
Seminar Report

The Decision Problem:
Quantifier Elimination

Martin Pfeifhofer
martin.pfeifhofer@uibk.ac.at

28 February 2017

Supervisor: Martin Avanzini, PhD

Abstract

The ’Decision Problem’ is an important topic in mathematics and computer science.
This paper is concerned with the Decision Problem and one of the many methods to solve
it, which is named ’Quantifier Elimination’. At the beginning I give a short overview of
the decision problem and what is necessary to know for its application. Then I will unfold
the connection to quantifier elimination and give a concrete example how to solve such a
problem. Further I will treat a specific theory to be solved by quantifier elimination and
explain an algorithmic solution given by David C. Cooper in 1972.

mailto:martin.pfeifhofer@uibk.ac.at

Contents
1 Introduction 1

2 Preliminaries 1
2.1 The Decision Problem . 1
2.2 Theories . 1
2.3 Quantifier Elimination . 3
2.4 Dense Linear Orders . 3

2.4.1 Example . 4

3 Presburger Arithmetic 5
3.1 Canonical Forms . 5
3.2 Coopers Algorithm . 6

3.2.1 Algorithmic Application . 6

4 Conclusion 9

Bibliography 10

ii

1 Introduction

This is a report about Quantifier Elimination, which is a procedure used for solving the
Decision Problem in certain cases. The main source for this report was the 5th Chapter
’Decidable Problems’ of the Handbook of Practical Logic and Automated Reasoning [1]
by John Harrison. Before we can dive into the topic of Quantifier Elimination, we first
have to clarify why there is a need for such a computation and where we can apply it.
The first section is concerned with the Decision Problem, the term of theories and their
connection to the method of quantifier elimination for solving such a problem. In the
second section I’m explaining a certain theory, which is called Presburger Arithmetic
and an algorithm by David C. Cooper, that shows quantifier elimination for that theory.

2 Preliminaries

2.1 The Decision Problem

The Decision Problem [2] - or ’Entscheidungsproblem’ - is basically a yes or no question
on a finite input. Given two numbers x and y; does x evenly divide y? - would be a
simple example. To solve such a problem we need to make a decision by evaluating
wether the statement is true or not. In a first-order logic we could describe the Decision
Problem as the following collection of three natural and closely connected problems:

1. Confirm that a logically valid formula is indeed valid; never confirm an invalid one.

2. Confirm that a logically invalid formula is indeed invalid; never confirm a valid one.

3. Test wether a formula is valid or invalid.

Why is this important? The Decision Problem is typically used for the question of
decidability, which is to determine if a certain formula - in this case a first order logic
formula - is valid or not. Being able to decide about such a formula is the motivation
for the search of algorithmic solutions for the Decision Problem. There is no systematic
procedure of doing so generally, but there are procedures which work for certain special
cases of formulas and for validity in certain special classes of models. Some of them are
going to be covered in this paper.

2.2 Theories

In search for a decidable procedure we turn our interest to the following questions,
considering logic with equality:

• instead of validity in all interpretations, we consider validity in a particular class of
interpretations M, i.e. wether |=M p in a class K ;

• logical consequence from a set of axioms Σ, i.e. wether Σ |= p.

1

2 Preliminaries

Anyway both of these two formulations are inconsequential, because the class K is defined
to be exactly the collection of models of a set of axioms Σ:

Mod(Σ) = {M | for all ψ ∈ Σ, |=M ψ}.

Now by defining a theory of a class of interpretations K, which is the set of all sentences
holding in all interpretations in the class K, we also define a kind of controverse to Mod.

Definition 2.1. A theory is a set of formulas T closed under logical consequence, i.e.
such that for any formula p we have T |= p iff p ∈ T.

When we are talking about the theory of a specific structure, the following terminology
will be used:

Th(K) = {ψ | for all I ∈ K, |=I ψ}.

To For example Th(R),with a slight abuse of notation, is called the theory of the real
numbers and is defined to be exactly the set of first-order sentences that hold in the
specific structure R. To be more precise about such a theory we can bundle the list of
functions and predicates, which are used e.g. Th(R,0,1,−,+, <). This would then be
a purely additive theory of real numbers with < as the only predicate besides equality.
Theories are axiomatizable, meaning that there is a set of axioms Σ that describes the
theory. If the set of axioms is finite, we call the theory finitely axiomatizable. Other
important characteristics of theories are:

• Consistency − we never have both T |= p and T |= ¬p.

• Completeness − for any sentence p, either T |= p or T |= ¬p.

• Decidability − there is an algorithm that takes as input a formula p and decides
whether T |= p.

Out of these properties we know that a complete finitely axiomatizable theory is
automatically decidable. Why is that so? By completeness we know that for any sentence
p there has to be a verification A where either A ⇒ p or A ⇒ ¬p terminates.

Definition 2.2. A theory is complete iff all its models are elementarily equivalent.

Two models of the same signature σ are elementarily equivalent if they satisfy the
same first order -sentences. A signature contains function symbols and relation symbols
or predicates.
What are theories now actually good for? Well, because there does not exist a general
systematic procedure to determine if a formula is decidable, we have to find some
procedure which is working on a certain theory.

2

2.3 Quantifier Elimination

2.3 Quantifier Elimination

Definition 2.3. A theory T in a first-order language L admits quantifier elimination if
for each formula p of L, there is a quantifier-free formula q with FV (q) ⊆ FV (p) such
that p and q are T-equivalent (T |= p ⇔ q).

As stated in the above definition, if a theory admits quantifier elimination, then for
every formula p of a language L there is an equivalent formula which is quantifier free.
Why is this important at all? If a theory admits quantifier elimination, we can reduce
many logical questions that seem difficult to the special case of quantifier-free formulas,
where they can be much easier. The reason of that is, because we can simply evaluate
it. The goal is now to create an algorithmic process for constructing a quantifier-free
equivalent of formulas in first order logic.

In the case of arithmetical theories, quantifier elimination is a generalization of testing
the solvability of equations, that are in the form of ∃x .F [x] = 0. The quantifier free
T -equivalent of such a formula contains no variables at all. Many theories of practical
interest have the same truth-values in all models and can be evaluated to true or false
algorithmically. Any such theory that admits quantifier elimination is therefore complete
and decidable, which are attributes we are particularly interested in. An effective decision
procedure is to reduce a formula to its quantifier-free equivalent and evaluate it then.
This suffices to demonstrate for formulas with the following form

∃x. α1 ∧ · · · ∧ αn

where each αi is a literal (a negated or non-negated atomic formula) containing x. The
reason why we can ignore universal quantifiers is due to the fact that we can transform
every ∀x.P[x] into a ¬(∃x.¬P[x]). This can be applied from the innermost quantifier
to the outermost, putting the body into disjunctive normal form and distributing the
existential quantifier over it. A short example is shown in the following subsection.

2.4 Dense Linear Orders

In 1927 Cooper Harold Langford showed that the theory of dense linear orders without
end points (which I will just call ’DLOs’) admits quantifier elimination. This section is
concerned with the explicit algorithm for this theory by John Harrison, thus showing
quantifier elimination on DLOs. The language contains the binary predicate ’<’ as well
as equality, but no function symbols. It can be axiomatized as follows:

∀x y.x = y ∨ x < y ∨ y < x,
∀x y z.x < y ∧ y < z ⇒ x < z,
∀x.¬(x < x),
∀x y.x < y ⇒ ∃z.x < z ∧ z < y,
∀x. ∃y.x < y,
∀x. ∃y.y < x.

3

2 Preliminaries

The first three axioms show that DLOs are an irreflexive, transitive total linear or-
der. The 4th axiom asserts denseness and the last two show that there is no greatest or
smallest element. Denseness means that between each pair of elements there is another
element. A set of numbers that would not satisfy this axiom is Z. Therefore Z is not a
model of the DLO axioms. Since > and ⊥ are the only ground formulas in the language,
this theory is complete and decidable. By Definition 2.2 we can also see that all models
of the DLO axioms are elementarily equivalent. This also means that no sentence in the
first-order language considered here can distinguish two models of the theory, such as R
and Q.

2.4.1 Example

Until now we were concerned with the theoretical background of quantifier elimination.
So here we will work out a small example for a better understanding of the actual
procedure. Consider the following formula which is in R and in the DLOs:

∀x.∃y.∃z. (y + 1 ≤ x ∧ z + 1 ≤ y ∧ 2x + 1 ≤ z)

We are starting with the innermost quantifier, which is ∃z. We are eliminating this
quantifier by removing every occurrence of z, while we are not changing the actual
meaning of the formula. This is done first by changing z + 1 ≤ y ∧ 2x + 1 ≤ z to z ≤ y
− 1 ∧ 2x + 1 ≤ z. Thus we can just substitute the rearranged terms with z.

∀x.∃y. (y + 1 ≤ x ∧ 2x + 1 ≤ y − 1)

We are continuing to eliminate the innermost quantifier, which now is ∃y. We are
seperating the −1 and +1 from y by using addition and subtraction, which does not
change the meaning of the formula at all.

∀x. (2x + 2 ≤ x − 1)

Now we continue by eliminating the last quantifier that is left, which is ∀x. This time
we have an universal quantifier, which means we have to transform it into an existential
quantifier. This can be done using the following equivalence ∀x.P[x] ⇔ ¬(∃x.¬P[x]).

¬∃x. ¬(2x + 2 ≤ x − 1)

Before we continue with the quantifier elimination, we can simplify our formula to

¬∃x. ¬(x ≤ − 3)

So lets finally remove our last quantifier, which we transformed earlier into ¬∃x. By
doing that everything is left between the parentheses is a simple expression, that can be
evaluated to a true, considering that we are in R.

¬TRUE

Then we are applying the negation and are getting our evaluated quantifier-free equivalent.

FALSE

4

3 Presburger Arithmetic
The next theory that is covered is named Presburger Arithmetic, after Mojzesz Pres-
burger, who first showed quantifier elimination and decidability for it in 1930. Presburgers
algorithm has additional historical significance, since the implementation by Davis (1957)
was arguably the first logical decision procedure actually to be implemented on a computer.

The theory consists of linear integer arithmetic, which is the set of formulas true in
Z without multiplication. In its most obvious formulation this theory does not admit
quantifier elimination. This is why we have to add so called ’divisibility predicates’ Dk
for all integers k ≥ 2. Because of the fact that ground instances of divisibility predicates
are always decidable, quantifier eliminations also holds for this modified theory. The
conventional notation for ’d divides x ’ is d|x. Thus we are fixing the following first order
language containing infinitely many predicate symbols:

• constants 0 and 1

• functions of unary negation (¬), addition (+) and subtraction (−)

• equality (=), inequalities (≤, <, ≥, >) and unary predicates Dk (’is divisible by k’)
for all integers k ≥ 2.

In contrast to DLOs, we will not spell out a set of axioms for the theory, but work directly
with properties that hold in the usual model Z. In the implementation of Harrison the
language is a bit adjusted to express things like x + x, which could not expressed in the
’pure’ version of the language.

• We allow positive and negative integer constants:
We can rewrite −4 as −(1 + 1 + 1 + 1).

• We allow multiplication between constants:
We can rewrite 4 · x as x + x + x + x.

• We use a divisibility predicate ’divides’ where the LHS argument d has to be a
positive integer constant: d |x.

3.1 Canonical Forms
Writing terms in canonical form makes the implementation of multiplication of numeral
constants easier:

c1 · x1 + · · · + cn · xn+ k,

where n ≥ 0, ci and k are integer constants, and the xi are distinct variables, with a fixed
order. Here we insist that ci are present even if they are 1, but that they are never 0,
and that k is present even if it is zero. To work with terms in canonical form we first
need operations. Our two basic operations are: multiplication by an integer constant

5

3 Presburger Arithmetic

and addition. For multiplication we are multiplying up all the coefficients. Here, an
expresson is canonical if it is of the form

n · (c1 · x1 + · · · + cn · xn + k) = (n · c1) · x1 + · · · + (n · cn) · xn + (n · k)

unless n = 0, then we can just return 0. For Addition we need to merge together our
given sequences of variables, while maintaining the fixed order. This is done by pairwise
summing up all the coefficients. Now after we have defined these basic functions we can
use them to define negation and subtraction for canonical terms. We can also implement
multiplication, with at least one of the two operands being a constant.
To convert any permissible term into canonical form, we need a linearization of terms of
the form x into 1 · x + 0 and after that we need to expand this linearization to atomic
formulas. So we force both equations and inequalities to have zero on the LHS, e.g.
transforming s = t to 0 = s − t and s < t to 0 < t − s. Then we take advantage of
the fact, that the integers are a ’discrete’ set of numbers, and are rewriting every atomic
inequality formulas in terms of <, e.g. s ≤ t as 0 < (t + 1) − s. And finally we also
force the left-hand constants in divisibility predicates to be positive.

3.2 Coopers Algorithm
Even due to the fact that Presburgers original algorithm is pretty straightforward and
follows the classic quantifier elimination pattern of dealing with the special case of
an existentially quantified conjunction of literals, we are now dealing with a slightly
optimized version. This algorithm was published by David C. Cooper in 1972 and has a
significant difference: it allows us to eliminate an existential quantifier whose body is an
arbitrary quantifier-free negation normal form formula. This avoids a possible blowup
caused by the transformation into DNF. The following subsection is concerned with the
implementation of Coopers algorithm by John Harrison.

3.2.1 Algorithmic Application

Lets consider the task of eliminating the existential quantifier from ∃x.p where p is
quantifier-free. We will assume that all the atoms have been maintained in the standard
form with 0 on the left and a linearized term on the right, and only strict inequalities
using ’<’ present. Further we assume that p is in negation normal form, which means
that a quantifier free formula can contain conjunctions and disjunctions of literals which
are in one of the following forms: 0 = t, ¬(0 = t), 0 < t, d | t or ¬(d | t) and if a term t
contains x, it is in the form c · x + s. To correlate all instances of x multiplied by different
coefficients we compute the positive least common multiple (LCM) l of all the coefficients,
returning 1 if there doesn’t occur any x. After that we can make any coefficient of x equal
to ±l, simply by taking each atomic formula whose right-hand argument is of the form c
· x + z, and consistently multiplying it through by an appropriate m. For inequalities m
= |l / c|, because we cannot multiply by negative numbers without changing their sense,
and for anything else by m = l / c.

6

3.2 Coopers Algorithm

So we transformed all the coefficients of x from ±l · x to ±1 · x. As next step we
can just replace l · x with just x and add a new divisibility clause, which is justified by
the following equivalence:

∃x.P[l · x]) ⇔ (∃x.l | x ∧ P[x]).

After the initial transformations of the formula, we can now start with the main quantifier
elimination step for ∃x. P[x]. Due to the fact that integers are a discrete set of numbers
and that any set of integers has a minimal element we know that ∃x. P[x] holds, iff

• either there are arbitrarily large and negative x such that P[x] hold,

• or there is a minimal x such that P[x] hold.

We will now separately consider how to find quantifier equivalents for the above two
mentioned cases which are expressed at the right of this equivalence:

(∃x. P[x]) ⇔ (∀y. ∃x. x < y ∧ P[x]) ∨ (∃x. P[x] ∧ ∀y. y < x ⇒ ¬P[y]).

Arbitrarily large and negative x

The first case we are looking at is when there are arbitrarily large and negative x such
that P[x]. Here we claim that P[x] must be equivalent to P−∞[x] and so we can replace
atoms in formulas with the following form with > or ⊥.

In P[x] In P−∞[x]
0 = x + a ⊥
0 < x + a ⊥

0 < −x + a >

Lemma 3.1. For sufficiently large and negative x, P[x] and P−∞[x] are equivalent, i.e.
∃y. ∀x. x < y ⇒ (P[x] ⇔ P−∞[x]) holds.

Now lets take a look at the divisibility predicates. All divisibility terms d | ±x + a are
unchanged if x is altered by an integer multiple of d. So we are looking for the positive
least common multiple D of all ds occurring in formulas of the form d | c · x + a. At this
stage we actually know that c = ±1. After this step all divisibility atoms in the formula
are invariant if x is changed to x±kD. The fact that in the case of P−∞[x] divisibility
atoms and other atoms not involving x are all that’s left, implies that P−∞[x±kD] ⇔
P−∞[x] always holds. That means we can simplify the equivalence of our target formula.
For any P[x] which is quantifier free and in NNF we have

(∀y. ∃x. x < y ∧ P[x]) ⇔
D∨

i=1
P−∞[i].

7

3 Presburger Arithmetic

Minimal x

Lets now look at the case of a minimal x satisfying P[x]. Here P[x] holds, but P[x − D]
does not. As we know divisibility predicates do not change under translation by D, so
the change from true to false must have come from another literal, which has changed
from true to false in the step from x to a smaller value. For such a literal we can define a
’boundary point’ b, such that it is false for x = b, but true for x = b +1. In the following
table there are all literals which change from true to false as x decreases by D.

Literal Boundary Point
0 = x + a −(a + 1)
¬(0 = x + a) −a

0 < x + a −a
0 < −x + a none

d | x + a none
¬(d | x + a) none

literals without x none
The collection of boundary points for literals is called a B-set of the considered formula.

Lemma 3.2. If D is the LCM of all relevant divisors in a quantifier-free negation normal
form formula P[x] with no logically negated inequality literals and a B-set B, and P[x]
holds while P[x − D] does not, then x = b + j for some b ∈ B and 1 ≤ j ≤ D.

Now after we know how to find quantifier-free equivalents of both cases we are now
coming to the main definition justifying quantifier elimination, using our simplified
equivalences.

Lemma 3.3. If P[x] is a formula in the subset being discussed with B-set B, and D
is the positive lowest common multiple of all the relevant divisors, then the following
equivalence holds:

(∃x. P[x]) ⇔
D∨

j=1
(P−∞[j] ∨

∨
b∈B

P[b + j]).

To be able to perform this, we first need to define a formula that allows us to substitute
instances like P[b + j] while retaining canonical form. The function replaces the top
variable x in atoms by another term t, which is assumed not to involve x, and is therefore
restoring canonicality. Now for the overall inner quantifier elimination step we can just
apply the transformation as stated in Lemma 3.3. After the elimination of all quantifiers
from an initially closed formula, the result contains no variables at all and we can now
evaluate all atoms to either true or false.

There are some optimizations that can be done to increase the efficiency of this al-
gorithm. One was already mentioned in Coopers own paper, which is to sometimes use
dual expansion based on a ’plus infinity’ variant of the formula and corresponding A-Sets
instead of B-Sets. Another optimization was given by Reddy and Loveland in 1978, which
slightly improved the treatment of the coefficient homogenization of Coopers algorithm.

8

4 Conclusion
First mentioned in 1928, The Decision Problem today is still an important topic in
the field of mathematics and computer science. Even if there are some techniques to
solve such a problem by considering a specific input, scientists are still searching for
more efficient methods of computation. Quantifier Elimination is considered a helpful
method for solving decidable problems. The theory of rationals and the theory of integers
extended with divisibility predicate both admit quantifier elimination. Unfortunately
many other theories do not, like the theory of equality. Even if Coopers algorithm is a
nice way of solving this decidable problem and even due to the fact Presburger Arithmetic
is complete and decidable, the worst case complexity of the algorithm is is known to be
at least doubly exponential in the size of the formula (Fischer and Rabin 1974). So we
see, that there can still a lot be done in the future and so we are looking forward to new
scientific discoveries.

9

References

References
[1] John Harris. Handbook of Practical Logic and Automated Reasoning, Mar 2009.

[2] Wikipedia. Definition of the Decision Problem, Feb 2017.

10

http://www.cambridge.org/at/academic/subjects/computer-science/programming-languages-and-applied-logic/handbook-practical-logic-and-automated-reasoning?format=HB&isbn=9780521899574
https://en.wikipedia.org/w/index.php?title=Decision_problem&oldid=757584923

	Introduction
	Preliminaries
	The Decision Problem
	Theories
	Quantifier Elimination
	Dense Linear Orders
	Example

	Presburger Arithmetic
	Canonical Forms
	Coopers Algorithm
	Algorithmic Application

	Conclusion
	Bibliography

