
Systems Design
OO DESIGN



Today’s Plan
Look at Object Oriented Design
How to build models for developers
Best principles in OO Design



Review of OO Programs
In OO, programs are composed of Objects
Objects have:
◦ Data
◦ Logic

Objects described by a Class
Program consists of set of Objects
◦ They work together to solve the problem



From Analysis Models to Design Models
Information about things
◦ Domain Model Class Diagrams
◦ Use case descriptions

Information about business processes
◦ Activity diagrams
◦ System sequence diagrams (SSDs)
◦ Flow Diagrams







Analysis Models Design Models Programming Models

Problem domain
class diagram

Design
class diagram

Object-Oriented
program classes
with methods

Use case
Descriptions

System Sequence
Diagrams

Activity 
Diagrams

Communications
Diagrams

Sequence
Diagrams

CRC Cards

Info about 
things

Info about
process flow





Creating a Design Class Diagram
Transform Analysis Models into:
◦ CRC cards
◦ UML interaction model

◦ Communication diagram
◦ Sequence diagram



Sequence Diagram



Communication Diagram



CRC Cards



How to do OO Design
OO Design is Use Case driven
◦ One use case at a time:

◦ Models are constructed and updated

OO is a rigorous process
OO Design is time consuming
◦ Need to decide whether or how to do it, carefully



Steps of OO Design

Use Case 
Diagram

CRC Cards

Communication 
Diagrams

Sequence 
Diagrams

Final Design 
Class 

Diagram

Package 
Diagrams

First-Cut 
Design Class

Diagram



Creating the Design Class Diagram
The following processes are done for each use case
Start with Analysis Models
◦ In particular, the Domain Model Class Diagram 
◦ Need to add:

◦ Types and visibility of attributes
◦ Methods, parameters, and return types
◦ Classes outside the user’s domain



Design Class Stereotypes
Definition: A design class stereotype is a way of categorizing a 
model element by its characteristics, indicated by guillemets (<< 
>>)
Standard Design Class Stereotypes:
◦ Entity class
◦ Boundary or view class
◦ Control classes
◦ Data Access Class
◦ Persistent class



Design Class Notation





Developing First-Cut Design Class 
Diagram
1. Elaborate attributes
2. Navigation visibility

◦ A design principle in which one object has a reference to 
another object and thus can interact with it







Adding Navigation Visibility
Identify:
◦ 1 to many relationships

◦ If it is a superior/subordinate relationship, add visibility from superior to subordinate
◦ Ex. From Sale to SaleItem

◦ For Mandatory associations
◦ Where one can’t live without the other

Add navigation from independent to dependent:
Ex. From Customer to Sale



Figure Out Where 
Navigation Visibility 
Must be Added





Building a First Cut Design Diagram
Next step:
◦ Add a controller class to act as a switch board between input 

screens and programming logic classes





Fundamental Principles of Good Design
Object Responsibility
Separation of Responsibilities/Concerns
Protection from Variations
Indirection
Coupling
Cohesion



Object Responsibility
Definition: Object Responsibility is a design principle in 
which objects are responsible for carrying out system 
processing



Separation of Concern
Definition: Separation of Concern is a design principle that 
recommends segregating classes into separate packages or 
groups based on the primary focus of processing 
responsibility



Protection from Variation
Definition: Protection from Variation is a design principle in 
which parts of a system that are unlikely to change, are 
separated form those that will



Indirection
Definition: Indirection is a design principle in which an 
intermediate class is placed between two classes to 
decouple them, while keeping them linked.



Coupling
Definition: Coupling is a qualitative measure of how closely 
the classes in a design class diagram are linked



Cohesion
Definition: Cohesion is an other qualitative measure of the 
focus or unity of purpose within a single class



Advanced OO Design
Last time:
◦ How to build Design Class Diagrams
◦ Used CRC Cards to:

◦ Add collaborators
◦ Add functionality
◦ Initial look at multi-layer classes

◦ controllers



Designing Multilayer Systems



Techniques
For simple projects:
◦ CRC Cards

For more complex projects:
◦ Communications Diagrams
◦ Sequence Diagrams



CRC Cards 
Create Class Responsibility Collaboration (CRC) Cards
◦ A brainstorming design technique
◦ For designing interactions in use cases
◦ Assign responsibilities and collaboration classes



The process
Brainstorming, so done in a group
Need:
◦ Domain Model Class Diagrams
◦ Use Case Diagrams
◦ List of Use Cases
◦ Activity Diagrams
◦ SSD
◦ Use Case Descriptions



CRC Cards: The process
1. Select a use case 

1. Start with the use case controller card

2. Identify 1st domain class that has responsibility for this 
use case

3. Identify other collaborating classes
1. Which have needed data?
2. Which need to be updated



CRC Cards: Example
Use Case: Create Customer Account (see hand out)
Create the CRC Cards
◦ Start with CustomerHandler controller class
◦ Identify primary class responsible for creating a new customer account
◦ Look for other messages

◦ Add collaborators, create classes, update cards
◦ Add user-interface classes
◦ Add db access classes

Revise the Design Class Diagram





Use Case Realization
Two techniques:
◦ Communication Diagrams
◦ Sequence Diagrams



Use Case Realization
Definition: Use case realization is the process of elaborating 
the detailed design with interaction diagrams for a 
particular use case



Use Case Controller
With CRC Cards
◦ Added controller class to our 

model

Part of the Model View 
Controller (MVC) Design 
Pattern
◦ Very popular
◦ Many IDEs add them 

automagically



Use Case Realization with 
Communication Diagrams
1. Overview of Communication Diagrams
2. How to do OO Design with Communication Diagrams



Communication Diagrams



[true/false condition] sequence-number:return-
value=message-name(parameter list)

T/F condition
◦ Message sent if true
◦ optional

Sequence Number
◦ Indicates order of messages
◦ Hierarchical dot-notation to show dependency and sequence

Return Value
◦ Similar to method return value
◦ Can be shown as separate message, or return value

Message Name
◦ Should describe service
◦ := indicates return value given

Parameter list



Communication Diagram for Create 
Customer Account Use Case



Doing OO Design using Communication 
Diagrams
Input Models
Extending Input Messages
Final Design Class Diagrams



Analysis Models Design Models Programming Models

Problem domain
class diagram

Design
class diagram

Object-Oriented
program classes
with methods

Use case
Descriptions

System Sequence
Diagrams

Activity 
Diagrams

Communications
Diagrams

Sequence
Diagrams

CRC Cards

Info about 
things

Info about
process flow



Steps of OO Design

Use Case 
Diagram

CRC Cards

Communication 
Diagrams

Sequence 
Diagrams

Final Design 
Class 

Diagram

Package 
Diagrams

First-Cut 
Design Class

Diagram



Extending Input Messages
For each input message:
1. Identify classes needed to execute message, and put them on 

diagram
2. Starting with input messages, identify each message needed:

◦ Check navigation visibility
◦ Decide which object takes care of service

3. Name each message
◦ Should reflect service requested
◦ Parameters
◦ Return values



Create New Customer Use Case
1: What classes are needed?
2: What messages are needed?
◦ Who should handle them?

3: Name messages 



createNewCustomer message extended 
to all objects



enterAddress Message
1: What classes are needed?
2: What messages are needed?
◦ Who should handle them?

3: Name messages 



enterAddress message extended to all 
objects



enterAccount Message
1: What classes are needed?
2: What messages are needed?
◦ Who should handle them?

3: Name messages 



enterAccount message extended to all 
objects



Final Communication Diagram for Create 
Customer Account use case





Use Case Realization with Sequence 
Diagrams





Design Process
Pick a use case
Start with SSD and First Cut Domain Model Class Diagram
◦ For each input message:

◦ What internal classes needed?
◦ Extend all messages





Practice: Fill Shopping Cart use case
Start with Activity Diagram and SSD
Two messages:
◦ Add item
◦ Add accessory



Steps 
1: what classes are needed?





Next Step
2: Extend Input messages
◦ Same as we did for communication diagram
◦ Start with addItemToCart



First Step in extending addItem message



Next Step: add item to cart
What steps need to be completed to add and item?
◦ Create a cart item

◦ Get the item’s price
◦ Get the item’s description
◦ Check if the item is available





AddAccessoryItem
This is identical to addItem, except
◦ Associated with an item
◦ Can happen more than once 

What messages are needed?
◦ All the same as for addItem





Guidelines and Assumptions
Guidelines:
◦ For each input message, determine:

◦ all internal messages
◦ the message’s objective
◦ What information is needed

◦ Which classes need it (destination)
◦ Which classes have it (source)



Guidelines and Assumptions
Guidelines:
◦ For each input message, identify:

◦ All classes that are needed or affected
◦ Look for pre-/post- conditions
◦ Classes that are created
◦ Classes that are updated
◦ Classes holding information



Guidelines and Assumptions
Guidelines:
◦ For each input message, flesh out:

◦ Iteration
◦ Conditions
◦ Return values
◦ Parameters



Guidelines and Assumptions
Assumptions
◦ Perfect Technology
◦ Perfect Memory
◦ Perfect Solution



Summary
We’ve seen:
◦ How to create design class diagrams
◦ Which Analysis Models to use
◦ What information is extracted from Analysis Models
◦ Principles of Object Oriented Design



Readings
Text Chapter 14 Deploying the New System
https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Integration_testing
https://www.teamgantt.com/blog/post-mortem-meeting-
template-and-tips
https://blog.lucidmeetings.com/blog/how-to-lead-a-
successful-project-retrospective-meeting

https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Integration_testing
https://www.teamgantt.com/blog/post-mortem-meeting-template-and-tips

