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Preface to Part I 

This work grew out of materials that I assembled for my class in computer music at Cologne 
Music University from the inception of the class in 1984 until its unfortunate termination in 
2005. I named the course Zur Musiquantik (an artificial term, implying ‘on music and 
quantity’), whence the English title of this book stems. This material was also in my syllabus 
at the Royal Conservatoire in The Hague under the same English name from 1990-2006, as 
it has been since then in my position at the University of California Santa Barbara. Driven by 
the fascination of the connections between music and mathematics, acoustics, phonetics and 
computer science, and further by my own preoccupation with the quantification of harmony 
and metre, over the years I gradually put together 32 chapters with numerous illustrations. 

On Musiquantics has been consciously written in a very compact form, each chapter on two 
pages, more as a concentrated and comprehensive teaching accompaniment than as an 
autonomous textbook. It also fulfils a role as a reference book, especially if its content has 
already been assimilated. It is my hope that my former students, who applied so much 
patience to this material, some of them repeatedly and frequently attending the course, find in 
it everything they have learned from me, and that for those who have themselves gone into 
teaching, the book proves to be useful for their own educational work. I also hope that this 
book, completed after twenty-four years, helps my current and future students to learn the 
material more easily than it was possible for their predecessors. 

I wish to thank all those friends and colleagues who came into contact over the years with the 
slowly growing book for their valuable suggestions and help. My publisher and dear friend, 
the now late Prof. Johannes Fritsch (1941-2010), waited with exemplary patience for twenty 
years for the first release in 2008 of the German version of On Musiquantics. 

Finally I am most grateful to Prof. Frans de Ruiter, former director of the Royal Conservatoire 
The Hague, for his support in having the German version translated in 2002 into English 
(here in its British form) for the use of my students in The Hague. The translation formed a 
solid base for my continued work on the book, with innumerable corrections and additions 
and the complete rewriting of Chapters 16-18. 
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01 Mathematics 1 – Number Systems 

Looking at a typical digital clock display, one sees that all digits, appearing in the 
same place, consist of various combinations of the same seven dashes. By individually 
switching these dashes on or off, the desired form is achieved. Is it possible to achieve 
other symbols under these conditions? If yes, how many, and what symbols are they? 

The answer to these questions can be concluded from Γ01: one sees 128 various 
symbols, some of which are relatively familiar (viz. 73 shaded and wholly connected 
ones, reduceable to 28 basic mirrorable forms: ÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàá; in 
addition, all of them are serpentine, with the exception of the last 7). 

The (im-)possibility of additional symbols using these seven dashes can be tested as 
follows:  

The seven dashes are first brought into a fixed order of observation (e.g. |¥|¦|§|¨|©|ª|«|), 
so that they can be examined in turn and in the same manner with each combination to 
be tested. The digits 0 and 1 can be assigned to represent the conditions ‘on’ and ‘off’, 
respectively; the state of all dashes switched off can be written 0000000 – switching on 
the last dash yields the representation 0000001. If we list out all such combinations of 
0 and 1 systematically (e.g. 0000000, 0000001, 0000010, 0000011, 0000100, 0000101, 
... 1111001, 1111101, 1111111), we see that there are exactly 128 of them. If instead 
of the seven dashes only four were to be examined, our enumeration would appear as 
follows: 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 
1100, 1101, 1110, 1111.  

The arrangement of the digits 0 and 1 is called a binary number representation (from 
the Latin bini meaning ‘in pairs’), because it is based solely on two digits, 0 and 1 – 
the more common number system employing the ten digits 0 to 9 is called a decimal 
system (from the Latin decem = ‘ten’). The decimal number 5741 equals the 
summation 5000+700+40+1 or 5ž103 + 7ž102 + 4ž101 + 1ž100 (n0 = 1 for any number n); 
the binary number ijklmn correspondingly means iž25 + jž24 + kž23 + lž22 + mž21 + nž20 
or 32i+16j+8k+4l+2m+n, bearing in mind that the digits i to n have the value 0 or 1 
only. 101101 (binary) is therefore equal to 32+0+8+4+0+1 = 45 (decimal).  

Not only are the biological properties of the human hands with their ten fingers 
decisive for the global decimal system; in the numerals of various cultures of the 
world, the origins of these symbols can be recognised as the drawings of fingers and 
hands, as for example in the so-called ‘Arabic’ numerals common in the Western 
world. 
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1 shows one finger pointing upwards, 2 and 3 show two and three fingers pointing left. 
According to Victor Goldschmidt (1932), 5 depicts an open hand held downward and 
0 a clenched fist representing ten – it was not until late in history that the role of the 
zero was adapted here (note also the dial of older telephones, where 0 triggers ten 
impulses). Furthermore 4 signifies, among other things, five minus one (‘Ы’), 6 depicts 
a hand with an upright index finger as 5+1 (‘Ь’), and 9 shows ten minus one (‘Э’). 
Finally we see in 7 and 8 – similar to 2 and 3 – again two and three fingers, no doubt of 
the other added hand.  

The decimal and binary number systems differ in their bases, 10 for the former and 2 
for the latter. Comparable to the 10 decimal digits (0 to 9) there are only 2 binary digits 
(0 and 1). In two-digit numbers in a number system, each possible first digit can be 
succeeded by every possible second digit; hence there are 102=100 two-digit decimal 
numbers and 22=4 two-digit binary numbers. It can thus be seen that the quantity of all 
n-digit numbers amounts to Bn, where B is the base of the system. The largest n-digit 
B-based number amounts to Bn_1, e.g. the largest 7-digit binary number 1111111b = 
(64+32+16+8+4+2+1)d = 127d = 27_1. (The subscripts b and d mean ‘binary’ and 
‘decimal’ respectively.)  

The smallest non-negative number of every base is 0; the highest 7-digit binary 
number is 1111111b or 127d. There are 27=128 distinct 7-digit binary numbers; this 
indicates that every number between 0b and 1111111b (i.e. between 0d and 127d) 
corresponds to an individual binary number and to one of the 128 depicted 
combinations of the seven dashes.  

Bases other than 2 and 10 are not only possible, they are also commonly used 
(especially in data processing) – the octal system (Latin octo = ‘eight’) is based on 8, 
the more widespread hexadecimal system (hex from the Greek for ‘six’) on 16: the 
values 10d to 15d are hereby represented by the symbols À Á Â Ã Ä Å, a convention even 
less creative than the proposal of the American Duodecimal Society in the 1940s that 
10d and 11d be written as ‘X’ and ‘E’ (spoken dek and el). New digit symbols would 
have been more exciting, as e.g. ă Ą ą Ć ć Ĉ (â ã ä å æ ç in 7-dash representation; by the 
way, ă meant 10 in Ancient Egypt) as well as new non-decimal names of numbers: 
generally, the names of the numbers 11-19 even bear the word ‘ten’ explicitly, starting 
for instance with 11 in Italian, Romansh and Romanian, 13 in Germanic languages (the 
English ‘eleven’ and ‘twelve’ mean ‘one left’ and ‘two left’, respectively – after 
subtracting ‘ten’) and somewhat higher in other Romanic languages. Finally let’s 
mention the bases 20 of the Mayans and 60 of the ancient Babylonians.  

T02 shows conversions of the numbers 0d-255d into binary, octal (with the subscript o) 
and hexadecimal (subscript h): digit breaks similar to 9d»10d, 99d»100d are to be found 
in the binary system for instance at 11b»100b, 1111b»10000b, 11111b»100000b as well 
as in the other systems at 7o»10o, 77o»100o, Åh»10h and so forth. Each octal digit 
always corresponds to the same combination of three binary digits (e.g. 3o=011b, 
33o=011 011b, 333o=011 011 011b), and each hexadecimal digit corresponds to the 
same combination of four (e.g. ÀÃh=1010 1101b; ÃÀh=1101 1010b). Check the 
hexadecimal equivalents of the decimal numbers 2781, 57005 and 57007 using an 
appropriate pocket calculator. 
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02  Mathematics 2 – Two-dimensional Geometric Curves  

If the variables x and y be interdependent such that for x-values, y-values also exist, a 
curve can be drawn in a two-dimensional Cartesian Coordinate System, invented by 
René Descartes (1596-1650) – see Γ03. This system specifies single points as number 
pairs (x,y), x indicating the horizontal distance and y the vertical distance from two 
axes at right angles to each other, the x-axis y=0 and the y-axis x=0, which intersect at 
the origin (0,0). Γ03c shows that some x-values have no y-value, e.g. x=±1.57 in the 
curve with the function y=á(x) (see the vertical dashed lines), or x=0 in y=1/x; the 
curves ‘flee to infinity’ and ‘return from the other side’. Also for y=±x½ (=±√x) in Γ03a 
and y=ä(x) in Γ03b there is no y for x<0: square roots (√) and logarithms (ä) of 
negative numbers do not exist.  

A knowledge of curves proves to be useful, for example, in the determination of an 
algebraic approximation in empirically derived or compositionally devised processes. 

Observe Γ03a: in the square bounded by both axes as well as by x=1 and y=1 we see 
that x½>x>x2, a relationship reversed to the upper right outside the square. Γ03b shows 
y=ex approaching the x-axis to the left and y=ä(x) approaching the y-axis downwards; 
the curves are asymptotic (from the Greek a = ‘not’, sún = ‘with’ and ptotós, from 
píptein = ‘fall’, meaning ‘not falling together’), the x- and the y-axis respectively 
serving here as asymptote. The constants e (=2.71828..) and π (=3.14159..) – see 
below – will be explained later. 

Γ03c shows curves with axis-parallel asymptotes: e.g. in y=1/x, going inwards from 
left and right, the asymptote is the y-axis, while going outwards horizontally it is the x-
axis; in y=á(x) there are many parallel asymptotes x=1.57n (more accurately =nπ/2), 
where n is odd. In y=Ý(x) (short for y=(ex_e_x)/(ex+e_x)), the asymptotes are y=_1 
to the left and y=+1 to the right. In the case of both the curved lines in Γ03a there are 
no straight lines which they approach: although at upper right all three lines visibly 
diverge, for all lines y»∞ (infinity) if x»∞. They are therefore not asymptotic. All 
asymptotes in Γ03b and c are vertical or horizontal; however, non-axis-parallel 
asymptotes are also possible. 

In Γ03c the straight line y=x touches the curves y=Ý(x) and y=á(x) at the origin, 
all three moving at that point in the same direction; the straight line is tangent (from 
the Latin tangere, ‘to touch’) to both curves at this point. A tangent can touch a smooth 
curve at any point. In Γ03d the straight line (as a general equation y=mx+c) is tangent 
to the curve that it touches at point (xp,yp). The slope or gradient (from the Latin 
gradus, here ‘degree’) of the tangent is represented by m, the constant quotient a/b of 
the lengths of the two displayed sides a and b of an imaginary right-angled triangle of 
arbitrary size bounded by the tangent and the x-axis; the c in the equation corresponds 
to the y-value of the tangent at the y-axis. A horizontal line has the gradient 0; the 
more the line is raised anticlockwise, the higher the gradient will be, until in a vertical 
position it tends to ∞. The gradient of a line proceeding downwards to the right is 
negative. 
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Γ03e shows the region 0≤x≤1, 0≤y≤1 in 16 frames, each with three curves, the 
tangential behaviour of which is represented by the letters F, f, j and J: the curves of the 
F-row exhibit vertical tangents at (0,0), while those of the F-column show horizontal 
tangents at (1,1). Inversely, all (0,0)-tangents of the J-row are horizontal while those of 
the J-column at (1,1) are vertical. The tangents in Γ03e are therefore parallel to the 
axes. Small letters indicate non-tangents, whereby f and j show a bending that is similar 
to the form of the letter. Additionally, each frame shows the source equations of the 
curves, where the basic gradients g and ĝ (=1/g; I pronounce it ‘eej’) at (0,0) and (1,1) 
have been arbitrarily set to g=2, 2½ and 3. For g=2, FF and JJ are quadrants of circles, 
Ff, fF, Jj and jJ are parabola segments (e.g. ‘Ff’ means row F, column f; ff-like curves 
are convex, jj-like curves are concave). 

The equations in the nine frames to the lower left of this collection of curves in Γ03e 
are cubic functions of the form y=a+bx+cx2+dx3, as in e.g. y=2x_3x2+2x3 for g=2 in 
the curve fj; if d=0 (as for g=2 in fF and Jj), they are quadratic functions of the form 
a+bx+cx2. Both are polynomials of the form y=ax0+bx1+cx2+dx3+.. , where a, b, c, 
d.. are coefficients – the highest power (i.e. 0 1 2 3 ...) with a non-zero coefficient is the 
degree of the polynomial. These nine cubic equations have the collective basic form 
y=m0x+(3_2m0_m1)x2+(m0+m1_2)x3, where m0 and m1 are the gradients at (0,0) and 
(1,1). Of the remaining seven equations, three – Fj, FJ and fJ – are interpolations 
between those of the block of nine. The other four were chosen arbitrarily.  

Differential Calculus involves the degree of change of variables, as for example of the 
gradient of a curve at a point on the curve (i.e. at the tangent imagined there) as a 
measure of the rate of change in the y-value: the steeper the tangent, the more rapidly 
y increases in relation to x. The gradient of a curve is called the 1st derivative of y and 
is notated y' (or dy/dx); the 1st derivative of the gradient is the curvature of the curve 
as well as the 2nd derivative of y and is notated as y'' (or d2y/dx2). Hence, velocity (in 
respect to time) is the 1st derivative of distance, of which acceleration is the 2nd 
derivative and at the same time the 1st derivative of velocity. In the polynomial 
y=a+bx+cx2+dx3+.. the 1st derivative is given by y'=b+2cx+3dx2+... In general, for 
y=mxn, y'=mnxn_1 and thus y''=mn(n_1)xn_2 and so forth. Γ03f shows the curve fj 
(g=2) and its first and second derivatives as functions of the gradient: the steeper fj is, 
the higher curve (i), and the more curved fj is, the steeper curve (i) and the higher or 
lower curve (ii) – a negative y-gradient leads to a lower y'. A convex curve has a 
negative curvature, a concave curve a positive. The inverse of the derivative is the 
integral, notated in integral calculus as y=∫y' dx. 

One method of connecting several points with a smooth-looking curve is the spline, a 
chain of cubic functions with the property that at each of the points three pairs of equal 
values are given: those of both adjacent functions (y) as well as their gradients (y') and 
curvature (y'') – see Γ03g. 

F04 shows a formula collection useful for the calculation of tempo acceleration by a 
constant factor in unit time, given the initial and final tempi, the total duration and the 
total number of beats. 



6 
 

03 Harmony 1 – Intervals of Pitch 

It has been established for some time that there are two ways of perceiving pitch: one 
way allows us to recognise musical intervals and thus to enjoy tonal music, which 
predominates world-wide (see the examples in Γ05 – the ‘neutral’ intervals, halfway 
between major and minor, that of the fourth between perfect and augmented, have 
been in use in Western Music at the latest since the early 20th Century); the other way, 
much more frequently employed, has to do with the feeling of ‘high’ and ‘low’ or with 
‘bright’ and ‘dark’ sounds, but not with intervallic evaluation. There are reasons to 
believe that this second method originates in the ear, and the first method in the brain. 
The second method is employed when we recognise the ‘melody’ or intonation of a 
language, in some languages essential to comprehension, as e.g. Chinese or Thai; only 
with repeated listening (e.g. in a looped recording) do we come to recognise the ‘pitch 
melody’ therein. The frequencies of language formants, too, the perception of which is 
fundamental in vowel recognition (an ability related to timbre in general) do not by a 
long way make us think of melody. Even in pitched music there are many situations in 
which an intervallic interpretation of the pitches present is undesirable, e.g. in slow, 
extended glissandi or in pointillism – in these cases it is primarily the second method 
of hearing which comes into play. 

For many thousands of years, basic intervals like the octave, fifth, fourth (also written 
8ve, 5th, 4th), etc., have been familiar to musicologists worldwide; the pitches of these 
intervals were known to possess various degrees of correlation – in Western Europe 
one spoke of ‘consonance’ and ‘dissonance’ (from the Latin con = ‘together’, dis = 
‘separate’, sonare = ‘sounding’). Characteristic of the development of pitch material in 
Europe during charted music history is the gradual insertion – as one says – of 
increasingly ‘dissonant’ intervals; this occurred through progressively complexer 
harmony (e.g. by new, daring interval combinations). The possible conclusion that the 
earliest-used pitch-set consisted solely of ‘consonant’ intervals, is obviously false. The 
use of smaller intervals, like seconds and thirds, as melodic building-blocks is 
definitely older than that of fourths, fifths, or octaves, known everywhere for their 
consonance, but intervallically more disjunct (imagine a melody exclusively made up 
of these intervals!). Furthermore, music theory differentiates beween two classes of 
interval size: step (the interval of a third and smaller) and leap (a third and larger): an 
internet search engine showed on 26.06.02 the following counts for seconds (77 as 
step:8 as leap), thirds (19:13), fourths (11:36), fifths (14:39), sixths (2:33), sevenths 
(0:10) as well as octaves (6:108). There are reasons for raising the threshold between 
these classes in lower pitch regions, as will be explained later. 

It is possible that an interaction of both of the described methods of hearing – I would 
like to call them ‘rational-intervallic’ and ‘pitch-spatial’ – led to the making of scales, 
as explained in the following representation: 
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Phase 1 – Language intonation as a function of emotion is ritualised and formalised to 
a kind of sing-song. The range of the movement of pitches is relatively small (perhaps 
a few steps, up to a third) and is rational-intervallically undefined.  

Phase 2 – Through the expansion of the range of the sing-song, more consonant 
positions within pitch-space are touched on (e.g. the fourth and the fifth), suggesting 
intervallic connections. This is where rational-intervallic hearing begins. Through the 
rationalisation of the pitches, scales are formed. Probably the fourth, fifth and octave 
are intervallically recognised and partially fixed, while the other intervals remain for a 
time only pitch-spatially relevant, a mixed system. 

Phase 3 – Some of the clearer, tuned scale-degrees are felt to be exaggeratedly ‘clean’ 
and are then ‘clouded’, ‘colourised’, ‘enriched’ through slight detuning. Here pitch-
spatial and rational-intervallic hearing are both employed: next to the rational-
intervallically defined scale steps, pitch-spatially determined steps are perhaps also 
interpreted as approximated intervals, although they are now richer, more vibrant than 
if tuned purely. It might be of interest to know that the introduction of the first non-
diatonic scale-degrees (e.g. Bb or F# into the key of C) was named ‘chromaticisation’ 
(from the Greek khroma = ‘colour’); thus the term chromatic scale for the final result 
of this process. 

Phase 4 – The ‘colourised’ steps are rationalised anew: e.g. the minor third, which 
possibly resulted from a colouration of the major third, becomes established in its pure 
tuning (or just intonation, as it is generally called), in which it is familiar today. 

Everything else is a cyclic, or more likely, a spiraling repetition of phases 3 and 4. In 
Chinese music, essentially clearly defined intervals like the octave are often detuned to 
such an extent that they sound vibrant but still function as octaves; this would be an 
example of phase 3. Through timbral colouring in Arabian music, the ‘neutral third’ – 
about half-way between a minor and major third – initially a rational-intervallically 
undefined pitch-spatial aberration of the other two, then gets drawn into the body of 
just intonation, an example of phase 4. In this context I would like to bring in theories 
of the origins of the moon: did the moon form near to and independently of, but 
simultaneously with the earth out of the same cloud of dust, or was it pulled out of the 
earth? In the same way, one could imagine the neutral third as an independent 
occurrence, or instead – following the reasoning given above – as a pitch-spatial 
detuning of the other thirds, subsequently rationalised. 

This speculative explanation suggests incidents that probably – if at all – happened for 
the most part in human prehistory, or even in prehuman times, and certainly not in this 
order but rather interlaced. It is definitely conceivable that scale-steps functioning even 
today as leading tones tend more to pitch-spatial than to rational-intervallic tuning, and 
that they first gain temporary intervallic relevance through a change in role by 
modulation.  
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04  Mathematics 3 – The Linear and the Logarithmic 

An arithmetic series is a series of numbers that is chacterised by a constant difference 
between two neighbouring numbers, e.g. 2, 5, 8, 11, 14,... Here the difference is 
always 3. In a geometric series the quotient of two neighbouring numbers is fixed, e.g. 
2, 4, 8, 16, 32,... Here the quotient is always 2.  

In the overtone row or harmonic series (see Γ06a) the frequencies of all pitches are 
whole number multiples of the fundamental frequency, usually given in Hertz (‘Hz’ 
for short), cycles per second, named after the physicist Heinrich Hertz (1857-1894), 
e.g. 100 Hz, 200 Hz, 300 Hz, 400 Hz, 500 Hz, and so forth, hence an arithmetic series; 
the names of the notes approximately corresponding to these frequencies are usually 
assigned according to the practice of adding an octave number to the note name: e.g. 
C4 for the note commonly known as ‘Middle-C’ (close to 261 Hz; there is some 
dispute about where to start the numbering – opinions for the Middle-C octave-number 
vary from 3 to 5; in this book 4 is used, so that the lowest A on the piano is A0). 
Strikingly, the overtone row’s pitch intervals become progressively smaller ascending, 
although the difference in frequency remains constant at 100 Hz. The reason for this is 
that the quotient of two frequencies, not the difference, determines the size of the 
interval between the frequencies.  

If we wanted to assemble a series of equally-distanced notes, we would have to 
multiply the frequency of each of the notes by a constant factor; in the case of the 
interval of the octave this factor would be 2, so that starting at the frequency 27.5 Hz 
(A0), the notes following called ‘A’ are at frequencies 55, 110, 220, 440, 880, 1760... 
Hz: see Γ06b (the names of the notes are given here as well). Hence, this 
‘exponentially’ increasing (geometric) frequency curve results in a seemingly evenly 
increasing pitch. If we calculate the so-called natural logarithm of these frequencies 
with the ‘ln’ key of a pocket calculator, we would get the following values: 4.0, 4.7, 
5.4, 6.1 etc., numbers with a constant difference of 0.7: the term ‘logarithm’ is from 
the Greek lógos (= ‘ratio’) and arithmós (= ‘number’). This arithmetic logarithmic 
number series offers a better representation of pitch perception than the linear series of 
the frequency values – this knowledge was impressively established by the scientists 
Ernst H. Weber (1795-1878) and Gustav T. Fechner (1801-1887) in the mid-19th 
century: the Weber-Fechner-Law maintains that a barely perceptible increase in 
sensory stimulation forms a fixed percentage of the initial stimulation and as a result 
that when physical stimulation increases geometrically, the biological perception of it 
behaves arithmetically. This law is valid in visual, auditive, tactile and practically all 
other sensory areas. 
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Γ03b shows three curves: y=ex, y=x, y=ä(x). The curve of y=ä(x) looks like a bending 
towards the lower right of the two ends of the y=x line, the logarithm of which it 
portrays. According to the laws of logarithms, y=x is the logarithm of y=ex; although 
the former is a straight line, it also results from a similar type of bending of the latter 
curve. One could say, the logarithmisation causes a ‘damping’ (‘convexisation’) of a 
given curve; in the reverse process – linearisation – the curves rise increasingly rapidly 
with increasing x (‘concavisation’). y=ex is the linear form of y=x, which is the 
former’s logarithmic form in this context; y=x is the linear form of ä(x). It can thus be 
seen that the term ‘linear’ is not synonymous with ‘straight-lined’; here the term 
antilogarithm is sometimes used (the ‘antilog’ of x is ex ).  

The origin of the logarithm (generally abbreviated as â) could be illustrated as 
follows: given the equation a=bc, c is the ‘logarithm of the argument a to the base b’, 
notated as logba or logb(a). The decadic or base-10 logarithm of 2 (which is 
frequently and misleadingly abbreviated like the general logarithm as â, but also as 
ã, which is used here) is 0.30103, because 100.30103=2. The expression ã(u) or â10(u) 
could be understood as ‘10-to-which-power-is-(u)?’, by way of example. The natural 
logarithms (abbreviated ä) are those to the base e, a constant with the value 
2.7182818284590452353602874... , equal to (1+1/n)n where n is very large number (in 
the first calculations of logarithms, the base e proved to be the simplest to manage; 
ä(a) is also equal to the area bounded by y=1/x and the x-axis between x=1 and x=a, a 
definition, the simplicity of which warrants the description ‘natural’). Equipped with 
this form of notation, the Weber-Fechner-Law can be written as follows: E=k+câ(R), 
where R represents the stimulus and E the perception (k and c are constants specific to 
this application).  

Some equations: 
â(mn) = â(m)+â(n) 

â(m/n) = â(m)-â(n) 

â(mn) = nâ(m) 

if n=ä(m), then m=en  
â(1) = 0 

âa(a) = 1 

âa(b) = 1/logb(a)  

âa(m) = loga(b)žlogb(m)  

ã(m) = ã(e)žä(m) = 0.434294ln(m) 

alog
a

(m) = m 

The natural logarithm can also be represented as an infinite power series: 
ä(1+x) = x _ x2/2 + x3/3 _ x4/4 + ...
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05  Mathematics 4 – Converting Linear↔Logarithmic 

In many phenomena a geometrical parameter change leads to an arithmetic perception 
in the recipient – measured and perceived values mostly form different scales. A note 
of which the frequency as a measure of pitch is repeatedly multiplied by a constant 
factor (forming a geometric series), increases continually by a constant pitch-interval 
(arithmetically). A note of which the sound intensity as a measure of loudness is 
repeatedly multiplied by a constant factor (geometric), always increases by a constant 
loudness-interval (arithmetically). This relationship also appears outside of music: a 
star, of which the brightness is repeatedly multiplied by a constant factor (geometric), 
always brightens by a constant brightness-interval (arithmetically). Γ07 shows the 
arithmetic-geometric relationship in these three cases: in each case, the intervals are 
shown on the x-axis below and the corresponding factors of measurement (not true to 
scale) on the y-axis at left. As an additional illustration, divisions of a single interval 
are given at the top and the corresponding factors (here true to scale) on the right, 
serving as an optical enlargement of the small grey-filled rectangles in the lower left 
corner of each diagramme. Hence, the correspondence between the arithmetically 
increasing interval size and the resulting geometrically increasing factors can be seen 
in each diagramme, in Γ07a and b with the frequency factor 2 and sound intensity 
factor 10 per given interval – on the right of each we also have in a) the frequency 
factor 21/5 = 5√2 per one-fifth of the basic interval and in b) the sound intensity factor 
101/10 = 10√10 per one-tenth of the basic interval); the unit of measurement of these 
basic intervals (octave and bel) will be explained later.  

Concerning the brightness of stars: by definition, a star that is 100 times brighter than 
another star is five magnitudes brighter; this is the unit of the intervals shown in Γ07c. 
A brightness interval of 5 magnitudes corresponds therefore to a brightness ratio of 
1:100, and similarly, a brightness interval of 10 magnitudes corresponds to a 
brightness ratio of 1:10000, because each single increase by a certain interval 
corresponds to the same geometric factor, in this case 100 times per magnitude. At the 
same time, a brightness interval of exactly 1 magnitude corresponds to a brightness 
ratio of 1:1001/5 = 5√100, or approximately 2.512 (see below).  

If the factor F corresponds to one magnitude, an increase in a measured value by x 
such degrees or intervals (x can be a whole number or a fraction) indicates a 
multiplication of that value by Fx. As seen above, the division of the interval into x 
equal parts would lead to x consecutive geometric increases, each then to the xth root 
of F: therefore, the factor corresponding to one single magnitude is F=1001/5, because 
in this case F5=100. 
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Generally, if an increase in the measured value by G intervallic units (e.g. pitch-
interval, loudness-interval, or brightness-interval) causes a rise in the value by a factor 
of F, then an interval of g units would correspond to a value-quotient qv of 

qv = v2/v1 = Fg/G 

where the variable g is the interval in the given units, and v1 and v2 are the measured 
values of the elements forming the interval. Note that the units in which g and G are 
measured are identical, and that the constants F and G are mutually dependent!  
Fg/G can also be written as (G√F)g, the gth power of the Gth root of F. As a mnemonic 
help, notice also that F can stand for Factor and g as well as G for deGree. 

An example from the field of light (the magnitude value decreases with increasing 
brightness; magnitude 1 is therefore 100 times brighter than magnitude 6, and negative 
magnitudes are even brighter):  
F and G can be replaced by 100 and 5 respectively, from which the equation qb = 
100g/5 results (the subscript b here means brightness). The brightness of the star Sirius 
is at magnitude _1.58, while that of the star Alpha Centauri is at magnitude 0.06. The 
brightness interval is therefore 1.64 magnitudes. Hence, Sirius is 1001.64/5 = 1000.328 = 
4.529 times brighter than Alpha Centauri. 

Conversely, the size of the interval can be derived in the desired unit through the 
application of the measurements v1 and v2 or at least their quotient qv: 

 g = G (â(qv)/â(F)) 

Here, too, the variable g and the constant G have the same units; as above, the 
constants F and G are mutually dependent. 

Another example from the field of light based on the corresponding equation  
g = 5(â(qb)/â(100)): 

The sun is 15,850,000,000,000) times brighter than a barely visible star of magnitude 
6. Hence the sun is 5(â(15,850,000,000,000)/â(100)) = 33 degrees brighter; its 
magnitude is -_27. 

At this point it might be interesting to note that whereas in most world languages 
1,000,000,000,000 is called a ‘billion’, the English-speaking world is terminologically 
split – most call this a ‘trillion’. The two systems of enumeration are termed the ‘long 
scale’ (in which every new term above a million means a multiplication by a million, 
used in the languages of most non-English-speaking countries of the world and in the 
English spoken there, as well as by a number of people in the UK) and the ‘short scale’ 
(in which every new term above a million means a multiplication by a thousand, used 
in official English in the UK, Ireland, the USA, Australia, New Zealand, and in the 
languages of a few non-English-speaking countries, such as Brazil). 
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06  Acoustics 1 – Fundamental Units of Pitch and Loudness 

A sine wave (from the Latin sinus = ‘fold’) is a ‘pure’ tone, the sound of one single 
frequency; this is generally measured in Hertz, the number of oscillations per second. 
An arithmetically increasing series of Hertz frequencies does not lead to a perception 
of equidistant pitches; it is rather a geometric series that achieves this, as in e.g. the 
octave-series ...110 220 440 880... Hz. An octave-leap upwards, traditionally divisible 
into 12 equal-tempered semitones, or 1200 cents (from the Latin centum = ‘hundred’, 
abbreviated ‘Ct’; 1 semitone = 100 Ct), corresponds to an exact doubling of the 
frequency; thus if the increase in frequency of 1200 cents causes a twofold increase of 
the same, then an interval of c cents corresponds to a frequency-quotient qf of 

 qf = f2/f1 = 2c/1200 

Here, c is the interval in cents, f1 and f2 are the frequencies in Hertz of the pitches 
making up the interval. Notice: the unit of c is identical with that of the power 
denominator 1200 (qf = 2h/12 holds for the interval h in semitones, qf = 2˛ for the 
interval ˛ in octaves). 

An example: Find the frequency of C5, 300 Ct above A4 (440 Hz). 
The solution: f2 = f1ž2c/1200 = 440 Hzž2300/1200 = 440 Hzž2¼ = 440 Hzž1.1892 = 523.25 Hz  

Another example: Find the frequency of C4, 900 Ct below A4 (440 Hz). 
Solution: f2 = f1ž2c/1200 = 440 Hzž2_900/1200 = 440 Hzž2_¾ = 440 Hzž0.5946 = 261.63 Hz. 
It should be no surprise that this frequency amounts to half of that of C5, because C4 
lies exactly one octave lower. See also T08a for a 12-octave list of frequencies with 
equal spacings of 100 Ct.  

The reverse equation:  c = 1200(â(qf)/â(2)) 

An example: What is the size of the interval between 500 Hz and 600 Hz? 
The answer: 
c = 1200(ä(600/500)/ä(2)) = 1200(0.1823/0.6932) = 1200ž0.2630 = 315.6 Ct.  
Through this it can be seen that the frequency ratio 5:6 corresponds as a rule to the 
interval 315.6 Ct (somewhat larger than the tempered minor third between A4 and C5). 

Another example: How big is the interval between A4 (440 Hz) and the frequency of 
the rotation of the earth (once in 23.9345 hours, i.e. 0.000011605 Hz)? 
The answer: 
c = 1200(â(440/0.000011605)/â(2)) = 1200(ä(37912204)/ä(2)) = 1200(17.45/0.693)  
 = 1200 ž 25.18 Ct or 25.18 octaves, i.e. 25 octaves and 2.11 semitones.  
This means that the earth rotates with a frequency 11 Ct below the tone G-21. 

Concerning loudness: A barely audible tone of 1000 Hz exerts a sound pressure (a 
measure of the loudness) on the ear of approximately 20 micropascal (abbreviated 
‘µPa’), which equals 0.2 nanobar (‘nbar’). If this pressure is repeatedly multiplied by a 
constant factor, the loudness appears to increase evenly. With a factor of e.g. 10, the 
corresponding loudness interval is given as 20 decibels.  
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A Bel, named after the inventor Alexander Graham Bell (1847-1922) corresponds by 
definition to ten times the sound intensity (another measure of loudness, in power e.g. 
Watt or ‘W’ for short, per area e.g. square metre or ‘m2’ for short); hence, 2 Bels 
corresponds to 100 times the sound intensity. The sound intensity varies proportionally 
to the square of the sound pressure (see T08b and Γ09; the latter graphically displays 
this relationship) – a hundredfold sound intensity increase means a tenfold increase in 
sound pressure: 1 Bel = 10 decibels, 2 Bels = 20 decibels, corresponding to 
hundredfold intensity, tenfold pressure. In combining several (non-sinusoidal) sources 
of sound, their sound intensity is added; however, in some aspects (e.g. in sound wave 
amplitudes or electrical voltage) sound pressure provides a more suitable unit of 
measure. When adding sine tones, their phase plays an important role – e.g. two sine 
tones of opposite phase cancel each other out (see Chapter 29). 

An increase in the sound intensity by 10 decibels (‘dB’ for short) results therefore in a 
tenfold increase in the sound intensity; hence, an interval of l dB corresponds to a 
sound intensity quotient qi as follows:  

qi = i2/i1 = 10l/10, 
where l is the difference in sound intensity in dB and i1 and i2 are the sound intensities 
of the sounds comprising the interval (e.g. in W/m2). 

As shown above, a 20 dB increase corresponds to a tenfold increase in the sound 
pressure; correspondingly, the following holds for a sound pressure-quotient qp:  

qp = p2/p1 = 10l/20, 
where l is the same as above, p1 and p2 represent sound pressure (e.g. in µPa). 

An example: Find the sound intensity of a tone 120 dB above the level 1 pW/m2 
i2 = i1.10l/10 = 1 pW/m2 ž10120/10 = 1 pW/m2 ž 1012 = 1012 pW/m2 = 1 W/m2 

Another example: Find the sound pressure of a tone 120 dB above the level 20 µPa. 
p2 = p1.10l/20 = 20 µPa ž10120/20 = 20µPa ž 106 = 20 Pascal (‘Pa’ for short). 
As seen in T08b, the sound pressure 20 Pa corresponds to the sound intensity 1 W/m2. 

The converse equations are as follows: l = 20(â(qp)/â(10)) = 10(â(qi)/â(10)) , 
simplified through a base-10 logarithm to  l = 20 ã(qp)  = 10 ã(qi). 

An example: How many dB correspond to a doubling of the sound intensity? 
l = 10 ã(2) = 10 ž 0.30103 = 3.0103 dB. 

Another example: How many dB correspond to a doubling of the sound pressure? 
l = 20 ã(2) = 20 ž 0.30103 = 6.0206 dB, meaning four times the sound intensity. 

It follows from the above that sound pressure and intensity (analogous to frequency) 
are linear units, while decibels (analogous to cents) are logarithmic units.  
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07  Harmony 2 – The Frequency Ratio of a Pitch Interval 
 
If the frequency of a given pitch is doubled, we notice that the pitch rises by exactly 
one octave. This happens with any arbitrary initial frequency, so that we could say: the 
octave is a pitch interval corresponding to a frequency-ratio of exactly 1:2. In the case 
of the ratio 2:3 (e.g. 100 Hz:150 Hz, the 2nd and 3rd partials of an overtone series based 
on 50 Hz), we are dealing with a pure fifth; because 440 Hz is A4, the frequency of E5 
is a fifth higher, 660 Hz. As a rule we can say that the most essential characteristic of a 
pitch interval is the ratio between its frequencies, representable as a pair of mutually 
prime whole numbers in the form P:Q.  
 
Our musical experience tells us that a doubled fifth is a major ninth. Take the example 
C4+fifth=G4; G4+fifth=D5. If ƒ Hz is the frequency of C4, then the frequency of G4 is 
ƒž1.5=1.5ƒ Hz. Since an increase by a fifth always causes a rise in frequency by 50%, 
the frequency of D5 is 1.5ƒž1.5=2.25ƒ. The fact that halving this value (2.25ƒ/2=1.125ƒ) 
brings us down an octave to D4, has to do with a falling octave halving the frequency. 
This process can also be described as follows: 
 C4 +fifth +fifth _octave = D4  
or ƒ ž3/2 ž3/2 ž1/2 = (9/8)ƒ. 

This indicates that an increase in pitch by a given interval results from the 
multiplication of the frequency by the common fraction (quotient) corresponding to the 
frequency ratio of the interval. Conversely, a decrease by a certain interval corresponds 
to the division of the frequency by the corresponding fraction. A move from a pitch to 
another of the same frequency implies the unison: 1/1. Here then, are the fractions of 
the four intervals shown so far that extend to and include the octave; they are the 
unison (1/1), the major second (9/8), the fifth (3/2), and the octave (2/1). 
 
Further scale degrees can be calculated similarly,  
as e.g. the major sixth = major second plus fifth, hence the fraction = 9/8 ž 3/2 = 27/16 
or the perfect fourth = octave minus a fifth, hence the fraction = 2/1 ž 2/3* = 4/3 
or the major third = major sixth minus a fourth; fraction = 27/16 ž 3/4* = 81/64 
or the minor seventh = fourth plus fourth; fraction = 4/3 ž 4/3 = 16/9 

(*division by a fraction is the same as multiplication by the reciprocal of the fraction) 
 

The above intervals are tuned exclusively by the addition or subtraction of octaves and 
fifths; this method of tuning is called Pythagorean after its propagator Pythagoras 
(ca.569-ca.475 BCE). The major third 81/64 found in this manner is also called the 
ditone, because it results from adding two 9/8-whole tones (9/8 ž 9/8 = 81/64). Also, 
the 16/9 seventh is the same as an octave minus a 9/8 whole tone (2/1 ž 8/9 = 16/9). 
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That other tunings are possible can be seen by way of example of the same 81/64 
major third, which also can be represented by 64:81 (the ratio P:Q – whereby the 
arbitrary convention P<Q holds in this book – corresponds to the fraction Q/P if the 
interval increases, P/Q if it decreases). In the overtone series, where each partial is a 
multiple of the fundamental frequency, the interval between the 1st and 2nd partials 
(1:2) is, as to be expected, an octave, the interval between the 2nd and 3rd partials (2:3) 
is a fifth, that between the 3rd and 4th partials (3:4), a fourth (see Γ06a). Between the 4th 
and 5th partials, an interval can be found that is at 386 Ct smaller than the tempered 
major third (400 Ct); it sounds in context like an especially pure major third, and is 
called the pure or natural third because of its occurrence in the overtone series. 
Compare its size to that of its Pythagorean namesake: 
 with 5/4 the interval amounts to 1200 ž ( â(5/4) / â(2) )  = 386.31 Ct, 
 with 81/64 it amounts to 1200 ž ( â(81/64) / â(2) ) = 407.82 Ct. 
The 21.51 Ct difference, about a fifth of a semitone, called the syntonic comma, 
corresponds to the interval (81/64) ž (4/5) = 81/80. 

The harmonic series can be made audible on a tense oscillating string (for example on 
one of a piano or a stringed instrument) through touching nodes at special places; for 
the nth partial, the distance between the corresponding node and any of the two ends of 
the string is 1/nth of the length of the string. If e.g. the 5th partial of C2 on the piano is 
sounded in this way, it can be ascertained that the note playable with the E4-key 
actually lies only 14 Ct higher (assuming that the piano is in tune). This can also be 
calculated as follows: C2 has a frequency of 65.4064 Hz (see T08a); thus its 5th partial 
has the fivefold frequency 327.032 Hz. However, the E4 exactly 28 tempered semitones 
above C2 is higher according to T08a: at 329.628 Hz. The sounding of both tones 
together results in a distinct ‘beating’ oscillation in loudness of about 2.6 Hz, 
corresponding to the difference in frequencies, explainable by acoustical principles – 
see Chapter 29. 
 
Naturally, intervals can also be tuned through addition or subtraction of octaves, fifths 
and (pure) thirds, as e.g.: 
the major sixth = pure third plus a fourth; the fraction = 5/4 ž 4/3 = 5/3 or 
the minor seventh = two fifths minus a pure third; 3/2 ž 3/2 ž 4/5 = 9/5. 

Here, once again, are the Pythagorean derivations (measured from C – octave, fifth and 
third are indicated here by Ω, Q, T) of the tones 
 D  E  F  G  A  Bb  
 2Q-Ω 4Q-2Ω  Ω-Q  Q  3Q-Ω 2Ω-2Q  
An alternative:   T   Ω+T-Q 2Q-T  
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08 Acoustics 2 – Cents and Decibels Compared 
 
A comparison of the equation for the conversion of pitch interval size (in cents) into 
frequency ratio with the equation for the conversion of loudness difference (in 
decibels) into intensity ratio shows interesting parallels, for example, if the frequency 
quotient of a tempered major third (400 Ct) is calculated: 

qf = 2400/1200 = 21/3 = 1.25992105 

It can thus be said: a frequency increase of 25.992% corresponds to an increase in pitch 
by a tempered major third. 

Now calculate the intensity quotient of one decibel: 
qi= 101/10 = 1.258925412 

It can thus be said: a sound intensity increase of 25.893% corresponds to an increase in 
loudness by one decibel. 
 
The similarity of both of these values can be used, for example, as follows: if one 
wishes to know how many decibels correspond to a doubling of the sound intensity, 
then one needs only to consider how many tempered major thirds are necessary for a 
doubling of the frequency, or in other words, how many major thirds fit into an octave 
– namely 3. Or if one wishes to know, for example, what intensity ratio corresponds to 
10 dB, i.e. 1 Bel, one needs only to consider which frequency ratio is formed by 10 
tempered major thirds (= 3 octaves plus a third): 2ž2ž2ž5/4 = 10 as by the definition of 
the Bel (the natural third 5/4 is close to the tempered in size) – see Γ10a for an 
illustrated comparison on the basis of a keyboard of units of pitches and sound 
intensity (in this case intensity-ratios; for sound pressure, double the dB-value shown).  

The fact that cents and decibels are logarithmic representations of measurement 
quotients (which are independent of measurement units), permits application in other 
areas, like, for example, in banking: were we to assume that a sum of money earns 
interest at an annual rate of 7.2%, we could rightly maintain that this sum will grow 
continually by 1200( â(1.072) / â(2) ) = 120 Ct or by 10lg(1.072) = 0.3 dB per year. 
In order to be doubled, the sum would need 1200 Ct/120 Ct or 3 dB/0.3 dB = 10 years. 
This exercise is surely amusing, but the common areas of application of cents and 
decibels should not hide the fact that they are logarithmically calculated units for 
measuring ratios.  
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In the same way that a number of metres describes the spatial distance between two 
points, measurements in cents and decibels are used to illustrate the distance between 
two pitches or loudnesses. Elevation is commonly given in metres above sea level; 
here, the elevation of sea level is defined as ‘zero metres’. In the field of temperature, 
the zero-point of the Celsius scale has been fixed at the melting point of ice. There are 
two dB-scales that are fixed in this way. One – called dB(SPL) from Sound Pressure 
Level – has its zero-point at 20 µPa (= 1 pW/m2), which is, according to an earlier 
general assumption, the weakest possible audible sound pressure at 1000 Hz – this 
scale is used in acoustical measurements; T11 offers a series of commonplace 
dB(SPL)-examples. The other scale – called dBu – is utilised in recording studios: here, 
the zero-point is arrived at when the voltage of the circuit of flowing alternating 
current nearly saturates a magnetic tape – 0 dBu is standardised at 0.775 Volt, the 
common unit of voltage (‘V’ for short), named after the physicist Alessandro Volta 
(1745-1827). Starting at this maximum value of zero and falling, dBu-values are 
mostly negative; compare, for example, the calibration of a so-called ‘Volume Unit 
(VU-) Meter’ in Γ10b. The conversion from voltage-ratio in dB is carried out 
according to the formula for sound pressure – voltage in Volts (V) behaves just like 
sound pressure (Pa) and amplitude (mm). 

As can be gathered from T08b, a Pascal is by definition the pressure of 1 Newton of 
force (corresponding to a weight of about 102 grammes at sea level) applied to 1 
square metre; accordingly, 20 µPa correspond to a weight dispersion of 2.04 
milligrammes per square metre or about 20 grammes per hectare (thus 1 Pascal = 
approx. 1 tonne/hectare); the unit was named after the mathematician and philosopher 
Blaise Pascal (1623-1662). Another pressure unit is ‘bar’ (via ‘barometer’, from the 
Greek báros = ‘weight’, in this case of air): 1 bar = 100,000 Pascal or 1,000 
Hectopascal (abbreviated ‘hPa’). The sound pressure of a sound wave is the converted 
measure (in RMS = ‘root mean square’ – see Chapter 12) of the deviation in air 
pressure caused by the wave; since this is normally described as 1 bar, one can imagine 
how a rapid change in air pressure of only ±0.1% (approximately 71 Pa RMS-sound 
pressure for a sine wave) can lead to a deafening 131 dB(SPL).  

Γ10c shows air pressure fluctuations in the area of Cologne, Germany, during the years 
2000 and 2001; these curves essentially represent a low-frequency sound wave, 
despite the calibration of the time-axis in months and the pressure-axis in Hectopascal. 
Here, the average RMS-loudness is 9.65 hPa or 153.67 dB(SPL)! In addition, the 
loudest frequency components are to be found in the single-digit Microhertz region, as 
visible in Γ10d. From this it can be gathered that if this period of time of 2 years were 
traversed in 2 seconds by means of a time-machine (like that portrayed by the author 
H.G.Wells), the resulting sound of this wave – now raised to the audible range – would 
with its 153.67 dB(SPL) cause serious damage to the unprotected ear. Back to Γ10d: 
observe the narrow sound band at 23 µHz (12 hour period), probably due to the tides, 
and another at 11.6 µHz (24-hour period), probably due to diurnal temperature 
fluctuations. 
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09 Acoustics 3 – Subjective Loudness and Loudness Level 
 
It is known that some animals can hear frequencies too high, others too low for the 
human ear to hear: the lower and upper limits of human hearing are commonly fixed at 
20 Hz and 20 kHz respectively – this is a range of 1:1000 = approximately 10 octaves. 
However, it is not as if human hearing suddenly starts at 20 Hz and then stops just as 
suddenly ten octaves higher; audibility enters gradually at both ends of the range of 
hearing, and the degree of hearing also varies within this range. A sine wave with 
gliding frequency and constant sound intensity appears much louder, for example, at 
1000 Hz than at 100 Hz or at 10000 Hz. If inversely the intensity of a sound is changed 
(for example through a loudness regulator), so that all frequencies make an equally 
loud impression, this results in fluctuations in the intensity level, as first published in 
1933 by Harvey Fletcher (1884-1981) and Wilden A. Munson (1902-1982); these 
results were improved in 1956 by D.W. Robinson and R.S. Dadson and registered with 
the International Organisation for Standardisation (ISO 226), seen here as curves in 
Γ12a – one sees the dB(SPL) values of sine waves perceptually seeming equally loud 
at all frequencies, of which the intensity at 1000 Hz has been set at multiples of 10 
dB(SPL). Additionally, algebraically calculated and upwards extrapolated curves 
(grey) have been inserted, which are a fair approximation below 130 dB(SPL) but are 
pure fantasy above.  
 
Compare the data for six pitches (1½ octaves apart): 44, 125, 354, 1000, 2828 and 
8000 Hz. In order to seem equally loud, the dB(SPL)-values have to move from e.g.  
79 (44 Hz) to 63 (125 Hz), 56 (354 Hz), 60 (1 kHz), 54 (2.8 kHz) and 67 (8 kHz). 
These fluctuations are even more extreme with sounds at lower levels, e.g. at dB(SPL)-
values 59 (44 Hz), 39 (125 Hz), 29 (354 Hz), 30 (1 kHz), 24 (2.8 kHz) and 39 (8 kHz). 
The audibility threshold, too, the loudness at which a sine tone is just no longer 
audible, shows the course 43, 20, 9, 3, _2½ (!) and 16 dB(SPL) at the six given fixed 
frequencies. The negative dB(SPL)-value at 2.8 kHz corresponds to a sound pressure of 
roughly 15 µPa, even lower than the dB(SPL)-zero-level of 20 µPa; the amplification 
in this frequency range is caused by a slight resonance of the outer auditory canal 
between the eardrum and the outer ear (see Chapter 30). The perceived loudness 
according to pitch and intensity is described by a level (loudness level) expressed in 
Phon (pronounced ‘fon’, from the Greek phoné = ‘a sound’, here abbreviated ‘Ph’), i.e. 
the loudness level of e.g. 60 Ph corresponds to the intensity levels shown in the first 
example, varying along the so-called Isophon curve (from the Greek ísos = ‘equal’, 
and phoné as above). By definition, dB(SPL)- and Phon-values are identical at 1 kHz. 
Loudness levels can be read off the curves for every frequency (x-axis; in Hz) and 
every intensity level (y-axis; in dB(SPL)); e.g. a 500 Hz tone at 50 dB(SPL) seems 54 
Ph loud, 4 Ph louder than at 1000 Hz. Interestingly, the audibility threshold is at 3 Ph 
(about 28 µPa at 1 kHz). In a way, isophons can be regarded as curves of ‘relative 
deafness’ – the higher they are, the worse one’s auditory perception. 
 
The expression ‘loudness level’ (unit: Ph) is analogous to ‘intensity level’ (unit: 
dB(SPL)). ‘Level’ – like ‘interval’ – always refers to a logarithmic scale.  
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A doubling of the intensity raises its level by approximately 3 dB, an observation 
derived from the definition of the decibel. At 1 kHz this would correspond to an 
increase in the loudness level by 3 Ph. It has been found that this increase does not 
make the tangible impression of a doubling of the subjective loudness: measurements 
show that 10 Ph are fundamentally necessary for this effect. Thus if the sound intensity 
of a 1 kHz tone is multiplied by 1024, the subjective loudness increases only 8 times  
(i = intensity, l = subjective loudness): 

1024ži = 10ži-doubling = i-level+(10ž3 dB) = i-level+30 dB 
» l-level+30 Ph = l-level+(3ž10 Ph) = 3žl-doubling = 8žl-impression. 

The linear behaviour of the subjective loudness deserves an equivalent linear unit, 
which exists in the form of the Sone (from the Latin sonus = ‘a sound’, here 
abbreviated ‘Sn’). By definition, 1 Sn corresponds to 40 Ph. This gives rise to another 
equation: since the increase in loudness by 10 Ph causes a twofold rise in loudness, the 
loudness interval of φ2_φ1 Ph corresponds to a loudness quotient ql of 

ql = s2/s1 = 2(φ
2

_φ
1

)/10 

where φ1 and φ2 are the loudness levels in Phon, s1 and s2 are the subjective loudnesses 
in Sone of the sounds making up the interval. By definition, 1 Sn = 40 Ph, therefore the 
formula can be simplified to  

s = 2(φ_40)/10, 
where φ is the loudness level in Phon and s the linear loudness in Sone.  

The reverse formula:   φ = 10(4+(â(s)/â(2))) 

Examples: 
How many Sones are 3 Phons?: s = 2(3_40)/10 = 1 /13 Sn (the audibility threshold) 
How many Sones are 100 Phons?: s = 2(100_40)/10 = 26 = 64 Sn  
How many Phons are 100 Sones?: φ = 10(4+(ä(100)/ä(2))) = 10 (4+(4.605/0.6931)]) = 

 106.4 Ph 

It is generally assumed that the dynamic levels ppp, pp, p, mf, f, ff and fff match the 
subjective loudnesses 1, 2, 4, 8, 16, 32 and 64 Sn (40, 50, 60, 70, 80, 90, 100 Ph). For 
the summation of subjective loudnesses, Sone values are added (with some 
reservations), e.g. two 60 dB(SPL)-noisebands at 44 and 1000 Hz, which give 
loudnesses of 30 and 60 Ph, the corresponding linear values of which (0.5 Sn and 4 
Sn) add up to 4.5 Sn. 

Γ12b shows a summary of all linear and logarithmic terms up to this point, attempting 
to visually capture the curved symmetry of the two basic functions y=ex and y=ä(x). 
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10 Harmony 3 – Classical Just Intonation 
 
Observe Γ13a: each horizontal row represents an open circle of fifths, each vertical 
column an endless series of natural thirds. The note C (in the central bold-face frame) 
is the orientating core of this network, although any other note could do as well. In this 
network one can identify Pythagorean intervals as well as those based on natural 
thirds, as in the Pythagorean C-Major scale F-C-G-D-A-E-B (boxes filled with light 
grey) or the one based on natural thirds, in oversimplification sometimes called 
Aristoxenian after one of its earliest propagators Aristoxenus (350-300 BCE):  
A-E-B/F-C-G-D (dark grey enclosed area). By the way, it is evident from the above 
that the Pythagorean system, based on octaves and fifths, sets the maximum involved 
prime number at 3, and the so-called Aristoxenian puts this value at the next prime 
number 5. These two systems are therefore also termed the 3-limit and 5-limit note-
systems respectively. 

At this point the justifiable question arises: which of these two alternative tunings is 
really ‘C-Major’? It should be clear that the two tunings and therefore their 
frequencies differ: with C common to both, the notes A, E and B would be, using the 5-
limit tuning, a syntonic comma (21.5 Ct) lower than in the 3-limit tuning. Furthermore, 
what does all this have to do with the widespread equal temperament of musical 
instruments (where all intervals are supposed to be multiples of one single basic 
interval – the 100 Ct-semitone)? 
 
Take an example: we hear march music on the street, and we try to avoid stepping to 
the beat of the music while passing by. This is difficult, because, although the walking 
rhythm would really be the same as the music tempo for only small fractions of a 
second (no one could walk more precisely), our sense of timing compulsively ‘bends’ 
the perception of our steps to make everything comprehensible to the brain. Another 
example: we hear a small child singing, out of tune, a song unfamiliar to us but 
recognisably in the major scale: we achieve this recognition through the ability to 
adjust false notes while listening. Afterwards we would be able to play the corrected 
melody on the piano, probably with the approval of the child. Nevertheless, the 
temperament of even a freshly tuned piano seems to us to be quite out of tune 
immediately after the extensive enjoyment of mediæval music, because our sense of 
pitch has been sensitised and made more demanding.  

Depending on our momentary musical sensitivity, we are therefore more or less able to 
bend pitches consciously or unconsciously to an imagined position where they make 
more musical sense. This faculty allows tempered-tuned music to appear in our 
imagination in various forms of tuning, 3-limit, 5-limit or any other so-called ‘pure’ 
tunings – i.e. representable through whole-number frequency ratios. In other words: 
the music’s tuning is rationalised by the brain (assuming the composer has not 
consciously tried to withhold the music from this process – Schoenberg took pains to 
compose ‘truly atonally’) and each irrational frequency relationship is transformed 
subconsciously into a quantitatively nearby rational one. Harmony is the study of that 
which is intervallically intended or at least understood.  
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For purposes of further explanation, I draw upon three linguistic concepts: Phonetics, 
which describes the actual sounds, Semantics, which attempts (if need be through 
adjusted hearing) to make sense of the sounds, and Grammar, which through a set of 
rules can serve both the understanding of the sounds heard as well as their production 
for the purpose of comprehension. A pitch system, the grammar of which is effectively 
employed, can be grasped semantically, even if slight ‘phonetic’ deviations from the 
expected norm are present (similar to accent in language). An example: Bach also 
makes sense on instruments with modern tuning. In short: Grammar assists Semantics 
in comprehending Phonetics. Conversely, an effective semantic interpretation allows 
the postulation of a plausible grammar from something ‘phonetically’ perceived. A 
prerequisite for dictation is comprehension; the widespread distribution of tonal 
grammars contributes to the making of a tonal dictation easier than an atonal, a 12-tone 
dictation easier than a microtonal one.  

There are numerous scales which can be described and tuned in terms of 3-limit, 5-
limit or further considerations. Γ13b shows two more 5-limit pitch sets, of which one 
is the centuries-old classical European chromatic scale: the twelve tones make up a 
clean matrix of three rows of connected fifths by four columns of connected thirds 
(light grey-filled boxes). Based on this, the frequency ratios, reduced to an octave 
range, are in ascending order as follows: 

1:1 15:16 8:9 5:6 4:5 3:4 32:45 2:3 5:8 3:5 5:9 8:15 1:2 

Even the classical North Indian system of srutis, 22 intervals, described in music 
theory as a comprehensive pitch set for over two thousand years, can be found in this 
network of fifths and thirds (against a dark grey background). The regrettably 
widespread assumption that this set comprises 22 equal-tempered intervals (each thus 
1/22 of an octave = 54.5 Ct), is a myth. It is has also been convincingly proven that 
other intervals are made use of in North Indian practice besides these 22.  

In Γ13a and b one can see many notes with the same name; the notes C, E, F, G, A and 
B appear three times, and the notes D and Bb as many as four times. A comparison 
shows that every note is connected to its nearest namesake to the right by four upward 
fifths and a downward third (or vice versa), i.e. 3/2 ž 3/2 ž 3/2 ž 3/2 ž 4/5 = 81/80, the 
syntonic comma of 21.5 Ct. Also, enharmonic equivalences, familiar to music theory, 
like the minor diesis 125:128 (Ω_3T: 41.1 Ct), the diaschisma 2025:2048 (3Ω_4Q_2T: 
19.6 Ct) and the 524288:531441(!) Pythagorean Comma (12Q_7Ω – see the middle 
row from Gb to F#: 23.5 Ct) are in the network. The minor diesis could for instance 
appear in music where C# leads to D near Db leading to C – an example of this and of 
the diaschisma can be seen in Γ13c1 & 2; in just-intoned music the notes C# and Db, 
though enharmonically ‘equivalent’, can sound as in these examples 19.6 Ct or even 
41.6 Ct apart.  
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11 Mathematics 5 – Trigonometry and Analytical Geometry 

Look at the triangle ABC in Γ14a: there is a right angle at apex C. The side AB 
opposite this angle is called the hypotenuse (from the Greek hupó=‘under’ and 
teínein=‘stretched’). With each of the other two angles (at the points A and B) as 
vantage points, there are two other sides besides the hypotenuse, the opposite side and 
the adjacent side – opposite the point A, for example, lies the opposite side BC, while 
AC ist the adjacent side. 

The quotient opposite/hypotenuse is called the sine of the angle (Latin sinus = ‘fold’, 
abbreviated ß) at any apex, i.e. ß(A)=BC/AB, ß(B)=AC/AB (the angle at apex ‘X’ is 
also called ‘X’). The quotient adjacent/hypotenuse is the cosine of the angle (Latin co- 
= ‘complementing’, abbreviated à), with à(A) = AC/AB, à(B) = BC/AB (the 
absolute values of sine and cosine stay between 0 and 1, because the opposite and 
adjacent sides can never be longer than the hypotenuse). The remaining quotient 
opposite/adjacent is the tangent (abbreviated á): á(A) = BC/AC, á(B) = AC/BC. In 
fact the gradient at an arbitrary point (x,y) of the straight line y=mx passing through 
the origin is the same as the quotient y/x and is thus also the tangent of the angle 
between the straight line and the x-axis – cf. Γ03d. 

Triangle calculation or trigonometry (Greek tri = ‘three’, gonos = ‘angled’, metron = 
‘measure’) shows that the sine, cosine and tangent of a given angle always remain 
constant. For example again in Γ14a: if the lengths of the triangle’s three sides AB, BC, 
CA have the ratio of e.g. 5:4:3, then the actual size of the triangle is not important for 
the angular content – if the ratio 5:4:3 remains constant, all of the proportions and 
therefore all three angles also remain constant. In this example, ß(A) = BC/AB = 4/5 = 
0.8. From this, angle A can be calculated, the arc sine (abbreviated Û) of 0.8 – as 
can be shown by a pocket calculator, A = Û(0.8) = 53.13o. Also, B = Û(AC/AB) 
= Û(0.6) = 36.87o. It is not surprising that A+B = 90o (remembering that C = 90o), 
because the sum of all three angles of a plane triangle is always 180o (=A+B+C). 

If a non-right angle and the length of one side of a right-angled triangle is known, one 
can determine all of the other properties of this triangle. Look at Γ14b – a circle 
encompasses the three right-angled triangles OMN, OPQ and ORS; the hypotenuses of 
all three represent the radius of the circle and are thus equal. If the angle ROS made by 
the apices R, O and S is 60o, we can show: RS = ROžß(ROS) = rß(60o) = 0.866r, where 
r is the circle’s radius. If POQ = 45o, then PQ = POžsin(POQ) = rß(45o) = 0.707r. If 
MON = 30o, then MN = MOžsin(MON) = rß(30o) = 0.5r. Now ß(30o)<ß(45o)<ß(60o) 
because MN<PQ<RS. 
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If we draw a curve in a two-dimensional coordinate system, in which the x-axis 
displays a constantly increasing angle from left to right and the y-axis shows the 
corresponding value of ß(x), the result is the sine wave shown in Γ14c: to the right of 
the origin we see about 1¼ periods of the curve. The three values ß(30o), ß(45o), 
ß(60o) are drawn in as vertical lines to the right of the origin – they have the same 
mutual relationship as the lengths of the sides MN, PQ, and RS in Γ14b.  

The correlation between circle and sine wave becomes even more evident by observing 
the cylindrical spiral in Γ14e from different perspectives: at top right (marked by 0o), 
its central axis first points straight at the viewer and is then horizontally turned by  
10o, 30o, 60o, 75o and 90o (from top right to bottom right and then to the left). The first 
drawing (0o) shows a circle, while the last one (90o) clearly shows a sine wave. 

In Γ14c the x-axis is not calibrated in degrees – at 30o (in parentheses) one sees π/6, at 
60o π/3, at 90o π/2 and at 180o π. The quotient circumference/diameter of any circle 
equals the constant π, with a value of 3.1415926535897932384626433.... The x-axis 
in Γ14c is calibrated in radians from 0 to 8 (Latin radius = ‘measuring rod’), an 
angular unit found in mathematics, where 1 radian = 180/π degrees = 57.29577951o, 
the angle between two radii of a circle which cut off (subtend) a one-radius-long 
segment of the circle on its circumference. Γ14d compares this definition with an 
equilateral triangle with sides the length of the radius and with 60o angles. Since π is 
the quotient circumference/diameter, a complete run around the circle (360o) covers a 
2π-fold radius-length; thus the movement of one single radius length along the 
circumference corresponds to an angle of 360o/2π, i.e. 1 radian.  

It is not necessary to always remember the origins of trigonometric functions in 
triangular measurements; the Cartesian representation is normally sufficient. 

Here are some of the most important trigonometric rules: 
ß(x) / à(x) = á(x) 

sin2(x) + cos2(x) = 1  

ß(π/2_x) = à(x)  (...these three equations are to be seen  
ß(0) = 0; ß(π/2) = 1  in the mutually shifted positions of the  

à(0) = 1; à(π/2) = 0  sine- and cosine-periods shown in Γ14c) 

The rules can be easily proved by the triangle in Γ14a, e.g. 

ß(A) / à(A) = (BC/AB) / (AC/AB) = BC/AC = á(A).  
Since AB2 = BC2 + AC2 (the law of Pythagoras), the following is also true: 
ß2(A) + à2(A) = (BC/AB)2 + (AC/AB)2 = (BC2+AC2)/AB2 = AB2/AB2 = 1.  

ß(90o_A) = ß(B) = AC/AB = à(A).  
Trigonometric functions can be expressed as series, e.g. (with x in radians): 
ß(x) = x _ x3/3! + x5/5! _ x7/7! + ..., whereby n! (‘factorial n’) = n(n_1)(n_2).. ž3ž2ž1. 
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12  Acoustics 4 – Sound Waves and Spectrum 

A sounding object is in a state of rapid vibration passed on to the air (or another 
medium); this vibration is transferred to the eardrum and arrives in this way in the 
auditory system. Observe Γ15a: the thick line at the bottom represents at left a solid, 
immovable object, the thin lines above at left represent immovable air molecules (air 
molecules really approach immovability only near to absolute zero, a temperature of 
_273o C, but their usual movements have no relevance to hearing, because they are 
neither directional nor periodic). If the solid object starts to move back and forth, then 
the normal distance between it and the nearest air molecule, determined e.g. by the 
temperature, changes; the molecule ‘attempts’ to compensate for this by also moving 
back and forth. As long as the solid object vibrates, the air molecule must also vibrate; 
quietude is only reached after the solid object stops vibrating. But for the same 
reasons, the next molecule also starts to move, then the next etc. – a sound wave is 
formed that moves through the air with a speed of about 320 to 360 metres per second 
according to temperature and humidity; if the frequency of the vibrations shown in 
Γ15a is 1000 Hz, then the diagramme represents a time span (from left to right) of 
about 6 seconds as well as a distance (from bottom to top) of about 330 metres. This 
representation of the molecular density of air – only one molecule every ten metres – is 
naturally extremely sparse (there are about 27ž1021 air molecules per litre under 
normal circumstances, corresponding to a one-dimensional density of 300 million 
molecules per metre, averaging a third of a nanometre in size and 50 yoctogrammes or 
5ž10_23g in mass). The type of movement of the sound wave is called longitudinal, 
because it moves in the plane in which the molecules move; in waves on the surface of 
a body of water, for example, the particles move on the surface at right angles to the 
waves’ diffusion – this type of movement is called transversal; light and other 
electromagnetic waves belong to this category. 

A look at the grey strip in Γ15a placed between 90 and 100 metres shows a constantly 
varying distance between two neighbouring molecules – the variations are, as the 
vibrations themselves, sinusoidal. Since the air pressure is inversely proportional to the 
molecular distance, this too changes sinusoidally; this variation in air pressure leads to 
the phenomenon of sound pressure, which can be calculated using the formula 
p=2πfacd, where p is the sound pressure, f is the frequency of the sine wave, a is the 
maximum molecular distance from the central position of rest (usually called 
‘amplitude’ – see top of next page), c is the velocity of sound in the medium 
transmitting the sound, and d is the density of the medium. In this formula, the particle 
velocity (the velocity of the molecule going through the position of rest) is represented 
by 2πfa, thus equal to p/(cd). All units of measurement (Pa, Hz etc.) can be reduced 
to kilogrammes, metres and seconds, as can be seen at the bottom of T08b.  
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Concerning terminology: ‘amplitude’ is unfortunately very frequently used for 
‘molecular displacement from rest’; the term only makes sense in reference to the 
general envelope of the maxima of a wave. To add to the confusion, ‘amplitude’ is also 
frequently used in the sense of sound pressure in general. 

An example of the calculation of the particle velocity: at a sound speed of 333 metres 
per second and an air density of 1.3 grammes per liter, it can be seen that the sound 
pressure of a 1000 Hz sine tone of e.g. 60 dB(SPL) (= 0.02 Newtons/m2 or kgžm-1žs-2) 
derives from a particle velocity of p/(cd) or 0.02 kgžm-1žs-2/(333 m.s-1ž1.3 kgžm-3) = 
0.000046 m/s or about 1/20 mm (150000 times the molecular diameter) per second. 

A sound wave is commonly represented by a two-dimensional curve of the changing 
air pressure or of the molecular distance from the mid-position against time, which 
under normal circumstances is proportional to the pressure. What happens when a 
moving object is subject to two sinusoidal vibrations of different speeds? These are 
simply added, as shown in Γ15b (bottom right): two equally strongly fluctuating 
sinusoidal vibrations with the frequency ratio of 2:3 work together as a curve, which 
like its sine components is also periodic, if more complicated. The stronger a sound 
wave spatially fluctuates, i.e. the higher its amplitude, the higher the resulting sound 
pressure will be; both of these values are proportional. 

At top right in Γ15b, the two sine components are also to be seen as two parallel 
vertical lines – their frequency ratio 2:3 (a perfect fifth) allows them to be represented 
as the 2nd and 3rd partials of a harmonic spectrum, where the word ‘harmonic’ refers to 
the whole number ratios of overtones and the word ‘spectrum’ comes from the Latin 
spectrum = ‘apparition’ (after Newton’s spectral light experiments). The length of the 
vertical lines indicates the amplitude, i.e. the sound pressure of the notes – in this case 
equally strong.  

Γ15b also illustrates the calculation of the RMS (root mean square), a method used to 
measure sound pressure, in this case that of the two sine components and their sum as 
shown in the diagramme. 37 sine values of regularly spaced x-values of the two 
components were selected (see the grey vertical lines), their squares added and the sum 
divided by 37. As a result, each of the curves (given a arbitrary maximal value of 100) 
yielded an average square of 5000, the square root of which – the RMS – is 70.7. The 
RMS of the additive curve (see the black vertical lines) is 100 and implies thereby an 
increase in the sound pressure of the sound wave shown here to a 100/70.71 = 1.4142 = 
√2-fold value; this corresponds to the related 2-fold increase of the sound intensity, 
which is to be expected: the simultaneous sounding of two sound sources results in 
general in the summation of their intensities. In addition, Γ15b shows at left a 
hypothetical ‘molecular snapshot’ of the perfect fifth-sound wave at right: a cloud of 
particles, the centre of which represents the sound source, shows wave maxima as 
dense rings, wave minima as sparsely populated ones. 
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13 Informatics 1 – Hardware and Software 

One who uses a computer will notice a certain basic structuring of the machine (see 
Γ16a): next to the computer itself there is a keyboard for entering data, a screen for 
checking data, and – in order to store derived information – a storage medium for 
mechanical, magnetic or optical storage, and possibly a printer for documentation on 
paper. The storage medium itself has taken on numerous forms over the years, e.g. 
punched cards, punched tape, magnetic tape (from common cassettes to those on 
reels), diskettes in sizes 3-, 5½- or 8-inch, readable and writeable plastic discs using 
laser-beams or removable or fixed hard-disks (also but less frequently spelt ‘-disc’). 

All of the above-mentioned equipment can be summarised in the single term 
hardware. However, in order that the components function and communicate with 
each other, so-called software must be available, coded information that – as soon as it 
is entered – resides in the electronic circuitry (chip) reserved for it. Additional software 
can be purchased: these are complete programs* that, for example, make comfortable 
word-processing or video-games possible, or – especially interesting for musicians – 
generate sound or draw musical notation. Commercial software is unfortunately most 
often meant for a specific brand of computer – the adjusting of a program to a 
computer that is foreign to it is cumbersome. 

(*spelt thus in British English only for computer software; otherwise ‘programme’) 

The user of programs deals with the computer at its most intrinsic level (see Γ16b). 
However, a user wanting to write a program has to go a step deeper, as it were, and to 
formulate the problem in a programming language (like e.g. C, Pascal, Lisp, Basic, 
Assembler, Perl, Java, etc.), then input the program into the computer through an 
adequate editor (from the Latin ex+dare= ‘out-give’), in order then, through a 
compiler (from the Latin com+pila= ‘together+pile up’, or even ‘+plunder’, in an 
earlier meaning) to translate it into machine language – the computer’s ‘own 
language’. Most often an editor is supplied as an integrated part of a compiler; since 
mistakes in programs are inevitable, this allows a comfortable frequent changing back 
and forth between editor and compiler. In the case of languages like Basic, each line of 
the program-text is usually translated and executed directly after it has been read by an 
interpreter (a ‘simulataneous translator’, from the Latin interpretari = ‘explain’ or 
‘translate’). The advantage of this is that one can program much more directly; the 
disadvantage: the interpreted program runs much slower and less economically than a 
completely compiled one.  
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Editor, compiler and interpreter are themselves programs that must be installed. In 
order that they run, they have to be compatible with the operating system installed in 
the computer, a program that works a step even deeper (e.g. CP/M, MS-DOS, RT-11, 
OSX, UNIX, Linux, Windows etc.). The operating system makes normal interaction 
with the computer possible – data can be copied from one medium to another or it can 
be printed; even more important, runnable programs can be started and – if necessary – 
interrupted, and if the user wants to input data into the running program, the operating 
system accepts this data and passes it on into the program. For some computers there 
have been of late more than one operating system available; as may be required, one 
can then switch from one to another (which can be cumbersome). 

The computer can understand the operating system only if the manufacturer has 
written appropriate fundamental software (often called the BIOS or basic input/output 
system) for the processor (or CPU, for ‘central processing unit’), the ‘brain’ of the 
computer (well-known processors are the Motorola 68000 series, the Intel 8086 series 
etc.). This is the lowest level of the sofware hierarchy. 

With this we have come back to hardware: next to the processor, the virtual storage 
RAM (random access memory) is of great importance; the processor can arrive at any 
corner of this storage area at high speed to retrieve or store information there. By 
comparison, the reading of disk storage, even though still practically in the 
microsecond realm, takes quite a while longer (the access time); besides, in this case 
the computer often has to go through an entire bank of data (called a file) until it finds 
what it is looking for.  

To summarise: if a computer is to be ready for use, the operating system must be 
installed in the RAM; only then can programs run. If a program is to be written and 
tested, the user writes the program text in the editor, then has the text translated into 
machine language by a compiler or an interpreter – in this form, the program can be 
started by the operating system. Most computer brands load the operating system 
automatically when switched on.  

If we allegorically call the processor the brain of the system, the RAM would be the 
memory, the monitor facial expression, and the drive would be the briefcase. In 
addition, another kind of storage should be mentioned here, called the ROM (read only 
memory), a kind of brainstem, which contains previously prepared and entered data of 
fundamental importance to the programs and which thus can only be read, not written 
to; it can assume various forms, ranging from chips to compact discs.  
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14 Informatics 2 – Digital and Analogue 

Sound can be recorded by means of the magnetisation of iron oxide (tape) or through 
incisions in plastic (grammophone record), which varies according to the form of the 
sound wave – this is the so-called analogue method; alternatively, the sound wave can 
be represented as a series of numbers, which can then be later transferred back into 
electrical fluctuations and through this into sound waves – this is the digital solution. 
An analogue recording has certain disadvantages compared to a digital one – the 
magnetisation of a tape can wear off little by little with time or become imprinted as 
pre- or post-echo on neighbouring windings of the tape; more essential: one is forced 
to listen to the background noise that arises during recording or the crackling caused 
by dust in the grooves of a record. In contrast, in a digital recording, it is only numbers 
given by scanning the sound waves that are stored on numerous possible media; a 
possible depreciation of these numbers cannot normally occur – either they are erased, 
seriously falsified, or they remain the same. If some of these numbers are seriously 
falsified, the results are felt more as a complete loss rather than as a deterioration of the 
quality. The main source of disturbance in a digital recording is in the resolution of the 
scanning of the curve – if this is not high enough, the distortion of the sound curve is 
audible.  

Γ17a shows at left a sine wave period in a scan with a resolution of 8ž8, i.e. at eight 
equidistant positions on the x-axis a y-value is determined, rounded up or down to one 
of the eight numbers from 0 to 7. This approximation, seen here as a thick line, is 
obviously a great deal coarser then, for example, that made with an equally arbitrary 
resolution of 21ž21, seen in Γ17a in the middle. At 50ž50 (Γ17a at right) the curve 
looks even better. Not until a resolution of well over 500ž500 is reached can the 
digitised wave acoustically acceptably resemble the original analogue wave. 
Commercially available equipment for converting waves back and forth between 
analogue and digital contain analogue-digital or digital-analogue-converters (‘AD’- or 
‘DA’-converter for short) – they are currently and commonly capable of a scan-rate of 
44100, sometimes 48000 Hz and a numeric value range from _32768 to +32767; e.g. 
in one period of a 20 Hz tone, this would correspond (at a rate of 44100 Hz) to a 
resolution of 2205ž65536, at 20000 Hz about only 2ž65536 – the latter frequency is so 
high, that overtones stemming from inaccuracies due to the lower resolution are 
inaudible. Each of the numbers scanned from a sound wave in this manner is 
commonly called a sample (in the sense of ‘specimen’), and the process is called 
sampling, although the word is often also unfortunately and misleadingly used for a 
short sound example actually containing many samples. The sound wave scan-rate 
mentioned above is called the sample rate. 



29 
 

The physicist Harry Nyquist (1889-1976) showed that for meaningful sampling there 
is a limit in the relationship between sound wave frequency and sample rate, viz. 1:2; 
this means that for a sound frequency f, the sample rate should be above 2f. For a 
sample rate ® of 44100 Hz, the Nyquist limit ŋ is ®/2 = 22050 Hz. Γ17c shows three 
sine waves, the frequencies of which respectively lie below ŋ (at ŋ/6), at the limit and 
above the limit (at 13ŋ/6); at a sample rate of 44100 Hz the three frequencies would be 
3675, 22050 (=ŋ) and 47775 Hz, shown by the smooth sinusoidal curves. The leftmost 
wave has been recorded correctly: the dots graphically representing the samples show 
an outline visibly true to the original. However, the samples in the middle wave give a 
false picture: zero-values, silence! The rightmost example at frequency 13ŋ/6 shows a 
result which cannot be distinguished from that of the ŋ/6-frequency wave: frequencies 
at the limit and higher are shown in the samples incorrectly as being below the limit. 
This phenomenon is called aliasing and can be remedied by previously filtering out all 
of the frequencies over the Nyquist limit, even for a high-enough sample rate. 

Whether seen as a smooth analogue curve or as a digital number series, the recording 
of a sound wave necessitates a transfer of electrical current from one device to another. 
For the analogue transfer of a 1-kHz-tone at 0 dBu (studio norm) a curve varying 
between ±1.096 Volt (‘V’) with an RMS-Voltage of 0.775V (=√0.6V) is formed: 
alternating current of e.g. 1 Milliwatt at 600 Ohms resistance. If digitised, the sampled 
numbers are passed on in binary form, where the digit ‘0’ means 0V and the digit ‘1’ 
about +5V: direct current. In Γ17a (left) the eight sampled numeric values are 4, 6, 7, 
5, 2, 0, 1 and 4, expressed binarily as 100, 110, 111, 101, 10, 0, 1 and 100. These 
numbers here never need more than three binary digits each, sufficient to present the 
series as 100 110 111 101 010 000 001 100, assuming that in converting them back, the 
DA-converter knows they are all three-digit binary numbers, this being then a ‘3-bit 
quantisation’: the numbers are always input and output with a constant quantity of 
digits (in this case 3), irrespective of whether a zero is at the beginning of any of the 
numbers or not. A bit (from ‘binary digit’), the smallest quantity of transferable 
information, contains the one-digit binary number 0 or 1; the data (here bits) is 
transferred with a speed called the Baud rate, named after the engineer and inventor 
Émile Baudot (1845-1903): 1 Baud = 1 bit per second in a bit transfer. The bit 
resolution is the number of bits determined for in- and output; the above-mentioned 
DA/AD-converters use in general a bit resolution of 16. If the eight 3-bit numbers 
above are transferred with an arbitrary velocity of 2.4 kilobaud, the transfer would take 
10 milliseconds, just as long as one period of the frequency 100 Hz. Γ17b compares 
the analogue electrical transfer of this period (sine wave) with the digital transfer 
(square wave); in the latter, additionally necessary control bits are not shown. The 
digital transfer of the scan in Γ17a centre requires 21ž5=105 bits (instead of 24 for 
Γ17a left), because the packaging of the numbers 16 to 21 contained here is impossible 
with less than 5 bits. 
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15 Informatics 3 – Computer Programming 

For a computer to serve its purpose it must be programmed; a series of commands 
must be entered therein, according to which the computer loads data from the hard disk 
or other medium into its virtual memory (RAM) to process it there and then pass it on 
to a place determined by the programmer. This data, basically binary numbers, is 
coded for better readability as regular decimal numbers and letters (together called 
alphanumeric characters) as well as punctuation marks. Because of the way the 
electronic components are constructed, the standard bit resolution for data transfer is 8; 
eight bits is called a byte (from ‘binary term’), an information capacity allowing the 
representation of 28=256 different numbers (0d to 255d) or symbols. Higher numbers 
are processed by combining several bytes, e.g. the number 12345d, in binary terms 
11000000111001: here two bytes are sufficient, into which the bits are filled as 
00110000  00111001 (or hexadecimal 3039h: these four digits each represent four bits 
or a half-byte or a nibble). The terms bit, nibble and byte do manifest a certain 
undeniable sense of humour.  

The coding of alphanumeric symbols and punctuation marks is usually effected 
according to the so-called ASCII-code (‘American Standard Code for Information 
Interchange’): this represents all one-byte numbers, of which the first (i.e. left or 
higher) half-byte has one of the six values 2d to 7d (= 2h to 7h) – the first bit (to the 
very left, also called the most significant) is therefore always 0; this 7-bit-code can be 
seen in T18. The values 0h to 1h as the left half-byte correspond to symbols that one 
can usually produce on the computer keyboard by pressing the so-called Ctrl-, 
Control- or Command- keys, depending on the type of computer, simultaneously 
with one of the other keys (one of the 26 letters a-z plus six additional characters, 
adding up to 32 in all). Doing this resembles the inputting of upper-case letters by 
pressing the Shift-key together with a lower-case letter. 

Special keys like e.g. Esc, Tab, Backspace, Return also produce these symbols 
independently – the first two terms are abbreviations for Escape (used frequently to 
end a program – ASCII No.27) and Tablature (frequently used for table-spacing – 
ASCII No.9 = Ctrl-I, the 9th letter of the alphabet, also written ^I), while Backspace is 
self-explanatory (ASCII No.8 = ^H) and Return or Enter (ASCII No.13 = ^M) 
historically refers to the carriage return lever which returned the typewriter platen 
(rubber cylinder) to its starting position. 
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The left half-byte values 8h to Åh are reserved for additional characters, which can 
usually be generated only by programs or input by non-English keyboards. Only the 
programmer who consciously wants to work in a machine-oriented fashion, in order to 
take better advantage of special attributes of the device, would have to input 
commands as binary numbers; in order to avoid typographical errors through the 
numerous zeros and ones, the numbers – if (as in most cases) the basic software of the 
computer permits – may be typed in hexadecimally. A great additional help is a 
program or programming language called an assembler, which allows the input of 
hexadecimal commands in the form of simple understandable words. On the other 
hand, the programmer who wants to use the computer in a more comfortable way 
employs so-called high-level languages like Basic, Fortran, Pascal or C (to name just a 
few), of which the compilers translate the commands written in relatively readable 
form into binary numbers meaningful to the computer – i.e. into the type-dependent 
computer-specific machine language. 

For example, a simple multiplication: two numbers, let us say 25 and 40, are 
multiplied and the result provided through a so-called variable, i.e. temporary storage 
that can always be reached under a name invented by the programmer. Let us call this 
variable product; in Basic and Fortran the multiplication statement is written 
product=25*40, in Pascal product:=25*40;, in C product=25*40; 
(notice the semicolon concluding instructions in Pascal and C). The result can be 
displayed in Basic and in Fortran by print product, in Pascal as 
write(product);, in C as (here simplified) printf(product);. The result is 
then displayed on the monitor: 1000, in Basic immediately, in Fortran, Pascal and C 
when the compiled program is running. Of course the variable product can be 
avoided by writing print 25*40 in Basic and Fortran, or write(25*40); in 
Pascal, or printf(25*40); in C. Here, however, product can be used for other 
purposes, for example for a comparison – e.g. the result of the multiplication should be 
shown only if it exceeds 500. The corresponding instruction reads   
 in Basic: if product>500 then print product 
 in Fortran  if (product.gt.500) then print product  
  (.gt. means ‘greater than’ or ‘>’) 
 in Pascal:  if product>500 then write (product); 
 in C:  if (product>500) printf(product); 
 (meaning in all cases ‘if product exceeds 500, then display product’). 

A program can contain a loop in which a command or a block of several commands 
can be repeatedly executed several times, e.g. in computing the first 10 numbers of the 
well-known Fibonacci-series, in which the first two numbers are both 1 and each 
number thereafter is the sum of the two previous numbers. This task can be easily 
solved in the four languages mentioned here (the result is 1, 1, 2, 3, 5, 8, 13, 21, 34, 55) 
– see L19: the assignments, typically written as a = 1 (a := 1 in Pascal), are shown 
here compactly without spaces. First of all, the value 1 is allocated to the variables a 
and b; thereafter the variable c repeatedly receives the value of a+b, is displayed, and 
the values of b and c are moved to a and b, respectively. 
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16 Informatics 4 – The Programming Language C 

Introduced in 1972 by Dennis Ritchie (*1941) as a advancement of Ken Thompson’s 
language B, C has become one of the most widespread languages. Its internal 
proximity to machine language makes highly efficient programming possible. 
Modularly structured, it permits the insertion of complete and autonomous blocks of 
instructions into the program text. Despite its role as point of departure for well-known 
languages like C++, C# and Java, C (thanks in part to the American National Standards 
Institute) has remained universally standardised through all the years. 

A C program basically consists of a main part (called main) and, if needed, of 
functions written by the programmer. L20 is a complete C-program for the conversion 
of number relationships (e.g. 2:3) into cents and decibels based on formulæ given in 
Chapter 6. It starts with preprocessor directives #include <stdio.h> and 
#include <math.h>. C is a very compactly defined language, the core of which 
does not even contain the instruction printf, described before: this is encoded in the 
includable pre-prepared library file stdio.h. The preprocessor is a part of the 
compiler, processing the program text before the compilation proper. stdio.h means 
‘Standard Input/Output’, math (‘mathematics’) contains many common standard 
predefined functions such as logarithms; .h stands for ‘header’, because the include 
directives are at the head of the program. 

The words Conversion of number ratios into cents and decibels, a 
commentary inserted as a memory aid, is ignored by the compiler because of the 
delimiters /* and */. Note that in compilable code no non-English characters (such as 
ä, á, å etc.) are permitted; these are however admissible in commentaries. 

main() follows. The parentheses, which occasionally contain parameters, show that 
this module (and others possibly present) are actually functions that can receive and 
return values (such as sines and logarithms). The value returned is frequently only a 
measure of success of the execution of the function, the type of which must also be 
declared, in L20 with int for integer (whole-number), thus as int main(). The 
return to the operating system of a zero at the bottom of the program indicates that 
everything is in order and that the program will end in an proper fashion. 

The contents of main are enclosed within curly brackets { and }; for better 
readability, they can be written – as in L20 at the leftmost edge – one above the other. 
First, variables are declared, p and q as int, then nLog2, nLog10, 
nLog_Quotient, ct and db as floating-point values with fractional components 
following the decimal point (float). These variable-names are freely invented and 
serve to store the numbers p and q standing in a relationship p:q, the natural 
logarithms of 2, of 10 and of the quotient of the numbers p and q as well as the cent 
and decibel values calculated at the end.  
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At first the standard math function log(...) calculates the natural logarithms of 2 and 
10 and stores them in variables nLog2 and nLog10, as in e.g. nLog2 = log(2); 
(computing time is saved by using variables instead of functions repeatedly). The next 
line contains a request for the whole numbers p (initialised at the start to 1) and q by 
printf("Enter P:Q etc. followed by the remark that an invalid entry will stop the 
program. These two printf functions, written separately for reasons of clarity, 
contain non-compilable strings of characters in quotes (".."); printf can also 
contain format strings (e.g. %d) – see further below. The \n at the end (standing for 
‘new line’) causes a move to the next line before anything more is written. 

Moving on: the while loop with the condition (p>0) repeats, for as long as p>0 is 
true, the block of statements attached just below it and set in a pair of curly brackets, 
right-indented in equal measure. while will run at least once due to p’s prior 
initialisation to 1. From within the block, the program writes P:, gives p the 
temporary value 0 (why is explained below) and waits for a value to be entered for p 
through the keyboard by means of the read function scanf("%d", &p); – the 
format string %d (for ‘decimal’) indicates that a decimal whole number for p is 
expected; scanf usually needs & before a variable which is to be read, in this case p. 

If p is entered invalidly, e.g. as x, the temporary value set earlier (zero) remains in 
force; thus the condition if (p > 0) is unfulfilled, causing the block following (on a 
third level down, set in its own curly bracket pair) to be skipped; in this case the 
program goes back to the while statement. But the condition (p > 0) is false here as 
well – the final instruction printf("Program done.\n"); is executed, the 
program returns a 0 and ends. 

If however p is really >0, the 2nd-level instruction block will indeed be executed: the 
program writes Q:, waits for the keyboard entry of q through scanf, calculates the 
quotient logarithm log(1.0 * p / q) and stores this value in nLog_Quotient. 
The reason for the 1.0: if one whole number is divided in C by another, the result is 
also a whole number: 1/2 does not yield 0.5 but 0, leading to errors. The 
multiplication (higher priority than division) of p by the float value 1.0 yields a 
float, which, divided by q also gives a float. Worked out by the said formulæ,  
ct and db (1200 and 6.021 respectively, for 1:2) are displayed by two printfs:  
the first, printf("-----The ratio %d:%d corresponds to ",p,q); 
causes the line -----The ratio 1:2 corresponds to to be written, and  
the second, printf("%9.3f Ct or %6.3f dB\n Enter P:Q..\n",ct,db); 
causes the values of ct and db to be written in the format described here below, 
followed by an new invitation to Enter P:Q... The format string %d:%d in the first 
printf prescribes the display of p and q as whole numbers (e.g. 1:2). The string 
%9.3f indicates the writing of ct up to 9 places, with 3 places after the decimal 
point, thus: ▫1200.000 (▫ is here a space). In the same way, %6.3f causes db to be 
written up to 6 places, with 3 places after the decimal point, thus: ▫6.021. By the way, 
the f in printf stands for ‘formatted’. 
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17 Informatics 5 – General Functions in C 

Besides main and given functions like printf, scanf, log and while, other 
functions can be defined by the user and called from within the program; they are 
usually placed before the functions out of which they are called. 

L21 is a program that generates table T02. Let us begin with the main part. Following 
the declaration of main and the variable counter, the variable digits[8] of type 
char (short for ‘character’) is declared: it is often better to index several variables of 
the same type under one name as a so-called array. digits[8] comprises eight 
characters, beginning with the zeroth, digits[0] (in C one starts counting at 0; it is 
the number of elements which is declared). Type char occupies one byte; if one is to 
work with whole numbers ranging from 0 to 255, these need at most one byte and can 
be economically stored in a char variable, as opposed to the int type which usually 
occupies 4 bytes (32 bits) and can range in value from _2147483648 (= _231) to 
+2147483647 (= +231_1). 

Variables of type FILE * (always in capitals) allow file access. The file name, here 
"number_systems.txt", followed by "r" (for ‘read’) or "w" (for ‘write’) in the 
given function fopen are allocated to a file variable arbitrarily called outfile, thus: 
FILE *outfile; outfile = fopen("number_systems.txt","w");. 
The variable outfile now allows access to the file it represents (see fprintf 
below). 

Apart from while there is another loop structure termed for. But whereas while 
only concerns itself with conditions, for initialises and updates a counter, in L21 so:  
for (counter=0; counter<=final_number; counter++). The initial 
value of counter is 0. The loop condition: counter may not exceed 
final_number, a constant defined in line 3 of the program as 255. The expression 
counter++ raises counter by 1, tantamount to counter = counter + 1, or 
‘add 1 to the value of counter, assigning the new value leftwards to counter, 
replacing the old value there’. Each repetition of the for instruction block raises 
counter by 1 until 255 is reached (and exceeded), when the loop ends due to the 
failure of the loop condition. 

fprintf (the first f stands for ‘file’) then writes the value of counter in outfile 
according to the format %3dd = : the characters ‘%3d’ prescribe a three-digit whole 
number, followed by ‘d = ’, as can be seen for instance on the second page of T02 at 
bottom left: ‘146d = ’ (font and size were set there manually, not by the program). 

We have now arrived at the description of a user-defined function (convert). In each 
of the three calls to it 5-7 lines from the bottom of main there are three parameters in 
parentheses, a number (2, 8, or 16) and the variables counter and digits. The 
function itself starts at line 9: it does not return a value (no return at the end), which 
is why its type is void.  
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See the int variables base and number in parentheses at the top of the function, 
followed by the char variable *code (the * causes the final value of code to be sent 
back to main – see below). These three variables are directly linked to the parameters 
in the call: base successively takes the values 2, 8 and 16, number the value of 
counter. After local variables (valid only in convert) i, power, buffer, 
remainder and divisor are declared, power takes the value 1, buffer 255. 
While power is repeatedly multiplied by base, buffer is divided by base (terse 
like ++, a*=b equals a=a*b and a/=b equals a=a/b): if base is 2, power 
successively takes, in 8 while repeats, the values 2, 4, 8, 16, 32, 64, 128 and 256, 
buffer in parallel 127, 63, 31, 15, 7, 3, 1 and 0 (note that 255/2 = int 127, not 
float 127.5): (buffer>0) is now false, while ends and power stays 256. 

Now the value of number (= counter in the call) is stored in remainder, the 
value of power/base in divisor (256/2 = 128) and 0 in i. Another while loop 
runs, where:  
1. remainder is divided by divisor and the result stored in buffer, 
2. the remainder after dividing remainder by divisor is stored in remainder 
 (% is a modulo operator, %= is treated like *=, /= etc.), 
3. divisor is divided by base and the result stored in divisor. 
The following value changes are implemented in 8 while runs – after the 8th run, 
divisor gets the value 0 whereby (divisor>0) is now false and while ends: 
divisor= 128 →64 →32 →16 →8 →4 →2 →1 →0 
If remainder (via number = counter in the call) is e.g. 186, in 8 runs it assumes 
the values 186%128 = 58%64= 58%32= 26%16 = 10%8 = 2%4 = 2%2 = 0;  
and buffer  186/128=1, 58/64=0, 58/32=1, 26/16=1, 10/8=1, 2/4=0, 2/2=1, 0/1=0, 
spelling 10111010, a binary number, which was calculated on base 2. 

In the second line of the second while block in convert another user-defined char 
function is called: hex_char, defined in lines 4-8. It receives the int parameter num 
(value 0–15) and returns an ASCII symbol num+48 (i.e. ‘0’–‘9’) if num<10 else 
num+55 (i.e. ‘A’–‘F’). Thus hex_char delivers the hexadecimal representation of 
num, e.g. 8 becomes ‘8’, 12 becomes ‘C’. The if-else structure is thus explained.  

In main the binary, octal (base 8) and hexadecimal (base 16) numbers are stored as 
strings of characters: in the 8 runs of the 2nd while loop of convert, the index i of 
the 8 elements of code (cf. digits) takes on the successive values 1 to 8 (cf. i++;) 
and the characters sent by hex_char are stored in the ith element of code. After the 
loop, code additionally gets the finalising end-string ‘\0’ and returns its content to 
digits in the convert calls. fprintf then writes digits in outfile (in 
format %s for ‘string’), followed by ‘b = ’, ‘o = ’ and ‘h = ’ for base = 2, 8 and 
16, respectively. 

At the very end, the statement fclose(outfile); follows, the counterpart to 
fopen (the file is hereby ‘sealed’), a statement of completion appears on the screen 
(with printf) and a zero is returned to the operating system, thereby ending the 
program. 
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18 Informatics 6 – MIDI: Musical Instruments Digital Interface 

In 1983 a conference of well-known synthesizer manufacturers decided to introduce a 
universal standard for the external digital control of their sound modules: MIDI, the 
Musical Instruments Digital Interface. This standard, requiring a relatively simple 
hardware connection, allows the communication between various music devices: the 
keyboard of a MIDI-equipped sound module can address the sound generator of 
another sound module; also, a computer can intervene and play the sound modules in 
real-time. On the outside, the MIDI connection usually has three five-pin standardised 
DIN sockets (from the German Deutsches Institut für Normung = the German Institute 
for Standardisation), labeled MIDI-IN, -OUT and -THRU – the first two are for receiving 
and sending MIDI-signals, and the last is a connection for passing signals through to 
other devices, allowing a compound of several appliances (see Γ22 for an example). 
The channel number coded in MIDI signals causes all following signals to be assigned 
to the sound generator momentarily set to this number; if, therefore, the signals of 
several channels go through all sound modules, each module would play only ‘its own’ 
part. The signals travel through a shielded two-core cable equipped with two five-pin 
standardised DIN plugs, this happening serially (i.e. as a bit series) with a transmission 
rate of 31250 bits, i.e. 3906 bytes per second.  

If a sound is to be switched on, the note-on signal is sent to the generator, a one-byte 
hexadecimal number, of which the two nibbles are 9h and channel number 0h to Åh – 
thus the number 90h indicates that a sound is to be played in the ‘zeroth generator’. This 
first byte is called a status byte, the first nibble of which is between 8h and Åh, 
depending on the type of command (i.e. the first, most significant bit is in this case 
always 1). The pitch number follows directly, the first of two data bytes, of which the 
first bit is always 0. All available notes, 128 in quantity, belong to the ten-and-a-half-
octave chromatic scale from C-1 to G9 – they are numbered from 0 to 127d. The note 
C4 corresponds to 60d; in this way, the numbers of all notes with the same name Cn are 
divisible by 12. Before the note is played, its force-of-attack (called velocity by 
technocrats) must be given, which is also packed into one byte as a 7-bit-number 
between 0 and 127d. The command ‘play a C4 of moderate loudness in channel zero’ 
appears therefore (in decimal) as 144 60 64. Whereas programmers list the 16 channels 
from 0 to Åh, general sound-module users count these from 1 to 16. 

As in the playing of a note, switching a note off or damping it is achieved by three 
bytes – the first is the note-off signal, 8mh (m is the MIDI-channel number), the 
second is the note number and the third is the damping speed – however, very few 
sound modules react to this last information. The byte series 8Åh 60d 127d means 
‘quickly damp the C4 in channel Åh’. Since each note needs at least six bytes to be 
turned on or off according to this definition, a maximum of 3906/6=651 notes can be 
transmitted per second.  
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A chord is possible through directly and sequentially switching its individual notes on 
– the 1½ milliseconds between a note-on and the next in a chord is short enough for 
the chord – if it is not too big – not be heard as an arpeggio. Notes can also be damped 
by the command series note-on, note-number, zero – in this case they are played 
‘without force’ (this practice is of use in the economical so-called running mode – the 
status byte is entered at the start, to be repeatedly followed only by data byte pairs).  

Two further important MIDI-commands are instrument choice (called program change 
by technocrats) – 2 bytes: Âmh and i (m is the channel number, i is the instrument 
number from 0 to 127d or more, depending on the sound module) and pitch-wheel, a 
feature that allows the parallel shifting of all pitches of a channel micro-intervallically, 
with 3 bytes: Ämh 0 and v (m is again the channel number and v is the shift as a 
number between 0 and 127d, with 64d as a normal condition; the range to top and 
bottom can be set from 0 to ±12 semitones by a special systems command specified by 
the manufacturer. At ±1 semitone the finest shift made possible through the second 
data byte is 100/64 or under 1.6 Ct). Some sound modules also react to the first data byte, 
giving the pitch wheel a resolution of as much as 14-bits. 

Finally, the versatile control-change command shall now be described: beginning with 
the status byte Ámh, the first data byte indicates the type of application through the 
control number, like 7d for the total volume (this allows a crescendo/decrescendo of a 
sustained sound) or 64d for the simulation of a damper-pedal; apart from both of these 
(the values run from 0 to 127d), some of the control numbers are standard, others are 
specified by the manufacturer – knowledge of their use can be attained in the sound 
module handbook. The second data byte determines the extent of the control: for 
control number 7d, 0 means ‘silent’, 127d ‘full volume’, for control number 64d,  
control value 0 means ‘no pedal’, 127d ‘fully depressed’. T23 lists the eight main types 
of commands (those beginning with Àh, Ãh and Åh are somewhat more special and are 
not discussed here). 

All the signals described above are produced directly by one manually played sound 
module; they are discussed here concerning their production through a computer. L24a 
is a C program that plays the first bar of Schumann’s Happy Farmer on a MIDI sound 
module; for instance, play in main sends values of pitch and force to the play 
function, where they are called pitch and force. The play and damp functions 
normally send three bytes via the function send to the MIDI socket (hexadecimal 
numbers are written in C with a 0x prefix) – but the exact form of send depends on 
the type of computer; here, send only writes the values on the screen. The function 
wait checks the computer clock by way of CLOCK_PER_SEC and clock(), coded 
in <time.h>; it simply waits for the specified time duration. L24b is more compact: 
score = fopen(FILENAME, "r"); opens the file HAPPY_FARMER.TXT 
(defined as FILENAME through the preprocessor directive #define) to read it. The 
loop while with the function execute runs as long as it returns the value 1 (‘true’) 
to main, i.e. as long as input_amount (see fscanf) has the value 3; if it is not, as 
when the input file end has been reached, function execute stops. The double equal 
sign ‘==’ in execute is an equality comparison operator (cf. ‘!=’, not equal to), 
different to the assignment operator ‘=’ . 
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19 Harmony 4 – A Quantitative Approach to Harmonicity 

Since ancient times it has been maintained that two notes of which the frequencies 
form a simple mutual ratio make up a ‘harmonic’ interval. But an ‘inharmonic’ 
interval, near in size to a harmonic one, falls, so to speak, into the pull of the stronger 
interval and through adjusted hearing seems to approximate the latter. 

Can the simplicity of a ratio be expressed quantitatively? The ratios 1:2 (octave), 2:3 
(fifth), 3:4 (fourth), 4:5 (major third) or 5:6 (minor third) appear ‘simpler’ than 8:9 
(major tone), 9:10 (minor tone), and these in turn appear simpler than 15:16 (minor 
second), 32:45 (augmented fourth) or 45:64 (diminished fifth). N.B.: the more 
harmonic the interval, the smaller the numbers constituting the interval; yet, is the 3:5 
major sixth more harmonic that the 4:5 major third? 

The ratios missing in the list above, 6:7 and 7:8 as well as 10:11, 11:12, 12:13, 13:14 
and 14:15, are not classical intervals – the numbers 8 and 9 were always preferred to 
the smaller 7, and 15 and 16 were preferred to 11, 13 and 14. It is striking, that while 
the historically preferred numbers are based on the prime numbers 2, 3 and 5, the 
others contain the higher prime factors 7, 11 and 13. In constructing a harmonic 
interval, both the smallness in size of the ratio-numbers as well as their divisibility is 
relevant. In measuring the harmonicity I tried to unite both these properties, which led 
in 1978 to the development of my so-called Indigestibility Function ξ(N); see F25a. 
The power 2 is the prime enmity factor: raising it will cause the indigestibility of prime 
numbers to rise more steeply, and vice versa. It is a practical side-effect that 
ξ(ab)=ξ(a)+ξ(b), as with logarithms.  

T26a shows the indigestibilities of the numbers 1 to 100 – taking the first 16 in 
increasing order of their indigestibility gives rise to the series 1 2 4 3 8 6 16 12 9 5 10 15 
7 14 11 13: the last four are the aforesaid ‘outcasts’. From the reciprocal of the sum of 
the indigestibilities of the mutually prime numbers P and Q, a function for the 
harmonicity of the interval can be constructed: the more indigestible P and Q are, the 
less harmonic the interval – see F25b. 

In 1980 I asked each of twelve friends about what they thought was the order of 
difficulty in dividing a circle into 2-9 equal segments departing outwards from the 
centre of the circle. Their answers were on the average 2 4 (3 8) 6 (5 9) 7 (the numbers 
in parentheses are interchangable), evidently in vast agreement with the function of 
indigestibility. Unknown to me at the time, an interesting experiment had taken place 
in 1975 at Stanford University: test persons had been asked about their perception of 
the similarity of the ten digits 0 to 9 according to several criteria including ‘abstract 
quality’ (see Γ27a); the evaluated pairs of digits were then subjected to multi-
dimensional scaling, a method which spatially places elements in an n-dimensional 
space such that their mutual distances correspond to their dissimilarities. A clear 
separation of the even numbers from the uneven was found as well as the separation of 
the prime numbers from the composite; in addition, the numbers got larger from left to 
right. In 1980 I discovered a structural link with indigestibility along the prime-
composite number border.  
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T26c shows a listing of all just-intoned intervals within an octave with a harmonicity 
of 0.05 and above; the occasional minus sign indicates a polarity towards the upper 
tone of the interval, which then acts as root. Next to each intervallic ratio in the table 
appears its prime decomposition in powers of the prime factors; with the given 
minimum harmonicity (MH) of 0.05 the absolute power limit for the prime numbers 2, 
3, 5 and 7 is the maximum power series (MPS) 7, 4, 2 and 1; prime numbers larger 
than these do not occur and have therefore the power 0. The intervals in this one 
octave under the given constraint number 37. With a range of three octaves and MH of 
0.04, 240 intervals can be listed having an MPS of 10 6 3 2 1 1, graphically depicted in 
Γ27b. T26b shows the MPS and interval quantity at other MH-values with an arbitrary 
range of one octave.  

According to the astronomer Daniel Kirkwood (1814-1895), the gaps in the asteroid 
belt between Mars and Jupiter were caused by ‘commensurability’, simple number 
ratios between periods of rotation of asteroids in the belt and that of Jupiter around the 
sun: due to resonances caused, material that was formerly present at positions of high 
commensurability in the belt was drawn towards Jupiter and destroyed at their thus 
elongated orbit’s perihelion by the sun. Γ27c compares the density of the asteroid belt 
and the harmonicity of the aforesaid rotation intervals – a correlation is clearly 
apparent.  

As to be expected, an increase in the MH reduces the interval density (the MH 0.1065 
lets only a Mixolydian scale through!) and vice versa. There is a link between the MPS 
and the corresponding MH – see F25c; notice that an MPS also encompasses intervals 
of which the harmonicities are less than the given minimum value – they only 
guarantee that all intervals more harmonic than the minimum value will be included. 
With the MPS corresponding to a 0.03 MH (12 8 3 2 1 1 1) there are as many as 
7533(!) different intervals in one octave, of which only 213 are as harmonic as 0.03 
and above.  

The MPS of the accepted standard interval tuning of classical Occidental (and Indian) 
theorists seems to be 9 6 2 0 0..., while interval formation in ancient Greece at 
Pythagoras’ time was more like 9 6 0 0 0.... Both series look like hesitant beginnings of 
the series 9 6 2 1 1 1 0... based on an MH of 0.04 for one octave. Larger prime numbers 
inhibit harmonicity; because of this, theorists have always handled them with 
considerable caution – in analysing intervals, they in earlier times preferred monstrous 
conglomerations of smaller prime numbers to the perhaps more elegant solution of 
smaller products of slightly larger primes (compare the 3-limit augmented 4th 512:729 
to its 5-limit counterpart 32:45).  

Following the 3- and 5-limit systems, the next complex ones are the 7-limit, 11-limit, 
etc., whereby it is implausible to expect convincing music with an arbitrarily large 
prime limit without an appropriately developed, well-considered musical grammar for 
the system that results from it. 
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20 Harmony 5 – Pitch Rationalisation: Theory 

Setting the minimum harmonicity to 0.02, we encounter no fewer than 256 intervals in 
the semitone range of 550 to 650 cents (see Γ28a1); the most harmonic among these 
are the ratios 5:7 and 32:45 and (barely weaker) their inversions 7:10 and 45:64, all of 
which are intervals that could be regarded as tritones. A question that then arises is, 
which of these or other nearby variants are understood by the sounding of a 600-cent 
interval, a question that cannot be answered without an exact inspection of the musical 
context in which this happens. 

As an interval, 600 cents possesses no obvious harmonic meaning, just like the 
syllables ‘damp light’, which, depending on the context, could also mean ‘damn 
plight’. An interval described in cents or semitones is simply a piece of information on 
distance. Only contextually adjusted listening gives the interval harmonic sense. In 
order to demonstrate this I recommend you play the notes C D F E (W.A.Mozart) and  
C# B# E D# (J.S.Bach) on the piano and compare the effect of the major 3rd C-E with 
that of the diminished 4th B#-E (see Γ28b1). The clear tension difference comes from a 
more or less unconscious rationalisation of the notes to a desirable imaginary optimal 
tuning in the listener. 

If, starting at a C, the notes 3, 5 and 6 semitones above it are sounded in order, it is not 
difficult to hear these as Eb, F and Gb. If however the notes appear in the order 0, 3, 7 
and 6 semitones above C, then the series C, Eb, G, F# is suggested, as shown in Γ28b2. 
The four notes of the first series would possibly be harmonically understood as 1:1, 
5:6, 3:4, 45:64, those of the second series as 1:1, 5:6, 2:3, 32:45, seen in Γ28b2 as 
cross-relations of the four notes among themselves, relatively simple ratios excepting 
those from C to F# and to Gb. However, F# (calculated at 32:45, 590 Ct) has a sharper, 
higher-pitched effect than the mathematically higher-presumed Gb (45:64, 610 Ct), 
even if both series are played on an equal-tempered piano – this is probably because 
the two notes function even ‘backwards in time’ more as leading-tones than as 
structural ones, the Gb leading down to the F, the F# up to the G: they are heard 
(‘melodically’) as pitch-distances and are intoned, particularly on instruments like the 
violin, microtonally closer to the notes to which they are anchored (the ‘leading-tone 
phenomenon’). In this mixed system, then, the tuning of the melodically heard F# and 
Gb – Schenker might call these ‘prolonging tones’ – is less compellingly relevant than 
that of C, Eb, F and G, which are heard more harmonically. Nevertheless, the following 
concerns itself with the harmonic, the relevance of the melodic ramifications remaining 
unconsidered.  
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To achieve harmonic insight into a pitch set, as such irrational, i.e. of known interval 
size but unknown interval ratios, it must be rationalised, i.e. cent values have to be 
changed into ratios. For compositional purposes I took on this task in 1978.  

The solution I found proceeds as follows: at first, all permissable alternative tunings of 
the notes are investigated; the choice depends on two main factors: minimum 
harmonicity and tuning tolerance. In harmonically complexer music, the minimum 
harmonicity should be set lower than in harmonically simpler music; lower sensibility 
results in a higher tuning tolerance. Starting from a selected minimum harmonicity, a 
maximum power series is calculated according to the formula in F25c to produce an 
interval list (like the one in Γ28a1). It is of course possible to determine the maximum 
power series arbitrarily, like e.g. 0, 0, 0, 5, 3, 0,..., a tuning based only on the primes  
7 and 11; however, a series like this is difficult to make use of with compositional 
conviction and can sometimes sound like an out-of-tune presentation of another tuning 
deriving from smaller prime numbers.  

In applying the tuning tolerance, a Gaussian bell-curve, named after possibly the 
greatest of its earliest discoverers Carl Friedrich Gauss (1777-1855), is set at the 
position to be tuned: this curve, of which the width (variance) is proportional to the 
given tolerance, damps – increasingly upwards and downwards in pitch – the 
harmonicity values as in Γ28a2. All intervals that are far from the bell’s centre or in 
any case harmonically too weak to assert themselves are not eligible as candidates. The 
pitch distance above and below the centre where the Gaussian damping factor reaches 
the arbitrarily chosen value of 20 is called the nominal tolerance. Γ28c shows this 
damping process in the tuning of a major scale in cents; the nominal tolerance was set 
here to 50 Ct, half of the smallest distance between two neighbouring steps of the 
scale. 

The next step is to determine the quantity of alternative tunings for each note. Then the 
sum of the harmonic intensities (= the absolute harmonicity value) of all intra-scalar 
intervals involving all alternative tunings is evaluated, whereby the alternative tunings 
for any one scale degree are excluded from mutual comparison: the tuning 
constellation chosen is the one with the highest harmonicity sum. If the number of the 
pitches to be tuned is e.g. 8 and the number of their tuning alternatives is 3, the number 
of tuning constellations is 38=6561; an 8-note-scale contains 28 intra-scalar intervals – 
the formula for this is n(n_1)/2, where n is the number of notes – therefore in this case 
a total of 6561ž28=183708 harmonicity values must be added to find the optimal 
tuning, a task for a computer! It proved more efficient programming to add not the 
harmonicities but rather their reciprocals the inharmonicities (in each case the sum of 
two indigestibilities), whereby the smallest sum total is picked. The doubled* total 
number of intra-scalar intervals n(n_1) divided by the minimum inharmonicitiy sum is 
what I call the specific harmonicity of the optimal tuning of the pitch set.  

*using the doubled number excludes the factor 2, thus saving computing time 
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21 Harmony 6 – Pitch Rationalisation: Practical Examples 

The tuning of one octave of a major scale finds the following to be the four most 
harmonic alternative tunings (AT) for each of the 8 pitches, using a minimum 
harmonicity (MH) of 0.03-0.05 and a nominal tolerance (NT) of 30-50 Ct (see T29a1):  
      1 /1       9 /8      5 /4           4 /3       3 /2           5 /3        15 /8       2 /1  
 224 /225     10 /9    81 /64        27 /20     40 /27        27 /16     243 /128  225 /112  
 225 /224     28 /25 512 /405        75 /56  112 /75        42 /25     256 /135     81 /40  
    80 /81  125 /112    63 /50  1701 /1280  125 /84  2048 /1215        40 /21  448 /225 

After 65536 checks of all 28 intra-scalar interval relationships of the 4 best candidates 
of the 8 scale degrees (48=65536), the computer chooses the tuning combination 1/1  
9/8  5/4  4/3  3/2  5/3  15/8  2/1 (here all from the first set of ATs), a universally accepted 
solution known for a very long time – see also Γ13a. The specific harmonicity of this 
tuning is 0.2252. 

In the harmonic minor scale, the following equally well-known tuning constellation 
was found to be optimal under the same conditions: 1/1  9/8  6/5  4/3  3/2  8/5  15/8  2/1. 
The specific harmonicity is 0.2032, as seen in T29a2. 

The pentatonic scale (C D E G A c, not shown in T29a), is tuned under the same 
conditions as above as 1/1  9/8  5/4  3/2  27/16  2/1 (the classical Pythagorean tuning; 
the Pythagorean major sixth 27/16 was taken from the second set of ATs because it 
agrees better with the major 2nd 9/8, major 3rd 5/4 and perfect 5th 3/2 – compare the 
respective numerators and denominators). The specific harmonicity is 0.2387.  

The whole-tone scale is tuned at an MH of 0.03-0.05 and a NT of 40-50 Ct as  
1/1  10/9  5/4  64/45  8/5  16/9  2/1 at a specific harmonicity of 0.1615 (seen in T29a3). 

An interesting case is the Bohlen-Pierce Scale (BP-Scale), in which the perfect 12th 
(1:3 or 1902 Ct, sometimes called the tritave; should the octave be renamed ‘bitave’?) 
is divided into 13 equal intervals. The cent values of the scale degrees are therefore  
0 146 293 439 585 732 878 1024 1170 1317 1463 1609 1756 and 1902. Its 
rationalisation yields different tunings for various MH and NT values (for reasons of 
computing time economy only 2 ATs were examined – see T29a4). MH 0.03-0.04 and 
NT 40-50 yielded 1/1  35/32  6/5  9/7  45/32  3/2  5/3  9/5  2/1  15/7  75/32  5/2  25/9  3/1 
at a specific harmonicity of 0.12. The pitch deviations from the input cent values are  
0 +9 +23 _4 +5 _30 +6 _6 +30 +2 +12 _23 +13 and 0 Ct. The constraints MH 0.05 and 
NT 10-30 Ct cause problems: a conflict between the relatively high MH and low NT 
results in fewer available tuning possibilities, so that the 1st and 2nd scale degrees as 
well as the 8th and 9th (at NT 10-20 Ct) are tuned identically. Only MH 0.04 
downwards gives unambiguous rationalisations, with an average of higher pitch 
deviations. The BP just intonation given by other sources based on 3:5:7 chains is  
1/1  27/25  25/21  9/7  7/5  75/49  5/3  9/5  49/25  15/7  7/3  63/25  25/9  3/1. The pitch 
deviations are in this latter case lower than in the rationalised version given above, 
which was based on intra-degree harmonicity considerations. 
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In T29b the ratios and harmonicities of the 78 interval relationships between the 13 
steps of a twelve-tone equal-tempered octave are shown; this optimal tuning comes 
from the following conditions: MH 0.04, NT 30 Ct, AT 2 (a 3 here would lead to 
1,594,323 rationalisations!). This method is also applied to the 14 steps of an octave 
divided into 13 equal intervals. The same MH (0.04), NT (30 Ct) and AT (2) result in a 
tuning network also shown in T29b.  

Comparisons of the results of various MHs and NTs with these two equal tempered 
scales were also undertaken, graphically displayed in Γ30. The goal was a kind of 
landscape in which the relevance of a tuning solution is easily surveyed through its 
spread. For this purpose I developed a compact graphic method to represent the 
rationalisation and size of intervals called ratioglyphs (from the Latin ratio = 
‘reckoning’ and the Greek glúphein = ‘to carve’), which is explained by the schematic 
at lower right in Γ30a and b (based on 2:3, 15:16 and 32:45 as well as on 16:21, 
128:243 and 24:35): the upper half of each ratioglyph portrays the prime power along a 
‘trunk’ to which the prime numbers are attached in rising order; the powers of these 
are given as lengths of horizontal ‘branches’ to the left for negative powers and to the 
right for positive ones. If the branch becomes too long it can twist upwards in order to 
save space. The lower half of the ratioglyph shows the interval size in cents, first in 
hundreds and then – as a deviation from the hundreds – in tens and units. In this way 
each tuned interval receives a precise, visually assimilable form through its ratioglyph. 

In addition I developed a notation for note names, in which the intervallic origins of 
the given notes are made uniquely apparent: a number to the right shows the number of 
5ths (e.g. 3 or 3 for rising or falling), an accent shows the 3rds (e.g. ` for rising, ´ for 
falling), and a question mark indicates the 7th (? for rising, ¿ for falling – see below). 
The note ¿f´1 is thus (Ω)+Q-T-S (or 2/1 ž 3/2 ž 4/5 ž 4/7 = 48/35 or 547 Ct) above C  
(S means the natural 7th 4:7). In the case of multiple 3rds or 7ths the symbol is repeated, 
e.g. ``` or ??. 

Returning to the ratioglyphs in Γ30: in both scales a special tuning solution stands out 
that is the most plausibly recommendable because of its wide dispersal: shown against 
a grey background in Γ30, this tuning holds in the 12-tone scale with an NT of 40 to 
60, and in the 13-tone scale around NT=40 (a higher NT appears to be inappropriate in 
this case; after all, given enough NT all notes would be tuned to an octave or a fifth!). 
The multi-dimensional scalings (MDS) of both these optimal tunings show in each 
case an area in which the notes are spatially allocated according to harmonicity – the 
closer two notes are shown to each other, the more harmonic the interval between them 
is. These MDS-fields can be considered as ‘maps for harmonic modulation’ and can be 
applied to n-limit systems (notice e.g. the family grouping of the ?-notes on the one 
hand and the ¿-notes on the other in the MDS in Γ30b).  
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22 Metre 1 – A Quantitative Approach to Metre 

The rhythmic organisation of music generally shows a more or less strong dependancy 
on an internal hierarchical metre, a series of regular points in time, acoustically 
activatable in various ways. The stratification of a metre, the inner acoustical hierarchy 
of which is multiplicative, is shown in Γ31a by means of a 12/16 bar, which exhibits a 
stratification of 2ž2ž3. If this stratification is examined in further depth with 32nd- (y), 
64th-notes etc., the geometric series given could proceed by constant bisection 
..ž2ž2ž2ž2..; the position of the series’ last divisor which is not 2 determines the order 
of the metre – according to this reasoning, 12/16 is a metre of 3rd order, 6/8 (=2ž3) of 2nd, 
3/4 (=3(ž2ž2...)) of 1st and 4/4 of 0th order.  

Independent of the order of the metre, the individual pulses on every level of the 
stratification exhibit a variable metric relevance. Assuming the 0th (highest) level to 
relate to a full bar, a 12/16 metre has on its 1st (second-highest) level two dotted quarter-
note (q.) beats, a metrically stronger followed by a metrically weaker. On lower levels 
there is a lack of sufficiently differentiated verbal descriptors – the evaluation of the 
pulse-strength of the four dotted 8th-notes (e.) already on the 2nd level necessitates the 
introduction of numbers (here ‘beat’ means the same as the more general term ‘pulse’ 
only on the two highest levels – the 0th and the 1st).  

The diverse acoustical activity of the pulses of a metre – in the simplest case, they are 
played or skipped – generates a rhythm that supports the metre to a higher or lower 
degree, i.e. the metric field strength can be consciously increased or decreased, with 
the rhythm varying between metric (with a clearly recognisable basic beat) and ametric 
(without a recognisable basic beat). This can happen by defining and employing pulse-
strength in such a way, that in order to support the metre the stronger pulses appear 
more frequently than the weaker; in an ametric rhythm, pulses of all strengths would 
be equally frequent. Analogous to this, using a pitch scale, the tonal field strength or 
‘degree of tonality’ can also be influenced by how often the notes of the scale are used, 
based on the harmonicity of the intervals between the notes and an arbitrary ‘tonic’. 
Γ31d shows the relationship of field strength to probability and the resulting 
‘oftenness’ (frequency of occurrence) of the elements – pulses of a metre, notes of a 
scale – as a straight line of variable gradient.  

The ascertainment of sufficiently differentiated pulse-strength values remains to be 
gone into: this implied providing a unique evaluation of each pulse of a metre, so that 
no two pulses could be perceived as equally strong. I found this differentiation missing 
in diverse systems at the end of the 1970s and decided to search for my own 
appropriate method.  
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In 1978 I was able to develop a formula that calculates a pulse-strength evaluation (or 
indispensability of attack, as I call it) for every pulse at every level of a multiplicative 
metre of any order; from this formula, the values for the six 8th-notes of a 3/4 bar are  
5 0 3 1 4 2, those for a 6/8 bar are 5 0 2 4 1 3. Both series of numbers show the strongest 
emphasis on the first 8th-note; the second strongest in 6/8 is on the fourth, in 3/4 on the 
fifth 8th-note. Here are the indispensabilities of the twelve 16th-notes (x) of the third 
stratification level of the metres 3/4, 6/8 and 12/16 (((((see also Γ31c): 

3/4  (3ž2ž2) :  11 0 6 3 9 1   7 4 10 2 8 5  
6/8  (2ž3ž2) :  11 0 6 2 8 4 10 1   7 3 9 5  
12/16 (2ž2ž3) :  11 0 4 8 2 6 10 1   5 9 3 7  

The values for the first and second levels are also contained herein: to make these 
evident, subtract the difference between the quantity of pulses at the level shown above 
and those at the desired level from the indispensability, keeping only non-negative 
numbers, e.g. for 3/4 (the number of pulses on the 3rd level as shown above is 12): 
1st Level (pulse quantity 3: subtract 12_3, i.e. 9):  2 _ _ _ 0 _ _ _ 1 _ _ _  
2nd Level (pulse quantity 6: subtract 12_6, i.e. 6): 5 _ 0 _ 3 _ 1 _ 4 _ 2 _  

Notice that at all levels, the indispensability of the first pulse is always one less than 
the number of pulses, and that that of the second pulse is always zero. The 
indispensability values’ relevance can be illustrated through a so-called dilution 
process: if the ‘more dispensable’ pulses at the initially attack-saturated xth level of a 
metre are gradually removed, the impression of the metre remains intact, as e.g. on the 
penultimate levels of the 3/4 and 6/8 bars shown in Γ31b.  

The indispensability formula is designed for the successive division of a metre by 
arbitrary prime number divisors. A prerequisite for each divisor is a fundamental 
indispensability series for the metric level containing the corresponding prime-quantity 
of pulses, e.g. for 2 the series 1 0, for 3 the series 2 0 1, for 5 the series 4 0 3 1 2 etc.  
In a metre with the stratification p1žp2žp3ž...žpn, the indispensability ψ(n) – note the 
lower-case ψ – of the nth pulse is given by the formula in F32a. A valid prime-number 
fundamental indispensability series is given by the function Ψ(x) – note upper-case Ψ – 
shown in F32b, where x corresponds to the part of the formula in parentheses 
immediately following Ψp in F32a.  

The prime-number fundamental indispensability Ψ can be personally estimated or 
worked out by the formula in F32b; the basis here is the indispensability series for a 
metric level with one pulse less, in which the highest-level divisors are the largest (e.g. 
to find Ψ for a cycle of 23 pulses, the values are first calculated according to the  
ψ-formula for 22 pulses, whereby 22 is represented as 11ž2; the values for 11 pulses 
are based on those for 10, understood as 5ž2, etc.). The dropped pulse is reinstated 
between the last two pulses of the ‘reduced’ metre (e.g. 4/8 standing in for 5/8).  
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23 Metre 2 – The Measurement of Metric Coherence 

In search of a method to determine the similarity between two metres of different 
stratifications and speeds, I was able to satifactorily employ the indispensability 
method. Compare for example a 2ž2ž3-metre in bar-tempo å20 with a 3ž5-metre in 
bar-tempo å16. They share a common lowest-level pulse-tempo of å240; also,  
5 bars of the first metre are equal in duration to 4 bars of the second (containing in 
each case 60 lowest-level ‘elemental’ pulses in the time period between two successive 
coincidences of pulse 1). Thus one can lay, pulse for pulse, an indispensability series 
applied five times for 2ž2ž3 pulses alongside a series applied four times for 3ž5 
pulses, as shown in Γ33a. If the two metres have no common elemental pulses, their 
stratification must be continued further down through additional divisors until this is 
the case; for example, a 2ž5-metre at a bar-tempo of å50 (elemental pulse-tempo 
å500) and a 3ž2-metre at å60 (elemental pulse-tempo å360) are extended to 
2ž5ž3ž3ž3ž2 and 3ž2ž5ž5, respectively, in order to reach a common elemental pulse-
tempo of both metres at å9000. Here too, the largest divisors are allotted to the 
highest levels (e.g. the extension of the 2ž5-metre is ž3ž3ž2, not ž2ž3ž3). 

The best method that I could find to determine the metrical similarity was to multiply 
the relative indispensability (nominal value divided by the maximum value, i.e. by the 
number of pulses minus one) of each elemental pulse of one of the metres by the 
relative indispensability of the concurrent pulse of the other metre, and then to 
establish the sum of all thus obtained products; coinciding stronger pulses have an 
advantageous effect on the sum total, and one has an even better effect if the products 
of the relative indispensability is squared before addition, similar to RMS evaluation. It 
turns out that the average product-square (let us call it ‘æ’) is larger for clearly 
related metres (for example for 2ž3 and 3ž2 in the same bar-tempo: 0.3245) than for 
unrelated metres (for example for 2ž2ž3 at å20 and 3ž5 at å16: 0.1573). With this 
process it happens that for the least related metres the æ tends down towards 1/9 (the 
æ of all pairs of numbers less than or equal to N is N4/9+N3/3+13N2/36+N/6+1); thus 
9æ_1 will tend towards zero. With half the negative reciprocal of the natural 
logarithm of (9æ_1)/3.5 (3.5 is the highest possible 9æ_1 between two 2ž2 metres 
of identical bar-tempo) I found a scaling which to me is the clearest and most 
convincing; this coefficient is defined in the formula in F34. 

T35a is a table of the calculated metrical ‘similarity’ of the four three-level metres upto 
third order with pulses not exceeding 12 in number (2ž2ž2, 2ž2ž3, 2ž3ž2, 3ž2ž2); the 
tempo ratios are determined here by combinations of the whole numbers 1 to 3. The 
first value in this table – 0.46382 as a metrical similarity between a 2ž2ž2-metre and 
itself – shows that the word ‘similarity’ causes a problem; here one should surely find 
an identity, more plausibly expressed by the value 1.0. The identity between 3ž2ž2 
and itself is indicated (in the same table) however with 0.41454 – this way one can see 
that this measurement in general also takes the metric simplicity into consideration – 
2ž2ž2 is simpler than 3ž2ž2.  
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For this reason I have decided to call this property that combines the similarity 
correlation between the two metres with the internal individual simplicity correlation 
of their pulses metric coherence. The actual ‘similarity’ can only be determined by a 
series of attempts, whereby one of the metres remains common to all comparisons: the 
coherence calculated by the comparison of the fixed metre with another metre divided 
by the coherence of the fixed metre with itself (autocoherence) gives the metric 
similarity; with two identical metres this is therefore 1, the value of the identity.  

At the time that I developed the formula for metric indispensability, I also drew up a 
formula for the harmonicity of pitch intervals (see Chapters 19-21), which assigns to 
any frequency ratio P:Q a coefficient for its harmonicity. In harmonically ‘strong’ 
intervals like the octave 1:2 and the fifth 2:3 this value is larger than in ‘weaker’ 
intervals like the tritone 32:45. If one were to consider an audible pitch as an extremely 
rapid series of pulses, of which the tempo is the pitch’s frequency (I call this the 
frhyquency, the ‘rhythm-frequency’), the harmonicity would be have to be a kind of 
‘micrometric coherence’! The table in T35b shows the metric coherence of 32 different 
pairs of metres of the same bar tempo; for comparison, the harmonicities of the 
corresponding pitch-intervals are also included. The parallelism between them is even 
more visible in graph form – see Γ33b. The question then arises: ‘Is harmony a special 
case of polymetre?’. 

This prompted me to apply my method of pitch rationalisation to rhythm. Manually 
played from a music score, a rhythm was stored in milliseconds in the computer and 
converted to cent values of pitch as follows: an arbitrarily chosen time unit was 
allocated to an arbitrary cent value; according to the formula for converting frequency 
quotients into cents, each measured delta-time (the time difference between one event 
and the following) was converted into cents – in this way, a duration twice as long as 
the fundamental time unit was represented by _1200 Ct and a time half as long by 
+1200 Ct. The resulting pitch set was then rationalised according to the harmonicity 
method (with the parameters minimum harmonicity, nominal tolerance, and alternative 
tunings) and then converted back to rhythm. The results were completely satisfactory: 
tuplets (like triplets, quintuplets) as well as dotted rhythms were placed at the positions 
dictated by the score, although the played input was rhythmically not at all precise.  
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24  Mathematics 6 – Stochastic Analysis and Synthesis 

According to an analysis of the main entries in the Concise Oxford Dictionary (11th 
edition revised, 2004), the most common letter of the English language is E – it made 
up about 11% of all letters. A followed with 8½%, then R, I, O, T, N, S, L, C, U, D, P, M 
and H, each with a frequency of occurrence of 7.6 down to 3%. The remaining letters 
were less frequent, with X, Z, J and Q bringing up the rear, under 1%. Other languages 
exhibit other frequencies of occurrence. If a text were to be randomly generated 
abiding only by these Oxford Dictionary statistics, it could look like this: 
...DHEOBNATECRCETGUSSIEVIRDEYLIAENDESRNSHAVODICAETCLTBERNETMAAKB... 

This does not look much like English; the relative frequency of the letters is 
satisfactory, but their order is not. Therefore it is not isolated letters that should be 
counted, but rather their combinations, e.g. bigrammes, i.e. all pairs of letters like  
AA, AB, AC, ... BA, BC etc., whereby the ones most common in English are – after one 
authority – TH, HE, AN, IN, ER, RE, ES, ON, EA, TI, AT, ST, EN and ND, in decreasing 
order. Longer chains, trigrammes, lead to more faithful syntheses, of which the most 
frequent according to the same authority are THE, ING, AND, HER, ERE, ENT, THA, 
NTH, WAS, ETH and FOR. T36a shows the statistics of all individual letters as well as 
the most frequent bigrammes from the English words of this chapter; the number of 
appearances is given to the left of the ‘ž’. 

Chains of elements, like in this case letters, or of any kind of general symbols, were 
examined statistically as described above by the mathematician Andrei Andreyevich 
Markov (1856-1922) at the beginning of the 20th Century; in this context they are thus 
called Markov-chains. The longer the chains, i.e. the higher their order, the more they 
say about the general behaviour of the elements and the closer a re-synthesis is to the 
original source. T36b lists at the top an excerpt from a sentence about Markov (‘At the 
start of the twentieth century, the Russian mathematician Andrei Andreyevitch Markov 
developed a method’). Under that, eight re-syntheses of the text are listed, 
corresponding to the Markov-orders 0 to 7; the gradual transition, from gibberish of 
order 0 (in which each letter is taken for itself), to something pronounceable of order 1 
(based on bigrammes), to order 2 (trigrammes), is clear. Following this are simply 
linguistic improvements.  

Markov orders are as such whole numbers, but real-number orders can also be realised 
as follows: in a real order W+F (where W is a whole number and F is a fraction) one 
takes 100(1_F)% of the evaluations in order W and 100F% in order W+1, e.g. with the 
order 2.2 (W=2, F=0.2) 80% of the syntheses are of order 2 and 20% of order 3.  
T36b shows at the bottom four additional syntheses of orders between 1 and 2 – a 
gradual linguistic transition is also recognisable here. 
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Music elements, for example notes, can be analysed and re-synthesised according to 
the Markov method. Γ37a shows a fragment of a J.S.Bach Invention in its original 
form as well as a Markov re-synthesis of the order 0-7: a gradually decreasing ‘chaos’ 
is also perceptible here. From this phrase, 32 individual 16th-notes (staccato, smoothed 
out to legato in the notated example) have been listed here, whereby ‘-’ shows the 
original rests: 
    --C-D-E-F-D-E-C-G---C'---BAB-C'--- 

The notes C-C' (C' is an octave above C) tally 2 2 2 1 1 1 2 2 plus 19 rests. Starting 
here, the synthesis of the zeroth order appears as follows: 
    D-BA-E-B-EBC'---EE-D-EEBF--B--F-- 

In this case, the same eight notes tally 0 2 6 2 0 1 5 1 plus 15 rests; the deviation in 
frequency of occurrence from the original would be gradually minimised in a 
prolonged re-synthesis. Raising the order increases the resemblance to the original; by 
the 6th order the original in this example is restored.  

Stochastics (from the Greek stochastikós = ‘skilful aim’ in the sense of ‘cleverly 
guessed’) is the study of the probability of random events. In 1957, the composer 
Iannis Xenakis (1922-2001) introduced the term stochastic music for statistical sound 
calculations.  

The probability values employable in a composition can be gathered not only from 
already existing music; the point of departure is more frequently rooted in music-
theoretical or compositional considerations. Γ37b depicts a case in which a series of 9 
conditions of probability are translated into musical notes. The leftmost graph (‘1’) 
shows a full-length line at the MIDI-note 76 (E5, see the x-axis), corresponding to a 
100% probability for this pitch, which is confirmed in bar 1 of the musical notation 
below. Graph 9 shows the same thing for the MIDI-note 66 (F#4): see bar 9. Between 
these, the graphs show varying probabilities for the notes from E5 to F#4: a bell-shaped 
curve appears at the right and shifts to the left, where it disappears. The musical 
notation below the graphs have been generated according to the probabilities shown 
here (adding up in each and every stage to 100%); the higher the probability, the more 
frequent the corresponding pitch will be in general. However, the individual measures 
would have to be much longer to keep well to the actual prescribed probability of the 
notes; in any case, the musical example shows – according to the graphs – a gradually 
descending series of pitches from E5 to F#4.  

Various methods for generating stochastic music can be employed using a computer; 
the simplest method is to divide the range from 0 to 1 into as many zones as there are 
elements to be chosen from, where the width of a zone is proportional to the 
corresponding probability (e.g. for 50% there would be a zone of 0.23 to 0.73 – see the 
pentatonic scale example in Γ37c); after this, one throws a series of randomly 
generated numbers between 0 and 1 into the area divided as described and then notes 
the zones into which they have fallen.  
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25 Acoustics 5 – Spectral Analysis and Synthesis 

If a sound wave is generated by putting several simultaneous sine waves together, it is 
formed by the numerical addition of these sine waves, as can be seen in Γ38a: in this 
case, two curves are added in the 1:2 frequency ratio of an octave, evident from the 
lengths of their respective periods. The amplitudes of the two curves also act here as in 
the ratio 1:2 – the slower curve swings twice as far out in the y-dimension as the faster 
curve, shown graphically below as the spectrum of the resultant bold curve, a curve 
that is itself periodic because of the periodicity of its components. The spectrum plots 
the amplitude or sound pressure of the partial frequency on the y-axis; spectra can also 
show sound intensity or dB-levels.  

Γ38b shows a somewhat richer spectrum – in this case, there are five partials with the 
mutual frequency ratios 1:2:3:4:5 and amplitude ratios 1/1:1/2:1/3:1/4:1/5. Γ38c continues 
with 25 partials; here, too, the nth partial has the frequency nF and the amplitude A/n, 
where F and A are the frequency and the amplitude, respectively, of the first partial or 
fundamental. The conspicuous wiggles in the summation curve have become smaller 
but greater in number in comparison to Γ38a and b, a process that is continued to form 
the curves in Γ38c and e (called a sawtooth wave because of its shape).  

Fourier Analysis – a trigonometric method named after its inventor, the mathematician 
Jean-Baptiste Joseph Fourier (1768-1830) – untangles the individual sine-components 
of a periodic curve like the one above: one period of the curve serves as the input; as 
output one gets among other things the amplitudes of the components. The spectrum in 
Γ38e shows that the sawtooth curve drawn there corresponds to the sum of the first 500 
partials with amplitude A/n, and that the square wave in Γ38f is the sum only of odd-
numbered partials but also with amplitude A/n; the triangular wave in Γ38g also 
consists only of odd partials – however, the amplitudes in this case are squared (1/1, 1/9, 
1/25 etc. of the fundamental amplitude), and: the phases of the partial numbers 3, 7, 11 
etc are reversed! Γ38h shows spectra and waves of the amplitude function 1/ξ where ξ 
corresponds to the indigestibility function that I use for measuring harmonicity (see 
Chapter 19) – the ‘more digestible’ of the partials are in this case louder than the ‘less 
digestible’.  

In this way one can calculate the harmonic spectra (containing whole-number 
frequency ratios) of all periodic curves. Among the various forms of Fourier Analysis, 
the Discrete Fourier Transform (DFT, sometimes referred to by its faster version FFT, 
Fast Fourier Transform) is very common; the analysis proceeds in time-frames that 
correspond to a hypothetical period length (N=®/f, where N is the number of samples 
per time-frame, ® is the sampling rate and f is the spectral fundamental frequency). 
Sound waves of all types can be analysed based on an arbitrary fundamental, the 
spectrum of which is calculated from one time-frame to the next. The frequency of this 
fundamental determines the density of the information in the frequency region being 
investigated: if the fundamental is only just below this region, the partials within the 
region could be too widely separated. It is important to know that the amplitudes in the 
DFT-extracted spectrum are valid in their relation to the partials’ absolute pitch, more 
or less independently of the fundamental frequency. 
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The bold curve in Γ38d has a sawtooth spectrum as in Γ38c, although this is visually 
not so evident – in contrast to all of the preceding examples, the partials in this case are 
of unequal phases, i.e. the sine components start their individual periods at different 
angles, although the acoustical result sounds the same as the sawtooth sound with 
partials of equal initial phase (see again Γ38c); the spectrum is also derivable through a 
DFT here. In listening to sounds, the human ear acts similarly; individual partials, 
particularly lower ones, can be heard individually – independent of phase – when 
listened to carefully.  

In this way the note G3 (392 Hz) played on a bassoon was analysed and illustrated as 
in Γ38i-l; one sees – connected by splines – the relative amplitudes in % and the 
coresponding loudness level in dBu against the pitch in semitones and partials. Above 
the 12th partial (4704 Hz), the level drops below _30 dBu or 3.2% amplitude and is no 
longer shown.  

Fourier Synthesis, also called additive synthesis, is the reverse method, described here 
at the beginning for constructing sound waves; it is not suitable for generating noise. If 
for example, a synthetic piano sound is desired, spectra of successive periods of the 
sound wave of a specific note on the piano are determined through Fourier Analysis 
and stored digitally. Since the sound (especially directly after the initial striking of the 
key) is not static in time, several periods up to a length of about 0.3-0.4 seconds (about 
100 periods for C4) are analysed; in this case it is not necessary to store the spectra of 
each and every period – they can instead be additively fused into time-frames of e.g. 
10 ms. Following this simulated synthesised attack, the rest of the sound and its decay 
can be realised by the looped repetition of the last period(s), gradually faded out in 
loudness. In order to achieve natural sounding timbral transitions, this process is 
repeated for a sufficient number of fundamental pitches, spaced at best up to not more 
than a major third apart. With this spacing, 22 fundamentals (7 octaves) ž 30 time-
frames (300 ms) ž (say) 50 partials would result in 33000 numbers, which would 
require, for example, for 16 bits each, a storage capacity of about 64 kilobytes. From 
this material one can calculate for composed pitches and loudnesses sound waves of 
longer duration and then convert these from digital to analogue; however, this 
(oversimplified) ‘piano sound’ lacks typical noise components mainly produced by the 
striking of the hammers.  

Γ38m shows a hand-drawn wave period, the Fourier Analysis of which is shown up to 
the 99th partial in T39. This analysis forms the base for a re-synthesis, with 6, 16 and 
75 partials as shown in Γ38n-p; one cannot fail to notice how, with an increasing 
number of partials, the original form is gradually re-constructed.  
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26 Acoustics 6 – Frequency Modulation and Phase Distortion 

In the early years of electronic music, introduced around 1952 significantly by the 
composers Herbert Eimert (1887-1972) and Karlheinz Stockhausen (1928-2007), 
analogue sound production was achieved mainly with simple sound generators (which 
usually offered only simple wave forms like sine, sawtooth and square); in addition to 
this there were noise-generators and diverse sound-transforming modulators (e.g. the 
ring-modulator). From 1957, Max Mathews (1926-2011) enabled a larger diversity of 
calculable tones and noise to be produced by digital means, which was, however, a 
very cumbersome alternative due to the relatively low speed of the computers at the 
time as well as their small storage capacity. Today – thanks not least to the 
introduction of MIDI – the array of available devices includes a large range of 
synthesizers and samplers.  

The technique of sampling – which has advanced to be the most important method of 
sound production today – is rather simple: for a satisfactory reproduction of e.g. a 
well-known type of sound like that of the piano, the original sound wave of notes 
every three or four semitones apart over the complete required range, recorded through 
a microphone, is AD-converted and stored as a series of numbers (samples). Waves of 
intervening fundamental pitches are simulated through interpolation. In order to use 
the storage capacity for long sustained sounds sparingly, only the beginning of the 
sound (up to about 300-400 ms), important for its recognition, needs to be rendered; 
the remainder can be formed from a few typical periods at the end of this initial 
portion, which are then repeated in a loop, the amplitude of which is shaped by an 
appropriate envelope. At a spacing of a major third and a sampling rate of 44100 per 
second, 22 waves (7 octaves) ž 0.3 seconds (300 ms) ž 44100 samples would result in 
291060 numbers, which would require, for example, for 16 bits each, a storage 
capacity of about 4.4 megabytes. 

If new, hitherto unknown types of sounds were desired before 1980, one had to turn to 
general technologies like calculated, DA-synthesised sound waves, which was a very 
time-consuming matter then. Or one employed Fourier Synthesis with several sine 
generators sounding simultaneously in real-time, which was complicated because of 
the quantity of sound producing devices necessary for the partials of a sound. Or one 
had to rely on analogue synthesisers, which had the ability to produce few and 
relatively specific sounds depending on the given electronic circuitry. However, 
methods like Frequency Modulation (FM) or Phase Distortion (PD), developed in the 
1980s, proved to be relatively uncomplicated; they allowed a large spectral variety to 
be obtained by the clever use of relatively few sound generators.  
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The FM-method published in 1973 by John Chowning (*1934) has been employed in 
a different form for quite some time in broadcasting: a sine wave frequency, 
fluctuating slightly around a mean value over time, can be analysed as a frequency-
time curve. If these fluctuations are relatively slow compared to the periods of the 
wave of mean frequency (the carrier), the decoding can be carried out more precisely: 
FM-radio works this way, in which a high carrier frequency (88-108 MHz) is 
modulated by a much more slowly vibrating sound wave (20-20000 Hz). If the carrier 
wave and the modulation are close together in frequency, they are more difficult to 
distinguish from each other – through their mutual influence, spectral side-bands 
originate which enrich the sound timbre. In this way, Chowning was able, given only 
two frequencies, to produce several more. The basic formula for a curve subjected to 
FM has the form e=Asin(αt+Isinβt), where e is the deviation of the wave from its 
position of rest, t is time, A is the maximum deviation (amplitude), and α and β are the 
periods of the carrier and the modulation waves, respectively. I is the modulation 
index, which influences the resultant spectrum. Γ40b shows a carrier wave of 100 Hz 
modulated by 10 Hz with a modulation index of 0.2. The resulting wave (in Γ40a still 
unmodulated), ‘swollen’ towards the middle and ‘squeezed’ at the edges – better 
visible with higher indices (reaching 15 in Γ40h) – shows by Fourier Analysis (Γ40b-
e) symmetrically outward-moving side-bands (the partials are displayed as multiples of 
10 Hz); from Γ40f on, the bands, their lower ends shifted into the negative frequency 
area, reappear with opposite phase in the positive region, thereby damping other 
frequencies present there. The amplitude development of the side-bands can also be 
calculated by Bessel Functions, named after the mathematician Friedrich Wilhelm 
Bessel (1784-1846); the explanation of these functions is beyond the scope of this 
book. With modulators equal to and exceeding the carrier frequencies, the forms 
shown in Γ40i-l are generated at indices 1 and 10, respectively. FM can be cascaded: 
the modulation can itself again be modulated, and so forth – the first known FM-
synthesizer, the Yamaha DX-7, employed six tone-generators linked to each other in 
32 different ways.  

Phase Distortion (PD) was developed by several researchers approximately at the same 
time as the origins of FM sound synthesis – expressed in highly simplified terms, a 
wave is sent through a table containing substitute values assigned to every possible 
input y-value. Γ40m shows five different results: the original curve shown at top left 
(here a sine wave) is subjected to the one-to-one correlations shown in the grey-filled 
boxes to the right (showing the ‘old’ y-value on the x-axis against the ‘new’ value on 
the y-axis): in the three rightmost examples, shown in the middle of the diagramme, 
the output is clearly much more complicated and richer in partials than the input-signal 
– see the spectra at the bottom. A more basic form of PD-synthesis is the application of 
a variable sample rate to the sound wave (in this case, the meaning of the term phase 
distortion is more understandable): here, too, one can achieve complex sounds with 
very simple means.  
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27 Acoustics 7 – Complex Tones and Noise 

Γ38i-l show a number of parallel vertical lines indicating on the x-axis the frequencies 
of the partials of a bassoon spectrum and the corresponding amplitudes and loudness 
levels on the y-axis. All spectra containing partials can be illustrated like this, both 
harmonic (in which the partials make up whole-number frequency ratios and therefore 
form a harmonic series) as well as inharmonic ones (where the frequencies do not form 
an harmonic series, e.g. as in many types of bells). An acoustical phenomenon of this 
sort comprising a number of partials is called a complex tone: its spectral 
representation consists solely of parallel vertical lines; if the spectrum is harmonic, the 
sound wave is periodic.  

Compare this with the spectrum shown in Γ41a of a forcefully struck tam-tam. Instead 
of parallel lines ones sees a curvy envelope; the timbre of this instrument, a noise, 
contains no perceivable sine-components. What kind of frequencies are contained in 
this type of spectrum? 

It is generally assumed that a noise-band bounded by two frequencies contains ‘all the 
frequencies in between’ and that a point on the spectral envelope indicates the 
amplitude of the frequency at this point on the x-axis. According to this scenario, even 
the narrowest band of noise would have to consist of an infinity of sine waves (because 
for each pair of neighbouring frequencies there would have to be another one between 
them), which either add up to a sound wave of infinitely large amplitude or would each 
have to have an infinitely low loudness level (zero). 

This portrayal is not useful. Here it will be shown that noise-spectra have stochastic 
properties, i.e. that they work according the principles of probability and chance. In 
Γ41b, 882 arbitrarily generated random numbers are seen in graphic form (98 dots in 
each of 9 vertical boxes with a light-grey background): from left to right whole 
numbers between zero and a certain maximum were produced by a random generator. 
If this series is sent as samples through a DA-converter, it is heard as white noise, in 
which all (audible) frequencies are physically equally loud (at a sampling-rate of 
44100 Hz, these 9 boxes would take 20 ms to traverse). A Fourier analysis at the top of 
Γ41b shows a well-spread spectrum: nine DFTs are shown as black curves, each an 
analysis of a ninth of the random numbers (i.e. 98 each). The spectra, though different, 
all range from 0-20 kHz (each DFT box additionally shows in the background the 
other eight spectra for comparison in grey).  

Noises also lend themselves to Fourier analysis: in Γ41b the amplitudes of a fictitious 
fundamental and its likewise fictitious partials were calculated (50 Hz and multiples 
thereof). For noise, one can interpolate between these partials – the lower the 
‘fundamental’, the greater the density of the ‘partials’ in mid-range. 
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Observe the 98 random samples in the leftmost, slightly darker grey-filled box in Γ41b 
– stretched horizontally and compressed vertically, they can be seen again in the 
longish grey box just below: each successive pair of samples can be imagined as end 
points of a sine wave segment of maximum amplitude (_32768 to +32767 with 16 bits) 
– it was possible to calculate the variable frequency of this wave of invariable loudness 
from the sample rate (44100 Hz was assumed here) and sample-pair values – as shown 
in the graph below labelled ‘SIS’ (for ‘sustained interval sequence’) – allowing the 
white noise to be interpreted as a ‘fleeting sine tone’ with a random momentary 
frequency: the pitch histogramme at the bottom (marked ‘Hgm’ – the x-axis is 
calibrated in cents) shows the SIS-intervals as especially present in the zone roughly a 
tritone above and below 44100 Hz (0 on the x-axis), in seeming opposition to the 
DFTs above, to which they however are not necessarily related.  

These considerations form the base of a sound wave system I developed in 2001 
called ISIS (‘Intra-Samplar Interpolation of Sinusoids’): in it, every pair of consecutive 
samples in any sound wave can be imagined as being connected by a sine segment of 
definite frequency and maximum amplitude. The formula for this frequency is 

f = ®(Û(s2)_Û(s1))/2π, 
where f is the ISIS-frequency, ® the given sampling rate and s1 and s2 are two 
consecutive samples within a ±1 range. It was found meaningful to place f – if needed 
by adding or subtracting ® – within the frequency range ®(1±½), i.e. sampling rate ± 
Nyquist limit (®±ŋ). This version of ISIS involves contigual phasing, i.e. two 
neighbouring sine segments meet – reminiscent of splines – always with the same 
phase.  

Γ41c shows an example of ISIS Analysis with 12 arbitrary samples (cf. Γ03g) – from 
each of the 11 successive sample-pairs one frequency was extracted by the above 
formula (e.g. 43195, 42685, 49460 Hz, shown with their connecting phases at the top 
of the diagramme – very high frequencies!); they can however be physically 
transposed or otherwise used as pitches, and then if need be, converted (back) into a 
sound wave by the following formula:  

s2 = ß(Û(s1)+(2πf/®)), 
where f, ®, s1 and s2 have the same meaning as before. 

For Γ41d, the reverse method – ISIS Synthesis – was invoked: the examples shown 
here are 1) a repeating A4, 2) an A4-A5 tremolo, 3) a random series of notes between A4 
and A5 as well as 4) a stochastic notes series with probability maxima at A4 and A5 – 
histogrammes for the frequencies employed are shown above (‘Hgm’). In synthesis I 
did not keep to the ®±ŋ range. A DFT of the synthesised curves seen at the bottom 
right of each of the four diagrammes based on 731/3 Hz shows in 1) 440 Hz,  
2) 660 Hz, to which the octave 440+880 Hz has ‘fused’!, 3) 660 Hz with softer 
accompanying side-band frequencies and 4) a rich spectrum. 

A noise can therefore quite plausibly be regarded as a sine wave of fleeting pitch, of 
which the frequency-histogramme has a special correlation, as yet unknown, to the 
spectrum. 
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28 Acoustics 8 – The Bark Scale of Subjective Pitch  

Pitch is perceived in two main ways. In one of them, the frequencies establish audible 
intervallic links, from which the world of harmony derives (rational-intervallic 
hearing). More frequently, however, the sense of hearing is used to distinguish 
between high and low, bright and dark, to non-intervallically recognise language 
formants and intonation (pitch-spatial hearing). A whispered s.. sounds higher than a 
whispered sh without one needing to recognise the interval between these two noise-
bands, nor to even notice it. 

An experiment: two relatively narrow noise-bands with mid-frequencies 300 and 2000 
Hz are presented to test-persons asked to place a third noise band half-way between the 
other two. Intervallic considerations suggest a mid-frequency of 775 Hz at the 
geometrical mean; however, the mid-frequency chosen will lie in fact at around 920 
Hz, about a minor third higher. This can be explained by the fact that when rational-
intervallic hearing is switched off, another – subjective – system of pitch-hearing 
comes into play which deviates from the physical cent-scale: see Γ42a. 

A second experiment: the frequency of a sine wave is stochastically ‘blurred’ to a 
noise-band; if the sound pressure remains constant, the loudness does not change, even 
when the bandwidth of the noise continues to expand around a fixed mid-frequency – 
this should not be surprising, because with constant central pitch and constant sound 
pressure one would expect the loudness to remain constant. Suddenly, however, at a 
certain bandwidth the loudness begins to distinctly increase with further expansion – 
this critical bandwidth can be relatively clearly determined and possesses a specific 
size for every mid-frequency: see Γ42b.  

Γ42c shows the course of the critical bandwidth in the region of 50 Hz to 18 kHz; 
given the mid-frequency of a band on the x-axis, its corresponding width can be read 
on the y-axis. If as in Γ42d, 100 Hz is the lower limit of a band, the upper limit of this 
band is around 200 Hz (follow the y-axis); the band starting at 200 Hz ends at 300 Hz, 
that starting at 300 Hz ends at 400 Hz. The band limits appear therefore to form an 
overtone series – 100, 200, 300, 400 Hz...; but instead of the expected 500 Hz, the next 
frequency limit is 510 Hz, followed by 630, 770, 920, 1080, 1270, 1480, 1720, 2000, 
2320, 2700, 3150, 3700, 4400, 5300, 6400, 7700, 9500, 12000 and 15500 Hz – these 
values can be seen in Γ42d marked off on the y-axis by the numbers running 
diagonally from 1 to 24 marked ‘bk’ in the middle of the diagramme. Taken in cents, 
the bandwidths decrease rapidly at first, settling down to a bandwidth of 260 Ct around 
2000 Hz, after which they expand again to just over 400 Ct, as can be seen again in 
Γ42c.  

This series of band-limit frequencies represents in fact the above-mentioned subjective 
pitch scale; the unit for this is Bark (here abbreviated ‘Bk’) named after the acoustician 
Heinrich Barkhausen (1881-1956), who introduced the unit Phon. Eberhard Zwicker 
(1924-1990), who worked with the critical bandwidth from very early in its history, 
calls it a scale of ‘toneness’ (German Tonheit), analogous no doubt to the subjective 
‘loudness’-scale (German Lautheit); I prefer the term ‘tone-height’ – ‘tone’ is not an 
adjective!  
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Returning to the first experiment outlined in this chapter – the band-limits (the 
horizontal lines in Γ42d) show 920 Hz at the 8 Bk mark, subjectively half-way 
between 3 Bk (300 Hz) and 13 Bk (2000 Hz).  

T43 tabulates in detail the relationship Bark→Hertz; it was calculated according to 
these formulæ by Ernst Terhardt (*1934) proposed in 1979 and Hartmut Traunmüller 
(*1944) proposed in 1990 as an algebraic approximation of the empirically derived 
values – the transition from the one formula to the other is at 219.5 Hz (= 2.16 Bk): 
If b≤2.16:  f = (4000/3)á(b/13.3) (Terhardt) 
If b≥2.16: f = 1960(b+0.53)/(26.28_b)  (Traunmüller) 
If b≥20.1, Traunmüller improves his formula by the following operation: 
 b←(b+4.422)/1.22.  
The reverse formulæ: 

If  f<=219.5: b = 13.3Ú(3f/4000) (Terhardt) 
If  f>=219.5: b = ((26.81f)/(1960+f))_0.53 (Traunmüller) 
Thereafter, if b≥20.1:  b←b+0.22(b_20.1) (Traunmüller correction) 

(f is the frequency in Hz, b is the tone-height in Bk). 

Γ42e shows the results of these formulæ and the results of four other approximations 
in graphic form – the grey vertical lines show an overtone series on 100 Hz, the dots 
showing the empirical values. 

The critical bandwidth and the Bark scale appear in a series of other phenomena: e.g. 
the smallest discernable interval between two alternating sine waves is about 0.02 Bk 
in the whole audible range: about 35 Ct at 100 Hz, 6 Ct at 1000 Hz, 8 Ct at 10000 Hz. 
The quite coarse interval perception at low frequencies explains the well-known 
practice of tuning a double bass or timpani using higher natural harmonics on the open 
strings of the bass or near the brighter sounding rim of the timpani. 

The scientists Reinier Plomp, Willem Levelt and others have also shown that the 
typical size of the interval between neighbouring notes in a chord in classical music 
has a definite correlation to the Bark scale: lower pitched-intervals, measured in 
semitones, are commonly larger than higher intervals. Furthermore, voice-leading in a 
variety of styles is generally characterized by more leaps in lower registers than in 
higher registers, in which steps are more frequent. 

Legendary research by Plomp and Levelt additionally shows that the most dissonant 
interval between two simultaneous sine tones can be given in Bark (0.25), independent 
of the frequency. This interval is about 440 Ct at 100 Hz, 70 Ct at 1000 Hz and 100 Ct 
at 10000 Hz: see Chapter 30. 

Composers who wish to achieve pitched music in which rational-intervallic hearing is 
irrelevant (e.g. extended glissandi or pointillistic textures) are here recommended the 
use of the Bark scale – the spread of the pitches then seems much more even.  
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29 Acoustics – Loudness Summation and Masking 

If two sine waves sound simultaneously, their curves add up to a composite form like 
those shown grey-filled in Γ44: here are two frequencies in an octave ratio with  
a) equal initial phase, b) with a phase-shift of a eighth-period of the higher frequency. 
The total physical loudness in dB(SPL) depends on the RMS (the ‘root-mean-square’ 
or square root of the average square) of the curve. In this context, the phases that are 
actually irrelevant for the sound as perceived do play a role, as can be seen in the tiny 
RMS-difference between the ‘a’ and ‘b’ parts of the diagramme (1.00000 vs. 1.00013). 
A Fourier analysis of the two composite curves yields the original frequency, 
amplitude and phases as can be seen in the DFT-illustration to the right, shown as the 
8th and 16th partials of an arbitrarily fixed fundamental, one period of which 
encompasses the whole of the sound wave shown; the phase is given by the slope of 
the spectral lines. In extreme cases, the addition of two sine waves with identical 
frequencies and amplitudes but with opposite phases gives a total loudness of zero, 
silence!: the curves cancel each other out. In this case, it is of course impossible for 
Fourier Analysis to reconstruct the original curves. 

Γ44c shows two sine curves of opposite initial phase with a frequency ratio of 8:9 – 
the sum is a curve the loudness of which fluctuates: the frequency of the variations is 
the difference between the sine frequencies, in this case 9_8=1, i.e. an eighth of the 
lower component and a ninth of the higher one – one period of this is shown in the 
diagramme. This clearly illustrates the well-known phenomenon of ‘beating’ of 
frequencies close to each other. Again, Fourier analysis was able to plausibly 
reconstruct the situation (the opposite phase is mirrored in the direction of the spectral 
lines). 

Γ44d shows two sine curves in the irrational and therefore non-periodic ratio of the 
Golden Section (1:(1+√5)/2 or 1:1.618033989, close to 8:13); an examination of the 
RMS, period by period of the lower frequency, results in irregular variations. These 
can be interpreted as an irregularly changing loudness; the actual frequency and the 
sluggishness of the auditory perception of these frequencies determines the appropriate 
size of the time-window and thus the constancy of the supposed loudness. In fact, even 
a single sine tone could, with a large time-window encompassing the entire wave, be 
shown to have a steady loudness, and with a small enough window (approaching 
sample speed) as having a rapidly fluctuating loudness.  
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The subjectively perceived total loudness can be established as follows: 

If the curve is aperiodic, so that the initial phases of the sine components are not 
significant, then the total physical or subjective loudness can be obtained by the 
respective addition of the individual sound intensities in W/m2 or of the subjective 
loudnesses in Sones. Take e.g. a sawtooth tone with a fundamental frequency of 100 
Hz, as shown in Γ44e. The phases of the partials are considered irrelevant here. By 
definition, the amplitudes of a sawtooth spectrum are proportional to the inverse of the 
partial number: these are A/n, where A is the amplitude of the fundamental. In this 
way, the intensities are correspondingly i/n2, where i (proportional to A2) is the 
intensity of the fundamental. Therefore the total intensity, with a practically infinite 
number of partials, converges to (1+1/4+1/9+1/16

...)ži = 1.6449i. The individual intensities 
can now be determined using i/n2 as 59% (=1/1.6449), 14.8%, 6.5%, 3.6% etc., of the 
absolute total intensity. If the total level is e.g. 90 dB(SPL), then according to T08 the 
total intensity is 1 mW/m2 and thus that of the fundamental is 0.59 mW/m2 and that of 
the following partials 0.148, 0.065, 0.036 etc. mW/m2. To find the total subjective 
loudness, the spectrum, as a function of the amplitude in terms of the frequency of the 
partials, must be re-scaled into a physiologically relevant spectrum, viz. in Sones in 
terms of Hertz – or Bark, as in Γ44f. This happens primarily by using the Fletcher-
Munson isophonic curves (Γ12a) and Hz→Bk conversion (Γ42e): if the frequency 
(Hz) and the loudness (as intensity or dB(SPL)-level) are known, then the loudness of 
each partial can be read in Phons and therefore also in Sones. Now the total loudness 
would be found through the summation of the Sone-values, were it not for the 
phenomenon of masking. 

It has been experimentally shown that if two sine tones sound simultaneously, the 
lower tone has a damping effect on the loudness of the upper tone, especially if they 
have a subjective distance to each other of less than one Bark. In other words: if the 
two tones are close enough to each other and their loudness difference is large enough 
to the advantage of the lower tone, it could even happen that the higher tone is 
completely masked and not heard at all. Γ44g shows the sawtooth spectrum as a 
phenomenon of so-called loudness density in Sones per Bark as a function of the 
subjective pitch in Bark. The loudness of each tone is represented – instead of by 
vertical spectral lines – by a sloping curve relatively steeply ascending on the left and 
very slowly descending on the right: for a single sine tone, it is the area contained 
between this curve and the x-axis that corresponds to the loudness of the tone in Sones; 
the area unit is the product of the x-unit (Bark) and the y-unit (Sones/Bark), therefore 
Sones. In a spectrum of the loudness density (as in Γ44g), the maximum value of all 
curves together forms a common envelope curve, that contains between itself and the 
x-axis an area giving the total loudness. These overlapping single areas clarify the 
phenomenon of masking: each commonly shared loudness area only counts once: only 
the total area of all mutually masked partials together corresponds to the actual 
subjective loudness in Sones.  
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30 Acoustics 10 – Sensory Consonance and Dissonance 

A sound wave entering the ear sets a number of things in motion. After passing 
through the outer ear, it reaches the ear drum, which transfers the motion to three tiny 
moveable bones or ossicles (hammer, anvil and stirrup) in the middle ear – see Γ45a. 
The last of these three is connected to the small membrane that covers the oval window 
to the cochlea in the inner ear, which in humans is a cone-shaped fluid-filled tube 
about 35 mm long and from 9 down to 3 mm in diameter coiled two-and-half times – 
see Γ45a1 centre, for demonstration purposes also ‘unrolled’ to the right. Γ45a2 shows 
the unrolled cochlea turned 90˚ around its central axis, then turned by 90˚ in the 
horizontal plane, showing it ‘from the front’ in a series of cross-sections in Γ45a3. This 
tube is divided into three chambers – see the enlargement of a cross-section in Γ45a4 – 
by two membranes, one of which (visible in all these representations of the cochlea), 
the basilar membrane, is a kind of ‘hearing keyboard’ with about 3500 hairs along it 
(see the Organ of Corti in the further enlargement in Γ45a5). These hairs, if bent, 
electrically convey diverse pitch-impressions to the brain. A division of the basilar 
membrane into 24 equally long segments of 1.5 mm each (150 hairs) corresponds to 
the Bark scale.  

The hairs are bent in the following manner: if an arriving sound wave shakes the oval 
window, the basilar membrane becomes wavy, similar to shaking out a towel – within 
milliseconds, a wave runs from the oval window to the tip of the cochlea, whereby the 
amplitude of the wave increases and then decreases. Because of the varying thickness 
of the membrane, the position of maximum amplitude depends on the frequency of the 
input signal: towards the oval window the membrane is thinner and harder and reacts 
more strongly to higher frequencies, vice versa at the tip (see again Γ45a2). At the 
maximum, the hairs are bent by the independent movements of the tectorial membrane 
and the Organ of Corti (see again Γ45a5) and transmit this condition via the auditory 
nerves to the brain. The smallest perceptible interval between two alternating sine 
tones is 0.02 Bk; this must therefore stimulate the basilar membrane at least 150 ž 0.02 
= 3 hairs apart for the two tones to be distinguishable.  

The auditory nerves between the basilar membrane and the brain contain neurons, cells 
that in complete silence ‘fire’ irregularly up to 150 times a second, sending electrical 
impulses of a few microvolts and about 1 ms in duration to the brain. If the hairs of the 
basilar membrane are bent in the rhythm of sound wave periods, the neurons 
coordinate themselves temporally – the more sluggish of them do not fire at every 
sound period, but the total impression made is periodic. In this way, the brain receives 
double information: 1. spatially – through the auditory nerves connected to the point of 
stimulus on the basilar membrane, a rough pitch-analysis in Bark is created for pitch-
spatial, non-intervallic hearing; 2. temporal – the rhythm of the electrical impulses of 
the neurons allows frequencies and therefore pitch to be rational-intervallically 
perceived.  

In 1965, Reinier Plomp and Willem Levelt found that two simultaneously sounding 
sine tones seem the most dissonant (= ‘the least pleasant’) at a mutual distance of 
about 0.25 Bk; Γ45b shows graphs of the degree of dissonance as a function of the 
pitch distance in Bark. To be seen are Plomp and Levelt’s original measurements 
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(‘P&L’) in five octave-wide regions from 125 to 2000 Hz in light grey, the average of 
these in middle grey and a final stylised curve in bold light grey. The most dissonant 
interval, equal to 0.25 Bk, varies from 440 Ct at 100 Hz through 70 Ct at 1000 Hz up 
to 100 Ct at 10000 Hz. Also seen in the diagramme are algebraic approximations of the 
P&L curve, one by William Sethares (*1955) and one by Richard Parncutt (*1957), 
whose elegant solution is the best I know: d=(4ebže_4b)2, where d is the dissonance 
and b is the pitch distance in Bark (e is the constant 2.71828...). 

It could come as a surprise that the tritone, the major 7th (about 1 and 2 Bk respectively 
at 300 Hz) and other intervals known for their dissonance cause no dips in this curve. 
Here it is important to differentiate between the terms ‘consonance’/‘dissonance’ and 
‘harmonicity’/‘inharmonicity’): harmonicity (‘intervallic clarity’) stems from the 
numerical simplicity of the ratio between the two frequencies of an interval, whereby 
timbre is of hardly any significance; string music, for instance, can be re-
instrumentated for winds and/or transposed to extreme registers without losing its 
harmonic meaning. By contrast, consonance refers to the ‘smoothness’ (dissonance to 
the ‘roughness’) of a sound. In the lowest piano octave, a perfect fourth – due to the 
larger interval size of the critical bandwidth there – can be shown to be more dissonant 
than a tritone, a whole-tone more dissonant than a semitone. The psychological 
phenomenon harmonicity originates in the brain’s time-related perception of neuron 
firing: the physiological phenomenon consonance originates in distances on the ear’s 
basilar membrane (0.25 Bk corresponds to about 3/8 mm or 38 hairs.)  

A pair of simultaneous sine tones a tritone or a major 7th apart seem in fact no more 
dissonant than a fifth or an octave: it is the friction of the smaller intervals between the 
complex tones’ partials that makes the intervals dissonant. Γ45c shows the consonance 
behaviour of the tritone B3-F4 (250-354 Hz) based on the two notes’ spectra; for each, 
six partials are shown including all frictional points – the total dissonance is 2.8 as also 
seen in Γ45d, which shows the dissonance sum as a continuous graph over two octaves 
(the curve for the lower octave is a re-creation of and therefore practically identical to 
the one published by Plomp and Levelt in 1965) – see for comparison the grey 
harmonicity curve at the bottom. I find the partials’ subjective loudnesses also 
significant: if the dissonance values are multiplied by the loudnesses (in Sones) before 
they are added, the softer partials carry less weight as seen in Γ45e.  

Γ45f shows an attempt to determine the dissonances of the twelve chromatic notes of 
an octave according to this method involving the subjective loudness. Sawtooth spectra 
were picked as timbre with 6, 12, and 24 partials. Three pitch registers were examined, 
the ascending octaves starting at 27.5 Hz, 220 Hz and 440 Hz respectively. It was 
found that for the octaves from 220 and 440 Hz, the classical standard dissonances 
minor 2nd, tritone and major 7th are, as expected, evidently more dissonant than the 
major 2nd, the perfect 4th and the minor 7th. However, the case is not so clear in the 
27.5 Hz octave: major 2nd, minor 7th and perfect 4th (tiny dips here notwithstanding) 
are comparable in dissonance with the minor 2nd, tritone and major 7th respectively – 
try this out on a piano. In this low range, a semitone seems a bit like a mistuned 
unison, a tritone like a mistuned 5th, and a major 7th like a mistuned 8ve. Γ45f also 
shows (as grey-filled areas) the results of the Plomp and Levelt calculation method for 
six equally loud partials in the three pitch registers. 
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31 Phonetics 1 – Physiological Phonetics: Speech Generation 

In the body of timbres there is a special subset which – in spite of the simplicity, small 
number and strict application of the laws governing it – is through its highly 
exhaustive employment of permitted possibilities richly varied and yet finely 
differentiated – the sounds of human language. Phonetics is the study of the laws of 
these timbres. 

Physiologically considered, language sounds originate primarily through the spectral 
filtering of tones (e.g. vocal cord vibrations) and/or noises (e.g. the hiss of the flow of 
air) through the adjustable size of the mouth, nose and throat and thus by the variable 
resonance of these cavities. If air flows through the open mouth, vowels are formed 
(like a, e, i); if this cavity is narrowed through the tongue or lips, fricatives (e.g. s, z, v) 
are formed; if the mouth is closed by the tongue or lips with a simultaneously open 
nasal cavity nasals (e.g. m, n, ng) are formed, and if the nasal cavity is also closed and 
the internal air pressure is raised, plosives (e.g. p, b, d) are formed when the mouth is 
re-opened. Pressing the tip of the tongue onto the roof of the mouth with space on the 
sides of the tongue generates laterals (e.g. l as in loud).  

In British English there are about 24 consonants (including so-called semivowels or 
approximants) as well as about 12 clearly differentiated vowels (the latter e.g. in keep 
this play there and the bard puns your own book soon or heat hit hate hair hat hurt heart hut 
haught hoe hood who’d or beat bit bait bet bat bird bard but bought boat book boot, along with 
at least 5 diphthongs (from the Greek dís+phthóggos = ‘twice+voice’, e.g. my boy sure 
fears gout – the vowels in e.g. play and own are also arguably diphthongs). These three 
dozen basic sounds are represented by 26 letters in different, in some cases ambiguous 
combinations – frequently the correct pronunciation can only be derived from the 
context: for example read as in read that book! sounds different in I’ve read it. Over 60 
consonants as well as more than 20 vowels, occurring in all world languages, are 
recognised by the International Phonetic Association (IPA); in the International 
Phonetic Alphabet developed by the IPA, the twelve words given in the first example 
above as an illustration of the vowels could be written thus (oversimplified!):  
[kip DIs ple(i) DE Qnd D` bAd p^nz jW o(u)n bUk sun]. T46 shows 
most of the sounds acknowledged by the IPA in tabular form, subdivided according to 
biological-articulational aspects (see below). 

However, back to the English vowels: The first four demonstrate long/short character 
([kip/DIs], [ple/DE]), the last four ([jW/on], [bUk/sun]) short/long. If one 
pronounces the twelve vowels in succession – [iIeEQ`A^WoUu] – one will notice 
that the tongue, at first high up in the front of the mouth, is lowered to the [A], the 
tongue’s highest point moving somewhat to the rear; thereafter it is raised again while 
being shifted even further back in the mouth. This movement causes the oral cavity in 
front of the tongue, as well as the rest of the space behind it, to change in size, having a 
direct effect on the sound production: the height of the tongue is responsible for one 
decisive variable, the forward-backward placement in the mouth of its highest point for 
another. 
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Γ47a shows a cross-section of the oral, nasal and pharyngeal cavities. If the lips are 
rounded, a fourth cavity between lips and teeth is created, which further influences the 
vowel formation: if an [i] (as in feel) is spoken with rounded lips (labial), it becomes 
an [y] (German ü, as in fühl), an illabial [e] becomes a labial [O] (German ö). 
Inversely, a normal labial [u] becomes an [3] with the lips unrounded, a sound that 
occurs for instance in languages as diverse as Portuguese, Thai and Korean, an [W] 
with unrounded lips becomes an [^], as in but. The [#] can be found in the French 
[b#f] (bœuf). The [Q] occurs e.g. in [kQt] (cat). The dark British a in guard is given by 
[A]; the [@] represents the similar American English o in God. Γ47b shows tongue 
placement in the vowels [ieEaAWou] – the phonetician Daniel Jones (1881-1967) 
termed these eight the cardinal vowels.  

The tongue plays a similarly important role in producing consonants, which are 
classified according to three principles – where (‘tongue position’ in T46a – the Latin 
names for the different parts of the oral and pharyngeal cavities shown in Γ47a serve 
as a reference; ‘retroflex’ and ‘glottal stop’ require special explanation – see below), 
how (the ‘way’ the sound is produced, plosive, nasal, fricative etc.) and whether it is 
with vibrating vocal cords (voiced) or not (unvoiced). As to ‘retroflex’: the tongue is in 
this position if the tip is curled back and up toward the palate – the well-known ‘Indian 
accent’ owes its special timbre to this position; some retroflex sounds also occur in 
Norwegian and Swedish. The ‘glottal stop’ can be demonstrated by the difference in 
pronunciation of the word ‘bottle’, as it is spoken in standard British English ([’bWtl]) 
and in London dialects ([‘bW/l]); the [‘] as phonetic symbol indicates a stressed 
following syllable (e.g. [fo’nEtiks] for phonetics). Γ47c shows the position of the 
tongue in generating the unvoiced fricatives [fTsSCX] as in five three seven ships, the 
German ich (articulated in the front of the mouth, similar to a constricted h in huge!) 
and ach (articulated in the throat). Γ47d shows the tongue and lips in the production of 
the nasals [mn7N] as in demure, tenor, (French) seigneur and singer. 

T46a lists the vowels and T46b the consonants in the IPA phonetic alphabet according 
to their physiological place of origin. 



64 
 

32  Phonetics 2 – Acoustic Phonetics: Formants 

The sounds of human speech, known as phonemes, are produced mainly by pressing 
air through the vocal tract in the throat and mouth – consonants produced in this way 
are termed pulmonic (from the Latin pulmo = ‘lung’); moreover, other sound effects 
are possible such as e.g. clicking the tongue. The variable diameter of the vocal tract 
leads to the formation in it of single interconnected spaces, e.g. between the lips and 
the teeth, the teeth and the arch of the tongue, the space behind the arch of the tongue 
etc. The different sizes of these spaces amplify corresponding frequencies in the noise 
of the air stream and also where required in the sound of the vocal cords or the like. 

Phonemes are invariably produced by shaping the mouth in a certain way, resulting 
each time in the same frequency conditions; thus each sound can be classified 
according to its typical spectrum. The frequency bands amplified by the spaces in the 
vocal tract and prominent within the spectrum are called formants. Γ48a1 shows the 
spectrum of the vowel [i] based on the fundamentals C3 (131 Hz) and E!4 (311 Hz). 
The overtone series of each spectrum has been marked with dots, above and below, 
respectively; in both spectra, the frequency regions at 250 Hz and 2500 Hz, common 
formants of [i], are louder than the surrounding frequencies and are marked with F1 
and F2. Due to the independence of the vocal cords from the vocal tract, these absolute 
regions remain intact, even with other fundamentals. Γ48a2 shows two spectra of [a] 
also based on C3 and E!4 – the two formants are here F1=750 and F2=1500 Hz. Γ48b 
shows amplitude envelopes for the first two formants of the eight vowels [ieEQ] and 
[uoWA]. 

It has been established that the first two formants are sufficient for the recognition of 
all vowels, even though a number of higher ones can be measured. The first formant, 
formed by the posterior pharyngeal resonance chamber behind the arch of the tongue, 
ranges from ca. 250 Hz with a highly raised arch (as with [i] and [u]) causing an 
increase in the volume of the posterior chamber, up to 800 Hz when the tongue is laid 
flatter (as with [a]), with the anterior oral chamber and the now constricted posterior 
chamber similar in volume. This first formant depends therefore mainly on the height 
of the arch of the tongue, a vertical parameter. The smaller the posterior chamber 
volume, the higher the 1st formant and vice versa. The second formant, formed by the 
anterior chamber between the arch of the tongue and the teeth, ranges from 800 Hz 
with the tongue arched at the back causing a larger anterior volume (as with [u]), up to 
2500 Hz and higher with the arch in the front causing a smaller anterior volume (as 
with [i]). Thus this second formant results from the arch of the tongue moving 
forwards and backwards on the horizontal axis running through the vocal tract.  
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This two-dimensionality can be used to represent all vowels on one Cartesian plane, as 
can be seen in Γ48c: the two formants are assigned to the x- and y-coordinates. 
Measurements taken from six sources are shown here, respectively grouped for each 
vowel in a grey field bordered by the sources. It is remarkable that the fields, despite 
the diversity of the sources, practically never overlap. Every field is marked near at the 
centre by the symbol for the vowel. Notice, too, the four slanting straight lines in grey 
connecting points in or very near the fields [ieEQ], [yO#A], [3:^0] and [uoW@] – the 
sixteen vowels are located on a grid of tritones (C4, F#4, C5 and F#5) for F1 and whole 
tones (F5, G5, A5, B5, C#6 etc.) for F2 – see also Γ48e. Sound syntheses of the sixteen 
vowels based on these formant positions have proved to be convincing. 

Γ48d shows, based on their positions on the grid in Γ48c, the formants of the vowel 
cycle [ieEQaAWou3yi]. This trapezoid form displays the outer limits of human-
biological vowel formation; all humanly produceable vowels can be located within the 
trapezium. The F1-mirrored formant pairs shown (with invented symbols) at left are 
electrotechnically realisable and sound intriguing, but transcend the possibilities of the 
human mouth. 

Vowels (from the Latin vox = ‘voice’, among other things) can sound alone; on the 
other hand the ‘consonants’ (from the Latin con+sonare = ‘together-sounding’ since 
they usually accompany vowels) form a diffuse group, from nasals (e.g. [n'N<Mm]), 
laterals ([l!\;]) and noisy fricatives ([fvTDszSZCH] etc.), all of which like vowels 
can actually also sound alone, to truly con-sonant plosive sounds ([pbtdkg] etc.). 
While no special alphabetic or phonetic symbols have been assigned by the IPA to the 
nasals in their unvoiced form, the distinction voiced-unvoiced is strongly made in all 
other cases. The unvoiced [1], e.g. in Welsh (written in that language as ll, a double-L), 
is both a lateral and a fricative – try to get a Welsh person to say ‘Llanelli’, the name 
of a town in Southern Wales. Γ48f schematically shows the spectra of six fricatives, 
[xfTSCs] as Gaussian curves. Here it is not formants but more or less broad noise 
bands which characterise the spectra, for which reason they have been calibrated in 
Bark and Phon. Whereas the [f] and [T] spectra are very similar (and their sounds are 
often inadvertently confused), the [xfTSCs] sequence clearly reflects a generally 
rising frequency. This sequence is shown in Γ48g in the form of a sonagramme (from 
the Latin sonus = ‘a sound’ and the Greek grámma = ‘something written’); the x-axis 
represents time, the y-axis (here subjective) pitch and loudness is shown by means of 
grey-scale values. The use of sonagrammes for the visual demonstration of the spectral 
analysis of speech, graphically displaying musically relevant parameters such as pitch, 
time and loudness, is very widespread. 
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Part II: Figures 
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Preface to Part II 

All formulæ and graphs were generated in Postscript 
format (thanks to a suggestion by Björn Erlach) by 
computer programs written by myself. I also designed 
some True Type fonts for this book, such as 
‘Musiquantik’, containing – among others – the 
sixteen characters 0 1 2 3 4 5 6 7 8 9 À Á Â Ã Ä Å, seen as 
hexadecimal digits on pages 2ff: these were all 
extracted from the lattice on the right. 
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Γ01 – 128 combinations of 7 dashes 
 

 
T02 – Conversion of number systems 

    0d = 00000000b = 000o = 00h  
    1d = 00000001b = 001o = 01h  
    2d = 00000010b = 002o = 02h  
    3d = 00000011b = 003o = 03h  
    4d = 00000100b = 004o = 04h  
    5d = 00000101b = 005o = 05h  
    6d = 00000110b = 006o = 06h  
    7d = 00000111b = 007o = 07h  
    8d = 00001000b = 010o = 08h  
    9d = 00001001b = 011o = 09h  
 10d = 00001010b = 012o = 0Àh  
 11d = 00001011b = 013o = 0Áh  
 12d = 00001100b = 014o = 0Âh  
 13d = 00001101b = 015o = 0Ãh  
 14d = 00001110b = 016o = 0Äh  
 15d = 00001111b = 017o = 0Åh  
 16d = 00010000b = 020o = 10h  
 17d = 00010001b = 021o = 11h  
 18d = 00010010b = 022o = 12h  
 19d = 00010011b = 023o = 13h  
 20d = 00010100b = 024o = 14h  
 21d = 00010101b = 025o = 15h  
 22d = 00010110b = 026o = 16h  
 23d = 00010111b = 027o = 17h  
 24d = 00011000b = 030o = 18h  
 25d = 00011001b = 031o = 19h  
 26d = 00011010b = 032o = 1Àh  
 27d = 00011011b = 033o = 1Áh  
 28d = 00011100b = 034o = 1Âh  
 29d = 00011101b = 035o = 1Ãh 
 30d = 00011110b = 036o = 1Äh 

 31d = 00011111b = 037o = 1Åh  
 32d = 00100000b = 040o = 20h  
 33d = 00100001b = 041o = 21h  
 34d = 00100010b = 042o = 22h  
 35d = 00100011b = 043o = 23h  
 36d = 00100100b = 044o = 24h  
 37d = 00100101b = 045o = 25h  
 38d = 00100110b = 046o = 26h  
 39d = 00100111b = 047o = 27h  
 40d = 00101000b = 050o = 28h  
 41d = 00101001b = 051o = 29h  
 42d = 00101010b = 052o = 2Àh  
 43d = 00101011b = 053o = 2Áh  
 44d = 00101100b = 054o = 2Âh  
 45d = 00101101b = 055o = 2Ãh  
 46d = 00101110b = 056o = 2Äh  
 47d = 00101111b = 057o = 2Åh  
 48d = 00110000b = 060o = 30h  
 49d = 00110001b = 061o = 31h  
 50d = 00110010b = 062o = 32h  
 51d = 00110011b = 063o = 33h 
 52d = 00110100b = 064o = 34h  
 53d = 00110101b = 065o = 35h  
 54d = 00110110b = 066o = 36h  
 55d = 00110111b = 067o = 37h  
 56d = 00111000b = 070o = 38h  
 57d = 00111001b = 071o = 39h 
 58d = 00111010b = 072o = 3Àh  
 59d = 00111011b = 073o = 3Áh  
 60d = 00111100b = 074o = 3Âh  
 61d = 00111101b = 075o = 3Ãh

  62d = 00111110b = 076o = 3Äh  
 63d = 00111111b = 077o = 3Åh  
 64d = 01000000b = 100o = 40h  
 65d = 01000001b = 101o = 41h  
 66d = 01000010b = 102o = 42h  
 67d = 01000011b = 103o = 43h  
 68d = 01000100b = 104o = 44h  
 69d = 01000101b = 105o = 45h  
 70d = 01000110b = 106o = 46h  
 71d = 01000111b = 107o = 47h  
 72d = 01001000b = 110o = 48h  
 73d = 01001001b = 111o = 49h  
 74d = 01001010b = 112o = 4Àh  
 75d = 01001011b = 113o = 4Áh  
 76d = 01001100b = 114o = 4Âh  
 77d = 01001101b = 115o = 4Ãh  
 78d = 01001110b = 116o = 4Äh  
 79d = 01001111b = 117o = 4Åh  
 80d = 01010000b = 120o = 50h  
 81d = 01010001b = 121o = 51h  
 82d = 01010010b = 122o = 52h  
 83d = 01010011b = 123o = 53h  
 84d = 01010100b = 124o = 54h  
 85d = 01010101b = 125o = 55h  
 86d = 01010110b = 126o = 56h  
 87d = 01010111b = 127o = 57h  
 88d = 01011000b = 130o = 58h   
 89d = 01011001b = 131o = 59h  
 90d = 01011010b = 132o = 5Àh  
 91d = 01011011b = 133o = 5Áh  
 92d = 01011100b = 134o = 5Âh  
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...T02...
 93d = 01011101b = 135o = 5Ãh  
 94d = 01011110b = 136o = 5Äh  
 95d = 01011111b = 137o = 5Åh  
  96d = 01100000b = 140o = 60h  
  97d = 01100001b = 141o = 61h  
  98d = 01100010b = 142o = 62h  
  99d = 01100011b = 143o = 63h  
100d = 01100100b = 144o = 64h  
101d = 01100101b = 145o = 65h  
102d = 01100110b = 146o = 66h  
103d = 01100111b = 147o = 67h  
104d = 01101000b = 150o = 68h  
105d = 01101001b = 151o = 69h  
106d = 01101010b = 152o = 6Àh  
107d = 01101011b = 153o = 6Áh  
108d = 01101100b = 154o = 6Âh  
109d = 01101101b = 155o = 6Ãh  
110d = 01101110b = 156o = 6Äh  
111d = 01101111b = 157o = 6Åh  
112d = 01110000b = 160o = 70h  
113d = 01110001b = 161o = 71h  
114d = 01110010b = 162o = 72h  
115d = 01110011b = 163o = 73h  
116d = 01110100b = 164o = 74h  
117d = 01110101b = 165o = 75h  
118d = 01110110b = 166o = 76h  
119d = 01110111b = 167o = 77h  
120d = 01111000b = 170o = 78h  
121d = 01111001b = 171o = 79h  
122d = 01111010b = 172o = 7Àh  
123d = 01111011b = 173o = 7Áh  
124d = 01111100b = 174o = 7Âh  
125d = 01111101b = 175o = 7Ãh  
126d = 01111110b = 176o = 7Äh  
127d = 01111111b = 177o = 7Åh  
128d = 10000000b = 200o = 80h  
129d = 10000001b = 201o = 81h  
130d = 10000010b = 202o = 82h  
131d = 10000011b = 203o = 83h  
132d = 10000100b = 204o = 84h  
133d = 10000101b = 205o = 85h  
134d = 10000110b = 206o = 86h  
135d = 10000111b = 207o = 87h  
136d = 10001000b = 210o = 88h  
137d = 10001001b = 211o = 89h  
138d = 10001010b = 212o = 8Àh  
139d = 10001011b = 213o = 8Áh  
140d = 10001100b = 214o = 8Âh  
141d = 10001101b = 215o = 8Ãh  
142d = 10001110b = 216o = 8Äh  
143d = 10001111b = 217o = 8Åh  
144d = 10010000b = 220o = 90h  
145d = 10010001b = 221o = 91h  
146d = 10010010b = 222o = 92h 

147d = 10010011b = 223o = 93h  
148d = 10010100b = 224o = 94h  
149d = 10010101b = 225o = 95h  
150d = 10010110b = 226o = 96h  
151d = 10010111b = 227o = 97h  
152d = 10011000b = 230o = 98h  
153d = 10011001b = 231o = 99h  
154d = 10011010b = 232o = 9Àh  
155d = 10011011b = 233o = 9Áh  
156d = 10011100b = 234o = 9Âh  
157d = 10011101b = 235o = 9Ãh  
158d = 10011110b = 236o = 9Äh  
159d = 10011111b = 237o = 9Åh  
160d = 10100000b = 240o = À0h  
161d = 10100001b = 241o = À1h  
162d = 10100010b = 242o = À2h  
163d = 10100011b = 243o = À3h  
164d = 10100100b = 244o = À4h  
165d = 10100101b = 245o = À5h  
166d = 10100110b = 246o = À6h  
167d = 10100111b = 247o = À7h  
168d = 10101000b = 250o = À8h  
169d = 10101001b = 251o = À9h  
170d = 10101010b = 252o = ÀÀh  
171d = 10101011b = 253o = ÀÁh  
172d = 10101100b = 254o = ÀÂh  
173d = 10101101b = 255o = ÀÃh  
174d = 10101110b = 256o = ÀÄh  
175d = 10101111b = 257o = ÀÅh  
176d = 10110000b = 260o = Á0h  
177d = 10110001b = 261o = Á1h  
178d = 10110010b = 262o = Á2h  
179d = 10110011b = 263o = Á3h  
180d = 10110100b = 264o = Á4h  
181d = 10110101b = 265o = Á5h  
182d = 10110110b = 266o = Á6h  
183d = 10110111b = 267o = Á7h  
184d = 10111000b = 270o = Á8h  
185d = 10111001b = 271o = Á9h  
186d = 10111010b = 272o = ÁÀh  
187d = 10111011b = 273o = ÁÁh  
188d = 10111100b = 274o = ÁÂh  
189d = 10111101b = 275o = ÁÃh  
190d = 10111110b = 276o = ÁÄh  
191d = 10111111b = 277o = ÁÅh  
192d = 11000000b = 300o = Â0h  
193d = 11000001b = 301o = Â1h  
194d = 11000010b = 302o = Â2h  
195d = 11000011b = 303o = Â3h  
196d = 11000100b = 304o = Â4h  
197d = 11000101b = 305o = Â5h  
198d = 11000110b = 306o = Â6h  
199d = 11000111b = 307o = Â7h  
200d = 11001000b = 310o = Â8h

201d = 11001001b = 311o = Â9h  
202d = 11001010b = 312o = ÂÀh  
203d = 11001011b = 313o = ÂÁh  
204d = 11001100b = 314o = ÂÂh  
205d = 11001101b = 315o = ÂÃh  
206d = 11001110b = 316o = ÂÄh  
207d = 11001111b = 317o = ÂÅh  
208d = 11010000b = 320o = Ã0h  
209d = 11010001b = 321o = Ã1h  
210d = 11010010b = 322o = Ã2h  
211d = 11010011b = 323o = Ã3h  
212d = 11010100b = 324o = Ã4h  
213d = 11010101b = 325o = Ã5h  
214d = 11010110b = 326o = Ã6h  
215d = 11010111b = 327o = Ã7h  
216d = 11011000b = 330o = Ã8h  
217d = 11011001b = 331o = Ã9h  
218d = 11011010b = 332o = ÃÀh  
219d = 11011011b = 333o = ÃÁh  
220d = 11011100b = 334o = ÃÂh 
221d = 11011101b = 335o = ÃÃh  
222d = 11011110b = 336o = ÃÄh  
223d = 11011111b = 337o = ÃÅh  
224d = 11100000b = 340o = Ä0h  
225d = 11100001b = 341o = Ä1h  
226d = 11100010b = 342o = Ä2h  
227d = 11100011b = 343o = Ä3h  
228d = 11100100b = 344o = Ä4h  
229d = 11100101b = 345o = Ä5h  
230d = 11100110b = 346o = Ä6h  
231d = 11100111b = 347o = Ä7h  
232d = 11101000b = 350o = Ä8h  
233d = 11101001b = 351o = Ä9h  
234d = 11101010b = 352o = ÄÀh  
235d = 11101011b = 353o = ÄÁh  
236d = 11101100b = 354o = ÄÂh  
237d = 11101101b = 355o = ÄÃh  
238d = 11101110b = 356o = ÄÄh  
239d = 11101111b = 357o = ÄÅh  
240d = 11110000b = 360o = Å0h  
241d = 11110001b = 361o = Å1h  
242d = 11110010b = 362o = Å2h  
243d = 11110011b = 363o = Å3h  
244d = 11110100b = 364o = Å4h  
245d = 11110101b = 365o = Å5h  
246d = 11110110b = 366o = Å6h  
247d = 11110111b = 367o = Å7h  
248d = 11111000b = 370o = Å8h  
249d = 11111001b = 371o = Å9h  
250d = 11111010b = 372o = ÅÀh  
251d = 11111011b = 373o = ÅÁh  
252d = 11111100b = 374o = ÅÂh  
253d = 11111101b = 375o = ÅÃh  
254d = 11111110b = 376o = ÅÄh  
255d = 11111111b = 377o = ÅÅh  
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Γ03 – Two-dimensional curves 
 a)  Parabolas with y=x straight line  

-5 -4 -3 -2 -1 +1 +2 +3 +4 +5

-3

-2

-1

+1

+2

+3

y=xy=xs

y=x#

y=-x#

 

 b)  Exponential and logarithmic curves with y=x straight line 

-5 -4 -3 -2 -1 +1 +2 +3 +4 +5

-3

-2

-1

+1

+2

+3

y=ex y=x

y=L(x)
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...Γ03... 

 c)  Vertically and horizontally asymptotic curves with y=x straight line 

-5 -4 -3 -2 -1 +1 +2 +3 +4 +5

-3

-2

-1

+1

+2

+3
y=1/xs

y=1/xs

y=1/x

y=1/x
y=1/Qx

y=T(x)

y=T(x)

y=T(x)

y=T(x)

y=T(x)

y=T(x)

y=e-xs

y=U(x)

y=U(x)

y=x

y=x  

 d)  Example of a tangent y=mx+c of gradient m at a point (x,y) on a curve (bold) 

abc m=a/b(x  ,y  )p py=mx+c
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...Γ03... 

 e)  16 non-tangential as well as uni- and bilaterally axis-parallel tangential curves  
 (0≤x≤1, 0≤y≤1) – in each case, the (positive) basic gradient g=2, 2½ and 3; ĝ=1/g F F

f
j
J

f j J
y=  Qx(2-x)g
y=gx+(3-2g)xs+(g-2)xuy=Gx+(3-2G)xs+(G-2)xuy=(3xs-2xu) g-1

y=  Qxg
y=gx+(3-2g-G)xs+(g+G-2)xuy=Gx+3(1-G)xs+2(G-1)xu

y=(3-G)xs+(G-2)xu

y=(1-x)<Ff>+x<Jj>
y=gx+3(1-g)xs+2(g-1)xuy=gx+(3-2g-G)xs+(g+G-2)xu

y=(3-g)xs+(g-2)xu

y=(1-x)<FF>+x<JJ>
y=(1-x)<fF>+x<jJ>y=1-  Q1-xg

y=1-  Q1-xsg
 

 f)  The above fj-curve (for g=2) with (i) 1st and (ii) 2nd derivatives und tangents 

(I) y=2-6x+6xs

<fj> y=2x-3xs+2xu (II) y=-6+12x <fj>D(I) (I)D(II)
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...Γ03... 

 g) Two splines each connecting a random series of points 

 

F04 – Formulæ for the calculation of the acceleration of a series of beats based 
 on initial and final tempo, the total duration and the number of beats s = SQtTn = TS(Q  _1)tT

L (Q)T = N    (Q)L(S -S)t = T    (s/S)L

L(Q)  = T    ((n    (Q)/TS)+1)L L

L(Q)
where S = initial tempoS = ~nal tempoQ = S /ST = total timet = current time [i.e. time at tempo  or at beat     - see below]sns = tempo at time tn = beat at time tN = total number of beats
L(x) = natural logarithm of x[see chapter 4]
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Γ05 – A selection of commonly notatable intervals 

G wwb ww% ww= ww# wwb ww% ww= ww# wwb ww= ww$ ww#
mino

r
neu
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aug
ment

ed

mino
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neu
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l
majo

r
aug
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dim
ini

she
d

per
fec

t
neu

tra
l

aug
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ed

second.. third.. fourth..

G ww ww ww ww ww w
w

w
w

w
w

(..similarly..)

~fth sixth seventh octave ninth tenth eleventh twelfth  
Γ06 – Examples of series of frequencies in Hertz 

 a)  Arithmetic Series, e.g. the overtone row (note names approximate) 

F w w
G w w w w w/ w w w w" w100 200 300 400 500 600 700 800 900 1000 1100 1200 Hz0 1200 1902 2400 2786 3102 3369 3600 3804 3986 4151 4302 Ct

G2 G3 D4 G4 B4 D5 F5 G5 A5 B5 C#6 D6

 
 b)  Geometric Series, e.g. octaves 

F
w w w

G w w w

55 110 220 440 880 1760 Hz0 1200 2400 3600 4800 6000 Ct
A1 A2 A3 A4 A5 A6

 
Γ07 – The relationship between geometric factor and arithmetic interval in  
 a) pitch,  b) loudness and  c) stellar magnitude 

0

0/5

20 20/5

1

1/5

21 21/5

2

2/5

22 22/5

3

3/5

23 23/5

4

4/5

24 24/5

5

5/5

25 25/5

interval (Octave)..factor..

frequency factorpitch interval

(unscaled) (scaled)

0

0/10

100 10 0/10

1

1/10

10 1 10 1/10

2

2/10

10 2 10 2/10

3

3/10

10 3 10 3/10

4

4/10

10 4 10 4/10

5

5/10

10 5 10 5/10

6

6/10

10 6 10 6/10

7

7/10

10 7 10 7/10

8

8/10

10 8 10 8/10

9

9/10

10 9 10 9/10

10

10/10

10 10 10 10/10

interval (Bel)..factor..

sound intensity factorloudness interval

(unscaled) (scaled)

0

0/5

100 0/5 100 0/25

1

1/5

100 1/5 100 1/25

2

2/5

100 2/5 100 2/25

3

3/5

100 3/5 100 3/25

4

4/5

100 4/5 100 4/25

5

5/5

100 5/5 100 5/25

interval (Magnitude)..factor..

brightness factorstellar magnitude

(unscaled) (scaled)
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T08 – Measurements of pitch and loudness 
 a)  Number, note names, frequencies in 100-Ct-steps (A4 = 440 Hz)  
  └from 0-127 identical to the MIDI-scale (see Chapter 18)

No. name,8ve frequency 
   0 C_1 8.17580 Hz 
   1 C#_1 8.66196 Hz 
    2 D_1 9.17702 Hz 
    3 Eb_1 9.72272 Hz 
   4 E_1 10.3009 Hz 
   5 F_1 10.9134 Hz 
   6 F#_1 11.5623 Hz 
   7 G_1 12.2499 Hz 
   8 Ab_1 12.9783 Hz 
   9 A_1 13.7500 Hz 
  10 Bb_1 14.5676 Hz 
  11 B_1 15.4339 Hz 
  12 C0 16.3516 Hz 
  13 C#0 17.3239 Hz 
  14 D0 18.3540 Hz 
  15 Eb0 19.4454 Hz 
  16 E0 20.6017 Hz 
  17 F0 21.8268 Hz 
  18 F#0 23.1247 Hz 
  19 G0 24.4997 Hz 
  20 Ab0 25.9565 Hz 
  21 A0 27.5000 Hz 
  22 Bb0 29.1352 Hz 
  23 B0 30.8677 Hz 
  24 C1 32.7032 Hz 
  25 C#1 34.6478 Hz 
  26 D1 36.7081 Hz 
  27 Eb1 38.8909 Hz 
  28 E1 41.2034 Hz 
  29 F1 43.6535 Hz 
  30 F#1 46.2493 Hz 
  31 G1 48.9994 Hz 
  32 Ab1 51.9131 Hz 
  33 A1 55.0000 Hz 
  34 Bb1 58.2705 Hz 
  35 B1 61.7354 Hz 
  36 C2 65.4064 Hz 
  37 C#2 69.2957 Hz 
  38 D2 73.4162 Hz 
  39 Eb2 77.7817 Hz 
  40 E2 82.4069 Hz 
  41 F2 87.3071 Hz 
  42 F#2 92.4986 Hz 
  43 G2 97.9989 Hz     
  44 Ab2 103.826 Hz 
  45 A2 110.000 Hz 
  46 Bb2 116.541 Hz 
  47 B2 123.471 Hz 
  48 C3 130.813 Hz 
  49 C#3 138.591 Hz   

No. name,8ve frequency 
  50 D3 146.832 Hz 
  51 Eb3 155.563 Hz 
  52 E3 164.814 Hz 
  53 F3 174.614 Hz 
  54 F#3 184.997 Hz 
  55 G3 195.998 Hz 
  56 Ab3 207.652 Hz 
  57 A3 220.000 Hz 
  58 Bb3 233.082 Hz 
  59 B3 246.942 Hz 
  60 C4 261.626 Hz 
  61 C#4 277.183 Hz 
  62 D4 293.665 Hz 
  63 Eb4 311.127 Hz 
  64 E4 329.628 Hz 
  65 F4 349.228 Hz 
  66 F#4 369.994 Hz 
  67 G4 391.995 Hz 
  68 Ab4 415.305 Hz 
  69 A4 440.000 Hz 
  70 Bb4 466.164 Hz 
  71 B4 493.883 Hz 
  72 C5 523.251 Hz 
  73 C#5 554.365 Hz 
  74 D5 587.330 Hz 
  75 Eb5 622.254 Hz 
  76 E5 659.255 Hz 
  77 F5 698.456 Hz 
  78 F#5 739.989 Hz 
  79 G5 783.991 Hz 
  80 Ab5 830.609 Hz 
  81 A5 880.000 Hz 
  82 Bb5 932.328 Hz 
  83 B5 987.767 Hz 
  84 C6 1046.50 Hz 
  85 C#6 1108.73 Hz 
  86 D6 1174.66 Hz 
  87 Eb6 1244.51 Hz 
  88 E6 1318.51 Hz 
  89 F6 1396.91 Hz 
  90 F#6 1479.98 Hz 
  91 G6 1567.98 Hz 
  92 Ab6 1661.22 Hz 
  93 A6 1760.00 Hz 
  94 Bb6 1864.66 Hz 
  95 B6 1975.53 Hz 
  96 C7 2093.00 Hz 
  97 C#7 2217.46 Hz 
  98 D7 2349.32 Hz 
  99 Eb7 2489.02 Hz 

No. name,8ve frequency 
100 E7 2637.02 Hz 
101 F7 2793.83 Hz 
102 F#7 2959.96 Hz 
103 G7 3135.96 Hz 
104 Ab7 3322.44 Hz 
105 A7 3520.00 Hz 
106 Bb7 3729.31 Hz 
107 B7 3951.07 Hz 
108 C8 4186.01 Hz 
109 C#8 4434.92 Hz 
110 D8 4698.64 Hz 
111 Eb8 4978.03 Hz 
112 E8 5274.04 Hz 
113 F8 5587.65 Hz 
114 F#8 5919.91 Hz 
115 G8 6271.93 Hz 
116 Ab8 6644.88 Hz 
117 A8 7040.00 Hz 
118 Bb8 7458.62 Hz 
119 B8 7902.13 Hz 
120 C9 8372.02 Hz 
121 C#9 8869.84 Hz 
122 D9 9397.27 Hz 
123 Eb9 9956.06 Hz 
124 E9 10548.1 Hz 
125 F9 11175.3 Hz 
126 F#9 11839.8 Hz 
127 G9 12543.9 Hz 
128 Ab9 13289.8 Hz 
129 A9 14080.0 Hz 
130 Bb9 14917.2 Hz 
131 B9 15804.3 Hz 
132 C10 16744.0 Hz 
133 C#10 17739.7 Hz 
134 D10 18794.5 Hz 
135 Eb10 19912.1 Hz 
136 E10 21096.2 Hz 
137 F10 22350.6 Hz 
138 F#10 23679.6 Hz 
139 G10 25087.7 Hz 
140 Ab10 26579.5 Hz 
141 A10 28160.0 Hz 
142 Bb10 29834.5 Hz 
143 B10 31608.5 Hz 
144 C11 33488.1 Hz 
145 C#11 35479.4 Hz 
146 D11 37589.1 Hz 
147 Eb11 39824.3 Hz 
148 E11 42192.3 Hz 
149 F11 44701.2 Hz 
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...T08... 
 b)  Correlation of Sound Intensity→Sound Pressure in 2 dB-Steps  
 (p= 20√i, where p is the Pressure and i the Intensity; ** = growth)  

Sound Intensity ** dB(SPL) Sound pressure 
10.000 fW/M2 ž10_2 _20 2.000 µPa ž10_1 
15.849 fW/ M2  _18 2.518 µPa 
25.119 fW/ M2  _16 3.170 µPa 
39.811 fW/ M2  _14 3.991 µPa 
63.096 fW/ M2  _12 5.024 µPa 
100.000 fW/ M2  _10 6.325 µPa 
158.489 fW/ M2   _8 7.962 µPa 
251.189 fW/ M2   _6 10.024 µPa 
398.107 fW/ M2   _4 12.619 µPa 
630.957 fW/ M2   _2 15.887 µPa 
1.000 pW/ M2 ž100    0 20.000 µPa  ž100 
1.585 pW/ M2     2 25.179 µPa   
2.512 pW/ M2     4 31.698 µPa   
3.981 pW/ M2     6 39.905 µPa   
6.310 pW/ M2     8 50.238 µPa   
10.000 pW/ M2   10 63.246 µPa   
15.849 pW/ M2   12 79.621 µPa   
25.119 pW/ M2   14 100.237 µPa   
39.811 pW/ M2   16 126.191 µPa   
63.096 pW/ M2   18 158.866 µPa   
100.000 pW/ M2 ž102  20 200.00 µPa ž101 
158.489 pW/ M2    22 251.785 µPa   
251.189 pW/ M2    24 316.979 µPa   
398.107 pW/M2    26 399.052 µPa   
630.957 pW/M2    28 502.377 µPa   
1.000 nW/M2   30 632.456 µPa   
1.585 nW/M2   32 796.214 µPa   
2.512 nW/M2   34 1.002 mPa   
3.981 nW/M2   36 1.262 mPa   
6.310 nW/M2   38 1.589 mPa   
10.000 nW/M2 ž104  40 2.000 mPa ž102  
15.849 nW/M2   42 2.518 mPa   
25.119 nW/M2   44 3.170 mPa   
39.811 nW/M2   46 3.991 mPa   
63.096 nW/M2   48 5.024 mPa   
100.000 nW/M2   50 6.325 mPa 

Sound Intensity ** dB(SPL) Sound pressure 
158.489 nW/M2   52 7.962 mPa   
251.189 nW/M2   54 10.024 mPa   
398.107 nW/M2   56 12.619 mPa   
630.957 nW/M2   58 15.887 mPa   
1.000 µW/M2 ž106  60 20.000 mPa ž103 
1.585 µW/M2     62 25.179 mPa  
2.512 µW/M2     64 31.698 mPa  
3.981 µW/M2     66 39.905 mPa  
6.310 µW/M2     68 50.238 mPa  
10.000 µW/M2     70 63.246 mPa  
15.849 µW/M2     72 79.621 mPa  
25.119 µW/M2     74 100.237 mPa  
39.811 µW/M2     76 126.191 mPa  
63.096 µW/M2     78 158.866 mPa  
100.000 µW/M2 ž108  80 200.000 mPa ž104 
158.489 µW/M2   82 251.785 mPa  
251.189 µW/M2   84 316.979 mPa  
398.107 µW/M2   86 399.052 mPa  
630.957 µW/M2    88 502.377 mPa  
1.000 mW/M2     90 632.456 mPa  
1.585 mW/M2     92 796.214 mPa  
2.512 mW/M2     94 1.002 Pa  
3.981 mW/M2     96 1.262 Pa  
6.310 mW/M2     98 1.589 Pa  
10.000 mW/M2 ž1010 100 2.000 Pa ž105 
15.849 mW/M2  102 2.518 Pa  
25.119 mW/M2  104 3.170 Pa  
39.811 mW/M2  106 3.991 Pa  
63.096 mW/M2  108 5.024 Pa  
100.000 mW/M2  110 6.325 Pa  
158.489 mW/M2  112 7.962 Pa  
251.189 mW/M2  114 10.024 Pa  
398.107 mW/M2  116 12.619 Pa  
630.957 mW/M2  118 15.887 Pa  
1.000 W/M2  ž1012 120 20.000 Pa ž106 
1.585 W/M2  122 25.179 Pa 

Units:  Powers  -th  -fold  
M = metre (length)  101 d = deci- da = deca- 
kg = kilogramme (mass) 102 c = centi- h = hecto- 
s = second (time) 103 m = milli- k = kilo- 
sqm = square metre (area) = M2 106 µ = micro- M = mega- 
N = Newton (force) = kg.M.s -2  109 n = nano- G = giga- 
Pa = Pascal (pressure) = N/sqm = kg.M -1.s -2 1012 p = pico- T = tera- 
b = Bar (pressure) = 100000 Pa 1015 f = femto- P = peta- 
J = Joule (work) = N.M = kg.M2.s -2 1018 a = atto- E = exa- 

W = Watt (power) = J/s = N.M/s = kg.M-2.s -3 1021 z = zepto- Z = zetta- 
     1024 y = yocto- Y = yotta-



 
 

11 
 

Γ09 – Showing sound pressure (p2) as proportional to squared sound intensity (i) 

ip

 
Γ10 – Illustration of the decibel-Scale 
 a)  Sound intensity levels compared to pitch intervals 

 

-# dB *0 dB +# dB +$ dB +1" dB +1$ dB +2" dB +2# dB +3 dB +3# dB
-" dB +" dB +1 dB +1# dB +2 dB +2$ dB +3" dB

 

 b)  A VU-Meter, calibrated in % und in dBu 
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50%
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-15 dB
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-30 dB
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VU
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...Γ10... 

 c)  Air pressure as measured at Cologne-Bonn Airport in 2000 and 2001:  
 an ‘infrasonic sound wave’ averaging 9.65 hPa = 153.67 dB(SPL) 

2000

hPa
J F M A M J J A S O N D

  985  990  995100010051010101510201025103010351040

2001

hPa
J F M A M J J A S O N D

  985  990  995100010051010101510201025103010351040
 

 d)  Spectral representation of the wave shown in Γ08c in µHz against weeks 
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T11 – Examples of Loudness in dB(SPL) 
dB(SPL)  
0 ‘practically inaudible’, →10: pin dropping 
10 ‘almost inaudible’, snow falling, →20: recording studio,  

→30: leaves rustling 
20 →40: ‘very soft’, ‘quiet in the country’, light wind, clock ticking, bedroom 
30 quiet garden, →35: very quiet room, whispering, 35: frequent upper 

permissible limit for residential areas and hospitals (nighttime),  
→40: background noise 

40 enough to wake one up, →50: normal conversation, soft radio music, 
refrigerator, residential area without traffic (nighttime), library,  
→60: ‘quiet’ 

50 quiet river, residential area without traffic (daytime), car motor in neutral 
gear, photocopying machine, 50: frequent upper permissible limit for 
residential areas (daytime) and industrial areas (nighttime),  
→55: ‘disturbed sleep dangerous to health’, 55: EU-directive upper limit 
for ‘creative work’, →60: loud speech, TV at normal room level,  
→65: office noises 

60 →70: typewriter, →80: ‘loud’, ‘disagreeable physiological stress 
reactions’, vacuum cleaner, automobile, lawn mower 

70 ‘stressful’, loud TV-set, main road with traffic, 70: EU-directive upper 
limit ‘routine work’, frequent upper permissible limit for industrial areas, 
→75: factory, →80: automobile in the city, →100: motorbicycle 

80 80: frequent upper permissible limit for place of work,  
→85: train (medium speed), →90: truck in city, →110: ‘very loud’, loud 
cry, loud radio music, conveyor belt, automobile on motorway  

90 fast train, loud factory, door slamming, 93: EU-directive ‘live 
entertainment’, →95: grinding lathe, →95: loud walkman,  
→100: dance floor, →105: pneumatic hammer 

100 ‘speech impossible’, circular saw, electric hammer drill, →110: car horn, 
→110: loud discotheque 

110 →115: airplane noise, →140: ‘unbearable’, boiler room, planing mill 
120 ear damage starts, thunder, commercial airplane, →130: running turbine 
130 pain threshold, →135: jet plane in low flight 
140 starting jet plane 
150 (and higher) explosion 
160 riveting machine 
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Γ12 – Objective vs. subjective, linear vs. logarithmic 
 a)  Isophonic curves of equal subjective loudness (after Fletcher, Munson et al.),  
 here algebraically and speculatively inter- und extrapolated; 44, 125, 354, 
 1000, 2828 and 8000 Hz marked for illustration. 

3Ph (1/13)10Ph (1/8)20Ph (1/4)30Ph (1/2)40Ph (1)50Ph (2)60Ph (4)70Ph (8)80Ph (16)90Ph (32)100Ph (64)110Ph (128)120Ph (256)130Ph (512)

0102030405060708090100110120130 22 31 44 63 88 125 177 250 354 500 707 1000 1414 2000 2828 4000 5657 8000 11314
C1 C c c1 c2 c3 c4 c5 c6

Hz:

dB
(S
P
L
):

 
 b)  The symmetry of the linear and the logarithmic 

-5 -4
+1 +2 +3 +4 +5

+1

+2

+3 raenil logarithmic

Geometric SeriesRatio (P:Q), Factor (F), Quotient (q)Frequency (Hz)Sound Pressure (Pa)Sound Intensity (W/m )2Loudness (Sn)

Arithmetic SeriesInterval, Degree (g,G)Pitch (Octave, Semitone, Cent)Sound Pressure Level (dB)Loudness Level (Ph)
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Γ13 – Network of fifths and thirds; derivation of intervals 
 a)  Two variants of the C-major scale, die Pythagorian 3-limit (grey-filled) and  
 the Aristoxenian 5-limit (enclosed in darker grey). 
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 b) The chromatic scale (grey-filled) and the North Indian sruti system (enclosed  
 in darker grey) 
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 c)  Modulations containing the minor diesis and the diaschisma 

G w#ww www wbww w=ww hb Qb Hb .Q Hb .q w Q# H=H=

G w# w= w= wb wb wb wb w= w# w=
5
8

5
4

X
5
4

X
8
9

4
3

X
4
3

X
4
5

X
4
5

X

D D

D D

(125:128)

(2025:2048)

1 2

minor diesis
diaschisma

 

Γ14 – The derivation of trigonometric functions from the triangle and the circle
 a)  Right-angled triangle ABC 
 b)  Sine exemplified by the radius of a circle, rotating through 30o, 45o, 60o 
 c)  Sine traversing sines of the above three angles; cosine period for comparison 
 d)  Pulling a side of an equilateral triangle (grey) to the circumference shrinks 60o  
 to a radian  
 e)  Transition of the circle through a spiral to a sine wave 
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Γ15 – Sound wave and spectrum 
 a)  Sound wave generation – a vibrating particle (thick line at bottom) passes  
 movement on to air molecules (thin lines): a high pressure zone (marked by 
 thick grey diagonal) moves 330m in 1 sec (s. light grey rectangle); the light 
 grey strip shows the time-variant change of the molecular distance. 

0

30

60

90

120

150

180

210

240

270

300

330

metres

1 second  
 b)  Addition of sound waves at the frequency ratio 2:3 (bottom right: components  
 grey, summation curve black, vertical lines=values for RMS-evaluation), the 
 spectrum (top right), a ‘molecular snapshot’ of the summation curve (left) 

 

5 10 15 20 25 30 35 40 45 50
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Γ16 – Hardware und Software 

 a)  Hardware: machines surrounding the computer  
 b)  Software: levels of working with the computer screendisk drive computer printerkeyboard programprogramming languageeditor+compiler (interpreter)operating systemsystem softwareRAMprocessorROM

a b
 

Γ17 – Digitised sound waves; comparison with analogue 
 a) Stepwise improvement of the digitisation of a sine curve 
 b)  Comparison of the leftmost (8ž8) digital wave with an analogue 100 Hz sine  
 c)  Sampling and aliasing of three frequencies with reference to the Nyquist limit ŋ 

4
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b c
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T18 – ASCII-Code 
 Standard   Special* (excerpt)  
20h=032d <empty> 
21h=033d ! 
22h=034d " 
23h=035d # 
24h=036d $ 
25h=037d % 
26h=038d & 
27h=039d ' 
28h=040d ( 
29h=041d ) 
2Àh=042d * 
2Áh=043d + 
2Âh=044d , 
2Ãh=045d - 
2Äh=046d . 
2Åh=047d / 
30h=048d 0 
31h=049d 1 
32h=050d 2 
33h=051d 3 
34h=052d 4 
35h=053d 5 
36h=054d 6 
37h=055d 7 
38h=056d 8 
39h=057d 9 
3Àh=058d : 
3Áh=059d ; 
3Âh=060d < 
3Ãh=061d =  
3Äh=062d > 
3Åh=063d ? 

40h=064d @ 
41h=065d A 
42h=066d B 
43h=067d C 
44h=068d D 
45h=069d E  
46h=070d F 
47h=071d G 
48h=072d H 
49h=073d I 
4Àh=074d J 
4Áh=075d K 
4Âh=076d L 
4Ãh=077d M 
4Äh=078d N 
4Åh=079d O 
50h=080d P 
51h=081d Q 
52h=082d R 
53h=083d S 
54h=084d T 
55h=085d U 
56h=086d V 
57h=087d W 
58h=088d X 
59h=089d Y 
5Àh=090d Z 
5Áh=091d [ 
5Âh=092d \ 
5Ãh=093d ] 
5Äh=094d ^ 
5Åh=095d _ 

60h=096d ` 
61h=097d a  
62h=098d b 
63h=099d c 
64h=100d d 
65h=101d e 
66h=102d f 
67h=103d g 
68h=104d h 
69h=105d i 
6Àh=106d j 
6Áh=107d k 
6Âh=108d l 
6Ãh=109d m 
6Äh=110d n 
6Åh=111d o 
70h=112d p 
71h=113d q 
72h=114d r 
73h=115d s 
74h=116d t 
75h=117d u 
76h=118d v 
77h=119d w 
78h=120d x 
79h=121d y 
7Àh=122d z 
7Áh=123d { 
7Âh=124d | 
7Ãh=125d } 
7Äh=126d ~ 
7Åh=127d <del>  

80h=128d Ç 
81h=129d ü 
82h=130d é 
83h=131d â 
84h=132d ä 
85h=133d à 
86h=134d å 
87h=135d ç 
88h=136d ê 
89h=137d ë 
8Àh=138d è 
8Áh=139d ï 
8Âh=140d î 
8Ãh=141d ì 
8Äh=142d Ä 
8Åh=143d Å 
90h=144d É 
91h=145d æ 
92h=146d Æ 
93h=147d ô 
94h=148d ö 
95h=149d ò 
96h=150d û 
97h=151d ù 
98h=152d ÿ 
99h=153d Ö 
9Àh=154d Ü 
9Áh=155d ¢ 
9Âh=156d £ 
9Ãh=157d ¥ 
9Äh=158d ₧ 
9Åh=159d ƒ 
 ...etc... 

* OEM extended ASCII 
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L19 –  Programming the Fibonacci Series in a number of languages 
 a) Basic language structure (command separators: in Basic ‘:’, in Fortran ‘$’)

1) Basic 
a=1 : b=1 
print a,b 
for i=3 to 10 do 
c=a+b 
print c 
a=b : b=c 
next i 

2) Fortran 
 a=1 $ b=1 
 print a,' ',b,' ' 
 do 111 i=3,10 
 c=a+b 
 print c,' ' 
 a=b $ b=c 
111 continue  

3) Pascal 
a:=1; b:=1; 
write(a,' ',b,' '); 
for i:=3 to 10 do 
begin c:=a+b;  
 write(c,' '); 
 a:=b; b:=c; 
end; 

4) C 
a=1; b=1; 
printf("%d %d", a, b); 
for (i=3; i<=10; i++) 
{ c = a+b;  
  printf(" %d", c); 
  a=b; b=c;  
} 
 

 b) Comparison and description of the individual statements 
Language Initial assignment Write statement Loop start with counter i (counts from 3 to 10) 
Basic: a=1  b=1 print a,b for i=3 to 10 do  
Fortran: a=1 b=1 print a,' ',b,' ' do 111 i=3,10  
Pascal: a:=1; b:=1; write(a,' ',b,' '); for i:=3 to 10 do  
C: a=1; b=1; printf("%d %d", a, b); for (i=3; i<=10; i++)  

Language Block start Assignment Write statement Assignments Block/Loop end 
Basic:  loop start c=a+b print c a=b   b=c next i 
Fortran:  loop start c=a+b print c,' ' a=b   b=c 111 continue 
Pascal: begin  c:=a+b; write(c,' '); a:=b; b:=c; end; 
C: {  c=a+b; printf(" %d", c); a=b;  b=c; } 

L20 – A C-Program 
#include <stdio.h> 
#include <math.h> 

/* Conversion of number ratios into cents & decibels */ 
int main () 
{  int p, q; float nLog2, nLog10, nLog_Quotient, ct, db; 
   nLog2 = log(2); nLog10 = log(10); p = 1; 
   printf("Enter P:Q.. (whole numbers>0; "); 
   printf("program exit through invalid input)\n"); 
   while (p > 0) 
   { printf("P: "); p = 0; scanf("%d", &p); 
     if (p > 0) 
     { printf("Q: "); scanf("%d", &q); 
       nLog_Quotient = log(1.0 * q / p); 
       ct = 1200 * nLog_Quotient / nLog2; 
       db = 20 * nLog_Quotient / nLog10; 
       printf("-----The ratio %d:%d corresponds to ",p,q); 
       printf("%9.3f Ct or %6.3f dB\n Enter P:Q..\n",ct,db); 
     } 
   } 
   printf("Program done.\n"); return 0; 
} 

Examples of screen display (keyboard input in bold):  
Enter P:Q.. (whole numbers>0; program exit through invalid input) 
P: 1 
Q: 2 
----- The ratio 1:2 corresponds to 1200.000 Ct or 6.021 dB  
Enter P:Q..  
P: 3 
Q: 2 
----- The ratio 3:2 corresponds to -701.955 Ct or -3.522 dB 
Enter P:Q..  
P: x Program done. 
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L21 – Functions in C 
/* The numbers 0 - 255 from decimal into binary, octal, hexadecimal */ 
 
#include <stdio.h> 
 
const int final_number = 255; 
 
char hex_char(int num) 
{ char c; 
  if (num<10) c = num + 48; else c = num + 55; 
  return c; 
} 
 
void convert (int base, int number,  char *code) 
{ int i, power, buffer, remainder, divisor; 
 
  power = 1; buffer = final_number; 
  while (buffer>0) 
  { power *= base; 
    buffer /= base; 
  } 
 
  remainder = number; divisor = power / base; i = 0; 
  while (divisor>0) 
  { buffer = remainder / divisor; 
    code[i] = hex_char(buffer); 
    remainder %= divisor; 
    divisor /= base; 
    i++; 
  } ; 
 
  code[i] = '\0'; 
} 
/*---------------------------main part---------------------------*/ 
int main () 
{ int counter; 
  char digits[8]; 
  FILE *outfile; 
  outfile = fopen("number_systems.txt", "w"); 
 
  for (counter=0; counter<=final_number; counter++) 
  { fprintf(outfile, "%3dd = ", counter); 
    convert( 2,counter,digits); fprintf(outfile, "%sb = ", digits); 
    convert( 8,counter,digits); fprintf(outfile, "%so = ", digits); 
    convert(16,counter,digits); fprintf(outfile, "%sh\n", digits); 
  } 
 
  fclose(outfile); printf("%s done","number_systems.txt"); 
 
  return 0; 
} 
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Γ22 – A possible network of MIDI-compatible devices Computer
Sound ModulesMIDI Keyboard

IN THRU

IN

THRU

IN

OUT

Audio SystemMIDI Cables

Audio Cables
 

 
T23 – MIDI-Code  
Status Bytes  Data Bytes  Command type 

1000nnnnb (=8mh) pitch number [0_127], Note Off  
 force of attack* [0_127]  

1001nnnnb (=9mh) pitch number [0_127],  Note On 
 force of attack* [0=off, else 1_127] 

1010nnnnb (=Àmh) pitch number [0_127], After-touch 
 force of attack* [0_127]  

1011nnnnb (=Ámh) control nummer [0_121: e.g. 7=Volume,....], Control Change 
 control value [0_127]  

1100nnnnb (=Âmh) program number [0_127] (only 1 data byte!) Program Change 

1101nnnnb (=Ãmh) pressure value [0_127] (only 1 data byte!) Channel Pressure  

1110nnnnb (=Ämh) lower byte [0_127],  Pitch Wheel 
 upper byte [0_127]  

11110nnnb (=Åmh) brand dependent  System Exclusive  

 * ‘velocity’ for technocrats 
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L24 – Programming of MIDI in C (Schumann’s The Happy Farmer) 
 a) More cumbersome solution 
#include <stdio.h> 
#include <time.h> 
/*-----------------------MIDI-Library-------------------------*/ 
int channel_number; 
void send(int value) { printf("%d ", value); } 
void choose_channel(int value) { channel_number = value - 1; } 
void play(int pitch, int force) 
{ send(0x90 + channel_number); send(pitch); send(force); } 
void damp(int pitch) 
{ send(0x80 + channel_number); send(pitch); send(0); } 
void wait(float seconds) 
{ float clock_ticks, start; 
  clock_ticks = seconds * CLOCKS_PER_SEC; start = clock(); 
  while (clock() – start < clock_ticks); 
  printf("(%5.3f\")\n",seconds); 
} 
/* ---------------------------M A I N-------------------------*/ 
int main () 
{ choose_channel(1); /* choose channel 1 */ 
  play(48,64);   /* \c; [\]='depress'*/ 
  wait(0.25); /* wait 0.25 secs. */ 
  damp(48); /* /c; [/]='release'*/ 
  play(53,64); /* \f */ 
  wait(0.25); /* wait 0.25 secs. */ 
  choose_channel(2); /* choose channel 2 */ 
  play(60,64); play(65,64); play(69,64); /* \c'\f'\a' */ 
  wait(0.25);  /* wait 0.25 secs. */ 
  damp(60); damp(65); damp(69); /* /c'/f'/a' */ 
  play(60,64); play(65,64); play(69,64); /* \c'\f'\a' */ 
  wait(0.25);  /* wait 0.25 secs. */ 
  damp(60); damp(65); damp(69); /* /c'/f'/a' */ 
  choose_channel(1);  /* choose channel 1 */ 
  damp(53); /* /f */ 
  play(57,64); /* \a */ 
  wait(0.25);  /* wait 0.25 secs. */ 
  damp(57); /* /a */ 
  play(60,64);   /* \c' */ 
  wait(0.5);  /* wait 0.5 secs. */ 
  damp(60); /* /c' */ 
} 

Screen display: 
144 48 64 (0.250’’) 
128 48 0 144 53 64 (0.250’’) 
145 60 64 145 65 64 145 69 64 (0.250’’) 
129 60 0 129 65 0 129 69 0 145 60 64 145 65 64 145 69 64 (0.250’’) 
129 60 0 129 65 0 129 69 0 128 53 0 144 57 64 (0.250’’) 
128 57 0 144 60 64 (0.500’’) 
128 60 0  
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...L24... 

 b) More elegant solution 
#include <stdio.h> 
#include <time.h> 
#define FILENAME "HAPPY_FARMER.TXT" 
#define write printf 
/*------------------------MIDI-Library------------------------*/ 
int  channel_number; 
void send(int value) { write("%d ", value); } 
void choose_channel(int value) { channel_number = value - 1; } 
void play(int pitch, int force) 
{ send(0x90 + channel_number); send(pitch); send(force); } 
void damp(int pitch) 
{ send(0x80 + channel_number); send(pitch); send(0); } 
void wait(float seconds) 
{ float clock_ticks, start; 
  clock_ticks = seconds * CLOCKS_PER_SEC; start = clock(); 
  while (clock() – start < clock_ticks);  
  write("(%5.3f\")\n",seconds); 
} 
/*-------------------------read file--------------------------*/ 
int execute (FILE *score) 
{ char instruction[8]; 
  int number1,number2; 
  int input_amount; 
  input_amount = fscanf(score, "%s %d %d", 
   instruction, &number1, &number2); 
  if (input_amount != 3) return 0; 
  if (instruction[0] == 'P') play(number1,number2); 
  if (instruction[0] == 'D') damp(number1); 
  if (instruction[0] == 'C') choose_channel(number1); 
  if (instruction[0] == 'W') wait(number1 / 1000.0); 
  return 1; 
} 
/*-----------------------------MAIN---------------------------*/ 
int main () 
{ FILE *score; 
  score = fopen(FILENAME, "r"); 
  while(execute(score)); 
  fclose(score); 
  wait(2); 
} 
 input ‘score’ file  HAPPY_FARMER.TXT (read from left to right from column to column) : 

C 1  0 
P 48 64 
W 250 0 
D 48 0 
P 53 64 
W 250 0 

C 2 0 
P 60 64 
P 65 64 
P 69 64 
W 250 0 
D 60 0 
D 65 0 
D 69 0 

P 60 64 
P 65 64 
P 69 64 
W 250 0 
D 60 0 
D 65 0 
D 69 0 

C 1 0 
D 53 0 
P 57 64 
W 250 0 
D 57 0 
P 60 64 
W 500 0 
D 60 
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F25 – Formulæ for Harmonicity 
 a) for the indigestibility ξ of the natural number N  
 b) for the harmonicity H of an interval P:Q 
 c) for the max. power η of a prime p with min. harmonicity h und pitch range ω tINJ = 2Eor=1<n rIp r-1J^>p rN = Dor=1p rn rN, n, p &p &whereby: natural numbersprime numbers1.2.3.

a

HIP,QJ = b<tIQJ-tIPJ>tIPJ+tIQJwhereby bIxJ=-1for xV0, else bIxJ=+1
b

s = [ w+I1/hJ1+IlI256J/lI27JJ]for p=2, else s = [ w+I1/hJtIpJ+IlIpJ/lI2JJ]whereby:1.2.3. p is the prime number for which s  (the maximum power) is neededh is the minimum harmonicityw is the pitch range in octaves

c

 

T26 – Basic Tables of Harmonicity 
 a)  the Indigestibility ξ(N) of the natural numbers 1_16 

 N ξ(N)  
1 0.0000000 
 2 1.0000000 
 3 2.6666667 
 4 2.0000000 
 5 6.4000000 
 6 3.6666667 
 7 10.285714 
 8 3.0000000 
 9 5.3333333 
10 7.4000000 
11 18.181818 
12 4.6666667 
13 22.153846 
14 11.285714 
15 9.0666667 
16 4.0000000 
17 30.117647 
18 6.3333333 
19 34.105263 
20 8.4000000 

 21 12.952381 
 22 19.181818 
 23 42.086957 
 24 5.6666667 
 25 12.800000 
 26 23.153846 
 27 8.0000000 
 28 12.285714 
 29 54.068966 
 30 10.066667 
 31 58.064516 
 32 5.0000000 
 33 20.848485 
 34 31.117647 
 35 16.685714 
 36 7.3333333 
 37 70.054054 
 38 35.105263 
 39 24.820513 
 40 9.4000000 

 41 78.048781 
 42 13.952381 
 43 82.046512 
 44 20.181818 
 45 11.733333 
 46 43.086957 
 47 90.042553 
 48 6.6666667 
 49 20.571429 
 50 13.800000 
 51 32.784314 
 52 24.153846 
 53 102.03774 
 54 9.0000000 
 55 24.581818 
 56 13.285714 
 57 36.771930 
 58 55.068966 
 59 114.03390 
 60 11.066667 

 61 118.03279 
 62 59.064516 
 63 15.619048 
 64 6.0000000 
 65 28.553846 
 66 21.848485 
 67 130.02985 
 68 32.117647 
 69 44.753623 
 70 17.685714 
 71 138.02817 
 72 8.3333333 
 73 142.02740 
 74 71.054054 
 75 15.466667 
 76 36.105263 
 77 28.467533 
 78 25.820513 
 79 154.02532 
 80 10.400000 

 81 10.666667 
 82 79.048781 
 83 162.02410 
 84 14.952381 
 85 36.517647 
 86 83.046512 
 87 56.735632 
 88 21.181818 
 89 174.02247 
 90 12.733333 
 91 32.439560 
 92 44.086957 
 93 60.731183 
 94 91.042553 
 95 40.505263 
 96 7.6666667 
 97 190.02062 
 98 21.571429 
 99 23.515152 
100 14.800000 
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...T26... 

 b) Maximum powers of the primes 2_23 at different minimum harmonicities 
Minimum Maximum Powers of Primes     Intervals  
Harmonicity  2  3  5  7 11 13 17 19 23 in an octave 
 0.10  4  2  1  0  0  0 0 0  0       8 
 0.09  4  2  1  0  0  0 0 0 0       9 
 0.08  5  3  1  1  0  0 0  0 0      13 
 0.07  5  3  1  1  0  0 0  0 0      18 
 0.06  6  4  2  1  0  0 0 0 0      23 
 0.05  7  4  2  1  0  0 0 0 0      37 
 0.04  9  6  2  1  1  1 0 0 0      77 
 0.03 12  8  3  2  1  1 1 0 0     213 
 0.02 19 11  5  3  2  1 1 1 1   1117 
 0.01 37 23 11  7  4  3 2 2 2... ????? 

 c)  Complete Intraoctavic Intervals upwards of absolute Harmonicity 0.05 
Interval Prime Decomposition as Powers of    
size (Ct)   2   3   5   7  11  13 ratio Harmonicity 
        0.000 ---0 ---0 ---0 ---0 ---0 ---0 -- 1:1  +∞  
     70.672  _3  _1  +2 ---0 ---0 ---0 24:25 +0.054152 
  111.731  +4  _1  _1 ---0 ---0 ---0 15:16 _0.076531 
  182.404  +1  _2  +1 ---0 ---0 ---0  --9:10 +0.078534 
  203.910  _3  +2 ---0 ---0 ---0 ---0  --8:9 +0.120000 
  231.174  +3  ---0 ---0  _1 ---0 ---0  --7:8 _0.075269 
  266.871  _1  _1 ---0  +1 ---0 ---0  --6:7 +0.071672 
  294.135  +5  _3 ---0 ---0 ---0 ---0 27:32 _0.076923 
  315.641  +1  +1  _1 ---0 ---0 ---0 -- 5:6 _0.099338 
  386.314  _2  ---0  +1 ---0 ---0 ---0  --4:5 +0.119048 
  407.820  _6  +4 ---0 ---0 ---0 ---0 64:81 +0.060000 
  427.373  +5  ---0  _2 ---0 ---0 ---0 25:32 _0.056180 
  435.084 ---0  +2 ---0  _1 ---0 ---0 -- 7:9 _0.064024 
  470.781  _4  +1 ---0  +1 ---0 ---0 16:21 +0.058989 
  498.045  +2  _1 ---0 ---0 ---0 ---0 -- 3:4 _0.214286 
  519.551  _2  +3  _1 ---0 ---0 ---0 20:27 _0.060976 
  568.717  _1  _2  +2 ---0 ---0 ---0 18:25 +0.052265 
  582.512 ---0 ---0  _1  +1 ---0 ---0  --5:7 +0.059932 
  590.224  _5  +2  +1 ---0 ---0 ---0 32:45 +0.059761 
  609.776  +6  _2  _1 ---0 ---0 ---0 45:64 _0.056391 
  617.488  +1 ---0  +1  _1 ---0 ---0  --7:10 _0.056543 
  680.449  +3  _3  +1 ---0 ---0 ---0 27:40 +0.057471 
  701.955  _1  +1 ---0 ---0 ---0 ---0  --2:3 +0.272727 
  729.219  +5  _1 ---0  _1 ---0 ---0 21:32 _0.055703 
  764.916  +1  _2 ---0  +1 ---0 ---0  --9:14 +0.060172 
  772.627  _4 ---0  +2 ---0 ---0 ---0 16:25 +0.059524 
  792.180  +7  _4 ---0 ---0 ---0 ---0   81:128 _0.056604 
  813.686  +3 ---0  _1 ---0 ---0 ---0  --5:8 _0.106383 
  884.359 ---0  _1  +1 ---0 ---0 ---0  --3:5 +0.110294 
  905.865  _4  +3 ---0 ---0 ---0 ---0 16:27 +0.083333 
  933.129  +2  +1 ---0  _1 ---0 ---0  --7:12 _0.066879 
  968.826  _2 ---0 ---0  +1 ---0 ---0  --4:7 +0.081395 
  996.090  +4  _2 ---0 ---0 ---0 ---0  --9:16 _0.107143 
1017.596 ---0  +2  _1 ---0 ---0 ---0  --5:9 _0.085227 
1088.269  _3  +1  +1 ---0 ---0 ---0  --8:15 +0.082873 
1129.328  +4  +1  _2 ---0 ---0 ---0 25:48 _0.051370 
1137.039  _1  +3 ---0  _1 ---0 ---0 14:27 _0.051852 
1200.000  +1 ---0 ---0 ---0 ---0 ---0  --1:2 +1.000000 
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Γ27 – Graphs on Harmonicity 

 a) Multidimensional scaling  
 of numerical similarity  
 (Stanford 1975) 

 b) All 240 intervals of harmonic 
  intensity ≥0.04 in a three-8ve  
  pitch range 

 c) Asteroid Belt Density as against harmonic intensity of orbital intervals:  
  prime enmity=1.2, display threshold |H|=0.02, 6438 intervals shown 
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Γ28 – Interval Size, Ratios and Harmonic Intensity 
 a1)  Unweighted... 
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 a2)  ...and Weighted Harmonic Intensity of 256 intervals (H≥0.02) from 550_650 Ct  
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 b)  Two intervallic comparisons (left: 4:5 vs. 25:32, right: G! vs. F#) 

G w w w w w# w# w w# w wb w wb w wb w w#
4:5 25:32 5:6
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27:32

45:64

9:10

3:4

5:6

15:16

64:75

32:45

4:5

2:31. 2.W.A.Mozart Symphony 41 J.S.Bach C# minor fugue
 

 c1)  Unweighted ... 
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 c2)  ... and Weighted Harmonic Intensity of 416 intervals (H≥0.025) from 0_1200 Ct 
  in tuning a major scale (nominal tolerance 50 Ct) 
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T29 – Rationalisations of scales 
 a) Best tunings of selected scales at given Minimum Harmonicities (MH),  
  Nominal Tolerance (NT) and Alternative Tunings (AT), with the  
  Specific Harmonicity (SH) of each tuning 

1. Major Scale: 
MH=0.03 
AT=2   Tuning  
NT=10 SH=0.1255 1/1 9/8 512/405 4/3 3/2 27/16 256/135 2/1 
NT=20 SH=0.1957 1/1 9/8 81/64 4/3 3/2 27/16 15/8 2/1 
NT=30_50 SH=0.2252 1/1 9/8 5/4 4/3 3/2 5/3 15/8 2/1 
AT=3 
NT=10 SH=0.1842 1/1 9/8 81/64 4/3 3/2 27/16 243/128 2/1 
NT=20 SH=0.1957 1/1 9/8 81/64 4/3 3/2 27/16 15/8 2/1 
NT=30_50 SH=0.2252 1/1 9/8 5/4 4/3 3/2 5/3 15/8 2/1 
MH=0.04 
AT=2 
NT=10 SH=0.1842 1/1 9/8 81/64 4/3 3/2 27/16 243/128 2/1 
NT=20 SH=0.2252 1/1 9/8 5/4 4/3 3/2 5/3 15/8 2/1 
NT=30_50 SH=0.2252 1/1 9/8 5/4 4/3 3/2 5/3 15/8 2/1 
AT=3 
NT=10 SH=0.1842 1/1 9/8 81/64 4/3 3/2 27/16 243/128 2/1 
NT=20_50 SH=0.2252 1/1 9/8 5/4 4/3 3/2 5/3 15/8 2/1 
MH=0.05 
AT=2 
NT=10 SH=0.2196 1/1 9/8 81/64 4/3 3/2 27/16 27/16 2/1 
NT=20_50 SH=0.2252 1/1 9/8 5/4 4/3 3/2 5/3 15/8 2/1 
AT=3 
NT=10 SH=0.2196 1/1 9/8 81/64 4/3 3/2 27/16 27/16 2/1 
NT=20_50 SH=0.2252 1/1 9/8 5/4 4/3 3/2 5/3 15/8 2/1 

2. Minor Scale: 
MH=0.03 
AT=2   Tuning  
NT=10 SH=0.1204 1/1 9/8 32/27 4/3 3/2 405/256 256/135 2/1 
NT=20 SH=0.1618 1/1 9/8 32/27 4/3 3/2 128/81 15/8 2/1 
NT=30_50 SH=0.2032 1/1 9/8 6/5 4/3 3/2 8/5 15/8 2/1 
AT=3 
NT=10 SH=0.1514 1/1 9/8 32/27 4/3 3/2 128/81 256/135 2/1 
NT=20 SH=0.1618 1/1 9/8 32/27 4/3 3/2 128/81 15/8 2/1 
NT=30_50 SH=0.2032 1/1 9/8 6/5 4/3 3/2 8/5 15/8 2/1 
MH=0.04 
AT=2 
NT=10 SH=0.1514 1/1 9/8 32/27 4/3 3/2 128/81 256/135 2/1 
NT=20 SH=0.2032 1/1 9/8 6/5 4/3 3/2 8/5 15/8 2/1 
NT=30_50 SH=0.2032 1/1 9/8 6/5 4/3 3/2 8/5 15/8 2/1 
AT=3 
NT=10 SH=0.1514 1/1 9/8 32/27 4/3 3/2 128/81 256/135 2/1 
NT=20_50 SH=0.2032 1/1 9/8 6/5 4/3 3/2 8/5 15/8 2/1 
MH=0.05 
AT=2 
NT=10 SH=0.1690 1/1 9/8 32/27 4/3 3/2 128/81 128/81 2/1 
NT=20_50 SH=0.2032 1/1 9/8 6/5 4/3 3/2 8/5 15/8 2/1 
AT=3 
NT=10 SH=0.1690 1/1 9/8 32/27 4/3 3/2 128/81 128/81 2/1 
NT=20_50 SH=0.2032 1/1 9/8 6/5 4/3 3/2 8/5 15/8 2/1 
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3. Whole Tone Scale: 
MH=0.03 
AT=2   Tuning  
NT=10 SH=0.0977 1/1 9/8 512/405 64/45 405/256 16/9 2/1 
NT=20 SH=0.1229 1/1 9/8 81/64 64/45 128/81 16/9 2/1 
NT=30 SH=0.1546 1/1 9/8 5/4 64/45 8/5 16/9 2/1 
NT=40_50 SH=0.1615 1/1 10/9 5/4 64/45 8/5 16/9 2/1 
AT=3 
NT=10 SH=0.1299 1/1 9/8 512/405 64/45 128/81 16/9 2/1 
NT=20 SH=0.1414 1/1 10/9 512/405 64/45 128/81 16/9 2/1 
NT=30_50 SH=0.1615 1/1 10/9 5/4 64/45 8/5 16/9 2/1 
MH=0.04 
AT=2 
NT=10 SH=0.1229 1/1 9/8 81/64 64/45 128/81 16/9 2/1 
NT=20_50 SH=0.1615 1/1 10/9 5/4 64/45 8/5 16/9 2/1 
AT=3 
NT=10 SH=0.1229 1/1 9/8 81/64 64/45 128/81 16/9 2/1 
NT=20_50 SH=0.1615 1/1 10/9 5/4 64/45 8/5 16/9 2/1 
MH=0.05 
AT=2 
NT=10 SH=0.1229 1/1 9/8 81/64 64/45 128/81 16/9 2/1 
NT=20_50 SH=0.1615 1/1 10/9 5/4 64/45 8/5 16/9 2/1 
AT=3 
NT=10 SH=0.1229 1/1 9/8 81/64 64/45 128/81 16/9 2/1 
NT=20_50 SH=0.1615 1/1 10/9 5/4 64/45 8/5 16/9 2/1 

4. Bohlen-Pierce Scale (AT=2; values for NT=40 and NT=50 identical): 
MH=0.03 
NT SH  Tuning  
10 0.0796 1/1  49/45  32/27  9/7  7/5  32/21  5/3  1024/567  63/32  32/15  7/3  1024/405  224/81  3/1 
20 0.0861 1/1  12/11  32/27  9/7  7/5  32/21  5/3  9/5  63/32  32/15  7/3  81/32  224/81  3/1 
30 0.0959 1/1  35/32  32/27  32/25  7/5  32/21  5/3  9/5  2/1 32/15 7/3 81/32 224/81 3/1 
40 0.1200 1/1  35/32  6/5  9/7  45/32  3/2  5/3  9/5  2/1  15/7  75/32  5/2  25/9  3/1 

MH=0.04 
NT SH 
10 0.0905 1/1  35/32  32/27  9/7  45/32  32/21  5/3  9/5  63/32  32/15  7/3  81/32  96/35  3/1 
20 0.0912 1/1  35/32  75/64  9/7  45/32  243/160  5/3  9/5  63/32  15/7  75/32  81/32  96/35  3/1 
30 0.1058 1/1  35/32  6/5  32/25  7/5  32/21  5/3  9/5  2/1  32/15  7/3  5/2  96/35  3/1 
40 0.1200 1/1  35/32  6/5  9/7  45/32  3/2  5/3  9/5  2/1  15/7  75/32  5/2  25/9  3/1 

MH=0.05 
NT SH 
10 0.1102 1/1-1/1  32/27  9/7  45/32  32/21  5/3  9/5  9/5  32/15  7/3  81/32  81/32  3/1 
20 0.1074 1/1-1/1  32/27  32/25  7/5  32/21  5/3  9/5  9/5  32/15  7/3  64/25  25/9  3/1 
30 0.1424 1/1-1/1  6/5  32/25  7/5  3/2  5/3  9/5  2/1  32/15  7/3  5/2  14/5  3/1 
40 0.1366 1/1-16/15 6/5 32/25  7/5  3/2  5/3   9/5  2/1  32/15  7/3  5/2  14/5  3/1 

Based on [3_5_7] grid of other authorities: 
  1/1  27/25  25/21  9/7  7/5  75/49  5/3  9/5  49/25  15/7  7/3  63/25  25/9  3/1 
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 b) Rationalised Tuning Network of Equal-Tempered Scales  
  with intra-degree relationships and harmonicities 
Scale degree: 1    2   3   4    5   6    7     8     9  10 11 12 13 
Input size (Ct): 0  100 200  300 400  500  600 700 800 900 1000 1100  1200 
Tuning: 1/1 16/15     9/8  6/5   5/4   4/3  45/32 3/2  8/5  5/3 9/5 15/8 2/1 
Deviation (Ct): 0 +12  +4 +16 _14  _2 _10 +2 +14 _16 +18 _12 ---0 
Note name: C  D!´1  D2  E!´1   `E  F1  `F#2  G1  A!´  `A1  B!´2  `B1   ĉ 
 

 12 tone matrix: 
 2→ 3→ 4→ 5→ 6→ 7→ 8→ 9→ 10→ 11→ 12→ 13→~   
 16/15  9/8 6/5 5/4 4/3 45/32 3/2 8/5 5/3  9/5 15/8 2/1 →1 
 _0.077 +0.120 _0.099 +0.119 _0.214 +0.060 +0.273 _0.106 +0.110 _0.085 +0.083 +1.000 
  135/128 9/8 75/64 5/4  675/512 45/32  3/2 25/16 27/16 225/128 15/8  →2 
  +0.047 +0.120 +0.047 +0.119 +0.034 +0.060 +0.273 +0.060 +0.083 +0.040 +0.083 
   16/15 10/9 32/27 5/4 4/3 64/45 40/27 8/5 5/3 16/9 →3 
13 tone   _0.077 +0.079 _0.077 +0.119 _0.214 _0.056 +0.057 _0.106 +0.110 _0.107 
matrix:    25/24 10/9 75/64 5/4 4/3 25/18 3/2 25/16 5/3 →4 
13→ 256/243   +0.054 +0.079 +0.047 +0.119 _0.214 +0.052 +0.273 +0.060 +0.110 
 _0.047    16/15 9/8 6/5 32/25 4/3 36/25 3/2 8/5 →5 
12→ 10/9 135/128   _0.077 +0.120 _0.099 _0.056  _0.214 _0.050 +0.273 _0.106 
 +0.079  +0.047    135/128 9/8 6/5 5/4 27/20 45/32 3/2 →6 
11→ 32/27 9/8 16/15    +0.047 +0.120  _0.099 +0.119 _0.061 +0.060 +0.273 
 _0.077 +0.120 _0.077    16/15 256/225 32/27 32/25 4/3 64/45 →7 
10→ 5/4 1215/1024 9/8 135/128   _0.077 _0.038 _0.077 _0.056 _0.214 _0.056 
 +0.119 +0.034 +0.120 +0.047     16/15 10/9 6/5 5/4 4/3 →8 
 9→ 21/16 5103/4096 189/160 567/512 21/20    _0.077 +0.079 _0.099 +0.119 _0.214 
 +0.059 +0.026 +0.034 +0.033 +0.047    25/24 9/8  75/64 5/4 →9 
 8→ 48/35 729/560 216/175   81/70  192/175 256/245   +0.054  +0.120 +0.047 +0.119 
 _0.043 _0.027 _0.029 _0.035 _0.031 _0.029    27/25 9/8 6/5 →10 
 7→ 35/24 2835/2048 21/16 315/256 7/6 10/9 1225/1152   _0.048 +0.120 _0.099 
 +0.045 +0.026 +0.059 +0.033 +0.072 +0.079 +0.022    25/24 10/9 →11 
 6→ 32/21 81/56 48/35 9/7 128/105 512/441 10/9 256/245   +0.054 +0.079 
 _0.056 _0.042 _0.043 _0.064 _0.038 _0.029 +0.079 _0.029    16/15 →12 
 5→ 8/5 243/160 36/25 27/20 32/25 128/105 7/6 192/175 21/20   _0.077 
 _0.106 +0.040 _0.050 _0.061 _0.056 _0.038 +0.072 _0.031 +0.047                                        
 4→ 12/7 729/448 54/35 81/56 48/35 64/49 5/4 288/245 9/8 15/14                              
 _0.067 _0.031 _0.039 _0.042 _0.043 _0.038 +0.119 _0.027 +0.120 _0.049                               
 3→ 16/9 27/16  8/5 3/2 64/45 256/189 35/27  128/105 7/6 10/9 28/27                     
 _0.107 +0.083 _0.106 +0.273 _0.056 _0.038 +0.041 _0.038 +0.072 +0.079 +0.049                      
 2→ 256/135 9/5 128/75  8/5 1024/675 4096/2835 112/81 2048/1575 56/45 32/27 448/405 16/15            
 _0.045 _0.085 _0.045 _0.106 _0.032 _0.025 +0.040 _0.025 +0.040 _0.077 _0.030 _0.077             
 1→ 2/1 243/128  9/5 27/16 8/5 32/21 35/24 48/35 21/16 5/4 7/6  9/8 135/128  
 +1.000 +0.049 _0.085 +0.083 _0.106 _0.056 +0.045 _0.043 +0.059 +0.119 +0.072  +0.120 +0.047    
 →14 →13 →12  →11 →10 →9  →8 →7 →6 →5 →4 →3 →2    
 
Scale degree:   1   2     3    4    5    6    7    8    9   10  11  12  13 14 
Input size (Ct):   0  92 185 277 369 462  554 646 738 831 923 1015 1108 1200 
Tuning: 1/1 135/128  9/8  7/6  5/4 21/16 48/35 35/24 32/21 8/5 27/16 9/5 243/128 2/1 
Deviation (Ct):   0   0 +19 _10 +17  +9  _7  +7  _9 _17 _17  +3  +2 0 
Note name:   C C#`3  D2  E!?1  ``E  F?1  ¿F1  `G?1  ¿G1  A!´   A3  B!´2  B5 ĉ 
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Γ30 – Ratioglyphic representation of tunings of equal-tempered scales –  
 varied (guaranteed) minimum harmonicity (MH) und nominal tolerance (NT),  
 ‘best tuning’ in grey fields with details in box thereunder – multidimensional 
 scaling (MDS) bottom left (note-names) and middle (ratios) – bottom right: 
 rational-intervallic explanation of selected ratioglyphs 

 a)  12-tone-scale MH=0.03 MH=0.04 MH=0.05NT=102030405060 1:1Ct: 0 [0]1
CI

15:16112 [100]2
PJ1

8:9204 [200]3
DI"

5:6316 [300]4
YJ!

4:5386 [400]5
XI

3:4498 [500]6
F1

32:45590 [600]7
QH"

2:3702 [700]8
GI!

5:8814 [800]9
WJ

3:5884 [900]10
VI1

5:91018 [1000]11
LJ"

8:151088 [1100]12
KI!

1:21200 [1200]13
UI

CI

PJ1

DI"

YJ!

XI

F1

QH"

GI!

WJ

VI1

LJ"

KI!

UI

MDS: note-namesstress = 0.0815

1:1
15:16

8:9
5:6

4:5
3:4

32:45
2:3

5:8
3:55:9

8:15
1:2

MDS: ratiosstress = 0.0815
2:3 3+12-1 700+0+2 cents15:162+43-15-1100+10+2cents32:45 3+25+12-5 600-10+0cents

 
 b)  13-tone-scale MH=0.03 MH=0.04 MH=0.05NT=102030405060 1:1Ct: 0 [0]1

CI

128:13592 [92]2
MH#

8:9204 [185]3
DI"

6:7267 [277]4
EJ1

4:5386 [369]5
XI

16:21471 [462]6
FI?!

35:48547 [554]7
@QI!

24:35653 [646]8
SI?1

21:32729 [738]9
@GI1

5:8814 [831]10
WJ

16:27906 [923]11
AI#

5:91018 [1015]12
L"

128:2431110 [1108]13
BI%

1:21200 [1200]14
UI

CI

MH#

DI"
EJ1

XI

FI?!

@QI!

SI?1

@GI1

WJ

AI#

L"

BI%

UI

MDS: note-namesstress = 0.1145

1:1
128:1358:9 6:74:5 16:21

35:48
24:35

21:325:8
16:275:9

128:243
1:2

MDS: ratiosstress = 0.1145

16:21 3+17+12-4500-30+1cents 128:2433+52-7 1100+10+0 cents24:35 5+17+12-33-1 700-50+3 cents
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Γ31 – Graphs on Metricity   
 a)  Stratification of a 12/16-bar (2ž2ž3) b) Dilution (2nd level) of 3/4 & 6/8 

1216  =  H. =  Q. Q. =  L. Q. L. Q. =  JJLJJQJJLJJQ
X 2 X 2 X 3 

LQLQLQ
E;LQLQ
E;E;LQ
E;E;E;
E;: E;
E;: :

LLQLLQ
E;ELLQ
E;EE;E
E;;E;E
E;;E;;
E;;: .

34 681 2 3 4 5 65 0 3 1 4 2 1 2 3 4 5 65 0 2 4 1 3654321
metre:

pulses:
indisp.:

 
 c)  Indispensabilities for 1) 3/4, 2) 6/8 and 3) 12/16 shown in grey shades and size 

1

11 0 6 3 9 1 7 4 10 2 8 5

2

11 0 6 2 8 4 10 1 7 3 9 5

3

11 0 4 8 2 6 10 1 5 9 3 7

 
 d) Metric/tonal field strength as relation ‘oftenness’↔relevance of pulses/pitches 

increasing proba
bility of pulses &

/or tones D

decreasing indispensability (with metric ~eld strength) &/or harmonicity (with tonal ~eld strength)D
zero ~eld strength
higher ~eld strength
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F32 –  Formulæ for Metricity 
 a) Formula for the indispensability ψ of the nth pulse of a metre of stratification 
  p1žp2žp3ž... žpz yzInJ = Ez-1r=0{ Dz-r-1i=0 piWpz-r <1+<[1+In-2J d Dzj=1pj ] d pz-r>>}Drk=0pz+1-kwhereby (all variables being whole numbers):1. p0 = pz+1 = 12. n  is the position in the bar of the pulse in question, starting at 13. pj  is the strati~cation divisor on level j4. z  is the number of levels in the strati~cation5. WpIxJ  is the Indispensability of the xth pulse of a ~rst-order bar with the prime strati~cation p6. u d v  is the remainder of the division Iu+mvJ/v, by suf~ciently large m never negative7. [x]  is the whole-number component of x

 

 b)  Formula for the basic indispensability Ψ of the nth pulse of a 1st-order metre 
  with prime divisor p If p=2,  then WpInJ = p-n ;otherwise if n=p-1,  then WpInJ = [p/4]or else WpInJ = [q+2Q q+1p ]whereby1. n  is the position in the bar of the pulse in question, starting at 12. q = yp-1In- [ n/p ]J3. yp-1IxJ gives the Indispensabilities for a bar of pulses numbering p-1,factorised and strati~ed with primes in decreasing order of sizeSee also 5. and 7. in the previous diagramme
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Γ33 – Graphs on Metric Coherence
 a)  2ž2ž3-indispensability series, five times repeated, against a 3ž5-Series, four 
  times repeated; the printed size of the ‘all-pulse counter’ (1_60) reflects the 
  squared product of the corresponding relative indispensabilities 1all-pulse counter: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21all-pulse counter: 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
41all-pulse counter: 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

12X2X3 pulses: 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8
92X2X3 pulses: 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4
52X2X3 pulses: 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

11Indispensability: 0 4 8 2 6 10 1 5 9 3 7 11 0 4 8 2 6 10 1
5Indispensability: 9 3 7 11 0 4 8 2 6 10 1 5 9 3 7 11 0 4 8
2Indispensability: 6 10 1 5 9 3 7 11 0 4 8 2 6 10 1 5 9 3 7
1  3X5 pulses: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5
6  3X5 pulses: 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10

11  3X5 pulses: 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
14Indispensability: 0 9 3 6 12 1 10 4 7 13 2 11 5 8 14 0 9 3 6
12Indispensability: 1 10 4 7 13 2 11 5 8 14 0 9 3 6 12 1 10 4 7
13Indispensability: 2 11 5 8 14 0 9 3 6 12 1 10 4 7 13 2 11 5 8  

 b) Graphic comparison of metric coherence of selected bar-tempo-ratios  
  with the harmonic intensity (in grey) of the corresponding pitch intervals: 
  (the metric stratification is derived from the prime decomposition of the  
  tempo- ratio numbers in order of falling primes) 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

polymetre / pitch intervalmetric coherenc
e / harmonic int

ensity

1

1

81

80

25

24

16

15

27

25

10

9

9

8

75

64

32

27

6

5

5

4

81

64

32

25

4

3

27

20

25

18

45

32

64

45

36

25

40

27

3

2

25

16

8

5

81

50

5

3

27

16

16

9

9

5

50

27

15

8

48

25

2

1

 
F34 – Formula for the Metric Coherence of two metres 

M = -2 le[18EOn=1[D2i=1 {yz <1+In-1J d Oz >}] - 2]7O0D2i=1IOz -1J^0 i ii
21The Formula:

Conventions:M is the Metric Coherence of metres 1 and 2m is the distinguishing number of the metres I= 1 or 2Jum is the number of levels in the original metre mzm is the number of levels in the expanded metre mvm is the bar tempo of metre mqm is the strati~cation divisor on the jth level of metre mjOj is the number of pulses in the strati~cation on level jO0 is the number of pulses in the entire cycle 
Based on the statements at left:Oum = Dumj=1qmjOzm = gIv1Ou1,v2Ou2JO0 = gIOz1,Oz2J
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T35 – Tables on Metric Coherence 
 a) Intrametric Coherences of selected stratifications (S) upto 3rd order:  
  bar-tempo (T) of each metre at left 

Metre 1 Metre 2 Coherence 
T S T S  
1 2ž2ž2 1 2ž2ž2 0.46382 
1 2ž2ž2  1  2ž2ž3  0.24638 
1  2ž2ž2  1  2ž3ž2  0.18956 
1  2ž2ž2  1  3ž2ž2  0.16747 
1  2ž2ž3  1  2ž2ž2  0.24638 
1  2ž2ž3  1  2ž2ž3  0.41454 
1  2ž2ž3  1  2ž3ž2  0.26958 
1  2ž2ž3  1  3ž2ž2  0.20797 
1  2ž3ž2  1  2ž2ž2  0.18956 
1  2ž3ž2  1  2ž2ž3  0.26958 
1  2ž3ž2  1  2ž3ž2  0.41454 
1  2ž3ž2  1  3ž2ž2  0.36421 
1  3ž2ž2  1  2ž2ž2  0.16747 
1  3ž2ž2  1  2ž2ž3  0.20797 
1  3ž2ž2  1  2ž3ž2  0.36421 
1  3ž2ž2  1  3ž2ž2  0.41454 
1  2ž2ž2  2  2ž2ž2  0.42381 
1  2ž2ž2  2  2ž2ž3  0.39233 
1  2ž2ž2  2  2ž3ž2  0.25708 
1  2ž2ž2  2  3ž2ž2  0.19808 
1  2ž2ž3  2  2ž2ž2  0.18485 
1  2ž2ž3  2  2ž2ž3  0.25708 
1  2ž2ž3  2  2ž3ž2  0.39233 
1  2ž2ž3  2  3ž2ž2  0.34635 
1  2ž3ž2  2  2ž2ž2  0.16281 
1  2ž3ž2  2  2ž2ž3  0.19808 
1  2ž3ž2  2  2ž3ž2  0.34635 
1  2ž3ž2  2  3ž2ž2  0.39233 
1  3ž2ž2  2  2ž2ž2  0.15474 
1  3ž2ž2  2  2ž2ž3  0.17378 
1  3ž2ž2  2  2ž3ž2  0.32603 
1  3ž2ž2  2  3ž2ž2  0.37737 
1  2ž2ž2  3  2ž2ž2  0.17633 
1  2ž2ž2  3  2ž2ž3  0.19094 
1  2ž2ž2  3  2ž3ž2  0.13830 
1  2ž2ž2  3  3ž2ž2  0.11984 
1  2ž2ž3  3  2ž2ž2  0.33779 
1  2ž2ž3  3  2ž2ž3  0.35407 

Metre 1 Metre 2 Coherence 
T S T S 
1  2ž2ž3  3  2ž3ž2  0.20399 
1  2ž2ž3  3  3ž2ž2  0.15166 
1  2ž3ž2  3  2ž2ž2  0.39582 
1  2ž3ž2  3  2ž2ž3  0.37899 
1  2ž3ž2  3  2ž3ž2  0.24842 
1  2ž3ž2  3  3ž2ž2  0.18120 
1  3ž2ž2  3  2ž2ž2  0.41227 
1  3ž2ž2  3  2ž2ž3  0.38555 
1  3ž2ž2  3  2ž3ž2  0.25318 
1  3ž2ž2  3  3ž2ž2  0.19492 
2  2ž2ž2  1  2ž2ž2  0.42381 
2  2ž2ž2  1  2ž2ž3  0.18485 
2  2ž2ž2  1  2ž3ž2  0.16281 
2  2ž2ž2  1  3ž2ž2  0.15474 
2  2ž2ž3  1  2ž2ž2  0.39233 
2  2ž2ž3  1  2ž2ž3  0.25708 
2  2ž2ž3  1  2ž3ž2  0.19808 
2  2ž2ž3  1  3ž2ž2  0.17378 
2  2ž3ž2  1  2ž2ž2  0.25708 
2  2ž3ž2  1  2ž2ž3  0.39233 
2  2ž3ž2  1  2ž3ž2  0.34635 
2  2ž3ž2  1  3ž2ž2  0.32603 
2  3ž2ž2  1  2ž2ž2  0.19808 
2  3ž2ž2  1  2ž2ž3  0.34635 
2  3ž2ž2  1  2ž3ž2  0.39233 
2  3ž2ž2  1  3ž2ž2  0.37737 
2  2ž2ž2  3  2ž2ž2  0.16149 
2  2ž2ž2  3  2ž2ž3  0.13297 
2  2ž2ž2  3  2ž3ž2  0.11317 
2  2ž2ž2  3  3ž2ž2  0.10609 
2  2ž2ž3  3  2ž2ž2  0.18416 
2  2ž2ž3  3  2ž2ž3  0.19395 
2  2ž2ž3  3  2ž3ž2  0.14147 
2  2ž2ž3  3  3ž2ž2  0.12338 
2  2ž3ž2  3  2ž2ž2  0.35240 
2  2ž3ž2  3  2ž2ž3  0.23679 
2  2ž3ž2  3  2ž3ž2  0.17158 
2  2ž3ž2  3  3ž2ž2  0.15084 

Metre 1 Metre 2 Coherence 
T S T S 
2  3ž2ž2  3  2ž2ž2  0.41575 
2  3ž2ž2  3  2ž2ž3  0.24132 
2  3ž2ž2  3  2ž3ž2  0.18509 
2  3ž2ž2  3  3ž2ž2  0.16105 
3  2ž2ž2  1  2ž2ž2  0.17633 
3  2ž2ž2  1  2ž2ž3  0.33779 
3  2ž2ž2  1  2ž3ž2  0.39582 
3  2ž2ž2  1  3ž2ž2  0.41227 
3  2ž2ž3  1  2ž2ž2  0.19094 
3  2ž2ž3  1  2ž2ž3  0.35407 
3  2ž2ž3  1  2ž3ž2  0.37899 
3  2ž2ž3  1  3ž2ž2  0.38555 
3  2ž3ž2  1  2ž2ž2  0.13830 
3  2ž3ž2  1  2ž2ž3  0.20399 
3  2ž3ž2  1  2ž3ž2  0.24842 
3  2ž3ž2  1  3ž2ž2  0.25318 
3  3ž2ž2  1  2ž2ž2  0.11984 
3  3ž2ž2  1  2ž2ž3  0.15166 
3  3ž2ž2  1  2ž3ž2  0.18120 
3  3ž2ž2  1  3ž2ž2  0.19492 
3  2ž2ž2  2  2ž2ž2  0.16149 
3  2ž2ž2  2  2ž2ž3  0.18416 
3  2ž2ž2  2  2ž3ž2  0.35240 
3  2ž2ž2  2  3ž2ž2  0.41575 
3  2ž2ž3  2  2ž2ž2  0.13297 
3  2ž2ž3  2  2ž2ž3  0.19395 
3  2ž2ž3  2  2ž3ž2  0.23679 
3  2ž2ž3  2  3ž2ž2  0.24132 
3  2ž3ž2  2  2ž2ž2  0.11317 
3  2ž3ž2  2  2ž2ž3  0.14147 
3  2ž3ž2  2  2ž3ž2  0.17158 
3  2ž3ž2  2  3ž2ž2  0.18509 
3  3ž2ž2  2  2ž2ž2  0.10609 
3  3ž2ž2  2  2ž2ž3  0.12338 
3  3ž2ž2  2  2ž3ž2  0.15084 
3  3ž2ž2  2  3ž2ž2  0.16105
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...T35... 

 b) Tabled comparison of metric coherence of selected bar-tempo-ratios  
   with the harmonicity of the corresponding pitch intervals (see Γ33b). 

 Ratio  prime decomposition  metric coherence  harmonicity 
 --1-/-1 -----------------------2 / 2* -----∞ -----∞ 
 81-/-80 ------- (3ž3ž3ž3) / (5ž2ž2ž2ž2)- 0.05538 0.04747 
 25-/-24 -----------------(5ž5) / (3ž2ž2ž2)- 0.07005 0.05415 
 16-/-15 --------(2ž2ž2ž2) / (5ž3)- 0.08712 0.07653 
 27-/-25 ------------(3ž3ž3) / (5ž5)- 0.07607 0.04808 
 10-/-9 ----------------(5ž2) / (3ž3)- 0.10889 0.07853 
 --9-/-8 ----------------(3ž3) / (2ž2ž2) 0.11304 0.12000 
 75-/-64 ------------(5ž5ž3) / (2ž2ž2ž2ž2ž2)- 0.05688 0.04658 
 32-/-27 ---(2ž2ž2ž2ž2) / (3ž3ž3)- 0.07138 0.07692 
 --6-/-5 -----------------(3ž2) / 5- 0.13783- 0.09934 
 --5-/-4 -----------------------5 / (2ž2)- 0.14370- 0.11905 
 81-/-64 ---------3ž3ž3ž3) / (2ž2ž2ž2ž2ž2)- 0.05682 0.06000 
 32-/-25 ---(2ž2ž2ž2ž2) / (5ž5)- 0.06920 0.05618 
 --4-/-3 ----------------(2ž2) / 3- 0.20797 0.21429 
 27-/-20 ------------(3ž3ž3) / (5ž2ž2) 0.07750 0.06098 
 25-/-18 ----------------(5ž5) / (3ž3ž2)- 0.07424 0.05227 
 45-/-32 ------------(5ž3ž3) / (2ž2ž2ž2ž2)- 0.06668 0.05976 
 64-/-45 (2ž2ž2ž2ž2ž2) / (5ž3ž3)- 0.06082 0.05639 
 36-/-25 --------(3ž3ž2ž2) / (5ž5)- 0.06834 0.04967 
 40-/-27 --------(5ž2ž2ž2) / (3ž3ž3)- 0.06952 0.05747 
 --3-/-2 -----------------------3 / 2- 0.32447 0.27273 
 25-/-16 ----------------(5ž5) / (2ž2ž2ž2)- 0.08001 0.05952 
 --8-/-5 ------------(2ž2ž2) / 5- 0.12442 0.10639 
 81-/-50 ---- ---(3ž3ž3ž3) / (5ž5ž2)- 0.05961 0.04087 
 --5-/-3 -----------------------5 / 3- 0.19613 0.11029 
 27-/-16 ------------(3ž3ž3) / (2ž2ž2ž2)- 0.08047 0.08333 
 16-/-9 --------(2ž2ž2ž2) / (3ž3)- 0.09837 0.10714 
 --9-/-5 -- --------------(3ž3) / 5- 0.14284 0.08523 
 50-/-27 ------------(5ž5ž2) / (3ž3ž3)- 0.06810 0.04587 
 15-/-8 ---- ------------(5ž3) / (2ž2ž2)- 0.10209 0.08287 
 48-/-25 ----(3ž2ž2ž2ž2) / (5ž5)- 0.06562 0.05137 
 --2-/-1 ----------------(2ž2) / 2*- 0.70507 1.00000 
 
 * set at 2 / 2 and to -(2ž2)/2 to avoid a one-beat metre
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T36 – On Stochastics 

 a)  Statistical list of all characters and bigrammes in Chapter 24 with occurrence tally 
  (‘ _’ represents a space) 
Characters 
926  ž   _ 
565 ž  E 
404  ž  T 
332  ž  O 
311  ž  I 
310  ž  S 
302  ž  A 
294  ž  R 
270  ž  N 
239  ž  H 
177  ž  L 
145  ž  D 
139  ž  C 
103  ž  M 
 98  ž F 
 88  ž U 
 86  ž  G 
 83  ž  B 
 65  ž  P 
 64  ž  Y 
 52  ž  W 
 31  ž  V 
 15  ž  X 
 12  ž  K 
    9  ž  Q 
    5  ž  Z  
Bigrammes 
189 ž E_ 
168 ž _T 
156 ž TH 
148 ž S_ 
139 ž HE 
104 ž _A 
 87 ž _O 
 86 ž ER 
 85 ž IN 
 77 ž RE 
 69 ž ES 
 64 ž N_ 
 64 ž D_ 
 64 ž _I 
 62 ž IS 
 61 ž OR 
 59 ž R_ 
 54 ž EN 
 54 ž _S 

 50 ž AL 
 47 ž T_ 
 46 ž Y_ 
 46 ž TO 
 46 ž TI 
 46 ž ON 
 45 ž F_ 
 43 ž OF 
 43 ž AN 
 43 ž _C 
 41 ž NG 
 41 ž _F 
 40 ž O_ 
 39 ž AT 
 38 ž TE 
 38 ž NT 
 38 ž L_ 
 37 ž ST 
 37 ž RA 
 37 ž DE 
 37 ž _B 
 36 ž ED 
 35 ž LE 
 33 ž SE 
 33 ž IC 
 33 ž BE 
 33 ž _L 
 32 ž ND 
 32 ž IT 
 31 ž _M 
 30 ž SI 
 30 ž _W 
 29 ž RD 
 29 ž H_ 
 28 ž RO 
 28 ž _E 
 27 ž CH 
 27 ž _R 
 26 ž G_ 
 26 ž AR 
 25 ž AS 
 25 ž A_ 
 24 ž LI 
 24 ž CO 
 23 ž OM 
 23 ž DI 
 23 ž _P 

 22 ž OT 
 22 ž LL 
 22 ž HI 
 22 ž FR 
 22 ž _G 
 21 ž ME 
 21 ž IO 
 21 ž _N 
 20 ž RI 
 20 ž HA 
 20 ž EA 
 20 ž CA 
 19 ž VE 
 19 ž HO 
 19 ž FO 
 19 ž ET 
 19 ž AB 
 18 ž OW 
 17 ž TA 
 17 ž SH 
 17 ž RS 
 17 ž OU 
 17 ž NO 
 17 ž LY 
 17 ž _D 
 16 ž NE 
 16 ž M_ 
 16 ž LO 
 16 ž IG 
 16 ž GR 
 15 ž US 
 15 ž NA 
 15 ž GE 
 15 ž BI 
 14 ž TS 
 14 ž PR 
 14 ž NS 
 14 ž CE 
 13 ž WH 
 13 ž WE 
 13 ž NC 
 13 ž EL 
 13 ž AC 
 13 ž _H 
 12 ž UA 
 12 ž SY 
 12 ž MP 

 12 ž MO 
 12 ž IL 
 12 ž EŽ 
 12 ž EM 
 12 ž BA 
 12 ž AM 
 11 ž YN 
 11 ž UR 
 11 ž UE 
 11 ž OS 
 11 ž MU 
 11 ž EE 
 11 ž C_ 
 11 ž AP 
 11 ž AI 
 10 ž WS 
 10 ž TT 
 10 ž MA 
 10 ž GI 
 10 ž AD 
  9 ž UT 
  9 ž UL 
  9 ž QU 
  9 ž PO 
  9 ž PL 
  9 ž OL 
  9 ž OB 
  9 ž EQ 
  9 ž DU 
  9 ž CC 
  8 ž VI 
  8 ž TY 
  8 ž TR 
  8 ž PE 
  8 ž OC 
  8 ž MB 
  8 ž LA 
  8 ž ID 
  8 ž EV 
  8 ž CT 
  8 ž BO 
  7 ž WI 
  7 ž SO 
  7 ž SA 
  7 ž RY 
  7 ž RR 
  7 ž MM 

  7 ž KE 
  7 ž IV 
  7 ž IE 
  7 ž IB 
  7 ž CR 
  7 ž AV 
  6 ž UN 
  6 ž SC 
  6 ž PH 
  6 ž IM 
  6 ž _U 
  5 ž ŽT 
  5 ž UM 
  5 ž TU 
  5 ž P_ 
  5 ž OD 
  5 ž NU 
  5 ž NI 
  5 ž LD 
  5 ž IR 
  5 ž GU 
  5 ž GH 
  5 ž FT 
  5 ž EI 
  5 ž DO 
  5 ž CU 
  5 ž BY 
  5 ž BL 
  5 ž _Z 
  4 ž ZO 
  4 ž ŽA 
  4 ž WO 
  4 ž VA 
  4 ž UC 
  4 ž TW 
  4 ž SP 
  4 ž RT 
  4 ž PP 
  4 ž PI 
  4 ž OV 
  4 ž OO 
  4 ž MI 
  4 ž LU 
  4 ž LS 
  4 ž IK 
  4 ž IA 
  4 ž GL 

  4 ž EY 
  4 ž EP 
  4 ž EF 
  4 ž CS 
  4 ž CI 
  4 ž AG 
  3 ž YS 
  3 ž W_ 
  3 ž UP 
  3 ž TC 
  3 ž SS 
  3 ž RM 
  3 ž PT 
  3 ž OP 
  3 ž NY 
  3 ž NL 
  3 ž K_ 
  3 ž HT 
  3 ž HS 
  3 ž FU 
  3 ž FA 
  3 ž EC 
  3 ž CY 
  3 ž CL 
  3 ž BU 
  3 ž _V 
  2 ž ŽI 
  2 ž ŽF 
  2 ž WN 
  2 ž UI 
  2 ž SU 
  2 ž RC 
  2 ž PA 
  2 ž OY 
  2 ž OŽ 
  2 ž OK 
  2 ž ML 
  2 ž LF 
  2 ž KI 
  2 ž IF 
  2 ž HR 
  2 ž GA 
  2 ž EG 
  2 ž EB 
  2 ž DY 
  2 ž DS 
  2 ž DD 

  2 ž AK 
  2 ž _K 
  1 ž ZE 
  1 ž YM 
  1 ž YI 
  1 ž YE 
  1 ž YA 
  1 ž ŽH 
  1 ž ŽC 
  1 ž UD 
  1 ž TM 
  1 ž TL 
  1 ž SM 
  1 ž SL 
  1 ž SK 
  1 ž SF 
  1 ž RV 
  1 ž RU 
  1 ž RP 
  1 ž RL 
  1 ž PU 
  1 ž OI 
  1 ž OG 
  1 ž OE 
  1 ž NV 
  1 ž NN 
  1 ž NF 
  1 ž LR 
  1 ž LC 
  1 ž HU 
  1 ž HF 
  1 ž GT 
  1 ž GN 
  1 ž GM 
  1 ž FI 
  1 ž EO 
  1 ž EK 
  1 ž EH 
  1 ž DT 
  1 ž BR 
  1 ž BB 
  1 ž AY 
  1 ž AŽ 
  1 ž AU 
  1 ž AO 
  1 ž AF 
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...T36... 

 b) Examples of Markov Syntheses of various orders 
 
Original Text: 
AT THE START OF THE TWENTIETH CENTURY, THE RUSSIAN MATHEMATICIAN 
ANDREI ANDREYEVITCH MARKOV DEVELOPED A METHOD 

Markovsyntheses: 

Order 
0: RYHAEDERINKTCRT NITTDDT OHEIDADTHOVHR OTHSUMIRTSTTRAAVE EOATSSIE 

TH E ORDSLCRDPRTODSUTOYIKT  DTEFMATRE MAOTHA TINAAEELCTNRCHANOARHO 
T EEETI FHAN  RACH  TAHNMA ITEE OEC,RTE LTI KOT TAH 

1: IELOD ATUSTICIANDRE MATHENTHELOPE STHEV CENT D AN THEDEMAN SSTHE 
ARKOF D ANDREITWEMA MAND DEN TH ANDREVE SIAND ARETIEVEY, 
ATIETURURY, TH MARYELOF AN DE TUSIAN MANDRETHEIE CH STI TH  

2: T TWENTIETHOD ATIETH CENTURY, THE STARKOV DEVITCH MATHE START THE 
THE START TH METHE STARKOV DEVELOPED ANDREYEVELOPED ANDREI A 
MATICIANDREI AN MAT THEMATHE START OF TH CENTURY, THE STARKOV  

3: MATHE TWENTURY, THE RUSSIAN ANDREI ANDREYEVITCH MARKOV DEVELOPED A 
METHOD AT THE RUSSIAN MATICIAN ANDREI ANDREYEVITCH MARKOV 
DEVELOPED A METH CENTURY, THE START OF THE START OF THEMATHE  

4: VELOPED A METHOD AT THE START OF THE RUSSIAN ANDREI ANDREI ANDREI 
ANDREYEVITCH MARKOV DEVELOPED A METHOD AT THE START OF THE RUSSIAN 
MATHEMATICIAN ANDREYEVITCH MARKOV DEVELOPED A METHOD AT THE 

5: THOD AT THE TWENTIETH CENTURY, THE RUSSIAN MATHEMATICIAN ANDREI 
ANDREYEVITCH MARKOV DEVELOPED A METHOD AT THE TWENTIETH CENTURY, 
THE TWENTIETH CENTURY, THE START OF THE TWENTIETH CENTURY, THE  

6: START OF THE TWENTIETH CENTURY, THE RUSSIAN MATHEMATICIAN ANDREI 
ANDREYEVITCH MARKOV DEVELOPED A METHOD AT THE START OF THE 
TWENTIETH CENTURY, THE RUSSIAN MATHEMATICIAN ANDREI ANDREI ANDREI  

7: NTURY, THE RUSSIAN MATHEMATICIAN ANDREI ANDREYEVITCH MARKOV 
DEVELOPED A METHOD AT THE START OF THE TWENTIETH CENTURY, THE 
RUSSIAN MATHEMATICIAN ANDREI ANDREYEVITCH MARKOV DEVELOPED A  

1.2: D ANTHE METHENDREY, TCH CITH STHE MAT TH SIELOF STWE THELOV T ATHE 
THETHELOD TICE MA OVIATWETITCHELOPEVIANTHEMATHETHOD A TARTH 
METATIET SSTH OF MANTWEITURKOD AN TUSSSIATI RENTICICIANTURT  

1.4: ARY, THE MELOPEYEDREYEN MATITHE RUSSTIETH AT TH AN TCH 
OPELOPEMETHE STANTUREY, AT OF TITHE RUSTHEY, TH MATH 
RURTUSSSIATITH TH AN THENTH CE RUSSIATCHOVELOPEI AN ARKOVEY,  

1.6: IT MENTURYEV THODREV MATHEMARKOD ANDREVI ANTIETHE STARTH MAN ATHE 
ST OF RUSSIANTHEMETHE THOVELOVIT DRUSSICEMATHE RKOD ATWENTH CHE 
THEMAREYEVELOPEDRE STAN DEVITH TWELOV DEVIANDEVIAN T OV AN  

1.8: IAN MARKOVETHOD AT TH CENTICIANTICH MATHEY, THE RUSSSIAN CEMAT THE 
SIANDREYEVELOPED AND A MAT AN ANDREYEVELOPED AN MA METH MARKOV 
DEVELOPED AN MARKOD ATHE METH MART T OF THEMART OF THOD  
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Γ37 – Examples of the stochastic generation of notes 
 a)  Markov resyntheses (orders 1-8) of a J.S.Bach-Phrase  











               

                      
                      
               
                
               
               
               
               

0

1

2

3

4

5

6

7

E
Original

Markoff-order o
f resynthesis

 
 b)  nine-stage conversion of probabilities into pitches – above: probability (y, dark 
  grey) vs. MIDI-pitch (x), below: resultant pitches for each of the 9 stages 

                                        

                                

66

F#4

71

B4

76

E5

1

1

66

F#4

71

B4

76

E5

2

2

66

F#4

71

B4

76

E5

3

3

66

F#4

71

B4

76

E5

4

4

66

F#4

71

B4

76

E5

5

5

66

F#4

71

B4

76

E5

6

6

66

F#4

71

B4

76

E5

7

7

66

F#4

71

B4

76

E5

8

8

66

F#4

71

B4

76

E5

9

9  
 c) Method for converting probability (%) into notes by random numbers, of which 
  here four (R=..) are employed for a set of five pitches and their probabilities zone 1

G!
14%

0.00

R=0.15?...A!! R=0.43?...B!! R=0.68?...B!! R=0.88?...D!!zone 2
A!

9%

0.14

R=0.15?...A!! R=0.43?...B!! R=0.68?...B!! R=0.88?...D!!zone 3
B!

50%

0.23

R=0.15?...A!! R=0.43?...B!! R=0.68?...B!! R=0.88?...D!!zone 4
D!

20%

0.73

R=0.15?...A!! R=0.43?...B!! R=0.68?...B!! R=0.88?...D!!zone 5
E!
7%

0.93

R=0.15?...A!! R=0.43?...B!! R=0.68?...B!! R=0.88?...D!!
1.00
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Γ38 – Examples of Fourier analysis and -synthesis 
 a-d) Wave synthesis of a sawtooth sprectrum a 2 partials, phase zero

5 10 15 20 25

b 5 partials, phase zero
5 10 15 20 25c 25 partials, phase zero

5 10 15 20 25

d 25 partials, phase random
5 10 15 20 25

 
 e-h) Wave-form syntheses mit 500 partials (at = amplitude, ω = phase, t = partial) 

e sawtooth

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

an=1/n f square

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

a2n-1=1/I2n-1J, a2n=0

g triangular

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

a2n-1=1/I2n-1J^, w4n-1=0, w4n+1=R, a2n=0 h digestible

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

an=1/tInJ
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...Γ38... 

 i-l) Bassoon spectrum in four renditions  
 (pitch and loudness alternately linear and logarithmic) 

0 3 6 9 12 18 24 30 36 42semitones

0
-10
-20
-30sound pressure 

level [dB(U)]
x logarithmic, y logarithmici

0 3 6 9 12 18 24 30 36 42semitones0102030405060708090100
relative amplitu

de [per cent]
x logarithmic, y linearj

3 6 9 12partials

0
-10
-20
-30sound pressure 

level [dB(U)]

x linear, y logarithmick

3 6 9 12partials0102030405060708090100

relative amplitu
de [per cent]

x linear, y linearl

 
 m-p) hand-drawn curve with three Fourier-resynthesized approximations m hand-drawn curve n resynthesis, 6 partials

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75o resynthesis, 16 partials
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

p resynthesis, 75 partials
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75  
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T39 – Fourier Analysis (DFT) of a hand-drawn curve 
Partial Amplitude Phase 
 /100 /1000 
  1    3    61 
  2    6 107 
  3    7 374 
  4 18 138 
  5 23    68 
  6 31 906 
  7    5 260 
  8 24 670 
  9    8 535 
 10    9 510 
 11    5 234 
 12    6 236 
 13    8 935 
 14 11 326 
 15    7 652 
 16    5 206 
 17    1    44 
 18    6    11 
 19    2 927 
 20    6 868 
 21    5 445 
 22    5 651 
 23    2 357 
 24    1 499 
 25    1 163 
 26    1 310 
 27    1    34 
 28    1 330 
 29    1    16 
 30    1 972 
 31    1 799 
 32    1 642 
 33    1 733 

Partial Amplitude Phase 
 /100 /1000 
 34    1 456 
 35    1 947 
 36    2 240 
 37    0      0 
 38    1  79 
 39    0      0 
 40    1 925 
 41    1 616 
 42    2 896 
 43    1 336 
 44    1 683 
 45    1 389 
 46    1 550 
 47    0      0 
 48    1 494 
 49    2  47 
 50    1 298 
 51    1 917 
 52    0      0 
 53    1 739 
 54    0      0 
 55    1 628 
 56    0      0 
 57    1 432 
 58    0      0 
 59    0      0 
 60    0      0 
 61    0      0 
 62    0      0 
 63    0      0 
 64    1 896 
 65    0      0 
 66    0      0 

Partial Amplitude Phase 
 /100 /1000 
 67    0      0 
 68    1 469 
 69    0      0 
 70    1 524 
 71    1 986 
 72    0      0 
 73    0      0 
 74    0      0 
 75    0      0 
 76    0      0 
 77    1 640 
 78    0      0 
 79    1 438 
 80    0      0 
 81    1 325 
 82    0      0 
 83    0      0 
 84    0      0 
 85    0      0 
 86    0      0 
 87    0      0 
 88    0      0 
 89    0      0 
 90    0      0 
 91    0      0 
 92    0      0 
 93    0      0 
 94    0      0 
 95    0      0 
 96    0      0 
 97    0      0 
 98    0      0 
 99    0      0 



 

 44

Γ40 – Examples of Frequency Modulation and Phase Distortion 
 a-d) Modulator frequency < carrier frequency; index 0 to 3 a carrier: 100 Hz modulator: 10 Hz index: 0.0

DFTHz: 0 50 100 150 200 250 300 350 400 450 500 550 600

b carrier: 100 Hz modulator: 10 Hz index: 0.2
DFTHz: 0 50 100 150 200 250 300 350 400 450 500 550 600c carrier: 100 Hz modulator: 10 Hz index: 1.0

DFTHz: 0 50 100 150 200 250 300 350 400 450 500 550 600

d carrier: 100 Hz modulator: 10 Hz index: 3.0
DFTHz: 0 50 100 150 200 250 300 350 400 450 500 550 600  

 e-h) Modulator frequency < carrier frequency; index 7 to 15 e carrier: 100 Hz modulator: 10 Hz index: 7.0
DFTHz: 0 50 100 150 200 250 300 350 400 450 500 550 600

f carrier: 100 Hz modulator: 10 Hz index: 10.0
DFTHz: 0 50 100 150 200 250 300 350 400 450 500 550 600g carrier: 100 Hz modulator: 10 Hz index: 12.0

DFTHz: 0 50 100 150 200 250 300 350 400 450 500 550 600

h carrier: 100 Hz modulator: 10 Hz index: 15.0
DFTHz: 0 50 100 150 200 250 300 350 400 450 500 550 600  
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...Γ40... 

 i-l) Modulator frequency ≥ carrier frequency; index 1 and 10 i carrier: 100 Hz modulator: 100 Hz index: 1.0
DFTHz: 0 50 100 150 200 250 300 350 400 450 500 550 600

j carrier: 100 Hz modulator: 200 Hz index: 1.0
DFTHz: 0 50 100 150 200 250 300 350 400 450 500 550 600k carrier: 100 Hz modulator: 100 Hz index: 10.0

DFTHz: 0 50 100 150 200 250 300 350 400 450 500 550 600

l carrier: 100 Hz modulator: 200 Hz index: 10.0
DFTHz: 0 50 100 150 200 250 300 350 400 450 500 550 600  

 m) Examples of phase distortion (with sine input and output signals and DFTs) input signal
output signal: 

phase distortion
old-Ynew-Y

-1 +1

-
1

+
1

phase distortion
old-Ynew-Y

-1 +1

-
1

+
1

DFTpartials: 10 20 30 40 50

phase distortion
old-Ynew-Y

-1 +1

-
1

+
1

phase distortion
old-Ynew-Y

-1 +1

-
1

+
1

10 20 30 40 50

phase distortion
old-Ynew-Y

-1 +1

-
1

+
1

phase distortion
old-Ynew-Y

-1 +1

-
1

+
1

10 20 30 40 50

phase distortion
old-Ynew-Y

-1 +1

-
1

+
1

phase distortion
old-Ynew-Y

-1 +1

-
1

+
1

10 20 30 40 50

phase distortion
old-Ynew-Y

-1 +1

-
1

+
1

phase distortion
old-Ynew-Y

-1 +1

-
1

+
1

10 20 30 40 50  
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Γ41 – On complex tones and noise 
 a) A noise spectrum – a forcefully struck 70 cm Ø tamtam (92dB(SPL)) 

dB
(U

)

kHz: 0 1 2 3 4 5 6

0

-10

-20

-30

-40

-50

 
 b)  Random numbers as samples in the nine grey boxes (white noise – central 
  diagramme from left to right) with ISIS-Analysis (SIS) and -histogramme (Hgm) 
  at the bottom as well as Fourier-analysis of the samples (DFT, above) 

0 5 10 15 20k

DFT

0 5 10 15 20k

DFT

0 5 10 15 20k

DFT

0 5 10 15 20k

DFT

0 5 10 15 20k

DFT

0 5 10 15 20k

DFT

0 5 10 15 20k

DFT

0 5 10 15 20k

DFT

0 5 10 15 20k

DFT

+719ct

-719ct

44,1kHz

SIS

Hgm

-1200 -1000 -800 -600 -400 -200 0 200 400 600 800 1000 1200
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...Γ41... 
 c) ISIS-Analysis of 12 random samples: 11 sine frequencies with contigually 
  connecting phases (a spline connects the samples for purely optical reasons as in 
  some sound editors – s. also Γ02g) 

4
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5
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0
O
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2
6
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5
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-
1
7
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4
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4
6
0
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9
O
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O
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0
9

 Hz
+
2
4
O
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O

 
 d) Four ISIS-syntheses (with DFTs and histogrammes) derived from  
  1) the pitch A4, 2) an octave-tremolo A4 - A5, 3) randomly distributed  
  frequencies between A4 and A5, 4) random frequencies with probability maxima 
  at A4 and A5 

1 2

3 4
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0
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Ys:

SIS
W 0 2 4 6 8 10 12 14 16
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HgmHz:
300 400 500 600 700 800 900 1000

HgmHz:

300 400 500 600 700 800 900 1000

HgmHz:
300 400 500 600 700 800 900 1000

HgmHz:0 220 440 660 880 1100 1320

DFT
Hz:

0 220 440 660 880 1100 1320

DFT
Hz:

0 220 440 660 880 1100 1320

DFT
Hz:

0 220 440 660 880 1100 1320

DFT
Hz:
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Γ42 – The Critical Bandwidth  
 a)  The geometric centre of two noise bands compared to their subjective centre  

MIDI: 0 6

0

12 18

1

24 30

2

36 42

3

48 54

4

60 66

5

72 78

6

84 90

7

96 102

8

108 114

9

120 126

C C C C C C C C C C

Hz: 10 20 30 50 100 200 300 500 1k 2k 3k 5k 10k
loudness geometricmean subjectivemean

 
 b)  Loudness change (in grey shades) at constant SPL of a widening noise band 

Hz: 0 50 100 150 200 250 300 350 400 450 500

sound pressure 
level critical bandwidthcentral frequency

 
 c)  Critical Bandwidth in semitones (y) as an empirical function of the central band 
  frequency (x) 

se
m
it
o
n
e
s:

Hz: 50 100 200 400 800 1600 3200 6400 12800(C2) (C3) (C4) (C5) (C6) (C7) (C8) (C9) (C10)
0

6

12

18

24

30

36

42

48

54

60

66

72

78

84

90
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...Γ42... 

 d)  Critical Band limits (y in Hz) as related to the central frequencies (x)
Hz:Hz: 25 50 100 200 400 800 1600 3200 6400 12800

25

50

100

200

400

800

1600

3200

6400

12800

1Bk

2Bk

3Bk

4Bk

5Bk

6Bk

7Bk

8Bk

9Bk

10Bk

11Bk

12Bk

13Bk

14Bk

15Bk

16Bk

17Bk

18Bk

19Bk

20Bk

21Bk

22Bk

23Bk

24Bk

300Hz920Hz2000Hz

Band centres

Band edges

 e) Critical Bandwidth in Bark (y) as algebraic approximations of band delimiting 
  frequencies (x): the vertical grey lines mark 200 partials of a 100 Hz spectrum

B
ar
k:

kHz: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26
Tjomov(1971) Terhardt(1979) Terhardt-Barlow(1981)

Zwicker-Terhardt(1980)
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T43 – Conversion Bark→Hertz  
 according to the formulæ of Terhardt [1979] (for Bark ≤ 2.19) 
 and Traunmüller [1990] (for Bark ≥ 2.19) 

Bark→ +0.0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 +0.9  
↓0: 0.000 10.03 20.05 30.08 40.11 50.15 60.19 70.24 80.30 90.36 

--1: 100.4 110.5 120.6 130.7 140.9 151.0 161.2 171.4 181.6 191.8 

--2: 202.0 212.3 222.2 231.3 240.5 249.7 259.1 268.5 278.0 287.5 

--3: 297.2 306.9 316.8 326.7 336.7 346.7 356.9 367.2 377.5 388.0 

--4: 398.5 409.1 419.9 430.7 441.6 452.7 463.8 475.0 486.4 497.8 

--5: 509.3 521.0 532.8 544.7 556.6 568.8 581.0 593.3 605.8 618.4 

--6: 631.1 643.9 656.9 670.0 683.2 696.6 710.1 723.7 737.5 751.4 

--7: 765.5 779.7 794.1 808.6 823.2 838.1 853.0 868.2 883.5 899.0 

--8: 914.6 930.4 946.4 962.6 978.9 995.4 1012 1029 1046 1063 

--9: 1081 1099 1117 1135 1153 1172 1190 1209 1229 1248 

10: 1268 1288 1308 1328 1349 1370 1391 1413 1435 1457 

11: 1479 1502 1525 1548 1571 1595 1620 1644 1669 1694 

12: 1720 1746 1772 1799 1826 1853 1881 1909 1938 1967 

13: 1997 2027 2057 2088 2120 2152 2184 2217 2251 2285 

14: 2319 2354 2390 2426 2463 2501 2539 2578 2617 2658 

15: 2698 2740 2783 2826 2870 2915 2960 3007 3054 3102 

16: 3152 3202 3253 3305 3359 3413 3468 3525 3583 3642 

17: 3702 3764 3827 3892 3958 4025 4094 4164 4237 4311 

18: 4386 4464 4543 4625 4708 4794 4882 4972 5065 5160 

19: 5258 5359 5462 5568 5678 5790 5906 6026 6149 6276 

20: 6407 6543 6657 6775 6895 7019 7147 7278 7413 7552 

21: 7695 7843 7995 8152 8314 8482 8655 8833 9018 9209 

22: 9407 9613 9825 10046 10275 10513 10761 11018 11287 11566 

23: 11858 12162 12480 12813 13161 13527 13910 14313 14737 15183 

24: 15654 16152 16678 17236 17829 18459 19131 19848 20616 21441 
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Γ44 – Summation (grey) of two sine curves, with RMS value and DFT spectrum  
(slant=phase): 

 a)  Octave-related curves of equal phase  
 b)  Octave-related curves with the shorter period’s phase shifted by one-eighth  
 c)  Fluctuating amplitude through frequency ratio 8:9 with opposite initial phase  
 d)  Curves of equal initial phase in the frequency ratio of the Golden Section 

 (1:1.618034) 

a 1:2

RMS=
1.00000

DFT:

5 10 15 20 25 30 35 40 45 50

b 1:2

RMS=
1.00013

DFT:

5 10 15 20 25 30 35 40 45 50

c 8:9

RMS=
1.00000

DFT:

5 10 15 20 25 30 35 40 45 50

d 1:GS

RMS=
0.91846

RMS=
1.16280

RMS=
0.82418

RMS=
1.08466

RMS=
1.02044

RMS=
0.84669

RMS=
1.18348

RMS=
0.86921

DFT:

5 10 15 20 25 30 35 40 45 50

 
Spectra of a 100-Hz sawtooth tone: 
 e)  Physical, in sound pressure (y in Pascal) vs. frequency (x in Kilohertz) 
 f)  Subjective, in loudness (y in Sone) vs. subjective pitch (x in Bark) 
 g)  Subjective, in loudness density (y in Sone/Bark) vs. subjective pitch (x in Bark)  

frequency (kHz)sound pressure 
(Pa)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

e

subjective pitch (Bk)loudness (Sn)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

f

subjective pitch (Bk)loudness densit
y (Sn/Bk)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

g
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Γ45 – On physiological Phonetics 
 a) Depiction of the Ear  
 1. Pinna, ossicles, cochlea (also ‘unrolled’) and basilar membrane ‘from above’ 
 2. Cochlea tilted by 90˚ around its longitudinal axis, membrane ‘from the side’ 
 3. Cochea horizontally turned 90˚ showing cross-sections viewed ‘from the front’  
 4. Enlargement of frontmost cochlear cross-section shown in item 3 
 5. Further enlargement of part of the cross-section in item 4 with Organ of Corti 

OUTER EAR MIDDLE EAR
INNER EAR

Pinna or Auricle
Auditory canalSound wave Eardrum

Ossicles:Hammer or MalleusAnvil or IncusStirrup or Stapes
Oval window(under stirrup)Round window Round window

to brain
to brain

Auditory nerve
Cochlea

Basilar membrane Cochlea "unrolled"view from aboveview from the sideVestibular canal

Tympanic canal
Cochlear duct or Median canal

Organ of Corti Auditory nerveBasilar membrane
Vestibular canalCochlear ductTympanic canalAuditory nerve (to brain)

(from oval window)
(to round window) Tectorial membraneInner OuterHair cells

1
234 5

 
 b) Plomp and Levelt’s experimental results on consonance and dissonance shown 
  against subjective pitch in Bark (their measurements – here spline-connected –
  in light grey, Plomp and Levelts’s stylised dissonance curve in bold light grey, 
  with algebraic approximations by Parncutt and Sethares nearby in variable grey) 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Subjective Pitch Difference (Bark):Consonance:
Dissonance:

125 Hz
250 Hz

500 Hz
1000 Hz 2000 Hz

P&L stylised curve

P&L individual measurementsP&L average measurements

Parncutt algebraic approximationSethares algebraic approximation (500 Hz)
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...Γ45... 

 c)  Calculation after Plomp and Levelt of the dissonance of a tritone with six 
  equally loud partials 

G w
250 Hz

w
500 Hz

w#
750 Hz

w
1000 Hz

w#
1250 Hz

w#
1500 Hz

G w354 Hz w707 Hz
w1061 Hz

w1414 Hz w1768 Hz w2121 Hz

2.5 Bk

3.6 Bk

4.9 Bk

6.6 Bk

6.9 Bk 8.5 Bk

8.9 Bk

9.9 Bk

10.7 Bk

11.1 Bk

12.2 Bk
13.4 Bk

1.1

0.03

1.4 1.7 0.3

+0.95

1.6 0.4

+0.87

1.0

+0.03

0.8

+0.13

0.4

+0.80

1.1

+0.02

1.2

=2.83

Bk

 
 d) Calculation after Plomp and Levelt of the dissonance of various pairs of  
  complex tones with six equally loud partials each, in a range of two octaves and 
 compared with a harmonicity curve first described in Chapter 19 (grey) 

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10001050

6

5

4

3

2

1

0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

dissonance:
harmonicity:semitones:

frequency (Hz):
1:1

5:6
4:5

3:4

2:3

3:5

4:7

1:2

4:9

2:5

3:8

1:3 2:7 1:4
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...Γ45... 

 e)  Calculation according to Plomp and Levelt of the total dissonance of a sawtooth-
  tritone at 55 dB(SPL) with the additional involvement of subjective loudness – 
  Bark intervals are marked with a ‘*’; the corresponding P&L dissonances 
  (calculated after Parncutt) yield – multiplied by √(Sone1 x Sone2) – the final 
  values, which add up to Σ. 

w
w

w#
w

8w#
w#

w/
w

15w#
w#

w"
w#

w w w 8w w w 15w} w w w w] wG

 1  2  3  4  5  6  7  8  9 10 11 12 3.6  6.6  8.9 10.7 12.2 13.4 14.4 15.3 16.1 16.7 17.3 17.83.125 1.772 1.163 0.981 0.946 0.951 0.960 0.957 0.938 0.906 0.854 0.786
 1  2.5 2.768 0.079*1.1  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- 2  4.9 1.978  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- 3  6.9 1.329  --- 1.456*0.3  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- 4  8.5 0.987  ---  --- 0.929*0.4  ---  ---  ---  ---  ---  ---  ---  ---  --- 5  9.9 0.837  ---  --- 0.034*1.0 0.116*0.8  ---  ---  ---  ---  ---  ---  ---  --- 6 11.1 0.780  ---  ---  --- 0.702*0.4 0.020*1.1  ---  ---  ---  ---  ---  ---  --- 7 12.1 0.765  ---  ---  ---  --- 0.267*0.1  ---  ---  ---  ---  ---  ---  --- 8 13.0 0.766  ---  ---  ---  --- 0.092*0.8 0.669*0.4  ---  ---  ---  ---  ---  --- 9 13.8 0.772  ---  ---  ---  ---  --- 0.673*0.4 0.258*0.6  ---  ---  ---  ---  ---10 14.5 0.775  ---  ---  ---  ---  --- 0.019*1.1 0.267*0.1 0.104*0.8  ---  ---  ---  ---11 15.1 0.775  ---  ---  ---  ---  ---  --- 0.192*0.7 0.788*0.2 0.049*0.9  ---  ---  ---12 15.7 0.768  ---  ---  ---  ---  ---  ---  --- 0.701*0.4 0.703*0.4 0.027*1.0  ---  ---

*
No. Bark Sone

 No.BarkSone

W=8.144
 

 f)  Three dissonance calculations of pairs of sawtooth-tones with partials totalling  
  6, 12 und 24 also involving their loudness, ranging over one octave each,  
  beginning with the fixed lower frequency shown (the calculation after Plomp and 
  Levelt/ Parncutt with six equally loud partials is shown as grey areas) 
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Dissonance: Interval (semitones): 

Lower frequency:       Hz

Dissonance: Interval (semitones): 

Lower frequency:       Hz

Dissonance: Interval (semitones): 

Lower frequency:       Hz27# 220 440

6

12

24

6

12

24

6

12

24
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T46 – Orthographic Representation of Vowels and Consonants according to the
 International Phonetic Association (IPA) 
 a) Selected vowels, indicating their physiological production  

  Tongue position  
 Openness of jaw front central rear Tongue height 

 close i  y + K 3  u high 

 near-close I Y U semi-high 
 close-mid e  O , P F  o higher middle 
 mid  ` middle 
 open-mid E  # - . ^  W lower middle 
 near-open Q & semi-low 
 open a  0   A @ low 

 b) Selected consonants, indicating their physiological production 
 Place of articulation  
Manner of articulation Bilabial Labiodental Dental  Alveolar Postalveolar Retroflex Palatal Velar Uvular Glottal 

Plosive p b   t d  J " c 9 k g q G / 
Nasal m M  n  ' 7 N < 
Vibrant  =  r      { 
Flap   R   } 
Fricative % B f v T D s z S Z 5 > C H x : X * h 6 
Lateral-Fricative    1 L 
Approximant w* V  2  | j 8 
Lateral-Approximant    l  ! \ ; 
 *usually referred to as a labiovelar approximant 
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Γ47 – The Vocal Tract 
 a) anatomically schematised 

nose nasal cavity
oral cavityteethupper liplower lip tonguetip front backalveolar ridge hard palate soft palate (velum) uvula

pharynx
larynxvocal cordstrachea oesophagus  

 b) the tongue’s role in the production 
 ... of frontal [ieEQ] and rear [uoW@] 
 vowels 

i e E a

u

o

W

A

 

c) ...of fricatives [fTsSCX] 

f

T

s S C X

 
d) ...of nasals [mn7N] 

m

n 7 N
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Γ48 – Formants of speech 

 a) Spectra of [i] and [a] on fundamentals C3 and E!4, with formants F1 and F2 

[i]1

0 220 440 660 880 1100 1320 1540 1760 1980 2200 2420 2640 2860 3080 3300 3520

A A4 C5 E5 G5 A5 B5 C#6 E!6 F6 F#6 G6 A!6 A6 B!6 B6 C7 C#7 D7 E!7 E7 F7 F#7 G7 G#7 A7
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[a]2

0 220 440 660 880 1100 1320 1540 1760 1980 2200 2420 2640 2860 3080 3300 3520

A A4 C5 E5 G5 A5 B5 C#6 E!6 F6 F#6 G6 A!6 A6 B!6 B6 C7 C#7 D7 E!7 E7 F7 F#7 G7 G#7 A7
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 b)  Formant comparison: 1) the frontal vowels [ieEQ], 2) the rear vowels [uoW@] 
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...Γ48... 

 c) Two-dimensional formant chart of vowels indicating six sources (s. below) as 
  well as the four trajects [ieEQ], [yO#A], [3F^0] and [uoW@] 
  Sources: 
 1)  after J. C. Wells, quoted in D. B. Fry: The Physics of Speech (1979), p.79 
 2)  from the Institute of Phonetics, Cologne University: Reports/No. 1 (1973), p.11 
 3)  from Delattre et al: Voyelles synthetiques à deux formants et voyelles cardinales (1951),  
  quoted inW. Hess, Bonn University: Grundlagen der Phonetik/Deskriptive Phonetik (2002) 
 4)  from Wikipedia: <http://en.wikipedia.org/wiki/Formant> 
 5)  from Kevin Russell, University of Manitoba: General Phonetics (2003) 
 6)  from Gordon Peterson & Harold Barney: Control methods used in a study of the vowels (1952), 
  JASA No.24, pp.175-184, quoted in various internet sources 
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 d) Two-dimensional formant chart of the vowels [ieEQa@Wou3y] with their 
  (abiological) F1 mirror images. 
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 e) score notated formants F1 and F2 of the 16 vowels [uoW@ 3F^0 a#Oy QEei] 
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 f) spectral envelopes of the fricatives [xfTSCs] shown as Phon (y) vs. Bark (x) 
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 g) sonagramme of a seamless transition through the fricatives [xfTSCs] 

 
 

 


