
1

CS 4390 3D

Computer Games

Intro to 3D Game Development --

Chapter 1

1

Introduction to 3D Game Introduction to 3D Game

DevelopmentDevelopment

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

2

OutlineOutline

The computer Game Industry

Elements of 3D a Game

The Torque Engine

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

3

The computer Game IndustryThe computer Game Industry

What is an indieindie? – An independent game

developer. Not commercial game studios.

3D Game Genre and Styles

Game Platforms

Game Developer Roles

Publish Your Game

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

4

3D Game Genre and Styles3D Game Genre and Styles

Action Games

Adventure Games

Role-Playing Games

Maze and Puzzles Games

Simulator Games

Sports Games

Strategy Games

2

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

5

Action GamesAction Games

First-Person Point-of-View (PPOV) or First-Person Shooter
(FPS) games

Delta Force by NovaLogic

Duke Nukem 3D by 3D Realms

Quake, Wolfenstein by id Software

Unreal and its multiplayer version, Unreal Tournament by Epic
Games

Half-Life series by vale Software

Counter-Strike is a modification of Half-Life

Halo series by Bungie Studio

Perfect Dark for Nintendo by Rare

TimeSplitters series by Eidos,

System Shock by Looking Glass Technology

CS 4390 3D Computer

Games

Intro to 3D Game Development --

Chapter 1

6

Doom 3Doom 3Doom 3Doom 3 Delta ForceDelta ForceDelta ForceDelta Force

HalfHalfHalfHalf----Life 2Life 2Life 2Life 2

CS 4390 3D Computer

Games

Intro to 3D Game Development --

Chapter 1

7

CounterCounterCounterCounter----StrikeStrikeStrikeStrike

UnrealUnrealUnrealUnreal

CS 4390 3D Computer

Games

Intro to 3D Game Development --

Chapter 1

8

HaloHaloHaloHalo TimeSplittersTimeSplittersTimeSplittersTimeSplitters

Perfect DarkPerfect DarkPerfect DarkPerfect Dark

3

CS 4390 3D Computer

Games

Intro to 3D Game Development --

Chapter 1

9

System ShockSystem ShockSystem ShockSystem Shock

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

10

Action GamesAction Games

Third-Person Shooter Games
Grand Theft Auto series by RockStar North

Red Dead Revolver by RockStar Sandiego

Gunz by MAIET Entertainment

CS 4390 3D Computer

Games

Intro to 3D Game Development --

Chapter 1

11

Grand Theft AutoGrand Theft AutoGrand Theft AutoGrand Theft Auto

CS 4390 3D Computer

Games

Intro to 3D Game Development --

Chapter 1

12

Red Dead Revolver Red Dead Revolver Red Dead Revolver Red Dead Revolver

4

CS 4390 3D Computer

Games

Intro to 3D Game Development --

Chapter 1

13

GunzGunzGunzGunz

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

14

Adventure GamesAdventure Games

Adventure games are a type of game,
characterized by investigation, that may include

exploration,

puzzle-solving,

interaction with game characters,

and have a focus on story telling rather than action
challenges.

Types of adventure games
Text-based

Graphic

Role-Playing games

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

15

Adventure GamesAdventure Games

King’s Quest Series by Sierra Studios

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

16

Adventure GamesAdventure Games

The Secrets of Atlantis by Nobilis

5

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

17

Adventure GamesAdventure Games

Nancy Drew: The White Wolf of Icicle

Creek by Her Interactive

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

18

RoleRole--Playing GamesPlaying Games

A game in which players assume the roles

of characters and act out fantastical

adventures, the outcomes of which are

partially determined by chance, as by the

roll of dice.
Dungeon Runners by NCsoft

GODS: Lands of Infinity SE by Cypron Studios

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

19

RoleRole--Playing GamesPlaying Games

Dungeon Runners by NCsoft

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

20

RoleRole--Playing GamesPlaying Games

GODS: Lands of Infinity SE by Cypron Studios

6

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

21

Maze and Puzzle GamesMaze and Puzzle Games

is a computer game with an emphasis on

puzzle solving. The types of puzzles

involved can involve logic, strategy, pattern

recognition, sequence solving, word

completion.
Tube Twist Game by Bigfish Games

3D Dragon Maze Game by Gelio Soft

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

22

Maze and Puzzle GamesMaze and Puzzle Games

Tube Twist Game by Bigfish Games

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

23

Maze and Puzzle GamesMaze and Puzzle Games

3D Dragon Maze Game by Gelio Soft

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

24

Simulator GamesSimulator Games

a game that contains a mixture of skill, chance,

and strategy to simulate an aspect of reality.

For example: MS Flight Simulator, SimCity,

Civilization and The Sims.

Some simulation games are intended to simulate

the real world; others are intended to simulate a

fictional world; still others are designed to be able

to do both.

The Sim 2 by Maxis

Black Hawk by Abacus

7

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

25

Simulator GamesSimulator Games

The Sim 2 by Maxis

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

26

Simulator GamesSimulator Games

Black Hawk by Abacus

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

27

Sports GamesSports Games

a computer or video game that simulates
the playing of traditional sports.

Some games emphasize actually playing
the sport (such as the Madden NFL series),

while others emphasize the strategy behind
the sport (such as Championship
Manager).

Madden NFL 08 by EA Triburon

NBA 08 by SCEA

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

28

Sports GamesSports Games

Madden NFL 08 by EA Triburon

8

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

29

Sports GamesSports Games

NBA 08 by SCEA

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

30

Strategy GamesStrategy Games

a video or computer game or other type of
game in which the players' decision-making
skills have a high significance in
determining the outcome.

Many games include this element to a
greater or lesser degree, making
demarcation difficult.

Kohan II Kings of War by TimeGate Studios

American Civil War - The Blue and the Gray by
AGEOD

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

31

Strategy GamesStrategy Games

Kohan II Kings of War by TimeGate Studios

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

32

Strategy GamesStrategy Games

American Civil War - The Blue and the Gray by

AGEOD

9

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

33

Game PlatformsGame Platforms

PC

Windows

Linux

Mac

Game Consoles

PS

Nintendo

Xbox

PDA

Mobile Phone

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

34

Game PlatformsGame Platforms

Microsoft Windows

OpenGL

Open source

APIs that access the features of video adapters

Run on most platform

DirectX

Microsoft proprietary

More popular than OpenGL

Run on only Windows

XNA

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

35

Game Developer RolesGame Developer Roles

Producer

Designer

Programmer

Visual Artist

Audio Artist

Quality Assurance Specialist

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

36

Game Developer Roles Game Developer Roles ---- ProducerProducer

Game project’s leader

Planning

Scheduling

Managing

Budgeting

purchasing

10

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

37

Game Developer Roles Game Developer Roles ---- DesignerDesigner

Game designer -- lead designer, level
designer, story-writer designer, model
designer, character designer

Lead designer -- create a plan
Maps

Games objectives

Tools

Flow charts

Table of characteristics

Terrains and Models

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

38

Game Developer Roles Game Developer Roles ---- ProgrammerProgrammer

Develop code that makes game come to

live
Graphic

Sound

Network

Online

Interactive

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

39

Game Developer Roles Game Developer Roles ---- Visual ArtistVisual Artist

Draw sketches

Create story board

3D Graphics
Models

Animations

Textures

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

40

Game Developer Roles Game Developer Roles ---- Audio ArtistAudio Artist

Compose music and sound

11

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

41

Game Developer Roles Game Developer Roles ---- Quality Quality

Assurance SpecialistAssurance Specialist

Extensively test the final game product

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

42

Publish Your GamePublish Your Game

Self-publish

GarageGames

Known game publishers

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

43

Elements of 3D GameElements of 3D Game

Game Engine

Scripts

GUI

Models

Textures

Sound

Music

Support Infrastructure

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

44

Elements of 3D Game Elements of 3D Game ---- Game EngineGame Engine

A game engine is an integrated collection of
various computer code objects that together run
the video game. These modules include:

A graphics module for 2D or 3D

A physics module

A collision detection module

An input/output module

A sound module

An artificial intelligence module

A network module

A database module

A Graphical User Interface module (GUI)

12

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

45

Elements of 3D Game Elements of 3D Game ---- ScriptsScripts

The game engine normally provides a

scripting language that allows the code to

control all elements of the game -- GUI,

rendering, Networking, …

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

46

Elements of 3D Game Elements of 3D Game ---- GUIGUI

GUI is basically a combination of graphics and
scripts that provides visual appearance of the
game and accepts the user’s control inputs.

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

47

Elements of 3D Game Elements of 3D Game ---- ModelsModels

3D models are the most important part of

3D games --

Terrain

Characters

Buildings

Trees

Vehicles …

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

48

Elements of 3D Game Elements of 3D Game ---- TexturesTextures

Textures/skins are an important part of

rendering the models in 3D scenes.

They enhance a more realistic appearance.

13

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

49

Elements of 3D Game Elements of 3D Game ---- SoundSound

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

50

Elements of 3D Game Elements of 3D Game ---- MusicMusic

Provides appropriate

Background sounds

Event sounds

To fit context and environment of the game

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

51

Elements of 3D Game Elements of 3D Game ---- OnlineOnline

Support Infrastructure

Web Sites

Auto-Update

Support Forums

Administrative Tools

Database

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

52

The Torque EngineThe Torque Engine

Description

Using Torque

Installing Torque

14

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

53

DescriptionDescription

Basic Control Flow
Torque uses DemoGame::main() function to initialize libraries and game
functions. Then cycles in the main game loop until the program is terminated.

The main loop basically calls platform library functions
(engine/platform/platform.h) to produce platform events, which then drive the
main simulation.

Torque handles all the basic event procession functions as follows:
Dispatches Windows mouse movements to the GUI),

processInputEvent (which processes other input related events)

processTimeEvent which computes an elapsed time value based on the time scale
setting of the simulation and then:
� Processes time for server objects (serverProcess() in engine/game/game.cc)

� Checks for server network packet sends (serverNetProcess() in
engine/game/netDispatch.cc)

� Advances simulation event time (Sim::advanceTime() in engine/console/simManager.cc

� Processes time for client objects (clientProcess() in engine/game/game.cc)

� Checks for client network packet sends (clientNetProcess() in
engine/gamee/netDispatch.cc)

� Renders the current frame (GuiCanvas::render() in engine/gui/guiCanvas.cc) c)

� Checks for network timeouts (dispatchCheckTimeouts() in engine/game/netDispatch.cc)

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

54

Description Description ---- Platform LayerPlatform Layer

The platform layer is the foundation of Torque

Running at the lowest level, it provides a
common cross platform, cross architecture
interface to the system for the game.

The platform layer is responsible for handling
the details of file and network IO, graphics
initialization, device initialization and input, and
time event generation

Standard library calls are proxied through the
platform layer, so that the game code can be
safe from platform specific idiosyncrasies

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

55

Description Description ---- ConsoleConsole

The console module, rooted in
engine/console/console.h, is a combined compiler and
interpreter runtime that serves as the foundation for
Torque applications.

All GUIs, game objects, interfaces, and game logic are
handled through the console.

The language itself is syntactically similar to a typeless
C++, with some additional features that allow for easier
mod development.

Console scripts can be loaded via the exec() console
command from the console window (brought up using
the ~ key) or they can be loaded automatically from a
mod via that mod's main.cs.

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

56

Description Description ---- Input ModelInput Model
Input events come from the OS, are translated in the platform layer and then posted to the game.

By default the game then checks the input event against a global action map (which supercedes all
other action handlers). If there is no action specified for the event, it is passed on to the GUI system.
If the GUI does not handle the input event it is passed to the currently active (non-global) action map
stack.

Platform Input --
Platform specific code translates OS-specific events into uniform Torque input events.

These events are posted into the main application event queue via a call to GameInterface::processEvent()
(remember, Game points to a subclass of GameInterface).

The default behavior for the GameInterface class is to pass all input events to
GameInterface::processInputEvent(), which in the example DemoGame calls ActionMap::handleEventGlobal,
followed by Canvas->processInputEvent (if not handled by the global map), and if neither of those handles it,
passes it to ActionMap::handleEvent.

Action Maps --
Action maps map platform input events to console commands.

Any platform input event can be bound in a single generic way - so in theory the game doesn't need to know if
the event came from the keyboard, mouse, joystick or some other input device.

This allows users of the game to map keys and actions according to their own preferences.

There is one defined ActionMap object that is processed first for all events called GlobalActionMap.

Game action maps are arranged in a stack for processing - so individual parts of the game can define specific
actions - for example when the player jumps into a vehicle it could push a vehicle action map and pop the
default player action map.

15

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

57

Description Description ---- SimulationSimulation

The simulation of objects is handled almost entirely in the game portion of the engine.

All simulation object classes are derived from GameBase, which is a subclass of
SceneObject. GameBase objects that wish to be notified of the passage of time can be
added to one of the two process lists - the global server or global client process list,
depending on whether the object is a server object or a client ghost.

All objects in the process list are "ticked" once every 32 milliseconds.

The ordering of the objects is determined by the GameBase::processAfter method,
which is called if an object must be processed at some time after another object (not
necessarily immediately afterward).

For example, a player mounted to a vehicle would be set to processAfter the vehicle,
so that after the vehicle moved the player's position could be updated to the correct
position on the vehicles new position.

Server side objects are only simulated on even tick boundaries, but client objects, in
order to present a smooth view when the frame rate is high, are simulated after each
time event. GameBase::processTick is still only invoked on even tick boundaries, but at
the end of the time advance, objects are essentially rewound by the time difference to
the end of the tick. Also, client objects that need to animate only by the total elapsed
time can do so in the GameBase::advanceTime function, which is only called once per
time advancement.

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

58

Description Description ---- Simulation ObjectsSimulation Objects

SimBase (engine/console/simBase.*) defines the foundation SimObject classes that
form the basis of the simulation engine.

SimObject is the base class for all objects that the console language can create and
manipulate. All game classes (Player, InteriorInstance, Terrain, etc.) and GUI classes
(GuiCanvas, GuiControl, etc). are all derived from SimObject. SimObject maintains the
list of dynamic fields, has name and ID properties, and can register itself with a global
object manager, as well as providing several other services.

A SimSet is a simple collection of SimObjects. The set has console methods for adding
and removing objects and iterating through the set.

A SimGroup is a derivative of SimSet that "owns" the objects in its collection. When a
SimGroup object is destroyed, it destroys all of its members. GuiControl is derived from
SimGroup - thus making the GUI a hierarchal set of objects.

SimEvent is a special class objects can use to send time-delayed messages to objects.

SimManager (engine/console/simManager.cc) is a collection of functions for managing
all of the objects and events in the simulation. Objects are collected in a hierarchy of
SimGroups and can be searched for by name or by object id.

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

59

Description Description ---- Resource ManagerResource Manager

The Torque engine uses many resources - terrain files,
bitmaps, shapes, material lists, fonts and interiors, to list just a
few examples.

In order to manage a large number of game resources
effectively and provide a common interface for loading and
saving resources, Torque uses the ResManager.

Resources have the special property that only one instance of
a resource will ever be loaded at a time.

Resource objects are reference counted so that when a
second request is made for the same resource, the original
loaded instance is returned.

The resource manager also defines a resource template class
that acts as a transparent pointer to various types of game
resources.

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

60

Description Description ---- GraphicsGraphics

The Torque Engine does not implement its own graphics rasterization layer. OpenGL
was chosen as the graphics API for the Torque to primarily for its cross-platform nature
and ease-of-use. The Torque includes a utility library called DGL that extends OpenGL
to support higher level primitives and resources, as well as performing texture
management.

The platform layer is responsible for initializing the OpenGL state. For PlatformWin32
this can include loading a DLL that converts OpenGL calls to Direct3D
(OpenGL2D3D.DLL).

DGL includes a texture manager (engine/dgl/gTexManager.*) that tracks the loading
and unloading of all textures in the game. When the game requests a texture, it uses
the TextureHandle class - which acts as a sort of special resource handle for textures
in the game. Only one instance of a texture is ever loaded at once, and after load is
handed off to OpenGL. When the game switches graphics modes or video devices, the
Texture Manager can transparently reload and re-download all the game's textures.

Primitive Support --
GFont - fonts in the Torque are alpha textures created by the platform layer from OS
dependent outline fonts.

GBitmap - the Torque supports several bitmap file types - PNG, JPEG, GIF, BMP and the
custom BM8 format (an 8-bit color quantized texture format used to cut texture memory
overhead).

MaterialList - a material list is a resource that manages a list of bitmaps. It is used for shapes
and interiors that have more than one texture.

16

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

61

Description Description ---- GraphicsGraphics

Primitive Rendering --
The DGL support functions support a wide variety of common 2D rendering primitives.
Bitmaps (loaded as textures) can be rendered via the dglDrawBitmap(),
dglDrawBitmapStretch(), dglDrawBitmapSR() (sub-region), and dglDrawBitmapStretchSR()
functions. Text can be rendered using dglDrawText() and dglDrawTextN(). Dgl also supports
drawing of lines, rectangles and filled rectangles.

Unlike default OpenGL, the screen coordinate space set up for 2D rendering in the Torque is
a traditional 2D scheme where (0,0) is in the upper left corner of the screen and +Y goes
down the screen. This requires (in the case of 3D) calling dglSetViewport rather than
glViewport.

For 2D rendering, DGL viewport management is simplified by dglSetClipRect().

3D Redering --
There are several key differences in how the Torque does rendering from the default OpenGL.
First, the coordinate system is set up to look down the +Y axis instead of -Z. This means dgl
replaces the call to glFrustum() with a call to dglSetFrustum(). Also, all Torque matrices are
organized in standard C array form - with the second element in the array corresponding to
the first row, second column. This is the opposite of OpenGL, so DGL supplies alternates to
glLoadMatrix() and glMultMatrix(), appropriately named dglLoadMatrix() and dglMultMatrix()
respectively.

3D points can be converted to 2D screen points using the dglPointToScreen() function, and a
measure of projected screen size of an object can be determined using the dglProjectRadius()
function.

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

62

Description Description ---- 3D Rendering3D Rendering

Torque has a modular, extensible 3D world rendering system.
Subclasses of the GuiTSCtrl override the
GuiTSCtrl::processCameraQuery() and
GuiTSCtrl::renderWorld() methods to define the camera
orientation/FOV, and draw the 3D scene using OpenGL
drawing commands respectively.

GuiTSCtrl manages setting up the viewport, modelview matrix
and projection matrix.

The Torque example code GameTSCtrl class calls the global
functions GameProcessCameraQuery() and
GameRenderWorld().

GameProcessCameraQuery() returns the viewing camera of
the current control object (the object in the simulation that the
player is currently controlling), then GameRenderWorld
makes the client scene graph object render the world.

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

63

Description Description ---- 3D Rendering3D Rendering

Scene Graphs --
The scene graph library (engine/sceneGraph) is, on the client, responsible for traversing the
world scene and determining which objects in the world should be rendered given the current
camera position, and on the server, determines what objects should be sent to each client
based on that client's position in the world.

The world in the SceneGraph is divided into zones - volumes of space bounded by solid areas
and portals. The outside world is a single zone, while interior objects can have multiple interior
zones. SceneGraph::findZone() finds the zone of a given 3D point and reports which
SceneObject owns that zone. SceneGraph::rezoneObject() determines which zone or zones
contain a SceneObject instance. At render time, the scene is traversed starting from the zone
that contains the camera, clipping each zone's objects to the visible portal set from the zones
before it. Scoping of network objects is performed in SceneGraph::scopeScene().

The scene graph traversal is complicated by transform portals. Transform portals are objects
like mirrors or teleporters through which the world can be viewed using a different transform
than the normal camera transform. When SceneGraph::buildSceneTree() encounters an
object with a transform portal, it constructs a new SceneState object for rendering that portal's
contents.

Every renderable world object in the scene derives from the SceneObject base class. As the
world is traversed, visible objects are asked to prepare one or more SceneRenderImage
objects (in SceneObject::prepRenderImage()) that are then inserted into the current
SceneState via SceneState::insertRenderImage(). Render images are sorted based on
translucency and rendered from SceneObject::renderObject(). This system allows, for
example, an interior object with multiple translucent windows to render the building first,
followed by other objects, followed by the building's windows. Objects can insert any number
of images for rendering.

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

64

Description Description ---- TerrainTerrain
The terrain library (engine/terrain) is the home for objects that render the outside world, including
instances of the Sky, TerrainBlock and WaterBlock classes.

The Sky object renders the outside sky and cloud layers and maintains the visible distance and fog
distance settings for the world. The sky also tracks vertical fog layers and installs them into the
SceneGraph for rendering.

TerrainBlock manages a single 256x256 infinitely repeating block of heightfield terrain.

Terrain heightfield data is stored and loaded using the TerrainFile resource class
(Resource<TerrainFile>) so that a single terrain data file can be shared between server and client,
when both are on the same execution instance.

The TerrainRender static class is used by TerrainBlock instances for rendering. The
TerrainRender::renderBlock() function renders the current repeating block of terrain.

There exists a TerrainManager resource which allows you to have NxM repeating areas of terrain,
increasing the non-repeating terrain area.

The terrain is textured by software blending base material textures into new material textures and
then mapping those across 16 or more terrain squares based on the distance from the square.
Blender performs the blending of terrain textures and includes a MMX assembly version to speed
the process (x86 architectures only).

The WaterBlock class manages a single block of water, which may or may not be infinitely
repeating. Water is dynamically detailed based on distance, so nearby water is more highly
tessellated. Though the surface of a water block is rectangular, the actual coverage of the water
area can be set to seed fill from a point on the surface, allowing the water to fill a mountain crater,
for example, without leaking outside the corner edges.

17

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

65

Description Description ---- InteriorInterior

The interior library (engine/interior) manages the rendering,
collision and IO for interior objects. The InteriorInstance
SceneObject class manages a single interior. The
InteriorResource class manages the data associated with one
definition of an interior, multiple instances of which may exist
at any one time. Interiors manage zones for the scene graph,
and may have subobjects that, for example, render a mirrored
view (MirrorSubObject). The InteriorLMManager class
manages lightmaps for all currently loaded interiors - sharing
lightmaps among instances where possible.

Interiors are converted to DIF by the tool Map2DIF (formerly
known as Morian). The source files are just Quake-style .map
files - lists of convex physical "brushes" that define the solid
areas of the interior. Special brushes are used to define zone
portal boundaries and objects such as doors and platforms.

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

66

Description Description ---- 3Space3Space

The 3Space library (engine/ts) manages the display and animation of shape models in
the world. The 3Space shape resource class TSShape can be shared between
multiple TSShapeInstance instances.

The TSShape class manages all the static data for a shape - mesh data, animation
keyframes, material lists, decal information, triggers and detail levels (for dynamically
detailed shapes).

The TSShapeInstance class manages animation, rendering and detail selection for an
instance of a shape.

The TSShapeInstance class uses the TSThread class to manage one of the
concurrently running animations on an instance. TSShapeInstance::addThread()
initializes a new thread on a shape instance, and TSShapeInstance::setSequence()
sets an animation sequence for a given thread. Each thread can be individually
advanced in time, or can be set on a time scale that is used when all threads are
advanced in TSShapeInstance::advanceTime(). A thread can also manage transitions
between sequences with TSShapeInstance::transitionToSequence().

TSShape animation sequences can be composed of node/bone animation (for
example, joints in an explosion), material animation (a texture animation on an
explosion) and mesh animation (a morphing blob - note most mesh animations can be
accomplished with node scale and rotation animations). Animations can also contain
visibility tracks so that some meshes in the shape are not visible until an animation is
played.

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

67

Description Description ---- NetworkingNetworking
Torque was designed from the foundations up to offer robust client/server networked simulations.
Performance over the internet drove the design for the networking model.

Torque attempts to deal with three fundamental problems of network simulation programming -
limited bandwidth, packet loss and latency.

For a more detailed, if somewhat outdated, description of the Torque network architecture, see "The
Tribes II Engine Networking Model" paper by Tim Gift and Mark Frohnmayer and the accompanying
PowerPoint slides in the Torque documentation area on GarageGames.com.

An instance of Torque can be set up as a dedicated server, a client, or both a client and a server. If
the game is a client AND a server, it still behaves as a client connected to a server - instead of using
the network, however, the NetConnection object has a short-circuit link to another NetConnection
object in the same application instance.

Bandwidth is a problem because in the large, open environments that Torque allows, and with the
large number of clients that Torque supports (up to 128 per server, or beyond, if the network/server
can handle it), potentially many different objects can be moving and updating at once.

The Torque uses three main strategies to maximize available bandwidth.
First, it prioritizes data, sending updates to what is most "important" to a client at a greater frequency than it
updates data that is less important.

Second, it sends only data that is necessary - using the BitStream class, only the absolute minimum number of
bits needed for a given piece of data will be sent. Also, when object state changes, Torque only sends the part
of the object state that changed.

Last, Torque caches common strings (NetStringTable) and data (SimDataBlock) so that they only need to be
transmitted once.

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

68

Description Description ---- NetworkingNetworking

Packet loss is a problem because the information in lost data packets must somehow
be retransmitted, yet in many cases the data in the dropped packet, if resent directly,
will be stale by the time it gets to the client.

For example,
suppose that packet 1 contains a position update for a player and packet 2 contains a more
recent position update for that same player.

If packet 1 is dropped but packet 2 makes it across the engine shouldn't resend the data that
was in packet 1 - it is older than the version that was received by the client. In order to
minimize data that gets resent unnecessarily, the engine classifies data into four groups:

- Unguaranteed Data (NetEvent) - if this data is lost, don't re-transmit it. An example of
this type of data could be real-time voice traffic - by the time it is resent subsequent
voice segments will already have played.

- Guaranteed Data (NetEvent) - if this data is lost, resend it. Chat messages,
messages for players joining and leaving the game and mission end messages are all
examples of guaranteed data.

- Most-Recent State Data (NetObject) - Only the most current version of the data is
important - if an update is lost, send the current state, unless it has been sent already.
- Guaranteed Quickest Data (Move) - critical data that must get through as soon as
possible.

18

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

69

Description Description ---- NetworkingNetworking

Latency is a problem in the simulation because the network delay in
information transfer (which, for modems, can be up to a quarter of a second
or more) makes the client's view of the world perpetually out-of-sync with the
server.

Twitch FPS games, for which Torque was initially designed, require instant
control response in order to feel anything but sluggish.

Also, fast moving objects can be difficult for highly latent players to hit. In
order to solve these problems Torque employs several strategies:

Interpolation is used to smoothly move an object from where the client thinks it is
to where the server says it is.

Extrapolation is used to guess where the object is going based on its state and
rules of movement.

Prediction is used to form an educated guess about where an object is going
based on rules of movement and client input.

The network architecture is layered: at the bottom is the platform layer,
above that the notify protocol layer, followed by the NetConnection object
and event management layer.

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

70

Installing TorqueInstalling Torque

CS 4390 3D Computer

Games

Intro to 3D Game Development --

Chapter 1

71 CS 4390 3D Computer

Games

Intro to 3D Game Development --

Chapter 1

72

19

CS 4390 3D Computer

Games

Intro to 3D Game Development --

Chapter 1

73 CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

74

CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

75 CS 4390 3D Computer
Games

Intro to 3D Game Development --
Chapter 1

76

