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1. Introduction

In 1915 Leopold Löwenheim gave an incomplete proof of the fact that for
every countable signature, a sentence which is satisfiable is already satisfiable
in a countable model ([6]). In 1920 Thoralf Skolem gave a new argument filling
the gap in Löwenheim’s proof and generalizing the result to countable infinite
sets of sentences ([11]; for a translation of both articles, see [2]):

Theorem 1.1. Löwenheim-Skolem theorem. Every model M of a first order
theory T with countable signature has an elementary submodel N which is at
most countable.

Skolem introduced for this purpose what would be later called Skolem
normal form of first order formulas, linked to the so called Skolem functions.
The axiom of choice played a crucial rôle in the proof, as noted by himself,
although he was able to obtain a weaker version of the theorem by dropping
the condition that the countable model for T be an elementary submodel of
M.

The purpose of this article is to give a categorical proof of Löwenheim-
Skolem theorem making use of functorial semantics and a functorial charac-
terization of models given by André Joyal. The proof does not use Skolem
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functions and follows instead some ideas introduced by Joyal in the categori-
cal proof of Gödel completeness theorem, presented in a series of unpublished
lectures in Montreal in 1978.

Sections 2 and 3 expose well known lemmas and results which we re-
produce here for the sake of completeness. In section 2 we use functorial
semantics to consider models of first order theories and deduce a characteri-
zation of Boolean models. The construction of an explicit type of model for
first order theories is done in section 3, following Joyal’s ideas. Section 4 is
new; we combine here the results from previous sections with some new ideas
to give a proof of the Löwenheim-Skolem theorem.

2. Boolean models

The tradition, initiated by William Lawvere ([5]), of considering syntactic cat-
egories to describe theories (see, for instance, [4], D1.4), and functors from
these to the category of sets to describe models, allows us to translate in cat-
egorical language classical results from model theory. We will be interested
particularly in Boolean categories (see [10], ch. 1), which describe those the-
ories within first order classical logic, and Boolean functors, which represent
their models. We recall here the definitions:

Definition 2.1. A regular category is a category having the following three
properties:
1) It has all finite limits.
2) Every arrow f : A → B can be factored as f : A � C � B, where C,
called the image of f , is the least subobject of B through which f can factor.
The arrow f : A � C not factoring through any proper subobject of C is
called a cover.
3) Images are stable under base change (i.e., pullbacks preserve covers).
A regular category is said to be Boolean if it also satisfies the following two
conditions:
4) The poset Sub(X) of subobjects of a given object X has finite unions and
these are stable under pullbacks.
5) Every subobject A in the poset Sub(X) has a complement, i.e., there
exists a subobject B such that the intersection A ∧ B is initial in Sub(X)
and A ∨ B = X (in particular, Sub(X) is a Boolean algebra, and we denote
B = ¬A).

Definition 2.2. A functor between regular categories is regular provided it
preserves finite limits and images factorizations. A regular functor between
Boolean categories is called Boolean if it also preserves unions and comple-
ments.

A reformulation, due mainly to Joyal, of existing results on limit ultra-
powers (see [10], ch. 4) allows us to characterize all Boolean models of a first
order theory. We start with the following:
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Definition 2.3. A functor h : C → S is said to be ultra-representable if there is
C ∈ Cω such that it can be expressed as a (filtered) colimit h = lim−−−→

A∈Φ
[A,−]

for some ultrafilter Φ in Sub(C).

We have now:

Theorem 2.4. Every model of a first order theory T is given by (the image
of) a functor M : CT → Set, where CT is the syntactic category of T and
M : CT → Set is a filtered colimit of ultra-representable functors.

Proof. Suppose that M : CT → Set is a Boolean functor corresponding to a
model of T . Define the category X whose objects are pairs (A, ξ) where A is
an object of CT and ξ ∈ M(A), and whose morphisms (A, ξ) → (B, η) are
given by those arrows f : A → B in CT such that η = M(f)(ξ). Because
CT has finite limits and M preserves them, X will have finite limits. There-
fore, its dual W = X op is a (small) filtered category. We shall now define a
functor H from W to the category of ultra-representable functors. For each
object (A, ξ) ∈ W, let Φ(A, ξ) be the set of all subobjects C � A such that
ξ ∈ M(C). Because M is Boolean, it is easy to check that Φ(A, ξ) is an ul-
trafilter in Sub(A). Define then H((A, ξ)) = hΦ(A,ξ), the ultra-representable
functor corresponding to Φ(A, ξ). Given an arrow f : (A, ξ) → (B, η), the
mapping C 7→ f−1(C), defined for each C ∈ Φ(B, η), determines a natural
transformation H(fop) : hΦ(B,η) → hΦ(A,ξ) in the following way: for each
representative a : C → X in hΦ(B,η)(X) we let H(fop)X([a]) = [af ′], where

f ′ : f−1(C) → C is the arrow arising from the pullback of C � B along f .
This application is well defined and makes H a functor.

We shall prove that lim−−−−−−→
(A,ξ)∈W hΦ(A,ξ)

∼=M. To define an isomorphism

K : lim−−−−−−→
(A,ξ)∈W hΦ(A,ξ) → M it suffices to define natural transformations

ψ(A,ξ) : hΦ(A,ξ) → M which will induce the required morphism. This can
be done by setting (ψ(A,ξ))X([f ]) = M(f)(ξ), where f : C → X and C ∈
Φ(A, ξ). It can be easily checked that the definition does not depend on
the representative of the class [f ]; also, note that C ∈ Φ(A, ξ) implies that
ξ ∈M(C), and therefore M(f)(ξ) ∈M(X) and (ψ(A,ξ))X is well defined.

Let us first prove that K is a monomorphism. For this it is enough to
verify that each ψ(A,ξ) : hΦ(A,ξ) →M is monic, for which it suffices in turn
to check that each (ψ(A,ξ))X is injective. So suppose that we have arrows
f : C → X, g : C ′ → X such that (ψ(A,ξ))X([f ]) = (ψ(A,ξ))X([g]). Then,
M(f)(ξ) = M(g)(ξ). Take the intersection C ∧ C ′ in Sub(A), which gives
monics a : C ∧ C ′ � C and b : C ∧ C ′ � C ′. Consider the equalizer
E of fa and gb. Since M preserves equalizers and ξ ∈ M(C ∧ C ′), then
ξ ∈M(E), that is, E ∈ Φ(A, ξ). Therefore, f and g belong to the same class,
i.e., [f ] = [g].

Finally, let us prove that K is an epimorphism, for which it suffices to
show that each K(D) : lim−−−−−−→

(A,ξ)∈W hΦ(A,ξ)(D) → M(D) is surjective. Given

an element χ ∈M(D), consider the ultrafilter Φ(D,χ), that containsD. Since
(ψ(D,χ))D : hΦ(D,χ)(D)→M(D) satisfies (ψ(D,χ))D([IdD]) =M(IdD)(χ) =
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χ, we conclude that the family {(ψ(A,ξ))D/(A, ξ) ∈ W} is jointly epic, from
which we can deduce that K(D) is necessarily surjective. �

According to [4], D1.2, there is an equivalence between the category of
models of a first order theory, where the morphisms are given by elementary
embeddings, and the full subcategory of SetCT consisting of Boolean func-
tors. Suppose now that a theory T has countable signature. We know from
theorem 2.4 that every model of T can be expressed as a filtered colimit of
ultra-representable functors defined on the syntactic category of T . Since any
of these functors must have a countable image in Set, it would give the re-
quired countable elementary submodel provided it is Boolean. However, this
is generally not the case, and therefore we will need to enlarge the category CT
so that some ultra-representable functor hΦ in the colimit diagram becomes
Boolean.

3. Joyal’s construction

For an ultra-representable functor to be Boolean it is necessary that it pre-
serves finite limits, covers and unions in the subobjects posets. Because fil-
tered colimits commute with finite limits in Set, it is clear that each ultra-
representable functor preserves finite limits, since representable functors do.
The following lemma shows that they also preserve unions:

Lemma 3.1. Every ultra-representable functor hΦ : CT → Set preserve unions
of subobjects.

Proof. We need to prove that given B,C subobjects of D, we have h(B ∨
C) = h(B)∨ h(C). Clearly, h(B)∨ h(C) ≤ h(B ∨C), since h preserves finite
limits, and therefore monomorphisms. To prove the converse inequality, note
that, according to the usual construction of filtered colimits in Set, we have
h(X) =

∐
A∈Φ[A,X]/ ∼, where ∼ is the equivalence relation which identifies

f : U → X with g : V → X if and only if there exists some W ∈ Φ such that
the following square commutes:

U
f // X

W
OO

OO

// // V

g

OO

Take (some representative of) an arrow f : U → B ∨ C, for some U ∈ Φ.
Since unions are stable under pullback, we have U = f−1(B)∨f−1(C). Now,
since Φ is an ultrafilter, either f−1(B) or f−1(C) is in Φ; suppose without
loss of generality f−1(B) ∈ Φ. Then the following pullback:
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B //
s // B ∨ C

f−1(B)

f ′

OO

// // U

f

OO

shows that f and sf ′ are in the same class in h(B ∨ C). We may therefore
assign to each f ∈ h(B∨C) either an arrow f ′ ∈ h(B) or an arrow f ′′ ∈ h(C),
from which we conclude that h(B ∨C) ≤ h(B)∨ h(C). Hence, we must have
h(B ∨ C) = h(B) ∨ h(C) in Set. �

It is not generally true that ultra-representable functors preserve covers.
In fact, note that since the injections into the colimit form a jointly regular
epimorphic family and this property is preserved by h, it is mapped onto a
jointly epic family in Set (where covers are surjections), and hence h will
preserve covers provided each representable functor [A,−] does. Now, for
a representable functor [A,−] to preserve covers it is necessary that A be
projective with respect to covers (i.e., to be cover-projective), since covers
in Set are precisely the surjections. For a regular category, we can find an
equivalent condition:

Lemma 3.2. The representable functor [A,−] preserves covers (i.e., A is
cover-projective) if and only if every cover p : X � A has a section.

Proof. If [A,−] is cover-projective, given a cover p : X � A we can take
the factorization of IdA : A→ A through X, which provides a section for p.
Conversely, suppose that every cover over A has a section. Given a morphism
f : A→ Y and a cover p : X � Y , form the pullback P of p along f :

P
f ′ //

p′

����

X

p

����
A

f //

s

EE

Y

Then p′ must be a cover over A, and if s : A → P is a section, we get the
factorization f = pf ′s. �

As a consequence of lemma 3.2, we seek to enlarge the syntactic cate-
gory CT including sections for every cover over the subobjects of the ultrafilter
considered. When the ultrafilter is selected in Sub(1), there is a known con-
struction that makes the terminal object 1 cover-projective. If in addition we
start from a category with finite disjoint coproducts, this construction also
makes every subobject of S � 1 cover-projective.
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Before proceeding to describe Joyal’s construction, we first expose re-
sults on the positivization of a Boolean category and also on bicolimits in
Cat.

Definition 3.3. A Boolean category C is said to be positive if it has finite
disjoint coproducts.

Following [4], A1.4, we have:

Lemma 3.4. If C is a Boolean category, there exists a Boolean embedding
J : C → P (C), where P (C) is a positive Boolean category that can be con-
structed as follows:
1) Its objects are n-tuples (A1, ..., An) of objects of C.
2) A morphism between (A1, ..., An) and (B1, ..., Bm) is specified by the fol-
lowing:
i) A m-fold decomposition of each Ai, that is, a set of m pairwise disjoint
subobjects Ai1 , ..., Aim of Ai such that

∨m
j=1Aij = Ai (we allow some of the

subobjects to be the initial subobject of Ai).
ii) A set of C-morphisms fij : Aij → Bj for each i = 1, ..., n, j = 1, ...,m.
3) The identity morphism Id(A1,...,An) is given by trivial decompositions of
each Ai and the arrows fii = IdAi , fij initial for i 6= j.
4) Given morphisms F : (A1, ..., An) → (B1, ..., Bm) associated to arrows
fij : Aij → Bj and G : (B1, ..., Bm)→ (C1, ..., Cp) associated to arrows gjk :
Bjk → Ck, define the composite GF : (A1, ..., An) → (C1, ..., Cp) to be the

morphism given by the arrows hik = (∃g1kfi1 , ...,∃gmkfim) :
∨n
j=1(f−1

ij (Bjk) ∧
Aij )→ Ck.
Moreover, P (C) satisfies the following universal property: for every Boolean
functor F : C → D where D is a positive Boolean category, there exists a
Boolean functor F : P (C)→ D (which necessarily preserves coproducts) sat-
isfying FJ = F :

C J //

F

��

P (C)

F

��
D

We recall now the notion of pseudofunctor, following [1]:

Definition 3.5. Given a category D, a (normalized) pseudofunctor F : Dop →
Cat consists of the following:
a) A function Ob(F ) : Ob(D) → Ob(Cat) (for convenience we shall refer to
F (D) for the category corresponding to the object D).
b) An application Ar(F ) : Ar(D) → Ar(Cat) which assigns to every arrow
f : C → D in D a functor f∗ : F (D)→ F (C).
c) An application c defined in Ar(D)2 which assigns to each pair (f, g) of
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arrows of D a natural isomorphism cf,g : g∗f∗ → (fg)∗.
Furthermore, the following properties hold:
1) For every object C in D we have (IdC)∗ = IdF (C).
2) For every arrow f : C → D in D, we have cf,IdC = Idf∗ and cIdD,g = Idf∗ .
3) For a triple of composable arrows f : C → D, g : D → E and h : E → G,
we have cf,gh(ξ) ◦ cg,h(f∗(ξ)) = cfg,h(ξ) ◦ h∗(cf,g(ξ)).

In the special case when cf,g = Id(fg)∗ the pseudofunctor reduces to a
functor.

Definition 3.6. Given a pseudofunctor F : Dop → Cat, a pseudococone with
vertex at the category X consists of a family of functors {φA : F (A) →
X / A ∈ D} and a family of natural isomorphisms {φu : φA ◦ u∗ → φB / (u :
A→ B) ∈ D} that satisfy the following conditions:
a) φIdA = IdφA .
b) For u : A→ B and v : B → C, we have φvu = φv ◦ φuIdv∗ ◦ (IdφA ◦ c−1

v,u):

F (C)

F (B)

F (A)

X

v∗

��

u∗

��

(vu)∗

""

φC

��

φB

//

φA

??

φv

KS

φu

KS

c−1
v,u +3 =

F (C)

F (A)

X(vu)∗

��

φC

��

φA

??

φvu

KS

Pseudococones allow us to consider a variation of the colimit notion that
we shall call bicolimit, introduced in [12], Ex. VI 6.4.0, under the notation
“Lim−−→” (with capital L). We have:

Definition 3.7. Given a pseudofunctor F : Iop → Cat, the bicolimit C =
lim−−−→

i∈Iop F (i) is the universal pseudococone associated to F . In other words,

it is a pseudococone φ : F ⇒ C such that for every pseudococone ψ : F ⇒ D
there is a unique functor λ : C → D such that ψi = λφi for every i ∈ I:

C λ // D

F (i)

φi

>>

ψi

77
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In [12], Ex VI 6.8, it is mentioned that for filtered diagrams the bicolimit
and the colimit are equivalent categories, and a construction of the bicolimit
in the case where Iop is filtered is described by means of categories of fractions.
We mention here a well known equivalent construction:

Lemma 3.8. The bicolimit C = lim−−−→
i∈Iop F (i), where Iop is filtered, is a cate-

gory specified by the following:
1) Objects are pairs (C, i), where C is an object of F (i)
2) Morphisms between two objects (C, i) and (D, j) are triples (u, v, f), where
u : i → k, v : j → k are arrows of Iop and f : F (u)(C) → F (v)(D) is a
morphism in F (k), divided by the following equivalence relation: (u, v, f) ∼
(u′, v′, f ′) if and only if there are arrows x : k → l, y : k′ → l such that
xu = yu′, xv = yv′ and F (x)(f) = F (y)(f ′).
3) The identity morphism on (C, i) is represented by (Idi, Idi, IdC).
4) To define the composite of two morphisms represented by (u, v, f) : (C, i)→
(D, j) and (u′, v′, g) : (D, j) → (E, l), let w in Iop be such that we have ar-
rows a : k → w, b : k′ → w and let c : w → z in Iop be such that cav = cbu′

(we use here the filteredness of Iop). Then the composite (u′, v′, g) ◦ (u, v, f)
is defined as the class of the triple (cau, cbv′, F (cb)(g)◦F (ca)(f)) (once more
filteredness shows that this composite does not depend on the chosen w nor
on the representatives).

Using the construction mentioned in the preceding lemma, it is well
known we can prove that, in general, all finitary constructions in the cat-
egories of a filtered diagram that are preserved by the transition functors
are inherited by the bicolimit. In our case, we can state, more precisely, the
following result:

Lemma 3.9. Let I be a cofiltered category and F : Iop → Cat a pseudofunctor
such that each F (i) is a regular (resp. Boolean) category with finite disjoint
coproducts and each transition functor F (f) : F (j) → F (i) (for f : i → j
in I) is regular (resp. Boolean) and preserves coproducts. Then the bicolimit
C = lim−−−→

i∈Iop F (i) is a regular (resp. Boolean) category with finite disjoint

coproducts. Moreover, for each i in I, the injection into the bicolimit Ii :
F (i)→ C is a regular (resp. Boolean) functor that preserves coproducts.

Define now C0 = P (CT ). We need to add to C0 a section for every cover
on the terminal object, i.e., our goal is to make the terminal object cover-
projective. We shall do so by constructing succesive categories {Cn/n ∈ N},
each one embedded in the next, such that the terminal object of Cn is cover-
projective for all covers that are images of covers in Cn−1.

First, let us describe an embedding I1 : C0 → C1 that has this property
for all covers in C0. Let Γ be the indexing set of all such covers {Ai � 1/i ∈ Γ}.
Consider, for each finite F ⊆ Γ, the set of covers {Ai � 1/i ∈ F} together
with the canonical projections πFG :

∏
i∈GAi �

∏
i∈F Ai for F ⊆ G. Define

the category I whose objects are all finite products of objects PF =
∏
i∈F Ai,

F ⊆ Γ, and whose arrows are given by the corresponding canonical (induced)
morphisms πFG between such products. Note that even if the products are not
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canonical, the morphisms are nevertheless canonical (even those morphisms
between isomorphic products). Then Iop is clearly filtered, since between any
two objects there is at most one morphism, and for a pair of objects PF , PG
we can consider the object PF∪G. Define the pseudofunctor F : Iop → Cat
as follows: define F on an object PF as the slice category C/PF ; for each
identity arrow IdPF define F as the corresponding identity IdC/PF , and for
each arrow πFG of I select a fixed pullback functor π∗FG and set it as the value
of F on such an arrow (note that we are using here the axiom of choice).
Then, if for arrows f, g of I we define cf,g as the corresponding induced
natural isomorphism between pullbacks, F becomes a pseudofunctor, as can
be easily checked. We have now:

Lemma 3.10. The bicolimit C1 = lim−−−−−→
PF∈Iop

C0/PF is a Boolean category with

finite disjoint coproducts. Moreover, there is a Boolean functor I1 : C0 → C1
that preserves coproducts such that every cover I1(A) � I1(1) has a section.

Proof. Since Booleanness is preserved under slicing, each category C0/PF is
Boolean. The pullback functors π∗FG are Boolean, and moreover, because in-
jections into the coproduct are monomorphisms whose intersection is initial,
the coproduct is their union and it is thus preserved by these pullback func-
tors. Therefore, by lemma 3.9, C1 is a Boolean category with finite disjoint
coproducts. The functor I1 can be defined as the injection into the bicol-
imit, sending the object A into the object (A, 0), and the arrow f into the
arrow (IdF (0), IdF (0), f). Finally, given a cover p : A � 1 in C, the mor-
phism represented by (π∗∅,{A}, π

∗
∅,{A},∆) : (1, 0) → (A, 0) (i.e., the diagonal

∆ : A → A × A regarded as a morphism in C0/A) provides a section for
I1(p). �

Note that the procedure described above allows to have a section for each
cover I1(Ai) � 1C1 , where Ai � 1 is in the set of covers of C. The next step to
take is to extend this property to every cover A� 1C1 in C1. But the process
to follow now is clear: repeating the whole construction above for C1 instead
of C we get an embedding I2 : C1 → C2 preserving all the structure, such that
in the new category C2 every cover I2(A) � 1C2 has a section for each A in
the set of covers A � 1C1 of C1. Iterating this construction, we can obtain
a sequence of Boolean embeddings preserving coproducts, In : Cn−1 → Cn.
This amounts to having a functor F : ω → Cat, or, formally dualizing, a
functor F : ωop → Cat. It is now easy to verify that Cω is the category we
need, as shown in the following:

Theorem 3.11. There is a Boolean functor I0 : C0 → Cω, where Cω is a
Boolean category with finite disjoint coproducts such that every cover over
the terminal object 1ω has a section.

Proof. The fact that Cω is a Boolean category with finite disjoint coproducts
and the induced functors Cn → Cω are Boolean and coproduct preserving
follows as before from lemma 3.9. Finally, given a cover p : A � 1 in Cω,
there exists some n ∈ N such that p has a representative that lies in some



10 Christian Esṕındola

Cn, and, by construction, in Cn+1 we can find a representative of a section
1→ A. �

We have thus obtained a Boolean category Cω where the terminal object
is cover-projective, that is, where the representable functor [1,−] preserves
covers. The fact that Cω has finite disjoint coproducts allows to deduce a
better result:

Lemma 3.12. Every subobject of 1 in Cω is cover-projective.

Proof. Let S � 1 be a subobject and S′ its complement in Sub(1). If π : A�
S is a cover, then we also have a cover π

∐
IdS′ : A

∐
S′ � S

∐
S′ ∼= 1. Since

1 is cover-projective, this cover splits, and because coproducts are disjoint,
its section must map S into A, which yields a section for π. �

Corollary 3.13. In Cω, every ultra-representable functor hΦ, for ultrafilters Φ
in Sub(1), is Boolean.

Remark 3.14. Because the choice of finite limits in C1 is not generally canon-
ical, the iteration of the process that constructs that category forces us to
make use of the axiom of choice if we wish to construct C2, C3, etc. One way
to avoid this appeal to the axiom of choice is to use Grothendieck’s construc-
tion of the bicolimit with categories of fractions. However, since our goal is to
prove the Löwenheim-Skolem theorem, we will eventually need to use some
form of choice.

4. The Löwenheim-Skolem theorem

The idea of the proof of Löwenheim-Skolem theorem can be now understood
by putting all the pieces together. Given a model F : CT → Set, we will find
a factorization through I = I0J : CT → C0 → Cω obtaining a Boolean functor
F : Cω → Set such that F = FI. Now, we know from theorem 2.4 that
F must be a filtered colimit of ultra-representable functors; if we can find
one of these functors in the colimit diagram corresponding to an ultrafilter
in Sub(1), we know from corollary 3.13 that it will necessarily be Boolean.
This will allow to find an elementary submodel of F in the form of a Boolean
subfunctor. The difficulty in this process lies precisely in finding the extension
F . This will be done by using the axiom of choice in an essential way.

It should also be noted that although we mention the large category Set,
it is only as a convenient way of stating the results, and the whole argument
can be formalized entirely within ZFC.

We start with the following:

Lemma 4.1. Let C be a regular (resp. Boolean) category and let A be an object
with full support (i.e. such that f : A � 1 is a cover); let F : C → D be a
regular (resp. Boolean) functor and let s be a section of F (A) � F (1) in the
regular (resp. Boolean) category D. Then, for each fixed pullback functor f∗,
there is a regular (resp. Boolean) functor F : C/A → D satisfying F (∆) = s
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and a natural isomorphism φ : Ff∗ ⇒ F , such that for every regular (resp.
Boolean) functor G : C/A→ D satisfying G(∆) = s and natural isomorphism
ψ : Gf∗ ⇒ F , there exists a unique natural isomorphism η : G ⇒ F such
that φ ◦ ηIdf∗ = ψ:

C C/A

D

f∗ //

F

��

F

��

G

ss

ηks

φks
=

C C/A

D

f∗ //

F

��

G

��

ψks

Proof. The square of the diagram below is a pullback in C:

C
π1g

  

g

$$

h

��

X
(IdX ,f) //

f

��

X ×A

f×IdA

��
A

∆
// A×A

which implies that the following square is a pullback in C/A:

[p : C → A]

π1g

""

g

&&

h

��

[f : X → A]
(IdX ,f) //

f

��

[π2 : X ×A→ A]

f×IdA

��
[IdA : A→ A]

∆
// [π2 : A×A→ A]

This leads to define F on [f : X → A] as the pullback of F (f) : F (X)→ F (A)
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along s : 1→ F (A), in order to preserve the pullback above; as for arrows,
we define F in the obvious way using the induced arrows between pullback
diagrams. It can now be shown that the functor so defined enjoys all the
required properties. Indeed, since f∗(C) is the arrow π2 : C × A → A, one
pullback of π2 : F (C ×A)→ F (A) along s : 1→ F (A) is precisely the arrow
F (C)→ 1, which gives, by the universal property of the pullback, morphisms
φC : Ff∗ → F . Moreover, if there is another extension of F , G, with the
stated properties, then there are canonical isomorphisms ηC : G(C)→ F (C),
induced again by the universal property of the pullback. Given a morphism
f : C → D, the arrows F (f)φC and φDG(f) would be two induced morphisms
between the pullbacks G(C) and F (D); therefore, they must coincide, and
then the isomorphisms ηC define a natural isomorphism η : G⇒ F , as stated.
Similarly, the isomorphisms φC define a natural isomorphism φ : Ff∗ ⇒ F
and by uniqueness, we must have φ ◦ ηIdf∗ = ψ. �

As an application of the preceding lemma we have the following:

Lemma 4.2. For any Boolean functor F : CT → Set there exists a Boolean
functor F : Cω → Set such that FI = F , where I is the composition
I0J : CT → Cω and I0, J are the embeddings defined in lemmas 3.11 and
3.4 respectively:

CT
I //

F

��

Cω

F

��
Set

Proof. Because of lemma 3.4, we can choose a functor F0 : C0 = P (C)→ Set
such that F0J = F . We shall use the axiom of choice to define succesive
functors Fi : Ci → Set that form a pseudococone (see definition 3.6). Then,
the universal property of the bicolimit Cω will give the desired functor F . In
fact, this is the idea that will be used to get F1 from F0 (we only show here
this case since the others are similar).

Consider then the set of all finite products of covers {tPF : PF =∏
i∈F Ai � 1 / F ⊆ Γ, finite} in C0 (as in the considerations preced-

ing lemma 3.10), which are mapped by F0 into corresponding surjections
F0(tPF ) : F0(PF ) � F0(1) = 1. Use the axiom of choice to select a sec-
tion sPF for each one of the surjections. Let π∗FG be the pullback corre-
sponding to πFG through the pseudofunctor considered there. By lemma 4.1,
F0 provides Boolean functors HPi : C0/Pi → S and natural isomorphisms
φi : HPit

∗
Pi
⇒ F0, where each t∗Pi is the pullback selected by the pseudofunc-

tor.
We shall now prove that the functors HPi form a pseudococone diagram

in Cat. To do this we need to define natural isomorphisms φFG : HPGπ
∗
FG ⇒
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HPF , where F ⊆ G, for each morphism π∗FG. Now, note that we have a
natural isomorphism given by φG ◦ IdHPG ctPF ,πFG : HPGπ

∗
FGt

∗
PF
⇒ F0, and

since HPF satisfies the universal property stated in lemma 4.1 with respect to
the triangular diagram below with vertices C0, C0/PF ,Set, there is a unique
natural isomorphism φFG : HPGπ

∗
FG ⇒ HPF such that φF ◦ φFGIdt∗PF =

φG ◦ IdHPG ctPF ,πFG .

C0 C0/PF C0/PG C0/PT

Set

t∗PF

//

t∗PG

%%

t∗PT

##

π∗FG

//
π∗GT

//

F0

��

HPF

��

HPG

tt

HPT

pp

φFks φFGks φGTks

ctPF ,πFG

KS
ctPG,πGT

KS

If for F ⊆ G ⊆ T we define similarly φGT and φFT , we just need to verify that
with these natural isomorphisms the diagram becomes a pseudococone, which
reduces in turn to verify condition b) of definition 3.6. But we can see that
this is again a consequence of the universal property of lemma 4.1. Indeed,
the natural isomorphism φFG◦φGT Idπ∗FG ◦IdHPT c

−1
πFG,πGT : HPT π

∗
FT ⇒ HPF

satisfies:

φF ◦ (φFG ◦ φGT Idπ∗FG ◦ IdHPT c
−1
πFG,πGT )Idt∗PF

= (φF ◦ φFGIdt∗PF ) ◦ (φGT Idπ∗FGIdt∗PF
) ◦ (IdHPT c

−1
πFG,πGT Idt∗PF

)

= [φG ◦ (IdHPG ctPF ,πFG) ◦ (φGT Idπ∗FGIdt∗PF
)] ◦ (IdHPT c

−1
πFG,πGT Idt∗PF

)

= [φG ◦ (φGT Idt∗PG
) ◦ (IdHPT Idπ

∗
GT
ctPF ,πFG)] ◦ (IdHPT c

−1
πFG,πGT Idt∗PF

)

= [(φT ◦ IdHPT ctPG ,πGT ) ◦ (IdHPT Idπ
∗
GT
ctPF ,πFG)] ◦ (IdHPT c

−1
πFG,πGT Idt∗PF

)

= φT ◦IdHPT (ctPG ,πGT ◦Idπ∗GT ctPF ,πFG◦c
−1
πFG,πGT Idt∗PF

) = φT ◦IdHPT ctPF ,πFT
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where the last equality follows from property 3) of definition 3.5. Then, be-
cause of the uniqueness of φFT , we must have φFT = φFG ◦ φGT Idπ∗FG ◦
IdHPT c

−1
πFG,πGT , as we wanted to prove. Therefore, the diagram is a pseudo-

cocone and the required functor F1 : C1 → Set is induced.

Finally, because the functors HPF in the pseudococone diagram are
Boolean, the construction of the bicolimit in Cat for a filtered diagram shows,
after a straightforward verification, that F1 preserves finite limits, covers,
unions and disjoint coproducts; in particular, it is Boolean, which finishes
the proof. �

Theorem 4.3. Löwenheim-Skolem theorem. Every model M of a first order
theory T with countable signature has an elementary submodel N which is at
most countable.

Proof. Suppose that T is a first order theory with countable signature that
has a modelM′ : CT → Set. By theorem 2.4,M′ has an extensionM : Cω →
Set that is a filtered colimit of ultra-representable functors. Furthermore,
since M is not trivial, we see from the proof of that theorem that (1, ∗) is
an object in W, and hence the corresponding ultrafilter Φ(1, ∗) in Sub(1)
(defined as {S ∈ Sub(1) / M(S) 6= ∅}) gives an ultra-representable functor
hΦ(1,∗) that belongs to the colimit diagram for M. But then it is easy to see
that hΦ(1,∗)I is an elementary submodel for T which is at most countable,
which finishes the proof. �

Remark 4.4. Even if one employs Grothendieck’s construction of the bicol-
imit, the use of the axiom of choice throughout this section is not entirely
avoidable, in the sense that some form of choice is needed to deduce the-
orem 2.4. For suppose we could prove in ZF that M ′ has an extension
M : Cω → Set; then, the Löwenheim-Skolem theorem would be derivable
in ZF, while it is known to be unprovable there ([3]). As a consequence, the
existence of the Boolean extension M must as well be unprovable in ZF.

Acknowledgment

I would like to thank Prof. E. Dubuc for his valuable suggestions and guid-
ance.

References

[1] Grothendieck, Alexandre - Raynaud, Michèle: SGA 1 (1960/61) - Revêtements
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