Modern Techniques in Polymerization: 4582-605

Instructor: Jeff Pyun Lecture 2-3: Aspects of Step-Chain-Living Polymerizations September 6-8th, 2010 International Union of Pure and Applied Chemistry (IUPAC)

1) Polycondensation: condensation + step-reaction

Formation of low-mol-wt byproduct Step-reaction polymerization

2) Polyaddition: addition + step-reaction

No byproducts Step-reaction polymerization

Chain polymerization: addition + chain polymerization

No byproducts Chain-reaction polymerization

4) Condensative chain polymerization: condensation + chain-reaction

Formation of low-mol-wt byproduct Chain-reaction polymerization

1.7 Nomenclature

IUPAC name

1) The smallest constitutional repeating unit (CRU) is identified

- 2) Substituent groups are assigned the lowest possible numbers
- 3) The name is placed in parenthesis, and prefixed with poly

1.7.1 Vinyl polymers

poly + monomer name Source name = common name $(-CH_2CH_2)$ polyethylene $(-CH_2CH_2)$ polyethylene $(-CF_2CF_2)$ polytetrafluoroethylene poly(difluoromethylene) $(-CH_2-CH)$ polystyrene poly(1-phenylethylene) poly + (monomer name)

more than one word or letter or number

Source name = common name

IUPAC name

+CH₂CH - poly(acrylic acid)

poly(1-carboxylatoethylene)

poly[1-(1-propyl)ethylene]

1.7.3. Nonvinyl Polymers Polyethers, polyesters, polyamides Heteroatoms Seniority: O, S, N, P

1) Polyethers

2) Polyesters

3) Polycarbonate

Heteroatoms Seniority: O, S, N, P

poly(oxycarbonyloxy-1,4-phenyleneisopropylene-1,4-phenylene)

1.7.4 Nonvinyl copolymers

IUPAC source-based nomenclature for nonvinyl copolymers

2:1:1 –molar ratio of the monomers ethylene glycol, terephthalic acid, and isophthalic acid

poly(ethylene terephthalate-co-ethylene isophthalate)

6-aminohexanoic acid + 11-aminoundecanoic acid

poly[(6-aminohexanoic acid)-co-(11-aminoundecanoic acid)] poly[(6-hexanoamide)-co-(11-undecanoamide)]

 $H_2N(CH_2)_5COOH + H_2N(CH_2)_{10}COOH$

1.7.2. Vinyl Copolymers IUPAC recommends source-based nomenclature for copolymers.

Systematic Concise

 Poly[styrene-co-(methyl methacrylate)]
 Copoly(styrene/methyl methacrylate)

 Poly[styrene-alt-(methyl methacrylate)]
 Alt-copoly(styrene/methyl methacrylate)

Polystyrene-block-poly(methyl methacrylate) Block-copoly(styrene/methyl methacrylate)

Polystyrene-graft-poly(methyl methacrylate) Graft-copoly(styrene/methyl methacrylate)

Poly(styrene-co-ethylene-co-propylene)

Copoly(styrene/ethylene/propylene)

Step Growth Evolution of MW

Reaction of difunctional monomers With complementary functional groups $(A_2 + B_2)$

High polymer formed only at very high conversion

Heteroatom backbones

Chain Growth Evolution of MW

4-Elementary reactions (initiation, propagation, termination, transfer) of reactive monomer + initiator (vinylic- π -systems, strained rings)

High polymer formed at low conversion

C-C bonds for vinylic monomers, Heteroatom backbones for cyclic monomers

Chem 542B: Step-Growth Polymerization

University of Arizona

Requirements for Step-Growth Polymerization

- High monomer purity
- Difunctionality
- Stoichiometry
- >Quantitative conversion of monomer to polymer!
- ➢No side Reactions

Step Growth/Condensation Polymerization

Formation of	Step polymerization	Chain polymerization
Dimer	o + o → o−o	$I + a \rightarrow I - a$ $I - a + a \rightarrow I - a - a$
Trimer	$0 \rightarrow 0 + 0 \rightarrow 0 \rightarrow 0 \rightarrow 0$	$1 \rightarrow 0 \rightarrow 0 \rightarrow 1 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow $
Tetramer	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$I\text{-}o\text{-}o\text{-}a + a \rightarrow I\text{-}o\text{-}o\text{-}o$
Pentamer	$0 - 0 - 0 - 0 + 0 \rightarrow 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -$	$\mathbf{I}\text{-}0\text{-}0\text{-}0 + 0 \rightarrow \mathbf{I}\text{-}0\text{-}0\text{-}0\text{-}0$
Hexamer	$0 - 0 - 0 - 0 - 0 + 0 \rightarrow 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -$	$l - o - o - o - o - o + o \rightarrow l - o - o - o - o - o - o$
Heptamer	$0 - 0 - 0 - 0 - 0 - 0 + 0 \rightarrow 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -$	I-0-0-0-0-0 + 0 → I-0-0-0-0-0-0-0
Octomer	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I-o-o-o-o-o + o → I-o-o-o-o-o-o-o-o

TABLE 2.1 A schematic illustration of the fundamental differences in reaction mechanism between step polymerization and chain polymerization*

* Definition of symbols used : o, molecule of monomer; -, chemical link; I, initiator species

[Young & Lovell, "Introduction to Polymers" 2nd ed.]

Time zero: 6 A monomers 6 B monomers

75% conversion 6/24 functional groups left oligomers

92% conversion 2/24 functional groups left polymer

Monomer Functionality and Polymer Architecture

Step-Growth

Difunctional monomers: *linear polymers*

A₂ + B₂; AB monomers

multifunctional monomers: branched, network polymers

 $A_3 + B_2$; $A_2 + B_3$; $A_x + B_x$ -gelation AB₂; AB_x monomers: (hyper)branched

For multifunctional monomers Onset of gelation strongly dependent on functionality of crosslinkers

Chain-Growth

monofunctional monomers: *linear polymers*

Vinylic: styrene, acrylates

Di-, multifunctional monomers: Crosslinked-networks

Dimethacrylates, divinylbenzene

multifunctional initiators: In living processes with fast Controlled initiation

Stars, branched polymers

Carother's Theory for Molar Mass Prediction in Step-Growth Polymerization

 $\overline{\mathbf{X}}_{\mathbf{n}}$

N_o

Ν

$$\overline{X_n} = \frac{N_o}{N}$$
 (eq. 1)

$$p = \frac{\# \text{ of functional groups that have reacted}}{\# \text{ of functional groups initially present}}$$

$$\rho = \frac{\mathbf{N_o} - \mathbf{N}}{\mathbf{N_o}} \qquad \frac{\mathbf{N_o}}{\mathbf{N}} = \frac{1}{1 - \rho}$$
(eq. 2)

Combine (eq's.1&2)

$$\overline{\mathbf{X}_{\mathbf{n}}} = \frac{1}{1 - p}$$
 Carothers Eq.

Defined as number average degree of polymerization

Number of molecules present initially at T = 0 (i.e., monomers)

Number of molecules present initially at T = t (both polymer and monomers)

p Extent of reaction

 (fractional, 100% = 1.0)
 AND the probability that any functional group has reacted (i.e., formed bonds)

Theory applicable to polymerizations of: $A_2 + B_2$; AB, A_2 -with stoichiometric balance

Requires perfect stoichiometric balance; high MW only at very high conversion!

MW distributions for Step-Growth

Carother's theory only provides X_n, M_n average values, no MW distributions!

Flory developed statistical theory to derive both number and weight fraction distributions

Mole fraction distributions

P(x) = probability distribution = number fraction distribution = mole fxn distrib. "probability of a molecule possessing **x** monomer units at some time = t and *p*, where *p* = extent of reactioni and probability of functional group reacted

 $P(x) = \frac{\text{# of polymers of } X_n = x}{\text{total # of macromolecules}}$

1000 total polymer chains 10 trimeric molecules *P*(trimer) = 0.010

Weight fraction distributions

total mass polymers of $X_n = x$

W(x) total mass of macromolecules

1000g polymer chains 10g trimeric molecules W(trimer) = 0.010

Most Probable Distributions: Number Fraction

p = extent of reaction and probability that functional groups have reacted p = probability of finding bonds between monomers

Probability of "finding" a monomer:P(1) = 1 - pProbability of "finding" a dimer:P(2) = p(1 - p)Probability of "finding" a trimer: $P(3) = p^2(1 - p)$ Probability of "finding" an x-mer: $P(x) = p^{x-1}(1 - p)$

This type of MW distribution referred to as a "most probable distribution" or "Flory-Schulz distribution"

P(x) decreases monotonically with DP Characteristic of step-growth polym.

 $P(x) = p^{x-1}(1 - p)$ is discrete distr.

 $P(x) = (1/X_n)e^{-x/Xn}$ continuous form

Most Probable Distributions with Higher Conversion

Most Probable Distributions: Weight Fraction

Probability Distribution-Mole Fraction Distribution

$$W(x) = \frac{total \text{ mass polymers of } X_n = x}{total \text{ mass of macromolecules}} = \frac{N_x(x \ \overline{M_o})}{N_o \ \overline{M_o}} \quad \overline{M_o} = \text{ ave. MW}$$
of repeat unit
$$W(x) = \frac{x \ N_x}{N_o} = x \ (1 - p)^2 \ p^{x-1} \qquad \text{Other eq. which defines}$$
Flory-Schulz Distribution!

HW Problem Set: Create W(x) distributions as a function of conversion

Polydispersity in Step-Growth Polym.

Polydispersity = M_w/M_n index for MW distribution

$$\overline{M_{n}} = \Sigma P(x) \overline{M_{x}} = \Sigma x \overline{M_{o}} (1-p) p^{x-1}$$

$$\Sigma x p^{x-1} = (1-p)^{-2} \text{ when } p < 1$$

$$\overline{M_{n}} = \frac{\overline{M_{o}}}{(1-p)} = \overline{X_{n}} \overline{M_{o}}$$

$$\overline{M_{w}} = \Sigma W(x) \overline{M_{x}} = \Sigma x^{2} \overline{M_{o}} (1-p)^{2} p^{x-1}$$

$$\Sigma x^{2} p^{x-1} = (1+p)(1-p)^{-3} \text{ when } p < 1$$

$$\overline{M_{w}} = \frac{\overline{M_{o}}}{M_{o}} \frac{(1+p)}{(1-p)}$$

$$\overline{M_{w}} = \overline{M_{o}} \frac{(1+p)}{(1-p)}$$

Examples of Step-Growth Polymers

(CH₂)2-Oי∰

Polyester Dacron, Mylar

polycarbonate

Polyaromatic amide Kevlar

Polyamide Nylon 6,6

Key Features of Step-Growth Polymers

More expensive than chain-growth poylmers Improved mechanical properties Wider range of optical, electronic magnetic properties

Polyurethane Spandex

Examples of Monomers Chain-Growth Polymerization

Tetrafluoroethylene

Definition and Criteria for Living Polymerizations

<u>**Definition:**</u> Chain polymerization that proceeds in the absence of chain breaking processes (termination, transfer

Criteria*: (Quirk et al., Polym. Int. 1992, 27, 359)

- Polymerization proceeds until all monomer consumed, further addition of monomer results in chain extension
- 2) Number average MW (M_n, X_n) linear relationship with monomer conversion
- 3) # of initiator molecules = # of polymer chains,which is constant throughout reaction
- 4) $DP = [M]_o/[I]_o x$ conversion
- 5) Polymers of low polydispersity formed $M_w/M_n = 1 + 1/DP_n$
- 6) Block Copolymers formed from sequential monomer addition to living polymer chain
- 7) Facile chain end functionalization
- 8) Linearity of Ln([M]_o/[M]) vs. time (constant # of active centers

Controlled/Living Polymerizations

<u>Living polymerization</u>:a chain growth process without chain-breaking reactions (termination, transfer) Anionic, Insertion (ROMP)

Features: precise $DP_n (\Delta[M]/[I]_o)$ Low polydispersity Active chain ends-Blocks Control of architecture Stringent reaction conditions

<u>Controlled/"Living" polymerization</u>:a chain growth process with chainbreaking reactions

R_{propagation} >> R_{termination}, R_{transfer} Reversible deactivation <u>Features:</u> precise $DP_n (\Delta[M]/[I]_o)$ Low polydispersity* Active chain ends-Blocks Control of architecture

Free Radical Chemistry: 1990's

Greater functional group tolerance Range of monomers

Controlled/Living Polymerizations

Living Anionic Polymerization

<u>Initiators:</u> ex. organolithium compounds (sec-butyl lithium; n-butyl lithium) Grignard reagents, alkali bases

<u>Monomers:</u> ex. Styrenes, dienes, (meth)acrylates, pyridines, epoxides: Functional monomer require protecting groups; alkyl esters cannot be polym

<u>Features:</u> exquisite control of MW, block copolymers, low functional group tolerance

Controlled Cationic Polymerization

Initiators: ex. Alkyl halides, acetates, inorganic/organic acids, water

<u>Monomers:</u> ex. Vinyl ethers, alkenes(butylene), styrene, cyclic ethers Functional monomer require protecting groups; alkyl esters cannot be polym

<u>Features:</u> highly reactive cation species susceptible to chain transfer Controlled MW, block copolymers

Controlled Radical Polymerization

Initiators: ex. Alkyl halides, alkoxyamines, thioesters

<u>Monomers:</u> ex. (meth)acrylates, (meth)acrylamides, styrenes, acrylonitrile, Pyridines, dienes,

High functional group tolerance, widest scope of polymerizable monomers

Features: controlled MW, blcck copoylmers, functionality, bimolecular termination

Coordination-Insertion Polym.

Ring-opening metathesis Polymerization (ROMP)

<u>Initiators/catalysts:</u> Transition metal alkyldenes (Ru, Mo)

Monomers:

Ring-Opening

Polymerization

Cyclic alkenes (norbornylene Cyclooctadiene, dicyclopentadienes)

Controlled/Living Polymerizations: Materials

