The structure of the escaping set of a transcendental entire function

Phil Rippon (joint work with Gwyneth Stallard)

The Open University

Workshop on complex dynamics – RIMS Kyoto December 2017

Basic definitions

- $f : \mathbb{C} \to \mathbb{C}$ is analytic
- fⁿ is the *n*th iterate of f

Definition

The Fatou set (or stable set) is

 $F(f) = \{z : (f^n) \text{ is equicontinuous in some neighbourhood of } z\}.$

The Fatou set is *open* and $z \in F(f) \iff f(z) \in F(f)$.

Definition

The Julia set (or chaotic set) is

$$J(f) = \mathbb{C} \setminus F(f).$$

・ロット (雪) ・ヨット ヨット ヨ

The escaping set

Definition

The escaping set is

$$I(f) = \{z : f^n(z) \to \infty \text{ as } n \to \infty\}.$$

Definition

The escaping set is

$$I(f) = \{z : f^n(z) \to \infty \text{ as } n \to \infty\}.$$

For polynomials:

- *I*(*f*) is a neighbourhood of ∞;
- points in *l*(*f*) escape at same rate;
- $I(f) \subset F(f);$

•
$$J(f) = \partial I(f)$$
.

Definition

The escaping set is

$$I(f) = \{z : f^n(z) \to \infty \text{ as } n \to \infty\}.$$

For polynomials:

- *I*(*f*) is a neighbourhood of ∞;
- points in *l*(*f*) escape at same rate;
- $I(f) \subset F(f);$

•
$$J(f) = \partial I(f)$$
.

For transcendental functions:

- *I*(*f*) is *not* a neighbourhood of ∞;
- points in *I*(*f*) escape at different rates;
- *I*(*f*) must meet *J*(*f*) and may meet *F*(*f*).

・ コ ト ・ 一日 ト ・ 日 ト ・ 日 ト

Theorem (Eremenko, 1989)

If f is transcendental entire then

- $J(f) \cap I(f) \neq \emptyset;$
- $J(f) = \partial I(f);$
- all components of $\overline{I(f)}$ are unbounded.

・ コット (雪) (小田) (コット 日)

Theorem (Eremenko, 1989)

If f is transcendental entire then

- $J(f) \cap I(f) \neq \emptyset;$
- $J(f) = \partial I(f);$
- all components of $\overline{I(f)}$ are unbounded.

イロト 不良 とくほ とくほう 二日

Eremenko's conjectures

1. All components of I(f) are unbounded.

Theorem (Eremenko, 1989)

If f is transcendental entire then

- $J(f) \cap I(f) \neq \emptyset;$
- $J(f) = \partial I(f);$
- all components of $\overline{I(f)}$ are unbounded.

イロト 不良 とくほ とくほう 二日

Eremenko's conjectures

- 1. All components of I(f) are unbounded.
- 2. I(f) consists of curves to ∞ .

Theorem (Eremenko, 1989)

If f is transcendental entire then

- $J(f) \cap I(f) \neq \emptyset;$
- $J(f) = \partial I(f);$
- all components of $\overline{I(f)}$ are unbounded.

Eremenko's conjectures

- 1. All components of I(f) are unbounded.
- 2. I(f) consists of curves to ∞ .

Theorem (Rottenfusser, Rückert, Rempe and Schleicher, 2011)

・ コット (雪) (小田) (コット 日)

Conjecture 2 holds for many functions in class B

Theorem (Eremenko, 1989)

If f is transcendental entire then

- $J(f) \cap I(f) \neq \emptyset;$
- $J(f) = \partial I(f);$
- all components of $\overline{I(f)}$ are unbounded.

Eremenko's conjectures

- 1. All components of I(f) are unbounded.
- 2. I(f) consists of curves to ∞ .

Theorem (Rottenfusser, Rückert, Rempe and Schleicher, 2011)

・ コット (雪) (小田) (コット 日)

Conjecture 2 holds for many functions in class \mathcal{B} but fails for others in class \mathcal{B} .

General results on Eremenko's conjecture

I(*f*) has at least one unbounded component;

I(f) has at least one unbounded component; moreover, I(f) is connected or it has infinitely many unbounded components.

I(f) has at least one unbounded component; moreover, I(f) is connected or it has infinitely many unbounded components.

Theorem (R+S, 2011)

 $I(f) \cup \{\infty\}$ is connected

I(f) has at least one unbounded component; moreover, I(f) is connected or it has infinitely many unbounded components.

Theorem (R+S, 2011)

 $I(f) \cup \{\infty\}$ is connected and every bounded component of I(f) meets J(f).

I(f) has at least one unbounded component; moreover, I(f) is connected or it has infinitely many unbounded components.

Theorem (R+S, 2011)

 $I(f) \cup \{\infty\}$ is connected and every bounded component of I(f) meets J(f).

Theorem (R+S, 2017)

I(f) is connected or, for large R > 0, $I(f) \cap \{z : |z| \ge R\}$ has uncountably many unbounded components.

・ コット (雪) (小田) (コット 日)

$$M(r) = \max_{|z|=r} |f(z)|, \text{ for } r > 0.$$

$$M(r) = \max_{|z|=r} |f(z)|, \text{ for } r > 0.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

If *R* is sufficiently large, then $M^n(R) \to \infty$ as $n \to \infty$. We consider the following 'core' set of fast escaping points.

$$M(r) = \max_{|z|=r} |f(z)|, \text{ for } r > 0.$$

If *R* is sufficiently large, then $M^n(R) \to \infty$ as $n \to \infty$. We consider the following 'core' set of fast escaping points.

Definition

$$A_R(f) = \{z \in \mathbb{C} : |f^n(z)| \ge M^n(R) \text{ for } n \in \mathbb{N}\}$$

$$M(r) = \max_{|z|=r} |f(z)|, \text{ for } r > 0.$$

If *R* is sufficiently large, then $M^n(R) \to \infty$ as $n \to \infty$. We consider the following 'core' set of fast escaping points.

Definition

$$A_R(f) = \{z \in \mathbb{C} : |f^n(z)| \ge M^n(R) \text{ for } n \in \mathbb{N}\}$$

The fast escaping set A(f) is the union of this set and all its pre-images.

- ロト・日本・日本・日本・日本・日本

$$M(r) = \max_{|z|=r} |f(z)|, \text{ for } r > 0.$$

If *R* is sufficiently large, then $M^n(R) \to \infty$ as $n \to \infty$. We consider the following 'core' set of fast escaping points.

Definition

$$A_R(f) = \{z \in \mathbb{C} : |f^n(z)| \ge M^n(R) \text{ for } n \in \mathbb{N}\}$$

The fast escaping set A(f) is the union of this set and all its pre-images.

Theorem (R+S, 2005)

For large R > 0, all the components of $A_R(f)$ are unbounded.

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

 $f(z) = \lambda e^{z}, 0 < \lambda < 1/e$

$$f(z) = \lambda e^{z}, \, 0 < \lambda < 1/e$$

- *J*(*f*) is a Cantor bouquet of curves
- *I*(*f*) consists of these curves minus some of the endpoints

・ロト ・四ト ・ヨト ・ヨト

$$f(z) = \lambda e^{z}, 0 < \lambda < 1/e$$

- *J*(*f*) is a Cantor bouquet of curves
- *I*(*f*) consists of these curves minus some of the endpoints
- *A*(*f*) consists of these curves minus some of the endpoints

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ・

 $f(z) = \lambda e^{z}, 0 < \lambda < 1/e$

- *J*(*f*) is a Cantor bouquet of curves
- *I*(*f*) consists of these curves minus some of the endpoints
- *A*(*f*) consists of these curves minus some of the endpoints
- *A_R(f)* is an uncountable union of curves, for large *R* > 0

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

$$f(z) = z + 1 + e^{-z}$$

- $f(z) = z + 1 + e^{-z}$
 - *F*(*f*) is a Baker domain a periodic Fatou component in *I*(*f*)

<ロ> (四) (四) (三) (三) (三) (三)

$f(z) = z + 1 + e^{-z}$

- *F*(*f*) is a Baker domain a periodic Fatou component in *I*(*f*)
- J(f) is a Cantor bouquet of curves - all in A(f) apart from some endpoints

$f(z) = z + 1 + e^{-z}$

- *F*(*f*) is a Baker domain a periodic Fatou component in *I*(*f*)
- J(f) is a Cantor bouquet of curves - all in A(f) apart from some endpoints

・ コット (雪) (小田) (コット 日)

• I(f) is connected

$f(z) = z + 1 + e^{-z}$

- *F*(*f*) is a Baker domain a periodic Fatou component in *I*(*f*)
- J(f) is a Cantor bouquet of curves - all in A(f) apart from some endpoints
- I(f) is connected
- *A_R(f)* is an uncountable union of curves, for large *R* > 0

・ コット (雪) (小田) (コット 日)

$$f(z) = \cosh^2 z$$

$$f(z) = \cosh^2 z$$

• *I*(*f*) is connected

$$f(z) = \cosh^2 z$$

- I(f) is connected
- A(f) is connected

ヘロト 人間 とくほ とくほ とう

ж

$$f(z) = \cosh^2 z$$

- *I*(*f*) is connected
- A(f) is connected
- *A_R(f)* is an uncountable union of curves, for large *R* > 0

・ロット (雪) (日) (日)

ж

$$f(z) = \frac{1}{2}(\cos z^{1/4} + \cosh z^{1/4})$$

Examples Spider's web

$$f(z) = \frac{1}{2}(\cos z^{1/4} + \cosh z^{1/4})$$

Definition

- E is a spider's web if
 - E is connected;
 - there is a sequence of bounded simply connected domains *G_n* with

$$\partial G_n \subset E, \ G_{n+1} \supset G_n,$$

$$\bigcup_{n\in\mathbb{N}}G_n=\mathbb{C}.$$

・ コット (雪) (小田) (コット 日)

Each of I(f), A(f) and $A_R(f)$ is connected and is a spider's web.

"Cantor bouquets" or "spiders' webs"

Theorem

For each transcendental entire function there exists R > 0 such that either

"Cantor bouquets" or "spiders' webs"

Theorem

For each transcendental entire function there exists R > 0 such that either

A_R(f) has uncountably many unbounded components

"Cantor bouquets" or "spiders' webs"

Theorem

For each transcendental entire function there exists R > 0 such that either

or

A_R(f) has uncountably many unbounded components

 $A_B(f)$ is a spider's web.

Theorem

There exists R > 0 for which either $A_R(f)$ has uncountably many unbounded components or $A_R(f)$ is a spider's web.

Theorem

There exists R > 0 for which either $A_R(f)$ has uncountably many unbounded components or $A_R(f)$ is a spider's web.

Step 1 Use Eremenko's method (based on Wiman-Valiron theory) to construct an 'Eremenko point' in $A_R(f)$.

Theorem

There exists R > 0 for which either $A_R(f)$ has uncountably many unbounded components or $A_R(f)$ is a spider's web.

Step 1 Use Eremenko's method (based on Wiman-Valiron theory) to construct an 'Eremenko point' in $A_R(f)$. **Step 2** Refine Eremenko's method to construct uncountably many points in $A_R(f)$.

Theorem

There exists R > 0 for which either $A_R(f)$ has uncountably many unbounded components or $A_R(f)$ is a spider's web.

Step 1 Use Eremenko's method (based on Wiman-Valiron theory) to construct an 'Eremenko point' in $A_R(f)$. **Step 2** Refine Eremenko's method to construct uncountably many points in $A_R(f)$. **Step 3** Show that, if two of these points are in the same component of $A_R(f)$, then $A_R(f)$ is a spider's web.

< ロ ト < 回 ト < 三 ト < 三 ト 回 の < 0</p>

Thanks for your attention!

