ANT-LIONS, LACEWINGS, and ALLIES Order Neuroptera

Soft-bodied holometabolous insects with wingspans ranging from about 3 mm to more than 100 mm . Wings are membranous, usually with a dense network of cross-veins that gives the order its name: Neuroptera means nerve-winged Except in the alder flies (p. 108), the veins usually fork prominently at the wing
margins. Flight is weak in most species and the wings are generally held roofwise over the body at rest. Antennae usually thread-like: sometimes moniliform (composed of bead-like segments) and occasionally toothed or clubbed Compound eyes large, sometimes accompanied by 3 ocelli. Tarsi 5 -segmented Largely carnivorous, feeding mainly on other small insects, although some eat pollen and some hardly feed at all. Larvae are carnivorous or parasitic, with several species living in water. More than 6000 species are known, of which abou 300 occur separate order - the Megater

ANT-LIONS Myrmeleonidae. Dragonfly-like insects with long narrow body and narrow wings spanning up to about 100 mm in European species. Antennae short
and stout, and always clubbed in European species. Males have prominent claspers at the rear. Flight slow and fluttery: mostly nocturnal or crepuscular and often coming to artificial light. Nocturnal species often take flight when disturbed by day. Difficult to see when resting among vegetation with wings pulled tightly back along the body. Mostly carnivorous, plucking small insects from plants, but
some also nibble pollen. All like warm, dry areas.
The larvae prey on a wide range of spiders and small insects, which are captured with large jaws. Some larvae roam in soil and leaf litter: others construct pitfal traps in sandy soil. The pit is conical and the larva buries itself at the bottom.
Insects blundering into the pit slither to the bottom, often helped by sand grains hurled by the ant-lion, and are grabbed by the large jaws. Ants are among the commonest victims - hence the name. There are 41 European species, mainly in the Mediterranean region. Only one occurs in B.

Dendroleon pantherinus. Characteristic eye-spot on hind edge of forewing may be rather indistinct. Dry, open oak
litter and makes no pit. S \& C.

Myrmeleon formicarius. Top of head black or brown. Wings clear. Dry, open places. 5-8. Larva makes pit in soil, rarely in leaf litter. One of the commonest European ant-lions, from southern Scandinavia southwards. M. inconspicuus has top of head
yellow with brown spots. Wings clear, spanning $50-70 \mathrm{~mm}$. Veins dark with just a few yellow with brown spots. Wings clear, spanning $50-70 \mathrm{~mm}$. Veins dark with just a few
clear spots (several similar species have pale veins with a few dark spots). Abdomen chequered. Open habitats, especially near the sea. $5-8$. Larva makes pit in fine sand,
especially on dunes and in stream banks. S \& C.

Palpares libelluloides. An unmistakable insect, flying mainly by day and often form-
ing dense colonies on dunes, rough grassland, and rocky maquis (not too derse ing dense colonies on dunes, rough grassland, and rocky maquis (not too dense).
Avoids the driest places. $5-9$. Larva (p. 294) lives in soil and debris around vegetation Avoids the driest places. 5-9.Larva (p. 294) lives in soil and debris around vegetation
but makes no pit: head protrudes from ground and larva rushes out to grab passing prey in its huge jaws. Mediterranean.
As Euroleon nostras. Both wings spotted, but hindwing has just a few small spots in front half. Several cross-veins between radius and media in basal part of hindwing (see below). Open woodland, but avoids driest places: sometimes flies with M. formicarius. The only ant-lion in B, found on sand-dunes of East Anglia.

The hind wing helps to identify the smaller ant-lions. Myrmeleon and Euroleon (left) have severa
cross-veins between radius and media in basal region: Creolon, Distoleon, and Macronemurus (right) have just one such cross-vein.

Creoleon lugdunensis. Yellowish thorax with dark brown central stripe. Female abdomen does not extend beyond wings. Two branches of cubital vein in forewing un parallel to hind margin. Hindwing with just one cross-vein between radius and media in basal region (see p. 102). Common in rough grassland and rocky places 5-8.
Larva in soil and debris, but makes no pit. SW, as far north as Loire Valley. C. plumbeus of SE is very similar.
Distoleon tetragrammicus. Conspicuously spotted, similar to Eurolean nostras but with only 1 cross-vein between radius and media in basal part of hindwing (see p. 102 $6-8$ in dry oak and pine woods: local but sometimes abundant. Larvae lies in dry leaf lit.
er and makes no pit. S \& C.

Acanthaclisis baetica. One of our largest ant-lions. Wings virtually unspotted and with two rows of cells along front edge of forewing. 6-9, mostly
Macronemurus appendiculatus. Thorax yellow with 3 brown stripes on top. Abdo men yellow and brown, extending beyond wings in male, who has very long claspers, Larva lives in soil but makes no pit. S.

ASCALAPHIDS Ascalaphidae. Fast-flying relatives of the ant-lions, generally shorter and stouter but with very long, clubbed antennae. Males have prominen claspers. Mostly diurnal, with fast undulating flight, commonly 2-3 metres above the ground. Capture flies and other small insects in flight. May bask on plant with wings open, as illustrated, in dull weather, but normally rest with wing They live on the ground, among debris and under stones, often camouflagin their bodies with debris. Ascalaphids prefer warm, dry places and the European species occur mainly in the south. None lives in B.

Libelloides longicornis. Black area at base of hindwing stops well short of anal angle. Yellow veins run through dark area of forewing. Genera venation pale yellow deep gold. $6-8$ in sunny meadows. $S W$ (including southern Switzerland) dark bar in the centre of the wing. L. coccajus has black area at base of hindwing xtending almost or quite to anal angle, and no yellow veins in dark areas of forewing Pale patches white or yellow, often deep yellow in Iberia. Dry, open woods and grassy
.
uer maculatus. Forewing clear: hindwing densely spotted and sometimes almost ark in distal part. Garrique and rough grassland in summer. Almost confined to

Deleproctophylla dusmeti. Forewing clear: hindwing with brown patch near tip. 6-8 in dry, grassy places. SW. (Insects found from Corsica eastwards have brown patch o
four wings and have recently been treated as a separate species - D. australis.)

Bubopsis agrioides. Wings very narrow: first 2 long veins very dark and forming a rominent streak near front edge of all wings. Active at dusk and most often seen at

Acanthaclisis
beetica

Macronemuru
appendiculatus

Mantis Fly Mantispa styriaca Mantispidae. Resembles mantis but wings flimsy and insect more timid, feeding mainly on small flies. Active day and night in warm dry places, especially light woodland with plenty o
ground cover. $5-8$. Larva enters egg cocoons of sp
ders, especially wolf spiders, and feeds on eggs. $S \& C$ ground cover. $5-8$. Larva enters egg cocoons of spi-
ders, especially wolf spiders, and feeds on eggs. S \& C
4 other similar species in S. ders, especially wolf spiders,
4 other similar species in S .
Mantis Fly $\times 2$
4emer simar species tir

Nemoptera bipennis Nemopteridae. Easily recognised by ribbon-like hindwings and lazy, up-and-down flight. Dry, stony and grassy hillsides and coastal pinewods. 4-8.
Larva has long neck and lives on ground. Iberia only. There are 2 similar species in SE,
N. sinuata being powder-blue with black markings. N. sinuata being powder-blue with black markings.

4 Conwentzia psociformis Coniopterygidae. One of many very similar small insect clothed with mealy white powder. Resembles a whitefly (p.96) but rests with wings
steeply roofwise. Common in many habitats $4-11$ and often comes to lights at night. Larva eats aphids on trees.
4 Osmylus fulvicephalus Osmylidae. Identified by large size and spotted wings. Streamside vegetation, especially in woods. 4-8. Larva hunts in wet moss and debris.
Most of Europe but absent from much of N.

GREEN LACEWINGS Chrysopidae. Long veins reduced, with one - the pseudomedia-almost straight and very prominent in centre of wing. Two zig-za
veins - the gradates - rise stair-like in outer part of wing Generally green, there are some brown species. Mainly nocturnal. Eggs on slender stalks (p. 294) Larvae (p. 294) mostly aphid-eating, some species camouflaging themselves with empty skins of victims.

- Chrysopa perla is bluish green, heavily marked with black. Deciduous woodland. 5-8. Δ C. pallens is large and bright green with 7 tiny black spots on head. Woods,
hedges, and gardens. $5-8$. Larvae of both species naked. - .

4. Chrysoperla carnea is pale green, becoming pinkish in autumn when it seeks hibernation sites in buildings. All kinds of well-vegetated habitats. Larva naked. There are examination of the veins and the genitalia.

Chrysoperla carnea $\times 2$
Chrysopa perla $\times 2$
\triangle Nothochrysa fulviceps is large and brown, with central yellow band on thorax. Pseudomedia runs into inner gradate vein. Oakwoods. 6-9. S \& C, but very rare in B,
where \boldsymbol{N}. capitata, with no pale thoracic stripe, is more common.
Italochrysa italica resembles Nothochrysa but, as in most other chrysopids, pseudomedia runs into outer gradate. Yellow-brown thorax with red-brown side
stripes. Dry, well-vegetated areas. 6-9. Larva feeds on grubs in nests of the ant Crematogaster scutellaris (p. 234). S.

4 Sisyra fuscata Sisyridae. The non-forking veins along front of wing distinguish this family from Hemerobiidae (p. 108). All-dark antennae separate S. fuscata from similar species. Streamside vegetation. 4-10. Larva feeds on sponges.
Dilar meridionalis Dilaridae. Recognised by pectinate antennae of male or long, slender ovipositor of female. Flies weakly at dusk. Lush vegetation, especially in woodland
clearings. $6-9$. Larvae live under bark. SW.

BROWN LACEWINGS Hemerobiidae. A large family of mainly small greyish of brown insects. Distinguished from Chrysopidae by numerous long veins and
from Sisyridae by the forked veins along front edge of wing. Larvae (p. 294) lesi bristly than chrysopids: mainly aphid-eating.

- Wesmaelius quadrifasciatus flies in dry, warm habitats, especially among conifers. 5-9. Δ Micromus variegatus prefers low-growing vegetation and is common in gardens and hedgerows. 4-9. Δ Drepanepteryx phalaenoides is immediately identified
by its pointed and hooked wing-tips, but easily passed over as a dead leaf. It flies in light woodland with well-vegetated clearings. $4-10$. N \& C.
$\boldsymbol{\Delta}$ Hermerobius humulinus is one of several very similar species. Forewing pattern
varies. Abundant in hedgerows and deciduous woods $3-11$.
- Alder Fly Sialis lutaria Sialidae. One of 6 very similar species in $N \& C$. Veins not forked at margins. Flies near water, but spends much time resting on vegetation. 4-8. Eggs
laid in batches on reeds and other waterside objects. Larva (p. 296) aquatic.
SNAKE FLIES Raphididae. Named for the long 'neck', on which the head can be raised way above the body. Mainly woodland insects and largely aphid-eating raised way above the body. Mainly woodland insects and largely aphid-eating,
Female with long ovipositor. Larvae (p. 294) eat various insects under bark and in dead wood. Several very similar species in Europe, differing in detailed wing venation and also in shape of head.
Phaeostigma notata is associated mainly with oaks. Usually 2 cross-veins in
pterostigma. 4-8. Larva in stumps of various trees, but mainly oak. N \& C pterostigma. 4-8. Larva in stumps of various trees, but mainly oak. N \& C. Subilla confinis is smaller (c. 20 mm wingspan), with only 1 cross-vein in
pterostigma. Associated with pines. $5-7$. S \& C. Δ Atlantoraphidia maculicollis, one of the commonest species, is confined to conifers. About the same size as S. confinis, but with narrower head. 1 cross-vein in pterostigma. 5-7. S \& C: mainly western.

Inocellia crassicornis resembles the above but has no ocelli and no veins crossing
pterostigma. Associated with conifers. $5-7 . \mathrm{N} \& \mathrm{C}$.

Phaeostigma wing

Inocellia wing

SCORPION FLIES Order Mecoptera

Named because male abdomen is often up-turned, but main diagnostic feature is downward extension of the head to form a stout beak. There are some 400 known species and about 30 - mostly Panorpa species - live in Europe. These fly weakly in shady places, eating mainly dead animal matter and fruit. They fly mainly 5-8, but there are two or more broods in S and may fly all year in Mediterranean area,
arvae (p. 294) are caterpillar-like. The species are often difficult to separate, especially the females.
4 Panorpa communis is a typical species with fairly heavy spotting on wings. $\triangle \boldsymbol{P}$. germanica is similar but spotting may be lighter, and absent altogether in N . Dis tinguished from communis by the parallel appendages on male abdomen (cali per-shaped in communis). $\triangle P$. cognata is slightly smaller and usually paler: 6 th
abdominal segment in male is square and appendages divergent. P. alpina of $S \& C$ abdominal segment in male is square and appendages divergent. P. alpin
has almost spotless wings but is best identified by the short tubcostal vein has almost spotless wings but is best identified by the short subcostal vein.
P. rufostigma of SE has a red pterostigma. \boldsymbol{P}. meridionalis is a heavily spotted spe-
cies from Iberia and southern France.

Bittacus italicus Bittacidae. clings to vegetation with front legs and grabs smat. All fects with its long back legs. Male has no spring and summer. S.
\triangle Snow Flea Boreus hyemalis is flightless, with much reduced wings and no up-turned tail. Lis.
seen hopping over snow.

BUTTERFLIES and MOTHS Order Lepidoptera

A very large order, with some 150,000 known species. About 5000 species in Europe and about half of these live in Britain. A few moths have
females, but the insects generally have two pairs of membranous wings with minute scales. The scales provide the wing colour and pattern, but th easily detached: touch the wings and you will find scales on your fingers. that have been flying around for several weeks often look dull and worn result of losing many of their scales. Lepidopterans show little variat general structure and are easily recognised as such, but they do exhi emarkable range of sizes. European species have wing
Adult mouth-parts are almost always in the form of a slender tube called ition other fluids. When not in use, the proboscis is coiled neatly under the head. moths lack a functional proboscis and take no food in the adult state. Some of more primitive moths, including the Micropterix species (p. 124) have reta biting jaws and feed on pollen
The simple division of the order into butterflies and moths is an artificial based on simple observations and having no real scientific basis. There are 25,000 known butterfly species and over 120,000 moths. No one feature separa all the butterflies from all the moths, and moth groups differ from each other ium is well established in the English language and unlikely to be abandoned.
Butterflies are day-flying insects, usually brightly coloured, generally resting their wings brought together vertically above the body, and with clu either flat or roofwise over the body at rest, and seldom have clubbed antennae But there are exceptions: in Europe, the burnet moths (p. 134) are colourfu diurnal and have clubbed antennae - while some butterflies are quite drab. N moth antennae are either hair-like or feathery, those of the male being mon pick up the female's scent more easily during courtship. ring courtship.
Many moths, including the burnets, also have a frenulum on the underside of the hindwing. This is a bristle springing from the 'shoulder' of the wing and runn
forward to be held in a small catch on the underside of the forewing. Its function to link the wings together in flight. Only one butterfly - an Australian skipper known to have a frenulum. Butterflies generally link their wings together sim by means of a large overlap, and the same is true of those moths without frenula
retaining hook on forewing

The Lepidoptera are arranged in numerous families, based largely wing-venation. This can sometimes be seen through the covering of scales, and one can usually make out a prominent cell (called the discal cell, or simply the cell) near the centre of the wing. But venation is of little use with living insects and
one must rely on general appearance to assign them to their families. With a little practice, this is not difficult. Colour alone may be enough with the butterflies: predominantly white or yellow species belong to the Pieridae (p. 114), blue ones to the Lycaenidae (p. 122), and brown ones with eye-spots to the Satyridae (p. 120). Moths are a little more difficult, but many families have characteristic

Noin Noctuidae (p. 156) are generally rather stout-bodied with drab lirey wings laid flat or held roof-like over the body at rest. The .hae (p. 148) are similar but have a slightly different forewing venation hametridae (p . 170) are rather flimsy and generally rest with their wings nombers of the Pyralidae ($p .128$) look like them tyanal 'ears' may also wish certain families. These membranes, when present, occu gur of the thorax or at the front of the abdomen. At least some moth be able to pick up bats' echolocation signals and to take avoiding
fusion of veins

$-\mathrm{Cu}_{2}$
Venation of hindwing of pyralid (left) and (right) geometrid moths

Iilatories Among the butterflies the sexes are usually brought together (iv by visual signals emanating during flight, although scent signals come Whiv during the later stages of courtship. Most moths rely entirely on scent, nill why it is much easier to breed molly laid on the appropriate food-plant 1 reveal that many are exquisitely sculptured. Some species pass in the egg stage, but most eggs hatch within a couple of weeks or hie larvae or caterpillars start to feed. Almost all lepidopteran larvae an (imian, feeding on or in almost every kind of terrestrial plant and attackin from the root to the flower Many are serious animal matter. Their natural habitats are the nests of 4 mammals, where they find plenty of fur or hair to eat.
Whal caterpillar has three pairs of true legs at the front and five pairs of yor fleshy prolegs at the back. The last pair are known as claspers. All the are furnished with numerous minute hooks, with which the caterpillar ifirm hold on its food-plant. Some species have fewer than five pairs of if. Geometrid larvae have only two pairs, including the claspers. They 6liy stretching out along a twig and taking a grip with the body is arched up (76), and these caterpillars are commonly known as loopers
iliree or four moults the caterpillar is ready to turn into a pupa or chrysalis. moth larvae spin silken cocoons in which to pupate - usually among the of the food-plants. Others burrow into the soil and make silk-lined he tail-end or held upright against a stem by a silken girdle. Many butterfly in ${ }^{2}$.隹 ather completely quiescent hibernating) as adults.

A typical moth pupa
Bitherlly pupae: suspended (left)
and (right) upright or succinct

