
ing your program on larger samples, you will undoubtedly uncover “exceptions”, otherwise known as bugs. In test-
ing the awkronym program, we discovered an exception where an acronym appeared as the last word in the sen-
tence. It was not “found” because of the period ending the sentence. That is, awk found that BASIC and BASIC.
were not equal. This would not be a problem if we could test the search string as a regular expression but we have to
test the array variable as a literal string.

Programming is chiefly pragmatic in its aims. You must judge whether or not specific problems merit writing
a program or if certain exceptions are important enough to adapt the general program to account for them. Some-
times, in large public programs as well as small private ones, bugs just become part of the program’s known behav-
ior, which the user is left to cope with as best as he or she can. The bug found in awkronym is a common enough
problem, so it is necessary to implement a fix.

The fix for the awkronym bug does not involve awk at all. We run a sed script before the awkronym pro-
gram to separate punctuation marks from any word. It converts a punctuation mark to a field containing garbage
characters. Another script processes the awkronym output and strips out these garbage characters. The example
below shows how both scripts are used as bookends for the awkronym program.

sed ’s/\ (..*\)\([.,!;]\)/\1 @@@\2/g’ $* |
awk ’ {

program lines
}’ acronyms - |
sed ’s/ @@@\([.,!;]\)/\1/g’

4Chapter 14

Writing nroff and troff Macros

The nroff and troff formatters include a powerful macro definition and substitution capability. As we sug-
gested when macros were first discussed in Chapter 4, they are a good way to combine frequently used sequences of
formatting requests into a single instruction. But after working with the ms and mm macro packages, you must know
that macros are more than that.

Macros are an essential part of nroff and troff—you cannot escape them if you want to make serious use
of the formatter. Precisely because macros are so essential, many users never learn to fully use them. The most ob-
viously useful macros are already included in the existing macro packages, whose complex internal control struc-
tures make them difficult to understand and modify.

The purpose of this chapter is to introduce the fundamental nroff and troff requests that are used for cre-
ating macros. You’ll learn the basics in this chapter. Then, in later chapters we can examine how to write macros
for specific purposes, without having to make continual asides to introduce a new request.

Chapter 15 describes additional requests for creating special effects (such as pictures) with your macros, and
Chapters 16 through 18 discuss how to go beyond writing individual macros and how to develop or extend an entire
macro package.

Comments

Before we start, we’ll introduce the syntax for inserting comments into your macro definitions. Macros can get quite
confusing, so we advise you to put in comments that explain what you are doing. This will help immensely when
you go back weeks or months later to modify a macro you have written.

A line beginning with the sequence
.\"

will not be interpreted or printed by the formatter. Any part of a line following the sequence: \" will be treated the
same way. For example:

.\" O’Reilly & Associates, Inc. custom macro set

.\" Last modified 4/25/87

.de IZ \" Initialization macro
.
.
.

Note that there is an important difference between:
.\" A full line comment

and:
\" A partial line comment

If you simply start the sequence \" at the margin, the formatter will insert a blank line into the output, because this
sequence by itself does not suppress newline generation.

(Note that comments can be used at any time, not just in macros. You can write notes to yourself in your input
file and they will never appear in the output. But if you accidentally type the sequence \" in your file, the remainder
of the line on which it appears will disappear from the output).

319

320 Unix Text Processing

Defining Macros

As we’ve already discussed, use the .de request to define a macro:
.de AB \" Define macro AB
Requests and/or text of macro here
..

There are also requests to remove or add to existing macros. The .rm request removes a macro:
.rm PQ \" Remove macro PQ

You may sometimes want to define a macro for local use, and remove it when you are done. In general, though, this
is an advanced request you will not use often.

The .am request appends to the end of an existing macro. It works just like .de but does not overwrite the
existing contents:

.am DS \" Append to the existing definition of DS

.ft CW

..

At first, you may think that this request has only limited usefulness. However, as you work more with macros, you
will find unexpected uses for it. We’ll mention a few of these in later chapters.

Macro Names

A macro name can be one or two characters, and can consist of any character(s) not just alphanumeric characters.
For example:

.de ˆ(\" Macro used internally whose name, we hope,
\" never has to be remembered

You can even use control characters in macro names. Names can be uppercase or lowercase, or any combination of
the two, and uppercase and lowercase are distinct. For example, the four names .gm, .GM, .gM, and .Gm can all
be used without conflict.

If you are starting from scratch, you can use whatever macro or number register names you like except for the
names of existing formatter requests. However, if you are adding macros to an existing package, you have to work
around the existing names, because creating a new macro with the same name as an old one will discard the previ-
ously read-in definition.

This is not as easy as it sounds, because macro packages include internal macro, string, and number register
definitions that are not visible to the casual user. You may be surprised when your new macro makes some other
part of the package go haywire. (In an attempt to forestall this problem, most macro developers give odd, unm-
nemonic names to internally called macros. However, collisions still can and do occur).

Finding the Names of Existing Macros

Before you start adding macros to an existing package, it’s a good idea to print the names of all existing macros.

There are two ways to do this. The .pm request will print (in blocks of 128 characters) the names and sizes of
all macros defined in a given run of the formatter. So, for example, creating a file containing the single request:

.pm

and formatting it like this:
$ nroff -ms pmfile

will print on the screen a list of all the macros defined in the ms macro package. (The output could also be redi-
rected to a file or printer).

Writing nroff and troff Macros 321

However, macro names are drawn from the same pool as string names (see the next example), so it might be
better to search for macro or string definitions using grep et al, like this:

$grep ’ˆ\.d[esia]’ macrofiles | cut -f1,2 -d’ ’ | sort | uniq

(grep will select all lines beginning with either .de, .ds, .di, or .da; cut will select only the first two
space-separated fields on each of those lines; sort and uniq together will produce a sorted list consisting of only
one copy of each line. Note that for -mm, which does not use a space before the macro name, you would need to
specify cut -f1 only. You will also need to substitute for macrofiles the actual filenames containing the macros of
interest).

You should do the same for number registers:
$ sed -n -e ’s/.*.nr *\(..\).*/\1/p’ macrofile | sort | uniq

here, because we can’t rely on number registers being set at the start of a line, as we can with macro definitions. The
one-line sed script included here saves the first two nonspace characters (..) following the string .nr, and substi-
tutes them for the rest of the line (i.e.,it throws away the rest of the line).

You could also just grep for an individual macro, string, or number register name before you use it! Or you
could take the easy way, and check Appendix B, where we’ve listed all the names in each of the packages.

In addition to looking for conflicting names, you many also need to look for conflicting usage, or to under-
stand in detail the operation of a macro you are intending to call within a new macro you are writing.

To do this, you can simply read in the entire macro definition file with the editor and search for what you
want. However, to make things easier, we use the getmac shell script described in Chapter 12 to print out the defi-
nition of the desired macro. The script prints the result on standard output, which can easily be redirected into a file,
where it can become the basis for your own redefinition.

Renaming a Macro

If you do find a conflict, you can rename macros that have already been defined. The .rn macro renames an exist-
ing macro:

.rn ˆ(H1 \" Rename ˆ(to H1; easier to remember

The old name will no longer work. You must use the new name to invoke the macro.

A good trick that you can sometimes pull off with .rn is to temporarily redefine a macro (without ever modi-
fying its contents). For example, the ms macros include a macro to draw a box around a paragraph; however, these
macros do not leave any space above or below the box. We can add some like this:

.rn B1 b1 \" Rename B1 to b1

.de B1 \" Now redefine B1

.sp .5 \" Add some space before the box is drawn

.b1 \" Execute the old definition

..

.rn B2 b2 \" Rename B2 to b2

.de B2 \" Now redefine B2

.b2 \" Execute the old definition

.sp .5 \" Add some space after the box is drawn

..

This only works for adding extra control lines before or after the current contents of the macro. Remember it,
though, because this trick may come in handy if you don’t want to (or can’t) directly modify a macro in one of the
existing packages, but do want a slightly different effect.

322 Unix Text Processing

Macro Arguments

The simplest kind of macro is a sequence of stored commands, starting with a .de request and ending with the two
dots (..) at the beginning of a line.

However, as you’ve seen when you’ve used mm and ms, macros can take arguments, and can act differently de-
pending on various conditions. It’s also possible for a macro to save information and pass it to other macros to affect
their operation. An understanding of how to do these things is essential if you plan any serious macro design.

A macro can take up to nine arguments and can use them in any way. Arguments are described positionally
by the character sequences \\$1 through \\$9*.

For example, we could define a very simple .B macro to boldface a single argument:
.de B \" Macro to boldface first argument
\fB\\$1\fP
..

Or, we could write a simple paragraph macro that, instead of having a fixed indent, might take a numeric argument
to specify the depth of the indent:

.de PI \" Simple paragraph macro

.sp

.ne 2 \" Prevent widows

.ti \\$1 \" Indent to the depth specified by first

.. \" argument

As you can see in the first example, you can print an argument in your text. Or, shown in the second example, you
can use it inside the macro as an argument to one or more of the requests that make up the macro.

Notice that there is nothing intrinsic about a macro that causes a break. The .B macro, for instance, can be
placed in the input file as in the following example:

There are a number of ways to
.B embolden
text.

As long as filling is in effect, it will produce exactly the same output as:
There are a number of ways to \fBembolden\fP text.

Macro arguments are separated by spaces. If you want to include an explicit space in an argument, you should en-
close the entire string in quotation marks, like this:

There are a number of ways to
.B "make text stand out."

If you didn’t enclose the phrase make text stand out in quotation marks, a single word, make, would have been inter-
preted as the first argument, the next word, text, as the second argument, and so on. This wouldn’t cause a program
error—there is no requirement that arguments to a macro be used by that macro—but the unused arguments would
simply disappear from the output. As shown here, the entire phrase is treated as a single argument.

To actually print a quotation mark inside a macro argument, double it. For example:
.B "The Quote ("") Character"

will produce:

The Quote (") Character

You’ve probably recognized that the syntax for specifying arguments by position is very similar to that used with
shell scripts. You might wonder, though, about backslashes, which are used in the shell to prevent interpretation of a
special character. In fact, they serve the same function in troff.

*Actually, the sequences are \$1 through \$9, with only a single backslash. But for reasons to be described shortly, you always
need at least two backslashes.

Writing nroff and troff Macros 323

The nroff and troff formatters always read a macro at least twice: once when they read the definition
(and store it away for later use), and once when they encounter it in the text. At the time the macro is defined, there
are no arguments, so it is essential to prevent the formatter from doing any argument substitution.

When the macro definition is read, the formatter operates in what is referred to (in the Nroff/Troff User’s Man-
ual) as copy mode. That is, none of the requests are executed; they are simply copied (in this case, presumably into
memory) without interpretation. The exception is that various escape sequences that may have a different value at
macro definition time than at macro execution time (most notably \n, for interpolating number registers, *, for in-
terpolating strings, and \$, for interpolating arguments) are executed, unless you suppress interpretation with a pre-
ceding backslash. (Other escape sequences are also interpreted, but because they have fixed values, this makes no
difference to the action of the macro).

A backslash prevents interpretation of the character that follows it by sacrificing itself. The backslash tells the
formatter: “Take me but let the next guy go.” Each time the character sequence is read, the backslash is stripped
off—that is, \\ is actually stored as \. (You can think of \ as saying “I really mean” So in the shell, for exam-
ple, if you want to use an asterisk literally, rather than as a filename expansion metacharacter, you write *—that is,
“I really mean *.” In a similar way, \\ says “I really mean backslash.”)

When macro definitions are nested inside one another, you will need to add additional backslashes to get what
you want. The true argument interpolation escape sequence is \$n, rather than \\$n; the extra backslash is needed
because the first one is stripped when the macro is interpreted in copy mode. The same rule applies when you want
to interpolate the value of a number register or a string in a macro definition. Think through the number of times the
definition will be read before it is executed, and specify the appropriate number of backslashes, so that you get the
actual value used at the point where you need it. A failure to understand this will cause more frustration than almost
any other error when you are writing macros.

In the example of the .B macro, the sequences \fB and \fP did not need to be escaped, because troff
could just as easily interpret them at the time the macro is defined. However, the macro would also work if they
were specified with double backslashes—it is just that the interpretation of the codes would take place when the
macro was used.

Nested Macro Definitions

We said previously that a macro definition begins with a .de request and ends with two dots (..). This is a simpli-
fication. The .de request takes an alternate terminator as an optional second argument. This feature allows you to
create nested macro definitions.

.de M1 \" Start first macro

.de M2 !! \" Start second macro

.!! \" End second macro

.. \" End first macro

You can also nest macros by delaying interpretation of the .. on the second macro:
.de M1 \" Start first macro
.de M2 \" Start second macro
\\.. \" End second macro
.. \" End first macro

For example, a group of related macros for producing a certain type of document might be nested inside a
“master” macro. A user would have to invoke the master macro, indicating document type, to make the other
macros available for use. Nested macros could be used to provide alternate versions of the same set of macros
within a single macro package.

324 Unix Text Processing

Conditional Execution

One of the most powerful features of nroff and troff’s macro programming language is its facility for condi-
tional execution. There are three conditional execution requests: .if, .ie (if else), and .el (else). The .if re-
quest is used for a single condition. (“If the condition is met, do this; otherwise, simply go to the next line.”) The
.ie and .el requests are used as a pair, testing a condition and then performing either one action or the other. (“If
the condition is met, do this; otherwise, do that.”)

Predefined Conditions

There are a number of different conditions that can be tested with .if and .ie. The simplest looks to see if a pre-
defined condition is true or false. There are four predefined conditions, as listed in Table 14-1.

Table 14.1 Built-in Conditions

Condition True if

o Current page number is odd
e Current page number is even
n The file is being formatted by nroff
t The file is being formatted by troff

For example, in a page bottom macro, to print the page number in the outside corner, you might write:
.if o .tl ’’’%’ \" If odd, put page number in right corner
.if e .tl ’%’’’ \" If even, put page number in left corner

(The .tl request prints three-part titles, at the left, center, and right of the page. And, within this request, the %
character always prints the current page number. We’ll explain these two items in detail later, when we look at how
to write a complete page transition macro. For right now, we just want to understand how the conditions themselves
work).

Because the two conditions, odd and even, are mutually exclusive, you could also write:
.ie o .tl ’’’%’ \" If odd, put page number in right corner
.el .tl ’%’’’ \" Otherwise, put it in left corner

Notice that you do not specify a condition to be tested in the .el request.

Arithmetic and Logical Expressions

A closely related condition simply tests for a nonzero number or a true arithmetic expression. This is generally used
with number registers, but it could also be used to test the value of numeric arguments to a macro. For example, we
could write a paragraph macro that was either indented or flush left, depending on the value of its argument:

.de P

.sp

.ne 2

.if \\$1 .ti \\$1 \" If there is an arg, use it for indent

..

That is, if there is a nonzero numeric argument, do a temporary indent to the distance specified by the value of the
argument.

Rather than using the simple presence of a numeric argument to satisfy the condition, you could also use an
arithmetic expression to test for a value. Used in this way, the argument can simply be a flag telling the macro what
to do.

.de P

.sp

Writing nroff and troff Macros 325

.ne 2

.if \\$1=1 .ti 5n \" If first arg = 1, indent 5 ens

..

The operators shown in Table 14-2 can be used in constructing an expression.

Table 14.2 Expression Operators

Operator Description

+,-,/,* Standard arithmetic operators
% Modulo
>,< Greater than, less than
>=,<= Greater than or equal, less than or equal
=,== Equal
& AND
: OR

Expressions are evaluated from left to right, except where indicated otherwise by the presence of parentheses. There
is no precedence of operators.

Frequently, you will see numeric conditions involving number registers. Here are a few simple examples:
.if \\nb
.if \\nb>1
.if \\nb<\\nc
.if \\nb+\\nc>1

(Be sure to note the double backslash before each number register invocation: we are assuming that these requests
are made within a macro definition. If they were made outside a macro, you would use only a single backslash).
The first of these conditions is commonly used in the existing macro packages. It takes a little getting used to—it is
not always obvious to new users what is being tested in an expression like:

.if \\nb

A condition of this form simply tests that the specified expression (the number register b in this case) has a value
greater than 0. A more complex expression that does the same thing might be:

.if \\nb-1

Comparing Strings

Another frequent test that you can use as the basis of a condition is whether or not two strings are equal—for exam-
ple, whether an argument contains a particular string. The syntax is simply:

.if "string1"string2"

(Note that there are a total of three quotation marks—either single or double will do—and no equals sign. A fre-
quent error among beginners is to use an equals sign to compare string arguments, which will not work).

For example, suppose you are writing a macro to center the output if the second argument is the letter C. You
could write:

.if "\\$2"C" .ce \" If 2nd arg is C, center the next line

You can also test for a null argument in this way:
.if "\\$1"" do something

Use of this condition or its inverse, the test for a non-null argument (described in the next section), allows the user to
skip over an argument by supplying a null string ("").

326 Unix Text Processing

Executing Multiple Requests as a Result of a Condition

All of the examples we’ve shown so far consist of a single request executed on the basis of a condition. But often
you’ll want to execute more than one command when a condition is met. To do so, you enclose the sequence to be
executed in backslashes and braces, as in this example:

.if o \{\

.po +.25i

.tl ’’’%’\}

The initial sequence is terminated with an additional backslash to “hide the newline.” You could also type:
.if o \{ .po +.25i
.tl ’’’%’\}

However, the syntax shown in the first example is almost always used, because it is easier to read. There is one
caveat! You can’t put any other characters, even a comment, following the slash. For example, if you type:

.if o \{\ \" If odd...

you won’t be escaping the newline, you’ll be escaping the spaces that precede the comment. If you want to include
a comment on a condition like this, use the alternate syntax, and follow the brace with a dot, just like you would if
the comment started on a line of its own:

.if o \{. \" If odd...

The concluding \} can appear on the same line as most requests. However, we have found a problem when it
immediately follows a string definition or a .tm request. For some reason:

.ds string \}

appends a ˆQ character to the end of the string, at least in our version of troff. The concluding \} should be put
on the next line, after an initial . to suppress newline generation in the output:

.\}

Another convention followed in multiple-line execution is to separate the initial request control character (.
or ’) from the body of the request with a tab. This greatly enhances readability, and can be used to show nesting of
conditions:

.if o \{\

. po +.25i

. tl ’’’\\n%’\}

Conditions can be nested within each other using this syntax. However, you might wonder if a nested condition
could instead be expressed using one of the logical operators & or : in an expression. Suppose, as described previ-
ously, you want to put page numbers on the outside corners of each page, except on the first page, where you want it
in the center. You might put the following requests in the page bottom macro:

.ie \\n%>1 \{\ \"If pageno > 1

. if o .tl ’’’%’

. if e .tl ’%’’’\}

.el .tl ’’%’’

You might think to achieve the same result with the following requests:
.if \\n%>1&o .tl ’’’%’ \"If pageno > 1 and odd
.if \\n%>1&e .tl ’%’’’ \"If pageno > 1 and even
.if \\n%=1 .tl ’’%’’ \"If pageno = 1

Unfortunately, however, this example will not work. The & and : operators can only be used to construct arithmetic
expressions. For example, in the case of:

.if \\nX&\\nY do something

something will be done only if both register X and register Y are non-zero. (Notice that there are no spaces sur-
rounding the & operator).

You can construct an else if clause by following an .el with another .if, and then the request to be executed
if the condition is met.

.ie condition do something

Writing nroff and troff Macros 327

.el .if condition do something else if

Inverse Conditions

The meaning of any of the condition types described can be reversed by proceeding them with an exclamation point
(!). For example:

.if !e \" If the page number is not even

.if !\\nc=1 \" If the number register c is not equal to 1

.if !"\\$1"" \" If the first argument is non-null

It may not be immediately obvious what this adds to your repertoire. However, we will encounter many cases in
which it is easier to detect when a condition is not met than when it is. In particular, negative conditions can be
more comprehensive than equivalent positive conditions. For example, the condition:

.if !\\nc=1

tests not only for the cases in which number register c has been set to some number larger than 0, or explicitly to 0,
but the case in which it has never been set at all.

The test for a non-null argument is also useful. For example, in the sequence:
.if !"\\$3"" \{\ \" If there is a third argument
.ce \" center it
\\$3\}

you only want the .ce request to be executed if there is an argument to be centered. Otherwise, the request will
cause unexpected results, perhaps centering the line of text following the macro. Saying “If the third argument is
non-null, then it exists” may be the inverse of the way you think, and will take some getting used to.

If you are reading through the definitions for the ms or mm macros, you may also encounter a construct like
this:

.if \\n(.$-2

The .$ is a special predefined number register (more on this topic in a moment) that contains the number of argu-
ments that have been given to a macro. If there are two or fewer arguments, the value of the conditional expression
shown will be 0. However, it will evaluate true if there are more than two arguments. It is used in mm’s .SM macro
because a different action is taken on the second argument if there are three arguments instead of two.

.if \\n(.$-3 \\$1\s-2\\$2\s+2\\$3

.if \\n(.$-2 \s-2\\$1\s+2\\$2

Interrupted Lines

Occasionly, when writing a complex macro—especially one with multiple conditions—you may find yourself writ-
ing a request that is too long to fit on a single 80-character line.

You could simply let the line wrap on you screen — UNIX recognizes lines much longer than the 80 columns
usually available on a terminal screen. However, you need not do this. Simply putting a backslash at the end of a
line will “hide the newline” and cause the next line to be interpreted as a continuation of the first.

Number Registers

To set a number register, you use the .nr request. Like macros, number registers can have either one- or two-char-
acter names consisting of any character(s), not just alphanumeric characters. For example:

.nr ˆ(1

sets a number register called ˆ(to 1. Number register names are stored separately from macro names, so there is no

328 Unix Text Processing

conflict in having a number register with the same name as a macro. Thus, you can create mnemonic number regis-
ter names, which helps to make macros that use those number registers more readable.

(If you are writing your own macro package, you can name registers from scratch. If you are adding to an ex-
isting package, check the number registers used by that package).

To use the value stored in a number register, use the escape sequence \nx for a one-character number register
name, and \n(xx for a two-character name. (In the standard nroff and troff documentation, this is referred to
as “interpolating” the value of the number register). The point made previously, about using backslashes to delay
the interpretation of an argument, applies equally to number registers. In macros, you will usually see the invocation
of number registers preceded by a double backslash, because you don’t want to interpolate the value until the macro
is executed.

The values stored in number registers can be literal numeric values (with or without scaling indicators), values
from other number registers (whose value can be interpolated at a later time), or expressions. You can also incre-
ment or decrement the value placed in a number register by preceding the value with a plus or a minus sign. For ex-
ample:

.nr PN 1 \" Set number register PN to 1

.nr PN +1 \" Add 1 to the contents of number register PN

When you add scaling indicators to the value supplied to a number register, be aware that values are converted to ba-
sic units before they are stored, and that when you increment the value of a number register, it is incremented in ba-
sic units. So, in the previous example, in which no units were specified, the value of PN after incrementing is 2, but
in the following case:

.nr LL 6.5i

.nr LL +1

the value initially stored into LL is converted into units (i.e., for a 300 dpi output device, it contains the value 1950);
after incrementing, it contains the value 1951 (again, assuming a 300 dpi device). If you want to increment LL by 1
inch, append the proper scaling indicator. Likewise, when interpolating the value of a number register, specify that
the value is in units. For example, the construct:

.nr IN 1i

.in \\n(IN

will produce unexpected results. What you are really writing is:
.in 300m

(assuming a 300 dpi device) because the default scaling for an indent request is ems. The proper usage is:
.in \\n(INu

Number Registers as Global Variables

Number registers can be used in different ways. First, and probably most important, they can generalize a macro
package. For example, in ms, the default line length is stored in a number register called LL.

Periodically, macros in the package may muck with the line length, and then reset it to its default state. Re-
quests to reset the line length to its default value thus have the form:

.ll \n(LLu \" Single backslash within the body of text

or
.ll \\n(LLu \" Double backslash within a macro definition

Because the line length is not “hard coded” in the document, users can change the line length throughout simply by
changing the default value stored in the number register.

You might wonder why this is necessary. After all, you can simply set an initial line length, and then incre-
ment it or decrement it as necessary. And many macros take this approach. But there are other cases where the line
length is a factor in another calculation.

For example, the output text can be centered horizontally on the physical page regardless of the line length if
the page offset is set not absolutely, but in terms of the line length:

Writing nroff and troff Macros 329

.po (8.5i-\n(LLu)/2u

In general, it is good programming practice to place values that are used at many different places in a program into
globally accessible variables. To change the action of the program, it is only necessary to change the value of the
variable. It is the same in nroff and troff. When we look at the overall design of a macro package in Chapter
16, we’ll return to this subject in more detail.

Number Registers as Flags

In the chapters on the existing macro packages, you’ve also seen number registers used as flags—signals to a macro
to act in a certain way. For example, in mm, paragraphs are flush left by default, but if the user sets the Pt number
register to 1, all paragraphs will be indented.

Within the paragraph macro, there is a line that tests the Pt register, and acts accordingly:
.if \\n(Pt=1 .ti +\\n(Pin

This line actually uses number registers in both ways. If the number register Pt is set to 1, the macro indents by the
value stored in another register, Pi.

One-character number register names can also be set from the command line, with nroff or troff’s -r op-
tion. This gives you the ability to construct macros that will act differently depending on command-line options.
We’ll show some examples of this in Chapter 16, when we discuss how to print a document on either an 8½-by-11
inch or a 6-by-9 inch page, simply by specifying a single command-line switch.

Predefined Number Register Names

In addition to number registers set by the various macro packages, or set by macros you write, there are quite a few
number registers whose usage is predefined by the formatter. You’ve already seen one of these—%, which always
contains the current page number. Table 14-3 (and Table 14-4) list some of the most important preset registers, and
Appendix B includes a complete listing. Not all of these registers will be meaningful at this point, but we’ll tell you
more about them as we go on.

The registers in Table 14-3 can be reset. For example, if you want to arbitrarily reset the page number to 1,
you can type:

.nr % 1

The formatter will keep incrementing the register on each new page, but will count from the new baseline. (You
might want to do this, for example, if you are following the convention used in many technical manuals, which num-
ber pages on a chapter-by-chapter basis, with a number made up of both the chapter number and the page number.
In this case, the page number is reset to 1 at the start of each new chapter).

Note that % is a true number register name, and don’t let the special use of the % character in the .tl request
confuse you. In .tl, % alone will interpolate the current page number; however, in any other place, you must spec-
ify the full number register interpolation \n%.

The set of registers in Table 14-4 cannot be modified. In reading their names, be sure to note that they are
two-character names beginning with . (dot). If you are reading through one of the existing macro packages, it is
easy either to confuse them with macros or requests, because they begin with a period, or to miss the period and read
them as one-character names.

The registers in Table 14-4 are particularly useful when you want to temporarily change some value (for ex-
ample, the font) and then restore it, without having to know what was there before.

For example, if you print an italicized footer on each page, you might include the following requests in your
page bottom macro:

.nr FT \\n(.f

.ft I
.

330 Unix Text Processing

Table 14.3 Predefined Number Registers

Register Contents

% Current page number
dl Width (maximum) of the last completed diversion
dn Height (vertical size) of the last completed diversion
dw Current day of the week (1 to 7)
dy Current day of the month (1 to 31)
hp Current horizontal place on the input line
ln Output line number
mo Current month (1 to 12)
nl Vertical position of the last printed text baseline
yr Last two digits of the current year

Table 14.4 Read-Only Number Registers

Register Contents

.$ Number of arguments available in the current macro

.c Number of lines read from the current input file

.d Current vertical place in current diversion; equal to nl
if no diversion

.f Current font position (1 to 4 in otroff)

.H Available horizontal resolution in machine units

.i Current indent

.j Current adjustment mode (0 = .ad l or .na;
1 = .ad b; 3 = .ad c; 5 = .ad r)

.L Line spacing set with .ls

.l Current line length

.n Length of text on previous line

.o Current page offset

.p Current page length

.s Current point size

.t Distance to the next trap (usually the page bottom)

.u Equal to 1 in fill mode and 0 in no-fill mode

.V Available vertical resolution in machine units

.v Current vertical line spacing

.w Width of previous character

.z Name of current diversion

.

.
.ft \\n(FT

This is safer than simply using the .ft request without an argument to restore the previous font, which can create
havoc if a user makes a font change within a definition of the footer string.

Be aware that registers with scaled values (e.g. .l for the line lengths or .v for the current vertical spacing)
contain those values as basic machine units (as do all number registers containing scaled values). As described pre-
viously, this means you should append a u whenever you want to use the contents of one of these registers as an ar-
gument to a request.

Writing nroff and troff Macros 331

Autoincrementing Registers

We’ve described how to increment the value stored in a register by prefixing the value you supply to the .nr request
with a plus sign (+), and how to decrement it by specifying a minus sign (-).

You can also autoincrement or autodecrement a register whenever you interpolate its value. To make this
work, you must supply two values to an initial .nr request: the starting value and the increment value. For exam-
ple:

.nr TE 1 1

.nr ST 10 3

Then, when you interpolate the contents of the register, instead of using the standard \nx or \nxx, specify a plus or
a minus after the \n and before the register name. The value that is interpolated will be the original contents of the
number register plus (or minus) the increment (or decrement) value. At the same time, the value in the register will
be updated by the increment value. For example, assuming the initial definitions in the previous example:

\n+(TE \" Increment TE by 1, and interpolate the new value
\n-(ST \" Decrement ST by 3, and interpolate the new value

Number register interpolations of the normal sort can still be used and will, as always, simply give you the value cur-
rently stored in the register.

Altering the Output Format

As we’ve seen, sometimes number registers are simply used to supply values to requests, or to pass information be-
tween macros. But there are many cases in which the value of a number register is actually interpolated into the for-
matter output and printed. The page number register % is a good example. Although it might be used as the basis to
test conditions in macros, it is usually printed as well.

The .af (alter format) request allows you to specify the format in which to express the value of a number
register. This request takes two arguments, the name of the register to be affected and the format:

.af register format

The format codes are given in Table 14-5.

Table 14.5 Format Codes

Format Description Numbering Sequence

1 Arabic 0,1,2,3,4,5,...
i Lowercase roman 0,i,ii,iii,iv,v,...
I Uppercase roman 0,I,II,III,IV,V,...
a Lowercase alphabetic 0,a,b,c,...z,aa,ab,...zz,aaa,...
A Uppercase alphabetic 0,A,B,C,...Z,AA,AB,...ZZ,AAA,...

In addition to the numbering sequences in Table 14-5, an arabic format having additional digits (e.g., 001) will
result in a numbering sequence with at least that many digits (e.g., 001,002,003,...).

For example, to change to lowercase roman page numbering in the front matter of a book, you could write:
.af % i

(Note that, depending on exactly how a macro package implements page numbering, this may or may not work ex-
actly as shown. Some macro packages interpolate % into another register and print the contents of that register. For
example, ms stores the page number in the register PN and the request would be .af PN i).

Alphabetic formats are generally used in macros for automatically numbered (or lettered) lists. We’ll take a
close look at some of these macros in Chapter 17.

332 Unix Text Processing

Removing Registers

With the very large number of possible register names (nearly 10,000 names are possible, given all one- and two-
character combinations of the printing character set), it is unlikely that you will run out of number register names.

However, if your macros create a very large number of registers, the formatter can run out of internal storage
space. For this reason, it may occasionally be necessary (or at least wise) to remove temporary registers that you no
longer need, using the .rr request. For example:

.rr TE \" Remove register TE

Defining Strings

In addition to macros and number registers, nroff and troff allow you to define character strings that will be
stored and can be re-invoked at will. This is not intended as a general-purpose abbreviation function, although in
certain cases it can be used that way. Rather, it is designed to allow you to store global string variables for use
throughout a package, in much the same way that number registers provide numeric variables.

For example, in both ms and mm, you can define headers, footers, or both that will be printed on every page.
To do this, the header or footer macro contains a reference to a predefined string. All the user has to do is give the
string a value. The user doesn’t have to modify the macro itself.

As we’ve already seen, to define a string, use the .ds (define string) request. For example:
.ds RH Tools for Building Macros \" Define right header

String names, like macro and number register names, can have either one or two characters. However, unlike num-
ber registers, string names are drawn from the same pool as macro and request names, so you have to be careful not
to conflict with existing names.

To interpolate the value of a string, use the escape sequence *x for a one-character name, or *(xx for a
two-character name. For example, our page top macro might include the lines:

.if o .tl ’*(RH’’%’ \" Print header string then page #

.if e .tl ’%’’\\(*RH’ \" Print page # then header string

Another good example of how to use this request (as well as how to use predefined number registers) is given by the
technique used in ms and mm to build a date string.

The troff program reads in the date from the system clock into the predefined number registers mo (month),
dy (day), and yr (year). To set a complete date string that users can easily reference, we might write the following
requests in our macro package:

.if \n(mo=1 .ds MO January

.if \n(mo=2 .ds MO February

.if \n(mo=3 .ds MO March

.if \n(mo=4 .ds MO April

.if \n(mo=5 .ds MO May

.if \n(mo=6 .ds MO June

.if \n(mo=7 .ds MO July

.if \n(mo=8 .ds MO August

.if \n(mo=9 .ds MO September

.if \n(mo=10 .ds MO October

.if \n(mo=11 .ds MO November

.if \n(mo=12 .ds MO December

.ds DY *(MO \n(dy, 19\n(yr

(Note that these requests do not need to be executed from within a macro. The register values can be interpolated
when the macro package is first read in. For this reason, the string and number register interpolations shown here
are not escaped with an additional backslash).

Another request, .as (append [to] string), also allows you to add to the contents of an existing string. The
last line of the previous sequence could also have been written:

Writing nroff and troff Macros 333

.as MO \n(dy, 19\n(yr

to append the day and year to whatever value had been stored into MO. Here, this is a little contrived—it is better to
maintain the month and the date as a whole in separate strings. However, the technique of appending to a string is
used appropriately in the definition of a macro to produce numbered section headers, as we’ll see in Chapter 17.

Diversions

So far, we have discussed macros that you define in advance as a sequence of stored requests. There is also another
class of macros that are created by a process called diversion.

A diversion consists of temporary storage of text into a macro, which can be saved and output at a later time.
In reading the chapters on ms or mm, you might have wondered how troff manages to move footnotes embedded
anywhere in the text to the bottom of the page, or how it “floats” a figure, table, or block of text to the top of a suc-
ceeding page, after filling the current page with text that comes later in the input file.

The answer is simple: the formatter stores the text (or other output) in a macro created by diversion. (Such a
macro is often called simply a diversion). The size of the diversion is stored into number registers that you (your
macros, that is) can test to see if the diversion will fit on the current page, and how much space you need to allocate
for it. The macro package can then make decisions about how and where to place the contents of the diversion.

To create a diversion, use the .di (divert) request. This request takes as an argument the name of a macro.
All subsequent text, requests, etc., will be processed normally, but instead of being output, they will be stored into
the named macro. A .di request without an argument ends the diversion.

The output that has been stored in the diversion can now be output wherever you like, simply by invoking the
macro named in the initial .di request. For many purposes, this invocation will be performed automatically by a
page transition macro. We will look at this in more detail in succeeding chapters, but just to get the idea, let’s look
at a simple definition for a pair of keep macros.

(In general, diversions are handled by pairs of macros—one to start the diversion, the other to end it. How-
ever, there are other cases in which we will see that this is not necessary).

Both ms and mm use diversions in their display macros. In ms, the display macros handle text positioning, and
call lower-level macros called keep macros to make sure the text in the display stays on the same page.

The purpose of the keep macros, in case you are not familiar with this concept from earlier chapters, is to
make sure that a block of text is not split across two pages. A typical example of a block that should not be split is a
figure—whether it is reserved space for a figure, or an actual picture created with pic or some other graphics tool.

A simple macro to start a keep might look like this:
.de KS \" Keep Start
.br
.di KK
..

A simple macro to end a keep might look like this:
.de KE \" Keep End
.br
.di
.ne \\n(dnu
.nr fI \\n(.u
.nf
.KK
.if \\n(fI .fi
..

In both macros, the .br requests are extremely important; they flush any partial lines that have not yet been output.
In the .KS macro, the break makes sure that the keep begins with the text following the macro; in .KE, it makes
sure that the last partial line is included in the diversion.

It is also important to output the diversion in no-fill mode. If you don’t, the text contained in the diversion
will be filled and adjusted a second time, with unpredictable results. (Consider, for example, when the diversion

334 Unix Text Processing

includes an already formatted table. The table would be scrambled by a second pass).

You can’t just switch back to fill mode after you output the diversion, though. What if the body of the text
was meant to be in no-fill mode? To get around this problem, you should save the value of troff’s read-only regis-
ter .u, and test the saved value to see whether or not filling should be restored.

There are a few times when you might not want to follow this rule. For example, what should you do if there
is a chance that the diversion will be output on a page where the line length is different? You still want to avoid pro-
cessing the text twice. You can put the text into the diversion in no-fill mode, and can embed any formatting re-
quests into the diversion by preceding them with a backslash (e.g., \.in 5n). Any requests treated in this way will
be acted on when the diversion is output.

As always, it is important to specify the correct units. In the previous example, the value in dn is stored using
basic device units (as is the case with all scaled values stored in a number register), so you must add a u on the end
of the interpolation. For example, on a 300 dpi device, after a diversion 2 inches high, dn will contain the value
600. The request:

.ne \\n(dn

will always result in a page break because (in this example) what you are really writing is:
.ne 600

What you want to write is:
.ne \\n(dnu

Any text and requests that are issued between the initial .KS and the terminating .KE will be stored in the
macro called .KK. The height of the last-completed diversion is always stored in the number register dn. We can
simply say that we need (.ne) at least that much space. If the size of the diversion is greater than the distance to the
bottom of the page, we simply start a new page. Otherwise, we output the text and continue as if the diversion had
never happened.

The case of a floating keep, in which text that follows the keep in the source file floats ahead of it in the out-
put, and fills up the current page, is more difficult to handle than the simple example just shown. However, this ex-
ample should give you an idea of how to use diversions.

There is also a .da (divert append) request that adds output to an existing diversion. (A second .di given
the same macro name as the first will overwrite the diversion’s previous contents, but .da will add the new material
to the end).

The .da request has numerous applications. For example, consider footnotes. To calculate where to place
the first footnote, you need to calculate the size of all the footnotes you want to put on the page. That’s easy—just
append them to the same diversion.

However, there are other far less obvious applications for appended diversions. For example, you can divert
and append section headings or index entries to macros that will be processed at the end of the file to produce a table
of contents or an index.

Environment Switching

The nroff and troff formatters allow you to issue many requests that globally affect the format of a document.
The formatter is generally quite thorough in providing ways to change and restore the value of various parameters.
This makes it relatively easy to change values such as the line length or fill/no-fill mode in order to treat certain
blocks of text differently and then restore the original values.

Nonetheless, if you want to make major changes to a number of values, it can be awkward to save and restore
them all individually. For this reason, nroff and troff provide a mechanism called environment switching. By
default, text processing takes place in what is considered to be environment 0. The .ev request allows you to
switch to either of two additional environments, referred to as environment 1 and environment 2.

For example, to change to environment 2, you would enter:
.ev 2

Writing nroff and troff Macros 335

To restore a previous environment, you simply issue an .ev request without an argument. Environments are stored
in a “push down stack.” So if you are using multiple environment switches, a sequence of .ev requests without ar-
guments won’t toggle you between two environments, but will actually backtrack the specified number of environ-
ment switches. That is:

.ev 1
do something
.ev 2
do something
.ev \" Go back to ev 1
.ev \" Go back to ev 0

If you use .ev with an argument, you will not pop the stack. For example, the requests:
.ev 2
.ev 0

will leave both environments on the stack. You might get away with this on one occasion, but if you do this in a
macro that is used with any frequency, your stack will keep getting deeper until it overflows and the formatter fails
with the message “Cannot do ev.”

Within each environment, settings made with the following requests are remembered separately:
.c2 .cc .ce .cu .fi .ft .hc .hy .in .it .lc .ll .ls .lt
.mc .nf .nh .nm .nn .ps .sp .ss .ta .tc .ti .ul .vs

Number registers, macros, and strings are common to all environments. However, any partially collected lines are
part of a given environment. If you switch environments without causing a break, these partial lines will be held till
the environment that contains them is restored.

What this means is best shown by example:
. \" Set parameters for environment 0
.ll 4.5i
.ad b
.ev 1 \" Switch to environment 1
.ll -10n \" Set parameters for environment 1
.in +10n
.ad l
.ev \" Restore previous environment (ev 0)
This text will be formatted using the parameters for
environment 0. Notice that part of the last input
line appears to be lost when we switch environments.
It reappears when the environment is restored.
.ev 1
.sp \" The break caused by this request is in ev 1
Now we’ve switched to environment 1. Notice how the text
is now formatted using the parameters for environment 1.
Also notice that this time, we’re going to issue an .sp
request after this sentence to cause a break and make sure
the last partial line is output before we leave this
environment.
.sp
.ev \" Back once more to environment 0
This sentence will be preceded by the remainder of input
left over from the last time we were in this environment.

Here’s the resulting output (from nroff):

336 Unix Text Processing

This text will be formatted using the
parameters for environment 0. You’ll notice
that part of the last input line appears to
be lost when we switch environments. It

Now we’ve switched to environment 1. Notice
how the text is now formatted using the
parameters for environment 1. Also notice
that this time, we’re going to issue an .sp
request after this sentence to cause a break
and make sure the last partial line is output
before we leave this environment.

reappears when the environment is restored.
This sentence will be preceded by the
remainder of the input left over from the
last time we were in this environment.

Environments are very powerful and versatile. The example given previously could have been handled more
appropriately with a macro. However, as you will find, there are tasks that are best handled by an environment
switch.

Printing footnotes is a primary example. Footnotes are usually collected in a diversion, which must be output
at the bottom of the page without causing a break or other interference with the text.

Unfortunately, you must use environment switching with caution if you are working within one of the existing
macro packages, because they may use different environments internally, and changing parameters in an environ-
ment may affect the operation of the package. For example, it was necessary to process the preceding example inde-
pendently with nroff, and then read the resulting output into the source file, because the use of environments by
the macro package that produced this book was incompatible with what we were trying to show.

Redefining Control and Escape Characters

There are special requests to reset the control characters that begin requests (. and ’) and the escape character:
.eo \" Turn escape character off except for comments
.ec ! !" Set escape character to !
.ec \ \" Set escape character back to \
.cc # \" Change control character from . to #
.c2 ˆ \" Change no-break control character from ’ to ˆ

As far as we can tell by experiment, turning the escape character off entirely with .eo does not affect the comment
sequence \"; however, if you change the escape character with .ec, comments must be introduced by the new es-
cape character.

We have not found a significant use for these requests in our own work, or in macros we’ve studied, although
there are no doubt cases where they are precisely what is needed.

One application that immediately suggests itself is the representation of control and escape characters in the
examples shown in this book. However, in practice there are many problems.

For example, if you use these requests in a pair of macros to frame examples, the closing macro must be in-
voked with the appropriate control character, creating inconsistencies for the user. Even more seriously, if control
character translations are in effect during a page transition (something that is difficult to control) or other macro in-
voked by a trap, they will render that macro inoperable, unless it has been designed with the same control and escape
characters.

Writing nroff and troff Macros 337

Our preferred solution to this problem is to use the .tr request, which is discussed in the next chapter.

Debugging Your Macros

When using a markup language as complex as that provided by nroff and troff, it is easy to make mistakes, par-
ticularly when you are designing complex macros.

To limit the number of mistakes you make, you can take lessons from programmers in more general-purpose
languages:

• Start by writing and testing small pieces of a complex macro. Then, after you know the pieces work,
put them together. It is much easier to find a problem in a simple macro than in one that is already very
complex.

• Be aware of interactions between the macro you are writing and other macros in the package. Initialize
variables (number registers and strings) that might also be used by other macros.

• Include extensive comments, so you can reconstruct what you were trying to do when you go back to
the macro later. (Errors often arise unexpectedly after the macro has been in use for a while, and you
have a chance to exercise it fully. Be sure you can follow what you originally wrote).

• Test each macro thoroughly before you put it into general use.

However, even with the best of intentions, you are likely to make mistakes. This short section is intended to give
you a few pointers on how to track them down.

The term debugging is familiar even to nonprogrammers. In general, it refers to the process of finding errors
in programs. I would like to suggest an alternate definition that may give you better insight into how to go about this
process: Debugging is the process of finding out what your macro really does, instead of what you though it should
do.*

When you write a program or a macro, you have an idea in your mind of what you want to accomplish. When
it doesn’t do what you expect, you consider it an error.

But as we all know, computers are very literal. They generally do just what they are told. (The exception be-
ing when there is an error in some underlying layer of software that causes problems on a higher layer). Therefore,
the essence of debugging is to compare, on a step-by-step basis, exactly what the program or macro is actually doing
with what you expect it to do.

There are several tools that you can use in debugging macros. First, and most obviously, you can look care-
fully at the output. Try to reconstruct the sequence of instructions and text that have been executed to produce the
(presumably) undesirable result. Often, this will be all you need to do—think like a text formatter, and go through
the requests that have been executed, in the order that they are executed.

You will often find that problems are due to an incorrect understanding of the action of one of the requests or
escape sequences, so it may be advisable to consult the bible of macro programming, Joseph Osanna’s extraordinar-
ily dense but thorough Nroff/Troff User’s Guide.

Secondly, you can use nroff or troff interactively. If you simply type:
$ nroff

or:
$ troff -a

the program will take standard input from the keyboard and send its results to standard output (the screen). The
troff -a command creates an ASCII approximation of what the troff output would be; if you are using
ditroff, you can also save the normal output in a file and look directly at the output. However, this output is in an
obscure format and takes considerable time to learn.

*I am indebted to Andrew Singer of Think Technologies for this definition. Andrew used similar words in describing to me the de-
bugging philosophy of his company’s innovative Pascal compiler for the Macintosh, Lightspeed Pascal.

338 Unix Text Processing

With troff -a, special characters (such as underlines) are represented by their special character names.
For example, underlining will show up as a sequence of \(uls. Because proportional type is considerably more
compact than the characters that appear on a terminal screen, lines will appear too long, and will wrap around on the
screen. However, what you see does represent how troff will break the lines.

Now, by typing in your macros (or reading them in from existing files with the .so request), you can repro-
duce the environment of the formatter, and watch the results as you type in text. As each line is completed in the in-
put buffer, the formatted result will be output. You can force output of a partially completed line with the .fl
(flush) request, which was designed for this purpose.

This method has definite limits, but has just as definite a place in pinning down what the commands you type
are doing.

Another debugging tool that you may find useful is the .ig (ignore) request. It tells the formatter to ignore
subsequent input, up to a specified terminator (.. by default). The .ig request acts like .de, only the input is dis-
carded. (The only exception to this is that autoincremented registers whose values are interpolated within the ig-
nored block will still be incremented or decremented).

This request is useful when you are trying to pin down exactly where in an input file (or a long macro defini-
tion) a fatal error (one that causes the formatter to stop processing) occurs. By successively isolating parts of the file
with .ig, you can locate the problem more closely.

This request is also useful for “commenting out” extensive blocks of macro definition or input text that you
don’t want in your output. It is much easier to bracket a large block of input in this way than it is to insert comment
characters at the beginning of each line.

Because you may want to “ignore” more than one macro definition, you may want to get in the habit of speci-
fying a special delimiter for the .ig request, so that the “ignore” is not accidentally terminated by the end of the
first macro definition. This will also make it much easier to find the end of the ignored section. For example, if you
insert the line:

.ig ++

anywhere in your input, the formatter will ignore the input until it sees the request:
.++

The final tool provided for debugging is the .tm (terminal message) request, which prints a message on standard er-
ror. This is particularly useful for tracking down errors involving number registers. For example, if you have set a
condition based on the value of a number register, and the condition never seems to be satisfied, you might want to
insert .tm messages to print out the value of the number register at certain points in your file. For example:

.tm Before calling B1, the value of BC is \n(BC

.B1

.tm After calling B1, the value of BC is \n(BC

(Note that there are no double backslashes before the number register interpolations, because these requests are not
made while you’re inside a macro definition. From inside a macro, be sure to double the backslashes, or you will get
the value of the number register at the time the macro was defined).

A read-only number register that is useful in this regard is .c, which contains the number of lines read from
the current input file. This allows you to create messages that will help you (or the user of your macros) find out
where in the input file an error (or other event) occurs:

.tm On input line \\n(.c, the value of BC was \\n(BC

(Here, there are double backslashes, because this example is intended to be inside a macro definition). Sometimes it
is helpful to follow just how far the formatter has gotten in a file. The most difficult errors to track are those that
cause the formatter to quit without producing a block of output. A series of messages of the form:

.tm At top of page \\n%, I’ve processed \\n(.c input lines

inserted into the page top macro will help you determine how far the formatter has gotten, and can thus help locate
an error. If the formatter is processing standard input rather than an individual file, the .c register will be empty.

Another register that you may find useful in printing error messages is .F, which contains the name of the
current file. (Yes, the filename is a string, even though it’s stored in a number register).

Writing nroff and troff Macros 339

The .R register is also useful. It contains the number of free number registers. You can print its value to see
if you are running out of number registers or coming close to the limit. (tbl and eqn use many dynamic number
registers, and it is possible to run out if you use a lot in your macros as well).

Although we use the tools described here to debug our macros, we know that they don’t always help you deal
with the complexity of a macro package. The relationships among different macros are not always apparent. For in-
stance, you can usually tell from looking at your output what macro is causing a problem; however, when you look
at the macro definition, you might find that this macro is calling several other macros or testing registers that have
been set elsewhere in the macro package. It soon leads to the wish for a debugging tool that traced the interpretation
and execution of macro definitions.

At least one version of troff does support a trace facility. Users of SoftQuad’s SQtroff can enable a
trace mode to show the invocation of each request, diversion, trap, and macro call. For instance, suppose that a
macro tests the value of a number register to determine whether a request should be executed. In trace mode, you
can see at what point the .if request was invoked, whether it was evaluated as true or false, and determine the ac-
tual value of the number register at that point. SoftQuad has also taken another step to make debugging easier by
improving troff’s obscure error messages. In general, SoftQuad has enhanced standard troff in other ways that
aid the process of macro writing and debugging, such as allowing longer names (up to 14 characters) for macros, re-
quests, strings, registers, and fonts.

Error Handling

There are many different ways that users can get into trouble while coding documents, and your macros can help
them identify and recover from problems. The three most common classes we have encountered are:

• A user fails to properly understand the action of the formatter itself. For example, he or she begins a
text line with a single quote or period, or defines a special character (such as %) as an eqn delimiter.
This problem becomes more pronounced as users try out more advanced capabilities without really un-
derstanding them.

• A user fails to properly understand the macro package. For example, he or she gives the wrong argu-
ment to a macro or specifies the wrong units.

• A user temporarily resets some condition, either directly or by failing to close a set of paired macros.
This causes undesirable effects to propagate through the document.

The mm macros attempt to solve the first problem by creating so comprehensive a macro package that users never
need use many low-level formatter requests. However, in doing so, its developers have created an environment that
is in may ways more complex than the raw formatter environment itself. And in our opinion, no macro package is
comprehensive enough to meet all user needs. Over time, users come up with formatting problems that they need to
know how to solve on their own. There is no solution to this problem except better user education.

To some extent, you can compensate for the second problem by testing for arguments and printing error mes-
sages if a macro is misused. For example, if a macro requires an argument, consider printing a message if the user
fails to supply it:

.if "\\$1"" .tm Line \\n(.c: .Se requires section \
number as first argument

Of course, by the time the user sees the error message, he or she has already formatted the document, and it is too
late to do anything else but repair the damage and reprint. However, messages can sometimes make it easier for
users to find errors and can give them warning to look more closely at their printout.

The .ab request takes things one step further—it lets you terminate processing if the formatter encounters a
condition you don’t like. For example, you could write a macro that aborts if it is called without a necessary argu-
ment:

.if !\\n(.$.ab You forgot the argument!

The .ab request prints its argument as an error message, just like .tm. It just takes the further, definite step of quit-
ting on the spot.

340 Unix Text Processing

Probably more suitable, though, is a separate tool for checking macro syntax. Such a tool exists for mm in the
mmcheck program. A program like this checks the syntax of macros and requests used in a document and reports
possible errors.

This kind of approach is especially suitable for the third kind of error—the failure to close a set of paired
macros.

Macro Style

As you develop more of your own macros, you might begin thinking about overall macro style. Developing macros
that behave in a consistent, reliable way becomes all the more important as the number of new macros you have in-
creases along with the number of people using them. Recognizing different styles of macro writing helps to suggest
alternatives and improvements in the way a macro works.

If you have read the chapters on ms and mm in detail, or if you are already familiar with both of these pack-
ages, you have probably noticed that they embody somewhat different text-processing philosophies.

For example, ms generally attempts to recover and continue when it encounters a serious error, but mm aborts
the formatting run. And although ms allows a certain amount of user customization (generally by providing a few
number registers and strings that the user is expected to modify), it has nowhere near the complexity of mm in this re-
gard. An mm user is expected to set up various number registers that affect the operation of many different macros.

In writing your own macros (especially ones that will be integrated with one of the existing packages), you
should take some time to think about style, and how you want users to interact with your macros. This is most easily
shown by comparing several different paragraph macros:

.de P \" A very simple paragraph macro

.br

.ne 2v

.ti 2P

..

.de LP \" An ms style flush left paragraph

.RT

.ne 1.1

.sp \\n(PDu

.ti \\n(.iu

..

.de PP \" An ms style indented paragraph

.RT

.ne 1.1

.sp \\n(PDu

.ti +\\n(PIu

..

.deP \" An mm style variable paragraph

.br \" Note that this is much

.sp (\\n(Ps*.5)u \" simplified from true mm code

.ne 1.5v

.if\\n(.$>0&(0\\$1) .ti+\\n(Pin

.if\\n(.$=0 .if\\n(Pt=1 .ti+\\n(Pin

..

The first example shows a very simple paragraph macro using a fixed indent value.

The second and third examples are adapted from ms. They show the use of an embedded reset macro (dis-
cussed in Chapter 16) and the specification of values such as indents and interparagraph spacing by means of num-
ber registers so that users can change them without rewriting the macro. The different types of paragraphs (flush left
or indented) are handled by defining two different macros.

The fourth example is adapted from mm. It shows how a macro can be controlled in a number of different
ways. First of all, the size of the paragraph indent can be controlled by the user, as in ms. Second, though, users can

Writing nroff and troff Macros 341

specify whether they want an indent for a particular paragraph by specifying an argument to the macro. Finally, they
can specify whether all paragraphs are to be indented or flush left by setting the Pt (paragraph type) register.

Although you many not want to go as far as mm in giving different ways to affect the action of a macro, it is
good to realize that all of these options are available and to draw on them as necessary.

However, it does make sense to be consistent in the mechanisms you use. For example, suppose you create
macros to put captions on figures, tables, and examples. If you allow the user to control the amount of space before
the caption with an optional argument, you ought to do so in all three analogous macros.

As much as possible, a user should be able to infer the action of a macro from its name, and should be able to
guess at its arguments by analogy to other, similar macros in the same package. If you are capricious in your design,
other users will have a much greater burden to shoulder when it comes time for them to learn your macros. Even if
you are the only user of macros you develop, consistency will help you keep out of trouble as you gradually extend
your package.

The issue of macro style really comes up as you begin to develop your own custom macro package, as you
will see when we examine the elements of a macro package in Chapters 16 and 17.

4Chapter 15

Figures and Special Effects

This chapter discusses a variety of formatter requests that you can use to draw figures and achieve special effects
like overstriking and vertically stacked text. It also dissects some of the most complex macros we’ve seen so far, so
it should advance your knowledge of how to write macros as well as your knowledge of its explicit subject matter.

Formatter Escape Sequences

Preprocessors like tbl and pic draw boxes, lines, and simple figures using an underlying library of formatter es-
cape sequences that you can also use directly. The eqn preprocessor also uses many of these escape sequences, as
well as others that are more appropriate for creating special effects with text characters.

The escape sequences are listed in Table 15-1. As you can see, there are quite a few! Fortunately, many of
these need not be learned by the average user. The various preprocessors often allow a user to achieve the same ef-
fect more easily. Although tbl or eqn might seem difficult to learn, they are far simpler than the formatter com-
mands they replace. For example, an eqn construct like %10 sup 5% is easier to learn and type than an equiva-
lent troff construct like:

10\s-3\v’-3p’5\v’3p’\s0

When it comes to drawing lines and figures, things get even more complex.

For this reason, many of the escape sequences we are about to discuss are not often used by the average person
trying to achieve special effects. However, they are extremely useful to a developer of macros.

In this chapter, we’ll cover the sequences for local vertical and horizontal motions and line drawing, because
these requests are most commonly used in macros. In addition, we will show several large macros that do line draw-
ing in order to demonstrate both the use of escape sequences and techniques for writing complex macros.

Many of the escape sequences in Table 15-1 take arguments that must be delimited from any following text.
The delimiter character is most often ’ or ˆG (CTRL-G), but it can be any character. The first character following
the escape sequence will be taken as the delimiter, and the argument list will be terminated when that same character
is encountered a second time.

Local Vertical Motions

There are a number of escape sequences for local vertical motions. They are so called because they take place within
a line, without causing a break or otherwise interrupting the filling and justification process.

However, this is not to say that the motions they cause are limited. For example, you can use \v, the vertical
motion escape sequence to move anywhere on the page, just as you can with the .sp request. However, the remain-
der of the line that has been collected in the formatter’s internal buffers will be output in the new location just as if
the motion had never taken place.

To make this point clearer, let’s look at three examples of input text that use different types of vertical motion.

343

344 Unix Text Processing

Table 15.1 Formatter Escape Sequences

Escape Description

\v’distance’ Move distance vertically down the page. Precede distance
with a minus sign to move back up the page.

\h’distance’ Move distance horizontally to the right. Precede distance with
a minus sign to move back to the left.

\u Move 1/2 em up (1/2 line in nroff).
\d Move 1/2 em down (1/2 line in nroff).
\r Move 1 em up (1 line in nroff).
\c Join next line to current output line, even across a break.
\p Cause a break, and adjust current partial output line.

\x’distance’ Add extra line space for oversize characters.

\(space) Move right one space (distance determined by .ss).
\0 Move right the width of a digit in the current font and size.
\| Move right 1/6 em (ignored in nroff).
\ˆ Move right 1/12 em (ignored in nroff).

\w’string’ Interpolate width of string.
\kx Mark current horizontal place in register x.

\o’xy’ Overstrike characters x and y.
\zc Output character c without spacing over it.
\b’string’ Pile up characters vertically (used to construct large brackets,

hence its name).

\l’Nc’ Draw a horizontal line consisting of repeated character c for
distance N. If c isn’t specified, use _.

\L’Nc’ Draw a vertical line consisting of repeated character c for dis-
tance N. If c isn’t specified, use |.

\D’l x,y’ Draw a line from the current position to coordinates x,y
(ditroff only).

\D’c d’ Draw a circle of diameter d with left edge at current position
(ditroff only).

\D’e d1 d2’ Draw an ellipse with horizontal diameter d1 and vertical diam-
eter d2, with the left edge at the current position (ditroff
only).

\D’a x1 y1 x2 y2’ Draw an arc counterclockwise from current position, with cen-
ter at x1,y1 and endpoint at x1+x2,y1+y2 (ditroff only).

\D’∼ x1 y1 x2 y2...’ Draw a spline from current position through the specified co-
ordinates (ditroff only).

\H’n’ Set character height to n points, without changing the width
(ditroff only).

\S’n’ Slant output n degrees to the right. Negative values slant to
the left. A value of zero turns off slanting (ditroff only).

Figures and Special Effects 345

What happens with .sp:

Input lines:
Especially in troff, it is sometimes uncanny the way that
vertical motions can occur
.sp 12p
independently from the output of the text.

Output lines:

Especially in troff, it is sometimes uncanny the way that vertical motions
can occur

independently from the output of the text.

What happens with ’sp:

Input lines:
Especially in troff, it is sometimes uncanny the way that
vertical motions can occur
’sp 12p
independently from the output of the text.

Output lines:

Especially in troff, it is sometimes uncanny the way that vertical motions

can occur independently from the output of the text.

What happens with \v’12p’:

Input lines:
Especially in troff, it is sometimes uncanny the way that
vertical motions can occur \v’12p’
independently from the output of the text.

Output lines:

Especially in troff, it is sometimes uncanny the way that vertical motions
can occur

independently from the output of the text.

As you can see, .sp causes a break as well as a downward movement on the page. The partially collected line is
output before the movement takes place. With ’sp, the line currently being collected is completely filled and output
before the spacing takes place. With \v, the motion is completely independent of the process of filling and justifica-
tion.

It is also independent of traps, as we discovered once when trying to put a pointing finger (+) at the bottom of
a page to indicate that the subject was continued on the overleaf. We used a macro invoked by the page bottom trap
to print the finger. At first, we made the mistake of using .sp -1 to move back up the page to place the finger.
Unfortunately, this put troff into an endless loop around the trap position. The \v escape sequence, on the other
hand, did the trick nicely. Since it does not change the current baseline spacing, it will not trigger a trap.

Long-winded examples aside, that is why \v is considered a local motion. In general, \v escape sequences
are used in pairs to go away from, and then back to, the current vertical position.

A superscript is a good example of vertical motion using \v. For example, you could create a simple super-

346 Unix Text Processing

script macro like this:
.de SU
\\$1\s-2\v’-3p’\\$2\v’3p’\s0\\$3
..

This macro

• prints its first argument;

• reduces the point size;

• makes a 3-point reverse vertical motion;

• prints the second argument;

• makes a 3-point vertical motion to return to the original baseline;

• restores the original size;

• prints an optional third argument immediately following. (This allows punctuation to be introduced im-
mediately following the superscript, rather than on the next line. If no third argument is supplied, this
argument interpolation will be ignored).

This macro could also be implemented using the \u (up) and \d (down) escape sequences, which use a fixed 1/2-em
distance. If you did this—or if you specified the distance for the \v escape sequence in a relative unit like ems, in-
stead of a fixed unit like points—it would be essential to have both of the vertical motions either inside or outside the
font size change. For example, assuming that the current font size was 10 points:

.de SU
\\$1\u\s-2\\$2\d\s0\\$3
..

would produce an unbalanced effect, because the upward motion would be 5 points (1/2 em at 10 points), while the
downward motion would be only 4 points (1/2 em at 8 points). This caution holds true whenever you mix font and
size changes with local motions.

Local Horizontal Motions

Much of what has been said about local vertical motions is true for local horizontal motions. They take place inde-
pendently of the process of filling and justification and so, if improperly used, can result in horrors like:

Look what happens whenyou make a mistake with \h!

which was produced by the line:
Look what happens when \h’-3m’you make a mistake with \h!

Horizontal motions are not as likely to take place in pairs as vertical motions. For example, there are cases where
you want to close up the space between two special characters, or open up additional space on a line. For example,
>> produced by >\h’-1p’> looks better than >>.

In addition to \h, there are a number of escape sequences that affect horizontal motion in specific ways.

For example, “\ ” (it’s quoted so you can see the blank space following the backslash) will space over to the
right by exactly one space. That sounds trivial, but it isn’t. When it justifies a line, troff feels free to expand the
spaces between words. (The default space size is normally 12/36 of an em, but can be reset with the .ss request us-
ing units of 36ths of an em). The “\ ” escape sequence makes sure that you get exactly one space. This is gener-
ally thought of as the unpaddable space character and is used when you want to keep two words together. However,
it can also be used simply as a horizontal motion sequence.

Another useful sequence is \0. It provides exactly the width of a digit in the current font and size. (Unlike
alphabetic characters, all digits are always the same width on the standard fonts, to allow them to line up properly in
numeric displays). The \0 sequence is most useful when you want to line up spaces and digits manually.

Figures and Special Effects 347

The two escape sequences \| and \ˆ, which give, respectively, a 1/6 em and 1/12 em space, are useful when
you want to create just a little bit of fixed space between two characters. (The normal space size created by an actual
space character is 1/3 em, so these two characters give you, respectively, one-half and one-quarter of the normal inter-
word spacing). You may remember that we used \ˆ in Chapter 12 to create a little bit of space before and after the
em dashes we were introducing into our files with sed.

Absolute Motions

As you’ve probably gathered from the preceding discussion, you can specify the distance for a horizontal or vertical
motion using any of the units discussed in Chapter 4. The values can be given explicitly, or by interpolating the
value of a number register. In addition, as discussed in Chapter 4, you can use a vertical bar (|) to indicate absolute
motion relative to the top of the page or the left margin.

This is not as simple as it first appears. For vertical motions, you pretty much get what you expect. For exam-
ple, .sp |2i, \v’|2i’ will move you to a position 2 inches from the top of the page. Depending on where you
are on the page before you issue the command, the generated motion will be either positive or negative.

For horizontal motions, things are a little more ambiguous. The absolute position indicator doesn’t move you
to an absolute position based on the output line, but on the input line. For example:

This is a test of absolute horizontal motion\h’|1i’_

produces:

This is a test of absolute horizontal motion_

But:
This is a test of
absolute horizontal motion\h’|1i’_

produces:

This is a test of absolute horizontal motion_

What is really supplied as an argument to \h when you use the absolute position indicator is the distance
from the current position on the input line to the specified position. Even though it looks the same, the argument
will have a different value, depending on the length of the input line. And again, as with vertical motions, the actual
movement may be positive (to the right) or negative (to the left), depending on the relationship between the current
position and the absolute position specified.

It may appear odd to have these motions relative to the input line. However, as we will see (especially in line
drawing), there is a method to the madness.

Line Drawing

Now we come to the fun part. Moving around on the page is of little use unless you plan to write something at the
point you’ve moved to. Superscripts, subscripts, and overprinting provide some application of local motion, but lo-
cal motions are most useful with the escape sequences for drawing lines and curves.

Applications range from underlining words in troff, to boxing single words (if you are writing computer
manuals, this is very useful for showing the names of keys to be pressed), to drawing boxes around whole blocks of
text, just like tbl does.

348 Unix Text Processing

The \l sequence draws a horizontal line; \L draws a vertical line. Both escape sequences take two argu-
ments, the second of which is optional. Both arguments should be enclosed together in a single pair of delimiters.

The first argument is the distance to draw the line. A positive value means to draw a horizontal line to the
right, or a vertical line downward (depending on whether \l or \L is used). A negative value means to draw a line
back to the left, or back up the page.

When you draw a line back to the left, either by explicitly specifying a negative value, or by specifying an ab-
solute value (such as |0) that results in a negative movement, troff first moves back to the specified position, then
draws the line from left to right. It is as if the line is drawn from the specified distance to the current position.

For example:

\l’3i’ draws a line 3 inches to the right
\l’-3i’ draws a line from a position 3 inches to the left
\L’3i’ draws a line 3 inches down
\L’-3i’ draws a line 3 inches up
\L’|3i’ draws a line to a position 3 inches from the top of the page

The optional second argument is the character with which to draw the line. By default, a horizontal line is drawn
with the baseline rule—a horizontal line that is aligned with the bottom of the other characters on a line. However,
if you want to underline text, be sure to use the underscore, which is printed in the space allotted for characters that
descend below the line:

These words are separated by baseline rules.
These words are separated by underscores.

The underscore is usually generated by the underscore character that appears above the hyphen on most keyboards.
However, to be on the safe side, you should refer to it by its special character name in troff—\(ul. (The baseline
rule can be specified with the sequence \(ru).

Vertical lines are drawn by default with a character called the box rule (which can be generated by the \(br
escape sequence or the vertical bar character on most keyboards). The box rule is a zero-width character—that is,
when troff draws the box rule, it does not space over as it does with other characters. This allows troff to form
exact corners with horizontal lines drawn with underrules. However, as you will see, it may therefore require you to
manually specify additional space to keep it from crowding previous or succeeding characters.

Except in the case where you draw a line to the left, as described previously, the current position at which text
output will continue is changed to the endpoint of the line. In drawing a box, you will naturally find yourself return-
ing to the starting point. However, if you are drawing a single line, you may need to use \v or \h to adjust the posi-
tion either before or after the line is drawn.

Let’s look at a couple of examples. A simple macro to underline a word in troff might look like this:
.de UL
\\$1\l’|0\(ul’\\$2
..

This example prints its argument, backs up a distance equal to the length of the argument on the input line, then
draws a line from that point to the current position. The optional second argument allows you to specify punctuation
without separating it with the space that is required if it were entered on the next input line. (This reverse motion is
implicit in the negative value generated by the absolute position request |0 —that is, the distance from the end of
the word to the beginning of the line. Lines drawn with \l and a negative distance generate a negative horizontal
motion for the specified distance. The line is then drawn in a positive direction back to the current position).

That is:
.UL Hello ,

produces:
Hello,

and:
.UL Hello
,

produces:

Figures and Special Effects 349

Hello ,

(In nroff, you can underline simply by using an italic font switch, or the .ul request, because italics are repre-
sented in nroff by underlines).

A macro to enclose a word (like the name of a key) in a box might look like this:
.de BX
\(br\|\\$1\|\(br\l’|0\(rn’\l’|0\(ul’\ˆ\\$2
..

For example, the input text:
Press the
.BX RETURN
key.

will produce the line:

Press the RETURN key.

This macro prints a single box rule (\(br), spaces over 1/6 em (\|), prints the argument, spaces over another 1/6 em
space, and prints a concluding box rule. Then it draws two lines back to 0 (the beginning of the input line—that is,
the width of the argument plus the two requested 1/6-em spaces).

The first horizontal line is drawn not with \(ul but with another special character, the root en (\rn). This
character is used when drawing equations to produce the top bar in a square root symbol, but it is just as useful when
you want to draw a line over the top of some text without moving back up the page. The second horizontal line is
drawn, as usual, with \(ul.

Both lines can be drawn back to zero without compensating horizontal motions because, as we have already
noted, horizontal lines drawn backwards actually generate a reverse horizontal motion followed by a line drawn back
to the current position.

The macro concludes with an additional 1/12-em space (\ˆ) and an optional second argument, designed to al-
low you to specify punctuation following the box.

A macro to box multiple lines of text (like this paragraph) is more complex. It requires the use of a
diversion to capture the text to be boxed. The diversion can then be measured, and the lines drawn to fit.
And when you are using diversions, you need two macros, one to start the diversion, and one to finish it, as
in the following macros:

.de BS \" Box Start

.br \" Space down one line; cause break

.di bX \" Start diverting input to macro bX

..

.de BE \" Box End

.br \" Ensure partial line is in bX

.nr bI 1n \" Set "box indent"--space between

. \" box and text

.di \" End diversion

.nr bW \\n(dlu \" Set "box width" to diversion width

.nr bH \\n(dnu \" Set "box height" to diversion height

.ne \\n(bHu+\\n(.Vu \" Make sure bH plus one line is

. \" left on page

.nr fI \\n(.u \" Set fI to 1 if text is filled

.nf \" Specify no-fill before printing bX

.ti 0

.in +\\n(bIu \" Add "box indent" to any other indent

.bX \" Output the text stored in macro bX

.in -\\n(bIu \" Subtract bI to restore prev indent

.nr bW +2*\\n(bI \" Add 2x "box indent" to "box width"

.sp -1 \" Compensate for baseline spacing
\l’\\n(bWu\(ul’\L’-\\n(bHu’\l’|0\(ul’\h’|0’\L’\\n(bHu’
. \" Draw box

350 Unix Text Processing

.if \\n(fI .fi \" Restore fill if prev text was filled

.sp \" Space down 1 line after box is drawn

..

There are a number of interesting things about these macros. First, they provide a good illustration of the use
of diversions. Note that the macro causes a break (with either .br or .sp) before the diversion is started and before
it is terminated. Note also how the predefined read-only registers dn and dl are used to measure the height and
width of the diversion and therefore set the dimensions of the box. (The contents of these registers are not used di-
rectly when the lines are drawn because the registers are read-only, and the width needs to be adjusted to account for
a small amount of spacing between the box rule and the text contained in the box).

Second, because these macros are complex, they use quite a few number registers. We want to use register
names that are mnemonic, but not use up names that might be useful for user-level macros. We get around this prob-
lem by using names that combine lowercase and uppercase letters. This is entirely a matter of convention, but one
that we find preferable to mm’s use of completely obscure internal register names like ;p.

Third, there is the actual line drawing—the point of this presentation. Let’s look at this aspect of these macros
in detail.

As we’ve discussed, bH and bW have been set to the height and width, respectively, of the diversion. Because
the box rule is a zero-width character, however, the macro needs to allow a small amount of space between the sides
of the box and the text it encloses. It does this by specifying a 1-en indent (which is added to any existing indent, in
case the box occurs in a block of text that is already indented). When the diversion is output, it will thus be indented
1 en.

After the diversion is output, the indent is reset to its previous value. However, twice the value of the indent is
added to the box width. The box will thus be drawn 2 ens wider than the text it encloses. The text will start in 1 en;
the right side of the box will be drawn 1 en beyond the right margin.

The actual line to draw the box:
\l’\\n(bWu\(ul’\L’-\\n(bHu’\l’|0\(ul’\h|0’\L’\\n(bHu’

draws a horizontal line using \(ul from the left margin to the distance specified by bW (box width), which, as we
have seen, now includes a small extra margin. It then draws a line back up the page to the height specified by bH,
and back across the page to the left margin again.

At this point, even though we have drawn the bottom, right, and top sides of the box, we are still at the top
right corner of the box. The macro needs to move horizontally back to the left margin, because horizontal lines to
the left are actually drawn from the left, and leave the current position the same as it was before the line was drawn.
In this case we actually want to move to the left as well. Therefore, we must do so explicitly, by following the
\l’|0\(ul’ request with a \h’|0’. Finally, the box is closed by drawing a vertical line back down the left side.

The current position is now at the start of the last line of the contents of the box, so the macro issues an .sp
request to move down one line. Alternatively, you could write this macro in such a way that it leaves no additional
space above and below the box, but lets the user leave space by issuing some kind of spacing or paragraph request.

By default, the box is drawn just long enough to surround the text it contains. (The number register dl, which
is used to set the box width, contains the width of the text in the diversion). For short lines in no-fill mode, the box
will also be shorter:

Here are some short lines of text in no-fill mode.
Let’s see how they come out.

This raises the idea that it might be nice to center a box that is shorter. A more complete set of box macros will do
this, as well as let the user change the default box indent (the distance between the text and the edge of the box):

.de BS \" Box Start

.sp

.di bX

.nr bC 0 \" Clear centering flag

.nr bI 0 \" Clear box indent

.if "\\$1"C" .nr bC 1 \" Set flag if user wants centered

.if !"\\$2"" .nr bI \\$2n \" Set box indent if specified

Figures and Special Effects 351

..

.de BE \" Box End

.br

.if !\\n(bI .nr bI 1n \" Set bI if not already set

.di

.nr bW \\n(dlu

.nr bH \\n(dnu

.ne \\n(bHu+\\n(.Vu

.nr fI \\n(.u

.nf

.ti 0

.nr iN \\n(.iu \" Save current indent

.if \\n(bC .in +(\\n(.lu-\\n(bWu)/2u

. \" If centering, adjust indent

.in +\\n(bIu

.bX

.in -\\n(bIu

.nr bW +2*\\n(bIu

.sp -1
\l’\\n(bWu\(ul’\L’-\\n(bHu’\l’|0\(ul’\h|0’\L’\\n(bHu’
.if \\n(fI .fi
.in \\n(iNu \" Restore original indent
.sp
..

Using the full macro, and specifying .BS C 5n, the box now looks like this:

Here are some short lines of text in no-fill mode.
Let’s see how they come out with .BS C 5n.

These macros also provide insight into how to use number registers. For example, BS takes C as a possible argu-
ment to indicate that the box should be centered. Because the BE macro controls the output, there must be some
way to communicate the user request for centering between BS and BE. The BS macro sets number register bC to 1
as a signal, or flag, to BE to do the centering. (Note that bC is first zeroed, to make sure that centering is not propa-
gated into the current environment from a previous invocation of the box macros).

Likewise, fI is set as a flag to indicate whether justification is enabled. The box is drawn in no-fill mode, but
the macro must reset filling if it was previously enabled. The read-only number register .u is nonzero if filling is in
effect, so the lines:

.nr fI \\n(.u
.
.
.

.if \\n(fI .fi

will execute the .fi request only if justification was previously in effect.

Changing Line Weight

You may occasionally want to change the weight of a line you are drawing. The way to do this is simple: change the
point size with either the .ps request or the \s escape sequence before drawing the line. For example:

\l’3i’

will produce:

and:
\s20\l’3i’\s0

will produce:
0

352 Unix Text Processing

(This trick only works with \l and \L. It will not change the weight of lines drawn with any of the \D escape se-
quences). You might also want to consider the text size when you are drawing boxes around text. For example, if
you are using a macro like .BX (shown previously) to draw boxes around the names of keys, you might want to set
the text 2 points smaller, either by specifying the font-switch codes as part of the argument:

.BX "\s-2RETURN\s0"

or by modifying the macro so that they are built right in:
.de BX
\(br\|\s-2\\$1\s0\|(br\l’|0\(rn’\l’|0(ul’\ˆ\\$2
..

If either of these things were done, our earlier example would look like this, which is even better:

Press the RETURN key.

Drawing Curves

The previous line drawing escape sequences work in nroff and otroff as well as ditroff. There are also ad-
ditional drawing sequences that only work in ditroff. These escape sequences allow you to draw circles, arcs, el-
lipses, splines (curved lines between a series of coordinates), and straight lines.

Table 15-2 summarizes these sequences. The syntax of the escape sequences is familiar—an initial escape
code is followed by a series of arguments enclosed in single quotation marks or some other user-supplied delimiter.
In this case, though, all of the escape sequences begin with the same code— \D —with the type of item to be drawn
(circle, arc, ellipse, spline, or straight line) given by the first argument.

Table 15.2 ditroff Escape Sequences for Drawing

Escape Description

\D’l x,y’ Draw a line from the current position to coordinates x,y.
\D’c d’ Draw a circle of diameter d with left edge at current position.
\D’e d1 d2’ Draw an ellipse with horizontal diameter d1 and vertical diameter d2,

with the left edge at the current position.
\D’a x1 y1 x2 y2’ Draw an arc counterclockwise from current position, with center at

x1,y1 and endpoint at x1+x2,y1+y2.
\D’∼ x1 y1 x2 y2...’ Draw a spline from current position through the specified coordinates.

Learning the geometry used by these escape sequences is best accomplished by example. Although we have
shown the arguments to the line, arc, and spline sequences as if they were x,y coordinates, they are in fact troff’s
usual vertical and horizontal distances. Read x as horizontal distance, and y as vertical distance. You can get very
confused if you treat them as a true coordinate system.

Let’s start simple, with individual fixed-size figures. The following will produce the output shown in Figure
15-1:

.sp 1i

.in .5i
The circle starts here\D’c 1i’and ends here.
.sp 1i
The line starts here\D’l 1i -1i’and ends here.
.sp 1i
The ellipse starts here\D’e 2i 1i’and ends here.
.sp 1i
The arc starts here\D’a .5i 0 0 .5i’and ends here.
.sp 1i
The spline starts here
\D’˜ .5i -.5i .5i .5i .5i .5i .5i -.5i’and ends here.
.sp .5i
.in 0

Figures and Special Effects 353

As you can see, arcs and splines are the most difficult figures to construct. Instinct cries out for the ability to
draw an arc between two endpoints with the current position as the center of the arc. Instead, for consistency with
the other figures, drawing begins at the current position, and the first set of values specify the center of the arc. This
takes a little getting used to.

With splines, the problem is that distances are additive, and relative to the previous position, rather than to the
initial position. Our familiarity with x,y coordinate systems leads us to think that the spline should be produced by a
request like this:

\D’˜ .5i -.5i 1i 0 1.5i .5i 2i 0’

(in which the x value increases relative to the origin rather than to the previous point) instead of by the request
shown previously.

You may also have noticed something rather odd. Text continues right after the endpoint of the figure, yet the
.sp 1i requests seem to give us 1 inch of space from the original baseline, regardless of the endpoint of the figure.
This is most obvious with the line, which clearly moves back up the page. Yet the next figure is also spaced down 1
inch. This fact becomes even more obvious if we do this:

.sp 1i
The line starts here\D’1i -.5i’and ends here.
What happens to text that wraps and continues in fill mode?

354 Unix Text Processing

The circle starts here and ends here.

The line starts here

and ends here.

The ellipse starts here and ends here.

The arc starts here

and ends here.

The spline starts here and ends here.

Figure 15.1 Some Simple Figures

Here’s the result:

The line starts here

and ends here. What happens to text that wraps and continues in fill mode?

The current baseline has not been changed. This is a major contrast to lines drawn with \L or \l. As you
play with lines, you’ll also find that lines drawn to the left with \D really do move the current position to the left,
and you don’t need to add a compensating horizontal motion if you are drawing a complex figure.

You’ll have to experiment to get accustomed to drawing figures. One other problem is to get figures to start
where you want. For example, to get the endpoints of arcs with various orientations in the right place, you may need
to combine arc drawing requests with vertical and horizontal motions.

Figures and Special Effects 355

You could use these requests to create a box with curved corners similar to the one done with pic in Chapter
10. The box is drawn starting with the lower left corner (so it can be drawn after the text it encloses is output) and
will look like this:

The box was drawn using the following drawing commands. These commands are shown on separate lines for ease
of reading. To make them draw continuously, we need to add the \c escape sequence to the end of each line. This
escape sequence joins succeeding lines as if the line feed were not there. Warning: using fill mode will not achieve
the same result, because the formatter will introduce spaces between each drawing command as if it were a separate
word.

\v’-.25i’\c Go back up the page 1/4 inch
\D’a .25i 0 0 .25i’\c Draw bottom left arc 1/4 inch down and to the right
\D’l 3i 0’\c Draw horizontal line 3 inches to the right
\D’a 0 -.25i .25i 0’\c Draw bottom right arc 1/4 inch up and to the right
\D’l 0 -2i’\c Draw vertical line 2 inches back up the page
\D’a -.25i 0 0 -.25i’\c Draw top right arc 1/4 inch up and to the left
\D’l -3i 0’\c Draw horizontal line 3 inches to the left
\D’a 0 .25i -.25i 0’\c Draw top left arc 1/4 inch down and to the left
\D’l 0 2i’\c Draw vertical line 2 inches down the page
\v’.25i’ Restore original baseline position

To build a complete macro to enclose examples in a simulated computer screen, we can adapt the .BS and
.BE macros shown previously:

.de SS \" Start Screen with

. \" Curved Corners

.sp .5v

.ie !"\\$1"" .nr BW \\$1 \" Get width from first arg

.el .nr BW 4i \" or set default if not specified

.ie !"\\$2"" .nr BH \\$2 \" Get height from second arg

.el .nr BH 2.5i \" or set default if not specified

.br

.di BB

..

.de SE \" Screen End

.br

.nr BI 1n

.if \\n(.$>0 .nr BI \\$1n

.di

.ne \\n(BHu+\\n(.Vu

.nr BQ \\n(.u

.nf

.ti 0

356 Unix Text Processing

.in +\\n(BIu

.in +(\\n(.lu-\\n(BWu)/2u

.sp .5

.BB

.sp +(\\n(BHu-\\n(dnu)

.in -\\n(BIu

.nr BH -.5i

.nr BW +2*\\n(BIu

.nr BW -.5i
\v’-.25i’\c
\D’a .25i 0 0 .25i’\c
\D’l \\n(BWu 0’\c
\D’a 0 -.25i .25i 0’\c
\D’l 0 -\\n(BHu’\c
\D’a -.25i 0 0 -.25i’\c
\D’l -\\n(BWu 0’\c
\D’a 0 .25i -.25i 0’\c
\D’l 0 \\n(BHu’\c
\v’.25i’
.sp -1.5i
.if \n(BQ .fi
.br
.sp .5v
..

Because a screen has a fixed aspect ratio, we don’t want the box to be proportional to the text it encloses. Hence, we
give the user of the macro the ability to set the box width and height. If no arguments are specified, we provide de-
fault values.

Because the box size is fixed, there are some additional steps necessary in the closing macro. First, we must
decrement the specified box width and height by the distance used in drawing the curves, so that the user gets the ex-
pected size. Second, because the box is drawn from the lower left corner back up the page, we must make sure that
the lower left corner is correctly positioned before we start drawing.

To do this, we again need to use a diversion. We measure the height of the diversion, then add enough addi-
tional space (.sp + (\\n(BHu-\\n(dnu)) to bring the starting point for drawing low enough so that the box is
not drawn back over the text that precedes the invocation of .SS. (If you don’t understand why this was done,
delete this line from the macro, and watch the results).

We’ve also centered the screen by default, and added a half-line vertical spacing above and below the box.
(As an exercise, modify the .BX macro to produce a key-cap with curved corners).

Talking Directly to the Printer

Depending on the output device and postprocessor you are using, you may be able to send specialized control com-
mands directly to your printer. For example, you may be able to embed raster graphics images (such as a file created
on an Apple Macintosh with MacPaint) directly in your output. Or, if you are using a PostScript-driven printer, you
can integrate figures done with MacDraw, or issue PostScript commands to print grey screens over your text.

These capabilities are provided by the two requests \! and .cf, copy filename [to standard output]
(ditroffonly).

The \! request is the transparent output indicator. Any text following this escape sequence on a line is
placed directly into the output stream, without any processing by troff. This makes is possible to insert control
lines that will be interpreted by a postprocessor or an output device. (As mentioned in the last chapter, transparent
output is also useful for embedding control lines in a diversion, to be executed when the text in the diversion is out-
put).

Likewise, the contents of the file specified as an argument to .cf are placed directly on standard output, with-
out processing by ditroff.

Figures and Special Effects 357

Unfortunately, there is a catch! PostScript is a page description language that resides in the printer. Before
you can talk directly to the printer, you must get through the postprocessor that translates ditroff output into
PostScript. If the postprocessor mucks with the data you send out, all bets are off.

As of this writing, TranScript, Adobe Systems’ own troff -Postscript converter, does not allow you to use
\!. However, with Pipeline Associates’ devps, any lines beginning with ! are ignored by the postprocessor, and
go directly to the printer. This allows you to use transparent output by entering the sequence \!! followed by the
appropriate PostScript commands. Or, if you are sending a PostScript file created on the Mac, use an editor to insert
an exclamation point at the beginning of each line.

In any event, this is not a job for the novice, since you must learn PostScript as well as troff. Experiment
with your printer and postprocessor, or ask around to see if other users have solutions you can adapt to your situa-
tion.

Marking a Vertical Position

There are many cases, both in macros and in the body of your text, where you may want to mark a spot and then re-
turn to it to lay down additional characters or draw lines.

The .mk request marks the current vertical position on the page; .rt returns to that position. This is useful
for two-column processing. To give a simple example:

Two columns are useful when you have a linear list
of information that you want to put side-by-side, but don’t
want to bother rearranging with the cut-and-paste programs.
.sp .5
.ll 2.5i
.nf
.mk
Item 1
Item 2
Item 3
.ll 5i
.in 2.75i
.rt
Item 4
Item 5
.in 0
.sp

This example produces the following output:

Two columns are useful when you have a linear list of
information that you want to put side-by-side, but
don’t want to bother rearranging with the cut-and-paste
programs.

Item 1
Item 2
Item 3

Item 4
Item 5

Notice that it is entirely your responsibility to make sure that the second column doesn’t overprint the first. In this
example, we did this by manually adjusting the indent and the line length. In addition, because the second column is
shorter than the first, a concluding .sp is necessary to return to the original position on the page. If this had not
been done, subsequent text would overprint the last line of the first column.

Proper two-column processing for an entire document requires a much more complex setup, which must be in
part handled by the page bottom macro. We’ll look at that in detail in Chapter 16, but this example should be
enough to give you the idea.

The .mk request can take as an argument the name of a number register in which to store the vertical position.
This allows you to mark multiple positions on a page, and return to them by name. The .rt request always returns
to the last position marked, but you can go to a position marked in a register using the .sp request:

358 Unix Text Processing

.mk Q

.sp |\nQu

or (more to the point of the current discussion) with \v:
\v’|\nQu’

In addition, .rt can take as an argument a distance from the top of the page. That is:
.rt 3i

will return to a point 3 inches from the top of the page. The .mk request need not be used in this case.

Overstriking Words or Characters

There are a number of escape sequences that allow you to overstrike words or characters to create special effects.
These include

• boldfacing an entire font by overstriking;

• marking and returning to a specific horizontal position;

• calculating the width of a word and backing up over it;

• centering two characters on top of each other;

• stacking characters vertically.

Boldfacing a Font by Overstriking

The .bd request specifies that a font should be artificially boldfaced by overstriking. The request has two forms,
one for ordinary fonts and one for the special font.

A request of the form:
.bd font offset

will overstrike all characters printed in font by overprinting them, with the second strike offset from the first by off-
set -1 basic units. The following:

.bs S font offset

will overstrike characters printed in the special font, while font is in effect. And:
.bd font
.bd S font

will restore the normal treatment of the font.

This request is particularly useful when you are boldfacing headings and want to account for special charac-
ters or italics in arguments supplied by the user. (This assumes that you don’t have an explicit bold italic font). Es-
pecially at sizes larger than 10 points, the stroke weights of bold and italic fonts can be quite different.

For example, assume that you had a macro that produced a boldface heading for a table:
.de Th \" Table Heading
.ft B
.ce
Table \\$1: \\$2
.ft P
..

If the user supplied italics or special characters in the arguments to the macro, the contrast between the different
character weights might not be as pleasing as it could be. For example:

.Th "3-1" "Special Uses for \(sr in \fItroff\fP "

would produce:

Figures and Special Effects 359

Table 3-1: Special Uses for √ in troff

If the macro had .bd requests added like this:
.de Th \" Table Heading
.ft B
.bd I 3
.bd S B 3
.ce
Table \\$1: \\$2
.ft R
.bd I
.bd S
..

the output would look like this:

Table 3-1: Special Uses for √√ in troff

Another example is provide by the constant-width (CW) font used in this book. Because the font is optimized for
the LaserWriter, where the ink bleeds slightly into the paper, the font is very light on the typesetter. Throughout this
book, we have emboldened this font slightly, with the requests:

.bd CW 4

.bd S CW 4

This sentence shows how the constant width font looks without these requests.

Marking and Returning to a Horizontal Position

Just as you can mark a vertical position, you can also mark and move to a specific horizontal position. This is
chiefly useful for overstriking characters.

Just as you use a value stored into a register with the .mk request to indicate a fixed vertical location on the
page, you mark a horizontal location with \k. Then, you can use the absolute position indicator | to specify the dis-
tance for \h.

To borrow an example from Kernighan’s Troff Tutorial:
\kxword\h’|\nxu+2u’word

will artificially embolden word by backing up almost to its beginning, and then overprinting it. (At the start of
word , \k stores the current horizontal position in register x. The \h’|\nxu+2u’ sequence returns to that ab-
solute position, plus 2 units—a very small offset. When word is printed a second time, an overstriking effect is cre-
ated).

This sequence might be useful if you were using a font that had no bold equivalent, and in circumstances
where the .bd request could not be used because the special effect was not desired for all instances of that font on
the same line. And, to be really useful, the sequence should probably be saved into a macro.

360 Unix Text Processing

The Width Function

The \w escape sequence returns the length of a string in units. For example:
\w’Hi there’

will tell you the length of the string Hi there.

This sequence returned by \w can be used as an argument with \h or with any horizontally oriented request
(such as .in). This has many uses, which we’ll introduce as we need them.

To give you an idea of how to use \w, though, we can rewrite the example used with \k as follows, to produce
the same effect:

.de BD \"Artificially embolden word
\\$1\h’-\w’\\$1’-2u’\\$1
..

This macro prints its first argument, then backs up the width of that argument, less two units. Then it prints the argu-
ment a second time—at a two-unit offset from the first. Hint: to avoid awkward constructions involving nested \w
sequences, first read the width into a number register. For example, the previous macro could be rewritten like this:

.de BD \" Artificially embolden word

.nr WI (\w’\\$1’-2u)
\\$1\h’-\\n(WIu’\\$1
..

In this case, the difference isn’t so great; however, at other times the sequence can become too confusing to read eas-
ily.

Overstriking Single Characters

Although \k provides a good method for overstriking an entire word, there are also more specialized functions for
overstriking a single character.

The \o sequence takes up to nine characters and prints one on top of the other. This is most useful for pro-
ducing accents, and so forth. For example, \o’eˆ’ produces ê.

You can also produce other interesting character combinations, although you may need to tinker with the out-
put to get it to look right. For example, we once tried to simulate a checkmark in a box with the sequence:
\o’\(sq\(sr’. (Note that the special character escape sequences are treated as single characters for the purpose
of overstriking). This example produced the following output:

√
The square root symbol is too low in the box, so we tried to introduce some local motions to improve the effect, like
this:

\o’\(sq\v’-4p’\(sr\v’4p’’

Unfortunately, this didn’t work. Although you can nest most escape sequences inside each other (as long as you use
the correct number and order of delimiting quotation marks), local motions do not work with \o. However, there
was a solution.

The \z sequence also allows overstriking, but in a different way. The \o sequence knows the width of each
character, and centers them on top of each other. The \z sequence simply outputs the following character, but does
not space over it. That means the current position after printing the character is the same as it was before the char-
acter was printed. A subsequent character will have its left edge at the same point as the character immediately fol-
lowing the escape sequence. Because \z does allow you to mix vertical motions with overstriking, it solved our
problem.

Because all these escape sequences can be a bit much to type, we defined the checkmark in a box as a string:
.ds CK \z\(sq\\v’-4p’\(sr\\v’4p’

After we did that, simply typing *(CK will produce √.

Figures and Special Effects 361

Stacking up Characters

The \b sequence also does a kind of overstriking—it stacks the characters in the following string. It was designed
for use with eqn. There are special bracket-building characters that are meant to stack up on top of each other. See
Table 15-3.

Table 15.3 Bracket-Building Characters

Character Name Description

 \(lt Left top of big curly bracket
 \(lb Left bottom
 \(rt Right top
 \(rb Right bottom
 \(lk Left center of big curly bracket
 \(rk Right center of big curly bracket
 \(bv Bold vertical
 \(lf Left floor (left bottom of big square bracket)
 \(rf Right floor (right bottom)
 \(lc Left ceiling (left top)
 \(rc Right ceiling (right top)

A typical invocation looks like this:
\b’\(lt\(lk\(lb’

which produces:

When you’re creating a tall construct like this, you need to allow space so that it doesn’t overprint preceding lines.
You can create space above or below the line with .sp requests. However, this will cause breaks. Although ’sp
might do the trick, it is sometimes hard to predict just where the break will fall.

The troff program has a special construct designed to solve just this problem of a tall construct in the mid-
dle of filled text. The \x request allows you to associate extra interline spacing with a word. A positive value speci-
fies space above the line; a negative value specifies space below the line. So, when illustrating the previous bracket-

building function, we could have shown the results inline, like this

, rather than in an example broken out by blank

lines. Typing the sequence:
\b’\(lt\(lk\(lb’\x’9p’\x’-9p’

gives us the result we want.

The \x sequence is also useful when you want to allow extra space for an oversized letter at the start of a
paragraph. (You’ve probably seen this technique used in some books on the first paragraph of a new chapter. It was
commonly used in illuminated manuscripts).

An application of \b that you might find useful is to create vertically stacked labels. For example, consider
the following macro, which will put such a label in the outside margin of a book:

.de SL

.mk \" Mark current vertical position

.ft B \" Change to bold font

.cs B 24 \" We’ll explain this later

.po -.25i \" Shorten the page offset by 1/4 inch

.lt +.5i \" Extend the title length used by .tl

. \" This request will be explained later

.if e .tl ’\b:\\$1:’’’ \" Use .tl to put stacked label

.if o .tl ’’’\b:\\$1:’ \" in the margins

362 Unix Text Processing

.lt -.5i \" Restore original title length

.po +.25i \" Restore original page offset

.cs B \" We’ll explain this later

.ft \" Restore original font

.rt \" Return to original vertical position

..

So, for example:
.SL "Clever Trick!"

will produce the effect shown in the margin.

!
k
c
i
r
T

r
e
v
e
l
C

Tabs, Leaders, and Fields

We discussed tabs in Chapter 4. However, there are a couple of additional points that need to be covered. When you
enter a tab on a typewriter, the typing position shifts over to a predefined position, or tab stop. In nroff and
troff, what is actually generated is the distance from the current position on the input line to the next tab stop.

What this means is best illustrated by an example that will not work. Suppose you want to create a table of
contents in which one entry (the page number) is all the way over to the right margin, and the other (the heading) is
indented from the left, like this:

Getting Started 1-1
Turning On the Power1-2
Inserting Diskettes 1-3

You might be tempted to code the example as follows (where a tab is shown by the symbol |———|):
.ta 6.5iR
Getting Started|———|1-1
.in .5i
Turning On the Power|———|1-2
Inserting Diskettes|———|1-3

This will not work. Indents cannot be combined with tabs. A tab character generates the distance from the current
position of the input line to the tab stop. Therefore, the page number will be indented an additional half-inch—ex-
tending out into the right margin—instead of staying where you put it.

The way to achieve this effect (in no-fill mode) is to use either spaces or tabs to manually indent the first text
string.

When you use right or center-adjusted tabs, the text to be aligned on the tab is the entire string (including
spaces) from one tab to the next, or from the tab to the end of the line. Text is aligned on a right-adjusted tab stop by
subtracting the length of the text from the distance to the next tab stop; text is aligned on a center-adjusted tab stop
by subtracting half the length of the text from the distance.

Using Leaders

A leader works like a tab; however, it produces a character string instead of horizontal motion. A single character is
repeated until a specific horizontal position is reached. There is actually a leader character, just as there is a tab
character. But there is no key for it on most keyboards, so it is not obvious how to generate it. The magic character
is ˆA (CTRL-A), and you can insert it into a file with vi by typing ˆVˆA (CTRL-V, CTRL-A).

If you insert a ˆA into your file where you would normally insert a tab (incidentally, the tab itself is equivalent
to ˆI , and will show up as such if you display a line with ex’s :1 command), you will generate a string of dots.
For example:

Figures and Special Effects 363

.nf

.ta 1i 2.5i 3.5i
|———|FirstˆASecondˆAThird
.fi

will produce:

FirstSecond.................Third

You can change the leader character from a period to any other single character with the .lc request. For example,
you could create a fill-in-the-blanks form like this:

.nf

.ta 1i 3iR

.lc _
Signature:|———|ˆA
Date:|———|ˆA
.fi

This example would produce the following in troff:

Signature: ____________________________
Date: ____________________________

As you can see from the example, tabs and leaders can be combined effectively to line up both ends of the under-
lines.

A second way to create leaders is to redefine the output of the tab character with .tc. This request works just
like .lc, only it redefines what will be output in response to a tab character. For example, if you issue the request:

.tc .

a tab character (ˆI) generates a string of repeated dots, just like a leader (ˆA). However, you will then lose the ability
to intermix tabs and leaders on the same line, as in the previous example.

Issuing a .tc request without an argument will restore the default value, which generates motion only. (Inci-
dentally, the same is true of .lc —that is, .lc without an argument will cause leaders to generate motion only, just
like tabs. To reset the leader character to its default value, you need to request .lc.).

Using Fields

In addition to tabs and leaders, nroff and troff support fields, which are blocks of text centered between the
current position on the input line and the next, or between two tab stops.

The .fc request allows you to specify a delimiter that indicates the boundaries of the field, and a second char-
acter (called the pad character) that divides the contents of the field into subfields. A blank space is the default pad
character. The .fc request without any argument turns off the field mechanism. This request is a little difficult to
explain, but easy to illustrate. The requests:

.nf

.ta 1i 3i

.fc #
|———|#Hi there#
|———|#Hi how are you#
.fc
.fi

will produce the following output:

364 Unix Text Processing

Hi there
Hi how are you

Within the field, the pad character (a space by default) is expanded so that the text evenly fills the field. The
first line contains only a single space, so the two words are adjusted at either end of the field. The second line con-
tains three spaces, so the words are evenly spaced across the field.

By specifying a pad character other than a space, you can achieve fine control over spacing within the field.
For example, if we modify the input like this:

.fc #ˆ
|———|#Hiˆhow areˆyou#
.fc

we’ll get this result:

Hi how are you

What’s this good for? To return to our fill-in-the-blanks example, the construction:
.nf
.ta .5i 2i 2.5i 4i
.fc #ˆ
.lc _
|———|ˆA|———|ˆA
.sp .5
|———|#ˆSignatureˆ#|———|#ˆDateˆ#
.fc
.lc .
.fi

would produce the following output:

_____________________ _____________________

Signature Date

You should also know that .fc, like many other advanced formatter requests, is used by the tbl preprocessor to
create complex tables. It is wise to avoid using it inside a table.

Using Tabs and Leaders in Macros

Within a macro definition, tabs and leader characters are not interpreted. They will take effect when the macro is
used, not when it is defined. Within a macro definition, you can also specify tabs and leaders with the escape se-
quences \t and \a. These sequences are also not interpreted until the macro is used, and can be substituted for the
actual tab or leader characters whenever interpretation is to be delayed.

Figures and Special Effects 365

Constant Spacing

One font that you may frequently encounter, especially in the ditroff environment, is called CW (constant width).
It is the font used in this book for examples. It has become something of a convention in computer books to print all
“computer voice” examples—input from the keyboard, the contents of a file, or the output on the screen—in a con-
stant-width font. (This convention is based on the fact that in many computer languages, precise indentation is syn-
tactically or at least semantically significant, and the variable-width typesetting fonts cannot preserve the alignment
of the original text). When you use a constant-width font, you are essentially asking troff to act like nroff—to
work in a realm where all characters, and all spaces, are of identical width.

To use the constant-width font in ditroff, request it like any other font, using either the request .ft CW or
the escape sequence \f(CW. In otroff, depending on the output device, you could use constant width by using a
preprocessor called cw, which got around the four font troff limit by handling the constant-width font in a sepa-
rate pass. See the description of cw in your UNIX Reference Manual if you are interested in the details. (There are
other ways to do this as well, depending on the output device and the postprocessor you are using to drive it. For ex-
ample, we used otroff with TextWare International’s tplus postprocessor and the HP LaserJet. To get around
the font limit, we set a convention in the postprocessor that 11-point type was actually constant width, and then used
the .cs and .ss requests to give troff the correct spacing).

There is also a request that allows you to simulate the effect of a constant-width font even when you are using
a variable-width font. The .cs request tells troff: “Use the spacing I give you, even if it doesn’t match what
you’ve got in your width tables.” The request takes up to three arguments. The first two arguments are the most
commonly used. They are the font to be so treated and the width to be used, in 36ths of an em. By default, the em is
relative to the current type size. By using the optional third argument, you can use the em width of a different type
size. So, for example:

.cs B 21
Space the bold font at 21/36 of an em.
.cs B 21 12
Space the bold font at 21/36 of a 12-point em.

Let’s see what we get with these requests:

Space the bold font at 21/26 of an em.
Space the bold font at 21/36 of a 12-point em.

To return to normal spacing for the font, use the .cs without a width argument. For example:
.cs B

will return control of spacing for the bold font to troff’s width tables.

Although the results are not always aesthetically pleasing, it may be necessary to use this request if you have a
real need to represent constant-width text. It is also useful for special effects. For example, you may have noticed
that in the headings of each chapter of this book, the word Chapter is broadly and evenly spaced, and the boxes un-
derneath align with the letters. This was done with the .cs request.

The .cs request is also useful when you are creating vertically stacked labels, as shown earlier in this chapter.
Normally, characters are positioned with their left edge at the current position on the output line. When constant
spacing with .cs is in effect, the left corner of the character box is placed at that position, and the character itself is
centered in the box. You can see the difference between this graphically in the following example:

.sp .7i

.ft B

.in 1i

.mk
\b’Variable’
.in 3i
.rt
.cs B 24
\b’Constant’
.br

366 Unix Text Processing

.cs B

.ft

.in 0

.sp .7i

which produces:

e
l
b
a
i
r
a
V

t
n
a
t
s
n
o
C

The .ss request is a closely related request that sets the space size. The default size of an interword space in
troff is 12/36 of an em; for true constant-width effects, you should set it to the same size as the font spacing you
have set with .cs.

Pseudo-Fonts

Using the .bd request to create a bold italic in not the only way to simulate a nonstandard font, at least in
ditroff. In ditroff, there are two new escape sequences, \S and \H. The \S sequence slants characters by a
specified number of degrees. (Positive values slant characters to the right; negative values slant characters back to
the left). For example:

\S’15’

will slant characters 15 degrees to the right. This can be used to create a pseudo-italic font. The \S sequence with-
out an argument turns off slanting.

The \H sequence sets the character height to a specified point size without changing the width. For example,
if type is currently being set at 10 point, the construct:

\H’12’

will create characters that are 12 points high, but only 10 points wide (assuming you are at the default 10-point size).
A height value of 0 turns off the function.

These escape sequences will only work on certain output devices. You’ll have to experiment to find whether
or not they’ll work in the setup you’re using.

Character Output Translations

“Garbage in, garbage out” is a truism of computer science. You get out of a computer what you put in. However,
there are cases in nroff and troff in which what you put in is not the same as what you get out.

The first of these cases is only true for troff. It involves a special class of characters called ligatures. As
we’ve previously discussed, typeset characters have different widths. Even so, when two narrow characters are
printed together, such as a pair of f ’s or an f and an i, there is excess space between the characters.

To get around this problem, there are special characters called ligatures, which are really single characters de-
signed so that they appear the same as a pair of narrow characters. (These are truly single characters, defined as
such in troff’s character set).

The ligature characters and the equivalent individual characters are:

Figures and Special Effects 367

Input Ligature Equivalent Characters
\(fi fi fi
\(fl fl fl
\(ff ff f f
\(Fi ffi ff i
\(Fl ffl ff l

The troff formatter automatically converts any of these groups of characters to the equivalent ligature, although
all ligatures are not supported by every output device. (For example, fi and fl are the only ones in the standard Post-
Script fonts). You can turn this conversion off with the request:

.lg 0

and restore it with:
.lg

Normally, you won’t need to do this, but there are special cases in which it may hang you up, and you’ll need to
know what to do. We’ll get to one of them in a moment.

The .tr (translate) request provides a more general facility for controlling output character conversions. It
takes one or more pairs of characters as an argument. After such a translation list has been defined, troff will al-
ways substitute the second character in each pair for the first, whenever it appears in the input.

Let’s look at some examples. First, consider the case encountered throughout this book, in which we illustrate
the syntax of various requests without actually executing them. For example, we want to show a period at the start
of a line or the backslash that starts an escape sequence, without actually having them executed.

We could simply insulate the special characters from execution. For example, we can put the zero-width char-
acter \& in front of a period that begins a request, and we can double all backslashes (\\ will appear as \ in the
output) or use the \e escape sequence, to print \.

However, this grows tedious and hard to read in the input file. Another approach is to do a character transla-
tion:

.tr #.%\\ \" Translate # to ., % to \

(As usual, we have to double the backslash). Now, whenever # appears in the input, . appears in the output, and
whenever % appears in the input, \ appears in the output. So, in our examples, we can actually type:

#sp 1i %" Space down one inch

But what appears on the page of this book is:
.sp 1i \" Space down one inch

The translations are built into the example start and end macros. (The end macro resets the characters to their nor-
mal values).

If you translate characters with .tr, be sure to restore their original values correctly when you are done. To
reset the previous translation to the normal character values, the request is:

.tr ##%% \" Translate # to #, % to %

In addition, the translation must be in effect at the time the line is output. If you translate characters without first
causing a break, any partially filled line will be affected by the translation.

It is also possible (and recommended in some of the troff documentation) to use .tr to substitute some
other character (usually ∼) for a space. This creates an equivalent to the unpaddable space.

.tr ∼

This will allow you to type single characters for unpaddable spaces; your input text will be more readable and will
line up properly on the screen.

Yet another application of .tr, and one that you will find useful in designing macros for chapter headings and
so on, is to translate lowercase input into uppercase, and then back again:

.de UC \" Translate input to uppercase

.tr aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ
\\$1
.br

368 Unix Text Processing

.tr aabbccddeeffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzz

..

(The break is important. These character translations must be in effect at the time the line is output, not when it is
read into the buffer).

It is in this last case that you may have trouble with ligatures. If the .UC macro were defined as shown in the
previous example, the line:

.UC troff

might produce the following output:

TROff

To have the macro work correctly, we would need to turn ligatures off (.lg 0) for the duration of the translation.

Output Line Numbering

Do you remember the treatment of the proof shell script in Chapter 12? It was such
a long example that it required line numbers that could be referred to later in the text.
The nroff and troff programs provide requests that allow you to automatically
number output lines as was done in that example.

The .nm (number) request turns numbering on or off. The request:
.nm [±]N

will turn numbering on, with the next line numbered N . For example, the next para-
graph is numbered with .nm 1.

1 A 3-digit arabic number followed by a space is placed at the start of each line.
2 (Blank lines and lines containing formatter requests do not count). The line length is
3 not changed, so this results in a protruding right column, as in this paragraph. You may
4 need to decrease the line length (by \w’000 ’u) if you are numbering filled text
5 rather than an example in no-fill mode. (Be sure to notice the space following the three
6 zeros). We’ll do that from now on, so only the current paragraph will protrude.

There are several optional arguments as well: a step value, the separation be-
2 tween the number and the beginning of the line, and an indent that will be added

to the line. By default, the step value is 1, the separation is 1, and the indent is 0.
4 For example, if you specified:

.nm 1 2

6 every second line would be numbered, as was done at the start of this paragraph.
The .nn (not numbered) request allows you to temporarily suspend number-

ing for a specified number of lines, as was done for this paragraph using the re-
quest .nn 4 . The specified number of lines is not counted. This could be useful
if you were interspersing numbered lines of code with a textual discussion.

To turn numbering off entirely, use .nm without any arguments. We’ll do
8 that now.

The last line number used by .nm is saved in the register ln , and it is possible
to restart numbering relative to that number by preceding the initial line number you
give to .nm with a + or a -. For example, to restart numbering at exactly the point it
was turned off, you can use this request:

.nm +0

Let’s do that now. As you can see, numbering resumes just where it left off, with

Figures and Special Effects 369

10 the same step value and indent, as if no intervening lines had been present. After
this line, we’ll turn numbering off entirely.

When using .nm in fill mode, you have to watch for breaks. Because .nm itself
does not cause a break, it may take effect on the output line above where you expect it.
You may need to force an explicit break before .nm to make sure numbering starts on
the next line.

Change Bars

The .mc (margin character) request allows you to print “change bars” or other marks |
in the margin, as was done with this paragraph. This is especially useful if you are re- |
vising a document, and want to indicate to reviewers which sections have changed.

You can specify any single character as the margin character—so don’t restrict
yourself to change bars when thinking up uses for this request. For example, you could
use an arrow, or the left-hand character (\(lh) to draw attention to a particular point
in the text, like this. (These characters are oddly named. The right-hand character +
(\(rh) is a left-hand that points to the right (+); the left-hand character (\(lh) is a
right hand that points to the left (+). These characters are mapped onto arrows on
some output devices).

You can control the distance the mark character appears from the margin with an
optional second argument. If no argument is given, the previous value is used: if there
is no previous value, the default distance is 0.2i in nroff and 1m in troff.

Incidentally, on many UNIX systems, there is a version of diff, called
diffmk, that will compare two versions of a file, and produce a third file containing
.mc requests to mark the differences. Additions and changes are marked with a bar in
the margin, as shown previously. Deletions are marked with an asterisk.

In our business, we find this very useful for producing interim drafts of technical
manuals. We archive the first draft of the manual, as it was turned in to our client.
Then, after review changes have been incorporated, we use diffmk to produce an an-
notated version for second draft review:

$ diffmk draft1 draft2 marked_draft
$ ditroff ... marked_draft

This could also be done by manually inserting .mc requests as the edits were made.
But, as stated in Chapter 12, why not let the computer do the dirty work?

Form Letters

No formatter would be complete without the ability to create form letters that merge existing text with ex-
ternally supplied data. The nroff and troff programs are no exception in providing requests to handle
this type of problem.

The .rd (read) request allows you to read from standard input. This request prints a prompt on the
standard error (the user’s terminal) and reads input up to a pair of newlines. For example, you could have a
form letter constructed like this:

.nf

.rd Enter_the_person’s_name

.rd Enter_the_company

.rd Enter_the_street

.rd Enter_the_city,_state,_and_zip

.sp

.fi

370 Unix Text Processing

Dear
.rd Enter_the_salutation
.sp

.

.

.

Unfortunately, .rd terminates the prompt at the first space, and does not recognize quotation marks to de-
limit an entire string as the prompt. As a result, for a wordy prompt, you must tie the string together using
an unobtrusive character like an underscore, as was done here.

Here’s what would happen when this letter is formatted:
$ nroff letter | lp
Enter_the_person’s_name: Tim O’Reilly
Enter_the_company: O’Reilly & Associates, Inc.
Enter_the_street: 981 Chestnut Street
Enter_the_city,_state,_and_zip: Newton, MA 02164
Enter_the_salutation: Tim:

Note that a colon is appended to the prompt, and that the RETURN key must be pressed twice after each re-
sponse. If no prompt is specified, .rd will ring the terminal bell when it expects input.

In addition, the input need not come from the keyboard. It can come from a pipe or from a file.
There are two other requests that come in handy to create a true form letter generation capability.

The .nx (next) request causes the formatter to switch to the specified file to continue processing.
Unlike the .so request discussed in Chapter 4, it doesn’t return to the current file. The .ex request tells
the formatter to quit.

You can put the requests together with .rd. First, create a list of variable data (like names and ad-
dresses) either in a file or as the output of a database program. Then pipe this file to the formatter while it
is processing a letter constructed like this:

.nf

.rd

.rd

.rd

.sp

.fi
Dear
.rd

Body of letter here

Sincerely,

Jane Doe
.bp
.nx letter

The .nx request at the end of the form letter causes the file to reinvoke itself when formatting is complete.
Assuming that the standard input contains a sequence of name, street, city (et al), and salutation lines, one
line for each .rd request, and address block, in the data file, that are each separated by pairs of newlines,
you can generate an endless sequence of letters.

However, be warned that formatting will continue in an endless loop, even when the standard input
has run out of data, unless you terminate processing. This is where .ex comes in. By putting it at the end
of the list of names coming from standard input, you tell the formatter to quit when all the data has been
used.

The command line to produce this marvel (assuming a form letter in a file called letter and a list
of names followed by an .ex request in a file called names would be:

$ cat names | nroff letter | lp

or:

Figures and Special Effects 371

$ nroff < names | lp

It is possible to imagine a more extensive data entry facility, in which a variety of blank forms are con-
structed using troff, and filled in with the help of a data entry front end.* To generalize the facility, you
could associate the various fields on the form with number register or string names, and then interpolate the
number or string registers to actually fill in the form.

This approach would allow you to reuse repeated data items without having to query for them again.
Even more to the point, it would allow you to construct the data entry facility with a program other than
troff (which would allow features such as data entry validation and editing, as well as increased speed).
The data entry front end would simply need to create as output a data file containing string and number reg-
ister definitions.

Reading in Other Files or Program Output

In addition to .nx don’t forget the .so (source) request, which allows you to read in the contents of an-
other file, and then return to the current file.

We’ve mentioned this request briefly in the context of reading in macro definitions. However, you
can also use it to read in additional text. In our business, we’ve found it very useful in certain types of man-
uals to break the document into many separate files read in by .so. For example, we often need to write
alphabetically-ordered reference sections in programming manuals. Unfortunately, the developers often
haven’t finalized their procedure names. If the section consists of a list of .so requests:

.so BEGIN_MODULE

.so BUFFER

.so CONFIGURE
.
.
.

the job of reorganization is trivial—all you need to do is change the filenames and realphabetize the list.

The only caution, which was mentioned previously in Chapter 8, is that you can’t include data that
must be handled by a preprocessor, such as tables and equations. A quick look at the command line:

$ tbl file | nroff

will show you that the preprocessor is done with the file before the formatter ever has a chance to read in
the files called for by the .so request. Some systems have a command called soelim that reads in the
files called for by .so. If you use soelim to start the file into the pipeline, there is no problem.

One useful tip: if you are using soelim, but for some reason you don’t want soelim to read in a
file because you would rather it were read in by troff, use ’so rather than .so to read in the file. The
soelim command will ignore the ’so request.

Another interesting request is .sy. This request executes a specified system command. If the com-
mand has output, it is not interpolated into the troff output stream, nor is it saved. However, you can
redirect it into a file, and read that file into troff with .cf (or with .so, if you want it processed by
troff instead of sent directly to the output stream).

*For this idea, I am indebted to a posting on Usenet, the UNIX bulletin board network, by Mark Wallen of the Institute for Cognitive
Science at UC San Diego (Usenet Message-ID: <203@sdics.UUCP>, dated June 13, 1986)

4Chapter 16

What’s in a Macro Package?

In Chapters 4, 14, and 15, you’ve seen almost all of the individual formatting requests that nroff and
troff provide, and many examples of groups of requests working together in macros. However, writing
individual macros is still a far cry from putting together a complete package.

In Chapters 5 and 6, you’ve seen the features built into the ms and mm macro packages, so you can
imagine the amount and complexity of macro definitions. Perhaps you have even looked at a macro pack-
age and determined that it was impossible to decipher. Nonetheless, it is possible even as a beginner to
write your own macro package or to make extensions to one of the existing packages.

In this chapter, we’ll look at the structure of a macro package—the essentials that allow you to handle
basic page formatting. Then, in the next chapter, we’ll look at a macro package with extensions for format-
ting large technical manuals or books. Even if you have no plans to write a new macro package, this chap-
ter will help you understand and work with existing packages.

Just What Is a Macro Package, Revisited

When considering what a macro package is, you might think only of the visible features provided by
macros in existing macro packages. But a macro package is more than a collection of user macros that im-
plement various features. Failing to understand this fact might cause someone to import an mm macro into
an ms— based macro package, and never understand why this macro fails to work.

Individual macros are dependent upon other elements of the macro package, which sometimes makes
it hard to isolate a particular macro, even for purposes of understanding what it does. These interdependen-
cies also make it difficult to understand what a macro package is doing. That is why we want to look at the
underlying structure of a macro package, and not just the obvious features it provides. We want to look first
at what a macro package must do before we look at what it can do.

A macro package is a structure for producing paged documents. The nroff and troff formatters
do the actual collecting and formatting of lines of text, as steadily as a bricklayer placing bricks in a row.
But they do not define the structure that is so obvious by the end result. Fundamentally, it is the macro
package that defines the placement of lines on a page. At a minimum, a macro package must set traps and
create macros to handle page transitions. It usually also defines the layout of the physical page.

A macro package may also provide a way to arrange the parts of documents and affect their appear-
ance. Remember the distinction we made earlier between formatting and formats. A format reflects the
type of document being produced, just as a floor plan reflects the functions of rooms in a building. For in-
stance, a technical manual might consist of chapters and sections that require headings. Other elements
might be bulleted lists and numbered lists, a table of contents, and an index. These elements help readers to
identify and to locate important parts of the document. But these features—so obviously important to
users—are really not the essential elements in a macro package.

Page formatting is the foundation of a macro package, and this foundation must be solid before you
can build a variety of custom document formats.

373

374 Unix Text Processing

New or Extended?

The first question to ask when you contemplate writing a whole new package is whether you need to do it
all yourself or can simply build on an existing package.

There are benefits to either approach. The existing macro packages are quite complex (especially
mm). It can be easier to start over, writing only the macros you need, than to learn the intricate internals of
ms or mm. A custom macro package can be quite small, including only macros for page transition (which
can be minimal, as we shall see) and whatever other macros you want. This is the best approach if you
have something specific in mind.

As with all programming projects, though, you may find your package growing larger than intended,
as your needs and understanding grow and you start to add features. A macro package begun haphazardly
can also end that way, without any consistent structure.

If you do find yourself wanting to create an entire macro package, rather than just a few macros, you
should think about modular programming techniques. Modular programming suggests that you break the
tasks to be performed by a program into the smallest possible functional units, then build up larger tasks
with each of these smaller units. This not only helps with debugging and testing of new macros, but also
makes it much easier to write macros, because you end up with a library of low-level general-purpose
macros that perform important functions. You don’t have to reinvent the wheel for each new macro.

There are numerous advantages to building on the existing packages, especially if you want to have a
general-purpose package:

• They already contain a wide range of useful macros that you not only can use directly, but can
call on within new macros.

• They are tested and proven. Unless you are very experienced at text processing, it is difficult to
foresee all of the kinds of problems that can arise. When you write your own package, you
may be surprised by the kinds of errors that are filtered out by the design of ms or mm.

• If you are familiar with ms or mm, adding a few extended macros to your repertoire is easier
than learning an entire new package.

• It can be easier than you expect to modify or add to them.

In our own work, we have chosen to extend the ms macro package rather than to build an entirely new
package. In this chapter, though, we’re going to take a hybrid approach. We’ll build a minimal ms-like
package that illustrates the essentials of a macro package and allows users who don’t have access to the full
ms package to make use of some of the extensions described in this and later chapters.

In this “mini-ms” package, we have sometimes pared down complex macros so it is easier to under-
stand what they are doing. We try to uncover the basic mechanism of a macro (what it must do). As a
caveat to this approach, we realize that simplifying a macro package can reduce its functionality. However,
we see it as part of the learning process, to recognize that a macro in a certain situation fails to work and
understand the additional code needed to make it work.

Implementing a Macro Package

As discussed in Chapter 4, the actual option to nroff and troff to invoke a macro package is -mx,
which tells the program to look in the directory /usr/lib/tmac for a file with a name of the form
tmac.x. This means you can invoke your own macro package from the command line simply by storing
the macro definitions in a file with the appropriate pathname. This file will be added to any other files in
the formatting run.

If you don’t have write privileges for /usr/lib/tmac, you can’t create the tmac.x file (although
your system administrator might be willing to do it for you). But you can still create a macro package. You
will simply have to read it into the formatter some other way. You can either

What’s in a Macro Package? 375

• include it at the start of each file with the .so request:
.so /usr/fred/newmacros

• or list it on the command line as the first file to be formatted:
$ nroff /usr/fred/newmacros myfile

Nor do the macros need to be stored in a single file. Especially if you are using a package as you develop
it, you may want to build it as a series of small files that are called in by a single master file. You may also
want to have different versions of some macros for nroff and troff. So, for example, the mh (Hayden)
macros used to format this book are contained in many different files, which are all read in by .so requests
in /usr/lib/tmac/tmac.h:

.so /work/macros/hayden/startup

.so /work/macros/hayden/hidden

.so /work/macros/hayden/ch.heads.par

.so /work/macros/hayden/display

.so /work/macros/hayden/ex.figs

.so /work/macros/hayden/vimacs

.so /work/macros/hayden/lists

.so /work/macros/hayden/stuff

.so /work/macros/hayden/index

.so /work/macros/hayden/cols

Or, like mm, you might have two large files, one for nroff and one for troff. In
/usr/lib/tmac/tmac.m, you find:

.if n .so /usr/lib/macros/mmn

.if t .so /usr/lib/macros/mmt

In extending an existing macro package, you are not restricted to creating a few local macro definitions that
must be read into each file. You can make a complete copy of one of the existing packages, which you can
then edit and add to. Or even better, you can read the existing package into your own package with .so,
and then make additions, deletions, and changes. For example, you might create a superset of ms as fol-
lows:

.\" /usr/lib/tmac/tmac.S - superset of ms - invoke as -mS

.so /usr/lib/tmac/tmac.s \" Read in existing package

.so /usr/macros/S.headings

.so /usr/macros/S.examples

.so /usr/macros/S.toc
.
.
.

Building a Consistent Framework

One of the chief factors that distinguishes a macro package from a random collection of macros is that the
package builds a consistent framework in which the user can work.

This consistent framework includes:

• Setting traps to define the top and bottom of each page. This is the one essential element of a
macro package, because it is the one thing nroff and troff do not do.

• Setting default values for other aspects of page layout, such as the page offset (left margin) and
line length. (The default page offset in nroff is 0, which is not likely to be a useful value,
and troff’s default line length of 6.5 inches is really too long for a typeset line).

• Setting default values for typographical elements in troff such as which fonts are mounted,
the point size and vertical spacing of body copy and footnotes, adjustment type, and hyphen-
ation.

• Giving the user a method to globally modify the default values set in the macro package, or

376 Unix Text Processing

temporarily modify them and then return to the defaults.

In a very simple macro package, we might set up default values for troff like this:
.po 1i \" Set page offset to one inch
.ll 6i \" Set line length to six inches
.ad l \" Adjust left margin only
.hy 14 \" Hyphenate, using all hyphenation rules
.wh 0 NP \" Set new page trap at the top of the page
. \" (see below for details)
.wh -1i FO \" Set footer trap

(We are assuming here that troff’s default values for point size and vertical spacing are acceptable. In
otroff, we also need to mount the default fonts with .fp, as described in Chapter 4; in ditroff, a de-
fault set of fonts is already mounted).

Simply setting up explicit default values like this will do the trick, but for a more effective and flexi-
ble macro package, you should take the further step of storing default values into number registers. This
has numerous advantages, as we’ll see in a moment.

Using Number Registers to Increase Flexibility

Writing troff macros is essentially a kind of programming. If you pay heed to the principles learned by
programmers, you will find that your macros are more effective, if at first somewhat more complex to write
and read.

One important lesson from programming is not to use explicit (so called “hard-coded”) values. For
example, if you supply the indent in a paragraph macro with an explicit value, such as:

.in 5n

you make it difficult for users to change this value at a later time. But if you write:
.in \\n(INu

the user can change the indent of all paragraphs simply by changing the value stored in number register IN.
Of course, for this to work, you must give a default value to the IN register.

In programming, the process of setting variables to a predefined starting value is called initialization.
To give you an idea of the kinds of variables you might want to initialize, Table 16-1 lists the values stored
into number registers by the ms macros.

Table 16.1 Number Registers Used in ms

Description Name Value
troff nroff

Top (header) margin HM 1i 1i
Bottom (footer) margin FM 1i 1i
Point size PS 10p 1P
Vertical spacing VS 12p 1P
Page offset PO 26/27i 0
Line length LL 6i 6i
Title length LT 6i 6i
Footnote line length FL \\n(LLu*11/12 \\n(LLu*11/12
Paragraph indent PI 5n 5n
Quoted paragraph indent QI 5n 5n
Interparagraph spacing PD 0.3v 1v

The mm package uses many more number registers—in particular, it uses number registers as flags to
globally control the operation of macros. For example, in addition to registers similar to those shown for
ms in Table 16-1, there are registers for paragraph type, numbering style in headings, hyphenation, spacing
between footnotes, as well as counters for automatic numbering of figures, examples, equations, tables, and

What’s in a Macro Package? 377

section headings. (See Appendix B for a complete listing). However, the registers used in ms should give
you a sufficient idea of the kinds of values that can and should be stored in registers.

An Initialization Sequence

In the ms macro package, a major part of the initialization sequence is performed by the .IZ macro.* This
macro is executed at the start of a formatting run; then it is removed. Let’s take a look at a much simplified
version of the initialization sequence for an ms-like package:

.de IZ \" Initialization macro

. \" Initialize Number Registers

.nr HM 1i \" Heading Margin

.nr FM 1i \" Footing Margin

.nr PS 10 \" Point Size

.nr VS 12 \" Vertical Spacing

.nr PO 1i \" Page Offset

.nr LL 6i \" Line Length

.nr LT 6i \" Length of Titles for .tl

.nr FL \\n(LLu*11/12 \" Footnote Length

.nr PI 5n \" Paragraph Indent

.nr QI 5n \" Quoted Paragraph Indent

.nr PD 0.3v \" Interparagraph Spacing

. \" Set Page Dimensions through requests

.ps \\n(PS

.vs \\n(VS

.po \\n(POu

.ll \\n(LLu

.lt \\n(LTu

.hy 14 \" Specify hyphenation rules

. \" Set Page Transition Traps

.wh 0 NP

.wh -\\n(FMu FO

.wh -\\n(FMu/2u BT

..

.IZ \" Execute IZ

.rm IZ \" Remove IZ

As you can see, the initialization sequence stores default values into registers, then actually puts them into
effect with individual formatting requests.

A number of the points shown in this initialization sequence will be a bit obscure, particularly those
relating to trap positions for top and bottom margins. We’ll return to the topic of page transitions shortly.

A Reset Macro

After you have initialized number registers, the next question is how to make use of the default values in
coding. Some registers, like a paragraph indent, will be used in a paragraph macro. But where, for exam-
ple, might you use the LL register?

First of all, as suggested, putting default values into number registers allows users to change values
without modifying the macro package itself. For instance, a user can globally change the interparagraph
spacing just by putting a new value into the PD register.

However, the package itself can use these registers to periodically reset the default state of various
formatting characteristics.

The ms package defines a macro called .RT (reset), which is invoked from within every paragraph
macro. The .RT macro

*There’s no real reason why this sequence needs to be put in a macro at all, other than the consistency of putting two backslashes be-
fore number registers when they are read in.

378 Unix Text Processing

• turns off centering— .ce 0;

• turns off underlining— .ul 0;

• restores the original line length— .ll \\n(LLu;

• restores the original point size and vertical spacing— .ps \\n(PS and .vs \\n(VS;

• restores the indent that was in effect before any .IP,.RS, or .RE macros were called (too
complex to show here);

• changes back to the font in position 1— .ft 1;

• turns off emboldening for font 1— .bd 1;

• sets tab stops every 5n— .ta 5n 10n 15n 20n ...;

• turns on fill mode—.fi.

This is part of the ms error recovery scheme. Rather than aborting when it encounters an error, ms fre-
quently invokes the .RT macro to restore reasonable values for many common parameters.

If you have used ms for a while, and then switch to another package, you may find all kinds of errors
cropping up, because you’ve come to rely on this mechanism to keep unwanted changes from propagating
throughout a document. For example, suppose you create a macro that decrements the line length:

.ll -5n

but you forget to increment it again. You may never notice the fact, because ms will restore the line length
at the next paragraph macro. Other packages are far less forgiving.

Unless you plan to explicitly test for and terminate on error conditions, it is wise to implement a reset
facility like that used by ms.

A simple ms-like reset macro follows:
.de RT \" Reset
.ce 0 \" Turn off centering, if in effect
.ul 0 \" Turn off underlining, if in effect
.ll \\n(LLu \" Restore default line length
.ps \\n(PS \" Restore default point size
.vs \\n(VS \" Restore default vertical spacing
.ft 1 \" Return to font in position 1
.ta 5n 10n 15n 20n 25n 30n 35n 40n 45n 50n 55n 60n 65n 70n
.fi \" Restore fill mode
..

The ms version of .RT also ends any diversion invoked outside of the standard ms macros that create diver-
sions. Thus, a reset may occur within a keep (.KS, .KE), footnotes (.FS, .FE), boxed material (.B1,
.B2), and tables (.TS, .TE) without ending the diversion.

If you look at the actual ms reset macro, you will see that it calls another macro, named .BG, the
very first time it is itself called. The .BG macro removes the macros associated with the unused Bell Labs
technical memorandum formats (because the format has already been determined at that point). Like .IZ,
the .BG macro is only called once during a formatting run. In our emulation, we don’t make use of the
Technical Memorandum macros so we have not implemented the .BG macro. However, one could easily
apply the idea behind the .BG macro: to execute a macro before we begin processing the body of a docu-
ment. This can be useful if a format requires a number of preliminary or header macros that supply infor-
mation about the document.

Page Transitions

A single page transition macro is the only macro that must be implemented for nroff and troff to pro-
duce paged output. An example of this simplest of all possible macro packages follows.*

*This “package” was contributed by Will Hopkins of VenturCom, Inc.

What’s in a Macro Package? 379

.de NP \" New Page
’bp
’sp 1i
’ns
..
.wh -1.25i NP
.br
.rs
.sp |1i

The page transition is triggered by a trap set 1.25 inches from the bottom of the page. When output text
reaches the trap, the .NP macro is executed, which breaks the page (but not the line), spaces down 1 inch,
and enters no-space mode. The three lines following the macro and trap definition take care of the special
case of the first page, for which the .NP macro is not invoked.

The .wh request, which sets the location of the traps used for page transition, interprets the value 0
as the top of the page. Negative values are interpreted relative to the bottom of the page. So, for example,
assuming that the page length is 11 inches, the requests:

.wh 10i BT \" Bottom Title Macro

and:
.wh -1i BT \" Bottom Title Macro

are equivalent. The second form is the most common.

This simple “package” provides only one macro for page transition. The bottom margin of the text
portion of the page is determined by the trap location; the top margin by a spacing request in the macro exe-
cuted at the trap. However, it is far more common to work with at least two page transition macros: one for
the page top and one for the bottom.

An example of a two-trap, two-macro macro package is given below:
.wh 0 NP
.wh -1i FO
.de NP \" New Page
’sp 1i
.tl ’Top of Page \\n%’’’ \".tl does not cause break
’sp |2i
’ns
..
.de FO \" Page Footer
’sp .25i
.tl ’’Page Bottom’’
’bp
..

A trap is set at the top of the page (.wh 0) to execute the .NP macro. This macro provides a top margin
and outputs a title in that space. The formatter begins processing lines of text until the bottom of the page
trap is encountered. It invokes the .FO macro, which supplies a footer margin and outputs a centered title.
The .FO macro then causes a page break, which in turn invokes .NP at the top of the new page. It is im-
portant that both of these macros avoid causing a break, so that text in fill mode will continue smoothly
onto the next page.

By setting traps for both the top and bottom of a page you have more control over the size of the bot-
tom and top margins, the placement of headers and footers, and advanced features like footnotes and multi-
ple-column processing.

Take some time to experiment with this bare bones macro package. If you place it in a file, such as
pagemacs, you can use it to format text files, as in the following example:

$ nroff pagemacs text

380 Unix Text Processing

No-Space Mode in Page Transitions

No-space mode is often used in a page transition macro to keep space from being output at the top of a
page. It is standard page makeup for the top line of each page to begin at the same point. Without no-space
mode, a spacing request (such as prespacing in a paragraph macro) that falls just before the page transition
would result in space being output at the top of the page, causing uneven positioning of the top line of the
page.

Any output text lines restore space mode, so you don’t have to explicitly turn it back on. However, if
you explicitly want to put space at the top of the page (to paste in a figure, for example), use .rs (restore
spacing) before the spacing request. The following sequence can be used to start a new page and space
down 2 inches below the top margin:

’bp
.rs
’sp 2i

This works in all cases, except on the first page. You must force a break on the first page before you
can restore spacing. An .fl request will do the trick:

.fl

.rs

.sp 3i

.ce
A Title on a Title Page
.bp

The .fl request is useful when you want to flush the line buffer and cause a break.

The First Page

As you might expect from the previous example, the first page is unlike others that follow it. That is be-
cause there is no automatic transition to the first page. To get around this, the formatter causes a “pseudo-
page transition” when it first encounters a break or begins processing text outside a diversion.

For the top of page trap to be executed on the first page, you must set the trap and define the top of
page macro before specifying any request that causes a break or initiates processing. You can test this with
the sample macros by putting an explicit .br request before the .NP macro definition. After that test, try
replacing .br with a .tl request. Even though this request does not cause a break, it does initiate pro-
cessing of text, and so the .NP macro is not executed.

Page Transitions in ms

Let’s take a closer look now at the trap positions we set in the initialization sequence for our ms-like pack-
age, together with the definitions of the macros placed at those positions:

.de IZ
.
.
.

. \" Set Page Transition Traps

.wh 0 NP

.wh -\\n(FMu FO

.wh -\\n(FMu/2u BT

. \" Define Page Transition Macros

..

.de NP \" New Page Macro
’sp \\n(HMu/2u

What’s in a Macro Package? 381

.PT
’sp |\\n(HMu
’ns
..
.de FO \" Footer Macro
’bp
..
.de PT \" Page Top Title Macro
.tl ’*(LH’*(CH’*(RH’
..
.de BT \" Bottom Title Macro
.tl ’*(LF’*(CF’*(RF’
’sp .5i
..

You’ll notice a couple of differences from our earlier example. Instead of specifying “hard-coded” values
for trap locations, we have set up a top margin value in the register HM (header margin) and a bottom mar-
gin value in FM (footer margin).

Now we have three trap locations and four page transition macros. In the simplified form shown
here, you may wonder why so many macros are used for this simple task. We’ll look at that later, as we
show some of the additional things that are done in these macros. But for the moment, let’s focus on what
these macros are. Their trap locations are shown in Figure 16-1.

• .NP (new page) is invoked by a trap at the top of each page (.wh 0 NP). It spaces down ½
the distance specified in the HM register, calls the PT macro, and then spaces down the full dis-
tance specified by the header margin.

• .PT (page title) prints out a three-part title consisting of user-definable strings LH, CH, and RH
(left header, center header, and right header).

• .FO (footer) is invoked by a trap at the distance from the bottom of the page specified by the
FM register (.wh -\\n(FMu FO). This macro causes a break to a new page. Note the use
of ’bp rather than .bp so that any partially filled line is not output, but is held till the next
page.

• .BT (bottom title) is invoked by a trap at ½ the distance from the bottom of the page specified
by the FM register (.wh -\\n(FMu/2u BT).

Although this sequence is different than our earlier example, it is about as easy to understand. The main
difference, however, is that there are two traps at the bottom of the page. The first (FO) causes a page
break, and the second (BT) places the footer. Even though the first trap caused a page break, the formatter
keeps going till it reaches the true bottom of the page specified by the page length. On its way, it passes the
second trap that invokes .BT.

The use of the four page transition macros is slightly inconsistent in ms; .PT is invoked from .NP,
but .BT, which could just as well be invoked by .FO, is instead invoked by a trap.

Headers and Footers

Most books, and many shorter documents, include headers and footers. In books, headers often include the
title of the book on the left-hand page, and the title of the chapter on the right. The footer typically includes
the page number, either centered or in the lower outside corner, alternating from left to right. (Although all
three elements are usually present, they can be in different positions depending on the book design).

As previously mentioned, the .tl request was designed specifically for producing the three-part ti-
tles used in headers and footers. The ms package uses this request in both the PT and BT macros, filling
the three fields with symmetrically named string invocations. If the string is undefined, the field is blank.

The macro package itself may define one or more of the fields. The .IZ macro from ms contains
this piece of code:

.if "*(CH"" .ds CH "- \\\\n(PN -

382 Unix Text Processing

NP

PT

text starts

FO

BT

Figure 16.1 Top and Bottom Margins

.if n .ds CF "*(DY

The ms macros define the center header as the page number set off by hyphens. For nroff only, the cen-
ter footer is set to the current date. (An nroff-formatted document is assumed to be a draft, but a troff-
formatted document is assumed to be final camera-ready copy).

The ms macros transfer the page number from the % register to one called PN. Note the number of
backslashes required to get the page number output at the proper time—not in the string definition, nor in
the macro definition, but at the time the title is output.

If you don’t like this arrangement, you can simply redefine the strings (including redefining them to
nothing if you want nothing to be printed). As a developer of macros built on top of ms, you could, for ex-
ample, have a chapter heading macro automatically set the chapter title into one of these strings. (More on
this later).

Headers and footers are often set in a different type and size than the body of the book. If you are us-
ing a standard macro package, font and size changes can simply be embedded in the header or footer
strings:

.ds LH "\fIAn Introduction to Text Processing\fP

Or, if you are writing your own macros or redefining an underlying package like ms, you can embed the
changes directly into the .tl request:

.tl ’\s-2*(LF’*(CF’*(RF\s0’

Another point: it is often desirable to alternate headers and footers on odd and even pages. For example, if

What’s in a Macro Package? 383

you want to put a book title at the outside upper corner of a left-hand (even) page, and the chapter title at
the outside upper corner of a right-hand (odd) page, you can’t really work within the structure ms provides.

To do this properly, you could use a construct like the following within your .PT macro:
.if e .tl ’*(TI’’’
.if o .if \\n%-1 .tl ’’’*(CH’

where the string TI holds the title of the book, and CH holds the title of the chapter. If it’s an odd page, we
also test that it’s not the first page. By invoking specific strings, you do lose the generality of the mecha-
nism provided by ms.

Page Numbers in Three-Part Titles

Inasmuch as the chief application of three-part titles is in producing header and footer lines from within
page transition macros, there is a special syntax for including page numbers. A % character anywhere in a
title will be replaced with the current page number. This saves the trouble of having to do a proper number
register interpolation and makes it easier for unsophisticated users of ms or mm to include page numbers in
header and footer strings.

Whenever nroff or troff makes use of a character in a special way, you can be sure there is a
back door that allows you to change that character. The .pc (page character) request allows you to spec-
ify that some other character than % should perform this function:

.pc ˆ \" Use ˆ instead of % to print page # in .tl

This does not change the name of the % number register, which also contains the page number.

Title Length

The other thing you can adjust is the length of the three-part title produced by .tl. Usually it is set to the
same length as a text line, but this need not be so. Title length is specified independently of line length with
the .lt (length [of] title) request. For example:

.lt 6.5i

The title length is not independent of the page offset, so if you want a title that is longer than the line
length, yet centered on the page, you will need to muck with the page offset as well. (Note that this is most
likely to occur within a page transition macro).

.po 1i \" Page Layout Defaults

.ll 6.5i
.
.
.

.lt 7i

.tl ’Alcuin User’s Guide’’%’ \" Title will extend 1/2 inch
. \" past right margin
.
.

.po -.25i

.lt 7i

.tl ’Alcuin User’s Guide’’%’ \" Title will extend 1/4 inch

.po +.25i \" on either side

An .lt request without an argument will restore the previous title length.

384 Unix Text Processing

Some Extensions to the Basic Package

Thus far, we’ve looked at what it will take to implement a small ms-like macro package. Now let’s look at
some extensions to the basic structure of the package that will make it more flexible. These extensions
could be added to the minimal package shown earlier in this chapter, or they could be added to a full ms
package, as we have done at our own site.

Changing Page Size

As mentioned earlier, the initialization sequence usually sets up default values for line length, page offset,
and the placement of the top and bottom traps. In the standard ms package, all of these values are set up to
produce an 8½-by-11 inch page.

This is fine for nroff, but with troff, one might well want to produce a different page size. For
example, many books are typeset for a 5½-by-8½ inch page.

The most obvious move is to change the page length:
.pl 8.5i

and then reset the line length, title length, and page offset using the standard registers ms provides.

This may not work if your output device uses continuous-roll paper, such as a typesetter. However,
in nroff, or when using troff with a sheet-fed laser printer, this may split your formatted output pages
across physical sheets of paper. (Some devices translate a .bp into a page eject code or formfeed; others
simply add blank lines to push text onto the next physical page. For this reason, it is perhaps preferable to
think of .pl as the paper length rather than the page length).

In addition, when you are printing a small page, it is nice to print cut marks to show the location of
the page boundaries. If you change the page length, any cut marks you place will be off the page that
troff knows about, and will not be printed.

For both of these reasons, we took a different approach. We modified the ms .IZ macro so that
changing the header and footer margins would effectively change the page size, instead of just the margins.
(In standard ms, you can change the size of the top and bottom margins, but this doesn’t change the page
size, because the placement of the footers is fixed after the initialization macro has been called. The trap
position for FO is reset at the top of every page, thus taking into account changes in the value of the FM reg-
ister. But the trap position for BT is never touched after .IZ has been executed).

In our package, we decided to set up some standard page sizes as part of .IZ. In our business, writ-
ing and producing technical manuals, we often print books in both sizes. Early drafts are printed on the
laser printer in 8½ by 11 format; later drafts and final camera-ready copy are produced in 5½ by 8½ format.
We also produce quick-reference documents in a narrow 6-panel card or pamphlet. The user selects the
size by specifying a command-line switch. This approach has the advantage of letting the user change all
of the parameters associated with a given size with one easy command.

The .IZ macro in our mini-ms package now looks like this:
.de IZ \" Initialization macro
. \" Initialize Number Registers
. \" Quick Reference Card size
.if \\nS=2 \{\
. nr pW 3.5i \" Page Width
. nr tH 1.25i \" Trim Height adjustment
. nr LL 2.8i \" Line Length
. nr LT 2.8i\} \" Title Length
. \" 5 1/2 by 8 1/2 size
.ie \\nS=1 \{\
. nr pW 5.5i \" Page Width
. nr tH 1.25i \" Trim Height adjustment
. nr LL 4.25i \" Line Length

What’s in a Macro Package? 385

. nr LT 4.25i\} \" Title Length

. \" 8 1/2 by 11 size

.el \{\

. nr pW 0 \" Page Width

. nr tH 0 \" Trim Height adjustment

. nr LL 6i \" Line Length

. nr LT 6i\} \" Title Length

. \" Values independent of page size

.nr FM 1i \" Footer Margin

.nr HM 1i \" Header Margin

.nr PO 1i \" Page Offset

.nr PS 10 \" Point Size

.nr VS 12 \" Vertical Spacing

.nr FL \\n(LLu*11/12 \" Footnote Length

.nr PI 5n \" Paragraph Indent

.nr QI 5n \" Quoted Paragraph Indent

.nr PD 0.3v \" Interparagraph Spacing

. \" Set Page Dimensions through requests

.ps \\n(PS

.vs \\n(VS

.po \\n(POu

.ll \\n(LLu

.lt \\n(LTu

.ft 1

.hy 14 \" Specify hyphenation rules

. \" Set Page Transition Traps

.wh 0 NP \" Top of page

.wh -(\\n(FMu+\\n(tHu) FO \" Footer

.wh -((\\n(FMu/2u)+\\n(tHu) BT \" Bottom titles

.if \\nS .wh -\\n(tHu CM \" Position of bottom mark

..

The .NP macro has been modified as follows:
.de NP \" New Page Macro
’sp \\n(tHu \" Space down by trim height
.ie \\nS \{\
. CM \" If small format, print cut mark
’ sp \\n(HMu/2u-1v\} \" Correct baseline spacing
.el ’sp \\n(HMu/2u \" Space down by half HM
.PT
’sp |\\n(HMu+\\n(tHu \" Space to HM plus adjustment
’ns
..

By simply setting the S (size) register from the command line, the user can choose from one of three differ-
ent sizes. For example:

$ ditroff -Tps -rS1 textfile | devps | lp

will choose the 5½-by-8½ page size.

What we’ve done here is to assume that the paper size is still 8½ by 11. We’ve defined a fudge fac-
tor, which we’ve called the trim height adjustment, and stored it in a register called tH. If the user has set
the size register from the command line, we use this adjustment factor to:

• shift the location of the footer trap:
.wh -(\\n(FMu+\\n(tHu) FO

• shift the location of the bottom title trap:
.wh -((\\n(FMu/2u)+\\n(tHu) BT

• place a new trap to print cut marks at the true bottom of the page:
.if \\nS .wh -\\n(tHu CM

• space down at the start of the .NP macro:
’sp \\n(tHu

386 Unix Text Processing

.ie \\nS \{\

. CM
’ sp \\n(HMu/2u-1v\}
.el ’sp \\n(HMu/2u
.PT
’sp |\\n(HMu+\\n(tHu

Note that in .NP we need to adjust for the extra line spacing that occurs as a result of printing the cut
marks. Otherwise, the .PT macro would be invoked one line lower on a page with cut marks than on one
without.

Cut Marks

We’ve mentioned that if you are producing typeset or laser-printed copy on less than an 8½ by 11 page, it is
usually desirable to place marks showing the actual page boundary. The paper is then cut on these marks in
preparation for pasteup on camera-ready boards.

As you’ve seen in the preceding discussion, we print the cut mark at the top of the page from the .NP
macro, after spacing down by the desired trim height. The cut marks at the bottom of the page are printed
by calling the cut mark macro with a trap placed at the trim height from the bottom of the page.

As you’ll notice, the execution of the cut mark macro is conditioned on the presence of the S register,
which indicates that the user has requested a small page.

Here’s a simple version of the actual cut mark macro:
.de CM \" Cut Mark macro
’po -(\\n(pWu-\\n(LLu/2u) \" Center cut mark around text
.lt \\n(pWu \" Set title length for cut mark
’tl ’+’’+’ \" Print cut mark
.lt \\n(LTu \" Reset title length
’po +(\\n(pWu-\\n(LLu/2u) \" Reset page offset
..

As with all activity that takes place during the page transition, it is very important that nothing in the
cut mark macro causes a break. For this reason, all break causing requests are started with the no-break
control character (’), and the cut marks themselves are printed with .tl, which doesn’t cause a break.
(The other way to avoid breaks is to do all of your page transition work in a different environment, but do-
ing this uses up one of the environments, which might be better used for another purpose).

We’ve specified the width of the page in the pW register. To center the cut marks around the text, we
adjust the page offset by the difference between the page width and half the line length. Then we set the ti-
tle length to the page width, and actually print the cut marks with .tl. Then, of course, we reset the origi-
nal page offset and title length.

In the implementation shown, we use simple plus signs to create the cut marks. This creates a slight
inaccuracy, because the page width will be from end to end of the plus signs, and the height from baseline
to baseline, rather from the center of the plus as we’d like.

There are two ways that we could deal with this. One is to fudge the height and the width to account
for the character widths. The other is to use a specially drawn mark that will put the actual cut lines at the
edge rather than the center of the figure.

A very simple way to do this is to use the box rule, the root-en, and the underrule. Because the cut
marks are no longer symmetrical, though, we’ll need to give the cut mark macro an argument to specify
whether we’re at the top or the bottom of the page:

.de CM \" Cut Mark macro
’po -(\\n(pWu-\\n(LLu/2u) \" Center cut mark around text
’lt \\n(pWu \" Set title length for cut mark
.ie "\\$1"T" ’tl ’\(br\(rn’’\(rn\(br’ \" Print cut mark
.el ’tl ’\(br\(ul’’\(ul\(br’
’lt \\n(LTu \" Reset title length

What’s in a Macro Package? 387

’po +(\\n(pWu-\\n(LLu/2u) \" Reset page offset
..

When we invoke .CM from within .NP, we’ll just have to add the argument T to specify we’re at the top.

The cut marks will look like this:

Other Exercises in Page Transition

We’ve looked at the basic mechanism for page transition, and shown one way to extend that mechanism to
allow the user to select different page sizes. We have not exhausted the topic of page transition, however.
Before we begin to discuss the development of macros that prescribe document formats, rather than basic
page formatting, we will briefly consider these topics:

• Footnotes

• Multicolumn processing

• Page top resets

• Handling widows and orphans

Footnotes

Footnotes make page transition an even more complex exercise. Anyone who has typed footnotes on a
typewriter knows the problem. Because the presence of a footnote shortens the space available on the page
for regular text, you need to know the size of the footnote before you know if its reference will fit on the
bottom of the current page, or will be pushed to the top of the next. There is always the possibility of a
classic Catch-22: a footnote whose reference falls at the bottom of the page only if the footnote itself isn’t
printed there.

Let’s look first at a very simple footnote mechanism—one that has a reasonable chance of failure in
the face of heavy demand, but nonetheless illustrates the basic mechanism at work.

The first thing we need to know is the position of the page bottom trap for a normal page—one with-
out any footnotes. For example, in ms, we know that its location is -\\n(FMu. (Now ms has a perfectly
good footnote mechanism, but for purposes of argument, we’re going to pretend we need to add one).

All we really need to do, on the simplest level, is to save footnotes in a diversion, measure them, then
move the footer trap back up the page by a distance equal to the size of the diversion.

In the new page macro, we initialize (reset to 0) a counter (fC) that will tell us if there are any foot-
notes on the page and how many. (We want to handle the first footnote differently than others on that
page). We also initialize a bottom position for printing footnotes (Fb) and initialize it with the value of the
standard footer margin. (This will be the starting point that will be decremented as footnotes are encoun-
tered). Last, we provide a reset that restores the page footer trap at the standard footer margin if it has been
changed because of footnotes on a previous page.

. \" Add to .NP

.nr fC 0 1 \" Initialize footnote counter

.nr Fb 0-\\n(FMu \" Initialize footnote position

.ch FO -\\n(FMu \" Reset normal footer location

Now, a pair of footnote macros are required to open and close a diversion:
.de FS \" Footnote Start

388 Unix Text Processing

.nr fC 1 \" Set flag that there are footnotes

.ev 1 \" Use environment 1

.da FN \" Divert text of footnote

.if \\n(fC=1 \{\ \" If first footnote
\l’1i’ \" Print 1 inch line before it
.br\}
..
.de FE \" Footnote End
.br
.di \" End diversion
.ev \" Restore environment
.nr Fb -\\n(dn \" Decrement footnote position by
. \" size of diversion;
. \" note that Fb is already negative.
. \" Reset footer trap
.ie (\\n(nl+1v)>(\\n(.p+\\n(Fb) .ch FO \\n(nlu+1vu
.el .ch FO -\\n(Fb
..

The footnotes are processed in a separate environment. This environment needs to be initialized, perhaps as
part of the .IZ macro, or as part of the .FS macro the very first time it is called. The latter method makes
it easier for users to change settings for this environment. It is recommended that you preserve a separate
environment (either 1 or 2) for footnote processing. Here is a sample initialization sequence:

.ev 1 \" Initialize first environment for footnotes

.ps 8

.vs 10

.ll \\n(FLu \" FL was initialized to 11/12 of LL

.ev

The .FS macro opens a diversion (.da FN) into which we append the text of the footnote. Before the
first footnote on a page, the .FS macro adds a one-inch reference line to mark the beginning of footnotes.
After we have closed the diversion in the .FE macro, we obtain the size of it from the read-write register
.dn. This amount is used to increase Fb (two negative amounts are added together) and change the loca-
tion of the footer trap further up the page.

Before changing that trap, the footnote end macro has to find out if the new footer trap will be placed
above or below the current location. If the new trap location is below where we are, all is well; the page
trap is moved up to that location. However, if the current footnote places the location above the current po-
sition, there’s going to be trouble. In this case, we need to execute the footer macro immediately.

The troff formatter keeps the current page position in the nl register, and the page length in the
register .p. As a result, we can set the trap position based on a conditional:

.ie (\\n(nl+1v)>(\\n(.p+\\n(Fb) .ch FO \\n(nlu+1vu

.el .ch FO -\\n(Fb

If the footnote won’t fit, this code puts the trap one line below the current position; otherwise, the footer
trap location is moved up the page.

Now we’ll have to redefine the footer macro to print the diverted footnotes, if there are any:
.de FO \" Redefine FO
.if \\n(fC\{\
.ev1 \" Invoke first environment
.nf \" Good practice when outputting diversions
.FN \" Print diversion
.rm FN \" Remove printed diversion
.ev\}
’bp \" Now break page
..

Because the footnote macros are complicated, it might be a useful aside to look at the process of de-
bugging these macros. We used several .tm requests to report (to standard error) on the sequence of events
during a formatting run of a file that included footnotes. What we wanted to know was the location of the
footer trap and when it was sprung. Inside the .FE macro, we inserted .tm requests to show which of the
conditional .ch requests were executed.

What’s in a Macro Package? 389

.ie (\\n(nl+1v)>(\\n(.p+\\n(Fb) \{\

.tm !!!!!! FE: Change trap to current location (\\n(nl+1v)

.ch FO \\n(nlu+1vu \}

.el \{\

.tm !!!!!! FE: Move trap up the page (\\n(Fbu)

.ch FO -\\n(Fb \}

Then, inside the .FO macro, we inserted messages to locate two positions on the page: where the footer
macro is invoked by the trap and where the footnotes have been output.

.de FO

.tm !!!! FO: position is \\n(nl (\\n(.p+\\n(Fb) BEFORE

.

.

.

.tm !!!! FO: position is \\n(nl AFTER footnotes
´bp
..

To see these terminal messages without the formatted text, we invoke nroff and redirect output to
/dev/null. (tmacpack is a small macro package used for testing these macros).

$ nroff tmacpack textfile > /dev/null
!!!!!! FE: Move trap up the page (-360u)
!!!!!! FE: Move trap up the page (-440u)
!!!!!! FE: Move trap up the page (-520u)
!!!!!! FE: Move trap up the page (-680u)
!!!! FO: position is 1980 (2640+-680) BEFORE
!!!! FO: position is 2420 AFTER footnotes
!!!!!! FE: Move trap up the page (-360u)
!!!!!! FE: Move trap up the page (-440u)
!!!!!! FE: Move trap up the page (-520u)
!!!!!! FE: Change trap to current location (2100+1v)
!!!! FO: position is 2140 (2640+-640) BEFORE
!!!! FO: position is 2580 AFTER footnotes
!!!!!! FE: Move trap up the page (-320u)
!!!! FO: position is 2320 (2640+-320) BEFORE
!!!! FO: position is 2400 AFTER footnotes

Part of the reason for making this aside is the difficulty of writing effective footnote macros. It requires a
fair amount of testing to make sure they work in all cases. When we spring the footer trap for the second
time, the messages alert us to a problem—the Catch-22 we mentioned earlier. The formatter encountered a
footnote on the last input line. The only way to fit both the footnote reference and the footnote on the same
page was to ignore the footer margin and let the footnote run into it.

Standard ms provides a better way of handling this overflow. In addition, the Nroff/Troff User’s Man-
ual describes a similar mechanism. Our simplified version, adequate only for demonstration of this mecha-
nism, will borrow from both of these sources. (It might be said that a “working” version requires several
empirically discovered fudge factors or, as Joseph Ossanna called them, “uncertainty corrections”).

The problem is how to split the footnote overflow if it extends beyond where we want the bottom of
the page to be. The solution is to put two trap-invoked macros at the original (standard) page bottom loca-
tion. The trap mechanism in troff allows only one macro to be executed by a trap at a given location. If
you write:

.wh -\\n(FMu M1 \" Place first macro

.wh -\\n(FMu M2 \" Overwrite first macro at this location

all you will succeed in doing is wiping out the first placement with the second.

However, you can move a trap location to an occupied position. The second trap “hides” the first and
renders it ineffective, but the first is still in place and is restored if the second subsequently moves off the
spot.

So here’s what we do in our trap initialization:
.wh 16i FO \" Put regular footer out of the way
. \" (way off the page)

390 Unix Text Processing

.wh -\\n(FMu FX \" Place footnote overflow macro

.ch FO -\\n(FMu \" Hide footnote overflow macro

The .FX (footnote overflow) macro will be invoked only if the FO trap is moved (as it will be whenever
there are footnotes on the page). In .FX, all we do is start another diversion, so that excess footnote text
that would overflow at the bottom of the page is saved for the next:

.de FX \" Footnote overflow

.if \\n(fC .di eF \" Divert extra footnote

..

(We’ll explain the reason for the test in a moment).

Odd as it may seem, this diversion can be terminated from the footer macro .FO, even though that
macro is invoked before the footnote overflow macro! Because the .FN diversion inside the .FO macros
springs the footnote overflow trap and starts the overflow diversion, we can close that diversion by a request
in .FO following the diversion.

The code in .FO now looks like this:
.nr dn 0 \" Reset diversion size register
.if \\n(fC \{\ \" If there are footnotes
.ev 1
.nf
.FN
.rm FN
.if’\\n(.z’eF’.di \" End diversion opened by FX
.ev
.nr fC 0 \} \" Done with footnotes
’bp

There are several things here that need further explanation. The number register .z always contains the
name of the last completed diversion. (Don’t ask us how they manage to put a string into a number regis-
ter!) If our overflow diversion was this last completed diversion, we terminate it:

.if ’\\n(.z’eF’ .di

Then, we must take care of another eventuality. If we get this far without triggering the overflow
trap—that is, if .FN did fit on the page—we want to disable the overflow macro, which we can do by zero-
ing our count register fC.

Now on the next page we have to handle any footnote overflow. We write a new macro that invokes
.FS and .FE to output the overflow diversion (.eF) into the normal footnote diversion (.FN).

.de Fx \" Process extra footnote

.FS

.nf \" No-fill mode

.eF \" Overflow diversion

.fi

.FE

.rm eF

..

In the new page macro, we add a test to check if the last diversion amounted to anything, and if it did, we
invoke the .Fx macro.

. \" added to .NP

.if \\n(dn .Fx

.

To test this new feature, we might add messages inside .FX, the macro invoked by a hidden trap to open a
diversion that collects any footnote overflow, and inside .Fx, the macro that redirects the overflow back
into the normal footnote diversion. You should be able to accomplish this part on your own, as well as to
venture into areas that we did not cover (such as automatic numbering or marking of footnotes). Before im-
plementing a footnote mechanism, we urge you to study the mechanisms in one of the existing macro pack-
ages. However, following the chain of events from when a footnote is encountered to when it is output in
the footer macro—on the current page or on the next—may seem like a troff exercise equivalent to what
Alfred Hitchcock called a MacGuffin: a hopelessly complicated plot not meant to be figured out but that

What’s in a Macro Package? 391

supplies a reason for many entertaining scenes.

Multicolumn Processing

While we’re still on the subject of page transition, we should look briefly at how multicolumn processing
works.

Multiple columns are generally produced by using the mark and return mechanism—.mk and .rt—
and by manipulating the line length and page offset for each successive column. The basic trick is to have
the page bottom macro check if multiple columns are in effect, and if so, whether or not the current column
is the last one.

A simple macro to initiate two-column processing might look like this*:
.de 2C
.mk \" Mark top position
.nr CL 0 1 \" Initialize column count flag
.ie \\$1 .nr CW \\$1 \" Test arg 1 for Column Width
.el .nr CW 2.75i \" or set default CW
.ie \\$2 .nr GW \\$2 \" Test arg 2 for Gutter Width
.el .nr GW .5i \" or set default GW
. \" Save current one-column settings
.nr pO \\n(.o \" Save current page offset
.nr lL \\n(LLu \" Save original line length
.nr LL \\n(CWu \" Set line length to Column Width
.ll \\n(LLu \" Set line length to Column Width
..

(We must save the default line length in a new register and redefine LL, or else a paragraph macro, or any
other macro that calls .RT, will interfere with two-column processing).

The page footer needs to include the following requests:
.de FO \" New footer macro
.ie \\n+(CL<2\{\ \" If incremental column count < 2
’po+(\\n(CWu+\\n(GWu) \" then increase page offset
’rt \" Return to mark
’ns \} \" Enter no-space mode
.el \{\ \" Otherwise
’po \\n(pOu \" Restore original page offset
’bp \} \" Start a new page
..

Because two-column processing is likely to continue beyond a single page, we need to modify the page top
macro to mark the top of the page and initialize (set to zero) the column count register. The two requests at
the bottom of the definition have been added:

.de NP \" New Page Macro
’sp \\n(HMu/2u
.PT
’sp |\\n(HMu
’ns
’mk \" Mark top of page
.if \\n(CL .nr CL 0 1 \" Reset autoincrementing column count
..

After the CL register has been created by .2C, it can also be used as a flag that two-column processing is in
effect. The page top resets it to 0 to start the first column on a new page.

The macro to return to single-column processing looks like this:
.de 1C
.rr CL \" Remove column count register
.po \\n(POu \" Reset original page offset

*Despite similar macro and number register names, this is not the two-column macro used in ms. The ms package provides a more
general multiple column macro, .MC, of which .2C is a specialized call.

392 Unix Text Processing

.nr LL \\n(lLu

.ll \\n(LLu \" and line length

.bp \" Start a new page

..

The column count register is removed, and the original page offset and line length are restored. Unfortu-
nately, using this mechanism, you cannot return to single-column mode on the same page, without resorting
to extensive use of diversions. If the first column has already gone to the bottom of the page, there is no
way for a prematurely terminated second column to “go back” and fit the text into two even-sized columns
on the same page.

Page Top Resets

We’ve already discussed the use of a reset macro from within paragraphs to deal with common errors. Page
transitions are also a convenient place to put some different kinds of resets. Like paragraphs, you can rely
on their regular occurrence and can therefore trap certain conditions.

In particular, you can use them when you want an effect to take place for only one page and then
stop. For example, in our business, we are often required to produce not just complete manuals, but re-
placement pages to be inserted into an existing manual. Sometimes the update page will be exactly the
same size as the original, but often it is longer, and requires additional space.

To avoid changing the numbering on subsequent pages, additional full or partial pages are inserted
with a special numbering scheme. For example, if a page is numbered 3-4 (section 3, page 4), and changes
to that page run on to an additional page, the new page will be numbered 3-4a.

In this situation, we need to temporarily change the way page numbers are handled, then change back
when the page is done. We’ve defined a macro called .UN, which looks like this:

.de UN \" Update page numbering macro

.nr Un 1 \" Set flag to test on page break

.nr % -1

.ie !"\\$1"" .as NN \\$1

.el .as NN a

..

Our extended ms macro package normally puts the section number (sE) and the page number (PN), sepa-
rated by a hyphen, into the string NN. In this macro, we simply append a letter to that string. By default we
add the letter a, but we give the user the option to specify another letter as an argument to the macro, so
pages can be numbered 3-4,3-4a,3-4b, and so on. To use the macro, the user simply enters it anywhere on
the update page. Voilá! The page number now has an a on the end.

Notice that the original page number register (%) was first decremented, so that this new page will
have the same number as the previous one. More to the point of this discussion, notice that the macro sets
the Un number register to 1 as a flag that update numbering is in effect.

This flag is tested in the page top macro for the next page, and if it is set, the original page numbering
scheme is restored as follows:

.if \\n(Un=1 \{\

. ds NN \\\\n(sE-\\\\n(PN

. nr Un 0\}

(Note that four backslashes are required in the number register interpolations used in defining NN because
the string definition will be interpreted twice, once when the macro is defined, and once when it is exe-
cuted).

Keep this trick in mind because there are many cases in which you can use the page bottom or page
top macro to reset conditions that you don’t want to carry across more than one page. We’ll see another in
just a moment.

What’s in a Macro Package? 393

Handling Widows and Orphans

Widows and orphans are the bane of any markup language—the one real advantage of current wysiwyg sys-
tems. A widow is a single or partial line from the end of a paragraph left over at the start of the next page.
An orphan is a single line from the start of a paragraph left alone at the bottom of a page. Both of these are
considered poor page layout.

As we’ve discussed, a macro package can take care of orphans simply by including an .ne request in
the paragraph macro. Widows are much harder to take care of, because you don’t know where the end of
the paragraph will fall until you reach it.

In nroff and troff, the only way you can handle this problem is to process each paragraph in a
diversion, find out how long it was, then go back and break it up if necessary. This greatly increases pro-
cessing time, and is probably not worth the effort.

You could limit the extra work by testing the position on the page and only diverting paragraphs that
occur within range of the page bottom. However, even so, this is a difficult problem you may not want to
attempt.

It may be satisfactory to give users an increased capability for dealing with widows when they do oc-
cur. Normally, the solution is to print out the document, find any offending widow lines, then go back and
manually break the pages a line earlier. However, sometimes it is inconvenient to break the paragraph ear-
lier—it would be better to add the line to the bottom of the current page.

In standard ms, the location of the footer trap is reset to -\n(FMu in the .NP macro at the top of
every page. The user can get extra length on a page just by changing the value of FM on the preceding
page.

We could also write a macro that would let the user make the change on the offending page. For ex-
ample, in ms:

.de EL \" Extra Line macro

.nr eL 1 \" Set flag

.ch FO -(\\n(FMu-1v)u \" Put trap one line lower

..

All the user has to do is to introduce this macro anywhere on the page to be affected. It is your job as
macro developer to reset the normal page length—and the most likely place is in the page top macro for the
next page:

.if \\n(eL=1 \{\

.ch FO -\\n(FMu \" Reset to normal location for ms

.nr eL 0\} \" Clear flag

4Chapter 17

An Extended ms Macro Package

In the previous chapter, we’ve looked at some of the essential elements of a macro package—the innards
that make it tick. However, few people will write a macro package just because they think they can do a
better job at the basics than ms or mm. More often, users who need specific formatting effects will build a
macro set to achieve those effects.

The macros used to produce this book are a good example of a custom macro package. They were
developed to create a distinctive and consistent style for a series of books on UNIX by different authors.
Although this macro package must of course do all of the basics we’ve talked about, many of its macros
provide solutions to more specific problems. For example, there are macros for showing side-by-side be-
fore and after screens for vi and macros for inserting italicized commentary in examples.

To illustrate more concretely the issues that force you to create or significantly extend a macro pack-
age, this chapter will look at a set of extended ms macros for typesetting technical manuals. Extensions
built into this package fall into two major categories:

• Extensions that make it easier to control the appearance of a document, particularly the page
size (described in the last chapter) and the style of section headings, tables, and figures.

• Extensions that address needs of books, manuals, and other documents larger than the technical
papers that ms and mm were originally designed for. These extensions include improved meth-
ods for handling tables of contents and indexes.

One of the chief weaknesses of the ms and mm packages is that they were designed for smaller docu-
ments. For example, ms does not provide table of contents generation, and the approach used by mm is suit-
able only for short documents. Neither package supports automatic index generation. In this chapter and
the next, we will also look at ways to redress these problems.

Creating a Custom Macro Package

In this chapter, we will present an extended macro package designed for technical documentation. Based
on the ms macro package, these extensions were originally developed by Steve Talbott of Masscomp; they
have been extended and altered during several years of use in our technical writing and consulting business.
Because we needed to produce technical manuals for a number of different clients, we needed a macro
package that allowed us the flexibility to achieve a variety of document formats.

An important step in implementing this package was to establish the relation of new and redefined
macros to the original ms package. We wanted to read in the standard tmac.s package, and then simply
overwrite or remove unwanted macros. Then we organized our extensions into three groups: redefinitions
of standard ms macros, common macros we added to provide specific features or capabilities for all docu-
ments, and format macros that were most often used to control the appearance or structure of a document.

The format macros can be modified for the specifications of a unique document format. Each format
design has its own file, and the user only needs to specify which of these formats are to be read in during
the formatting run.

Following is a summary of the steps we followed to implement our mS macro package. While de-
scribing this implementation, we don’t pretend that it is unique or right for all uses; we do hope that it sug-
gests ways to set up your own custom package.

1. Create a new directory to store the macro files.

2. Make a working copy of tmac.s and any subordinate files it reads in, moving them to a new

395

396 Unix Text Processing

directory.

3. Create the tmac.Sredefs file to contain definitions of standard ms macros that we’ve rede-
fined, such as .VIZ.

4. Create the tmac.Scommon file to contain utility and feature macros available in all formats.
The list macros described in this chapter are kept here.

5. Create separate files containing definitions for unique document formats.

6. Set up tmac.S to control which files are read in and to handle certain parameters that might
be set from the command line.

7. Put tmac.S in /usr/lib/tmac, either by placing the file in that directory or by creating a
tmac.S file that sources the tmac.S file in the macro directory.

The master file of this package is tmac.S, although it does not contain any macro definitions. It allows
users to set some parameters from the command line, and then it reads in the standard ms macro package
and the two files that contain redefinitions and common macros. Last, it checks the value of a number reg-
ister (v) to determine which group of format macros are to be read in. Here’s what our tmac.S file looks
like:

.\" tmac.S — the main format macro package

.

.so /work/macros/tmac.s \" Read in standard ms

.so /work/macros/tmac.Sredefs\" Redefinitions of macros

.so /work/macros/tmac.Scommon\" Common utility macros

. \" Check register v for version

. \" and read in special format macros

.ie \nv \{\

.if \nv=9 .so /work/macros/tmac.Stest

.if \nv=8 .so /work/macros/tmac.Squickref

.if \nv=7 .so /work/macros/tmac.Slarge

.if \nv=6 .so /work/macros/overheads

.if \nv=5 .so /work/macros/tmac.Straining

.if \nv=4 .so /work/macros/tmac.Sprime

.if \nv=3 .so /work/macros/tmac.Scogx

.if \nv=2 .so /work/macros/tmac.Smanuals

.if \nv=1 .so /work/macros/tmac.Snutshell\}

.el .so /work/macros/tmac.Sstandard

The -r option to nroff and troff is used to select a particular version of the format macros. For in-
stance, the first set of format macros is designed for producing our Nutshell Handbooks. To format a docu-
ment using the macros defined in tmac.Snutshell, a user would enter:

$ ditroff -Tps -mS -rv1 ch01 | devps | lp

One of the files, tmac.Stest, is available for use during the development and testing of new versions of
the macros. We’ll look at some of the different formats later in this chapter.

A few other details about this implementation may help you customize a package. Both ms and mm
include a number of Bell-specific macros that are not very useful for users outside of AT&T. For example,
it is unlikely that you will require the various styles of technical memoranda used internally at Bell Labs.
Unused macro definitions need not get in your way, but they do use up possible names and number registers
that may conflict with what you want to do. The .rn macro allows you to rename a macro; .rm will re-
move the definition of a macro.

You may want to remove selected macros. For example, you might want to start the modifications to
a macro package built on ms with the following request:

.rm TM IM MF MR EG OK RP TR S2 S3 SG IE []][[. .] [o \
[c [5 [4 [3 [2 [1 [0 [<]< [>]> [-]-

(Note the use of the backslash to make this apparent two-line request into a single long line).

There is a slight performance loss in reading in a large macro package, and then removing a number
of the macros. For efficiency, you’d be better off removing the undesirable macros from your copy of the
ms source file.

An Extended ms Macro Package 397

Reading in tmac.Sredefs after tmac.s overwrites some of the standard ms macros with our
own definitions. The standard versions are thus not available. If you want to retain a standard macro defin-
ition, you can make it available under a different name. Use the .rn request to rename the standard macro
before overwriting its definition.

As discussed in the previous chapter, we redefined the .IZ macro to allow the setting of various page
sizes. Because the standard .IZ macro is invoked from tmac.s at the start of the formatting run, we
can’t simply overwrite its definition. We must either delete the standard .IZ macro definition or comment
out its invocation. Then the new .IZ macro in tmac.Sredefs will be executed.

As you develop your own set of extensions, you will undoubtedly consider additional modifications.
Appendix F lists the set of extended macros that we use. You may not need many of the specialized macros
provided in this package. But it will show you how to build on an existing package and how easy it is to
modify the appearance of a document.

Structured Technical Documents

The ms and mm packages provide a number of macros to produce title pages, abstracts, and so on for techni-
cal memoranda. Subsections can be numbered or unnumbered.

Anyone who has used the UNIX Programmers’ Manual is familiar with the output of these packages.
The technical papers collected in that volume bear superficial resemblance to the chapters of a book. How-
ever, they lack continuity—section, figure, and table numbers, where present, are relative only to the current
section, not to the entire volume.

A macro package designed for producing technical books or manuals may need at least some modifi-
cation to produce section headings. Chapter and section headings should make the structure of a document
visible. In a nontechnical book, chapters are often the only major structural element. They divide the book
into major topics, and give readers stopping points to digest what they have read.

Chapters are usually distinguished from a formatting point of view by a page break and some kind of
nonstandard typesetting. For example, a chapter number and title may be set in large type, and the text may
begin lower on the page.

In technical books and manuals, which are often not read straight through as much as they are used
for reference, frequent section headings within a chapter give the reader guideposts. There are often several
levels of heading—more or less depending on whether the book is intended primarily for reading or for ref-
erence. This book uses three levels of heading within a chapter, one for major changes in topic, the others
for less significant changes.

Section headings can be distinguished merely by type font and size changes, as in this book, or by
section numbering as well. Properly used, section numbers can be very helpful in a technical manual.
They allow detailed cross references to different parts of the book without using page numbers. Referenc-
ing by page numbers can result in error because page numbers are not fixed until the book is done.

Detailed breakdown of a chapter into subsections can also help the writer of a technical manual. Be-
cause a manual (unlike an essay or other free-form work of non-fiction) has definite material that must be
covered, it can be written successfully from an outline. It is often possible to write technical material by
entering the outline in the form of section and subsection headings and then filling in the details.

In this approach, numbered sections also have a place because they make the outline structure of the
document more visible. In reviewing technical manuals, we can often identify many weaknesses simply by
looking at the table of contents. Sections in a technical manual should be hierarchical, and the table of con-
tents should look effective as an outline. For example, a chapter in our hypothetical Alcuin User’s Guide
might look like this:

Chapter Two: Getting Started with Alcuin

2.1 Objectives of this Session

398 Unix Text Processing

2.2 Starting Up the System
2.2.1 Power-up Procedure
2.2.2 Software Initialization

2.3 Creating Simple Glyphs
2.3.1 Opening Font Files
2.3.2 Using the Bit Pad
2.3.2.1 The Cell Coordinate System
2.3.2.2 Pointing and Clicking

.

.

.

How much easier it is to see the structure than in a case where the proper hierarchical arrangement of topics
has not been observed. How often have you seen a “flat” table of contents like this:

Chapter Two: Using Alcuin

2.0 Starting Up the System
2.1 Power-up Procedure
2.2 Software Initialization
2.3 Creating Simple Glyphs
2.4 Opening Font Files
2.5 Using the Bit Pad
2.6 The Cell Coordinate System
2.7 Pointing and Clicking

.

.

.

Even when numbered section headings are not appropriate, they can be a useful tool for a writer during the
draft stage, because they indicate where the organization has not been properly thought through. For exam-
ple, we often see manuals that start with a general topic and then describe details, without a transitional
overview.

A macro package should allow the writer to switch between numbered and unnumbered headings
easily. Both mm and ms do provide this capability, and we want to include it in our macros. However, we
also want to include more flexibility than either of these packages to define the format of headings.

Because headings are the signposts to the book’s structure, changing their appearance can make a big
difference in how the book is read. Different levels of headings need to stand out from the text to a greater
or lesser degree, so that readers can easily scan the text and find the topic that they want.

The mechanisms for emphasis (in troff) are font and size changes, and the amount of space before
and after a heading. Underlining and capitalization can also be used (especially in nroff but also in
troff) for alternate or additional emphasis.

In our package, we include five levels of heading: a chapter-level heading and four levels of num-
bered or unnumbered subsection headings.

As described in the previous section, our custom macro package incorporates several different ver-
sions of the basic macros required to produce technical documents. In each version, the name of the head-
ing macro is the same, but its definition is modified slightly to produce a different appearance. These dif-
ferent versions help us conform to the document styles used by our clients. Whenever we have a client who
needs a new format, we customize the macro definitions, rather than add new macros.

The beauty of this approach is that the input macros the user needs to enter in a document are identi-
cal, or nearly so. Thus, we don’t increase the number of new macros that our users must learn, and it elimi-
nates the recoding of existing documents to achieve a new format.

This approach is also useful when you support different types of output devices. Originally, our de-
signs were developed for the HP LaserJet printer, which supports a limited set of fonts and sizes. When we
purchased an Apple LaserWriter and Linotronic L100 typesetter, our formatting options increased, making
available multiple fonts and variable point sizes. In an environment supporting multiple types of printers,
you might want to adapt formats for specific printers.

An Extended ms Macro Package 399

The Chapter Heading

The chapter heading is in a class by itself, because it requires more emphasis than subsection headings, and
because the macro that produces it may need to initialize or reset certain registers used within the chapter
(such as section, figure, or table numbers).

In an arbitrary reversal of terminology, we call our chapter macro .Se (section). It could just as well
be called .CH for chapter, but we use .Ch for a subsection heading (as we’ll see in a moment) and want to
avoid confusion. In addition, this macro can be used for appendices as well as chapters, so the more gen-
eral name seems appropriate.

The chapter heading has three major parts:

• chapter-specific register initialization, including registers for section numbering, table and fig-
ure numbering, and page numbering

• appearance of the actual chapter break

• table of contents processing

Because this is a long macro definition, let’s look at it in sections.
.de Se \" section; $1 = number; $2 = name;
. \" $3 = type (Chapter, Appendix, etc)
. \"
. \" 1. Number Register Initialization
. \"
.ie !"\\$1"" \{. \" Test for sect number
. nr sE \\$1 \" Assign to register sE
. if !\\n(sE \{. \" Test if not a numeric
. .af sE A \" Handle appendices
. if "\\$1"A" .nr sE 1
. if "\\$1"B" .nr sE 2
. if "\\$1"C" .nr sE 3
. if "\\$1"D" .nr sE 4
. if "\\$1"E" .nr sE 5
. if "\\$1"F" .nr sE 6
. if "\\$1"G" .nr sE 7
. if "\\$1"H" .nr sE 8
. if "\\$1"I" .nr sE 9
. if "\\$1"J" .nr sE 10\}\}
. \" Only go as far as J
.el \{\
. nr sE 0
. tm Preface or if Appendix past letter J:
. tm Set number register sE to position
. tm of that letter in the alphabet
. tm and alter register format:
. tm For Appendix K, enter:
. tm .Se K "Title"
. tm .nr sE 11
. tm .af sE A
.\}
.if \\n%>1 .bp \" Check if consecutive sections
. \" in same file and break page
.nr % 1 \" Now reset page number
.nr PN 1
.af PN 1
.ie !"\\$1"" \{. \" Test for sect number
. \" to set page number type
. ds NN \\\\n(sE-\\\\n(PN
. ds H1 \\n(sE \" Set for subsection numbering
. \}
.el \{
. ds NN \\\\n(PN
. nr sE 0\}

400 Unix Text Processing

.ds RF *(NN \" Assign page number to footer

.nr fG 0 \" Initialize figure counter

.nr tB 0 \" Initialize table counter

The macro first initializes a number of registers. Chapters are usually numbered on the first page, along
with the title. If subsections are to be numbered, the chapter number is the root number for all headings.
We need to take this number as an argument, and store it into a register for later use.

Because appendices are usually lettered rather than numbered, we also need to consider the special
case of appendices. (This could be done with a separate macro; however, this package uses a single multi-
purpose macro). The code for this is quite cumbersome, but works nonetheless: if the first argument to the
macro is non-numeric, it is tested to see if it is one of the first ten letters in the alphabet. If so, a number is
stored into the register, but the output format is changed to alphabetic.

If the argument is not a letter between A and J, a message is printed. This message is more verbose
than you would generally want to use, but it is included to make the point that you can include detailed
messages.

The macro next sets up the special page numbering scheme used in many computer manuals—the
chapter number is followed by a hyphen and the page number (e.g., 1-1). This numbering scheme makes it
easier to make last minute changes without renumbering and reprinting the entire book.

Finally, the macro initializes counters for automatically numbering figures and tables. We’ll see how
these are used in a few pages.

The next portion of the macro is the part that is most variable—it controls the actual appearance of
the chapter heading. This is the part of the macro that has led us to develop several different versions.

In designing chapter headings, let your imagination be your guide. Look at books whose design you
like, and work from there. Three different designs we used on the HP LaserJet are shown in Figure 17-1.
(These designs are a compromise between aesthetics and the capabilities of the output device). This book
is another model.

The macro for the first heading in Figure 17-1 is used as follows:
.Se 2 "Getting Started with Alcuin"

or:
.Se A "Summary of Alcuin Drawing Primitives" "Appendix"

The heading starts on a new page. If a third argument is not present, it is assumed that the section type is
Chapter, and the section is labeled accordingly. An alternate section type can be specified in the optional
third argument. This argument is usually Appendix but can be any string the user wants printed before the
section number.

The portion of the macro definition that creates the first heading in Figure 17-1 follows:
.\" Part 2 of Se Macro: Output chapter heading
.RT
.in 0
.lg 0 \" Disable ligature before .tr
. \" Translate title to uppercase
.tr aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ
.sp
.na
. \" Test for section type argument
.ie !"\\$3"" .ds cH \\$3
.el .ds cH Chapter \" Default is chapter
. \" If section number supplied
. \" output section number and type
. \" in 14 pt. bold.
.if !"\\$1"" \{\
\s14\f3*(cH \\$1\f1\s0
\}
. \" If no section number but
. \" there is a type (i.e., Preface)
. \" then output section type

An Extended ms Macro Package 401

CHAPTER 2
GETTING STARTED WITH ALCUIN

2
Getting Started with Alcuin

Chapter 2
Getting Started with Alcuin

Figure 17.1 Some Different Styles of Chapter Heading

.if "\\$1"" .if !"\\$3"" \{\
\s14\f3*(cH\f1\s0
\}
.sp 5p
. \" Test for section title
. \" Print it in 14 pt. bold
.if !"\\$2"" \{\
\s14\f3\\$2\f1\s0
\}
.sp 6p
.ad b
.Hl \" Draw line
. \" Retranslate arguments
.tr aabbccddeeffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzz
.sp 3
.ns \" Enable no-space mode

There are a couple of points you may want to note about this code:

• The actual section title, as specified in the second argument, is forced to all uppercase using the
.tr request.

• The horizontal line under the title is drawn using a utility macro called .Hl (horizontal line),
which simply draws a line the width of the page, less any indent that is in effect:

402 Unix Text Processing

.de Hl \" Horizontal line. $1 = underline char

.br
\l’\\n(.lu-\\n(.iu\&\\$1’
.br
..

• No-space mode is turned on at the end of the macro, to inhibit inconsistent spacing caused by
users placing spacing requests or paragraph macros after the .Se macro. All of the heading
macros use this technique because inconsistent spacing around heading will give the page an
uneven look.

An alternate definition for this section of the macro follows. This code produces the heading in Fig-
ure 17-1.

.\" Part 2 of Se Macro (Alternate):

.ad r \" Right justified

.fl

.rs

.sp .75i \" Move down from top

. \" Section number in 24 pt. bold

.if !"\\$1"" \{\
\s24\f3\\$1\f1\s0\}
.sp 12p
. \" Section title in 20 pt. bold
.if !"\\$2"" \s20\f3\\$2\fP\s10
.sp 12p
. \" Optional 2nd line of title
.if !"\\$3"" \s20\f3\\$3\fP\s10
.sp 3
.ad b
.ns

This version is much simpler; it doesn’t print the section type at all, just the number or letter. However, be-
cause it prints a right-justified title, we have given the user the option of splitting a long title into two parts.

The final part of the macro (in either version) adds the section title to the table of contents. As was
the case with .Hl, this is done by an internal utility routine that is defined elsewhere. We’ll discuss how
this works later.

. \" Last Part of Se Macro

. \" Now to toc

.tC \\$1 \\$2 \\$3

..

A Mechanism for Numbered Headings

Before we describe the lower-level headings used within a chapter, we need to explore how to generate au-
tomatically numbered sections. We have defined a version of the ms .NH macro that is called internally by
our own heading macros. It has the same name and uses the same internal registers as the ms macro, but
the font and spacing requests specified in the ms .NH macro are removed. All that this macro now does is
generate the section number string.

.de NH \" redefine from -MS

.nr NS \\$1 \" Set NS to arg 1

.if !\\n(.$.nr NS 1 \" Set NS to 1 if no arg

.if !\\n(NS .nr NS 1 \" or NS is null or negative

.nr H\\n(NS +1 \" Increment Heading level register

. \" Test which level is in effect

.if !\\n(NS-4 .nr H5 0 \" then reset lower levels to 0

.if !\\n(NS-3 .nr H4 0

.if !\\n(NS-2 .nr H3 0

.if !\\n(NS-1 .nr H2 0

An Extended ms Macro Package 403

. \" Put together section number

.if !\\$1 .if \\n(.$.nr H1 1\" Set first level

.ds SN \\n(H1 \" Begin building SN

.ie \\n(NS-1 .as SN .\\n(H2 \" == 1.1 2nd level

.el .as SN . \" or == 1.

.if \\n(NS-2 .as SN .\\n(H3 \" == 1.1.1 3rd

.if \\n(NS-3 .as SN .\\n(H4 \" == 1.1.1.1 4th

.if \\n(NS-4 .as SN .\\n(H5 \" == 1.1.1.1.1 5th
’ti \\n(.iu
*(SN \" Output SN string
..

This macro repays study, because it shows several clever ways to use number registers. First, the argument
to the macro is placed into a number register. This register is then used to select which of a series of further
registers will be incremented:

.nr NS \\$1
.
.
.

.nr H\\n(NS +1

If the macro is called as .NH 1, register H1 will be incremented; if the call is .NH 2, register H2 will be
incremented, and so on. Then, depending on the value of that same NS register, the appropriate register
value will be appended to the section number string SN.

Subsection Headings

In our package, we allow four levels of subsection headings, created by macros called .Ah (A head)
through .Dh (D head). The macros for all four levels have the same essential structure; they differ only in
the appearance of the printed text. Again, we have different styles for different clients.

The distinction between levels of headings in one of those styles is as follows:

• The A head prints the heading in 14-point bold type, all uppercase, with 26 points of space
above the heading and 18 points below.

• The B head prints the heading in 14-point bold type, mixed case, with 23 points of space above
the heading and 15.5 points below.

• The C head prints the heading in 12-point bold type, mixed case, with 18 points of space above
the heading and 12 points below.

• The D head prints the heading in 10-point bold type, mixed case, with 18 points of space above
the heading and none below. The heading actually runs into the text and is separated from it
only by a period.

All levels of headings can be either numbered or unnumbered, depending on the state of a number register
called nH. If nH is 0, heading are unnumbered; if it is 1, they are numbered.

Here is one version of the .Ah macro. From this example, you should be able to build the lower-
level headings as well

.de Ah \" A-heading; $1 = title

.sp 26p

.RT

.ne 8 \" Need room on page

.ps 14 \" 14 pt. on 16 pt. heading

.vs 16

.lg 0

.tr aAbBcCdDeEfFgGhHjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ

.bd I 4 \" Embolden italic font (optional)
\f3\c \" Bold font; concatenate next input
.if \\n(nH \{. \" if producing numbered heads
. ie \\n(sE .NH 2 \" If chapter (Se macro) is

404 Unix Text Processing

. \" numbered, then 2nd level

. el .NH 1\} \" If not, 1st level head
\&\\$1\f1 \" Output title
.LP 0 \" Paragraph reset; (0 = no space)
. \" RT resets default point size
.bd I \" Turn off emboldening
.tr aabbccddeeffgghhiijjkkllmmnnooppqqrrssttuuvvwwxxyyzz
.lg
.sp 18p
.ns
.tC *(SN \\$1 Ah \" Output TOC info
..

Some pointers: First, whenever you force capitalization with .tr, be sure to turn off ligatures, because they
do not capitalize. Second, when you boldface a user-supplied string, it is wise to artificially embolden ital-
ics as well, in case the user embeds an italic font switch in the heading. Third, don’t forget to enter no-
space mode to ensure consistent spacing following the heading.

As you can see, the .NH macro is called to generate a section heading only if the nH register has
been set. In addition, the macro checks to make sure that a major section number has been specified by the
.Se macro. As you may recall, .Se sets the first number in the numbered heading string (H1). If .Se has
been called, the subsection headings start at level 2, otherwise they start from the top.

To make it very easy for even novice users to specify whether they want numbered or unnumbered
headings, the package includes a macro called .Nh (numbered headings) that turns numbering on or off:

.de Nh \" Numbered headings; $1 = turn on (1) or off (0)

. \" $1 = 2 will cause only A heads to be numbered

.nr nH \\$1

..

This is a matter of macro package style, as mentioned earlier. Steve Talbott’s style, when he initially devel-
oped this package was to code everything as macros, even where the macro simply sets a number register or
defines a string. This makes the package very easy to learn, because you can give a new user a concise, un-
ambiguous list of macros to enter into a file.

Other examples of this style include the .Ti and .St (title and subtitle) macros, described in Ap-
pendix F, which simply define the ms RF and LF string for running footers. Because of the mnemonically
named macros, new users don’t have to remember whether the title goes in the right footer or the left, and
so on. They simply enter the title of the book and chapter as arguments to the respective macros. The dis-
advantage is that users are insulated from an understanding of what is really going on, which may be an ob-
stacle to learning more advanced skills.

An Alternate Definition

To give you an idea of how easy it is to change the look of a document by redefining a few macros, let’s
look at how we could redefine the heading for this section. One popular layout style in technical manuals
uses a very wide left margin in which only the headings are printed, as follows.

An Alternate Definition To give you an idea of how
easy it is to change the
look of a document...

Here’s the modified macro to produce this heading:
.de Ah \" A-heading; alternate version
. \" Requires resetting default page
. \" (PO) to allow for extra offset.
. \" .nr PO 2.5i for 1.5 extra offset

An Extended ms Macro Package 405

.nr Po 1.5i \" Set amount of extra offset

.nr Gw .2i \" Set width of gutter

.mk \" Mark vertical position

.po -1.5i \" Set new page offset

.ll \\n(Pou-\\n(Gwu

.ps 12 \" Set 12 pt. on 14 pt.

.vs 14
\&\f3\\$1\f1 \" Output header in bold
.rt \" Return to vertical position
.po \\n(POu \" Reset default page offset
.LP 0 \" Reset point size and line length
.ns
.tC *(SN \\$1 Ah \" Output TOC info
..

Figure and Table Headings

In technical manuals, it is common to number and title all figures and tables, both for easy reference from
within the text, and for collection into lists of figures and tables that will appear in the table of contents.

These macros are easy to construct and, apart from whatever appearance you decide to give them,
nearly identical in content. There is a “start” macro and an “end” macro:

.de Fs \" Start figure; $1 = reserved space;

. \" $2 = F, floating figure

.RT

.if "\\$2"F" \{. \" Figure can float

. nr kF 1

. KF\}

.if \\$1 \{. \" Specify amount of space

. ne \\$1 \" required for paste-up

. fl

. rs

. sp \\$1\}

..

.de Fe \" Figure end; $1 = title

.sp

.bd I 3

.nr fG +1 \" Increment Figure counter

. \" then determine format

.ie \\n(Se .ds fG *(H1-\\n(fG

.el .ds fG \\n(fG

.ce \" Output centered figure
\f3Figure *(fG. \\$1\f1
.tC "*(fG" "\\$1" "Figure"
.bd I
.sp
.if \\n(kF=1 .KE \" End keep if in effect
.tC "*(fG" "\\$1" "Figure" \" Output TOC info
..

As you can see, the .Fs (figure start) macro allows the user to reserve space for a figured to be pasted in,
and for it to float to a new page, using the ms “floating keep” mechanism.

Neither of the options are necessary. The macro can simply bracket a figure created with pic, for
example, in which case all that the macro provides is a consistent amount of space before the figure starts.

The .Fe (figure end) macro does most of the work. If a keep is in effect, .Fe terminates it. In ad-
dition, it prints the figure caption below the figure and adds a consistent amount of space below the caption.
The figure is automatically numbered with the section number, and a figure number that is incremented
each time the macro is called. As you may remember, this figure number register, fG, was initialized to 0
in .Se.

406 Unix Text Processing

To give the user some options with figure numbering, a second argument allows the user to turn it off
entirely. In addition, if the section is unnumbered, the section number and hyphen will be omitted. To ac-
complish this involves a little juggling of strings and number registers (which is something you should plan
to get used to when you write macros). Notice that we use the string H1 for the section number rather than
the section number register itself (sE), because we went to some trouble in the .Se macro to handle let-
tered appendices as well as numbered chapters.

You could easily add optional appearance features to this macro. For example, in one implementa-
tion, we draw a horizontal line above and below the figure, and print the caption left justified and in italics
below the bottom line.

The figure end macro also calls the table of contents macro, which will be described later.

The macros for labeling tables are very simple, because the standard .TS and .TE macros do every-
thing necessary except providing consistent pre- and post-spacing and printing the caption. In this case, the
caption is at the top:

.de Ts \" Table start; $1 = title

.nr tB +1 \" Increment Table counter

. \" Determine format

.ie \\n(Se .ds tB *(H1-\\n(tB \" Section Table

.el .ds tB \\n(tB

.sp

.ce 2 \" Output label and
\f3Table *(tB. \" title on 2 lines
\&\\$1\f1
.tC "*(tB" "\\$1" "Table" \" Output TOC info
.bd I
.LP \" Paragraph reset
..
.de Te \" Table end -- no arguments
.RT \" Reset
.sp
..

Lists, Lists, and More Lists

One of the significant features lacking in the ms macros is the ability to generate automatically numbered
or lettered lists. You can use the .IP macro and number or letter a list yourself—but what good is a com-
puter if it can’t handle a task like this?

One of the nicest features of Steve Talbott’s extended ms package is its set of comprehensive, gen-
eral-purpose list generation macros. There are three macros: .Ls (list start), .Li (list item), and .Le (list
end). Unlike mm, in which different types of lists must be specified using different macros, here you re-
quest a different type of list by giving an argument to the .Ls macro. You can request any of the types of
lists in Table 17-1.

Table 17.1 List Types

Argument List Type

A Alphabetic with uppercase letters
a Alphabetic with lowercase letters
B Bulleted with • by default
N Numbered with arabic numerals
R Numbered with uppercase roman numerals
r Numbered with lowercase roman numerals

The bulleted list uses the bullet character (•)) by default. However, as you will see, the macro allows
you to specify an alternate bullet using an optional third argument. This “bullet” could be a dash, a box

An Extended ms Macro Package 407

(\(sq), a checkmark (\(sr), or any other character.

Lists can be nested, and there is a default list type for each level of nesting, so the type argument does
not really need to be specified.

Here’s the list start macro:
.nr l0 0 1 \" Initialize nested list level counter
.de Ls
.\" list start; $1 =A(lpha), a(alpha), B(ullet), N(umeric),
.\" R(oman), r(oman); $2 = indent
.\" $3 = alternate bullet character
.br
.if !"\\$1"A" .if !"\\$1"B" .if !"\\$1"N" .if !"\\$1"R" \
. if !"\\$1"r" .if !"\\$1"a" .if !"\\$1"" \
. tm Ls: Need A a B N R r or null as list type
.nr l\\n+(l0 0 1
.ie "\\$1"" \{\ \" Set defaults
. if "\\n(l0"1" .af l\\n(l0 1 \" Numeric at 1st level
. if "\\n(l0"2" .af l\\n(l0 a \" lc alpha at 2nd level
. if "\\n(l0"3" .af l\\n(l0 i \" lc roman at 3rd level
. if "\\n(l0"4" .ds l\\n(l0 \(bu \" Bullet at 4th level
. if "\\n(l0"5" .ds l\\n(l0 \f3\-\f1 \" Dash at 5th level
. if \\n(l0-5 .ds l\\n(l0\(bu \" Bullet above 5th level
. if \\n(l0-3 .nr l\\n(l0 0-1 \}
.el \{\
. if "\\$1"A" .af l\\n(l0 A
. if "\\$1"a" .af l\\n(l0 a
. if "\\$1"B"\{\
. if "\\$3"" .ds l\\n(l0 \(bu
. if !"\\$3"" .ds l\\n(l0 \\$3
. nr l\\n(l0 0-1\}
. if "\\$1"R" .af l\\n(l0 I
. if "\\$1"r" .af l\\n(l0 i \}
.ie !"\\$2"" .nr i\\n(l0 \\$2 \" List indent
.el .nr i\\n(l0 5 \" Default indent
.RS
..

When you first look at this macro, you may be a little overwhelmed by the complex number register names.
In fact, there is not much to it.

One number register, l0, is used as a counter for nested lists. As you can see, this register is initial-
ized to 0 outside of the list macro definition itself. Then, when the .Ls macro is called, this register is au-
toincremented at the same time as it is used to define the name of another number register:

.nr l\n+(l0 0 1

It is this second number register interpolation— l\n+(l0—that is actually used to number the list. This
is a technique we promised to show you back when we were first describing number registers. We create a
series of related number register names by interpolating the value of another register as one character in the
name.

Think this through for a moment. The first time .Ls is called, the request:
.nr l\\n(l0 0 1

defines a number register that is actually called l1 (the letter l followed by the value of number register
l0—which is 1). A second call to .Ls without closing the first list (which, as we shall see, bumps the
counter back one) will define number register l2, and so on.

In a similar way, another series of number registers (i\\n(l0) allows a different indent to be speci-
fied for each nested level, if the user so desires.

With the exception of the bulleted list, all of the different list types are numbered using the same
number register (ln, where n is the nesting depth). The different types of lists are created simply by chang-
ing the output format of this register using the .af request.

408 Unix Text Processing

Here’s the .Li macro:
.de Li \" List item; $1 = 0 no blank line before item
.br
.if "\\$1"0" .ns
.ie "\\n(l\\n(l0"-1" .IP "*(l\\n(l0" "\\n(i\\n(l0"
.el \{\
.nr l\\n(l0 +1
.IP "\\n(l\\n(l0." "\\n(i\\n(l0" \}
..

The actual list counter itself (as opposed to the nesting counter) is incremented, and the appropriate value
printed.

The number and the associated text is positioned with the standard ms .IP macro. If you don’t have
access to the ms macros, you could simulate the action of the .IP macro as follows:

.de IP

.nr Ip 1

.sp \\n(PDu

.in \\$2u

.ti -\\$2u

.ta \\$2u
\\$1\t\c
..

However, there is one drawback to using an .IP -style macro as the basis of the list.

• The .IP macro puts its argument at the left margin, as was done with this
sentence.

• Instead, we’d like something that puts the mark in the middle of the indent,
as was done with this sentence.

Here’s the macro that produced the second example:
.de IP
.nr Ip 1
.sp \\n(PDu
.in \\$2u
.nr i1 \\$2/2u+\w’\\$1’ \" Amount to move left
.nr i2 \\$2-\w’\\$1’ \" Amount to move back
.ta \\n(i2u
.ti -\\n(i1u
\\$1\t\c
..

This version of the macro places the mark not just at a position half the depth of the indent, but exactly in
the middle of the indent by adjusting the indent by the width of the mark argument. Number registers are
used for clarity, to avoid nesting the various constructs too deeply.

(Note that this simplified .IP macro lacks some of the functionality of the ms .IP macro, which
saves the current indent and therefore allows you to nest indents by using the .RS and .RE macros).

If you are using ms, and you want to create a macro that puts the mark in the center of the indent, be
sure to name this macro something other than .IP, so that you don’t conflict with the existing macro of
that name.

Here’s the list end:
.de Le \" List end; $1 = no blank line following last item
.br
.rr l\\n(l0
.rr i\\n(l0
.rm l\\n(l0
.nr l0 -1

An Extended ms Macro Package 409

.RE

.ie !\\n(l0 \{\

. ie "\\$1"0" .LP 0

. el .LP\}

.el .if !"\\$1"0" .sp \\n(PDu

..

This macro removes the list numbering registers and strings, decrements the nested list counter, and calls
the ms .RE macro to “retreat” back to the left (if necessary because of a nested loop). Finally, it leaves a
blank line following the end of the list. (As you might remember, PD is the ms register containing the
paragraph distance—0.3v by default).

Source Code and Other Examples

In a technical manual, there are often further issues brought out by the need to show program source code
or other material that loses essential formatting if it is set with proportional rather than monospaced type.

As previously discussed, the basic trick in ditroff is to use the CW font. If you are using otroff,
you will need to use the cw preprocessor (see your UNIX manual for details) or some other type of
workaround. (When we were using otroff, our print driver allowed font substitutions based on size. We
told the driver to use the printer’s constant-width font whenever troff used a point size of 11. Then, we
wrote a macro that changed the point size to 11, but used .cs to set the character spacing to the actual size
for the printer’s constant-width font. This was not a very elegant solution, but it worked—so if you are
stuck with otroff don’t despair. Put your ingenuity to work and you should come up with something).

Besides the change to the CW font, though, there are several other things we’d like to see in a macro
to handle printouts of examples. We’d like examples to be consistently indented, set off by a consistent
amount or pre- and post-line spacing, and set in no-fill mode.

Here’s an example of a pair of macros to handle this situation:
.de Ps \" Printout start; $1 = indent (default is 5 spaces)
.br
.sp \\n(PDu
.ns
.nr pS \\n(.s \" Save current point size
.nr vS \\n(.v \" Save current vertical spacing
.nr pF \\n(.f \" Save current font
.nr pI \\n(.i \" Save current indent
.ps 8
.vs 10
.ft CW
.ie !"\\$1"" .in +\\$1n
.el .in +5n
.nf
..
.de Pe \" Printout end; $1 non-null, no concluding
.br
.if "\\$1"" .sp \\n(PDu
.ps \\n(pSu
.vs \\n(vSu
.ft \\n(pF
.in \\n(pIu
.rr pS
.rr vS
.rr pF
.rr pI
.fi
..

The trick of saving the current environment in temporary registers is a useful one. The alternative is to use
a separate environment for the printouts, but this assumes that the available environments are not already in

410 Unix Text Processing

use for some other purpose. You could also call a reset macro to restore the default state—but this may not
actually be the state that was in effect at the time.

In addition, you shouldn’t rely on troff’s ability to return to the previous setting by making a re-
quest like .ll without any argument. If you do so, an error might result if the user has himself made an
.ll request in the interim.

In short, you should either save registers or use a different environment whenever you change format-
ting parameters in the opening macro of a macro pair. Then restore them in the closing macro of the pair.

Notes, Cautions, and Warnings

Another important macro for technical manuals is one that gives a consistent way of handling notes, cau-
tions, and warnings. (Traditionally, a note gives users important information that they should not miss, but
will not cause harm if they do. A caution is used for information that, if missed or disregarded, could lead
to loss of data or damage to equipment. A warning is used for information that is critical to the user’s life
or limb).

Obviously, this is a simple macro—all that is required is some way of making the note, caution, or
warning stand out from the body of the text. You could redefine the macro shown here in any number of
ways depending on the style of your publications.

.de Ns \" note/caution/warning $1 = type "N", "C", "W"

.sp 2

.ne 5

.ce

.if !"\\$1"N" .if !"\\$1"C" .if !"\\$1"W" \{\

. tm "Need N, C, or W as argument for Ns macro-using N"
\f3NOTE\f1\}
.if "\\$1"N" \f3NOTE\f1
.if "\\$1"C" \f3CAUTION\f1
.if "\\$1"W" \f3WARNING\f1
.sp
.ns
.nr nI \\n(.iu \" Save current indent, if any
.nr nL \\n(.lu \" Save current line length
.ie \\nS>0 .nr IN 5n \" Make indent less if in small format
.el .nr IN 10n \" Larger indent for full-size page
.in +\\n(INu \" Indent specified amount
.ll -\\n(INu \" Decrement line length same amount
..
.de Ne \" "note end"; no args
.in \\n(nIu \" Restore previous indent
.ll \\n(nLu \" Restore previous line length
.rr nI \" Remove temporary registers
.rr nL
.sp 2
..

A warning looks like this:

WARNING

You should be careful when reading books on troff, because they can be damag-
ing to your health. Although escape sequences are allowed, they are not exactly
high adventure.

An Extended ms Macro Package 411

A different version of a caution macro is shown below. It uses a graphic symbol to mark a caution
statement.

CAUTION

One client had a convention of marking a
caution statement with a large diamond in a
square. These diamonds will appear in a
second color in the printed book.

To produce the escape sequences to draw the symbol, we used pic, processing the description and captur-
ing it in a file. Then we read it into our macro definition. (We could also have produced the escape se-
quences to draw the symbol without pic’s help; this would result in much more compact code). The draw-
ing of the symbol does take up most of the .Gc macro definition. Before we actually output the symbol,
the current vertical position is marked. After it is output, we mark its bottom position. Then we return to
the top before placing the warning label and processing the text. After the caution statement is output, the
closing macro, .GE, checks the current vertical position against the bottom position of the symbol.

.de Gc \" Graphic Caution Macro

.ne 10

.mk a \" Mark current top position

.br \" pic output belongs here
\v’720u’\D’l0u -720u’
.sp -1
\D’l720u 0u’
.sp -1
\h’720u’\D’l0u 720u’
.sp -1
\h’720u’\v’720u’\D’l-720u 0u’
.sp -1
\h’360u’\D’l360u 360u’
.sp -1
\h’720u’\v’360u’\D’l-360u 360u’
.sp -1
\h’360u’\v’720u’\D’l-360u -360u’
.sp -1
\v’360u’\D’l360u -360u’
.sp -1
.sp 1+720u \" End of pic output
.sp
.mk q \" Mark bottom of symbol
.sp |\\nau \" Move back to top (.mk a)
.in +1.5i \" Indent to right of symbol
.ll -.5i \" Reduce line length
.sp .5v
.ce
\f3CAUTION\f1 \" Output Caution label
.sp .3v
..
.de GE \" Graphic Caution end
.br
.sp
.in \" Reset previous settings
.ll
. \" If bottom of symbol (.mk q)
. \" is below current vertical position
. \" then move to that position
.if \\nqu>\\n(nlu+\\n(.vu .sp |\\nqu
.sp .3v
..

412 Unix Text Processing

Table of Contents, Index, and Other End Lists

Here’s the part you’ve all been waiting for. One of the nicest things a formatter can do for a writer is auto-
matically generate lists such as a table of contents and an index. These are very time consuming to produce
manually, and subject to error. There are basically two ways to do the trick, and both apply to an index as
well as a table of contents, endnotes, and other collected lists.

The technique used by mm, which generates an automatic table of contents at the end of each format-
ting run, is to collect headings into a diversion using the .da request. This diversion is then output from
within a special macro called the “end macro,” which we have yet to discuss.

The second technique is to use the .tm request to write the desired information to standard error out-
put. Then that output is redirected to capture the messages in a file, where they can be edited manually or
automatically processed by other programs.

The advantage of the first approach is that it is clean and simple, and entirely internal to the formatter.
However, it is really suitable only for short documents. A long document such as a book is not normally
formatted in a single pass, but chapter by chapter. It is not desirable to format it all at once just to get the
table of contents at the end. In addition, a large document generally will end up creating a large diver-
sion—often one that is too large for troff to handle.

The second approach, on the other hand, opens up all kinds of possibilities for integration with other
tools in the UNIX environment. The output can be saved, edited, and processed in a variety of ways. As
you can imagine from our philosophy of letting the computer do the dirty work, this is the approach we pre-
fer.

However, there is still a place for diversions, so we’ll take a close look at both approaches in the sec-
tions that follow.

Diverting to the End

Although we prefer to create our major end lists—the table of contents and index—by writing to stderr,
we find it very useful to use diversions for another type of list.

We’ve added a couple of special macros that allow a writer to insert remarks intended specifically for
the reviewers of a draft document or for personal use. Because technical reviewers frequently miss ques-
tions embedded in the text, we designed the .Rn macro to highlight notes. This macro makes these re-
marks stand out in the text and then collects them for output again at the end of the document.

.de Rn \" Note to reviewers : $1 = Note

. \" Print note in text and at end

. \" Output note first

.sp
\f3Note to reviewers:\fP \\$1
.sp
.ev 2
.da rN \" Then append into diversion
.sp 0.2v
.in 0
.ie "*(NN"" \(sq Page \\n(PN: \\$1
.el \(sq Page *(NN: \\$1
.br
.da
.nr RN 1 \" Flag it for EM
.ev
..

Another macro, .Pn, is used to collect a list of personal notes or reminders and output them on a page at
the end. These notes do not appear in the body of the text.

.de Pn \" Personal Note; $1 = note

An Extended ms Macro Package 413

. \" Note listed at end, but not in text

.ev 2

.if \\n(Pn<1 .nr Pn 0 1 \" Set up autoincrement counter

.da pN

.br

.IP "\\n+(Pn." 5n
\\$1
.ie "*(NN"" (Page \\n(PN)
.el (Page *(NN)
.br
.da
.nr pN 1 \" Flag it for EM
.ev
..

Only the .Rn macro produces output in the body of the document, but both macros append the notes into a
diversion that we can process at the end of the document. The divert and append (.da) macro creates a
list of notes that can be output by invoking the macro created by the diversion.

For each macro, we format the lists slightly differently. In the .Rn macro, we print a box character
() (to give the feeling of a checklist), then the page number on which the review note occurred. This al-
lows the reviewer or the writer to easily go back and find the note in context. In the .Pn macro, we use an
autoincrementing counter to number personal notes; this number is output through .IP. It is followed by
the note and the page reference in parentheses.

The formatting of text inside a diversion can be tricky. The text could be formatted twice: when it is
read into the diversion, and when the diversion is output. The one thing to keep in mind is that you don’t
want line filling to be in effect both times. If line filling is in effect when the text is read into the diversion,
you should turn it off when the diversion is output. You can also use transparent output (\!) to hide
macros or requests so that they will be executed only at the time the diversion is output. We have also taken
the precaution of processing the diversion in a separate environment.

Now what about printing the list at the end? Well, as it turns out, nroff and troff include a spe-
cial request called .em that allows you to supply the name of a macro that will be executed at the very end
of the processing run, after everything else is finished.

The .em request allows you to define the name of a macro that will be executed when all other input
has been processed. For example, the line:

.em EM

placed anywhere in a file or macro package, will request that the macro .EM be executed after everything
else has been done. The definition of .EM is up to you.

The ms macros already have specified the name of this macro as .EM, the end macro. In its usual
obscure way, mm calls its end macro .)q. If you are writing your own package, you can call it anything
you like. You can either edit the existing end macro, or simply add to it using the .am (append to macro)
request.

All that ms does with this macro is to process and output any diversions that have not been properly
closed. (This might happen, for example, if you requested a floating keep, but its contents had not yet been
printed out).

The end macro is a good place to output our own special diversions that we’ve saved for the end.
What we need to do now is to add some code for processing our list of review notes:

.de EM

.br

.if \\n(RN=1 \{\
\&\c
’bp
.
.
.ce
\f3NOTES TO REVIEWERS\f1
.sp 2

414 Unix Text Processing

Reviewers, please address the following questions:
.sp
.ev 2
.nf
.rN
.ev
.\}
.if \\n(pN=1 \{\
.br
\&\c
’bp
.
.ce
\f3Notes To Myself:\f1
.sp 2
.ev 2
.nf
.pN
.ev
.\}
..

(Note: we have found that to print anything from the .EM macro in the standard ms package, it is necessary
to invoke .NP explicitly following a page break. However, when using our simplified version of this pack-
age as shown in the last chapter, our .EM does not need a .NP). The list collected by the .Rn macro is
printed on a new page, looking something like this:

NOTES TO REVIEWERS

Reviewers, please address the following questions:

Page 3-1: Why can’t I activate the bit pad before opening a font file?

Page 3-7: Is there a size restriction on illuminated letters?

A Diverted Table of Contents

Given the preceding discussion, it should be easy for you to design a diverted table of contents. The magic
.tC macro we kept invoking from our heading might look something like this:

.de tC \" table of contents; $1=sec number;

. $2=title; $3=type

.if "\\$3"*(cH"\{\

.da sL \" Divert and append to section list

.sp 3
*(cH \\$1: \\$2
.sp 1.5
.da
.\}
.if "\\$3"Ah"\{\
.da sL \" Divert and append to section list
.br
\\$1 \\$2\\a\\t*(NN
.br
.da
.\}
.if "\\$3"Bh"\{\
.da sL \" Divert and append to section list
.br

An Extended ms Macro Package 415

\\$1 \\$2\\a\\t*(NN
.br
.da
.\}
.if "\\$3"Figure" \{\
.da fL \" Divert and append to figure list
\\$1 \\$2\\a\\t*(NN
.da
.\}
.if "\\$3"Table" \{\
.da tL \" Divert and append to table list
\\$1 \\$2\\a\\t*(NN
.da
.\}
..

The diversion sL is set up to handle the main heading (chapter, appendix, unit, or section) and two levels of
subheadings (A-heads or B-heads). The diversions fL and tL are set up to compile lists of figures and ta-
bles, respectively.

In the end macro, to print the table of contents, you have to cause a break to a new page, print: intro-
ductory captions, and so on, and then follow by outputting the collected diversion of each type. The fol-
lowing example shows the code to print:

.br \" Automatically invoke diverted toc
\&\c \" by including these lines in EM macro
’bp \" Or place in own macro
.ta \\n(LLu-5n \\n(LLuR
.ce
\f3Table of Contents\fR
.sp 2
.nf \" Process in no-fill mode
\\t\f3Page\fP
.sL
.rm sL \" Clear diversion
. \" Add code here to output figure
. \" and table list diversions

We set two tab stops based on the default line length (\n(LLu). The second tab stop is used to set a right-
adjusted page number in the right margin. The first tab stop is used to run a leader from the entry to the
page number. The escape sequences that output the leader and tab (\a and \t) were specified in the .tC
macros. (And to protect the escape sequence inside a diversion an extra backslash was required).

Now we can obtain a table of contents each time we format the document. The format of the table of
contents shows the hierarchical structure of the document:

Table of Contents
Page

Chapter Two: Getting Started with Alcuin

2.1 Objectives of this Session .. 2-1
2.2 Starting Up the System.. 2-2
2.2.1 Power-up Procedure.. 2-2
2.2.2 Software Initialization .. 2-3
2.3 Creating Simple Glyphs... 2-4

416 Unix Text Processing

When Diversions Get Too Big

One of the major problems with collecting a table of contents in a diversion is that, with a large document,
the diversions quickly grow too large for the formatter to handle. It will abort with a message like “Out of
temp file space.”

The solution is to break up your diversions based on the number of entries they contain. One way to
do this is to base the name of the diversion on a number register, and do some arithmetic to increment the
name when the diversion has been added to a certain number of times.

For example, instead of just diverting to a macro called .sL, we would divert to one called xn, where
n is a number register interpolation generated as follows:

.de tC
.
.
.

.nr xX +1

.nr x0 \\n(xX/100+1

.da x\\n(x0
.
.
.

Each time .tC is called, register xX is incremented by 1, and its value, divided by 100, is placed into an-
other register, x0. Until the value of register xX exceeds 100—that is, until .tC has been called 99
times—x0 will be equal to 1. From 100 to 199, x0 will be equal to 2, and so on.

Accordingly, the actual macro into which output is diverted—represented as x\\n(x0— will first
be x1, then x2, and so on.

When it comes time to output the collected entries, instead of calling a single diversion, we call the
entire series:

.x1

.x2

.x3

.x4

Here, we are assuming that we will have no more than 400 entries. If there are fewer entries, one or more
of these diverted macros may be empty, but there’s no harm in that. If there are more than 400, the contents
of .x5 (et al) would still have been collected, but we would have failed to print them out. We have the op-
tion of adding another in the series of calls in the end macro, or rebuking the user for having such a large ta-
ble of contents!

Writing to Standard Error

Although we’ve answered one of the objections to a diverted table of contents by the register arithmetic just
shown, there is another, more compelling reason for not using this approach for large documents: there is
no way to save or edit the table of contents. It is produced on the fly as part of the processing run and must
be recreated each time you print the document.

For a very large document, such as a book, this means you must format the entire book, just to get the
table of contents. It would be far preferable to produce the table of contents in some form that could be
saved, so the tables from each chapter could be assembled into a single large table of contents for the entire
book.

(Incidentally, producing a table of contents for a large document introduces some other issues as
well. For example, you may want to have an overall table of contents that shows only top-level headings,
and individual chapter table of contents that give more detail. Working out the macros for this approach is
left as an exercise for the reader).

An Extended ms Macro Package 417

The best way to produce a table of contents for a large book is simply to write the entries to standard
error using .tm, and rely on an external program to capture and process the entries.

In ditroff, you can instead use the .sy request to execute the echo command and redirect the
entries to a file. An example of this method might be:

.sy echo \\$1 \\$2\a\t*(NN >> toc$$

However, this approach causes additional system overhead because it spawns echo subprocesses. Also,
because it does not work with otroff, we have used the more general approach provided by .tm.

Our .tC macro might look like this:
.de tC \" Standard error; table of contents;
. \" $1=sect number; $2=title; $3=type
.if "\\$3"*(cH"\{\
.tm ><CONTENTS:.sp 3
.tm ><CONTENTS:*(cH \\$1\\$2
.tm ><CONTENTS:.sp 1.5
.\}
.if "\\$3"Ah" .tm ><CONTENTS:\\$1 \\$2\a\t*(NN
.if "\\$3"Bh" .tm ><CONTENTS:\\$1 \\$2\a\t*(NN
.if "\\$3"Figure" .tm ><FIGURE:\\$1 \\$2\a\t*(NN
.if "\\$3"Table" .tm ><Table:\\$1 \\$2\a\t*(NN
..

Instead of diverting the section lists to separate macros from the lists of figures and tables, we send all en-
tries out to standard error.

To capture this output in a file, we simply need to redirect the error output:
$ ditroff -Tps ... 2> toc

To do this, we will use our format shell script, which was introduced in Chapter 12, and will be revisited
in the next (and final) chapter.

Because actual error messages might be present in the output, we prefix a label indicating the type of
entry, for example:

><CONTENTS:
><FIGURE:
><TABLE:

It will be up to some outside program to separate the different groups of entries and subject them to further
processing. We’ll use a sed script to separate the entries in the table of contents from the figure lists, table
lists, and index entries. (In the next chapter, we’ll look at the post-processing of these entries). Now, let’s
look at a macro to generate index entries that will also be written to standard error.

Indexes

A simple index can be handled in much the same way as a table of contents. A macro for a simple index
might look like this:

.de XX

. \" Section-page number set up

. \" by Se macro in string NN

.tm INDEX:\\$1\t*(NN

..

You might also want to have a macro that doesn’t print the page number, but is just used for a cross-
reference:

.XN \" Cross-reference Index entry, no page number

.tm INDEX:\\$1

..

You might also want a macro pair that will index over several different pages:
.de IS \" Index macro

418 Unix Text Processing

. \" Interpolate % for page number

.ie \\n(.$=1 .tm INDEX:\\$1, \\n%

.el \{\

.nr X\\$2 \\n%

.ds Y\\$2 \\$1 \}

.if \\n(.t<=1P .tm *\\$1* near end of page

.if \\(nl<1.2i .tm *\\$1* near top of page

..

.de IE \" Index end macro

.ie !\\n(.$=1 .tm IE needs an argument!

.el .tm INDEX:*(Y\\$1, \\n(X\\$1-\\n%

.if \\n(.t<=1P .tm **(Y\\$1* near end of page

.if \\n(nl<1.2i .tm **(Y\\$1* near top of page

..

The .IS macro prints out an entry, just like .XX. However, in addition, it saves the argument into a string,
and takes a letter or digit as an optional second argument. This second argument is used to define a number
register and string that will be saved, and not printed until the index and macro is called with the same argu-
ment. The index and macro print the starting number, followed by a hyphen and the current page number.

All of this discussion still avoids one major issue. The real trick of indexing is what you do with the
raw output after you have it, because a great deal of sorting, concatenation, and reorganization is required to
rearrange the entries into a meaningful order. Fortunately or unfortunately, this topic will have to wait until
the next chapter.

4Chapter 18

Putting It All Together

Before returning to the topic of table of contents and index processing, using shell tools that we will build,
let’s review what we’ve covered so far.

We started with a promise to show you how the UNIX environment could support and enhance the
writing process. To do that, we’ve had to delve into many details and may have lost the big picture.

Let’s return to that big picture here. First, UNIX provides what any computer with even rudimentary
word-processing capabilities provides: the ability to save and edit text. Few of us write it perfectly the first
time, so the ability to rewrite the parts of a document we don’t like without retyping the parts we want to
keep is a major step forward.

However, no one will argue that UNIX offers better tools at this simple level than those available in
other environments. The vi editor is a good editor, but it is not the easiest to learn and lacks many stan-
dard word-processing capabilities.

Where UNIX’s editing tools excel is in performing complex or repetitive edits. A beginner may have
little use for pattern matching, but an advanced user cannot do without it. Few, if any, microcomputer-
based or standalone word processors can boast the sophisticated capabilities for global changes that UNIX
provides in even its most primitive editors.

When you go beyond vi, and begin to use programs such as ex, sed, and awk, you have un-
matched text-editing capabilities—power, if you will, at the expense of user friendliness.

Second, UNIX’s hierarchical file system, multiuser capabilities, and ample disk storage capacity
make it easy to organize large and complex writing jobs—especially ones involving the efforts of more than
one person. This can be a major advantage of UNIX over microcomputer-based or dedicated word proces-
sors.

Anyone who has tried to write a multiauthor work on a floppy-based system knows how easy it is to
lose track of the latest version of a file, and to get lost among a multitude of disks. UNIX makes it easy to
share files, and to set up a consistent framework for managing them.

In addition to storing multiple versions of documents on line, you can use the file system to set up
specific environments for writing. For example, a separate .exrc file in each directory can define abbre-
viations and command maps specific to a book or section.

Third, UNIX provides a wide range of formatting tools. Using troff, pic, tbl, and eqn, you can
easily typeset books. This is not as unique and powerful a capability as it was even two or three years ago.
The advent of low-cost laser printers and wysiwyg “desktop publishing” tools like Microsoft WORD,
MacWrite, and Aldus Pagemaker allow PC users to do typesetting as well.

However, despite the glamour of desktop publishing, and the easy-to-use appeal of products for the
Macintosh, the UNIX typesetting facilities offer many advantages. Chief among these advantages is the
very feature in which troff at first seems much weaker than its low-end competitors, namely, the use of
embedded codes to control formatting.

Wysiwyg systems are easy for beginners to use, and they are very satisfying because you can immedi-
ately see what you are going to get on the printed page. But have you ever tried to make a global font
change in MacWrite? Or had to make a change to a document after it was “pasted up” with Pagemaker?
Or had to wait endlessly while Microsoft WORD reformats an entire document after you change the mar-
gins?

Because troff codes can be edited, just like any other text in a file, it is very easy to change your
mind about formatting and make global changes. And after you have mastered the art of writing macros, it
is even easier to change formats simply by changing macro definitions. And because the editing and for-
matting functions are separate, you don’t have to wait for the computer while you are making those

419

420 Unix Text Processing

changes—that happens while you print.

This is not to say that troff is superior to the best possible wysiwyg system. High-end systems
from companies like Interleaf, Xyvision, and Texet offer power, speed, and ease of use all at once. Unfor-
tunately, the software is costly, and requires the use of high-cost bit-mapped workstations. This can lead to
a bottleneck in document production unless you have enough money to spend on hardware. Because
troff requires only a standard alphanumeric terminal, it provides much more “bang for the buck.”

There is no question that the publishing system of the future will be a wysiwyg system. But for now,
a low-cost UNIX system with vi and troff is still one of the most cost-effective publishing systems
around.

This brings us to the final strength of UNIX—its extensibility. More than an operating system or a
collection of programs, UNIX is a philosophy of computing. Let’s consider an analogy. The Volkswagen
beetle was a unique automobile of the sixties and seventies. Its simple design was one of the reasons that
made it popular; the “bug” was user-maintainable. VW owners (“users”) could tinker with their cars, per-
forming such tasks as changing spark plugs by hand. They scoffed at owners of other cars who depended
upon mechanics. It is perhaps this same feeling of independence—let me do it myself—that the UNIX en-
vironment fosters in its users. There are many quite capable software environments that are packaged to
keep users out. In some ways, the secret of UNIX is that its working parts are visible. The UNIX environ-
ment, like the VW beetle, is designed so that users can take it apart and put it back together. UNIX is a phi-
losophy of computing. As we’ve stressed again and again, UNIX provides general-purpose tools, all of
which are designed to work together.

No single program, however well thought out, will solve every problem. There is always a special
case, a special need, a situation that runs counter to the expected. But UNIX is not a single program: it is a
collection of hundreds. And with these basic tools, a clever or dedicated person can devise a way to meet
just about any text-processing need.

Like the fruits of any advanced system, these capabilities don’t fall unbidden into the hands of new
users. But they are there for the reaching. And over time, even writers who want a word processor they
don’t have to think about will gradually reach out for these capabilities. Faced with a choice between an
hour spent on a boring, repetitive task and an hour putting together a tool that will do the task in a flash,
most of us will choose to tinker.

The index and table of contents mechanism in this chapter is a good example of putting together indi-
vidual UNIX tools to do a job that no one of them can easily do alone. Its explanation is a fitting end to
this book, which has tried throughout to put the UNIX text-processing tools in a wider context.

Saving an External Table of Contents

As discussed in the last chapter, troff does provide a mechanism (namely diversions) to collect and
process a table of contents directly within the formatter. However, this approach is best suited to short doc-
uments, because it requires that the entire document be reformatted to produce the table of contents.

Likewise, you could even produce and sort an index entirely within troff, though the effort re-
quired would be large. (In fact, a recent article on Usenet, the online UNIX news network, described an
implementation of a sort algorithm using troff macros. It is painfully slow—it was done just to prove
that it could be done, rather than for practical application).

The beauty of UNIX, though, is that you don’t have to stretch the limits of troff to do everything
necessary to produce a book. Just as editing is separated from formatting, you can separate processing the
table of contents and the index from formatting the rest of the text.

The troff formatter provides the basic mechanisms for producing the raw material—the lists of
headings or index terms, accompanied by the page numbers on which they occur. However, the actual sav-
ing and processing of the raw material is done with make, sed, awk, sort, and the shell.

Putting It All Together 421

In Chapter 12, we began to look at how a shell script (which we called format) could manage the
formatting process. We used the programming power of the shell not only to save the user the trouble of re-
membering command-line options and complicated postprocessor names, but also to apply the power of
sed to various ancillary formatting tasks.

The collection of a table of contents and index requires that we first return to this script. As we left
Chapter 17, both the table of contents and the index macros simply write data to standard error.

A Bourne shell user can redirect this error output to a file using the following syntax:
$ ditroff file 2> tocfile

The problem is that the table of contents, index entries, and potential formatter error messages are all cap-
tured in the same file. We need a mechanism for parsing this file into its separate elements. The user could
do this manually, but it is far better to let a program do it.

The first step is to redirect all of the error output from the formatter to a temporary file. After format-
ting is done, we can use sed to search for the identifying strings that we introduced as part of the “error
message” and output the matching lines into separate files. True error messages should be sent back to the
screen, and the temporary file removed.

The trick here is naming the files into which the saved data is stored by sed. It is not appropriate
simply to append table of contents data to one file, because we are likely to reformat a document many
times while rewriting and revising it. Instead, we want to have a unique table of contents file and a unique
index file for each source file that we format. The best way to do this without cluttering up the current di-
rectory is to create a subdirectory for each type of data we want to save — toc, index, and so on.

Let’s look at how we did these things in the format script:
roff="ditroff -Tps"; files=""; options="-mS"
pre="| ditbl"; post="| devps "
sed="| sed -f /work/macros/new/cleanup.sed"
pages=""; toc="2>/tmp$$"; lp="| lp -s"
if [! -d index a ! -d toc]; then

echo "No index and toc. Use the buildmake command."
toc="2>/dev/null"

fi
while ["$#" != "0"]; do

case $1 in
-?) echo "Format Options are:"

echo "-m* Specify other macro package (-mm)"
echo "-s Use small format (5-1/2 by 8-1/2)"
echo "-o Print selected pages"
echo "-cg Format for Compugraphic typesetter"
echo "-E Invoke EQN preprocessor"
echo "-P Invoke PIC preprocessor"
echo "-G Invoke GRAP & PIC preprocessors"
echo "-x Redirect output to /dev/null"
echo "-y Invoke nroff; pipe output to screen"
echo "-a Set interactive troff -a option"
echo "-* Any troff option"; exit;;

-m*) options="$1";;
-s) options="$options -rS1 -rv1";;
-o) pages="$pages -o$1";toc="2>/dev/null";;
-cg) roff="ditroff -Tcg86"; post="| ditplus -dtcg86";;
-E) pre="$pre | dieqn";;
-P) pre="| pic -T720 -D $pre";;
-G) pre="| grap | pic -T720 -D $pre";;
-x) options="$options -z"; post=""; lp="";;
-y) roff="nroff"; post=""; lp="| col | pg";;
-a) post=""; options="$options -a";;
-*) options="$options $1";;
*) if [-f $1]; then

files="$files $1"
txfile="$1"
if [-d /print]; then touch /print/$txfile

422 Unix Text Processing

else
echo "USAGE: format (options) files"
echo "To list options, type format -? "; exit

fi;;
esac
shift

done
if [-n "$files" -o ! -t 0]; then
Use soelim to expand .so’s in input files
otherwise use cat to send files down pipe.
eval "cat $files $sed $pre |

$roff $options - $toc $post $pages $toc $lp"
else echo "fmt: no files specified"; exit
fi
if [-f tmp$$]; then

if [-d toc]; then
sed -n -e "s/ˆ><CONTENTS:\(.*\)/\1/p" tmp$$ > toc/$txfile
fi
if [-d index]; then
sed -n -e "s/ˆ><INDEX:\(.*\)/\1/p" tmp$$ > index/$txfile
fi
if [-d figlist]; then
sed -n -e "s/ˆ><FIGURE:\(.*\)/\1/p" tmp$$ > figlist/$txfile
fi
if [-d tablist]; then
sed -n -e "s/ˆ><TABLE:\(.*\)/\1/p" tmp$$ > tablist/$txfile
fi
sed -n "/ˆ></!p"
rm /tmp$$

fi
exit

Now, for example, when we format a file called ch01, a file of the same name will be written in each of the
four subdirectories toc, index, figlist, and tablist. Each time we reformat the same file, the out-
put will overwrite the previous contents of each accessory file, giving us the most up-to-date version.
When we use the -o option for only partial formatting, writing out of these files is disabled by redirecting
error output to /dev/null, so that we don’t end up with a partial table of contents file.

There’s also a -x option, to allow us to format a file to produce the table of contents and index with-
out producing any regular output. This option uses troff’s -z option to suppress formatted output, and
sets the post and lp shell variables to the null string.

(You may also notice the -cg option, which specifies a different device to both troff and the post-
processor—in this case, a Compugraphic typesetter instead of an Apple LaserWriter. This is included as an
aside, to give you an idea of how this is done).

The contents of the toc, figlist, and tablist directories can be assembled into a complete ta-
ble of contents, or formatted on the spot for a chapter-level table of contents. We can use the following
simple sequence of commands (which could be saved into a shell script):

echo .ta \n(LLu-5n \n(LLuR > book.toc
echo .ce >> book.toc
echo \f3TABLE OF CONTENTS\fP >> book.toc
echo .sp 2 >> book.toc
echo "\t\f3Page\fP" >> book.toc
cat /toc/ch?? /toc/app? >> book.toc
echo .bp >> book.toc
cat /figlist/ch?? /figlist/app? >> book.toc
echo .bp >> book.toc
cat /tablist/ch?? /tablist/app? >> book.toc

The resulting book.toc source file looks like this:
.ta \n(LLu-5n \n(LLuR
.ce
\f3TABLE OF CONTENTS\fP
.sp 2

Putting It All Together 423

|———|\f3Page\fP
.sp 3
Chapter 1 Introduction to Alcuin
.sp 1.5
1.1 A Tradition of Calligraphic Excellence\a\t1-2
1.2 Illuminated Bit-Mapped Manuscripts\a\t1-4
.sp 3
Chapter 2 Getting Started with Alcuin
.sp 1.5
2.1 Objectives of this Session\a\t2-1
2.2 Starting Up the System\a\t2-2
2.2.1 Power-up Procedure\a\t2-2
.
.
.

The index will require more serious postprocessing.

Index Processing

It is relatively simple to assemble the components of a table of contents into sequential order, but it is much
more difficult to process the index entries, because they must be sorted and manipulated in a variety of
ways.

This is one of the most complex tasks presented in this book. So let’s start at the beginning, with the
raw data that is output by troff, and directed to our index subdirectory by the format shell script. For
illustration, we’ll assume a sparse index for a short book containing only three chapters.

As you may recall, the user creates the index simply by entering macro calls of the form:
.XX "input devices"

or:
.XX "input devices, mouse"

or:
.XR "mouse (see input devices)"

throughout the text. Both macros write their arguments to standard output; the .XX macro adds the current
page number, but the .XR (cross reference) macro does not. The user is responsible for using consistent
terminology, capitalization, and spelling. A comma separates optional subordinate entries from the major
term.

An index term should be entered on any page that the user wants indexed—at the start and end of a
major topic, at least, and perhaps several in between if the discussion spans several pages.

In our example, entries are saved into the three files ch01, ch02, and ch03 in the order in which
they appear in the respective input files. The indexing term entered by the user is printed, separated from
the current page number by a tab. Certain cross reference entries do not have a page number. The content
of the raw index files after chapters 1 through 3 have been formatted follows. (Here, and in the following
discussion, a tab is represented by the symbol |———|).

$ cat index/ch??
Alcuin, overview of|———|1-1
illuminated manuscripts|———|1-1
fonts, designing|———|1-2
Alcuin, supported input devices|———|1-2
input devices|———|1-2
input devices, mouse|———|1-2
input devices|———|1-2
mouse (see input devices)
input devices, bit pad|———|1-3
bit pad (see input devices)
input devices|———|1-3

424 Unix Text Processing

startup, of system|———|2-1
power, location of main switch|———|2-1
power, for graphics display|———|2-1
startup, of system|———|2-2
input devices, mouse|———|2-2
input devices, bit pad|———|2-3
fonts, selecting|———|3-1
glyphs, designing|———|3-2
extra line space|———|3-3
symbolic names|———|3-3
@ operator|———|3-4

To create a presentable index from this raw data, we need to do the following:

• Sort the entries into dictionary order, and remove duplicates, if any. (Duplicate entries occur
whenever the user enters .XX macros with the same argument over several input pages, and
two or more of those entries fall on the same output page).

• Combine multiple occurrences of the same term, appending a complete list of page numbers
and properly subordinating secondary terms.

• Introduce formatting codes, so that the resulting file will have a pleasing, consistent appear-
ance.

Just how complex a task this is may not be immediately apparent, but rest assured that it takes the com-
bined operations of sort, uniq, and several different awk and sed scripts to do the job properly.

Fortunately, we can hide all of this complexity within a single shell program, so that all the user
needs to type is:

$ cat index/files | indexprog > book.ndx

Sorting the Raw Index

The first part of indexprog processes the index entries before they are passed to awk. The sort pro-
gram prepares a list of alphabetical index entries; uniq removes duplicate entries.

sort -t\|———| -bf +0 -1 +1n | uniq

The options to the sort command specify primary and secondary sort operations, affecting the first and
second fields separately. The -t option specifies that a tab character separates fields. The primary sort is
alphabetic and performed on the indexing term; the secondary sort is numeric and performed on the page
number. The primary sort is also controlled by the following options: the -b option (ignore leading blanks
in making comparisons) is a safety feature; the -f (fold uppercase and lowercase letters) is more important
because the default sort order places all uppercase letters before all lowercase ones; and +0 -1 ensures
that the alphabetic sort considers only the first field. The secondary sort that is performed on the second
field (+1n) is numeric and ensures that page numbers will appear in sequence.

Now let’s look at the index entries after they have been sorted:
@ operator|———|3-4
Alcuin, overview of|———|1-1
Alcuin, supported input devices|———|1-2
bit pad (see input devices)
extra line space|———|3-3
fonts, designing|———|1-2
fonts, selecting|———|3-1
glyphs, designing|———|3-2
illuminated manuscripts|———|1-1
input devices|———|1-2
input devices|———|1-3
input devices, bit pad|———|1-3
input devices, bit pad|———|2-3
input devices, mouse|———|1-2
input devices, mouse|———|2-2

Putting It All Together 425

mouse (see input devices)
power, for graphics display|———|2-1
power, location of main switch|———|2-1
startup, of system|———|2-1
startup, of system|———|2-2
symbolic names|———|3-3

Multiple entries that differ only in their page number are now arranged one after the other.

The sort command is a simple way to obtain a sorted list of entries. However, sorting can actually
be a complicated process. For instance, the simple sort command that we showed above obviously works
fine on our limited sample of entries. And while it is designed to process entries with section-page number-
ing (4-1,4-2,4-3), this command also works fine when sorting entries with continuous page numbering
(1,2,3).

However, section page numbering does present a few additional problems that we did not encounter
here. Two-digit section numbers and page numbers, as well as appendices (A-1,A-2,A-3) will not be sorted
correctly. For instance, this might cause the indexing program to produce the following entry:

Alcuin, software A-2, 1-1, 1-10, 1-3, 11-5, 2-1

There are two ways to handle this problem. One is to change the indexing macro in troff so that it pro-
duces three fields. Then the sorting command can sort on the section number independent of the page num-
ber. (Because our awk portion of the indexing program is set up to operate on entries with one or two
fields, you’d have to change the program or use a sed script to reduce the number of fields).

The second method uses sed to replace the hyphen with a tab, creating three fields. Actually, we run
a sed script before the entries are sorted and another one after that operation to restore the entry. Then
sort will treat section numbers and page numbers separately in secondary numeric sort operations, and
get them in the right order.

The only remaining problem is how to handle appendices. What happens is that when a numeric sort
is performed on section numbers, lettered appendices are sorted to the top of the list. This requires cloak-
ing the letter in a numeric disguise. Presuming that we won’t have section numbers greater than 99, our
sed script prepends the number 100 to each letter; this number is also removed afterwards.

sed ’
s/|———|\([0-9][0-9]*\)-/|———|\1|———|/
s/|———|\([A-Z]\)-/|———|100\1|———|/’ |

sort -t\ -bf +0 -1 +1n +2n | uniq |
sed ’

s/|———|100\([A-Z]\)|———|/|———|\1-/
s/\(|———|.*\)|———|/\1-/’

Now the sorting operation of our index program handles a wider range of entries.

Building the Page Number List

The next step is more complex. We must now combine multiple occurrences of each term that differ only
in the page number, and combine all of the page numbers into a single list. The awk program is the tool of
choice. We can use a script for comparing and manipulating successive lines similar to the one described in
Chapter 13. We begin by building the page number list for each entry.

awk ’
BEGIN { ORS = ""; FS = "|———|" }
NF == 1 { if (NR == 1) printf ("%s", $0);

else printf ("\n%s", $0) }
NF > 1 {
if ($1 == curr)
printf (",%s", $2)

else {
if (NR == 1) printf ("%s", $0)
else printf ("\n%s", $0)
curr = $1

426 Unix Text Processing

}
}’

First, the program sets the output record separator (ORS) to the null string, rather than the default newline.
This means that output records will be appended to the same line, unless we specify an explicit newline.

Second, it sets the field separator (FS) to the tab character. This divides each index entry into two
fields: one containing the text, the other containing the page number. (As you may recall, the page number
is separated from the text of the entry by a tab when it is output from troff).

Then, if the number of fields (NF) is 1 (that is, if there is no tab-separated page number, as is the case
with cross reference entries generated with .XR), the program prints out the entire record ($0). If this is
not the first line in the file (NR = 1), it precedes the record with an explicit newline (\n).

If the number of fields is greater than 1 (which is the case for each line containing a tab followed by a
page number), the program compares the text of the entry in the first field ($1) with its previous value, as
stored into the variable curr.

The next few lines might be easier to understand if the condition were written in reverse order:
if ($1 != curr)
{ if (NR == 1) printf ("%s", $0)

else printf ("\n%s", $0)
curr = $1

}
else printf (",%s", $2)

If the first field is not equal to curr, then this is a new entry, so the program prints out the entire
record (again preceding it with an explicit newline if this is not the first line of the file). The value of curr
is updated to form the basis of comparison for the next record.

Otherwise (if the first field in the current record is the same as the contents of the variable curr), the
program appends a comma followed by the value of the second field ($2) to the current record.

The output after this stage of the program looks like this:
@ operator|———|3-4
Alcuin, overview of|———|1-1
Alcuin, supported input devices|———|1-2
bit pad (see input devices)
extra line space|———|3-3
fonts, designing|———|1-2
fonts, selecting|———|3-1
glyphs, designing|———|3-2
illuminated manuscripts|———|1-1
input devices|———|1-2,1-3
input devices, bit pad|———|1-3,2-3
input devices, mouse|———|1-2,2-2
mouse (see input devices)
power, for graphics display|———|2-1
power, location of main switch|———|2-1
startup, of system|———|2-1,2-2
symbolic names|———|3-3

Subordinating Secondary Entries

The next trick is to subordinate secondary entries under the main entry, without reprinting the text of the
main entry. In addition, we want to represent consecutive page numbers as a range separated by two dots
(..) rather than as a list of individual pages. We’ll show this script in two sections:

awk ’
BEGIN { FS = "|———|";}
{
n = split ($1, curentry, ",")
if (curentry[1] == lastentry[1])

Putting It All Together 427

printf (" %s",curentry[2])
else {

if (n > 1) printf ("%s\n %s", curentry[1], curentry[2])
else printf ("%s", $1)
lastentry[1] = curentry[1]
}

}

This section of the script uses awk’s split function to break the first field into two parts, using a comma
as a separator.

There are several cases that the program has to consider:

• The text of the entry does not contain a comma, in which case we can just print the entire first
field. See line 9: printf ("%s", $1).

• The entry does contain a comma, in which case we want to see if we have a new primary term
(curentry[1]) or just a new secondary one (curentry[2]).

• If the primary term is the same as the last primary term encountered (and saved into the vari-
able lastentry), we only need to print out the secondary term. See line 6: printf
("%s", curentry[2]).

• Otherwise, we want to print out both the primary and secondary terms: See line 8: printf
("%s\n %s", curentry[1], curentry[2]).

For example:
@ operator|———|3-4
Alcuin, overview of|———|1-1
Alcuin, supported input devices|———|1-2

When the first line is processed, the split will return a value of 0, so the entire line will be output.

When the second line is processed, lastentry contains the string @ operator, curentry[1]
contains Alcuin, and curentry[2] contains overview of . Because lastentry is not the same as
curentry[1], the program prints out both curentry[1] and curentry[2].

When the third line is processed, curentry[1] again contains the word Alcuin, but curen-
try[2] contains the words supported input devices. In this case, only curentry[2] is printed.

The next part of the script, which follows, looks considerably more complicated, but uses essentially
the same mechanism. It splits the second field on the line (the page number list) on the hyphens that sepa-
rate section number from page number. Then, it compares the various sections it has split to determine
whether or not it is dealing with a range of consecutive pages. If so, it prints only the first and last members
of the series, separating them with the range notation (..).

If you were able to follow the previous portion of the script, you should be able to piece this one to-
gether as well:

NF == 1{ printf ("\n") }
(NF > 1) && ($2 !˜ /.*_.*/) {

printf ("\t")
n = split ($2, arr, ",")
printf ("%s", arr[1])
split (arr[1], last, "-")
for (i = 2; i <= n; ++i) {
split (arr[i], curr, "-")
if ((curr[1] == last[1]) && (curr[2]/1 == last[2]/1+1)) {

if (i != n) {
split (arr[i+1], follow, "-")
if ((curr[1] != follow[1]) || (curr[2]/1+1 != follow[2]/1))

printf ("..%s", arr[i])
} else printf ("..%s", arr[i])

} else printf (", %s", arr[i])
last[1] = curr[1]; last[2] = curr[2]

}
printf ("\n")
}’

428 Unix Text Processing

The output from this awk program (in sequence with the previous ones) now looks like this:
@ operator|———|3-4
Alcuin

overview of|———|1-1
supported input devices|———|1-2

bit pad (see input devices)
extra line space|———|3-3
fonts

designing|———|1-2
selecting|———|3-1

glyphs
designing|———|3-2

illuminated manuscripts|———|1-1
input devices|———|1-2..1-3

bit pad|———|1-3, 2-3
mouse|———|1-2, 2-2

mouse (see input devices)
power

for graphics display|———|2-1
location of main switch|———|2-1

startup
of system|———|2-1..2-2

symbolic names|———|3-3

That’s starting to look like an index!

Adding Formatting Codes

We could simply quit here, and let the user finish formatting the index. However, awk can continue the job
and insert formatting codes.

We’d like awk to put in headings and divide the index into alphabetic sections. In addition, it would
be nice to insert indentation requests, so that we can format the index source file in fill mode, so that any
long lines will wrap correctly.

Let’s look at the coded output before we look at the script that produces it. Only the beginning of the
output is shown:

.ti -4n
@ operator|———|3-4
.br

.ne 4

.ti -2n
\fBA\fR
.br
.ne 2
.ti -4n
Alcuin
.br
.ti -4n

overview of|———|1-1
.br
.ti -4n

supported input devices|———|1-2
.br

.ne 4

.ti -2n
\fBB\fR
.br
.ne 2
.ti -4n

Putting It All Together 429

bit pad (see input devices)
.br
.ne 4
.ti -2n
\fBE\fR
.br
.ne 2
.ti -4n
extra line space|———|3-3
.br

Here’s a script that does this part of the job:
awk ’
BEGIN {OFS = ""

lower = "abcdefghijklmnopqrstuvwxyz"
upper = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

}
NF > 0 {

if ($0 !˜ /ˆ .*/) {
n = 1
while ((newchar = substr($1,n,1)) !˜ /[A-Za-z]/) {
n = n + 1
if (n == 100) { # bad line

newchar = oldchar
break

}
}
if (newchar ˜ /[a-z]/) {
for (i = 1; i <= 26; ++i) {

if (newchar == substr (lower, i, 1)) {
newchar = substr (upper, i, 1)
break
}

}
}
if (substr($1,1,1) ˜ /[0-9]/)
newchar = ""

if (newchar != oldchar) {
printf ("\n\n%s\n", ".ne 4")
printf ("%s\n", ".ti -2n")
printf ("%s%s%s\n", "\\fB", newchar, "\\fR")
printf ("%s\n", ".br")
oldchar = newchar }

printf ("%s\n", ".ne 2")
}
printf ("%s\n", ".ti -4n")
printf ("%s\n", $0)
printf ("%s\n", ".br")

}’

Every line in the input (NF > 1) will be subjected to the last three lines in the program. It will be sur-
rounded by formatting codes and printed out.

printf ("%s\n", ".ti -4n")
printf ("%s\n", $0)
printf ("%s\n", ".br")

The rest of the script checks when the initial character of a primary entry changes and prints a heading.

As you may have noticed, in the output of the previous script, secondary entries were indented by
three leading spaces. They can be excluded from consideration at the outset by the condition:

if ($0 !˜ /ˆ .*/) {

All other lines are checked to determine their initial character. The awk program’s substr function ex-
tracts the first letter of each line. Then, much as it did before, the program compares each entry with the
previous until it detects a change.

430 Unix Text Processing

The program is basically looking for alphabetic characters, but must test (especially in computer
manuals) for strings that begin with nonalphabetic characters. (If it doesn’t do this, it will loop endlessly
when it comes to a string that doesn’t begin with an alphabetic character). If the program loops 100 times
on a single line, it assumes that the character is nonalphabetic, breaks out of the loop, and goes on to the
next line.

When the program finds a change in the initial alphabetic character, it prints a heading consisting of a
single capital letter and associated formatting requests.

Primary terms beginning with nonalphabetic characters are output without causing a change of head-
ing. (Because they are already sorted to the beginning of the file, they will all be listed at the head of the
output before the A’s).

Final Formatting Touches

Having come this far, it hardly seems fair not to finish the job, and put in the final formatting codes that will
allow us to format and print the index without ever looking at the source file (although we should save it to
allow manual fine-tuning if necessary).

A simple sed script can be used for these final touches:
sed "1i\\
.Se \"\" \"Index\"\\
.in +4n\\
.MC 3.15i 0.2i\\
.ds RF Index - \\\\\\\\n(PN\\
.ds CF\\
.ds LF\\
.na
s/|———|/ /"

Assuming that we’re using our extended ms macros, these initial macros will create the section heading In-
dex, print the index in two columns, and use a page number of the form Index-n. (Note how many back-
slashes are necessary before the number register invocation for PN. Backslashes must be protected from the
shell, sed, and troff. This line will be processed quite a few times, by different programs, before it is
output).

Finally, the script converts the tab separating the index entry from the first page number into a pair of
spaces.

Special Cases

But our indexing script is not complete. There are a number of special cases still to consider. For example,
what about font changes within index entries? In a computer manual, it may be desirable to carry through
“computer voice” or italics into the index.

However, the troff font-switch codes will interfere with the proper sorting of the index. There is a
way around this—awkward, but effective. As you may recall, we use a sed script named cleanup.sed
called from within format. This script changes double quotation marks to pairs of matched single quota-
tion marks for typesetting, and changes double hyphens to em dashes. We can also use it to solve our cur-
rent problem.

First, we add the following lines to cleanup.sed:
/ˆ\.X[XR]/{

s/\\\(fP\)/%%˜/g
s/\\\(fS\)/%%˜˜/g
s/\\\(fB\)/%%˜˜˜/g
s/\\\(fI\)/%%˜˜˜˜/g
s/\\\(fR\)/%%˜˜˜˜˜/g

Putting It All Together 431

s/\\\(f(CW\)/%%˜˜˜˜˜˜/g
}

Within an .XX or .XR macro, the script will change the standard troff font-switch codes into an arbi-
trary string of nonalphabetic characters.

Then we add the -d option (dictionary order) to our initial sort command in the index program.
This option causes sort to ignore nonalphabetic characters when making comparisons. (The exception
will be lines like @ operator, which contain no alphabetic characters in the first field. Such lines will still
be sorted to the front of the list).

Finally, we use the concluding sed script in the indexing sequence to restore the proper font-switch
codes in the final index source file:

s/%%˜˜˜˜˜˜/\\\\f(CW/g
s/%%˜˜˜˜˜/\\\\fR/g
s/%%˜˜˜˜/\\\\fI/g
s/%%˜˜˜/\\\\fB/g
s/%%˜˜/\\\\fS/g
s/%%˜/\\\\fP/g

We might also want to consider the case in which a leading period (as might occur if we were indexing
troff formatting requests) appears in an index entry. Inserting the following line one line from the end of
the last awk script we created will do the trick. These lines insulate troff codes in index entries from the
formatter when the index source file is processed by troff for final printing:

if ($0 ˜ /ˆ\..*/) printf ("\\&")
if ($0 ˜ /ˆ%%˜˜*\./) printf ("\\&")

Lines beginning with a . will be preceded with a troff zero-width character (\&).

The Entire Index Program

We have broken the indexing process into stages to make it easier to understand. However, there is no need
to keep individual awk and sed scripts; they can be combined into a single shell program simply by piping
the output of one portion to another, within the shell program.

Here’s the whole program, as finally assembled:
sed ’

s/|———|\([0-9][0-9]*\)-/|———|\1|———|/
s/|———|\([A-Z]\)-/|———|100\1|———|/’ |

sort -t\|———| -bdf +0 -1 +1n +2n | uniq |
sed ’

s/|———|100\([A-Z]\)|———|/|———|\1-/
s/\(|———|.*\)|———|/\1-/’ |

awk ’
BEGIN { ORS = ""; FS = "|———|" }
NF == 1 { if (NR == 1) printf ("%s", $0);

else printf ("\n%s", $0) }
NF > 1 {
if ($1 == curr)
printf (",%s", $2)

else {
if (NR == 1) printf ("%s", $0)
else printf ("\n%s", $0)
curr = $1
}

}’ | awk’
BEGIN { FS = "|———|";}
{
n = split ($1, curentry, ",")
if (curentry[1] == lastentry[1])

printf (" %s",curentry[2])
else {

432 Unix Text Processing

if (n > 1) printf ("%s\n %s", curentry[1], curentry[2])
else printf ("%s", $1)
lastentry[1] = curentry[1]
}

}
NF == 1{ printf ("\n") }
(NF > 1) && ($2 !˜ /.*_.*/) {

printf ("\t")
n = split ($2, arr, ",")
printf ("%s", arr[1])
split (arr[1], last, "-")
for (i = 2; i <= n; ++i) {
split (arr[i], curr, "-")
if ((curr[1] == last[1]) && (curr[2]/1 == last[2]/1+1)) {

if (i != n) {
split (arr[i+1], follow, "-")
if ((curr[1] != follow[1]) || (curr[2]/1+1 != follow[2]/1))

printf ("..%s", arr[i])
} else printf ("..%s", arr[i])

} else printf (", %s", arr[i])
last[1] = curr[1]; last[2] = curr[2]

}
printf ("\n")
}’ awk’
BEGIN {OFS = ""

lower = "abcdefghijklmnopqrstuvwxyz"
upper = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

}
NF > 0 {

if ($0 !˜ /ˆ .*/) {
n = 1
while ((newchar = substr($1,n,1)) !˜ /[A-Za-z]/) {
n = n + 1
if (n == 100) { # bad line

newchar = oldchar
break

}
}
if (newchar ˜ /[a-z]/) {
for (i = 1; i <= 26; ++i) {

if (newchar == substr (lower, i, 1)) {
newchar = substr (upper, i, 1)
break
}

}
}
if (substr($1,1,1) ˜ /[0-9]/)
newchar = ""

if (newchar != oldchar) {
printf ("\n\n%s\n", ".ne 4")
printf ("%s\n", ".ti -2n")
printf ("%s%s%s\n", "\\fB", newchar, "\\fR")
printf ("%s\n", ".br")
oldchar = newchar

}
printf ("%s\n", ".ne 2")

}
printf ("%s\n", ".ti -4n")
if ($0 ˜ /ˆ\..*/) printf ("\\&")

if ($0 ˜ /ˆ%%˜˜*\./) printf ("\\&")
printf ("%s\n", $0)
printf ("%s\n", ".br")

}’ | sed "1i\\
.Se \"\" \"Index\"\\
.in +4n\\

Putting It All Together 433

.MC 3.4i 0.2i\\

.ds RF Index - \\\\\\\\n(PN\\

.ds CF\\

.ds LF\\

.na
s/%%˜˜˜˜˜˜/\\\\f(CW/g
s/%%˜˜˜˜˜/\\\\fR/g
s/%%˜˜˜˜/\\\\fI/g
s/%%˜˜˜/\\\\fB/g
s/%%˜˜/\\\\fS/g
s/%%˜/\\\\fP/g"

The result of all this processing is source text that can be piped directly to the formatter, saved in a file for
later formatting (or perhaps minor editing), or both (using tee to “split” standard output into two streams,
one of which is saved in a file).

Assuming that the various raw source files produced by troff are stored in a subdirectory called
indexfiles, and that the index script is called indexprog, we can format and print the index as fol-
lows:

$ cat indexfiles/* | indexprog | ditroff -mS | ... | lp

The result will look something like this:

INDEX

@ operator 3-4 P
power
for graphics display 2-1

A location of main switch 2-1
Alcuin
overview of 1-1
supported input devices 1-2 S

startup
of system 2-1—2-2

B symbolic names 3-3
bit pad (see input devices)

•

•

•

434 Unix Text Processing

Let make Remember the Details

Even though we’ve hidden the really complex details of index processing inside a shell script, and the for-
mat shell script itself handles a lot of the dirty work, there is still a lot for the user to keep track of. The
make utility introduced in Chapter 11 can take us a long way towards making sure that everything that
needs to happen for final production of the finished book comes together without a hitch.

Here are some of the things we want to make sure have been done:

• All of the relevant sections have been printed in their most up-to-date form. Odd as it may
seem, it is possible to have last minute changes to a file that never make it into the printed
book.

• The book has been proofed using whatever automatic tools we have provided, including the
proof and double shell scripts (or wwb if you have it). All “review notes” embedded in the
text must also be satisfied and removed.

• An updated table of contents and index have been printed.

You can probably think of others as well.

The make utility is the perfect tool for this job. We’ve already seen in Chapter 11 how it can be used
to specify the files (and the formatting options) required for each section of the book. Unfortunately, this
part of the job requires that you keep formatted output files, which are quite large. If disk space is a prob-
lem, this drawback might lead you to think that make isn’t worth the bother.

However, with a little thought, you can get around this restriction. Instead of keeping the formatted
output file, you can keep a zero-length file that you touch whenever you format the source file. You could
add the following line to the end of the format script:

touch print/$file

Or, if you use make itself to print your document, you could put the touch command into the makefile.
Your makefile might look like this:

book: print/ch01 print/ch02 print/ch03...

print/ch01 : ch01
sh /usr/local/bin/format -mS -rv1 -rS2 ch01
touch print/ch01

print/ch02 : ch02
sh /usr/local/bin/format -mS -P -rv1 -rS2 ch02
touch print/ch02

.

.

.

Notice that in order to execute the local formatting shell script, it is necessary to execute sh and specify the
complete pathname. The options specified with the format shell script can be specific to each file that is
formatted. However, generally you want to use the same options to format all the files that make up a par-
ticular document. Using variables, you can create a more generalized makefile that is easier to change.

FORMAT: sh /usr/local/bin/format
OPTIONS: -mS -P -rv1 -rS2

book: print/ch01 print/ch02 print/ch03...

print/ch01 : ch01
$(FORMAT) $(OPTIONS) ch01
touch print/ch01

print/ch02 : ch02
$(FORMAT) $(OPTIONS) ch02
touch print/ch02

Putting It All Together 435

.

.

.

The variables used by make are set like shell variables. But when they are referenced, the name of the
variable must be enclosed in parentheses in addition to being prefixed with a dollar sign.

A user can now easily edit the OPTIONS variable to add or remove options. You could also place
additional options on the command for a particular file. This is not necessary, though, just because some of
the files have tables, equations, or pictures and others don’t. Other than the small bit of extra processing it
requires, there’s no reason not to run the preprocessor on all files.

Our makefile can be further expanded. To make sure that our index and table of contents are up-to-
date (and to automate the process of creating them out of the individual raw output files that the format
script creates), we can add the following dependencies and creation instructions:

book: print/ch01 ... proof/ch01 ... book.index book.toc
.
.
.

print/ch01 : ch01
.
.
.

book.index : index/ch01 index/ch02 ...
cat index/* | sh /usr/local/bin/indexprog > book.index

book.toc : toc/ch01...figlist/chO1...tablist/ch01...
echo .ta \n(LLu-5n \n(LLuR > book.toc
echo .ce >> book.toc
echo \f3TABLE OF CONTENTS\fP >> book.toc
echo .sp 2 >> book.toc
echo "\t\f3Page\fP" >> book.toc

cat toc/ch01...toc/appz >> book.toc
echo ’.bp’ >> book.toc
cat figlist/ch01...figlist/appz >> book.toc
echo ’.bp’ >> book.toc
cat tablist/ch01...tablist/appz >> book.toc

toc/ch01 : ch01
$(FORMAT) $(OPTIONS) -x ch01

toc/ch02 : ch02
$(FORMAT) $(OPTIONS) -x ch02

.

.

.
index/ch01 : ch01
$(FORMAT) $(OPTIONS) -x ch01

.

.

.
figlist/ch01 : ch01
$(FORMAT) $(OPTIONS) -x ch01

.

.

.
tablist/ch01 : ch01
$(FORMAT) $(OPTIONS) -x ch01

.

.

.

Because we have directories named toc and index, we give our source files names such as book.toc
and book.index

We can therefore enter:

436 Unix Text Processing

$ make book.toc

and the table of contents will be compiled automatically. When you enter the above command, the make
program recognizes book.toc as a target. It evaluates the following line that specifies several dependent
components.

book.toc: toc/ch01 toc/ch02 toc/ch03

In turn, each of these components are targets dependent on a source file.
toc/ch02: ch02
$(FORMAT) $(OPTIONS) -x ch02

What this basically means is that if changes have been made to ch02 since the file book.toc was com-
piled, the source file will be formatted again, producing new toc entries. The other files, assuming that they
have not been changed, will not be reformatted as their entries are up-to-date.

We can add other “targets”, for instance, to check whether or not every chapter in the book has been
proofed since it was last edited. Based on when the dependent components were last updated, you could
invoke the proof program on the associated file, grep for Review Note macros, or just print a message to
the user reminding him or her to proof the file.

To do this, we create a pseudo-target. If no file with the name proof exists, it can never be up-to-
date, so typing:

$ make proof

will automatically force proofing of the document according to the rules you have specified in the makefile.

The print directory also serves as a pseudo-target, useful for printing individual chapters. Users
don’t have to remember the formatting options that must be specified for a particular file.

And if all these reasons don’t convince you to learn make and begin constructing makefiles for large
documents, perhaps this next benefit will. It gives you a simple two-word command to print an entire book
and its apparatus.

$ make book

When you enter this command, each formatting command as it is being executed will be displayed on the
screen. If you wish to suppress these messages while you do other work, invoke make with the -s option
or place the line .SILENT: at the top of the makefile.

Building the Makefile

You are limited only by your imagination and ingenuity in organizing your work with a makefile. However,
the more complex the makefile, the longer it gets, and the more difficult for inexperienced users to create.

You can get around this problem too—just write a shell script to build the makefile, taking as argu-
ments the files that make up the document. Here’s such a script, called buildmake, that will produce a
makefile similar to the one just described. (The make utility requires that the actions to be performed for
each target begin with a tab. Such explicit tabs are shown in the following script by the symbol |———|).

if [$# -eq 0]; then
echo "USAGE: buildmake files"
echo "(You must specify the files that make up the book)"
exit

fi
if [! -d print]; then

mkdir print
mkdir proof

fi
if [! -d index]; then

mkdir index
fi
if [! -d toc]; then

mkdir toc
mkdir figlist

Putting It All Together 437

mkdir tablist
fi
for x
do

prifiles="$prifiles print/$x"
profiles="$profiles proof/$x"
tcfiles="$tcfiles toc/$x"
xfiles="$xfiles index/$x"
fgfiles="$fgfiles figlist/$x"
tbfiles="$tbfiles toc/$x"

done
echo ".SILENT:" > makefile
echo "FORMAT = sh /usr/local/bin/format" >> makefile
echo "OPTIONS = -mS" >> makefile
echo "INDEXPROG = sh /usr/local/bin/indexprog" >> makefile
echo "book : $prifiles $profiles book.toc book.index" >> makefile
echo "book.index : $xfiles/" >>makefile
echo "|———|cat $xfiles | $(INDEXPROG) > book.index" >> makefile
echo "|———|$(FORMAT) $(OPTIONS) book.index" >> makefile
echo "book.toc : $tcfiles" >> makefile
echo "|———|echo .ta \n(LLu-5n \n(LLuR > book.toc" >> makefile
echo "|———|echo .ce >> book.toc" >> makefile
echo "|———|echo\f3TABLE OF CONTENTS\fP >> book.toc" >> makefile
echo "|———|echo .sp 2 >> book.toc" >> makefile
echo "|———|echo "\t\f3Page\fP" >> book.toc" >> makefile
echo "|———|cat /work/lib/toc_top >> book.toc" >> makefile
echo "|———|cat $tcfiles >> book.toc" >> makefile
echo "|———|echo .bp >> book.toc" >> makefile
echo "|———|cat $fgfiles >> book.toc" >> makefile
echo "|———|echo .bp >> book.toc" >> makefile
echo "|———|cat $tbfiles >> book.toc" >> makefile
echo "|———|$(FORMAT) $(OPTIONS) book.toc" >> makefile
for x
do

echo "print/$x : $x" >> makefile
echo "|———|$(FORMAT) $(OPTIONS) $x" >> makefile
echo "proof/$x : $x" >> makefile
echo "|———|echo $x has not been proofed" >> makefile
echo "toc/$x : $x" >> makefile
echo "|———|$(FORMAT) $(OPTIONS) -x $x" >> makefile
echo "index/$x : $x" >> makefile
echo "|———|$(FORMAT) $(OPTIONS) -x $x" >> makefile

done

To create a complex makefile, all the user needs to do is type:
$ buildmake files

In addition, the user may want to manually edit the first line of the makefile, which specifies formatter op-
tions.

Where to Go from Here

Large as this book is, it is far from comprehensive. We have covered the basic editing and formatting tools
in some detail, but even there, topics have been glossed over. And when it comes to the more advanced
tools, programs not explicitly designed for text processing, much has been left out.

The sheer size and complexity of UNIX is one of its fascinations. To a beginner, it can be daunting,
but to an advanced user, the unknown has an appeal all its own. Particularly to a technical writer, for whom
the computer is a subject as well as a tool, the challenge of taking more control over the process of book
production can be endlessly fascinating. The subject and the method of inquiry become ever more inter-
twined, until, in Yeat’s immortal phrase:

438 Unix Text Processing

How can you know the dancer from the dance?

4Appendix A

Editor Command Summary

This section is divided into five major parts, describing the commands in the text editors vi, ex, sed, and
awk, and the pattern-matching syntax common to all of them.

Pattern-Matching Syntax

A number of UNIX text-processing programs, including ed, ex, vi, sed, and grep, allow you to perform
searches, and in some cases make changes, by searching for text patterns rather than fixed strings. These
text patterns (also called regular expressions) are formed by combining normal characters with a number of
special characters. The special characters and their use are as follows:

. Matches any single character except newline.

* Matches any number (including zero) of the single character (including a character spec-
ified by a regular expression) that immediately precedes it. For example, because .
means “any character,” .* means “match any number of any characters.”

[...] Matches any one of the characters enclosed between the brackets. For example, [AB]
matches either A or B. A range of consecutive characters can be specified by separating
the first and last characters in the range with a hyphen. For example, [A-Z] matches
any uppercase letter from A to Z, and [0-9] matches any digit from 0 to 9. If a caret
(ˆ) is the first character in the brackets, the comparison is inverted: the pattern will
match any characters except those enclosed in the brackets.

\{n,m\} Matches a range of occurrences of the single character (including a character specified
by a regular expression) that immediately precedes it. n and m are integers between 0
and 256 that specify how many occurrences to match. \{n\} matches exactly n occur-
rences, \{n,\} matches at least n occurrences, and \{n,m\} matches any number of
occurrences between n and m. For example, A\{2,3\} matches either AA (as in
AARDVARK) or AAA (as in AAA Travel Agency) but will not match the single letter
A. This feature is not supported in all versions of vi.

ˆ Requires that the following regular expression be found at the beginning of the line.

$ Requires that the preceding regular expression be found at the end of the line.

\ Treats the following special character as an ordinary character. For example, \. stands
for a period and * for an asterisk.

\(\) Saves the pattern enclosed between \(and \) in a special holding space. Up to nine
patterns can be saved in this way on a single line. They can be “replayed” in substitu-
tions by the escape sequences \1 to \9. This feature is not used in grep and egrep.

\n Matches the nth pattern previously saved by \(and \), where n is a number from 0 to 9
and previously saved patterns are counted from the left on the line. This feature is not
used in grep and egrep.

The egrep and awk programs use an extended set of metacharacters:

regexp+ Matches one or more occurrences of the regular expression (regexp).

regexp? Matches zero or one occurrences of the regular expression.

regexp | regexp Matches lines containing either regexp.

439

440 Unix Text Processing

(regexp) Used for grouping in complex regular expressions (e.g., with | above).

Regular expressions in ex (: commands from vi) offer some different extensions:

\< Constrains the following pattern to be matched only at the beginning of a word.

\> Constrains the following pattern to be matched only at the end of a word.

\u Appended to the replacement string of a substitute command, converts first character of re-
placement string to uppercase.

\U Appended to the replacement string of a substitute command, converts entire replacement
string to uppercase.

\l Appended to the replacement string of a substitute command, converts first character of re-
placement string to lowercase.

\L Appended to the replacement string of a substitute command, converts entire replacement
string to lowercase.

The vi Editor

Command-Line Syntax

There are two commands to invoke the vi editor.
vi [options] [file(s)]

or:
view [file(s)]

If a file is not named, vi will open a file that can be given a name with the :f command or when it is saved
using the :w command. If more than one file is named, the first file is opened for editing and :n is used to
open the next file. The view command opens the first file for read-only use; changes cannot be saved.

Options:

-l Open file for editing LISP programs
-r Recover file
-R Open file in read-only mode; same as using view
-ttag Start at tag
-x Open encrypted file
+ Open file at last line
+n Open file at line n
+/pattern Open file at first occurrence of pattern
-wn Set window to n lines

Operating Modes

After the file is opened, you are in command mode. From command mode, you can invoke insert mode, is-
sue editing commands, move the cursor to a different position in the file, invoke ex commands or a UNIX
shell, and save or exit the current version of the file.

The following commands invoke insert mode.

a A i I o O R s S

While in insert mode, you can enter new text in the file. Press the ESCAPE key to exit insert mode and re-
turn to command mode.

Editor Command Summary 441

Command Syntax

The syntax for editing commands is:
[n] operator [n] object

The commands that position the cursor in the file represent objects that the basic editing operators can take
as arguments. Objects represent all characters up to (or back to) the designated object. The cursor move-
ment keys and pattern-matching commands can be used as objects. Some basic editing operators are.

c Change
d Delete
y Yank or copy

If the current line is the object of the operation, then the operator is the same as the object: cc, dd, yy. n
is the number of times the operation is performed or the number of objects the operation is performed on.
If both n’s are specified, the effect is n times n.

The following text objects are represented:

word Includes characters up to a space or punctuation mark. Capitalized object is variant
form that recognizes only blank spaces.

sentence Up to . ! ? followed by two spaces.

paragraph Up to next blank line or paragraph macro defined by para= option.

section Up to next section heading defined by sect= option.

Examples:

2cw Change the next two words
d} Delete up to the next paragraph
dˆ Delete back to the beginning of the line
5yy Copy the next five lines
3dl Delete three characters to the right of the cursor

Status Line Commands

Most commands are not echoed on the screen as you input them. However, the status line at the bottom of
the screen is used to echo input for the following commands:

/ ? Start pattern-matching search forward (/) or backwards (?)

: Invoke an ex command

! Invoke a UNIX command that takes as its input an object in the buffer and replaces it with out-
put from the command

Commands that are input on the status line must be entered by pressing the RETURN key. In addition, er-
ror messages and output from the ˆG command are displayed on the status line.

Summary of vi Commands

. Repeat last command (insert, change, or delete).
ˆ@ Repeat last command.
@buffer Execute command stored in buffer.
a Append text after cursor.
A Append text at end of line.
ˆA Unused.

442 Unix Text Processing

b Back up to beginning of word in current line.
B Back up to word, ignoring punctuation.
ˆB Scroll backward one window.
c Change operator.
C Change to end of current line.
ˆC Unused.
d Delete operator.
D Delete to end of current line.
ˆD Scroll down half-window.
e Move to end of word.
E Move to end of word, ignoring punctuation.
ˆE Show one more line at bottom of window.
f Find next character typed forward on current line.
F Find next character typed back on current line.
ˆF Scroll forward one window.
g Unused.
G Go to specified line or end of file.
ˆG Print information about file on status line.
h Left arrow cursor key.
H Move cursor to home position.
ˆH Left arrow cursor key; BACKSPACE key in insert mode.
i Insert text before cursor.
I Insert text at beginning of line.
ˆI Unused in command mode; in insert mode, same as TAB key.
j Down arrow cursor key.
J Join two lines.
ˆJ Down arrow cursor key.
k Up arrow cursor key.
K Unused.
ˆK Unused.
l Right arrow cursor key.
L Move cursor to last position in window.
ˆL Redraw screen.
m Mark the current cursor position in register (a-z).
M Move cursor to middle position in window.
ˆM Carriage return.
n Repeat the last search command.
N Repeat the last search command in reverse direction.
ˆN Down arrow cursor key.
o Open line below current line.
O Open line above current line.
ˆO Unused.
p Put yanked or deleted text after or below cursor.
P Put yanked or deleted text before or above cursor.
ˆP Up arrow cursor key.
q Unused.
Q Quit vi and invoke ex.
ˆQ Unused in command mode; in input mode, quote next character.
r Replace character at cursor with the next character you type.
R Replace characters.
ˆR Redraw the screen.
s Change the character under the cursor to typed characters.
S Change entire line.

Editor Command Summary 443

ˆS Unused.
t Move cursor forward to character before next character typed.
T Move cursor back to character after next character typed.
ˆT Unused in command mode; in insert mode, used with autoindent option set.
u Undo the last change made.
U Restore current line, discarding changes.
ˆU Scroll the screen upward half-window.
v Unused.
V Unused.
ˆV Unused in command mode; in insert mode, quote next character.
w Move to beginning of next word.
W Move to beginning of next word, ignoring punctuation.
ˆW Unused in command mode; in insert mode, back up to beginning of word.
x Delete character under the cursor.
X Delete character before cursor.
ˆx Unused.
y Yank or copy operator.
Y Make copy of current line.
ˆY Show one more line at top of window.
z Redraw the screen, repositioning cursor when followed by CR at the top, .

at the middle, and - at the bottom of screen.
ZZ Exit the editor, saving changes.
ˆZ Unused.

Characters Not Used in Command Mode

The following characters are unused in command mode and can be mapped as user-defined com-
mands.

ˆA g K ˆK
ˆO q ˆT v
V ˆW ˆX ˆZ
* \ (underscore)

vi set Options

The following options can be specified with the :set command.

Option
(Abbreviation) Default Description

noaiautoindent
(ai)

Indents each line to the same level as the line above.
Use with shiftwidth option.

apautoprint
(ap)

Changes are displayed after each editor command.
(For global replacement, last replacement displayed.)

noawautowrite
(aw)

Automatically writes (saves) file if changed before
opening another file with :n or before giving UNIX
command with :!.

nobfbeautify
(bf)

Ignores all control characters during input (except
tab, newline, or formfeed).

=tmpdirectory
(dir)

Names directory in which ex stores buffer files. (Di-
rectory must be writable.)

edcompatible noed-
compatible

Uses ed-like features on substitute commands.

444 Unix Text Processing

errorbellserrorbells
(eb)

Error messages ring bell.

=8hardtabs
(ht)

Defines boundaries for terminal hardware tabs.

noicignorecase
(ic)

Disregards case during a search.

nolisplisp Indents are inserted in appropriate LISP format. () {}
[[and]] are modified to have meaning for lisp.

nolistlist
(li)

Tabs print as ˆI; ends of lines are marked with $.
(Used to tell if end character is a tab or a space.)

magicmagic Wildcard characters . * [are special in patterns.
mesgmesg Permits messages to display on terminal while editing

in vi.
nonunumber

(nu)
Displays line numbers on left of screen during editing
session.

openopen Allows entry to open or visual mode from ex.
nooptoptimize

(opt)
Deletes carriage returns at the end of lines when
printing multiple lines; speeds output on dumb termi-
nals when printing lines with leading white space
(blanks or tabs).

paragraphs
(para)

=IPLPPPQP
LIpplpipbp

Defines paragraph delimiters for movement by { or
}. The pairs of characters in the value are the names
of nroff/troff macros that begin paragraphs.

promptprompt Sets ex prompt (:).
nororeadonly

(ro)
Any writes (saves) of a file will fail unless you use !
after the write (works with w, ZZ, or autowrite).

noredrawredraw
(re)

Terminal will redraw the screen whenever edits are
made (insert mode pushes over existing characters;
deleted lines immediately close up). Default depends
on line speed and terminal type. noredraw is use-
ful at slow speeds on a dumb terminal; deleted lines
show up as @, and inserted text appears to overwrite
existing text until you press ESC.

remapremap Allows nested map sequences.
=5report Size of a large edit (i.e., number of lines affected by a

single edit) that will trigger a warning message on
bottom line of screen.

=[½ window]scroll Amount of screen to scroll.
=SHNHH HU sections Defines section delimiters for { } movement. The

pairs of characters in the value are the names of
nroff/troff macros that begin sections.

=/bin/shshell
(sh)

Pathname of shell used for shell escape (:!) and
shell command (:sh). Value is derived from shell
environment.

sw=8shiftwidth
(sw)

Defines number of spaces to indent when using the
>> or << commands in the autoindent option.

nosmshowmatch
(sm)

In vi, when) or } is entered, cursor moves briefly to
matching (or {. (If match is not on the screen,
rings the error message bell.) Very useful for pro-
gramming.

nosmdshowmode
(smd)

(System V, Release 2 vi only). The string Input
Mode is printed on the command line whenever input
mode is entered.

Editor Command Summary 445

slowopen
(slow)

Holds off display during insert. Default depends on
line speed and terminal type.

=8tabstop
(ts)

Sets number of spaces that a TAB indents during edit-
ing session. (Printer still uses system tab of 8.)

=0taglength
(H)

Defines the number of characters that are significant
for tags. Default (zero) means that all characters are
significant.

tags =tags
/usr/lib/tags

Pathname of files containing tags. (See the tag(1)
command.) By default, system searches
/usr/lib/tags and the file tags in the current di-
rectory.

term Terminal type.
noterseterse Displays briefer error messages.
timeouttimeout Macros “time out” after 1 second.

ttytype Terminal type.
warnwarn Displays No write since last change as warning.

window
(w)

Shows a certain number of lines of the file on the
screen. Default depends on line speed and terminal
type.

wswrapscan
(ws)

Searches wraparound end of file.

=0wrapmargin
(wm)

Defines right margin. If greater than zero, automati-
cally inserts carriage returns to break lines.

nowawriteany
(wa)

Allows saving to any file.

The ex Editor

The ex editor is a line editor that serves as the foundation for the screen editor, vi. All ex commands
work on the current line or a range of lines in a file. In vi, ex commands are preceded by a colon and en-
tered by pressing RETURN . In ex itself, the colon is supplied as the prompt at which you enter com-
mands.

The ex editor can also be used on its own. To enter ex from the UNIX prompt:
ex filename

Any of the options described for invoking vi may also be used with ex. In addition, the vi command Q
can be used to quit the vi editor and enter ex.

To exit ex:

x Exit, saving changes

q! Quit, without saving changes

vi Enter vi from ex

To enter an ex command from vi:
:address command options

The colon (:) indicates an ex command. The address is a line number or range of lines that are the object
of the command .

The following options can be used with commands.

! Indicates a variant form of the command.

parameters Indicates that additional information can be supplied. A parameter can be the name of
a file.

446 Unix Text Processing

count Is the number of times the command is to be repeated.

flag #, p, and l indicate print format.

Unlike vi commands, the count cannot precede the command as it will be taken for the address. d3
deletes three lines beginning with the current line; 3d deletes line 3. As you type the address and com-
mand, it is echoed on the status line. Enter the command by pressing the RETURN key.

Addresses

If no address is given, the current line is the object of the command. If the address specifies a range of
lines, the format is:

x,y

where x and y are the first and last addressed lines. x must precede y in the buffer. x and y may be line
numbers or primitives. Using ; instead of , sets the current line to x before interpreting y (that is, the cur-
rent position will be at x at the completion of the command). 1,$ addresses all lines in the file.

The following address symbols can be used.

. Current line

n Absolute line number

$ Last line

% All lines, same as 1,$

x-|+n n line before or after x

-[n] One or n lines previous

+[n] One or n lines ahead

’x Line marked with x

’’ Previous context

/pat/ or ?pat? Ahead or back to line matching pat

ex Commands

abbrev ab[string text]
Define string when typed to be translated into text. If string and text
are not specified, list all current abbreviations.

append [address]a[!]
text
.
Append text at specified address, or at present address if none is speci-
fied. With the ! flag, toggle the autoindent setting during the in-
put of text.

args ar
Print the members of the argument list, with the current argument
printed within brackets ([]).

change [address]c[!]
text
.
Replace the specified lines with text. With the ! flag, toggle the au-
toindent setting during the input of text.

Editor Command Summary 447

copy [address]codestination
Copy the lines included in address to the specified destination address.
The command t is a synonym for copy.

delete [address]d[buffer]
Delete the lines included in address. If buffer is specified, save or ap-
pend the text to the named buffer.

edit e[!][+n] file
Begin editing on file. If the ! flag is used, do not warn if the present
file has not been saved since the last change. If the +n argument is
used, begin editing on line n.

file f[filename]
Change the name of the current file to filename, which is considered
“not edited.” If no filename is specified, print the current status of the
file.

global [address]g[!]/pattern/[commands]
Execute commands on all lines that contain pattern. If commands are
not specified, print all such lines. If the ! flag is used, execute com-
mands on all lines not containing pattern.

insert [address]i[!]
text
.
Insert text at line before the specified address, or at present address if
none is specified. With the ! flag, toggle the autoindent setting
during the input of text.

join [address]j[count]
Place the text in the specified range on one line, with white space ad-
justed to provide two blank characters after a (.), no blank characters if
a) follows, and one blank character otherwise.

k [address]kchar
Mark the given address with char.

list [address]l[count]
Print the specified lines in an unambiguous manner.

map map char commands
Define a macro named char in visual mode with the specified sequence
of commands. char may be a single character, or the sequence #n,
representing a function key on the keyboard.

mark [address]machar
Mark the specified line with char, a single lowercase letter. Return
later to the line with ’x.

move [address]mdestination
Move the lines specified by address to the destination address.

next n[!][[+command] filelist]
Edit the next file in the command-line argument list. Use args for a
listing of arguments. If filelist is provided, replace the current argu-
ment list with filelist and begin editing on the first file; if command is
given (containing no spaces), execute command after editing the first
such file.

number [address]nu[count]
Print each line specified by address preceded by its buffer line number.
may be used as an abbreviation for number as well as nu.

open [address]o[/ pattern/]
Enter open mode at the lines specified by address, or lines matching
pattern. Exit open mode with Q.

448 Unix Text Processing

preserve pre
Save the current editor buffer as though the system had crashed.

print [address]p[count]
Print the lines specified by address with nonprinting characters printed.
P may also be used as an abbreviation.

put [address]pu[char]
Restore previously deleted or yanked lines from named buffer specified
by char to the line specified by address; if char is not specified, the last
deleted or yanked text is restored.

quit q[!]
Terminate current editing session. If the file was not saved since the
last change, or if there are files in the argument list that have not yet be
accessed, you will not be ab1e to quit without the ! flag.

read [address]r[!][file]
Copy the text of file at the specified address. If file is not specified,
the current filename is used.

read [address]r !command
Read in the output of command into the text after the line specified by
address.

recover rec[file]
Recover file from system save area.

rewind rew[!]
Rewind argument list and begin editing the first file in the list. The !
flag rewinds without warning if the file has not been saved since the last
change.

set se parameter parameter2 ...
Set a value to an option with each parameter, or if no parameter is
supplied, print all options that have been changed from their defaults.
For Boolean-valued options, each parameter can be phrased as option
or nooption; other options can be assigned with the syntax, op-
tion=value.

shell sh
Create a new shell. Resume editing when the shell is terminated.

source so file
Read and execute commands from file.

substitute [address]s[[/pattern/repl/]options][count]
Replace each instance of pattern on the specified lines with repl. If
pattern and repl are omitted, repeat last substitution. The following
options are supported:
g Substitute all instances of pattern
c Prompt for confirmation before each change

t [address]tdestination
Copy the lines included in address to the specified destination address.

ta [address]ta tag
Switch the focus of editing to tag.

unabbreviateuna word
Remove word from the list of abbreviations.

undo u
Reverse the changes made by the last editing command.

unmap unm char
Remove char from the list of macros.

Editor Command Summary 449

v [address]v/pattern/[commands]
Execute commands on all lines not containing pattern. If commands
are not specified, print all such lines.

version ve
Print the current version number of the editor and the date the editor
was last changed.

visual [address]vi [type][count]
Enter visual mode at the line specified by address. Exit with Q.
type is either -, ˆ, or . (see the z command). count specifies an initial
window size.

write [address]w[!][[>>] file]
Write lines specified by address to file, or full contents of buffer if ad-
dress is not specified. If file is also omitted, save the contents of the
buffer to the current filename. If >> file is used, write contents to the
end of the specified file. The ! flag forces the editor to write over any
current contents of file.

write [address]w !command
Write lines specified by address to command through a pipe.

wq wq[!]
Write and quit the file in one movement.

xit x
Write file if changes have been made to the buffer since last write, then
quit.

yank [address]ya[char][count]
Place lines specified by address in named buffer indicated by char. If
no char is specified, place in general buffer.

z [address]z[type][count]
Print a window of text with line specified by address at the top. type is
as follows:

+ Place specified line at the top of the window (default)

- Place specified line at bottom of the window

ˆ Print the window before the window associated with type -

= Place specified line in the center of the window and leave the current line at this line

count specifies the number of lines to be displayed.
! [address]!command

Execute command in a shell. If address is specified, apply the lines contained in address as
standard input to command , and replace the lines with the output.

= [address]=
Print the line number of the line indicated by address.

< > [address]<[count]
or [address]>[count]
Shift lines specified by address in specified direction. Only blanks and tabs are shifted in a left
shift (<).

address address
Print the lines specified in address.

RETURN RETURN
Print the next line in the file.

& [address]&[options][count]
Repeat the previous substitute command.

~ [address]~[count]
Replace the previous regular expression with the previous replacement pattern from a substi-
tute command.

450 Unix Text Processing

The sed Editor

sed [options] file(s)

The following options are recognized:

-n Only print lines specified with the p command, or the p flag of the s command

-e cmd Next argument is an editing command

-f file Next argument is a file containing editing commands

All sed commands have the general form:
[address][,address][!]command [arguments]

The sed editor copies each line of input into a pattern space. sed instructions consist of addresses and
editing commands. If the address of the command matches the line in the pattern space, then the command
is applied to that line. If a command has no address, then it is applied to each input line. It is important to
note that a command affects the contents of the space; subsequent command addresses attempt to match the
line in the pattern space, not the original input line.

Pattern Addressing

In a sed command, an address can either be a line number or a pattern, enclosed in slashes (/pattern/).
Address types cannot be mixed when specifying two addresses. Patterns can make use of regular expres-
sions, as described at the beginning of this appendix. Additionally, \n can be used to match any newline in
the pattern space (resulting from the N command), but not the newline at the end of the pattern space. If no
pattern is specified, command will be applied to all lines. If only one address is specified, the command
will be applied to all lines between the first and second addresses, inclusively. Some commands can only
accept one address.

The ! operator following a pattern causes sed to apply the command to all lines that do not contain
the pattern.

A series of commands can be grouped after one pattern by enclosing the command list in curly
braces:

[/pattern/][,/pattern/]{
command1
command2
}

Alphabetical List of Commands

: :label
Specify a label to be branched to by b or t. label may contain up to eight characters.

= [/pattern/]=
Write to standard output the line number of each line addressed by pattern.

a [address]a\
text
Append text following each line matched by address. If text goes over more than one line,
newlines must be “hidden” by preceding them with a backslash. The insertion will be termi-
nated by the first newline that is not hidden in this way. The results of this command are read
into the pattern space (creating a multiline pattern space) and sent to standard output when the
list of editing is finished or a command explicitly prints the pattern space.

Editor Command Summary 451

b [address1][,address2]b[label]
Branch to label placed with : command. If no label, branch to the end of the script. That is,
skip all subsequent editing commands (up to label) for each addressed line.

c [address1][,address2]c\
text
Replace pattern space with text. (See a for details on text.)

d [address1][,address2]d
Delete line in pattern space. Thus, line is not passed to standard output and a new line of input
is read; editing resumes with first command in list.

D [address1][,address2]D
Delete first part (up to embedded newline) of multiline pattern created by N command and be-
gin editing. Same as d if N has not been applied to a line.

g [address1][,address2]g
Copy contents of hold space (see h or H command) into pattern space, wiping out previous
contents.

G [address1][,address2]G
Append contents of hold space (see h or H command) to contents of the pattern space.

h [address1][,address2]h
Copy pattern space into hold space, a special buffer. Previous contents of hold space are oblit-
erated.

H [address1][,address2]H
Append pattern space to contents of the hold space. Previous and new contents are separated
by a newline.

i [address]i\
text
Insert text before each line matched by address. (See a for details on text.)

n [address1][,address2]n
Read next line of input into pattern space. Current line is output but control passes to next
editing command instead of beginning at the top of the list.

N [address1][,address2]N
Append next input line to contents of pattern space; the two lines are separated by an embed-
ded newline. (This command is designed to allow pattern matches across two lines.)

p [address1][,address2]p
Print the addressed line(s). Unless the -n command-line option is used, this command will
cause duplication of the line in the output. Also used when commands change flow control (d,
N, b).

P [address1][,address2]P
Print first part (up to embedded newline) of multiline pattern created by N command. Same as
p if N has not been applied to a line.

q [address]q
Quit when address is encountered. The addressed line is first written to output, along with any
text appended to it by previous a or r commands.

r [address]r file
Read contents of file and append after the contents of the pattern space. Exactly one space
must separate the r and the filename.

452 Unix Text Processing

s [address1][,address2]s/pattern/replacement/[flags]
Substitute replacement for pattern on each addressed line. If pattern addresses are used, the
pattern // represents the last pattern address specified. The following flags can be specified:

g Replace all instances of /pattern/ on each addressed line, not just the first in-
stance.

p Print the line if a successful substitution is done.
If several successful substitutions are done, multiple copies of the line will be
printed.

wfile Write the line to a file if a replacement was done. A maximum of ten different
files can be opened.

t [address1][,address2]t [label]
Test if successful substitutions have been made on addressed lines, and if so, branch to label.
(See b and :.) If label is not specified, drop to bottom of list of editing commands.

w [address1][,address2]w file
Write contents of pattern space to file. This action occurs when the command is encountered
rather than when the pattern space is output. Exactly one space must separate the w and the
filename. A maximum of ten different files can be opened.

x [address1][,address2]x
Exchange contents of the pattern space with the contents of the hold space.

awk

An awk program consists of patterns and procedures:

pattern { procedure }

Both are optional. If pattern is missing, {procedure} will be applied to all lines. If {procedure} is miss-
ing, the line will be passed unaffected to standard output (i.e., it will be printed as is).

Each input line, or record, is divided into fields by white space (blanks or tabs) or by some other user-
definable record separator. Fields are referred to by the variables $1, $2,..., $n. $0 refers to the entire
record.

Patterns

Patterns can be specified using regular expressions as described at the beginning of this appendix.

pattern {procedure}
The following additional pattern rules can be used in awk:

• The special pattern BEGIN allows you to specify procedures that will take place before the first
input line is processed. (Generally, you set global variables here.)

• Interrupt place after the last input line is processed.

• ˆ and $ can be used to refer to the beginning and end of a field, respectively, rather than the be-
ginning and end of a line.

• A pattern can be a relational expression using any of the operators <, <=, ==, !=, >=, and >.
For example, $2 > $1 selects lines for which the second field is greater than the first. Com-
parisons can be either string or numeric.

• Patterns can be combined with the Boolean operators || (or), && (and), and ! (not).

• Patterns can include any of the following predefined variables. For example, NF > 1 selects
records with more than one field.

Editor Command Summary 453

Special Variables

FS Field separator (blank and tab by default)
RS Record separator (newline by default)
OFS Output field separator (blank by default)
ORS Output record separator (newline by default)
NR Number of current record
NF Number of fields in current record
$0 Entire input record
$1, $2,..., $n First, second, ...nth field in current record, where fields are separated by

FS

Procedures

Procedures consist of one or more commands, functions, or variable assignments, separated by newlines or
semicolons, and contained within curly braces. Commands fall into four groups:

• variable or array assignments

• printing commands

• built-in functions

• control flow commands

Variables and Array Assignments

Variables can be assigned a value with an = sign. For example:
FS = ,’’

Expressions using the operators +, -, /, and % (modulo) can be assigned to variables.

Arrays can be created with the split function (see following awk commands) or can be simply
named in an assignment statement. ++, +=, and -= are used to increment or decrement an array, as in the
C language. Array elements can be subscripted with numbers (array[1], ..., array[n]) or with names. For
example, to count the number of occurrences of a pattern, you could use the following program:

/pattern/ {n["/pattern/"]++}
END {print n["/pattern/"]}

awk Commands

for for(i=lower; i<=upper; i++)
command

While the value of variable i is in the range between lower and upper, do command . A
series of commands must be put within braces. <= or any relational operator can be used;
++ or -- can be used to decrement variable.

for for i in array
command

For each occurrence of variable i in array, do command . A series of commands must be
put inside braces.

454 Unix Text Processing

if if(condition)
command

[else]
[command]

If condition is true, do command(s), otherwise do command in else clause. condition
can be an expression using any of the relational operators <, <=, ==, !=, >= or >, as well
as the pattern-matching operator ~ (e.g., if $1 ~ /[Aa].*/). A series of commands
must be put within braces.

length x = length(arg)
Return the length of arg. If arg is not supplied, $0 is assumed.

log x = log(arg)
Return logarithm of arg.

print print[args]
Print args on output. args is usually one or more fields, but may also be one or more of
the predefined variables. Literal strings must be surrounded by quotation marks. Fields
are printed in the order they are listed. If separated by commas in the argument list, they
are separated in the output by the character specified by OFS. If separated by spaces,
they are concatenated in the output.

printf printf "format",expression(s)
Formatted print statement. Fields or variables can be formatted according to instructions
in the format argument. The number of arguments must correspond to the number speci-
fied in the format sections.

Format follows the conventions of the C language’s printf statement. Here are a few
of the most common formats:

%n.md a floating point number;
n = total number of digits.
m = number of digits after decimal point.

%[-]nc n specifies minimum field length for format type c. - justifies value in
field; otherwise value is right justified.

Format can also contain embedded escape sequences: \n (newline) or \t (tab) are the
most common.

Spaces and literal text can be placed in the format argument by surrounding the entire ar-
gument with quotation marks. If there are multiple expressions to be printed, you should
specify multiple formats. An example is worth a thousand words. For an input file con-
taining only the line:
5 5
The program:

{printf ("The sum of line %s is %d \n", NR, $1+$2)}
will produce:

The sum of line 1 is 10
followed by a newline.

split x = split(string, array[, sep])
Split string into elements of array array[1],..., array[n]. string is split at each
occurrence of separator sep. If sep is not specified, FS is used. The number of array ele-
ments created is returned.

sprintf x = sprintf("format", expression(s))
Return the value of expression(s), using the specified format (see printf).

sqrt x = sqrt(arg)
Return square root of arg.

Editor Command Summary 455

substr x = substr(string, m, [n])
Return substring of string beginning at character position m and consisting of the next n
characters. If n is omitted, include all characters to the end of string.

while while (condition)
command

Do command while condition is true (see if for a description of allowable conditions).
A series of commands must be put within braces.

4Appendix B

Formatter Command Summary

This appendix is divided into ten subsections, each covering a different facet of the nroff/troff for-
matting system. These sections are:

• nroff/troff command-line syntax

• nroff/troff requests

• escape sequences

• predefined number registers

• special characters

• the ms macro package

• the mm macro package

• the tbl preprocessor

• the eqn preprocessor

• the pic preprocessor

In the following sections, italics are used for values that you supply. Optional arguments to requests
or macros are enclosed in brackets.

nroff/troff Command-Line Syntax

nroff [options] [files]

-cname Prepend /usr/lib/macros/cmp.n.[dt].name to files (old versions of
nroff only).

-e Space words equally on the line instead of in full multiples of the space character.

-h Use tabs in large spaces.

-i Read standard input after files are processed.

-kname Compact macros and output to [dt].name (old versions of nroff only).

-mname Prepend /usr/lib/tmac/tmac.name to files.

-nn Number first page n.

-olist Print only pages contained in list. Individual pages in list should be separated by
commas; a page range is specified by n-m; n- indicates from page n to the end.

-q Invoke simultaneous input/output of .rd requests.

-ran Set register a to n.

455

456 Unix Text Processing

-sni Stop every n pages.

-Tname Output is for device type name. Values are shown in Table B-1. (Check your man-
ual for other devices, especially those supported by the mm command.)

-un Embolden characters by overstriking n times.

-z 15 Throw away output except messages from .tm request.

Table B.1 Device Names for nroff

Abbreviation Used for

37 TELETYPE Model 37 terminal (default for nroff)
450 DASI 450 terminal (default for mm)
tn300 GE TermiNet 300 printer
300 DASI 300 terminal
832 Anderson Jacobson 832 printer
2631 Hewlett-Packard 2631
4000a Trendata 4000a
8510 C. Itoh printer
lp ASCII line printer
X EBCDIC line printer

troff Options

troff [options] [files]

-a Send printable ASCII approximation to standard output. otroff sends its output
directly to a connected typesetter unless the -t or -a option is specified, in which
case it is sent to standard output. ditroff always writes to standard output.

-b Report phototypesetter status (otroff only).

-cname Prepend /usr/lib/macros/cmp.t.[dt].name to files (otroff only).

-f Do not stop the phototypesetter when the formatting run is done (otroff only).

-Fdir Format output for device name using the font tables in directory dir instead of
/usr/lib/font (ditroff only).

-i Read standard input after files.

-kname Compact macros and output to [dt].name (otroff only).

-mname Prepend /usr/lib/tmac/tmac.name to files.

-nn Number first page n.

-olist Print only pages contained in list. Individual pages in list should be separated by
commas. A page range is specified by n-m; n− indicates from page n to the end.

-pn Print all characters in point size n, but retain motions for sizes specified in docu-
ment (otroff only).

-q Do not echo .rd requests.

-ran Assign value n to register a.

-sn Stop every n pages.

-t Send output to standard output instead of directly to the phototypesetter (otroff
only).

-Tname Format output for device name using the device description and font width tables in
/usr/lib/font/devname (ditroff only).

Formatter Command Summary 457

-w If the phototypesetter is busy, wait until it is free (otroff only).

nroff/troff Requests

.ab [text] Abort and print text as message. If text is not specified, the message User Abort is
printed.

.ad [c] Adjust one or both margins if filling is in effect (see .fi). c can be

b or n Adjust both margins
c Center all lines
l Adjust left margin only
r Adjust right margin only

.af r c Assign format c to register r. c can be:

1 0, 1, 2, etc.
001 000, 001, 002, etc.
i Lowercase roman
I Uppercase roman
a Lowercase alphabetic
A Uppercase alphabetic

.am xx yy Append to macro xx; end append at call to yy (default yy = ..).

.as xx string Append to string xx.

.bd f n Overstrike characters in font f, n times.

.bd f s n Overstrike special font s, n times when font f is in effect.

.bp [n] Begin new page. Number next page n.

.br Break to a new line (output partial lines).

.c2 c Set no-break control character to c (default ’).

.cc c Set control character to c (default .).

.cf file Copy contents of file into output, uninterpreted (ditroff only).

.ce [n] Center next n lines; if n is 0, stop centering (default n = 1).

.ch xx [n] Change trap position for macro xx to n. If n is absent, remove the trap.

.cs f n m Use constant character spacing for font f of n/36 ems. If m is given, the em is taken
to be m points.

.cu [n] Continuous underline (including interword spaces) on next n lines. If n is 0, stop
underlining. Italicize in troff. (See .ul.)

.da [xx] Divert following text, appending it to macro xx. If no argument, end diversion.

.de xx [yy] Define macro xx. End definition at .yy (default .yy = ..).

.di [xx] Divert following text to newly defined macro xx. If no argument, end diversion.

.ds xx string Define xx to contain string.

.dt n xx Install trap to invoke macro xx at position n.

.ec [c] Set escape character to c (default \).

.el anything Else portion of if-else. See .ie.

.em xx Set end macro to xx.

.eo Turn escape character mechanism off. See .ec.

458 Unix Text Processing

.ev [n] Change environment to n. If no argument, restore previous environment (0 ≤ n ≤ 2
= initial value 0).

.ex Exit from formatter.

.fc a b Set field delimiter to a and pad character to b.

.fi Turn on fill mode (default: fill is on).

.fl Flush output buffer.

.fp n f Assign font f to position n.

.ft f Change font to f.

.hc[c] Change hyphenation-indication character used with .hw to c (default –).

.hw words Specify hyphenation points for words (e.g., .hw spe-ci-fy).

.hy n Turn hyphenation on (n≥ 1) or off (n=0).

n=1 Hyphenate wherever necessary
n=2 Don’t hyphenate last word in page or diversion
n=4 Don’t split off first two characters of word
n=8 Don’t split off last two characters of word
n=14 Use all three restrictions

.ie c anything If portion of if-else. See .el.

.if !c anything If condition c is false, do anything.

.if n anything If expression n>0, do anything.

.if !n anything If expression n≤ 0, do anything.

.if ’string1’string2’ anything
If string1 and string2 are identical, do anything.

.if !’string1’string2’ anything
If string1 and string2 are not identical, do anything.

.ig yy Ignore following text, up to line beginning with .yy.

.in [±][n] Set indent to n or increment indent by ±n. If no argument, restore previous indent.

.it n xx Set input line count trap to invoke macro xx after n lines of input text have been
read.

.lc c Set leader repetition character to c. (See .tc.) Leaders are invoked by \a.

.lg n Turn ligature mode on if n is absent or nonzero.

.ll [±][n] Set line length to n or increment line length by ±n. If no argument, restore previous
line length (default 6.5 inches).

.ls n Set line spacing to n. If no argument, restore previous line spacing (initial value 1).

.lt n Set title length to n. If no argument, restore previous value.

.mc [c] [n] Set margin character to c, and place it n spaces to the right of margin. If c is miss-
ing, turn margin character off. Default for n is 0.2 inches in nroff and 1 em in
troff.

.mk [r] Mark current vertical place in register r. Return to mark with .rt, or .sp|\nr.

.na Do not adjust margins. (See .ad.)

.ne n If n lines do not remain on this page, start new page.

.nf No filling or adjusting of output lines. (See .ad and .fi.)

.nh Turn hyphenation off. (See .hy.)

.nm [n m s i] Number of output lines (n≥ 0) or turn numbering off (n=0). ±n sets initial line num-
ber; m sets numbering interval; s sets separation of numbers and text; i sets indent
of text.

Formatter Command Summary 459

.nn n Do not number next n lines, but keep track of numbering sequence, which can be
resumed with .nm+0.

.nr r n [m] Assign the value n to number register r and optionally set autoincrement to m.

.ns Turn no-space mode on. (See .rs.)

.nx file Switch to file and do not return to current file. (See .so.)

.os Output saved space specified in previous .sv request.

.pc c Set page number character to c.

.pi cmd Pipe output of troff to cmd instead of to standard output.

.pl [±][n] Set page length to n or increment page length by ±n. If no argument, restore de-
fault (default 11 inches).

.pm Print names and sizes of all defined macros.

.pn [±][n] Set next page number to n, or increment page number by ±n.

.po [±][n] Offset text a distance n from the left edge of page, or increment the current offset
by ±n. If no argument, restore previous offset.

.ps n Set point size to n (troff only). (Default 10 points.)

.rd [prompt] Read input from terminal, after printing optional prompt.

.rm xx Remove macro or string xx.

.rn xx yy Rename request, macro, or string xx to yy.

.rr r Remove register r.

.rs xx yy Restore spacing. (Turn no-space mode off; see .ns.)

.rt [±n] Return (upward only) to marked vertical place, or to ±n from top of page or diver-
sion. (See .mk.)

.so file Switch out to file, then return to current file. (See .nx.)

.sp n Leave n blank lines (default 1).

.ss n Space character size set to n/36 em (no effect in nroff).

.sv n Save n lines of space; output such space with .os.

.sy cmd [args] Execute UNIX command cmd with optional arguments (ditroff only).

.ta n[t] m[t] Set tab stop at positions n, m, etc. If t is not given, tab is left adjusting; if t is:

R Right adjust
C Center

.tc c Define tab character as c (e.g., .tc . will draw a string of dots to tab position).

.ti [±][n] Indent next output line n spaces, or increment the current indent by ±n for the next
output line.

.tl ’l’c’r’ Specify left (l), centred (c), right (r) title.

.tm text Terminal message. (Print text on standard error.)

.tr ab Translate character a to b.

.uf f Underline font set to f (to be switched to by .ul).

.ul [n] Underline (italicize in troff) next n input lines. Do not underline interword
spaces.

.vs [n] Set vertical line spacing to n. If no argument, restore previous spacing (default 1/6
inch in nroff, 12 points in troff).

.wh n xx When position n is reached, execute macro xx; negative values of n are with respect
to page bottom.

460 Unix Text Processing

Escape sequences

\ To prevent or delay the interpretation of \.

\e Printable version of current escape character.

\’ ́ (acute accent); equivalent to \(aa.

\ ̀ (grave accent); equivalent to \(ga.

\- - Minus sign in the current font.

\. Period (dot). (See de.)

\ (space) Unpaddable space-size space character.

\0 Digit width space.

\| 1/6-em narrow space character (zero width in nroff).

\ˆ 1/12-em half-narrow space character (zero width in nroff).

\& Nonprinting, zero-width character.

\! Transparent line indicator.

\" Beginning of comment.

\\$N Interpolate argument 1≤N≤9.

\% Default optional hyphenation character.

\(xx Character named xx.

*x, *(xx Interpolate string x or xx.

\a Noninterpreted leader character for use in macros.

\b´abc...´ Bracket building function—stack abc... vertically.

\c Interrupt text processing.

\d Downward 1/2-em vertical motion (1/2 line in nroff).

\D´l x,y´ Draw a line from current position to coordinates x,y (ditroff only).

\D´c d´ Draw circle of diameter d with left edge at current position (ditroff only).

\D´e d1 d2´ Draw ellipse with horizontal diameter d1 and vertical diameter d2, with left edge at
current position (ditroff only).

\D´a x1 y1 x2 y2´ Draw arc counterclockwise from current position, with center at x1,y1 and endpoint
at x1+x2,y1+y2 (ditroff only).

\D´˜ x1 y1 x2 y2 ...´
Draw spline from current position through the specified coordinates (ditroff
only).

\fx, \f(xx, \fN Change to font named x or xx or position N.

\h´N´ Local horizontal motion; move right N (negative left).

\H´n´ Set character height to n points, without changing width (ditroff only).

\jx Mark horizontal place on output line in register x.

\kx Mark horizontal place on input line in register x.

\l´Nc´ Horizontal line drawing function (optionally with c, default _).

\L´Nc´ Vertical line drawing function (optionally with c, default |).

\nx, \n(xx Interpolate register number x or xx.

\o´abc...´ Overstrike characters a, b, c...

\p Break and spread output line.

Formatter Command Summary 461

\r Reverse 1-em vertical motion (reverse line in nroff).

\sN, \s±N Point-size change function.

\S´n´ Slant output n degrees to the right (ditroff only). Negative values slant to the
left. A value of zero turns off slanting.

\t Noninterpreted horizontal tab.

\u Reverse (up) 1/2-em vertical motion (1/2 line in nroff).

\v´N´ Local vertical notion; move down N (negative up).

\w´string´ Interpolate width of string.

\x´N´ Extra line-space function (negative before, positive after).

\zc Print c with zero width (without spacing).

\{ Begin conditional input.

\} End conditional input.

\(newline) Concealed (ignored) newline.

\X X, any character not listed above.

Predefined Number Registers

Read-Only Registers

.$ Number of arguments available at the current macro level.

.$$ Process ID of troff process (ditroff only).

.A Set to 1 in troff, if -a option is used; always 1 in nroff.

.H Available horizontal resolution in basic units.

.T In nroff, set to 1 if -T option is used; in troff, always 0; in ditroff, you
can print the value of -T with the string *(.T.

.V Available vertical resolution in basic units.

.a Extra line space most recently utilized using \x´N´.

.c Number of lines read from current input file.

.d Current vertical place in current diversion; equal to nl if no diversion.

.f Current font in physical quadrant (1 to 4 in otroff; no limit in ditroff).

.h Text baseline high-water mark on current page or diversion.

.i Current indent.

.j Current adjustment type (0=.ad l or .na; 1=.ad b; 3=.ad c; 5=.ad r).

.l Current line length.

.n Length of text portion on previous output line.

.o Current page offset.

.p Current page length.

.s Current point size.

.t Distance to the next trap.

.u Equal to 1 in fill mode and 0 in no-fill mode.

.v Current vertical line spacing.

462 Unix Text Processing

.w Width of previous character.

.x Reserved version-dependent register.

.y Reserved version-dependent register.

.z Name of current diversion.

Read/Write Registers

% Current page number.

ct Character type (set by width function).

dl Width (maximum) of last completed diversion.

dn Height (vertical size) of last completed diversion.

dw Current day of the week (1 to 7).

dy Current day of the month (1 to 31).

hp Current horizontal place on input line.

ln Output line number.

mo Current month (1 to 12).

nl Vertical position of last printed text baseline.

sb Depth of string below baseline (generated by width function).

st Height of string below baseline (generated by width function).

yr Last two digits of current year.

Special Characters

On the Standard Fonts

The following special characters are usually found on the standard fonts:

’ ´ close quote fi \(fi fi ligature
` open quote fl \(fl fl ligature

— \(em 3/4 em dash ff \(ff ff ligature
- - hyphen ffi \(Fi ffi ligature
- \(hy hyphen ffl \(Fl ffl ligature
- \- current font minus sign ° \(de degree
• \(bu bullet † \(dg dagger

\(sq square ′ \(fm foot mark
\(ru rule ¢ \(ct cent sign

¼ \(14 1/4 ® \(rg registered trademark
½ \(12 1/2 © \(co copyright
¾ \(34 3/4

Formatter Command Summary 463

On the Special Font

The following characters are usually found on the special font except for the uppercase Greek letter names
followed by † which are mapped into uppercase English letters in whatever font is mounted on font position
one (default is Times Roman).

Miscellaneous Characters

§ \(sc section ↓ \(da down arrow
´ \(aa acute accent \(br box rule
` \(ga grave accent ‡ \(dd double dagger

\(ul underrule + \(rh right hand
→ \(-> right arrow +\(lh left hand
← \(<- left arrow \(ci circle
- \(ua up arrow

Mathematical Symbols

+ \(pl math plus ∪ \(cu cup (union)
− \(mi math minus ∩ \(ca cap (intersection)
= \(eq math equals ⊂ \(sb subset of
∗ \(** math star ⊃ \(sp superset of
/ \(sl slash (matching backslash) ⊆ \(ib improper subset
√ \(sr square root ⊇ \(ip improper superset

\(rn root en extender ∞ \(if infinity
≥ \(>= greater than or equal to ∂ \(pd partial derivative
≤ \(<= less than or equal to ∇ \(gr gradient
≡ \(== identically equal ¬ \(no not
≈ \(˜= approx equal ∫ \(is integral sign
∼ \(ap approximates ∝ \(pt proportional to
≠ \(!= not equal ∅ \(es empty set
× \(mu multiply ∈ \(mo member of
÷ \(di divide \(or or
± \(+- plus-minus

Bracket Building Symbols

 \(lt left top of large curly bracket
 \(lk left center of large curly bracket
 \(lb left bottom of large curly bracket
 \(rt right top of large curly bracket
 \(rk right center of large curly bracket
 \(rb right bottom of large curly bracket
 \(lc left ceiling (top) of large square bracket
 \(bv bold vertical
 \(lf left floor (bottom) of large square bracket
 \(rc right ceiling (top) of large square bracket
 \(rf right floor (bottom) of large square bracket

464 Unix Text Processing

Greek Characters

α \(*a alpha Α \(*A Alpha†
β \(*b beta Β \(*B Beta†
γ \(*g gamma Γ \(*G Gamma
δ \(*d delta ∆ \(*D Delta
ε \(*e epsilon Ε \(*E Epsilon†
ζ \(*z zeta Ζ \(*Z Zeta†
η \(*y eta Η \(*Y Eta†
θ \(*h theta Θ \(*H Theta
ι \(*i iota Ι \(*I Iota†
κ \(*k kappa Κ \(*K Kappa†
λ \(*l lambda Λ \(*L Lambda
µ \(*m mu Μ \(*M Mu†
ν \(*n nu Ν \(*N Nu†
ξ \(*c xi Ξ \(*C Xi
ο \(*o omicron Ο \(*O Omicron†
π \(*p pi Π \(*P Pi
ρ \(*r rho Ρ \(*R Rho†
σ \(*s sigma Σ \(*S Sigma
ς \(ts terminal sigma
τ \(*t tau Τ \(*T Tau†
υ \(*y upsilon ϒ \(*Y Upsilon
φ \(*f phi Φ \(*F Phi
χ \(*x chi Χ \(*X Chi†
ψ \(*q psi Ψ \(*Q Psi
ω \(*w omega Ω \(*W Omega

The ms macros

Summary of ms macros

.1C Return to single-column format.

.2C Start two-column format.

.AB Begin abstract.

.AE End abstract.

.AI name Name of author’s institution (used in cover sheet).

.AU name Author’s name (used in cover sheet)

.B [text] Print text in boldface. If text is missing, equivalent to .ft 3.

.B1 Enclose following text in a box.

.B2 End boxed text.

.BX word Surround word in a box.

.DA Print date on each page.

.DS Start displayed text.

.DS B Start left-justified block, centered.

.DS C Start centered display.

.DS L Start left-centered display.

.DE End displayed text.

Formatter Command Summary 465

.EQ Begin equation.

.EN End equation.

.FS Start footnote.

.FE End footnote.

.I [text] Print text in italics. If text is missing, equivalent to .ft 2.

.IP label n Indent paragraph n spaces with hanging label.

.KS Start keep.

.KE End of keep or floating keep.

.KF Begin floating keep.

.LG Increase type size by two points (troff only).

.LP Start block paragraph.

.ND Change or omit date.

.NH n Numbered section heading, level n.

.NL Restore default type size (troff only).

.PP Start indented paragraph.

.R [text] Print text in roman. If text is missing, equivalent to .ft 1.

.RP Initiate title page for a released paper’’.

.RS Increase relative indent one level. Use with .IP.

.RE End one level of relative indent.

.SG Signature line.

.SH Unnumbered section heading.

.SM Decrease type size by two points (troff only).

.TL Title line.

.TS [H] Start table. H will put table header on all pages. Use this option with following
.TH.

.TH Table header ends. Must be used with .TS H.

.TE End table.

.UL Underline following text, even in troff.

Internal Macros Worth Knowing About

.IZ Basic initialization; executed automatically before any text is processed. It is then
removed, and cannot be invoked again.

.RT Reset. Invoked by all paragraph macros, plus .RS, .RE, .TS, .TE, .SH and .NH.
Resets various values to defaults stored in number registers listed below.

.BG Prints cover sheet, if any. Also performs some first page initialization. Invoked
once by the very first .RT in a document.

.NP New page. Invoked at the top of each page. Performs various page top resets, and
calls .PT.

.PT Page titles. Contains running headers. Can be redefined. Invoked by .NP at
\n(HMu from the top of the page.

.BT Bottom titles. Continuous running footers. Invoked by trap at \n(FMu/2u from
the bottom of the page.

466 Unix Text Processing

.FO Footer. The bottom of the text on the page. Invoked by trap at \n(FMu.

Number Registers Containing Page Layout Defaults

CW Column width (default 7/15 of line length).

FL Footnote length (default 11/12 of line length).

FM Bottom margin (default 1 inch).

GW Intercolumn gap width for multiple columns (default 1/5 of line length).

HM Top margin (default 1 inch).

LL Line length (default 6 inches).

LT Title length (default 6 inches).

PD Paragraph spacing (default 0.3 of vertical spacing).

PI Paragraph indent (default 5 ens).

PO Page offset (default 26/27 inches).

PS Point size (default 10 points).

VS Vertical line spacing (default 12 points).

Predefined and User-Definable Strings

DY The current date.

LH Left header, printed by .tl ’*(LH’*CH’*(RH’ in PT macro. Null
unless user-defined.

CH Center header, printed by .tl ’*(LH’*CH’*(RH’ in PT macro. Null
unless user-defined.

RH Right header, printed by .tl ’*(LH’*CH’*(RH’ in PT macro. Null
unless user-defined.

LF Left footer, printed by .tl ’*(LH’*CH’\\(RH’ in BT macro. Null un-
less user-defined.

CF Center footer, printed by .tl ’*(LH’*CH’\\RH’ in BT macro. Null un-
less user-defined.

RF Right footer, printed by .tl ’*(LH’*CH’\\RH’ in BT macro. Null un-
less user-defined.

Reserved Macro and String Names

The following macro and string names are used by the ms package. Avoid using these names for compati-
bility with the existing macros. An italicized n means that the name contains a numeral (generally the in-
terpolated value of a number register).

, AX DA FL KJ OD RT TR
.] B DW FN KS OK S0 TS
: B1 DY FO LB PP S2 TT
[. B2 EE FS LG PT S3 TX

Formatter Command Summary 467

[c BB EG FV LP PY SG UL
[o BG EL FX LT QE SH US
ˆ BT EM FY MC QF SM UX

BX EN HO ME QP SN WB
˜ C En I MF QS SY WH
1C C1 EQ IE MH R TA WT
2C C2 EZ IH MN R3 TC XF
AB CA FA IM MO RA TD XK
AE CC FE In MR RC TE XP
AI CF FF IP ND RE TH
An CH FG IZ NH Rn TL
AT CM FJ KD NL RP TM
AU CT FK KF NP RS TQ

The following number register names are used by the ms package. An italicized n means that the
name contains a numeral (generally the interpolated value of another number register).

#T EF H5 IX MF OJ QP TV
AJ FC HM I# MG PD RO TY
AV FL HT J# ML PE SJ TZ
BC FM I0 KG MM PF ST VS
BD FP IF KI MN PI T. WF
BE GA IK KM NA PN TB XX
BH GW IM L1 NC PO TC YE
BI H1 IP LE ND PQ TD YY
BQ H2 IR LL NQ PS TK ZN
BW H3 IS LT NS PX TN
CW H4 IT MC NX QI TQ

Note that with the exception of [c and [o, none of the number register, macro, or string names contain
lowercase letters, so lowercase or mixed case names are a safe bet when you’re writing your own macros.

The mm Macros

Summary of mm Macros

.1C Return to single-column format.

.2C Start two-column format.

.AS [x] [n] Start abstract type x, indent n spaces. (Used with .TM and .RP only.) (Types:
1=abstract on cover sheet and first page; 2=abstract only on cover sheet; 3=abstract
only on Memorandum for File cover sheet.) End with .AE.

.AE End Abstract. Begin with .AS.

.AF [company name]
Alternate format for first page. Change first page Subject/Date/From’’ format. If
argument is given, other headings are not affected. No argument suppresses com-
pany name and headings.

.AL [x] [n] Start list type x (1, A, a, I or i), indent n spaces. If third argument is 1, don’t put a
blank line between items. Default is numbered listing, indented 5 spaces.

.AT title Author’s title follows.

.AU name Author’s name and other information follows.

468 Unix Text Processing

.AV name Approval signature line for name.

.B [w] [x] . . . Set w in bold (underline in nroff) and x in previous font; up to six arguments.

.BS Begin block of text to be printed at bottom of page, after footnotes (if any), but be-
fore footer.

.BE End bottom block and print after footnotes (if any), but before footer.

.BI [w] [x] . . . Set w in bold (underline in nroff) and x in italics; up to six arguments.

.BL [n] [1] Start bullet list and indent text n spaces. If second argument is 1, don’t put a blank
line between items.

.BR [w] [x] Set w in bold (underline in nroff) and x in roman; up to six arguments.

.CS [pgs] [other] [tot] [figs] [tbls] [ref]
Cover sheet numbering information.

.DF [x] [y] [n] Start floating display of type x and mode y, with indent n. (Default is no indent,
no-fill mode.) End with .DE. x is: L (no indent), I (indent standard amount), C
(center each line individually), or CB (center as a block). y is: N (no-fill mode) or F
(fill mode).

.DS [x] [y] [n] Start floating or static display of type x and mode y, with indent n. Type and mode
are as in .DF. End with &.DE.

.DE End floating or static display started with .DS or .DF.

.DL [n] [1] Start dashed list and indent text n spaces. If second argument is 1, no space be-
tween items.

.EC [caption] [n] [f]
Equation caption. Arguments optionally override default numbering, where flag f
determines use of number n. If f=0 (default), n is a prefix to number; if f=1, n is a
suffix; if f=2, n replaces number.

.EF [text] Print text as the footer on all even pages. text has the format ’left’center’right’.

.EH [text] Print text as the heading on all even pages. text has the format ’left’center’right’.

.EQ [text] Start equation display using text as label.

.EN End equation display.

.EX [caption] [n] [f]
Exhibit caption. Arguments optionally override default numbering, where flag f
determines use of number n. If f=0 (default), n is a prefix to number; if f=1, n is a
suffix; if f=2, n replaces number.

.FC [text] Use text for formal closing.

.FD [0-11] Setup default footnote format.

.FS [c] Start footnote using c for indicator. Default is numbered footnote.

.FE End footnote.

.FG [title] Figure title follows.

.Hn [heading] Numbered heading level n follows.

.HC [c] Use c as hyphenation indicator.

.HM [mark] Heading mark style follows arabic (1 or 001), roman (i or I) or alphabetic (a or
A).

.HU heading Unnumbered heading follows.

.HX User-supplied exit macro before printing heading.

.HY User-supplied exit macro in middle of printing heading.

.HZ User-supplied macro after heading.

Formatter Command Summary 469

.I [w] [x] . . . Set w in italics (underline in nroff) and x in previous font. Up to six arguments.

.IB [w] [x] . . . Set w in italics (underline in nroff) and x in bold. Up to six arguments.

.IR [w] [x] . . . Set w in italics (underline in nroff) and x in roman. Up to six arguments.

.LB n m pad type [mark] [LI-space] [LB-space]
List beginning. Allows complete control over list format. It takes the following ar-
guments:

n — Text indent.
m — Mark indent.
pad — Padding associated with mark.
type — If 0, use the specified mark. If non-zero, and mark is 1, A, a, I, i, list
will be automatically numbered or alphabetically numbered or alphabetically
sequenced. In this case, type controls how the mark will be displayed. For
example, if mark is 1, type will have the following results:

Type Format
1 1.
2 1)
3 (1)
4 [1]
5 <1>
6 {1}

mark — The symbol or text that will be used to start each list entry. mark can
be null (creates hanging indent), a text string, or 1, A, a, I, or i to create an au-
tomatically numbered or lettered list. Format of the mark will be affected by
type.
LI-space — The number of blank lines to be output between each following
.LI macro (default 1).
LB-space — The number of blank lines to be output by the LB macro itself
(default 0).

.LC [n] Clear list level n.

.LE End list.

.LI [mark] Item in list and specify mark.

.ML mark [n] [1] Start marked list, indent n spaces. If third argument is 1, no space between items in
list.

.MT [type] [title] Specify memorandum type and title. type is

"" = No type
0 = No type
1 = Memorandum for file (default)
2 = Programmer’s notes
3 = Engineer’s notes
4 = Released paper
5 = External letter
string = string is printed.

title is user-supplied text prefixed to page number.

.ND date New date. Change date to date.

.nP Double-line indent on paragraph start.

470 Unix Text Processing

.NS [type] Notation start. Specify notation type. type is:

"" = Copy to
0 = Copy to
1 = Copy (with att.) to
2 = Copy (no att.) to
3 = Att.
4 = Atts.
5 = Enc.
6 = Encs.
7 = Under Separate Cover
8 = Letter to
9 = Memorandum to
10 = Copy (with atts.) to
11 = Copy (without atts.) to
12 = Abstract Only to
13 = Complete Memorandum to
string = Copy string to

.NE Notation end.

.OF [text] Print text as the footer on all odd pages. text has the format ’left’center’right’.

.OH [text] Print text as the heading on all odd pages. text has the format ’left’center’right’.

.OK [topic] Other keywords. Specify topic for TM cover sheet.

.OP Force an odd page.

.P [type] Start paragraph type. type is: 0 = left justified (default), 1 = indented, 2 = indented
except after .H, .LC, .DE.

.PF [text] Print text as the page footer on all pages. text has the format ’left’center’right’.

.PH [text] Print text as the page heading on all pages. text has the format ’left’center’right’.

.PM [type] Proprietary marking on each page (type: P=PRIVATE; N=NOTICE).

.PX Page-heading user exit.

.R Return to roman font (end underlining in nroff).

.RB [w] [x] . . . Set w in roman and x in bold. Up to six arguments.

.RD [input] Read input from terminal.

.RI [w] [x] . . . Set w in roman and x in italics. Up to six arguments.

.RS [arg] Start automatically numbered reference. arg manually specified reference number.

.RF End of reference text.

.RL [n] [1] Start reference listing, indent text n spaces. If second argument is 1, no space be-
tween list items.

.RP Produce reference page.

.S [n] [m] Set point size to n and vertical spacing to m (troff only) (defaults: 10 on 12). Al-
ternatively, either argument can be specified as ±n/m to increment/decrement cur-
rent value, D to use default, C to use current value, P to use previous value.

.SA [n] Set right margin justification to n. n is: 0 = no justification or 1 = justification.
(Defaults: no justification for nroff, justification for troff.)

.SG [name] Use name for signature line.

.SK n Skip n pages.

.SM x[y][z] Reduce string x by one point. If strings x, y, and z are specified, y is reduced by one
point.

Formatter Command Summary 471

.SP [n] Leave n blank vertical spaces.

.TB [title] [n] [f] Supply table title. Arguments optionally override default numbering, where flag f
determines use of number n. If f=0 (default), n is a prefix to number; if f=1, n is a
suffix; if n=2, n replaces number.

.TS [H] Start table. H will put table header on all pages. Use this option with following
.TH.

.TH N Table header ends. Must be used with .TS H. N = only print table headers on new
page.

.TE End table.

.TC [level] [level] [tab] [head1] ...
Generate table of contents.

.TL Title of memorandum follows on next line.

.TM [n] Number a technical memorandum n. (Up to nine may be specified.)

.TP Top-of-page macro.

.TX User-supplied exit for table-of-contents titles.

.TY User-supplied exit for table-of-contents header.

.VL n [m] [1] Start variable item list. Indent text n spaces and mark m spaces. If third argument
is 1, no space between list items.

.VM [n] [m] Add n lines to top margin and m lines to bottom.

.WC [x] Change column or footnote width to x. x is:

FF All footnotes same as first
-FF Turn off FF mode
N Normal default mode
WD Wide displays
-WD Use default column mode
WF Wide footnotes
-WF Turn off WF mode

Predefined String Names

BU Bullet; same as \(bu.

Ci List of indents for table of contents levels.

DT Current date, unless overridden. Month, day, year (e.g., July 28, 1986).

EM Em dash string (em dash in troff and a double hyphen in nroff).

F Footnote number generator.

HF Fonts used for each level of heading (1=roman, 2=italic, 3=bold).

HP Point size used for each level of heading.

Le Title set for List Of Equations.

Lf Title set for List Of Figures.

Lt Title set for List Of Tables.

Lx Title set for List Of Exhibits.

RE SCCS Release and Level of mm.

Rf Reference number generator.

Rp Title for references.

TM Trademark listing. Place the letters TM one-half line above the text that it follows.

472 Unix Text Processing

Number Registers Used in mm

A dagger (†) next to a register name indicates that the register can only be set from the command line or be-
fore the mm macro definitions are read by the formatter. Any register that has a single-character name can
be set from the command line.

A† If set to 1, omits technical memorandum headings and provides spaces appropriate
for letterhead. See .AU macro.

Au Inhibits author information on first page. See .AU macro.

C† Flag indicating type of copy (original, draft, etc.).

Cl Level of headings saved for table of contents (default 2). See .TC macro.

Cp If set to 1, list of figures and tables appear on same page as table of contents. Oth-
erwise, they start on a new page. (Default is 1.)

D† If set to 1, sets debug mode (default 0). If set, mm will continue even when it en-
counters normally fatal errors.

De If set to 1, ejects page after each floating display. (Default is 0.)

Df Format of float displays. See .DF macro.

Ds Sets the pre- and post-space used for static displays.

E† Font for the Subject/Date/From: 0=bold; 1=roman. (Default is 0.)

Ec Equation counter, incremented for each .EC macro.

Ej Heading level for page eject before headings. (Default is 0, no eject.)

Eq If set to 1, places equation label at left margin. (Default is 0.)

Ex Exhibit counter, incremented for each .EX macro.

Fg Figure counter, incremented for each .FG macro.

Fs Vertical spacing between footnotes.

H1-H7 Heading counters for levels 1-7, incremented by the .H macro of corresponding
level or the .HU macro if at level given by the Hu register. The H2-H7 registers
are reset to 0 by any .H (or .HU) macro at a lower-numbered level.

Hb Level of heading for which break occurs before output of body text (default 2
lines).

Hc Level of heading for which centering occurs (default 0).

Hi Indent type after heading. (Default 1=paragraph indent.) Legal values are: 0 left
justified, 1 indented, 2 indented except after .H, .LC, .DE. (Default is 0).

Hs Level of heading for which space after heading occurs. (Default = 2; .H2.)

Ht Numbering type of heading: single (1) or concatenated (0). (Default is 0.)

Hu Sets level of numbered heading that unnumbered heading resembles. (Default = 2;
.H2.)

Hy Sets hyphenation. If set to 1, Hy enables hyphenation. (Default is 0.)

L† Sets length of page. (Default is 66v.)

Le Flag for list of equations following table of contents. 0 = do not print; 1 = print.
(Default is 0.)

Lf Flag for list of figures following table of contents. 0 = do not print; 1 = print. (De-
fault is 0.)

Li Default indent of lists. (Default is 5.)

Ls List spacing between items by level. (Default = 6, spacing between all levels of
list.)

Formatter Command Summary 473

Lt Flag for list of tables following table of contents. 0 = do not print; 1 = print. (De-
fault is 0.)

Lx Flag for list of exhibits following table of contents. 0 = do not print; 1 = print.
(Default is 0.)

N† Page numbering style. 0=header on all pages; 1=header printed as footer on page
1; 2=no header on page 1; 3=section page as footer; 4=no header unless .PH de-
fined; 5=section page and section figure as footer. (Default is 0.)

Np Numbering style for paragraphs. 0 = unnumbered; 1 = numbered.

O Offset of page. For nroff, this value is an unscaled number representing charac-
ter positions. Default is 9. For troff, this value is scaled. Default is .5i.

Oc Table of contents page numbering style. 0=lower case roman; 1=arabic. (Default
is 0.)

Of Figure caption style. 0=period separator; 1=hyphen separator. (Default is 0.)

P Current page number.

Pi Amount of indent for paragraph. (Default is 5 for nroff, 3 for troff.)

Ps Amount of spacing between paragraphs. (Default is 3v.)

Pt Paragraph type. Legal values are: 0 left justified, 1 indented, 2 indented except af-
ter .H, .LC, .DE. (Default is 0.)

Pv Inhibits PRIVATE’’ header. See .PV macro for values.

Rf Reference counter, incremented for each .RS.

S† Default point size for troff. Default is 10. (Vertical spacing is \n5+2.)

Si Standard indent for displays. (Default is 5 for nroff, 3 for troff.)

T† Type of nroff output device. Causes register settings for specific devices.

Tb Table counter, incremented for each .TB.

U* Underlying style (nroff) for .H and .HU. If not set, use continuous underline;
otherwise, don’t underline punctuation and white space. (Default is 0.)

W† Width of page (line and title length). (Default is 6i.)

Other Reserved Macro and String Names

In mm, the only macro and string names you can safely use are names containing a single lowercase letter,
or two character names whose first character is a lowercase letter and whose second character is anything
but a lowercase letter. Of these, c2 and nP are already used.

tbl Command Characters and Words

.TS Start table.

.TE End table.

.TS H Used when the table will continue onto more than one page. Used with .TH to de-
fine a header that will print on every page.

.TH With .TS H, ends the header portion of the table.

.T& Continue table after changing format line.

474 Unix Text Processing

Options

Options affect the entire table. The options should be separated by commas, and the option line must be
terminated by a semicolon.

center Center with current margins.

expand Flush with current left and right margins.

(blank) Flush with current left margin (default).

box Enclose table in a box.

doublebox Enclose table in two boxes.

allbox Enclose each table entry in a box.

tab (x) Define the tab symbol as x.

linesize (n)
Set lines or rules (e.g., from box) to n point type.

delim (xy) Recognize x and y as the eqn delimiters.

Format

The format line affects the layout of individual columns and rows of the table. Each line contains a key let-
ter for each column of the table. The column entries should be separated by spaces, and the format section
must be terminated by a period. Each line of format corresponds to one line of the table, except for the last,
which corresponds to all following lines up to the next .T&, if any.

Key letters

c Center.
l Left justify.
r Right justify.
n Align numerical entries.
a Align alphabetic subcolumns.
s Horizontally span previous column entry across this column.
ˆ Vertically continue entry from previous row down through

this row.

Other choices (must follow a key letter)

b Boldface. Must be followed by a space.
i Italics. Must be followed by a space.
pn Point size n.
t Begin any corresponding vertically spanned table en-

try at the top line of its range.
e Equal width columns.
w(n) Minimum column width. Also used with text blocks.

n can be given in any acceptable troff units.
vn Vertical line spacing. Used only with text blocks.
n Amount of separation between columns (default is 3n).
| Single vertical line. Typed between key letters.
|| Double vertical line. Typed between key letters.
_ Single horizontal line. Used in place of a key letter.

Formatter Command Summary 475

= Double horizontal line. Used in place of a key letter.

Data

The data portion includes both the heading and text of the table. Each table entry must be separated by a
tab symbol.

.xx troff commands may be used (such as .sp # and .ce #). Do not use
macros, unless you know what you’re doing.

\ As last character in a line, combine following line with current line (\ is hid-
den).

\ˆ Vertically spanned table entry. Span table entry immediately above over this
row.

_ or = As the only character in a line, extend a single or double horizontal line the full
width of the table.

\$_ or \$= Extend a single or double horizontal line the full width of the column.
_ Extend a single a single horizontal line the width of the contents of the column.
\Rx Print x’s as wide as the contents of the column.
...T{ Start text block as a table entry. Must be used with wn, column width option.
...T} End text block.

eqn Command Characters

.EQ Start typesetting mathematics

.EN End typesetting mathematics

Character Translations

The following character sequences are recognized and translated as shown.

>= ≥ approx ≈
<= ≤ nothing
== ≡ cdot ⋅
!= ≠ times ×
+- ± del ∇
-> → grad ∇
<- ←
<< << ,..., , . . . ,
>> >> sum Σ
inf ∞ int ∫
partial ∂ prod Π
half ½ union ∪
prime ′ inter ∩

Digits, parentheses, brackets, punctuation marks, and the following words are converted to roman when en-
countered:

sin cos tan sinh cosh tanh arc
max min lin log ln exp
Re Im and if for det

Greek letters can be printed in uppercase or lowercase. To obtain Greek letters, simply spell them out
in the case you want:

alpha α sigma σ

476 Unix Text Processing

beta β tau τ
gamma γ upsilon υ
delta δ phi φ
epsilon ε chi χ
zeta ζ psi ψ
eta η omega ω
theta θ GAMMA Γ
iota ι DELTA ∆
kappa κ THETA Θ
lambda λ LAMBDA Λ
mu µ XI Ξ
nu ν PI Π
xi ξ SIGMA Σ
omicron ο UPSILON ϒ
pi π PHI Φ
rho ρ PSI Ψ

OMEGA Ω

The following words translate to marks on the tops of characters.

x dot ẋ x vec →x
x dotdot ẍ x dyad ↔x
x hat x̂ x bar x
x tilde x̃ x under x

Words Recognized By eqn

above Separate the pieces of a pile or matrix column.

back n Move backwards horizontally n 1/100’s of an em.

bold Change to bold font.

ccol Center a column of a matrix.

col??? Used with a preceding l or r to left or right adjust the columns of the matrix.

cpile Make a centered pile (same as a pile).

define Create a name for a frequently used string.

delim Define two characters to mark the left and right ends of an eqn equation to be
printed in line.

down n Move down n 1/100’s of an em.

fat Widen the current font by overstriking it.

font x Change to font x, where x is the one-character name or the number of a font.

from Used in summations, integrals and other similar constructions to signify the lower
limit.

fwd n Move forward n 1/100’s of an em.

gfont x Set a global font x for all equations.

gsize n Set a global size for all equations.

up n Move up n 1/100’s of an em.

italic Change to italic font.

lcol Left justify a column of a matrix.

left Create large brackets, braces, bars, etc.

Formatter Command Summary 477

lineup Line up marks in equations on different lines.

lpile Left justify the elements of a pile.

mark Remember the horizontal position in an equation. Used with lineup.

matrix Create a matrix.

ndefine Create a definition which only takes effect when neqn is running.

over Make a fraction.

pile Make a vertical pile with elements centered above one another.

rcol Right adjust a column of a matrix.

right Create large brackets, braces, bars, etc.

roman Change to roman font.

rpile Right justify the elements of a pile.

size n Change the size of the font to n.

sqrt Draw a square root sign.

sub Start a subscript.

sup Start a superscript.

tdefine Make a definition that will apply only for eqn.

to Used in summations, integrals, and other similar constructions to signify the upper
limit.

˜ Forces extra space into the output.

ˆ Force a space one half the size of the space forced by ˜.

{ } Force eqn to treat an element as a unit.

’...’ String within quotation marks is not subject to alteration by eqn.

Precedence

If you don’t use braces, eqn will do operations in the order shown in the following list.

dyad vec under bar tilde hat dot dotdot
fwd back down up
fat roman italic bold size
sub sup sqrt over
from to

These operations group to the left:

over sqrt left right

All others group to the right.

The pic Preprocessor

In pic there are often dozens of ways to draw a picture, not only because of the many permissible abbrevi-
ations, but because pic combines the language of geometry with English. You can specify a line, for ex-
ample, with direction, magnitude, and starting point, yet often achieve the same effect by stating from
there to there.’’

Full descriptions of primitive objects in pic can be ended by starting another line, or by the semi-
colon character (;). A single primitive description can be continued on the next line, however, by ending

478 Unix Text Processing

the first with a backslash character (\). Comments may be placed on lines beginning with #.

pic Macros

The following macros are used to delimit pic input from the body of the source file. Only text within
these macros will be processed by pic.

.PS [h[w]] Start pic description. h and w, if specified, are the desired height and width of the
picture; the full picture will expand or contract to fill this space.

.PS <file Read contents of file in place of current line.

.PE End pic description.

.PF End pic description and return to vertical position before matching PS.

Declarations

At the beginning of a pic description, you may declare a new scale, and declare any number of variables.

pic assumes you want to do a 1-to-1 scale, with 1 = one inch. You can declare a different scale, say
1 = one-nth of an inch, by declaring scale = n.

pic takes variable substitutions for numbers used in the description. Instead of specifying, line
right n, you may use a lower case character as a variable, for example, a, by declaring at the top of the
description:

a = n

You may then write line right a.

Primitives

Primitives may be followed by relevant options. Options are discussed later in this section.

arc [cw] [options] [text’’]
A fraction of a circle. (Default 1/4 of a circle.) The cw option specifies a clock-
wise arc; default is counterclockwise.

arrow [options] [text’’] [then...]
Draw an arrow. Essentially the same as line ->.

box [options] [text’’]
Draw a box.

circle [options] [text’’]
Draw a circle.

ellipse [options] [text’’]
Draw an ellipse.

line [options] [text’’] [then...]
Draw a line.

move [options] [text’’]
A move of position in the drawing. (Essentially, an invisible line.)

spline [options] [text’’] [then...]
A line, with the feature that a then’’ results in a gradual (sloped) change in direc-
tion.

Formatter Command Summary 479

text’’ Text at the current point.

Options

right [n]
left [n]
up [n]
down [n]

Specifies direction of primitive; default is direction in which the previ-
ous description has been heading. Diagonals result by using two direc-
tions on the option line. Each direction can be followed by a specified
length n.

rad n
diam n

Specifies a primitive to have radius n (or diameter n).

ht n
wid n

Specifies the height or width of the primitive to be n. For an arrow,
line, or spline, refers to the size of arrowhead.

same Specifies a primitive of the same dimensions of the most recent match-
ing primitive.

at point Specifies primitive to be centered at point.

with .position at point Specifies the designated position of the primitive to be at point.

from point1 to point2 Specifies the primitive to be drawn from point1 to point2. Points may
be expressed as Cartesian coordinates or in respect to previous objects.

-> Specify the arrowhead to be directed forwards.

<- Specify the arrowhead to be directed backwards.

<-> Specify the arrowhead to be directed both ways.

chop n m Chop off n from beginning of primitive, and m from end. With only
one argument, the same value will be chopped off from both ends.

dotted
dashed
invis

Specifies the primitive to be drawn dotted, dashed, or to be invisible.

then... Continue primitive in a new direction. Relevant only to lines, splines,
moves, and arrows.

Text

Place text within quotation marks. To break the line, break into two (or more) sets of quotation marks.
Text always appears centered within the object, unless given one of the following arguments:

ljust Text appears left justified to the center.
rjust Text appears right justified to the center.
above Text appears above the center.
below Text appears below the center.

480 Unix Text Processing

Object Blocks

A complex object that is the combination of several primitives (for example, an octagon) can be treated as a
single object by declaring it as a block:

Object:[
description

.

.

.
]

Brackets are used as delimiters. Note that the object is declared as a proper noun, hence it should begin
with a capital letter.

Macros

The same sequence of commands can be repeated by using macros. The syntax is:

define sequence %
description

.

.

.
%

In this example, we have used the percent sign (%) as the delimiter, but any character that is not in the de-
scription may be used.

Macros can take variables, expressed in the definition as $1’’ through $9’’. Invoke the macro with
the syntax: sequence(value1, value2,...)

Positioning

In a pic description, the first action will begin at (0,0), unless otherwise specified with coordinates. Thus,
the point (0,0) will move down and right on the drawing, as objects are placed above and to the left of the
first object.

All points are ultimately translated by the formatter into x- and y-coordinates. You may therefore re-
fer to a specific point in the picture by incrementing or decrementing the coordinates, i.e., 2nd ellipse
- (3,1).

You may refer to the x- and y-coordinates of an object by placing .x or .y at the end. For example,
last box.x will refer to the x-coordinate of the most recent box drawn. Some of the physical attributes
of the object may also be referred to similarly, as follows:

.x X-coordinate of the object’s center.

.y Y-coordinate of the object’s center.

.ht Height of object.

.wid Width of object.

.rad Radius of object.

Unless otherwise positioned, each object will begin at the point where the last object left off. If a
command (or a sequence of commands) is set off by braces ({}), however, pic will then return to the point
before the first brace.

Formatter Command Summary 481

Positioning between Objects

When referring to a previous object, you must use proper names. This can be done two ways:

• By referring to it by order, e.g., 1st box, 3rd box, last box, 2nd last box,
etc.

• By declaring it with a name, in initial caps, on its declaration line, e.g., Line1: line 1.5
right from last box.sw

To refer to a point between two objects, or between two points on the same object, you may write: fraction
of the way between first.position and second.position or (abbreviated) fraction<first.position, sec-
ond.position>.

Corners

When you refer to a previous object, pic will assume that you mean the center of the object, unless you
use a corner to specify a particular point on the object. The syntax is:

.corner of object

for example, .sw of last box. You can also use an abbreviated syntax:

object.corner

for example, last box.sw.

These corners may be:

n North (same as t)
s North (same as b)
e East (same as r)
w West (same as l)
ne Northeast
nw Northwest
se Southeast
sw Southwest
t Top (same as n)
b Bottom (same as s)
r Right (same as e)
l Left (same as l)
start Point where drawing of object began
end Point where drawing of object ended

You may also refer to the upper right, upper left, lower right, and lower left of an ob-
ject.

Numerical Operators

Several operators are functional in pic. These are:

+ Addition
- Subtraction
* Multiplication
/ Division
% Modulo

482 Unix Text Processing

Default Values

arcrad 0.25 ellipsewid 0.75
arrowwid 0.05 linewid 0.5
arrowht 0.1 lineht 0.5
boxwid 0.75 movewid 0.5
boxht 0.5 moveht 0.5
circlerad 0.25 scale 1
dashwid 0.05 textht 0
ellipseht 0.5 textwid 0

4Appendix C

Shell Command Summary

This section describes the syntax of the Bourne Shell. It lists special characters, variables, and built-in pro-
gramming commands used by the shell.

Special Files

$HOME/.profile
Executed at shell startup.

Special Characters for Filename Generation

* Match any string of characters.

? Match any single character.

[. . .] Match any of the enclosed characters. A pair of characters separated by a minus will
match any character lexically between the pair.

Special Characters For Control Flow

| Perform pipeline (use output of preceding command as input of following command,
e.g., cat file | lpr).

; Separate sequential commands on the same line.

& Run command in background (e.g., lpr file &).

&& Execute command if previous command was successful (e.g., grep string file && lpr
file).

|| Execute command if previous command was unsuccessful (e.g., grep string1 file ||
grep string2 file).

() Execute commands enclosed in () in a subshell; output from the entire set can then be
redirected as a unit or placed in the background.

’. . .’ Take all characters between single quotation marks literally. (Don’t allow special char-
acter meaning.)

\ Take following character literally.

". . ." Take enclosed characters literally but allow variable and command substitution.

cmd Use output of cmd as argument to another command.

Begin a comment in a shell file.

<file Take input from file.

<<string Read standard input up to a line identical to string.

>file Redirect output to file (overwrite).

>>file Redirect output to end of file (append).

>&digit Redirect standard output to digit e.g., 2>&1.

<&- Close standard input.

483

484 Unix Text Processing

>&- Close standard output.

Variable Substitution

variable=value Set variable to value.

$variable Use value of variable.

${variable-value}

${variable[:]-value}
Use variable if set; otherwise set to value. For example: TERM=${1:-$TERM) will
set the TERM variable to the value of the first argument to a shell script, if given, or else
to the existing (default) value of TERM.

${variable=value}
Use variable if not set; otherwise set to value.

${variable[:]=value}

${variable?value}
Use variable if set; otherwise print value then exit.

${variable[:]?value}

${variable+value}
Use value if variable is set; otherwise nothing.

${variable[:]+value}

If the colon (:) is included in these expressions, a test is performed to see if the variable is non-null as well
as set.

Shell Parameters Set by the Shell under Execution

$# Number of command-line arguments.

$- Options supplied in invocation or by the set command.

$? Return value of last executed command.

$$ Return process number of current process.

$! Return process number of last background command.

Shell Variables Initially Set By profile

$HOME Default (home directory) value for the cd command.

$IFS Internal field separators.

$MAIL Default mail file.

$PATH Default search path for commands.

$PS1 Prime prompt string; default is $.

$PS2 Second prompt string; default is >.

$TERM Specifies the type of terminal.

Shell Command Summary 485

Shell Functions

name() {command1; ...; commandn}
Create a function called name that consists of the commands enclosed in braces. The
function can be invoked by name within the current script.

Built-in Commands

file file
Execute contents of file.

break break[n]
Exit from a for, while, or until loop in n levels.

case case value in
pattern1) commands;;
.
.
.

patternn) commands;;
esac
For each item in list that matches pattern, execute command .

cd cd [dir]
Change current directory to dir.

continue continue [n]
Resume nth iteration of a for, while, or until loop.

echo echo args
Print args on standard output.

eval eval [arg . . .]
Evaluate arguments, then execute results.

exec exec [cmd]
Execute cmd in place of current shell.

exit exit [n]
Exit the shell with exit status n, e.g., exit 1.

export export [var . . .]
Export variable var to environment.

for for variable [in list . . .]
do

commands
done
Do commands for each variable taken from the optional list (if list is not explicitly
given, it will be made up from the command line arguments).

if if condition
then commands
[elif condition2
then commands2] . . .
[else commands3]

fi
If condition is met, do list of commands, or else if condition2 is met, do commands2,
otherwise do commands3. (See test for a list of conditions.)

hash hash cmds
Temporarily add cmds to search path.

486 Unix Text Processing

login login [user . . .]
Log in as another user.

newgrp newgrp [group . . .]
Change your group ID to group; if no argument, change back to your default group.

pwd pwd
Print current working directory.

read read [var . . .]
Read value of var from standard input.

readonly readonly [var . . .]
Mark variable var as read only.

return return
Stop execution of current shell function and return to calling level.

set set [t] [options] [arg . . .]
With no arguments, set prints the values of all variables known to the current shell.
The following options can be enabled (-option) or disabled (+option).

-- Don’t treat subsequent arguments beginning with -- as options.

-a Automatically export all subsequently defined variables.

-e Exit shell if any command has a nonzero exit status.

-k Put keywords in an environment for a command.

-n Read but do not execute commands.

-t Exit after one command is executed.

-u Treat unset variables as an error.

-v Print commands as they are executed.

-x Turn on trace mode in current shell (echo commands in scripts as
they are executed).

arg ... Assigned in order to $1, $2, . . . $9.

shift shift
Perform a shift for arguments, e.g., $2 becomes $1.

test test exp | [exp]
Evaluate the expression exp. An alternate form of the command uses [] rather than
the word test. The following primitives are used to construct expression.

-b file True if file exists and is a block special file.

-c file True if file exists and is a character special file.

-d file True if file exists and is a directory.

-f file True if file exists and is a regular file.

-g file True if file exists and its set-group-id bit is set.

-k file True if file exists and its sticky bit is set.

-n s True if the length of string s is nonzero.

-r file True if file exists and is readable.

-s file True if file exists and has a size greater than zero.

-t [n] True if the open file whose file descriptor number is n (default is 1) is
associated with a terminal device.

-u file True if file exists and its set-user-id bit is set.

-w file True if file exists and is writable.

Shell Command Summary 487

-x file True if file exists and is executable.

-z s True if the length of string s is zero.

s1 = s2 True if strings s1 and s2 are identical.

s1 != s2 True if strings s1 and s2 are not identical.

s True if string s is not the null string.

n1 -eq n2 True if the integers n1 and n2 are algebraically equal. Any of the
comparisons -ne, -gt, -ge, -lt, and -le may be used in place of
-eq.

times times
Print accumulated process times.

trap trap [cmd] [n]
Execute cmd if signal n is received. Useful signals include:

0 Successful exit of command.

1 Hangup of terminal line.

2 Interrupt.

15 Process is killed.

type type commands
Print information about commands.

until until condition
[do commands]

done
Until condition is met, do commands (see test for conditions).

ulimit ulimit [size]
Set maximum size of file that can be created to size; if no arguments, print current limit.

umask umask [nnn]
Set file creation mask to octal value nnn.

unset unset vars . . .
Remove definitions for variables vars.

wait wait [n]
Wait for specified background process with identification number n to terminate and re-
port its status. If n not given, waits until all backgroud processes have terminated.

while while condition
[do commands]

done
While condition is met, do commands (see test for conditions).

filename filename
Read and execute commands from executable file filename.

4Appendix D

Format of troff Width Tables

As discussed in Chapter 4, troff uses width tables stored in the directory /usr/lib/font to deter-
mine how to place text on the page. To do this, it needs to know how wide each character is.

For each type of troff output device supported by your system, there should be a directory called
/usr/lib/font/devxx, where xx is the name of the device. For example, on our system:

$ ls -F /usr/lib/font
devlj/
devps/

Within each of these directories resides an overall device description file, called DESC, and individual font
files for the fonts on your system. These files exist both in ASCII and binary form. The binary files are
created from the ASCII versions using a utility called makedev, and have the suffix .out.

On our system, here’s what the font directory for the HP LaserJet contains:
$ ls /usr/lib/font/devl
B DESC I S
B.out DESC.out I.out S.out
CW HB R TY
CW.out HB.out R.out TY.out

The DESC File

The DESC file contains an overall description of the output device, including its resolution in dots per inch,
the paper size, the fonts that will be mounted by default, the available point sizes, and a complete list of all
the troff special character names supported on that device.

A DESC file might look something like the following example.
HP LaserJet
fonts 6 R I B HB CW S
sizes 7 8 10 12 14 17 22 27 0
res 300
hor 1
vert 1
unitwidth 12
paperwidth 2400
paperlength 3300

charset
\| \ˆ \-
fi fl ff Fi Fl
br vr ul ru
bu sq em hy 14 12 34 aa ga

.

.

.
sc gr no is pt es mo
dd rh lh bs or ci
lt lb rt rb lk rk bv lf rf lc rc

The following keywords are used in the DESC file.

fonts The number of fonts to be mounted for the device, followed by a list of the font
names (maximum is ten). The user can request other fonts from within a

489

490 Unix Text Processing

document. However, the fonts listed here will be “mounted” (by analogy with the
CAT typesetter), and can by referenced by position (\f1, \f2...) as well as by
name.

sizes The sizes in which the various fonts are available.

res The resolution of the output device, in dots per inch.

hor The minimum number of units of resolution that the device can move in a horizon-
tal direction.

vert The minimum number of units of resolution that the device can move in a vertical
direction.

unitwidth The point size at which character widths are specified in the other files.

paperwidth The width of the page in units of resolution (e.g., 8 inches times 300 = 2400, the
width for the LaserJet, because it forces a ½-inch margin).

paperlength The length of the page in units of resolution (e.g., 11 inches times 300 = 3300, the
length for the LaserJet).

biggestfont The maximum number of characters in a font.

charset The list of character names that are supported on this output device. The keyword
should be on a line by itself; the list of characters starts on the next line.

Begins a comment.

Font Description Files

For each font listed on the fonts line of the DESC file, there should be a font file with the same name.
The font file contains a list of all the characters in the font, along with the width and other associated infor-
mation.

A font file looks like this:
name R
internalname Roman

charset
4 0 0
8 0 0

vr 0 3 13
ru 25 0 17

.

.

.
A 42 2 65
B 35 2 66
C 37 2 67

.

.

.
w 40 0 119
x 28 0 120
y 28 1 121
z 25 0 122

.

.

.

Four columns, separated by tabs, are listed for each character.

The first column lists the character name—either the letter, digit, or symbol, or a two-character
troff special character name defined in the charset section of DESC.

Format of troff Width Tables 491

The second column contains the width of the character in output device units. The width is the width
of the character at the point size specified by the unitwidth keyword in DESC. For example, if
unitwidth is 12, then from the portion of the table just shown, we know that a 12-point A in the roman
font is 42 units wide. The troff formatter determines the width at other point sizes by scaling the
unitwidth size.

The third column describes the character type—that is, whether it is a descender (1), ascender (2),
both (3), or neither (0).

The fourth column contains the typeset code for the character. This code is the value that the output
device will recognize to generate the character. This information is obtained from the typesetter or laser
printer vendor. The code can be in decimal or octal form. (Octal is specified by a leading zero.)

In general, whomever supplied the driver for the output device will provide you with appropriate
width tables for the supported fonts. However, you may have access to other public domain fonts for output
devices that support downloadable raster fonts. In this case, you may need to build your own tables.

In addition, you may want to “tune” tables by adjusting the widths slightly if you find that the charac-
ter spacing is poor. Creating a font table from scratch requires a magnifying glass, a micrometer, a good
eye, and a lot of patience.

Compiling Font Files

After you are satisfied with your width tables, they need to be compiled using the makedev utility:
$ makedev DESC Compile all fonts in DESC

Running makedev on DESC will compile all of the fonts listed on the fonts line in that file. You can
compile a font that is not included in DESC by specifying its name on the command line:

$ makedev B Compile the bold font

Font Usage Limitations

The user is not restricted to using the “mounted” fonts that have been listed in DESC. Any font supported
by the output device, and for which a compiled width table exists, can be referred to from within a docu-
ment. For example, if you had a Palatino font family named PA, PB, and PI, there should be files called:

PA.out PB.out PI.out

One problem that is sometimes encountered is that troff has problems if a font that is used in this way is
larger (in absolute file size) than the largest of the mounted fonts specified in DESC. The troff formatter
only allocates enough memory for the largest font in DESC. If you encounter this problem, you can either
strip unneeded characters out of the font, pad a font in DESC, or add the large font that is giving you trouble
to DESC.

4Appendix E

Comparing mm and ms

Note to reviewers: Markup problem: mm’ and me’ should be lower case from .chapter.

If you have both ms and mm on your system, you may be interested in looking at both packages, perhaps
evaluating features. In general, ms has many of the same capabilities as mm. However, it lacks some essen-
tial features, such as automatically numbered lists and table of contents generation. On the other hand, it is
much easier to learn the internals of ms, and therefore easier to extend it with your own macros.

Paragraphs

The basic paragraph types are block and indented.

mm ms Description

.P .LP Begin a block paragraph.

.P 1 .PP Begin a paragraph with indented first line.

In mm, the default paragraph type can be changed from block to indented by setting the number register Pt
to 1 or 2. The ms macros lack this generalizing mechanism.

Justification

When using the nroff formatter, mm does not justify the right margin. .SA 1 turns on justification for
both formatters. .SA 0 turns it off.

The ms macros do not provide a macro for inhibiting the normal justification of paragraphs. How-
ever, the .na request can be used to do this.

Displays

Displays are produced in a very similar way in both macro packages, using the DS/DE pair of macros. In
mm, displays are left justified; in ms, displays are indented. The options that allow you to change the place-
ment of the display are basically the same.

The mm macros provide for static and floating displays (.DF). In ms, this is done with a separate pair
of keep macros (KS/KF and KE).

In mm, you can turn on fill mode within the display and specify an indent from the right margin. This
is used for quoted material and has its equivalent in ms with the Qp or the QS/QE pair.

In addition, the same set of delimiter pairs for tbl, eqn, and pic are available in both packages.

493

494 Unix Text Processing

Formatting Lists

The mm macros have sophisticated list formatting macros that are lacking in ms. The .IP macro in ms pro-
duces the equivalent of a variable-item list in mm. In other words, you can get a numbered list by specifying
the number as a label to an indented paragraph, but you cannot get an automatically numbered list.

Change Font

The .B (change to bold), .I (change to italic), and .R (change to roman) macros used for changing fonts
are the same. The mm macros allow up to seven arguments for alternating with the previous font, but ms is
limited to two.

Change Point Size

Both packages allow you to change point size. In mm, .S specifies a new point size and .SM reduces point
size relative to the current size.

When you change the point size using ms macros, it is always done relative to the current point size.
The .LG and .SM macros increase and decrease the current point size by 2 points. The .NL macro re-
stores the default point size.

Headers and Footers

The mm macros provide macros for specifying a delimited string that will appear left justified, centered, and
right justified in a page header or footer. The .PH macro defines a page header and .PF defines a page
footer. In addition, mm provides variations of these macros for specifying headers and footers for odd and
even pages.

The ms macros handle this through setting individual strings. To define a string that appears left jus-
tified in a header, use:

.ds LH string

The other strings for the header are CH and RH; other strings for the footer are LF, CF, and RF.

Section Headings

Numbered and unnumbered section headings are available in both packages. The .SH and .NH macros are
used in ms. The .H and .HU macros are used in mm. The main difference is where you specify the heading
string. In mm, it is the first argument on the line with the macro. In ms, it follows on the line after the
macro and continues up to the first paragraph macro.

Comparing mm and ms 495

Footnotes

The pair of macros used for footnotes is the same (.FS and .FE), although automatic numbering of foot-
notes is provided in mm. One difference is that in mm the footnote at the bottom of the page is printed in 8
points. The mm macros also provide a pair of macros (.RF and .RE) for collecting a page of references.

4Appendix F

The format Macros

Note to reviewers: Markup problem: format’ should be lower case from .chapter.

Throughout this book, we’ve made extensive references to portions of the extended ms macro package that
we use in our technical writing business. These macros are used in conjunction with the format shell
script to provide a complete document formatting environment.

This package was originally developed by Steve Talbott of Massachusetts Computer Corp. (MASS-
COMP). We have extended and generalized it to meet the document design needs of many different clients.

The purpose of this appendix is to summarize, in one place, the function of the macros that the pack-
age contains. We have found that this set of macros covers the basic needs of people involved in the devel-
opment of technical books and manuals.

The package relies on the existence of the underlying ms macros. In this sense, it is not a complete
package. However, it is possible to define a simple subset of the ms macros to cover the basics if the full
implementation of ms is not available.

For more information on the full implementation of these macros, please feel free to contact us in
care of the publisher.

Summary of the Macros

The following list summarizes the user-callable macros in the format macro package.

.[ABCD]h A-level head, B-level head, and so on.

.Dr Specify whether the current version is a draft. (Drafts are dated.)

.Fs Start a figure.

.Fe title Figure end. Figures are automatically numbered, and given the specified ti-
tle.

.Hl [c] Print a horizontal line the width of the page, using character c. (Default is
underscore.)

.IOC [strings] Start an interoffice memo.

.TO List of names following .TO "" will be placed in separate distribution list.

.TO name name is addressee. Maximum of five such .TO lines.

.DA date date is date of the memo; will be included in page footer.

.ND date date is date of the memo; will be omitted from page footer.

.FR name name is sender. Maximum of five such .FR lines.

.CC name name is person to receive copy of memo. Maximum of five .CC lines.

.SU subject subject is subject of the memo.

.IP label indent [0] Begin paragraph with “hanging indent.” Following text is indented, while la-
bel remains at the margin.

.LP [0] Start a (left-justified) paragraph. 0 suppresses blank line.

.Ls [type] [indent] [bullet]
Start a (possibly nested) list. type is N (number), A (alphabetical uppercase),

497

498 Unix Text Processing

a (alphabetical lowercase), I (Roman numeral uppercase), i (Roman nu-
meral lowercase), B (bullet). Default indent is 5. bullet is alternative bullet
string (null string is acceptable).

.Li [0] List item. 0 suppresses preceding blank line.

.Le [0] End of innermost list. 0 suppresses preceding blank line.

.Lt [1 | 2] Enter address blocks and date (1), and salutation (2) of a letter.

.Nd n Need n lines. If n lines do not remain on the page, eject new page. Unlike
.ne, .Nd causes a break.

.Nh [1 | 0] Enable/disable numbered headings (enabled by default).

.Ns type Start a NOTE of type N (Note), C (Caution), W (Warning), R (Review Note),
or P (Private Note). Review notes are printed in the text and summarized in a
list at the end. Private notes appear only in the end list.

.Ne End a note.

.OB string Print an overbar (over a string).

.Ps [indent] Start a “printout” (display). Text is printed in the CW font and preserved as
is—there is no filling.

.Pe End a printout. See .Ps.

.Rh [0 | 1] [desc] head . . .
Create reference page header.

.Se [number] [title] Start a section (chapter). This sets up many defaults, and is desirable to use
for most documents.

.SE Screen end. End a computer screen illustration begun with .SS.

.SS [width] [height] Start a screen illustration (box with curved corners). If width and height are
not specified, scale to size of contents.

.Tc level Specify what level of heading will be saved in the table of contents (Ah to
Dh).

.Ti text Title—goes in left page footer.

.St text Subtitle—goes in right page footer.

.Ts title Start a table with given caption. Tables are automatically numbered.

.Te End a table. (Output a blank line.)

.XX text Make an index entry out of text, with automatic addition of a page number.

.XN text Make an index cross-reference out of text (no page number).

4Appendix G

Selected Readings

The following books may be helpful either when you’re starting out, or when you’re ready to go on to more
advanced topics.

Introductory UNIX Texts

Kochan, Steven G. and Patrick H. Wood. Exploring the UNIX System, Hasbrouck Heights, NJ: Hayden
Book Co., 1984. A comprehensive introduction to the UNIX system. (371 pp.)

Todino, Grace. Learning the UNIX Operating System, Newton, MA: O’Reilly and Associates, Inc., Nut-
shell Handbooks, 1985. A brief introduction to essential UNIX skills, designed to be read and mas-
tered in one or two sessions. (73 pp.)

Advanced Topics

Kernighan, Brian and Rob Pike. The UNIX Programming Environment, Englewood Cliffs, NJ: Prentice-
Hall, 1984. The best introduction to the practical philosophy of UNIX programming. (240 pp.)

Kochan, Steven G. and Patrick H. Wood. UNIX Shell Programming, Hasbrouck Heights, NJ: Hayden
Book Co., 1985. A comprehensive and readable discussion of shell programming. (422 pp.)

Talbott, Steve. Managing Projects with Make, Newton, MA: Reilly and Associates, Inc., Nutshell Hand-
books, 1985. A concise but thorough description of the UNIX make utility. (63 pp.)

499

500 Unix Text Processing

4

INDEX

.1C macro (ms), 101

.2C macro (ms), 101

- a -

.AB macro (ms), 98–99

.ab request, 339
absolute motions, 347, 359
.ad request, 57–58, 376
adding formatting codes, indexing, 428
.AE macro (ms), 98–99
.AI macro (ms), 98–99
.AL macro (mm), 128–131
alias command, 233
alphabetic lists, mm macros, 128–131
altering output format, number registers, 331
.am request, 320, 413
appending to

a file, 11
diversions, 334
macros, 320
strings, 332

arguments
Bourne shell, discarding and shifting, 274
in macros, 322
in shell scripts, 17
macros, 322
shell scripts, discarding and shifting, 274
to, shell scripts, 17
to UNIX commands, 9

arithmetic expressions, in troff, 324
as

global variables, number registers, 328
nested list counter, number registers, 407

.as request, 332

.AU macro (ms), 98–99
autoincrementing number

registers, 331
registers, 331, 407

awk, 269, 301–318, 425–426
arrays, 307, 315, 453
awkronym script, 303, 303–305, 308–310, 318
basic operations, 301
BEGIN procedures, 305
built-in functions, 316
capabilities of, 301
changing the field separator, 304
command summary, 452, 453–455
conditional statements, 306
debugging, 318
dividing input into records and fields, 302
error handling in, 313
for loops, 305, 317
for loops with arrays, 307
formatted print statement, 312
invoking, 301–302
passing parameters from a shell script, 303
pattern matching, 302, 452
scripts for order tracking, 314
similarities to sed, 301
subdividing a field, 315, 426
substr function, 429

syntax of procedures, 453
system variables, 304, 453
testing fields, 303
used for indexing, 425–430
variables, 307, 453
while loops, 305

- b -

.B macro
(ms), 91–93
(mm), 114–116

.B1 macro (ms), 100

.B2 macro (ms), 100
background processing, 14

Bourne shell, 14
backing up files, 264–266
bars, change, 369
baseline spacing, 78–79
.bd request, 358
.BD macro (ms), 94
bdiff command, 251
.BE macro (mm), 143
.BG macro

(ms), 378
(ms), 84

.BI macro (mm), 117

.BL macro (mm), 124, 126–128
boldfacing by

overstriking, fonts, 358
overstriking, 358

book production, final, 434
Bourne shell, 10, 269–278

background processing, 14
cancelling commands, 10
command summary, 483–487
conditional execution, 272–274
discarding and shifting arguments, 274
interrupting commands, 10
long command lines, 16
prompt, 10
repetitive execution, 275, 278
resuming commands, 10
secondary prompt, 16
shell functions, 484
special characters, 483
variable substitution, 12, 483
variables set by shell under execution, 484

Bourne shell
breaking out of a script (exit), 276
CDPATH environment variable, 234
export command, 39, 276
HOME variable, 12
PATH variable, 270
test options, 272
variables set by .profile, 484

boxes, drawing, 99, 349
.bp request, 69, 71–73
.BR macro (mm), 117
.br request, 55, 333

501

502 Unix Text Processing

bracket-building characters, 361, 463
breaking out of, shell scripts, 276
breaks

importance of, 58, 333
no-break control character, 58
page, 393
without line breaks, page, 71

breaks, troff requests which cause, 58
.BS macro (mm), 143
.BT macro (ms), 381
building the page number list, indexing, 425
.BX macro (ms), 99
by overstriking, boldfacing, 358
bytes, files, size in, 236

- c -

C shell, 10, 233, 269
search path, shell scripts, 271

.c2 request, 336
cancelling commands, Bourne shell, 10

, 10
case shell command, 272–274
C/A/T typesetter, 51, 53, 61
cat command, 10–11, 106, 237
cautions and warnings, notes, 410–411
.cc request, 336
.CD macro (ms), 94
cd command, 12
CDPATH environment variable, 234
.ce request, 64–66
.cf request, 356
.ch request, 389
change

bars, 369
pages, 392

changes to (SCCS), files, tracking, 251
changing

directories, 12
fonts, 74–76
line weight, drawing, 351

characteristics
files, 236
of, word processors, 1–4

characters
bracket-building, 361, 463
Greek, 187, 192, 464
redefining control and escape, 336
slanting, 366

checkeq command, 201
checking for correctness, hyphenation, 59
checkmm command, 106, 126
chmod command, 14, 17, 236
chown command, 236
closing, diversions, 333
col command, 69
comm command, 257–258
command

line, number registers, setting from, 81
line, page number, setting from, 108
lines, Bourne shell, long, 16
mode vs. insert mode, word processors, 3
summary, Bourne shell, 483–487

commands
Bourne shell, cancelling, 10
Bourne shell, interrupting, 10
Bourne shell, resuming, 10
cancelling, 10
interrupting, 10
resuming, 10
UNIX, syntax of, 9

comments, in troff, 319
comparing, strings, 325
conditional execution

Bourne shell, 272–274
in shell scripts, 272–274
shell scripts, 272–274

conditional execution
in awk, 306
in troff, 324–327

conditions, inverse, 327
constant

spacing, 365, 409
width, fonts, 365, 409

contents
created by diversion, table of, 412, 414
diversions, table of, 412
files, viewing, 237
of font files, fonts, 53, 489–491
of, directories, listing, 12
table of, 412
written to standard error, table of, 412, 416

control
and escape characters, redefining, 336
character, breaks, no-break, 58
character, no-break, 58

conventions, macros, naming, 320
copy mode, 323

in, macros, 323
copying, files, 13
core dumps, 318
correctness, hyphenation, checking for, 59
counting characters in, files, 16
cover sheet macros, 98–99, 102
cpio command, 264–266, 267

using with find, 265–266
created by diversion, table of contents, 412, 414
creating

directories, 12
diversions, 333

crypt command, 264
.cs request, 365
csh command, 269
.cshrc file, 234
csplit command, 262–263
CTRL key, 33
cu

command, 266
request, 67

current, directories, printing, 12
cursor movement, 22
curves, drawing, 352
customizing vi, 39
cut marks, 385–386
cut command, 259, 260

- d -

.da request, 334, 413
dash, em, 285
data interactively, shell scripts, reading, 311
date and time last modified, files, 236
date command, 9
DDL, 53
.DE macro

(mm), 113
(ms), 94–97

.de request, 80, 320
debugging

in awk, 318
in troff, 337–338
pic, 224

Index 503

default values
macros, setting, 375
shell scripts, setting, 276

(defined)
em, 61
en, 61
pica, 61

defining
macros, 103, 141, 320
strings, 332

(definition of)
filling, 48
justification, 48
shell scripts, 269

deroff command, 254
DESC file, 489–490
developing a package, macros, 373
devps postprocessor, 53–54, 357
.DF macro (mm), 120–121
.di request, 333, 349
dial-up line, 266
diff command, 246–247, 249, 280
diff3 command, 247, 250
diffmk command, 369
directories

changing, 12
creating, 12
home, 11, 11
listing contents of, 12
printing current, 12
public, 267
root, 11
sub-, 11

directory
home, 11
root, 11

discarding and
shifting arguments, Bourne shell, 274
shifting arguments, shell scripts, 274

displays
fill options (mm), 119
floating (mm), 120
floating (ms), 96
in mm macros, 119–120
in ms macros, 94–97
labels (mm), 121
mm vs. ms, 493
static (mm), 120
static (ms), 96

diversions, 333, 349, 412, 414–416
appending to, 334
closing, 333
creating, 333
naming by number register interpolation, 416
splitting, 416
table of contents, 412
used for footnotes, 390

.DL macro (mm), 126–128
Documenter’s Workbench, 52
documents, here, 280
dot-matrix printers, 6
downloadable, fonts, 53
drawing

boxes, 99, 349
changing line weight, 351
curves, 352
including Macintosh illustrations, 356
lines, 347
sample figures, 352

.DS macro
(mm), 113, 119–120
(ms), 94–97

.ds request, 81, 332
dumps, core, 318

- e -

.EC macro (mm), 108, 121–122

.ec request, 336
echo command, 10
editing multiple, files, 158
.EF macro (mm), 109
egrep command, 240
.EH macro (mm), 109
.el request, 324–327
elif shell command, 273
em

dash, 285
(defined), 61

.em request, 413
emacs editor, 4, 19
en (defined), 61
end macro, 413–414
entries, indexing

sorting raw, 424
subordinating secondary, 426

environment
switch, number registers, substituting for, 409
variables, setting, 15

environment variables
EXINIT, 39
HOME, 12
path, 271
PATH, 270
TERM, 15

environments, 334, 409
.eo request, 336
eqn preprocessor, 69, 187–201

abbreviating a string, 198
braces and brackets, 195
diacritical marks, 187, 197
displayed equations, 188
fonts, 187, 199
Greek alphabet, 187, 192
grouping items, 200
horizontal spacing, 187
inline expressions, 189
integrals, 194
invoking, 188
limits, 194
lining up equations, 199
point sizes, 187, 199
precedence of operations, 200, 477
problem checklist, 201
problems with .so request, 371
quotation marks, 191, 195, 198
simple example, 187
spaces in equations, 190
special character names, 187, 192, 193
square root signs, 195
subscripts, 191
summary of command characters, 475–477
summations, 194
superscripts, 191
syntax, 187
tabs within equations, 190
using mm with, 189
using nroff with, 188
using tbl with, 166, 188
using braces for grouping, 192
vertical piles (columns), 196
vertical spacing, 187, 200

504 Unix Text Processing

error, standard, 10, 416
errors, messages from UNIX commands, 10
errors, in

mm, 106
ms, 84
troff macros, 339

escape sequences, in troff, 343
.ev request, 334
ex

editor, 145–163, 269, 280
editor, .exrc file, 39, 40
editor, : prompt, 21
editor, EXINIT variable, 39
editor, @ functions, 163
editor, abbreviating recurring phrases, 160
editor, address symbols, 446
editor, appending to existing file, 155
editor, command mode, 146
editor, command summary, 445–450
editor, confirming replacements, 149
editor, copying lines, 147
editor, creating a subshell, 156
editor, current line, 146
editor, deleting lines, 147
editor, differences from sed, 283
editor, editing multiple files, 158
editor, executing from vi, 22, 147
editor, executing UNIX commands from, 156
editor, exiting, 155, 445
editor, filtering text through a UNIX command, 157
editor, global search and replace, 149, 151
editor, insert mode, 146
editor, invoking, 145, 445
editor, leaving insert mode, 146
editor, limiting search to complete words, 151
editor, line addressing in, 148, 446
editor, mapping commands to keys, 161, 162
editor, moving lines, 147
editor, moving text blocks by patterns, 152
editor, pattern matching, 150, 153
editor, printing line(s), 145
editor, quitting without saving edits, 155
editor, range of lines, 146, 146
editor, reading in a file, 156
editor, reading in result of UNIX command, 156
editor, renaming the buffer, 155
editor, saving files, 155
editor, saving part of a file, 155
editor, scripts, 269, 278–280
editor, search and replace, 147–149
editor, search for general classes of words, 152
editor, substitute command, 146–147
editor, switching files, 158
editor, syntax of commands, 145
editor, using current and alternate filenames, 159
editor, yanking text from one file to another, 160
request, 370
scripts, 278
scripts, built by diff, 280
scripts, executing with :so, 278

.EX macro (mm), 108, 121–122, 138–139
execution

Bourne shell, conditional, 272–274
Bourne shell, repetitive, 275, 278
Bourne shell, variables set by shell under, 484
in shell scripts, conditional, 272–274
shell scripts, conditional, 272–274
shell scripts, repetitive, 275, 278

EXINIT variable, 39
existing

names, macros, listing, 320
number registers, finding names of, 321

exit shell command, 276
export command, 39
expr command, 301
expression operators

in awk, 305
in troff, 325

expressions, regular, 150–154, 439
.exrc file, 39, 40
extended ms

macros, 394–418, 496–498
macros, chapter headings, 398, 400–402
macros, drawing horizontal lines, 401
macros, figure numbering, 405
macros, headers and footers, 404
macros, invoking, 396
macros, lists, 406–409
macros, notes, 410–411
macros, numbered headings, 402
macros, section headings, 403–404
macros, structure of, 396
macros, summary of, 496–498
macros, table numbering, 405
macros, table of contents, 412

- f -

.fc request, 363

.FC macro (mm), 108

.FD macro (mm), 108, 139

.FE macro
(mm), 139–140
(ms), 100–101

.FG macro (mm), 121–122, 138–139
fgrep command, 240
.fi request, 55
fields, in

awk, 302–304
cut and paste, 259
sort, 256–257
troff, 363

figures, drawing, sample, 352
file

appending to a, 11
management, 2
system, 11

files
backing up, 264–266
characteristics, 236
copying, 13
counting characters in, 16
date and time last modified, 236
editing multiple, 158
locating, 236
metacharacters, 9, 14, 234
moving, 13
naming restrictions, 20
organizing, 233
permissions, 13–14, 236
renaming, 13
searching for, 236
searching within, 238
size in bytes, 236
tracking changes to (SCCS), 251
transferring to other systems, 267
viewing contents, 237

filling (definition of), 48
filters, 15–16, 237, 282
final

book production, 434
formatting codes, indexing, 430

Index 505

find command, 235–236, 239
using with cpio, 265–266

finding names of existing, number registers, 321
.fl request, 102, 338, 380
.FO macro, 379, 381
font files, fonts, contents of, 53, 489–491
fonts, 50, 53

boldfacing by overstriking, 358
changing, 74–76
constant width, 365, 409
contents of font files, 53, 489–491
downloadable, 53
four standard, 52
mounted, 74, 489
special, 52, 76

fonts, changing
(eqn), 199
(ms), 91–93
(tbl), 174

footers, 101, 109, 381
footnotes, 387, 495

diversions, used for, 390
footnotes

mm macros, 139–140
ms macros, 100–101

for shell command, 278
form

letters, 369
of user entries, indexing, 423

format, number registers, altering output, 331
format shell script, 285–286, 288, 417, 419, 421, 431
formatting

codes, indexing, adding, 428
codes, indexing, final, 430
problems, indexing, special, 430
with a markup language, 4
with a word processor, 4

formatting defaults
mm, 106
ms, 84

four standard, fonts, 52
.fp request, 74, 75
.FS macro

(mm), 139–140
(ms), 100–101

.ft request, 74, 75
function

keys, mapping, 162, 162
width, 360

functions, Bourne shell, shell, 484
fundamentals, UNIX, system, 9

- g -

getopt command, 274
graphics, 203
Greek characters, 187, 192, 464
grep command, 16, 238–239

using with find, 239

- h -

.H macro (mm), 133–136
hanging indents, 63–64, 88
head command, 238
headers, 101, 109, 381
headings

in wide margin, 404
numbered, 398
section, 397, 403

headings, in
extended ms, 398–404
mm, 133–137
ms, 97–98

here documents, 280
.HM macro (mm), 136–137
HOME variable, 12
home

directories, 11, 11
directory, 11

horizontal
motions, local, 346
position, marking a, 359
position, returning to a, 359

.HU macro (mm), 133–136

.hw request, 59

.HX macro (mm), 143

.HY macro (mm), 143

.hy request, 60, 376
hyphen command, 59, 243
hyphenation, 49

checking for correctness, 59
rules for, 59

hyphenation
enabling in troff, 60
in mm, 81, 112

.HZ macro (mm), 143

- i -

.I macro
(ms), 91–93
(mm), 114–116

.IB macro (mm), 117

.ID macro (ms), 94

.ie request, 324–327

.if
request, 324–327
shell command, 272–274

.ig request, 338
illustrations, Macintosh, 356
importance of, breaks, 58, 333
in

macros, arguments, 322
shell scripts, arguments, 17
shell scripts, conditional execution, 272–274
three-part titles, page number, 383
wide margin, headings, 404

.in request, 63
including Macintosh illustrations, drawing, 356
indented (mm), indented with exceptions, 111

, 110
indents, 63–64, 110

hanging, 63–64, 88
indexing, 417, 423

adding formatting codes, 428
building the page number list, 425
final formatting codes, 430
form of user entries, 423
sorting raw entries, 424
special formatting problems, 430
subordinating secondary entries, 426

influence on writing process, word processors, 1
initializing

macros, 376
variables, shell scripts, 276

input, standard, 15
interactively, shell scripts, reading data, 311
interpolating

number registers, 328
strings, 81, 332

506 Unix Text Processing

interpolation
diversions, naming by number register, 416
number registers, naming by, 407

Interpress, 53
interrupted lines (in troff), 327
interrupting commands, Bourne shell, 10

, 10
inverse conditions, 327
.IP macro, 408

(ms), 88, 88–91
.IR macro (mm), 117
.IZ macro, 377

- j -

join command, 256–257
justification, 48, 59

definition of, 48
types of, 57–58

justification
mm macros, 112
ms macros, 85
nroff vs. troff, 49

- k -

.KE macro (ms), 97
keep and release, 97, 333
Kernighan and Pike, UNIX Programming Environment, 8, 307
kerning, 50
keys, mapping

function, 162
function, 162

.KS macro (ms), 97

- l -

labels, vertically stacked, 361
languages, page description, 53
laser printers, 6
last modified, files, date and time, 236
.lc request, 363
.LD macro (ms), 94
.LE macro (mm), 124–126
leaders, 362–363
leading, 78
length, title, 383
letter-quality printers, 6
letters, form, 369
.LG macro (ms), 93–94
.lg request, 367
.LI macro (mm), 124–126
ligatures, 366, 404
limitations of, word processors, 2, 5
line

breaks, page breaks, without, 71
dial-up, 266
weight, drawing, changing, 351

line number, in vi, 37
lines, drawing, 347
list, indexing, building the page number, 425
listing

contents of, directories, 12
existing names, macros, 320

lists
alphabetic (mS), 406–407
alphabetic (mm), 128–131
bulleted (mS), 406–407
extended in mS, 406, 408
in ms, 88
marked (mm), 126
mm macros, 123–132

mm vs. ms, 493
nested (mS), 406–407
nested (mm), 125
numbered (mS), 406–407
numbered (mm), 128–131
reference (mm), 129
user-supplied marks (mm), 127
variable-item (mm), 131

.ll request, 62, 376
local

horizontal motions, 346
vertical motions, 343

locating, files, 236
.login file, 270
long command lines, Bourne shell, 16
looping, shell scripts, 278
.LP macro (ms), 85, 97
lp command, 106
ls

command, 9, 12
request, 69, 79

.lt request, 383

- m -

Macintosh
illustrations, drawing, including, 356
illustrations, 356
word processing on, 7

macro
end, 413–414
reset, 84, 377

macros
appending to, 320
arguments, 322
copy mode in, 323
cover sheet, 98–99, 102
defining, 103, 141, 320
developing a package, 373
initializing, 376
listing existing names, 320
me, 83
naming conventions, 320
nested, 323
new or extended?, 374
number registers, used to generalize, 328
page transition, 378
removing, 320
renaming, 321
reset, 377
setting default values, 375
structure of package, 373, 374
style, 340, 404
tabs and leaders in, 364

macros
comparing mm and ms, 492–495
/usr/lib/tmac, 374

mail command, 15
make command, 252–253

building makefile with a shell script, 436
coordinating final book production with, 434

makedev command, 491
making executable, shell scripts, 270
man macros, 70
management, file, 2
mapping function

keys, 162
keys, 162

marking a horizontal position, 359
marking a

position, in troff, 357
position, in vi, 44

Index 507

markup language, formatting, with a, 4
.MC macro (ms), 101
.mc request, 369
me macros, 70, 83
messages from UNIX commands, errors, 10
metacharacters, files, 9, 14, 234
miscellaneous

programs, Writer’s Workbench, 246
UNIX commands, 233

.mk request, 357, 391
mkdir command, 12
.ML macro (mm), 126, 127
mm

command, 105
macros, 70
macros, .FD macro, 108
macros, .RP macro, 108
macros, .SA macro, 112
macros, .AL macro, 128–131
macros, alphabetic lists, 128–131
macros, altering heading style, 134–137
macros, .B macro, 114–116
macros, .BE macro, 143
macros, .BI macro, 117
macros, .BL macro, 124, 126–128
macros, bold font, 114
macros, bottom-of-page processing, 143
macros, .BR macro, 117
macros, .BS macro, 143
macros, changing fonts, 114
macros, changing point size, 117–118
macros, changing reference defaults, 141
macros, changing the heading mark, 136–137
macros, compared to ms, 492–495
macros, .DE macro, 113
macros, default formatting, 106
macros, .DF macro, 120–121
macros, display fill options, 119
macros, display formatting options, 119
macros, display labels, 121
macros, displays, 113, 119–120, 121
macros, .DL macro, 126–128
macros, .DS macro, 113, 119–120
macros, .EC macro, 108, 121–122
macros, .EF macro, 109
macros, .EH macro, 109
macros, errors, 106
macros, .EX macro, 108, 121–122, 138–139
macros, extensions to, 141
macros, .FC macro, 108
macros, .FD macro, 139
macros, .FE macro, 139–140
macros, .FG macro, 121–122, 138–139
macros, floating displays, 120
macros, footers, 109
macros, .FS macro, 139–140
macros, .H macro, 133–136
macros, headers, 109
macros, heading number registers, 135
macros, heading strings, 135
macros, headings, 143
macros, .HM macro, 136–137
macros, .HU macro, 133–136
macros, .HX macro, 143
macros, .HY macro, 143
macros, hyphenation, 81, 112
macros, .HZ macro, 143
macros, .I macro, 114–116
macros, .IB macro, 117
macros, indented paragraphs, 110
macros, invoking, 105
macros, .IR macro, 117

macros, italic font, 114
macros, justification, 112
macros, .LE macro, 124–126
macros, .LI macro, 124–126
macros, lists, 123–132
macros, marked lists, 126
macros, .ML macro, 126, 127
macros, modifying, 141
macros, nested lists, 125
macros, number registers, 141, 472
macros, numbered headings, 133–136
macros, numbered lists, 128–131
macros, .P macro, 110–111
macros, page break, 123
macros, page layout, 108, 109
macros, page numbering styles, 108
macros, page transition, 73, 143
macros, paragraphs, 110
macros, paragraphs indented with exceptions, 111
macros, .PF macro, 109
macros, .PH macro, 109
macros, predefined string names, 471
macros, .PX macro, 143
macros, .R macro, 114–116
macros, .RB macro, 117
macros, reference lists, 129
macros, references, 140–141
macros, reserved macro and string names, 473
macros, .RF macro, 140–141
macros, .RI macro, 117
macros, .RL macro, 129
macros, roman font, 114
macros, .RP macro, 141
macros, .RS macro, 140–141
macros, .S macro, 117–118
macros, .SK macro, 123
macros, .SM macro, 118
macros, .SP macro, 111–112
macros, spacing between paragraphs, 111
macros, static displays, 120
macros, strings, 142
macros, summary of macros, 467–473
macros, table of contents, 137–139, 143
macros, .TB macro, 108, 138–139
macros, .TC macro, 138
macros, top-of-page processing, 143
macros, .TP macro, 143
macros, .TX macro, 143
macros, .TY macro, 143
macros, unnumbered headings, 133–136
macros, user exit, 143
macros, user-supplied list marks, 127
macros, variable-item lists, 131
macros, vertical margins, 143
macros, vertical spacing, 111–112, 117–118
macros, .VL macro, 131
macros, .VM macro, 143

mode
copy, 323
in, macros, copy, 323
no-fill, 48, 55, 67, 119
no-space, 380, 402

modem, 266
more command, 106, 237
motions, absolute, 347, 359
mounted, fonts, 74, 489
movement, cursor, 22
moving, files, 13
mptx macros, 70
ms

macros, 70, 83–103
macros, .1C macro, 101

508 Unix Text Processing

macros, .AB macro, 98
macros, .AE macro, 98
macros, .AI macro, 98
macros, .AU macro, 98
macros, .B macro, 91–93
macros, .BD macro, 94
macros, .BG macro, 378
macros, .BT macro, 381
macros, .FE macro, 100–101
macros, .FO macro, 379, 381
macros, .FS macro, 100–101
macros, .I macro, 91–93
macros, .IP macro, 408
macros, .LP macro, 97
macros, .MC macro, 101
macros, .NH macro, 402
macros, .NP macro, 102, 379, 381
macros, .PP macro, 97
macros, .PT macro, 381
macros, .R macro, 91–93
macros, .RT macro, 377–378
macros, .TL macro, 98–99
macros, .B1 macro, 100
macros, .B2 macro, 100
macros, .BG macro, 84
macros, .BX macro, 99
macros, .CD macro, 94
macros, changing bottom margin, 393
macros, compared to mm, 492–495
macros, date string, 102
macros, .DE macro, 94–97
macros, displays, 94–97
macros, drawing a box, 99
macros, .DS macro, 94–97
macros, error handling, 84
macros, fonts, 91–93
macros, footers, 101, 381
macros, footnotes, 100–101, 387
macros, headers, 101, 381
macros, headings, 97–98
macros, .ID macro, 94
macros, indented paragraphs, 88
macros, initialization sequence, 377
macros, internal macros, 465
macros, internal number register names, 465
macros, invoking, 83
macros, .IP macro, 88, 88–91
macros, .KE macro, 97
macros, .KS macro, 97
macros, labeled item lists, 88
macros, .LD macro, 94
macros, .LG macro, 93–94
macros, .LP macro, 85
macros, multi-column processing, 101, 391
macros, .NH macro, 97–98
macros, .NL macro, 93–94
macros, number register default values, 376
macros, numbered lists, 90
macros, page layout, 84
macros, page layout defaults, 84
macros, page size, 384
macros, page transition, 73, 374–393
macros, paragraphs, 85–91
macros, point size, 93–94
macros, .PP macro, 85
macros, predefined and user-definable strings, 466
macros, problems on first page, 102
macros, .QE macro, 87
macros, .QP macro, 87
macros, .QS macro, 87
macros, quoted paragraphs, 87
macros, .RE macro, 89

macros, redefining header or footer, 382
macros, reserved macro and string names, 466
macros, reset macro, 84, 377–378
macros, .RS macro, 89
macros, .RT macro, 84
macros, .SH macro, 97–98
macros, .SM macro, 93–94
macros, spacing between paragraphs, 85
macros, summary of macros, 464–467
macros, two-column processing, 101, 391
macros, .UL macro, 93
macros, underlining, 93
macros, vertical spacing, 85
number registers, page layout, 466

multi-column processing, 101, 391
multiline, strings, 81
multiple, files, editing, 158
mv command, 13

- n -

.na request, 57
names

macros, listing existing, 320
of existing, number registers, finding, 321

naming
by interpolation, number registers, 407
by number register interpolation, diversions, 416
conventions, macros, 320
number registers, 327
restrictions, files, 20
strings, 332

.ne request, 72, 393
nested, macros, 323
new or extended?, macros, 374
.nf request, 55
.NH macro

(ms), 402
(ms), 97–98

.NL macro (ms), 93–94

.nm request, 368

.nn request, 368
no-break control

character, 58
character, breaks, 58

no-fill mode, 48, 55, 67, 119
no-space mode, 380, 402
notes, cautions and warnings, 410–411
.NP macro

(ms), 379, 381
(ms), 102

.nr request, 81, 324–328
nroff formatter

command line options, 51, 455
default line length, 62
device units, 61
inability to use pic with, 203
interword spacing, 50
invoking, 51, 455
summary of requests, 455–459
units of measure, 61
using eqn with, 188

.ns request, 73, 102, 379
number

in three-part titles, page, 383
register interpolation, diversions, naming by, 416
registers, 80–81, 324–329, 376, 407, 409
registers, altering output format, 331
registers, as global variables, 328
registers, as nested list counter, 407
registers, autoincrementing, 331, 331, 407
registers, finding names of existing, 321

Index 509

registers, interpolating, 328
registers, naming, 327
registers, naming by interpolation, 407
registers, predefined, 329
registers, read-only, 330
registers, removing, 332
registers, scaled units, 328
registers, setting default values with, 376
registers, setting from command line, 81
registers, substituting for environment switch, 409
registers, used as flags, 329
registers, used to generalize macros, 328
setting from command line, page, 108

number registers
in ms, 81
mm, 141
ms default values, 376

numbered headings, 398
numbered lists

mm macros, 128–131
mS macros, 406–409

numerical operators, in pic, 481
.nx request, 370

- o -

offset, page, 62, 375, 404
options to UNIX commands, 9
organizing, files, 233
.os request, 73
other systems, files, transferring to, 267
out of, shell scripts, breaking, 276
output

format, number registers, altering, 331
redirection, 10–11, 15, 238
standard, 10, 15
transparent, 356, 413

overstriking, 358, 360
fonts, boldfacing by, 358

- p -

.P macro (mm), 110–111
pack command, 266
package, macros

developing a, 373
structure of, 373, 374

page
breaks, 393
breaks, without line breaks, 71
description languages, 53
layout, 381
number, 102
number list, indexing, building the, 425
number, in three-part titles, 383
number, setting from command line, 108
offset, 62, 375, 404
size, 384
space at top of, 380
top resets, 392
transition, 73, 143, 374–393
transition, macros, 378

page
breaks, mm macros, 123
layout, in mm, 108, 109
layout, in ms, 84
number, in mm, 106, 108

paragraphs, spacing between, 111
paragraphs

indented (ms), 88
mm macros, 110
ms macros, 85

quoted (ms), 87
spacing between (ms), 85

passing arguments to, shell scripts, 271–272
paste command, 259, 260
path, search, 270
PATH variable, 270
.pc request, 383
pcat command, 266
permissions, files, 13–14, 236
.PF macro (mm), 109
pg command, 106, 237

help screens, 237
.PH macro (mm), 109
pic preprocessor, 203–232, 411

arc, 210, 226
arrow, 209
for loops, 232
if conditional statements, 232
spline, 210
adjusting drawing motion, 208
adjusting label placement, 206
as a programming language, 224, 232
automatic scaling, 223
basic figures (graphics primitives), 204
changing direction of drawing, 208
controlling the dimensions of a drawing, 223
copy facility, 230
debugging, 224
declarations, 478
default dimensions of standard objects, 222
defining macros, 227, 480
defining object blocks, 220, 480
describing single objects, 204
diagonal lines, 209
dimension variables, 222
double-headed arrow, 213
drawing in clockwise direction, 210, 210
drawing motion, 207
enhancements to, 232
executing UNIX commands from, 231
expressions, 226, 481
functions, 227
height of object, 205
inability to use with nroff, 203
invisible reference object, 214
labeling objects, 205, 480
language of, 203
leaving space between objects, 207
library of frequently used objects, 230
line, 206
locating objects using Cartesian coordinates, 225
locating specific points, 212
macros, 227–231
movement from a referenced object, 212
naming an object, 218
place and position notations, 217
placing objects, 211
placing text in a drawing, 215, 219
positioning object blocks, 221, 480
problems with .so request, 371
programming drawings, 224
reading description from remote file, 230
redefining standard dimensions, 222
relational operators for if statements, 232
reusing dimensions, 205
scaling, 225
specifying dimensions, 205
specifying size of graphics primitives, 204
spline, 226
start and end macros, 203
start and end of an object, 209, 213
summary of command characters, 477–482

510 Unix Text Processing

summary of graphics primitives, 478
turning a corner, 212
typical figure description, 204
units of measure, 204
use of object blocks, 220
used with troff, 203, 206
user-defined variables, 227
using bit-mapped input, 232

pica (defined), 61
pipes, 15–16
.pl request, 71, 384
.pm request, 320
.pn request, 73
.po request, 62, 376
point size, 50, 61, 77–78, 93–94
point size

changing (eqn), 199
changing (tbl), 174
changing (mm), 117–118
changing (ms), 93–94

postprocessors, 356
PostScript, 53, 356, 367
.PP macro (ms), 85, 97
pr command, 237
predefined, number registers, 329
predefined conditions, in troff, 324
printers

dot-matrix, 6
laser, 6
letter-quality, 6
(types of), 6–7

printing current, directories, 12
problems, indexing, special formatting, 430
problems on first page (ms), 102
processing

background, 14
Bourne shell, background, 14
multi-column, 101, 391
simple macro for, two-column, 391

production, final book, 434
.profile, 270
prompt, Bourne

shell, 10
shell, secondary, 16

proof shell script, 241, 296–300
proofreading

script, shell scripts, 296, 300
shell script for, 296–300

proofreading, double awk script, 306
.ps request, 78, 79
pseudo-page transition, 380
.PT macro (ms), 381
public, directories, 267
putting in path, shell scripts, 270
pwd command, 12
.PX macro (mm), 143

- q -

.QE macro (ms), 87

.QP macro (ms), 87

.QS macro (ms), 87

- r -

.R macro
(ms), 91–93
(mm), 114–116

raw entries, indexing, sorting, 424
.RB macro (mm), 117

.rd request, 369

.RE macro (ms), 89
read shell command, 311
read-only, number registers, 330
reading data interactively, shell scripts, 311
readings, recommended, 499
recommended readings, 499
records, in awk, 302
redefining control and escape characters, 336
redirection, output, 10–11, 15, 238
reference lists, mm macros, 129
regular

expression, search, 238
expressions, 150–154, 439

removing
macros, 320
number registers, 332

renaming
files, 13
macros, 321

repetitive execution
Bourne shell, 275, 278
shell scripts, 275, 278

reset
macro, 84, 377
macros, 377

resets, page top, 392
restrictions, files, naming, 20
resuming commands, Bourne shell, 10

, 10
returning to a horizontal position, 359
returning to

a marked position, in troff, 357
a marked position, in vi, 44

.RF macro (mm), 140–141

.RI macro (mm), 117

.RL macro (mm), 129

.rm request, 320, 396

.rn request, 321, 397
root

directories, 11
directory, 11

.RP macro (mm), 108, 141

.RS macro
(mm), 140–141
(ms), 89

.rs request, 73, 102, 380

.RT macro
(ms), 377
(ms), 84

.rt request, 357, 391
rules for, hyphenation, 59

- s -

.S macro (mm), 117–118

.SA macro (mm), 112
sample figures, drawing, 352
scaled units, number registers, 328
(SCCS)

files, tracking changes to, 251
(Source Code Control System), 251

script, shell scripts, proofreading, 296, 300
script command, 267
scrolling, 3, 32–33
sdiff command, 248, 248–249, 250–251
search, 16, 35, 147, 238

path, 270
path, shell scripts, C shell, 271
regular expression, 238

Index 511

searching
for, files, 236
within, files, 238

secondary
entries, indexing, subordinating, 426
prompt, Bourne shell, 16

section headings, 397, 403
sed editor, 4, 269, 282–296, 450–452

addressing, 283, 450
branching to parts of script, 287, 288
command summary, 450–452
command syntax, 282, 450
differences from ex, 283
excluding lines from editing, 286–287
hold space, 293–296
in format script, 285
inserting lines of text, 289
invoking, 282–283, 450
matching patterns across two lines, 292–296
pattern space, 293–296
print command, 289
quit command, 291
script for extracting information from a file, 289
substitute command, 284
syntax of commands, 269
used in for loop, 284
used in indexing script, 430–431

set command, 15
setting

default values with, number registers, 376
default values, macros, 375
default values, shell scripts, 276
environment variables, 15
from command line, number registers, 81
from command line, page number, 108

sh command, 269
.SH macro (ms), 97–98
sheet macros, cover, 98–99
shell

background processing, Bourne, 14
Bourne, 10, 269–278
C, 10, 233, 269
cancelling commands, Bourne, 10
command summary, Bourne, 483–487
conditional execution, Bourne, 272–274
discarding and shifting arguments, Bourne, 274
functions, Bourne shell, 484
interrupting commands, Bourne, 10
long command lines, Bourne, 16
prompt, Bourne, 10
repetitive execution, Bourne, 275, 278
resuming commands, Bourne, 10
script for, proofreading, 296–300
scripts, 16, 269–272, 277
scripts, arguments to, 17
scripts, breaking out of, 276
scripts, C shell search path, 271
scripts, conditional execution, 272–274
scripts, definition of, 269
scripts, discarding and shifting arguments, 274
scripts, initializing variables, 276
scripts, looping, 278
scripts, making executable, 270
scripts, passing arguments to, 271–272
scripts, proofreading script, 296, 300
scripts, putting in path, 270
scripts, reading data interactively, 311
scripts, repetitive execution, 275, 278
scripts, setting default values, 276
secondary prompt, Bourne, 16
shell functions, Bourne, 484
special characters, Bourne, 483

variable substitution, Bourne, 12, 483
variables set by shell under execution, Bourne, 484

shell scripts
export command, 276
number of arguments ($#), 275
test command in, 272–274

shift shell command, 274
simple macro for, two-column processing, 391
size

in bytes, files, 236
page, 384

.SK macro (mm), 123
slanting characters, 366
.SM macro

(mm), 118
(ms), 93–94

.so request, 82, 338, 371, 375
soelim command, 371
sort command, 16, 254, 256, 424
sorting raw entries, indexing, 424
(Source Code Control System), SCCS, 251
.sp request, 58, 67–69
.SP macro (mm), 111–112
space

at top of page, 380
unpaddable, 58, 90, 367

spacing
baseline, 78–79
constant, 365, 409
vertical, 61, 67, 78, 85, 111, 117

special
characters, Bourne shell, 483
fonts, 52, 76
formatting problems, indexing, 430

spell command, 235, 241, 296
split command, 262
splitting, diversions, 416
SQtroff, 339
.ss request, 365–366
standard

error, 10, 416
error, table of contents, written to, 412, 416
fonts, four, 52
input, 15
output, 10, 15

strings
appending to, 332
comparing, 325
defining, 332
interpolating, 81, 332
multiline, 81
naming, 332

strings
in troff, 81
mm, 142

structure of package, macros, 373, 374
style, macros, 340, 404
sub-, directories, 11
subdirectory, 11
subordinating secondary entries, indexing, 426
subscripts, 191
substituting for environment switch, number registers, 409
substitution, Bourne shell, variable, 483
super-user, 236
superscripts, 191, 345
.sv request, 72–73
.sy request, 371, 417
syntax of commands, UNIX, 9
system fundamentals, UNIX, 9
systems, files, transferring to other, 267

512 Unix Text Processing

- t -

.ta request, 66–67, 362
table of

contents, 412, 420
contents, created by diversion, 412, 414
contents, diversions, 412
contents, written to standard error, 412, 416

table of contents, mm macros, 137–139
tabs and leaders in, macros, 364
tabs (in troff), 66–67, 362
tail command, 238
tar command, 267
.TB macro (mm), 108, 138–139
tbl preprocessor, 165–185

alphabetic data columns, 171
breaking up long tables, 180
changing format within table, 176
column format options, 169, 474
column width, 175, 176
complex table example, 182
data, 166–167, 475
describing column formats, 169
drawing lines within tables, 173
equations within tables, 171
fonts, 174
format options, 166–168
global format options, 166–169, 474
headers, 170
horizontally spanning headers, 170
invoking, 166
numeric data columns, 171
point sizes, 174
problems with .so request, 371
putting text blocks in a column, 178
repeating table headers, 180
simple table example, 167
spacing within tables, 170
staggered columns, 176
summary of commands, 473–475
table end macro, 166
table formatting checklist, 182
table specifications, 165
table start macro, 166
titling tables, 181
using eqn with, 166, 188
vertical spacing within data blocks, 176
vertically spanning columns, 172

.TC macro (mm), 138

.tc request, 363
TERM variable, 15, 21
terminal type, 15, 21, 26
terminal messages from troff, 338, 339
test command, 272–274
three-part titles, page number, in, 383
.ti request, 63
tip command, 266
title length, 383
.tl request, 381
.TL macro (ms), 98–99
.tm request, 338, 339, 388, 412, 417
to

a file, appending, 11
macros, appending, 320
(SCCS), files, tracking changes, 251
UNIX commands, arguments, 9

top of page, space at, 380
.TP macro (mm), 143
tplus postprocessor, 365
tr

command, 261
request, 337, 367–368

tracking changes to (SCCS), files, 251
transferring to other systems, files, 267
transparent output, 356, 413
traps, 71, 375, 379, 380–381, 384, 389
troff formatter, 47–82, 319–371

.ab request, 339

.ad request, 57–58, 376

.am request, 320

.as request, 332

.bd request, 358

.bp request, 69, 71–73

.br request, 55, 333

.c2 request, 336

.cc request, 336

.ce request, 64–66

.cf request, 356

.ch request, 389

.cs request, 365

.cu request, 67

.da request, 334, 413

.de request, 80, 320

.di request, 333, 349

.ds request, 81, 332

.ec request, 336

.el request, 324–327

.em request, 413

.eo request, 336

.ev request, 334

.ex request, 370

.fc request, 363

.fi request, 55

.fl request, 102, 338, 380

.fp request, 74, 75

.ft request, 74, 75

.hw request, 59

.hy request, 60, 376

.ie request, 324–327

.if request, 324–327

.ig request, 338

.in request, 63

.lc request, 363

.lg request, 367

.ll request, 62, 376

.ls request, 69, 79

.lt request, 383

.mc request, 369

.mk request, 357, 391

.na request, 57

.ne request, 72, 393

.nf request, 55

.nm request, 368

.nn request, 368

.nr request, 81, 327

.ns request, 73, 102, 379

.nx request, 370

.os request, 73

.pc request, 383

.pl request, 71, 384

.pm request, 320

.pn request, 73

.po request, 62, 376

.ps request, 78, 79

.rd request, 369

.rm request, 320, 396

.rn request, 321, 397

.rs request, 73, 102, 380

.rt request, 357, 391

.so request, 82, 338, 371, 375

.sp request, 58, 67–69

.ss request, 365–366

.sv request, 72–73

.sy request, 371

Index 513

.ta request, 66–67, 362

.tc request, 363

.ti request, 63

.tl request, 381

.tm request, 338, 339, 388, 412

.tr request, 337, 367–368

.ul request, 67

.vs request, 79

.wh request, 70, 376, 379, 389
aborting, 339
absolute motions, 347, 359
adjusting title length, 383
aligning numeric data, 67
appending to a diversion, 334
appending to a macro, 320
appending to a string, 332
arithmetic expressions, 324
autoincrementing number registers, 331
basic assumptions, 48
boldfacing fonts by overstriking, 358
bracket-building characters, 361, 463
change bars, 369
changing page size, 384
character output translations, 366
command line options, 456
comments, 319
comparing strings, 325
compiling font files, 491
conditional execution, 324
constant spacing, 365
copy mode, 323
cut marks, 385–386
debugging, 337–338
default units, 61
defining macros, 70, 80, 320
defining strings, 332
device units, 61
diversions, 349
double or triple spacing, 69
downloadable fonts, 53
drawing, 347–352
environment switching, 334
error handling, 339
escape sequences, 54, 344, 460–461
executing system commands from, 371
expression operators, 325
fields, 363
flushing output buffer, 338
fonts, 52, 74–76
footnotes, 387
form letters, 369
Greek characters, 464
headers and footers, 381
horizontal spacing, 61
hyphenation, 59–60, 375
ignoring input, 338
including Macintosh illustrations, 356
interactive use, 337
interrupted lines, 327
interword spacing, 50
inverse conditions, 327
invoking, 53, 456
justification using mm, 112
keeping text block together, 333
leaders, 362–363
ligatures, 366, 366
line drawing, 347
line weight, 351
local horizontal motions, 346
local vertical motions, 343
macro arguments, 80, 322
macro names, 320

macro style, 340
marking a horizontal position, 359
marking a vertical position, 357
mathematic symbols, 463
multi-column processing, 357, 391
multiline conditions, 326
names of existing macros, 320
names of existing number registers, 321
negative vertical motions, 68
nested macros, 323
number registers, 80–81, 324–329, 376, 407, 409
numeric expressions, 61
output line numbering, 368
overstriking, 358, 360
page breaks, 393
page breaks without line breaks, 71
page layout, 60, 381
page length, 69, 71
page numbering, 73
page numbers, 382
page offset, 404
page top resets, 392
page transition, 69–71, 374–393
point size, 77–78
postprocessors, 53–54, 356
predefined conditions, 324
predefined number register names, 329, 461–462
pseudo-page transition, 380
read-only number registers, 330, 461
reading standard input, 369
redefining control and escape characters, 336
removing macros, 320
removing number registers, 332
renaming macros, 321
returning to a horizontal position, 359
returning to a vertical position, 357
selecting output pages from command line, 73
setting page number from command line, 73
space at top of page, 380
space size, 366
spacing to an absolute position, 68
special characters, 76, 462–464
stacking up characters, 361
summary of requests, 456–459
superscripts, 345
suspending line numbering, 368
syntax of requests, 54
tabs and leaders, 362
tabs in macros, 364
terminal messages, 338
three-part titles, 383
transparent output, 356
traps, 70, 375, 379, 380–381, 384, 389
two-column processing, 357
underlining, 348
units of measure, 61–62
used with laser printers, 6
using pic with, 203, 206
using with ms, 83
versions of, 53
vertical spacing, 61, 67, 78
vertically stacked labels, 361
widows and orphans, 393
width function, 360

two-column processing, simple macro for, 391
two-column processing, ms macros, 101
.TX macro (mm), 143
.TY macro (mm), 143
type, terminal, 21, 26
types of

justification, 57–58
printers, 6–7

514 Unix Text Processing

typesetter, C/A/T, 51, 53, 61

- u -

.UL macro (ms), 93

.ul request, 67
underlining, 93
underlining

in troff, 348
ms macros, 93

uniq command, 254, 256
units, number registers, scaled, 328
UNIX

commands, errors, messages from, 10
commands, miscellaneous, 233
commands, options to, 9
syntax of commands, 9
system fundamentals, 9
version used for this book, 9

unpack command, 266
unpaddable space, 58, 90, 367
used

as flags, number registers, 329
for footnotes, diversions, 390
to generalize macros, number registers, 328

user entries, indexing, form of, 423
user exit macros (mm), 143
/usr/lib/font, 50, 53, 74, 489–491

DESC tile, 489–490
font description files, 490–491

/usr/lib/tmac, 82
uucp command, 266
uuname command, 266

- v -

values
macros, setting default, 375
shell scripts, setting default, 276

variable substitution, Bourne shell, 12, 483
variable-item lists, mm macros, 131
variables

number registers, as global, 328
set by shell under execution, Bourne shell, 484
setting, environment, 15
shell scripts, initializing, 276

version used for this book, UNIX, 9
vertical

motions, local, 343
spacing, 61, 67, 78, 85, 111, 117

vertically stacked labels, 361
vi editor, 19–42, 145–163

ex commands in, 147
abbreviations, 160
alternative insert commands, 42
append text, 42
appending to named buffers, 43
changing text, 26–28
characters not used in command mode, 443
command line options, 38
command mode, 21
command summary, 441, 445
command syntax, 21, 441
copying text, 30, 42
current and alternate filenames, 159
cursor movement, 22, 23
cursor movement by line numbers, 37
cursor movement by text blocks, 34
cursor movement with numeric argument, 35
cursor movement within lines, 34
cursor movement within screen, 33
deleting single characters, 25–29

deleting text, 25, 28–29
displaying line numbers, 24, 37
editing multiple files, 158
errors when opening, 21
filtering text through a UNIX command, 157
ignoring case during searches, 40
insert mode, 19, 21
inserting text, 21, 25
joining lines, 31
leaving insert mode, 22, 26
mapping command sequences, 161
marking place in file, 44
movement by line number, 37
moving by screenfuls, 32
moving cursor by single lines, 23
moving cursor by spaces, 23
moving cursor by text blocks, 25
moving text, 25, 29, 45
named buffers, 43–44
numbered buffers, 43
numeric arguments to commands, 24
numeric prefixes to commands, 42
on a dumb terminal, 26
opening a file, 20
opening a file to a specific place, 38
opening a new line for insertion, 42
pattern matching characters, 178
prompt line, 21
quitting, 21
quitting without saving edits, 31
read-only mode, 39
recovering a buffer, 39
recovering deletions, 43
repeat last search, 36
repeating last command, 30
replacing characters, 28, 42
returning to a position, 37
saving a file, 22
screen lines vs. logical lines, 24
scrolling, 32–33
search for pattern, 35–37
search options, 41
search within current line, 36
setting options, 40, 39–41, 443
shiftwidth, 41
showing contents of numbered buffers, 43
size of window, 40
status line, 441
summary of options, 440
undoing last change, 30, 43
view mode, 39
wrapmargin, 22, 41

view command, 39
viewing contents, files, 237
.VL macro (mm), 131
.VM macro (mm), 143
.vs request, 79
vs. text editors, word processors, 2

- w -

wc command, 16
.wh request, 70, 376, 379, 389
while shell command, 275
who command, 16
widows and orphans, 393
width

fonts, constant, 409
function, 360

with a
markup language, formatting, 4
word processor, formatting, 4

Index 515

within, files, searching, 238
without line breaks, page breaks, 71
word

processing on, Macintosh, 7
processor, formatting, with a, 4
processors, characteristics of, 1–4
processors, command mode vs. insert mode, 3
processors, influence on writing process, 1
processors, limitations of, 2, 5
processors, vs. text editors, 2

Writer’s Workbench, 243
miscellaneous programs, 246

Writer’s Workbench
analyze style/readability (style), 244
explain diction errors (explain), 245
search for poor phrasing (diction), 244

writing process, word processors, influence on, 1
written to standard error, table of contents, 412, 416
wysiwyg defined, 5

- x -

xargs command, 239

	Contents
	Preface
	The UTP Revival

	1. From Typewriters to Word Processors
	A Workspace
	Tools for Editing
	Document Formatting
	Printing
	Other UNIX Text-Processing Tools

	2. UNIX Fundamentals
	The UNIX Shell
	Output Redirection
	Files and Directories
	Copying and Moving Files
	Permissions

	Special Characters
	Environment Variables
	Pipes and Filters
	Shell Scripts

	3. Learning vi
	Session 1: Basic Commands
	Opening a File
	vi Commands
	Saving a File

	Moving the Cursor
	Single Movements
	Numeric Arguments
	Movement by Lines
	Movement by Text Blocks

	Simple Edits
	Inserting New Text
	Changing Text
	Words
	Lines
	Characters
	Deleting Text
	Words
	Lines
	Moving Text
	Copying Text
	Using Your Last Command
	Joining Two Lines with J
	Quitting without Saving Edits

	Session 2: Moving Around in a Hurry
	Movement by Screens
	Scrolling the Screen
	Movement within a Screen
	Movement within Lines

	Movement by Text Blocks
	Movement by Searches
	Current Line Searches

	Movement by Line Numbers
	Session 3: Beyond the Basics
	Command-Line Options
	Advancing to a Specific Place
	Read-Only Mode
	Recovering a Buffer

	Customizing vi
	The set Command
	The .exrc File
	Alternate Environments
	Some Useful Options

	Edits and Movement
	More Ways to Insert Text
	Using Buffers
	Recovering Deletions
	Yanking to Named Buffers

	Marking Your Place
	Other Advanced Edits

	4. nroff and troff
	Conventions
	What the Formatter Does
	Line Adjustment

	Using nroff
	Using troff
	The Coming of ditroff

	The Markup Language
	Looking at nroff Output

	Turning Filling On and Off
	Controlling Justification
	Hyphenation
	Specifying Hyphenation for Individual Words
	Turning Hyphenation Off and On

	Page Layout
	Units of Measure
	Setting Margins
	Setting Indents
	Centering Output Lines
	Setting Tabs
	Underlining
	Inserting Vertical Space
	Double or Triple Spacing

	Page Transitions
	Page Length Revisited
	Page Breaks without Line Breaks
	Page Numbering

	Changing Fonts
	Special Characters
	Type Size Specification
	Vertical Spacing

	A First Look at Macros
	Macro Arguments
	Number Registers
	Predefined Strings
	Just What Is a Macro Package?

	5. The ms Macros
	Formatting a Text File with ms
	Problems in Getting Formatted Output

	Page Layout
	Paragraphs
	Spacing between Paragraphs
	Quoted Paragraphs
	Indented Paragraphs

	Changing Font and Point Size
	Roman, Italic, and Bold Fonts
	Underlining
	Changing Point Size

	Displays
	Static and Floating Displays

	Headings
	Cover Sheet Macros
	Miscellaneous Features
	Putting Information in a Box
	Footnotes
	Two-Column Processing

	Page Headers and Footers
	Problems on the First Page
	Extensions to ms

	6. The mm Macros
	Formatting a Text File
	Invoking nroff/troff with mm
	Problems in Getting Formatted Output
	Default Formatting

	Page Layout
	Setting Page Numbering Style
	Header and Footer Macros
	Setting Other Page Control Registers
	Paragraphs
	Vertical Spacing
	The .SP Macro versus the .sp Request

	Justification
	Word Hyphenation
	Displays
	Our Coding Efforts, So Far

	Changing Font and Point Size
	Roman, Italic, and Bold Fonts
	Changing Point Size

	More about Displays
	Static and Floating Displays
	Display Labels

	Forcing a Page Break
	Formatting Lists
	Structuring a List
	Marked Lists
	Numbered and Alphabetic Lists
	Variable-Item Lists

	Headings
	Numbered and Unnumbered Headings
	Changing the Heading Mark

	Table of Contents
	Footnotes and References
	Footnotes
	References

	Extensions to mm

	7. Advanced Editing
	The ex Editor
	Using ex Commands in vi
	Write Locally, Edit Globally
	Searching Text Blocks
	Search and Replace
	Confirming Substitutions
	Global Search and Replace

	Pattern Matching
	Search for General Classes of Words
	Block Move by Patterns
	More Examples

	Writing and Quitting Files
	Renaming the Buffer
	Saving Part of a File
	Appending to a Saved File

	Reading In a File
	Executing UNIX Commands
	Filtering Text through a Command

	Editing Multiple Files
	Invoking vi on Multiple Files
	Calling In New Files
	Edits between Files

	Word Abbreviation
	Saving Commands with map
	Complex Mapping Example
	Mapping Keys for Insert Mode
	@ Functions

	8. Formatting with tbl
	Using tbl
	tbl with eqn

	Specifying Tables
	A Simple Table Example
	Laying Out a Table
	Describing Column Formats
	Tables with Headers
	Tables with Spanned Headers
	Numeric and Alphabetic Columns
	Vertically Spanned Columns
	Drawing Lines in Tables
	Changing Fonts and Sizes
	Changing the Column Width
	Other Key Letters

	Changing the Format within a Table
	Putting Text Blocks in a Column
	Breaking Up Long Tables
	Putting Titles on Tables
	A tbl Checklist
	Some Complex Tables

	9. Typesetting Equations with eqn
	A Simple eqn Example
	Using eqn
	Specifying Equations
	Displayed Equations
	Inline Expressions

	Spaces in Equations
	Printing Spaces in the Output
	Subscripts and Superscripts: A Common Use

	Using Braces for Grouping
	Special Character Names
	Special Symbols
	Summations, Integrals, Products, and Limits
	Square Root Signs
	Enclosing Braces and Brackets

	Other Positional Notation
	Vertical Piles

	Diacritical Marks
	Defining Terms
	Quoted Text
	Fine-Tuning the Document
	Lining Up Equations
	Changing Fonts and Sizes
	Horizontal and Vertical Motions

	Keywords and Precedence
	Problem Checklist

	10. Drawing Pictures
	The pic Preprocessor
	Naming Objects
	Labeling Objects
	pic's Drawing Motion
	Changing Direction
	Placing Objects
	Placing Text
	Place and Position Notation
	Defining Object Blocks
	Resetting Standard Dimensions
	Controlling the Dimensions of a Drawing
	Debugging pic Descriptions

	From Describing to Programming Drawings
	Locating Objects Using Cartesian Coordinates
	Expressions and User-Defined Variables
	Defining Macros
	pic's Copy Facility
	Executing UNIX Commands

	pic Enhancements

	11. A Miscellany of UNIX Commands
	Managing Your Files
	Using the File System to Your Advantage
	Shell Filename Metacharacters
	Locating Files
	File Characteristics

	Viewing the Contents of a File
	Searching for Information in a File
	Proofing Documents
	Looking For Spelling Errors
	Checking Hyphenation
	Counting Words
	Writer's Workbench

	Comparing Versions of the Same Document
	Checking Differences
	SCCS
	Using make

	Manipulating Data
	Removing Formatting Codes
	The sort and uniq Commands
	The join Command
	The comm Command
	The cut and paste Commands
	The tr Command
	Splitting Large Files
	Encryption

	Cleaning Up and Backing Up
	Compressing Files
	Communications
	Scripts of UNIX Sessions

	12. Let the Computer Do the Dirty Work
	Shell Programming
	Stored Commands
	Passing Arguments to Shell Scripts
	Conditional Execution
	Discarding Used Arguments
	Repetitive Execution
	Setting Default Values
	What We've Accomplished

	ex Scripts
	Looping in a Shell Script
	Here Documents
	ex Scripts Built by diff

	Stream Editing
	Differences between ex and sed
	Some Shell Scripts Using sed
	Integrating sed into format
	Excluding Lines from Editing
	Branching to Selective Parts of a Script
	Back to format
	Inserting Lines of Text
	A sed Script For Extracting Information From a File
	The Quit Command
	Matching Patterns across Two Lines
	The Hold Space and the Pattern Space
	In Conclusion

	A Proofreading Tool You Can Build

	13. The awk Programming Language
	Invoking awk
	Records and Fields
	Testing Fields
	Passing Parameters from a Shell Script
	Changing the Field Separator
	System Variables
	Looping
	Conditional Statements
	Arrays

	awk Applications
	Formatted Print Statements
	Defensive Techniques
	awk and nroff/troff
	Multiline Records

	Testing Programs

	14. Writing nroff and troff Macros
	Comments
	Defining Macros
	Macro Names
	Finding the Names of Existing Macros
	Renaming a Macro

	Macro Arguments
	Nested Macro Definitions
	Conditional Execution
	Predefined Conditions
	Arithmetic and Logical Expressions
	Comparing Strings
	Executing Multiple Requests as a Result of a Condition
	Inverse Conditions

	Interrupted Lines
	Number Registers
	Number Registers as Global Variables
	Number Registers as Flags
	Predefined Number Register Names
	Autoincrementing Registers
	Altering the Output Format
	Removing Registers

	Defining Strings
	Diversions
	Environment Switching
	Redefining Control and Escape Characters
	Debugging Your Macros
	Error Handling
	Macro Style

	15. Figures and Special Effects
	Formatter Escape Sequences
	Local Vertical Motions
	Local Horizontal Motions
	Absolute Motions
	Line Drawing
	Changing Line Weight
	Drawing Curves

	Talking Directly to the Printer
	Marking a Vertical Position
	Overstriking Words or Characters
	Boldfacing a Font by Overstriking
	Marking and Returning to a Horizontal Position
	The Width Function
	Overstriking Single Characters
	Stacking up Characters

	Tabs, Leaders, and Fields
	Using Leaders
	Using Fields
	Using Tabs and Leaders in Macros

	Constant Spacing
	Pseudo-Fonts
	Character Output Translations
	Output Line Numbering
	Change Bars
	Form Letters
	Reading in Other Files or Program Output

	16. What's in a Macro Package?
	Just What Is a Macro Package, Revisited
	New or Extended?
	Implementing a Macro Package

	Building a Consistent Framework
	Using Number Registers to Increase Flexibility
	An Initialization Sequence
	A Reset Macro

	Page Transitions
	No-Space Mode in Page Transitions
	The First Page

	Page Transitions in ms
	Headers and Footers
	Page Numbers in Three-Part Titles
	Title Length

	Some Extensions to the Basic Package
	Changing Page Size
	Cut Marks

	Other Exercises in Page Transition
	Footnotes
	Multicolumn Processing
	Page Top Resets
	Handling Widows and Orphans

	17. An Extended ms Macro Package
	Creating a Custom Macro Package
	Structured Technical Documents
	The Chapter Heading
	A Mechanism for Numbered Headings
	Subsection Headings
	An Alternate Definition

	Figure and Table Headings
	Lists, Lists, and More Lists
	Source Code and Other Examples
	Notes, Cautions, and Warnings
	Table of Contents, Index, and Other End Lists
	Diverting to the End
	A Diverted Table of Contents
	When Diversions Get Too Big
	Writing to Standard Error
	Indexes

	18. Putting It All Together
	Saving an External Table of Contents
	Index Processing
	Sorting the Raw Index
	Building the Page Number List
	Subordinating Secondary Entries
	Adding Formatting Codes
	Final Formatting Touches
	Special Cases
	The Entire Index Program

	Let make Remember the Details
	Building the Makefile

	Where to Go from Here

	A. Editor Command Summary
	Pattern-Matching Syntax
	The vi Editor
	Command-Line Syntax
	Operating Modes
	Command Syntax
	Status Line Commands
	Summary of vi Commands
	Characters Not Used in Command Mode
	vi set Options

	The ex Editor
	Addresses
	ex Commands

	The sed Editor
	Pattern Addressing
	Alphabetical List of Commands

	awk
	Patterns
	Special Variables
	Procedures
	Variables and Array Assignments
	awk Commands

	B. Formatter Command Summary
	nroff/troff Command-Line Syntax
	troff Options

	nroff/troff Requests
	Escape sequences
	Predefined Number Registers
	Read-Only Registers
	Read/Write Registers

	Special Characters
	On the Standard Fonts
	On the Special Font

	The ms macros
	Summary of ms macros
	Internal Macros Worth Knowing About
	Number Registers Containing Page Layout Defaults
	Predefined and User-Definable Strings
	Reserved Macro and String Names

	The mm Macros
	Summary of mm Macros
	Predefined String Names
	Number Registers Used in mm
	Other Reserved Macro and String Names

	tbl Command Characters and Words
	Options
	Format

	eqn Command Characters
	Character Translations
	Words Recognized By eqn
	Precedence

	The pic Preprocessor
	pic Macros
	Declarations
	Primitives
	Options
	Text
	Object Blocks
	Macros
	Positioning
	Numerical Operators
	Default Values

	C. Shell Command Summary
	D. Format of troff Width Tables
	The DESC File
	Font Description Files
	Compiling Font Files
	Font Usage Limitations

	E. Comparing mm and ms
	Paragraphs
	Justification
	Displays
	Formatting Lists
	Change Font
	Change Point Size
	Headers and Footers
	Section Headings
	Footnotes

	F. The format Macros
	Summary of the Macros

	G. Selected Readings
	Introductory UNIX Texts
	Advanced Topics

	Index
	a
	b
	c
	d
	e
	f
	g
	h
	i
	j
	k
	l
	m
	n
	o
	p
	q
	r
	s
	t
	u
	v
	w
	x

