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Abstract. In this article we introduce the notion of a generalized sys-

tem of fundamental sequences and we de�ne its associated slow-growing

hierarchy. We claim that these concepts are genuinely related to the clas-

si�cation of the complexity�the derivation length� of rewrite systems

for which termination is provable by a standard termination ordering.

To substantiate this claim, we re-obtain multiple recursive bounds on the

the derivation length for rewrite systems terminating under lexicographic

path ordering, originally established by the second author.

1 Introduction

To show termination of a rewrite system R one usually shows that the induced
reduction relation →R is contained in some abstract ordering known to be well-
founded. One way to assess the strength of such a termination ordering is to
calculate its order type, cf. [7]. There appears to be a subtle relationship be-
tween these order types and the complexity of the rewrite system R considered.
Cichon [5] discussed (and investigated) whether the complexity of a rewrite sys-
tem for which termination is provable using a termination ordering of order type
α is eventually dominated by a function from the slow-growing hierarchy along
α. It turned out that this principle�henceforth referred to as (CP)�is valid
for the (i) multiset path ordering (�mpo) and the (ii) lexicographic path ordering
(�lpo).

More precisely, Hofbauer [9] proved that �mpo as termination ordering im-
plies primitive recursive derivation length, while the second author showed that
�lpo as termination ordering implies multiply-recursive derivation length [17]. If
one regards the order types of �mpo and �lpo, respectively, then these results im-
ply the correctness of (CP) for (i) and (ii). Buchholz [3] has given an alternative
proof of (CP) for (i) and (ii). His proof avoids the (sometimes lengthy) calcu-
lations with functions from subrecursive hierarchies in [9, 17]. Instead a clever
application of proof-theoretic results is used. Although this proof is of striking
beauty, one might miss the link to term rewriting theory that is provided in [9,
17].
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The mentioned proofs [9, 17, 3] of (CP)�with respect to (i) and (ii)�are
indirect. I.e. without direct reference to the slow-growing hierarchy. By now, we
know from the work of Touzet [16] and Lepper [10, 11] that (CP) fails to hold
in general. However, our interest in (CP) is motivated by our strong belief that
there exist reliable ties between proof theory and term rewriting theory. Ties
which become particularly apparent if one studies those termination orderings
for which (CP) holds.

To articulate this belief we give yet another direct proof of (CP) (with respect
to (i) and (ii)). To this avail we introduce the notion of a generalized system
of fundamental sequences and we de�ne its associated slow-growing hierarchy.
These concepts are genuinely related to classifying derivation lengths for rewrite
systems for which termination is proved by a standard termination ordering. To
emphasize this let us present the general outline of the proof method.

Let terms s = t0, t1, . . . , tn be given, such that s→R t1 →R · · · →R tn holds,
where tn is in normal form and term-depth of s (τ(s)) is ≤ m. Assume →R is
contained in a termination ordering �. Hence s � t1 � · · · � tn holds. Assume
further the sequence (s, t1, . . . , tn) is chosen so that n is maximal. Then in the
realm of classi�cations of derivation lengths one usually de�nes an interpretation
I : T (Σ,V)→ IN such that I(s) > I(t1) > · · · > I(tn) holds. (T (Σ,V) denotes
the term algebra over the signature Σ and the set of variables V.) The existence
of such an interpretation then directly yields a bound on the derivation length.

The problem with this approach is to guess the right interpretation from the
beginning. More often than not this is not at all obvious. Therefore we want
to generate the interpretation function directly from the termination ordering
in an intrinsic way. To this avail we proceed as follows. We separate I into an
ordinal interpretation π : T (Σ) → T and an ordinal theoretic function g : T →
IN. (T denotes a suitable chosen set of terms representing an initial segment
of the ordinals, cf. De�nition 2.) This works smoothly. Firstly, we can employ
the connection between the termination ordering � and the ordering on the
notation system T . This connection was already observed by Dershowitz and
Okada, cf. [7]. Secondly, it turns out that g can be de�ned in terms of the slow-
growing function Gx : T → IN; x ∈ IN. (Note that we have swapped the usual
denotation of arguments, see De�nition 4 and De�nition 9.)

To simplify the presentation we restrict our attention to a rewrite system
R whose termination can be shown by a lexicographic path ordering �lpo. It
will become apparent later that the proof presented below is (relative) easily
adaptable to the case where the rewrite relation →R is contained in a multiset
path ordering �mpo. We assume the signature Σ contains at least one constant
c.

Let R be a rewrite system over T (Σ,V) such that →R is contained in a
lexicographic path ordering. Let terms s = t0, t1, . . . , tn be given, such that
s→R t1 →R · · · →R tn holds, where tn is in normal form and τ(s) ≤ m. By our
choice of R this implies

s �lpo t1 �lpo · · · �lpo tn . (1)



We de�ne a ground substitution ρ: ρ(x) = c, for all x ∈ V. Let> denote a suitable
de�ned (well-founded) ordering relation on the ordinal notation system T . Let
l, r ∈ T (Σ,V). Depending on m and properties of R, we show the existence of
a natural number h such that l �lpo r implies π(lρ) > π(rρ) and Gh(π(lρ)) >
Gh(π(rρ)), respectively. Employing this form of an Interpretation Theorem we
conclude from (1) for some α ∈ T

α > π(sρ) > π(t1ρ) > · · · > π(tnρ) .

and consequently

Gh(α) > Gh(π(sρ)) > Gh(π(t1ρ)) > · · · > Gh(π(tnρ)) .

Thus Gh(α) calculates an upper bound for n. Therefore the complexity of R can
be measured in terms of the slow-growing hierarchy along the order type of T .

To see that this method calculates an optimal bound, it remains to relate
the function Gx : T → IN to the multiply-recursive functions. We employ Gi-
rard's Hierarchy Comparison Theorem [8]. Due to (a variant) of this theorem
any multiple-recursive function can be majorized by functions from the slow-
growing hierarchy and vice versa.1 (For further details see Section 4.)

Contrary to the original proof in[17], we can thus circumvent technical cal-
culations with the F -hierarchy (the fast-growing hierarchy) and can shed light
on the way the slow-growing hierarchy relates the order type of the termination
ordering � to the bound on the length of reduction sequences along →R.

2 The Lexicographic Path Ordering

We assume familiarity with the basic concepts of term rewriting. However, we
�x some notations. Let Σ = {f1, . . . , fK} denote a �nite signature such that any
function symbol f ∈ Σ has a unique arity, denoted as ar(f). The cardinality K
is assumed to be �xed in the sequel. To avoid trivialities we demand that Σ is
non-empty and contains at least one constant, i.e. a function symbol of arity 0.
We set N := max{ar(f) : f ∈ Σ}.

The set of terms overΣ and the countably in�nite set of variables V is denoted
as T (Σ,V). We will use the meta-symbols l, r, s, t, u, . . . to denote terms. The set
of variables occurring in a term t is denoted as var(t). A term t is called ground
or closed if var(t) = ∅. The set of ground terms over Σ is denoted as T (Σ). If
no confusion can arise, the reference to the signature Σ and the set of variables
V is dropped. With τ(s) we denote the term depth of s, de�ned as τ(s) := 0, if
s ∈ V or s ∈ Σ and otherwise τ(f(s1, . . . , sm)) := max{τ(si) : 1 ≤ i ≤ m} + 1.
A substitution σ : V → T is a mapping from the set of variables to the set of
terms. The application of a substitution σ to a term t is (usually) written as tσ
instead of σ(t).
1 A k-ary function g is said to be majorized by a unary function f if there ex-

ists a number n < ω such that g(x1, . . . , xk) < f(max{x1, . . . , xk}), whenever
max{x1, . . . , xk} ≥ n.



A term rewriting system (or rewrite system) R over T is a �nite set of rewrite
rules (l, r). The rewrite relation →R on T is the least binary relation on T
containing R such that (i) if s →R t and σ a substitution, then sσ →R tσ
holds, and (ii) if s →R t, then f(. . . , s, . . .) →R f(. . . , t, . . .). A rewrite system
R is terminating if there is no in�nite sequence 〈ti : i ∈ IN〉 of terms such that
t1 →R t2 →R · · · →R tm →R · · · . Let � denote a total order on Σ such that
fj � fi ↔ j > i for i, j ∈ {1, . . . ,K}. The lexicographic path ordering �lpo on
T (induced by �) is de�ned as follows, cf. [1].

De�nition 1. s �lpo t i�

1. t ∈ var(s) and s 6= t, or
2. s = fj(s1, . . . , sm), t = fi(t1, . . . , tn), and

� there exists k (1 ≤ k ≤ m) with sk �lpo t, or
� j > i and s �lpo tl for all l = 1, . . . , n, or
� i = j and s �lpo tl for all l = 1, . . . , n, and there exists an i0 (1 ≤ i0 ≤
m) such that s1 = t1, . . . si0−1 = ti0−1 and si0 �lpo ti0 .

Proposition 1. (Kamin-Levy).

1. If s �lpo t, then var(t) ⊆ var(s).
2. For any total order ≺ on Σ, the induced lexicographic order �lpo is a sim-

pli�cation order on T .
3. If R is a rewrite system such that →R is contained in a lexicographic path

ordering, then R is terminating.

Proof. Folklore.

3 Ordinal Terms and the Lexicographic Path Ordering

LetN be de�ned as in the previous section. In this section we de�ne a set of terms
T (and a subset P ⊂ T ) together with a well-ordering < on T . The elements of
T are built from 0, + and the (N + 1)-ary function symbol ψ. It is important to
note that the elements of T are terms not ordinals. Although these terms can
serve as representations of an initial segment of the set of ordinals On, we will
not make any use of this interpretation. In particular the reader not familiar
with proof theory should have no di�culties to understand the de�nitions and
propositions of this section. However some basic amount of understanding in
proof theory may be useful to grasp the origin and meaning of the presented
concepts, cf. [7, 11, 15]. For the reader familiar with proof theory: Note that P
corresponds to the set of additive principal numbers in T , while ψ represents the
(set-theoretical) �xed-point free Veblen function, cf. [15, 11].

De�nition 2. Recursive de�nition of a set T of ordinal terms, a subset P ⊂ T ,
and a binary relation > on T .

1. 0 ∈ T .
2. If α1, . . . , αm ∈ P and α1 ≥ · · · ≥ αm, then α1 + · · ·+ αm ∈ T .



3. If α1, . . . , αN+1 ∈ T , then ψ(α1, . . . , αN+1) ∈ P and ψ(α1, . . . , αN+1) ∈ T .
4. α 6= 0 implies α > 0.
5. α > β1, . . . , βm and α ∈ P implies α > β1 + · · ·+ βm.
6. Let α = α1 + · · ·+ αm, β = β1 + · · ·+ βn. Then α > β i�

� m > n, and for all i (i ∈ {1, . . . , n}) αi = βi, or
� there exists i (i ∈ {1, . . . ,m}) such that α1 = β1, . . . , αi−1 = βi−1, and
αi > βi.

7. Let α = ψ(α1, . . . , αN+1), β = ψ(β1, . . . , βN+1). Then α > β i�
� there exists k (1 ≤ k ≤ N + 1) with αk ≥ β, or
� α > βl for all l = 1, . . . , N + 1 and there exists an i0 (1 ≤ i0 ≤ N + 1)
such that α1 = β1, . . . αi0−1 = βi0−1 and αi0 > βi0 .

We use lower-case Greek letters to denote the elements of T . Furthermore we
formally de�ne α+ 0 = 0 + α = α for all α ∈ T .

We sometimes abbreviate sequences of (ordinal) terms like α1, . . . , αn by α.
Hence, instead of ψ(α1, . . . , αN+1) we may write ψ(α). To relate the elements of
T to more expressive ordinal notations, we de�ne 1 := ψ(0), ω := ψ(0, 1), and
ε0 := ψ(0, 1, 0). Let Lim be the set of elements in T which are neither 0 nor of
the form α+ 1. Elements of Lim are called limit ordinal terms.

Proposition 2. Let (T,<) be de�ned as above. Then (T,<) is a well-ordering.

Proof. Let |α| denote the number of symbols in the ordinal term α. Exploiting
induction on |α| one easily veri�es that the ordering (T,<) is well-de�ned. To
show well-foundedness one uses induction on the lexicographic path ordering
≺lpo, exploiting the close connection between De�nition 1.2 in Section 2 and
De�nition 2.7 above. ut

In the following proposition we want to relate the order type of the well-
ordering (T,<) and the well-partial ordering ≺lpo. Concerning the latter it is
best to momentarily restrict our attention to the well-ordering (T (Σ),≺lpo). We
indicate the arity of the function symbol ψ employed in De�nition 2. We write
(T (N + 1), <) instead of (T,<). Similarly we write (T (Σ(N)),≺lpo) to indicate
the maximal arity of function symbols in the �nite signature Σ. Let ΘΩω (0)
denote the small Veblen ordinal [15] and let otyp(M) denote the order type of
a well-odering M .

Proposition 3. 1. For any number k, there exists an order isomorphic em-
bedding from (T (Σ(k)),≺lpo) into (T (k + 1), <).

2. For any number k > 2, there exists an order isomorphic embedding from
(T (k), <) into (T (Σ(k)),≺lpo).

3. supk<ω(otyp((T (k), <))) = supk<ω(otyp((T (Σ(k)),≺lpo))) = ΘΩω (0).

Proof. The �rst two assertions are a consequence of the well-ordering proof of
(T,<). We only comment on the stated lower bound in the second one. The
statement fails for (T (2), <) and (T (Σ(2)),≺lpo). The presence of the binary
function symbol + in T (2) can make the ordering < more expressive than ≺lpo.
This di�erence vanishes for k ≥ 3. The third assertion follows from [14]. ut



4 Fundamental Sequences and Sub-recursive Hierarchies

To each ordinal term α ∈ T we assign a canonical sequence of ordinal terms
〈α[x] : x ∈ IN〉, the fundamental sequence. The concept of fundamental sequences
is a crucial one in (ordinal) proof theory. The main idea of utilizing fundamental
sequences in term rewriting, is that the descent along the branches of such a se-
quence can, informally speaking, code rewriting steps. We have to wade through
some technical de�nitions.

We de�ne the set ISα(γ), the set of interesting subterms of γ (relative to α)
by induction on γ. We set ISα(0) := ∅, ISα(γ1 + · · ·+ γm) :=

⋃m
i=1 ISα(γi), and

�nally

ISα(ψ(γ1, . . . , γN+1)) :=

{
{ψ(γ)} if (γ1, . . . , γN ) ≥lex (α1, . . . , αN )⋃N+1
i=1 ISα(γi) otherwise.

The (relative to α) maximal interesting subterm MSα(γ1, . . . , γn) of a non-
empty sequence (γ1, . . . , γn) is de�ned as the maximum of the terms occurring
in ISα(γi). Let >lex denote the lexicographic ordering on sequences of ordinal
terms induced by >. Let α = α1, . . . , αN ∈ T and β ∈ T . Then set

Fix(α) := {ψ(γ, δ) : γ >lex α and ψ(γ, δ) > αi for all i = 1, . . . , N} .

For a unary function symbol f we de�ne the nth iteration fn inductively as
(i) f0(x) := x, and (ii) fn+1(x) := f(fn(x)). We will make use of this notation
for functions of higher arity by assuming that all but one argument remain �xed.
We use · to indicate the free position. In the sequel λ (possibly extended by a
subscript) will always denote a limit ordinal term.

De�nition 3. Recursive de�nition of α[x] for x < ω.

0[x] := 0
(α1 + · · ·+ αm)[x] := α1 + · · ·+ αm[x] m > 1, α1 ≥ · · · ≥ αm

ψ(0)[x] := 0
ψ(0, β + 1)[x] := ψ(0, β) · (x+ 1)

ψ(0, λ)[x] := ψ(0, λ[x]) λ 6∈ Fix(0)
ψ(0, λ)[x] := λ · (x+ 1) λ ∈ Fix(0)

ψ(α1, . . . , αi + 1, 0, 0)[x] := ψ(α1, . . . , αi, ·, 0)x+1(0)
ψ(α1, . . . , αi + 1, 0, β + 1)[x] := ψ(α1, . . . , αi, ·, 0)x+1(ψ(α1, . . . , αi + 1, 0, β))

ψ(α1, . . . , αi + 1, 0, λ)[x] := ψ(α1, . . . , αi + 1, 0, λ[x]) λ 6∈ Fix(α, 0)
ψ(α1, . . . , αi + 1, 0, λ)[x] := ψ(α1, . . . , αi, ·, 0)x+1(λ) λ ∈ Fix(α, 0)

ψ(α1, . . . , λi, 0, 0)[x] := ψ(α1, . . . , λi[x], 0,MSα,λi,0
(α, λi))

ψ(α1, . . . , λi, 0, β + 1)[x] := ψ(α1, . . . , λi[x], 0, ψ(α1, . . . , λi, 0, β))
ψ(α1, . . . , λi, 0, λ)[x] := ψ(α1, . . . , λi, 0, λ[x]) λ 6∈ Fix(α, 0)
ψ(α1, . . . , λi, 0, λ)[x] := ψ(α1, . . . , λi[x], 0, λ) λ ∈ Fix(α, 0)



The above de�nition is given in such a way as to simplify the comparison
between the fundamental sequences for T and the fundamental sequences for the
set of ordinal terms T (2) (built from 0, +, and a 2-ary function symbol ψ) as
presented in [18]. Note that our de�nition is equivalent to the more compact one
presented in [11]. The following proposition is stated without proof. A proof (for
a slightly di�erent assignment of fundamental sequences) can be found in [4].

Proposition 4. Let α ∈ T be given; assume x < ω. If α > 0, then α > α[x].
For α > 1 we get α[x] > 0, and if α ∈ Lim, then α[x + 1] > α[x]. Finally, if
β < α ∈ Lim, then there exists x < ω, such that β < α[x] holds.

In the de�nition of ψ(α1, . . . , λi, 0, 0)[x] we introduce at the last position
of ψ the term MSa,0(α). We cannot simply dispense of this term. To see this,
we alter the de�nition of the crucial case. We momentarily consider only 3-ary
ψ-functions; we set Γ0 := ψ(1, 0, 0) and calculate ψ(0, Γ0, 0)[x]:

ψ(0, Γ0, 0)[x] = ψ(0, ψ(1, 0, 0)[x], 0)
= ψ(0, ψ(0, ·, 0)x+1(0), 0)
= ψ(0, ·, 0)x+2(0)
< ψ(1, 0, 0) .

Hence for every x < ω; ψ(0, Γ0, 0)[x] < Γ0 holds. This contradicts the last
assertion of the proposition as Γ0 < ψ(0, Γ0, 0). As a side-remark we want to
mention that the given assignment of fundamental sequences even ful�lls the
Bachmann property, see [2]. Utilizing De�nition 3 we are now in the position to
de�ne sub-recursive hierarchies of ordinal functions.

De�nition 4. (The slow-growing hierarchy). Recursive de�nition of the func-
tion Gα : ω → ω for α ∈ T .

G0(x) := 0
Gα+1(x) := Gα(x) + 1
Gλ(x) := Gλ[x](x) .

De�nition 5. (The fast-growing hierarchy.) Recursive de�nition of the function
Fα : ω → ω for α ∈ T .

F0(x) := x+ 1
Fα+1(x) := F x+1

α (x)
Fλ(x) := Fλ[x](x) .

It is easy to see that Gα(x) < Fα(x) for all α > 0. To see that the name of
the hierarchy {Gα : α ∈ T} is appropriate, it su�ces to calculate some examples.
Take e.g. Gω: Gω(x) = Gψ(0)·(x+1)(x) = Gx+1(x) = Gx(x) + 1 = x+ 1.

Recall that a function f is elementary (in a function g) if f is de�nable
explicitely from 0, 1, +, ·− (and g), using bounded sum and product. E(g)
denotes the class of all such functions f . Then Gε0 majorizes the elementary



functions E. In contrast the function Fω already majorizes the primitive recursive
functions, i.e. its growth rate is comparable to the (binary) Ackermann function.
Furthermore the class of multiple recursive functions can be characterized by the
hierarchy {E(Fγ) : γ < ωω}, cf. [12, 13].

However, the following theorem states a (surprising) connection between the
slow- and fast-growing hierarchy. See e.g. [8, 6, 18] for further reading on the
Hierarchy Comparison Theorem.

Theorem 1. (The Hierarchy Comparison Theorem.)⋃
α∈T

E(Gα) =
⋃

γ<ωN+1

E(Fγ) .

Proof. We do not give a detailed proof, but only state the main idea. In [18] the
hierarchy comparison theorem has been established for the set of ordinal terms
T (2) (built from 0, +, and the function symbol ψ, where ar(ψ) = 2). To extend
the result to T it su�ces to follow the pattern of the proof in [18].

The di�cult direction is to show that every function in the hierarchy
{Fγ : γ < ωN+1} is majorized by some Gα. To show this one in particular needs
to extend the proofs of Lemma 5 and Theorem 1 in [18] adequately. The reversed
direction follows by standard techniques, cf. [6]. ut

5 The Interpretation Theorem

For all α ∈ T there are uniquely determined ordinal terms α1 ≥ · · · ≥ αm ∈
P such that α = α1 + · · · + αm holds. In addition, for every α ∈ P there
exist unique α1, . . . , αN+1 such that α = ψ(α1, . . . , αN+1). (This normal form
property is trivial by de�nition.) Now assume α, β ∈ T with α = γ1 + · · ·+ γm0 ,
β = γm0+1+ · · ·+γm. Then the natural sum α#β is de�ned as γρ(1)+ · · ·+γρ(m),
where ρ denotes a permutation on {1, . . . ,m} such that γρ(1) ≥ · · · ≥ γρ(m) holds.

Let R denote a �nite rewrite system whose induced rewrite relation is con-
tained in �lpo.
De�nition 6. Recursive de�nition of the interpretation function π : T (Σ)→ T .
Let N denote the maximal arity of a function symbol in Σ. If s = fj ∈ Σ, then
set π(s) := ψ(j, 0). Otherwise, let s = fj(s1, . . . , sm) and set

π(s) := ψ(j, π(s1), . . . , π(sm) + 1, 0) .

In the sequel of this section we show that π de�nes an interpretation for R
on (T,<); i.e. we establish the following theorem.

Theorem 2. For all s, t ∈ T (Σ) we have s→R t implies π(s) > π(t).

Unfortunately this is not strong enough. The problem being that α > β
implies that Gα majorizes Gβ , only. Whereas to proceed with our general
program�see Section 1�we need an interpretation theorem for a binary re-
lation � on T , such that α � β ⇒ Gα(x) > Gβ(x) holds for all x. We introduce
a notion of a generalized system of fundamental sequences. Based on this gen-
eralized notion, it is then possible to de�ne a suitable ordering �.



De�nition 7. (Generalized system of fundamental sequences for (T,<).) Re-
cursive de�nition of (α)x for x < ω.

1. (0)x := ∅
2. Assume α = α1 + · · ·+ αm; m > 1. Then β ∈ (α)x if either

� β = α1# · · ·α∗i · · ·#αm and α∗i ∈ (αi)x holds, or
� β = αi.

3. Assume α = ψ(α). Then β ∈ (α)x if
� β = ψ(α1, . . . , α

∗
i , . . . , αN+1), and α∗i ∈ (αi)x, or

� β = αi + x, where αi > 0, or
� β = ψ(α)[x].

By recursion we de�ne the transitive closure of the ownership (α)x 3 β:
(α >(x) β) ↔ (∃γ ∈ (α)x(γ >(x) β ∨ γ = β)). Let α, β ∈ T . It is easy to verify
that α >(x) β (for some x < ω) implies α > β. If no confusion can arise we write
αx instead of (α)x.

Lemma 1. (Subterm Property) Let x < ω be arbitrary.

1. α <(x) γ1# · · ·α · · ·#γm.
2. α <(x) ψ(γ1, . . . , α, . . . , γN+1).

Proof. The �rst assertion is trivial. The second assertion follows by the de�nition
of <(x) and assertion 1. ut

Lemma 2. (Monotonicity Property) Let x < ω be arbitrary.

1. If α >(x) β, then γ1# · · ·α · · ·#γm >(x) γ1# · · ·β · · ·#γm.
2. If α >(x) β, then ψ(γ1, . . . , α, . . . , γN+1) >(x) ψ(γ1, . . . , β, . . . , γN+1).

Proof. We employ induction on α to prove 1). We write (ih) for induction hy-
pothesis. We may assume that α > 0. By de�nition of α >(x) β we either have
(i) that there exist δ ∈ αx and δ >(x) β or (ii) β ∈ αx. Firstly, one considers
the latter case. Then (γ1# · · ·β · · ·#γm) ∈ (γ1# · · ·α · · ·#γm)x holds by Def-
inition 7. Therefore (γ1# · · ·β · · ·#γm) <(x) (γ1# · · ·α · · ·#γm) follows. Now,
we consider the �rst case. By assumption δ >(x) β holds, by (ih) this implies
(γ1# · · · δ · · ·#γm) >(x) (γ1# · · ·β · · ·#γm)x. Now (γ1# · · ·α · · ·#γm) >(x)

(γ1# · · · δ · · ·#γm) follows by de�nition of >(x), if we replace β by δ in the
proof of the second case. This completely proves 1).

To prove 2) we proceed by induction on α. By de�nition of α >(x) β we have
either (i) δ ∈ αx and δ >(x) β or (ii) β ∈ αx. It is su�cient to consider the latter
case, the �rst case follows from the second as above. By De�nition 7, β ∈ αx
implies ψ(γ1, . . . , β, . . . , γN+1) ∈ ψ(γ1, . . . , α, . . . , γN+1)x. ut

In the sequel we show the existence of a natural number e, such that for
all s, t ∈ T , and any ground substitution ρ, s →R t implies π(sρ) >(e) π(tρ).
Theorem 2 follows then as a corollary. The proof is involved, and makes use of
a sequence of lemmas.



Lemma 3. Assume α, β ∈ Lim; x ≥ 1. If α >(x) β, then α >(x+1) β + 1 holds.

To prove the lemma we exploit the following auxiliary lemma.

Lemma 4. We assume the assumptions and notation of Lemma 3; assume
Lemma 3 holds for all γ, δ ∈ Lim with γ, δ < α. Then α >(x+1) α[x+ 1] ≥(x+1)

α[x] + 1.

Proof. The lemma follows by induction on the form of α by analyzing all cases
of De�nition 3. ut

Proof. (of Lemma 3) The proof proceeds by induction on the form of α. We
consider only the case where α = ψ(α1, . . . , αN+1). The case where α = α1 +
· · ·+ αm is similar but simpler.

By de�nition of α >(x) β we have either (i) γ ∈ αx and γ >(x) β or (ii)
β ∈ αx. Assume for γ ∈ αx we have already shown that γ+1 <(x+1) α. Then for
β <(x) γ, we conclude by (ih) and the Subterm Property β + 1 <(x+1) γ <(x+1)

γ + 1 <(x+1) α. Hence, it su�ces to consider the second case. We proceed by
case distinction on the form of β.

Case β = ψ(α1, . . . , α
∗
i , . . . , αN+1) where α∗i ∈ (αi)x for some i (1 ≤ i ≤

N + 1). Note that αi < α, hence (ih) is applicable to establish α∗i + 1 <(x+1) αi.

Furthermore by the Subterm Property follows α∗i <(x+1) α
∗
i +1 and therefore

ψ(α1, . . . , α
∗
i , . . . , αN+1) <(x+1) ψ(α1, . . . , α

∗
i + 1, . . . , αN+1) holds with Mono-

tonicity. Applying (ih) with respect to ψ(α1, . . . , α
∗
i + 1, . . . , αN+1) we obtain

ψ(α1, . . . , α
∗
i , . . . , αN+1) + 1 <(x+1) ψ(α1, . . . , α

∗
i + 1, . . . , αN+1)

<(x+1) ψ(α1, . . . , αi, . . . , αN+1) = α .

The last inequality follows again by an application of the Monotonicity Property.

Case β = αi + x: Then (αi + x) + 1 = αi + (x+ 1) <(x+1) α.

Case β = ψ(α)[x]. Clearly β ∈ Lim. Then the auxiliary lemma becomes
applicable. Thus ψ(α)[x] + 1 ≤(x+1) α[x+ 1] <(x+1) α. ut

Lemma 5. Let t ∈ T (Σ) be given. Assume τ(t) ≤ d, and fj ∈ Σ. If fj �lpo t,
then π(fj) >(2d) π(t).

Proof. We proceed by induction on τ(t). In the presentation of the argument,
we will frequently employ the Subterm and the Monotonicity Property without
further notice. Set α := π(fj), and β := π(t). Furthermore it is a crucial ob-
servation that 0 <(x) α holds for any x < ω, α ∈ T . (This follows by a simple
induction on α.)

Case τ(t) = 0: Then by assumption t = fi ∈ Σ, i < j. Hence i <(2d) j holds
and we conclude π(t) = ψ(i, 0) <(2d) ψ(j, 0) = π(fj).

Case τ(t) > 0: Let t = fi(t1, . . . , tn). Set βl := π(tl) for all l = 1, . . . , n. By
(ih) one obtains βl <(2(d−1)) α for all l. For all l, we need only consider the case



where βl ∈ α2(d−1). We consider ψ(j, 0)[2d] and apply the following sequence of
descents via >(2d):

ψ(j, 0)[2d] = ψ(j − 1, ·, 0)2d+1(0)
= ψ(j − 1, ψ(j − 1, ·, 0)2d(0), 0)

>(2d) ψ(j − 1, ψ(j − 1, ·, 0)2d−1(0) + 1, 0)

>(2d) ψ(j − 1, ψ(j − 1, ·, 0)2d−1(0)︸ ︷︷ ︸
ψ(j,0)[2(d−1)]

, ·, 0)2d+1(0) .

We de�ne γ1 := ψ(j, 0)[2(d−1)] and γk+1 := ψ(j−1, γ1, . . . , γk+1, 0)[2(d−1)].
By iteration of the above descent, we see

α[2d] = ψ(j, 0)[2d]
>(2d) ψ(j − 1, γ1, . . . , γn + 1, 0)
>(2d) ψ(j − 1, α[2(d− 1)], . . . , α[2(d− 1)] + 1, 0) (δ) .

Let l (1 ≤ l ≤ n) be �xed. By assumption we have βl ∈ (α)2(d−1). We proceed
by case distinction on the de�nition of βl.

Assume βl = ψ(j, 0)[2(d−1)]. Then δ = ψ(j−1, α[2(d−1)], . . . , βl, . . . , α[2(d−
1)]+1, 0). Assume βl = ψ(j∗, 0), where j∗ ∈ (j)2(d−1), i.e. j∗ ≤(2d) j−1 <(2d) j.
Therefore α[2(d − 1)] >(2d) ψ(j − 1, 0). Hence δ >(2d) ψ(j − 1, α[2(d −
1)], . . . , βl, . . . , α[2(d − 1)] + 1, 0). Finally assume βl = j + 2(d − 1). Then
βl <(2(d−1)+1) ψ(j − 1, 0) <(2(d−1)+1) ψ(j − 1, ·, 0)2d−1(0) = α[2(d − 1)]. Hence
βl <(2d) α[2(d − 1)] by Lemma 3 and therefore δ >(2d) ψ(j − 1, α[2(d −
1)], . . . , βl, . . . , α[2(d− 1)] + 1, 0).

As l was �xed but arbitrary, the above construction is valid for all l. And the
lemma follows. ut

Lemma 6. Let fi(t1, . . . , tn), fj(s1, . . . , sm) ∈ T (Σ) be given; let d > 0. Then

1. If i < j, π(fj(s)) >(2(d−1)) π(tl) for all l = 1, . . . , n. Then π(fj(s)) >(2d)

π(fi(t)) holds.
2. If s1 = t1, . . . , si0−1 = ti0−1, π(si0) >(2(d−1)) π(ti0), and π(fj(s)) >(2(d−1))

π(tl), for all l = i0 + 1, . . . , n, then π(fj(s)) >(2d) π(fi(t)) holds.

Proof. The proof of assertion 1) is similar to the proof of assertion 2) but simpler.
Hence, we concentrate on 2). Set α := π(fj(s)); β := π(fi(t)); �nally set αi :=
π(si) for all i = 1, . . . ,m, and βi := π(t : i) for all i = 1, . . . , n. As above, we
consider only the case where βl ∈ (α)2(d−1). The other case follows easily.

α[2d] = ψ(j, α1, . . . , αm + 1, 0)[2d]
= ψ(j, α1, . . . , αm, ψ(j, α1, . . . , αm, ·, 0)2d(0), 0)

>(2d) ψ(j, α1, . . . , αm, ψ(j, α1, . . . , αm, ·, 0)2d−1(0) + 1, 0)
= ψ(j, α1, . . . , αm, ψ(j, α1, . . . , αm + 1, 0)[2(d− 1)]︸ ︷︷ ︸

α[2(d−1)]

+1, 0) .



Similar to above, we de�ne γ1 := α[2(d−1)] = ψ(j, α1, . . . , αm+1, 0)[2(d−1)]
and γk+1 := ψ(j, α1, . . . , αm, γ1, . . . , γk+1 + 1, 0)[2(d− 1)] and obtain

α[2d] >(2d) ψ(j, α1, . . . , αm, γ1, . . . , γN−m + 1)
>(2d) ψ(j, α1, . . . , αm, α[2(d− 1)], . . . , α[2(d− 1)] + 1)
>(2d) ψ(j, α1, . . . , αi0 , 0, α[2(d− 1)] + 1) .

By assumption βi0 <(2(d−1)) αi0 and by Lemma 3 this implies βi0 + 1 <(2d)

αi0 . We set α := α1, . . . , αi0−1, then we obtain

ψ(j, α, αi0 , 0, α[2(d− 1)] + 1) >(2d) ψ(j, α, βi0 + 1, 0, α[2(d− 1)] + 1)
>(2d) ψ(j, α, βi0 + 1, 0, α[2(d− 1)] + 1)[2d]
>(2d) ψ(j, α, βi0 , ψ(j, α, βi0 + 1, 0, α[2(d− 1)]), 0)
>(2d) ψ(j, α, βi0 , α[2(d− 1)] + 1), 0)

= ψ(j, β1, . . . , βi0 , α[2(d− 1)] + 1), 0) .

As in the �rst part of the proof, we obtain α[2d] >(2d) ψ(j, α, αi0 , 0, α[2(d−
1)] + 1) >(2d)

>(2d) ψ(j, β1, . . . , βi0 , α[2(d− 1)], . . . , α[2(d− 1)] + 1, 0) .

By assumption we have βl <(2(d−1)) α for all l = 1, . . . , n. It remains to prove
that this implies βl ≤(2d) γ. For this it is su�cient to consider the case where

βl ∈ (α)2(d−1). The proof proceeds by case-distinction on the construction of βl.
The proof is similar to the respective part in the proof of Lemma 5, and hence
omitted. ut

Lemma 7. Let s, t ∈ T be given. Assume s = fj(s1, . . . , sm), ρ is a ground
substitution, τ(t) ≤ d. Assume further sk �lpo u and τ(u) ≤ d implies
π(skρ) >(2d) π(uρ) for all u ∈ T . Then s �lpo t implies π(sρ) >(2d) π(tρ).

Proof. The proof is by induction on d.
Case d = 0: Hence τ(t) = 0; therefore t ∈ V or t = fi ∈ Σ. Consider t ∈ V.

Then t is a subterm of s. Hence there exists k (1 ≤ k ≤ m) s.t. t is subterm
of sk. Hence sk �lpo t, and by assumption this implies π(skρ) >(2d) π(tρ), and
therefore π(sρ) >(2d) π(tρ) by the Subterm Property.

Now assume t = fi ∈ Σ. As s �lpo t by assumption either i < j or sk �lpo t
holds. In the latter case, the assumptions render π(skρ) ≥(2d) π(tρ); hence
π(sρ) >(2d) π(tρ). Otherwise, π(sρ) = ψ(j, π(s1ρ), . . . , π(smρ) + 1, 0), while
π(tρ) = π(t) = ψ(i, 0). As π(skρ) >(x) 0 holds for arbitrary x < ω, we con-
clude π(sρ) >(2d) π(tρ).

Case d > 0: Assume τ(t) > 0. (Otherwise, the proof follows the pattern of the
case d = 0.) Let t = fi(t1, . . . , tn), and clearly τ(tl) ≤ (d− 1) for all l = 1, . . . , n.
We start with the following observation: Assume there exists i0 s.t. s �lpo tl
holds for all l = i0 + 1, . . . , n. Then by (ih) we have π(sρ) >(2(d−1)) π(tlρ).



We proceed by case-distinction on s �lpo t. Assume �rstly there exists k
(1 ≤ k ≤ m) s.t. sk �lpo t. Utilizing the assumptions of the lemma, we con-
clude π(sρ) >(2d) π(tρ). Now assume i < j and s �lpo tl for all l = 1, . . . , n.
Clearly sρ, tρ ∈ T (Σ). By the observation π(sρ) >(2(d−1)) π(tlρ) holds. Hence
Lemma 6.1 becomes applicable and therefore π(sρ) >(2d) π(tρ) holds true. Fi-
nally assume i = j; s1 = t1, . . . , si0−1 = ti0−1; si0 �lpo ti0 ; s �lpo tl, for all
l = i0 + 1, . . . ,m. Utilizing the observation, we see that Lemma 6.2 becomes
applicable and therefore π(sρ) >(2d) π(tρ). ut

Lemma 8. Let t ∈ T (Σ) be given, assume τ(t) ≤ d. Then ψ(K + 1, 0) >(2d)

π(t).

Proof. The proof is by induction on τ(t) and follows the pattern of the proof of
Lemma 5. ut

Theorem 3. Let l, r ∈ T be given. Assume ρ is a ground substitution, τ(t) ≤ d.
Then l �lpo r implies π(lρ) >(2d) π(rρ).

Proof. We proceed by induction on τ(s).
Case τ(s) = 0: Then s can either be a constant or a variable. As s �lpo t

holds, we can exclude the latter case. Hence assume s = fj . As fj �lpo t, t is
closed. Hence the assumptions of the theorem imply the assumptions of Lemma 5
and we conclude π(sρ) = π(s) >(2d) π(t) = π(tρ).

Case τ(s) > 0: Then s can be written as fj(s1, . . . , sm). By (ih) sk �lpo u
and τ(u) ≤ d imply π(skρ) >(2d) π(tρ). Therefore the present assumptions
contain the assumptions of Lemma 7 and hence π(sρ) >(2d) π(tρ) follows. ut

Theorem 4. (The Interpretation Theorem.) Let R denote a �nite rewrite sys-
tem whose induced rewrite relation is contained in �lpo. Then there exists k < ω,
such that for all l, r ∈ T , and any ground substitution ρ l →R r implies
π(lρ) >(k) π(rρ).

Proof. Set d equal to max{τ(r) : ∃l (l, r) ∈ R}. Then the theorem follows as a
corollary to Theorem 3 if k is set to 2d. ut

6 Collapsing Theorem

We de�ne a variant of the slow-growing hierarchy, cf. De�nition 4, suitable for
our purposes.

De�nition 8. Recursive de�nition of the function G̃α : ω → ω for α ∈ T .

G̃0(x) := 0

G̃α(x) := max{G̃β(x) : β ∈ (α)x}+ 1 .

Lemma 9. Let α ∈ T , α > 0 be given. Assume x < ω is arbitrary.

1. G̃α is increasing. (Even strictly if α > ω.)



2. If α >(x) β, then G̃α(x) > G̃β(x).

Proof. Both assertions follow by induction over < on α. ut

We need to know that this variant of the slow-growing hierarchy is indeed
slow-growing. We show this by verifying that the hierarchies {G̃α : α ∈ T} and
{Gα : α ∈ T} coincide with respect to growth-rate. It is a triviality to verify

that there exists β ∈ T such that G̃β majorizes Gα. (Simply set β = α.) The
other direction is less trivial. One �rst proves that for any α ∈ T there exists
γ < ωN+1 such that G̃α(x) ≤ Fγ(x) for almost all x. Secondly one employs the
Hierarchy Comparison Theorem once more to establish the existence of β ∈ T
such that G̃α(x) ≤ Gβ(x) holds for almost all x.

Theorem 5. ⋃
α∈T

E(Gα) =
⋃
α∈T

E(G̃α) =
⋃

γ<ωN+1

E(Fγ) .

7 Complexity Bounds

The complexity of a terminating �nite rewrite system R is measured by the
derivation length function.

De�nition 9. The derivation length function DlR : ω → ω. Let m < ω be given.
DlR(m) := max{n : ∃t1, . . . , tn ∈ T ((t1 →R · · · →R tn) ∧ (τ(t1) ≤ m))}.

Let R be a rewrite system over T such that→R is contained in a lexicographic
path ordering. Now assume that there exist s = t0, t1, . . . , tn ∈ T with τ(s) ≤ m
such that

s→R t1 →R · · · →R tn

holds. By our choice of R this implies s �lpo t1 �lpo · · · �lpo tn. By assumption
on Σ there exists c ∈ Σ, with ar(c) = 0. We de�ne a ground substitution ρ:
ρ(x) = c, for all x ∈ V. Let k < ω be de�ned as in Theorem 4. Recall that K
denotes the cardinality of Σ. We conclude from the Interpretation Theorem and
Lemma 8, π(sρ) >(k) π(t1ρ) >(k) · · · >(k) π(tnρ) and ψ(K + 1, 0) >(2m) π(sρ).
Setting h := max{2m, k} and utilizing Lemma 3, we obtain ψ(K + 1, 0) >(h)

π(sρ) >(h) · · · >(h) π(tnρ). An application of Lemma 9.2 yields

G̃ψ(K+1,0)(h) > G̃π(sρ)(h) > · · · > G̃π(tnρ)(h) .

Employing Theorem 5 we conclude the existence of γ < ωω, such that

Fγ(max{2m, k}) ≥ G̃ψ(K+1,0)(max{2m, k}) ≥ DlR(m) .

The class of multiply-recursive functions is captured by
⋃
γ<ωω E(Fγ),

see [13]). Thus we have established a multiply-recursive upper bound for the
derivation length of R if →R is contained in a lexicographic path ordering. Fur-
thermore, this bound is essentially optimal, cf. [17].



8 Conclusion

The presented proof method is generally applicable. Let R denote a rewrite
system whose termination can be shown via �mpo. To yield a primitive recursive
upper bound for the complexity of R the above proof can be employed. Firstly
the de�nition of the interpretation function π has to be changed as follows. If
s = fj(s1, . . . , sm), then we set

π(s) := ψ(j, π(s1)# · · ·#π(sm)#1) .

Then the presented proof needs only partial changes. It su�ces to reformulate
(and reprove) Lemma 5, 6, 7, and 8, respectively.

Future work will be concerned with the Knuth-Bendix ordering. Due to the
more complicated nature of this ordering the statement of the interpretation is
not so simple. Still we believe that only mild alterations of the given proof are
necessary.
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