
<u>Lecture 6</u> <u>BLOOD GAS TRANSPORT of CO₂</u>

OBJECTIVES:

- 1. CO_2 forms in blood.
- 2. Mechanism of CO₂ carriage.
- 3. Chloride shift phenomenon.
- 4. CO₂ dissociation curves, significance.

Carbon dioxide (CO₂) carriage by blood:

Normal arterial and venous CO₂ levels:

Parameter	CO ₂ content	CO ₂ tension
Arterial	50 ml %	40 mmHg
Venous	55 ml %	46 mmHg

Arterial blood CO₂ is present in the following forms:

1. Physical solution:

- It is about 5% of the total CO₂ content (~ 2.5 ml %).
- CO₂ in solution may dissolve in water to form carbonic acid which dissociates as follows:

 $CO_2 + H_2O \iff H_2CO_3 \iff H^+ + HCO_3^-$

The dissociation of carbonic acid (H₂CO₃) to CO₂ + H₂O is <u>1000</u> times its dissociation to that to H⁺ + HCO₃ (i.e. out of each 1000 molecules of H₂CO₃, 999 molecules are present as CO₂ and H₂O (i.e. physical solution), and <u>only</u> one molecule as <u>bicarbonate</u> (i.e. chemical combination) that can <u>change</u> the pH <u>very little</u>.

2. Chemical combination:

It forms about 95 % of the total CO_2 content.

It is present in the following forms:

- a) <u>Bicarbonates</u> (89%): e.g. sodium bicarbonate (NaHCO₃) in plasma and potassium bicarbonate (KHCO₃) in RBCs.
- b) <u>Carbamino compounds</u> (6%): CO₂ combines with the NH₂ group of a protein to form Carbamino compounds. The <u>protein</u> may be <u>plasma proteins</u> (2%) in plasma or globin of <u>haemoglobin</u> (4%) inside the RBCs.

<u>N.B.</u>

- <u>Reduced haemoglobin</u> has <u>double</u> the affinity of <u>oxyhemoglobin</u> for CO₂.
- The <u>ratio</u> of CO_2 in physical solution : CO_2 in chemical combination is 5/95 = 1/20.
- If this ratio <u>changes</u>, the blood <u>pH will change</u>.

Significance of arterial CO2:

a) Stimulates the respiratory centre for pacing.

b) <u>Bicarbonates</u> form the blood <u>alkali reserve</u> that combats acidosis.

<u>Tidal CO2:</u>

It the <u>difference</u> between <u>venous</u> and <u>arterial</u> CO₂ contents.

At <u>rest</u>, each 100 ml of <u>arterial</u> blood (CO₂ content = **50 ml** %) passing to the tissues are <u>loaded</u> with **5 ml** CO₂ to be <u>venous</u> blood (CO₂ content = **55 ml** %).

So, Tidal CO₂ = Venous CO₂ content - Arterial CO₂ content

Mechanism of tidal CO₂ carriage at tissues:

(i.e. The Chloride Shift Phenomenon):

The CO₂ tension at <u>tissues</u> is **46 mmHg**, while that of <u>arterial</u> blood supplying the tissues is **40 mmHg**, accordingly CO₂ passes from the tissue to the <u>blood</u> (i.e. down its pressure gradient) which <u>changes</u> into <u>venous blood</u>.

In the blood:

- A. <u>About 10</u> % of tidal CO₂ <u>dissolves</u> in plasma water (i.e. carried in physical solution) and raising the CO₂ tension <u>from 40</u> mmHg <u>to 46</u> mmHg in <u>venous blood</u>.
- **B.** A <u>small part</u> of tidal CO₂ <u>reacts</u> with plasma water forming <u>carbonic acid</u>, which is rapidly <u>buffered</u> by the <u>phosphate</u> and <u>protein</u> buffers forming <u>weaker</u> acids than carbonic acid causing only <u>very minimal</u> change in blood **pH**.

C. <u>The major part</u> of CO₂ enters the <u>RBCs</u> where it is dealt with <u>as follows:</u>

- 1. CO₂ reacts with water in the presence of the enzyme carbonic anhydrase (CA) to form carbonic acid (i.e. the rate of the reaction is accelerated \sim 5000 times the normal in <u>presence</u> of the enzyme).
- 2. The formed carbonic acid rapidly <u>dissociate</u> into hydrogen and bicarbonate ions (H⁺ and HCO₃⁻) \rightarrow increased their levels of in RBCs.
- <u>The increased</u> H⁺ ions concentration in RBCs → <u>accelerates</u> the <u>dissociation</u> of O₂ from oxyhemoglobin (HbO₂) resulting in release and ↑ delivery of O₂ to the tissues (i.e. shift to the right). This called (**Bohr's effect**).
- 4. While, the free Hb <u>binds</u> with H⁺ forming <u>reduced hemoglobin</u> (i.e. HHb).

- 5. <u>In turn</u>, most of bicarbonate ions (HCO₃⁻) diffuse out of RBCs into the plasma along concentration gradient.
- 6. <u>To keep the electric balance</u>, <u>chloride</u> ions (Cl⁻) present in plasma are <u>shifted</u> from plasma into the RBCs → increased Cl⁻ ions in RBCs → The osmotic pressure increases more in the RBCs → water <u>shifts</u> from plasma to RBCs → <u>swelling</u> of RBCs → increased HCT value of venous blood <u>more</u> than arterial blood.
- 7. <u>Finally</u>, the reduced Hb (i.e. HHb) formed in step (4) has more affinity to CO₂ than HbO₂. So, it <u>combines</u> with a small part of CO₂ forming carbamino-Hb.

<u>N.B.</u>

- The <u>diffusion</u> of HCO₃⁻ <u>out</u> and Cl⁻ <u>into</u> the RBCs occurs through a <u>special</u> bicarbonatechloride <u>exchanger</u> protein <u>present</u> in the RBCs membrane.
- Haemoglobin by these steps buffers about **80%** of tidal CO₂.

The Net Effects of Chloride Shift:

- Bicarbonate *increases* in RBCs and plasma, but *more* in **RBCs**.
- Chloride ions decreased in plasma and increased in RBCs.
- Water <u>diffuses</u> from plasma to RBCs \rightarrow <u>swelling</u> of RBCs.
- The pH is <u>very little</u> affected by a slight decrease in spite of the addition of 5 ml tidal CO₂.
- The pH of <u>arterial</u> blood is <u>about</u> 7.4, while that of <u>venous</u> blood is about 7.35.

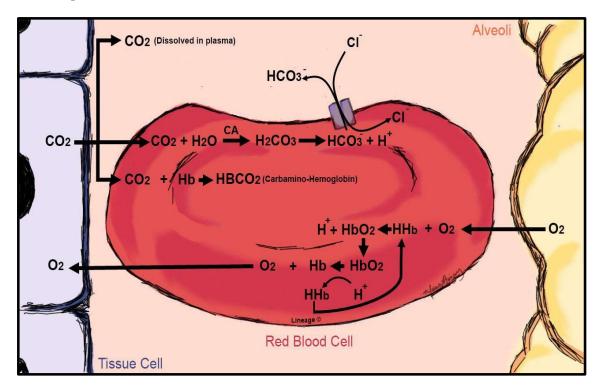


Figure: CO₂ carriage and chloride shift phenomenon (at tissues).

Mechanism of gas exchange at the lungs: (i.e. Reverse chloride shift phenomenon)

- 1. As the tension in the <u>alveolar</u> air is 100 mmHg and that of the <u>venous</u> blood reaching the lungs is 40 mmHg. So, O₂ <u>diffuses</u> from the alveolar air to the blood.
- As the CO₂ tension in <u>venous</u> blood <u>reaching</u> the lung is 46 mmHg while, its tension in <u>alveolar</u> air is 40 mmHg. So, CO₂ <u>diffuses</u> from blood to alveolar air.
- **3.** CO_2 in <u>physical solution</u> in plasma is liberated <u>first</u> and diffuses to alveolar air $\rightarrow \downarrow CO_2$ tension $\rightarrow \underline{reversal}$ of all the reactions that have occurred in plasma at the tissues \rightarrow release of CO_2 chemically combined as bicarbonate and as carbamino compounds with plasma proteins and its diffusion to alveolar air <u>according to</u> pressure difference for CO_2 .
- **4.** Carbamino haemoglobin <u>inside</u> the RBCs releases its CO₂ and <u>becomes</u> reduced haemoglobin (HHb). The released CO₂ diffuses to alveolar air.
- 5. O_2 enters the RBCs and <u>combines</u> with HHb to form HbO₂ and <u>release</u> of H⁺ ions.
- 6. The <u>increased</u> H⁺ ions (released from HHb) <u>react</u> with HCO₃⁻ present in RBCs forming carbonic acid which <u>dissociates</u> to H₂O + CO₂ (in the presence of CA enzyme) \rightarrow CO₂ diffuse to the alveolar air (i.e. \uparrow CO₂ removal).
- **7.** Bicarbonate concentration is <u>decreased</u> in RBCs resulting in <u>diffusion</u> (i.e. re-entry) of HCO₃ from plasma <u>into</u> the RBCs down its concentration gradient <u>in exchange</u> with chloride ions (i.e. reverse chloride shift).

Net Results:

- Bicarbonate <u>decreases</u> in both plasma and RBCs, but the <u>decrease</u> is <u>more</u> in RBCs <u>due to</u> the presence of CA enzyme → more bicarbonate dissociation.
- Bicarbonate **diffuses** from plasma into RBCs <u>according</u> to concentration gradient <u>created</u> by the effect of the enzyme.
- C1⁻ ions diffuse <u>from</u> the RBCs to plasma in <u>exchange</u> with bicarbonate (i.e. reversal of chloride shift).
- The <u>osmotic concentration</u> in RBCs <u>decreases</u> more than that of plasma → water <u>shift</u> from RBCs to plasma → ↓ volume of RBCs → ↓ HCT value in arterial blood.

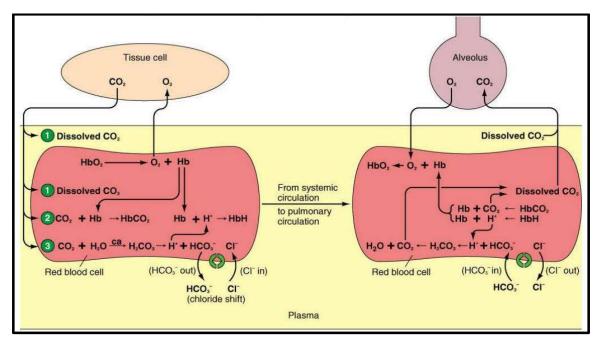


Figure: CO₂ transport in blood.

<u>CO₂ Dissociation Curve(s):</u>

They are obtained by drawing CO₂ content of blood samples <u>against</u> CO₂ tension.

Three curves are obtained:

1. <u>The curve of fully oxygenated blood:</u> (i.e. PO₂ = 100 mmHg)

- It is obtained by using a tonometer <u>containing</u> enough oxygen to <u>fully</u> saturate haemoglobin.).
- This curve <u>represents</u> the relation between CO₂ content and CO₂ tension when Hb is <u>fully</u> saturated.
- <u>Point (A)</u> on the curve <u>represents</u> the condition of <u>arterial blood</u> where, CO₂ <u>content</u> equals **50** ml % and CO₂ <u>tension</u> = **40** mm Hg.
- 2. <u>The curve of 30% reduced blood resting venous blood:</u> (i.e. PO₂ = 40 mmHg)
 - Obtained by <u>exposing</u> the blood sample in the tonometer to oxygen which is <u>only</u> enough to saturate **70** % of the hemoglobin content.(i.e. Hb will be **30** % <u>reduced</u>)
 - <u>Point (V)</u> on this curve <u>represents</u> the condition of the <u>resting venous blood</u> where CO₂ content = 55 ml % and CO₂ tension = 46 mm Hg.
- 3. The curve of fully reduced blood: (i.e. PO₂ = 0 mmHg)
 - It is obtained by using a tonometer containing <u>no</u> oxygen, and so, all Hb will be <u>fully</u> <u>reduced</u>.
 - This condition <u>never</u> occurs <u>normally</u> inside the body.
 - <u>Point (B)</u> on this curve <u>represents</u> the condition of the <u>fully reduced venous blood</u> where CO₂ content = 65 ml % and CO₂ tension = 60 mm Hg.

<u>N.B.</u>

Joining points $A \rightarrow V \rightarrow B$ gives a **line** representing the <u>physiological CO₂ dissociation curve</u> inside the body.

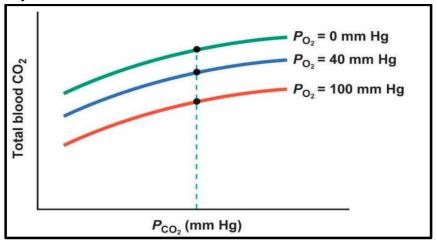


Figure: CO₂ dissociation curves.

Comments on CO2 dissociation curves:

Reduced Hb (HHB) <u>carries more</u> CO₂ than HbO₂ (at any given CO₂ tension).

(i.e. the oxygenation of hemoglobin promotes the dissociation of CO₂ from hemoglobin).

This is called the Haldane effect;

It <u>describes</u> the ability of hemoglobin to <u>carry increased</u> amounts of **carbon dioxide** (CO_2) in the deoxygenated state compared to the oxygenated state.

Significance:

- When HbO₂ gives its O₂ to the tissues and is <u>reduced</u> to Hb, its <u>capacity to carry</u> CO₂ from the tissues is <u>increased</u>.
- At the lung, <u>oxygenation</u> of Hb to HbO₂ <u>decreases</u> its capacity to <u>carry</u> CO₂ which is released from venous blood to alveolar air (i.e. increased CO₂ removal).