The structure of the escaping set of a transcendental entire function

Phil Rippon (joint work with Gwyneth Stallard)

The Open University

Workshop on complex dynamics - RIMS Kyoto December 2017

Basic definitions

- $f: \mathbb{C} \rightarrow \mathbb{C}$ is analytic
- f^{n} is the nth iterate of f

Definition

The Fatou set (or stable set) is
$F(f)=\left\{z:\left(f^{n}\right)\right.$ is equicontinuous in some neighbourhood of $\left.z\right\}$.

The Fatou set is open and $z \in F(f) \Longleftrightarrow f(z) \in F(f)$.

Definition

The Julia set (or chaotic set) is

$$
J(f)=\mathbb{C} \backslash F(f)
$$

The escaping set

Definition

The escaping set is

$$
I(f)=\left\{z: f^{n}(z) \rightarrow \infty \text { as } n \rightarrow \infty\right\}
$$

The escaping set

Definition

The escaping set is

$$
I(f)=\left\{z: f^{n}(z) \rightarrow \infty \text { as } n \rightarrow \infty\right\}
$$

For polynomials:

- $I(f)$ is a neighbourhood of ∞;
- points in $I(f)$ escape at same rate;
- $l(f) \subset F(f)$;
- $J(f)=\partial I(f)$.

The escaping set

Definition

The escaping set is

$$
I(f)=\left\{z: f^{n}(z) \rightarrow \infty \text { as } n \rightarrow \infty\right\}
$$

For polynomials:

- I(f) is a neighbourhood of ∞;
- points in $I(f)$ escape at same rate;
- $I(f) \subset F(f)$;
- $J(f)=\partial I(f)$.

For transcendental functions:

- $I(f)$ is not a neighbourhood of ∞;
- points in $I(f)$ escape at different rates;
- $I(f)$ must meet $J(f)$ and may meet $F(f)$.

Eremenko's conjectures

Theorem (Eremenko, 1989)
If f is transcendental entire then

- $J(f) \cap I(f) \neq \emptyset$;
- $J(f)=\partial l(f)$;
- all components of $\overline{l(f)}$ are unbounded.

Eremenko's conjectures

Theorem (Eremenko, 1989)

If f is transcendental entire then

- $J(f) \cap I(f) \neq \emptyset$;
- $J(f)=\partial l(f)$;
- all components of $\overline{l(f)}$ are unbounded.

Eremenko's conjectures

1. All components of $I(f)$ are unbounded.

Eremenko's conjectures

Theorem (Eremenko, 1989)

If f is transcendental entire then

- $J(f) \cap I(f) \neq \emptyset$;
- $J(f)=\partial l(f)$;
- all components of $\overline{l(f)}$ are unbounded.

Eremenko's conjectures

1. All components of $I(f)$ are unbounded.
2. $I(f)$ consists of curves to ∞.

Eremenko's conjectures

Theorem (Eremenko, 1989)

If f is transcendental entire then

- $J(f) \cap I(f) \neq \emptyset$;
- $J(f)=\partial l(f)$;
- all components of $\overline{l(f)}$ are unbounded.

Eremenko's conjectures

1. All components of $I(f)$ are unbounded.
2. $I(f)$ consists of curves to ∞.

Theorem (Rottenfusser, Rückert, Rempe and Schleicher, 2011)
Conjecture 2 holds for many functions in class \mathcal{B}

Eremenko's conjectures

Theorem (Eremenko, 1989)

If f is transcendental entire then

- $J(f) \cap I(f) \neq \emptyset$;
- $J(f)=\partial l(f)$;
- all components of $\overline{l(f)}$ are unbounded.

Eremenko's conjectures

1. All components of $I(f)$ are unbounded.
2. $I(f)$ consists of curves to ∞.

Theorem (Rottenfusser, Rückert, Rempe and Schleicher, 2011)
Conjecture 2 holds for many functions in class \mathcal{B} but fails for others in class \mathcal{B}.

General results on Eremenko's conjecture

General results on Eremenko's conjecture

Theorem (R+S, 2005, 2014)

$I(f)$ has at least one unbounded component;

General results on Eremenko's conjecture

Theorem (R+S, 2005, 2014)

$I(f)$ has at least one unbounded component; moreover, $I(f)$ is connected or it has infinitely many unbounded components.

General results on Eremenko's conjecture

Theorem (R+S, 2005, 2014)

$I(f)$ has at least one unbounded component; moreover, $I(f)$ is connected or it has infinitely many unbounded components.

Theorem (R+S, 2011)
$I(f) \cup\{\infty\}$ is connected

General results on Eremenko's conjecture

Theorem (R+S, 2005, 2014)

$I(f)$ has at least one unbounded component; moreover, $I(f)$ is connected or it has infinitely many unbounded components.

Theorem (R+S, 2011)

$I(f) \cup\{\infty\}$ is connected and every bounded component of $I(f)$ meets $J(f)$.

General results on Eremenko's conjecture

Theorem (R+S, 2005, 2014)

$I(f)$ has at least one unbounded component; moreover, $I(f)$ is connected or it has infinitely many unbounded components.

Theorem ($\mathrm{R}+\mathrm{S}$, 2011)
$I(f) \cup\{\infty\}$ is connected and every bounded component of $I(f)$ meets $J(f)$.

Theorem (R+S, 2017)

$I(f)$ is connected or, for large $R>0, I(f) \cap\{z:|z| \geq R\}$ has uncountably many unbounded components.

Bergweiler and Hinkkanen, 1999

All these results were proved by studying fast escaping points.

The fast escaping set

Bergweiler and Hinkkanen, 1999

All these results were proved by studying fast escaping points. Let

$$
M(r)=\max _{|z|=r}|f(z)|, \text { for } r>0
$$

The fast escaping set

Bergweiler and Hinkkanen, 1999

All these results were proved by studying fast escaping points. Let

$$
M(r)=\max _{|z|=r}|f(z)|, \text { for } r>0
$$

If R is sufficiently large, then $M^{n}(R) \rightarrow \infty$ as $n \rightarrow \infty$.
We consider the following 'core' set of fast escaping points.

The fast escaping set

Bergweiler and Hinkkanen, 1999

All these results were proved by studying fast escaping points. Let

$$
M(r)=\max _{|z|=r}|f(z)|, \text { for } r>0
$$

If R is sufficiently large, then $M^{n}(R) \rightarrow \infty$ as $n \rightarrow \infty$.
We consider the following 'core' set of fast escaping points.
Definition

$$
A_{R}(f)=\left\{z \in \mathbb{C}:\left|f^{n}(z)\right| \geq M^{n}(R) \text { for } n \in \mathbb{N}\right\}
$$

The fast escaping set

All these results were proved by studying fast escaping points. Let

$$
M(r)=\max _{|z|=r}|f(z)|, \text { for } r>0
$$

If R is sufficiently large, then $M^{n}(R) \rightarrow \infty$ as $n \rightarrow \infty$.
We consider the following 'core' set of fast escaping points.
Definition
$A_{R}(f)=\left\{z \in \mathbb{C}:\left|f^{n}(z)\right| \geq M^{n}(R)\right.$ for $\left.n \in \mathbb{N}\right\}$
The fast escaping set $A(f)$ is the union of this set and all its pre-images.

The fast escaping set

All these results were proved by studying fast escaping points. Let

$$
M(r)=\max _{|z|=r}|f(z)|, \text { for } r>0
$$

If R is sufficiently large, then $M^{n}(R) \rightarrow \infty$ as $n \rightarrow \infty$.
We consider the following 'core' set of fast escaping points.

Definition

$A_{R}(f)=\left\{z \in \mathbb{C}:\left|f^{n}(z)\right| \geq M^{n}(R)\right.$ for $\left.n \in \mathbb{N}\right\}$
The fast escaping set $A(f)$ is the union of this set and all its pre-images.

Theorem (R+S, 2005)

For large $R>0$, all the components of $A_{R}(f)$ are unbounded.

Examples

Exponential functions - disconnected escaping set

$$
f(z)=\lambda e^{z}, 0<\lambda<1 / e
$$

Examples

Exponential functions - disconnected escaping set

$$
f(z)=\lambda e^{z}, 0<\lambda<1 / e
$$

- $J(f)$ is a Cantor bouquet of curves
- $l(f)$ consists of these curves minus some of the endpoints

Examples

Exponential functions - disconnected escaping set

$$
f(z)=\lambda e^{z}, 0<\lambda<1 / e
$$

- $J(f)$ is a Cantor bouquet of curves
- $l(f)$ consists of these curves minus some of the endpoints
- $A(f)$ consists of these curves minus some of the endpoints

Examples

Exponential functions - disconnected escaping set

$$
f(z)=\lambda e^{z}, 0<\lambda<1 / e
$$

- $J(f)$ is a Cantor bouquet of curves
- $l(f)$ consists of these curves minus some of the endpoints
- $A(f)$ consists of these curves minus some of the endpoints
- $A_{R}(f)$ is an uncountable union of curves, for large $R>0$

Examples

Fatou's function - connected escaping set

$$
f(z)=z+1+e^{-z}
$$

Examples

Fatou's function - connected escaping set

$$
f(z)=z+1+e^{-z}
$$

- $F(f)$ is a Baker domain - a periodic Fatou component in $I(f)$

Examples

Fatou's function - connected escaping set

$$
f(z)=z+1+e^{-z}
$$

- $F(f)$ is a Baker domain - a periodic Fatou component in $I(f)$
- $J(f)$ is a Cantor bouquet of curves - all in $A(f)$ apart from some endpoints

Examples

Fatou's function - connected escaping set

$$
f(z)=z+1+e^{-z}
$$

- $F(f)$ is a Baker domain - a periodic Fatou component in $I(f)$
- $J(f)$ is a Cantor bouquet of curves - all in $A(f)$ apart from some endpoints
- $I(f)$ is connected

Examples

Fatou's function - connected escaping set

$$
f(z)=z+1+e^{-z}
$$

- $F(f)$ is a Baker domain - a periodic Fatou component in $I(f)$
- $J(f)$ is a Cantor bouquet of curves - all in $A(f)$ apart from some endpoints
- $I(f)$ is connected
- $A_{R}(f)$ is an uncountable union of curves, for large $R>0$

Examples

Connected fast escaping set

$$
f(z)=\cosh ^{2} z
$$

Examples

Connected fast escaping set

$$
f(z)=\cosh ^{2} z
$$

- I(f) is connected

Examples

Connected fast escaping set

$$
f(z)=\cosh ^{2} z
$$

- $I(f)$ is connected
- $A(f)$ is connected

Examples

Connected fast escaping set

$f(z)=\cosh ^{2} z$

- $I(f)$ is connected
- $A(f)$ is connected
- $A_{R}(f)$ is an uncountable union of curves, for large $R>0$

Examples

Spider's web

$$
f(z)=\frac{1}{2}\left(\cos z^{1 / 4}+\cosh z^{1 / 4}\right)
$$

Examples

Spider's web

$$
f(z)=\frac{1}{2}\left(\cos z^{1 / 4}+\cosh z^{1 / 4}\right)
$$

Definition

E is a spider's web if

- E is connected;
- there is a sequence of bounded simply connected domains G_{n} with

$$
\begin{gathered}
\partial G_{n} \subset E, G_{n+1} \supset G_{n} \\
\bigcup_{n \in \mathbb{N}} G_{n}=\mathbb{C}
\end{gathered}
$$

Each of $I(f), A(f)$ and $A_{R}(f)$ is connected and is a spider's web.

"Cantor bouquets" or "spiders' webs"

Theorem

For each transcendental entire function there exists $R>0$ such that either

"Cantor bouquets" or "spiders’ webs"

Theorem

For each transcendental entire function there exists $R>0$ such that either

$A_{R}(f)$ has uncountably many unbounded components

"Cantor bouquets" or "spiders’ webs"

Theorem

For each transcendental entire function there exists $R>0$ such that either

$A_{R}(f)$ has uncountably many unbounded components

$A_{R}(f)$ is a spider's web.

Sketch proof

Theorem

There exists $R>0$ for which either $A_{R}(f)$ has uncountably many unbounded components or $A_{R}(f)$ is a spider's web.

Sketch proof

Theorem

There exists $R>0$ for which either $A_{R}(f)$ has uncountably many unbounded components or $A_{R}(f)$ is a spider's web.

Step 1 Use Eremenko's method (based on Wiman-Valiron theory) to construct an 'Eremenko point' in $A_{R}(f)$.

Sketch proof

Theorem

There exists $R>0$ for which either $A_{R}(f)$ has uncountably many unbounded components or $A_{R}(f)$ is a spider's web.

Step 1 Use Eremenko's method (based on Wiman-Valiron theory) to construct an 'Eremenko point' in $A_{R}(f)$. Step 2 Refine Eremenko's method to construct uncountably many points in $A_{R}(f)$.

Sketch proof

Theorem

There exists $R>0$ for which either $A_{R}(f)$ has uncountably many unbounded components or $A_{R}(f)$ is a spider's web.

Step 1 Use Eremenko's method (based on Wiman-Valiron theory) to construct an 'Eremenko point' in $A_{R}(f)$. Step 2 Refine Eremenko's method to construct uncountably many points in $A_{R}(f)$.
Step 3 Show that, if two of these points are in the same component of $A_{R}(f)$, then $A_{R}(f)$ is a spider's web.

Thanks for your attention!

