12. DIATOM STRATIGRAPHY OF THE SOUTHERN OCEAN

D. W. McCollum, Florida State University, Tallahassee, Florida

INTRODUCTION

The Southern Ocean is today an area known for its abundant diatom flora. While the living planktonic diatoms of this region have been studied for a long period of time, studies of the paleontology and stratigraphy of diatoms have only recently begun (Abbott, 1972; Donahue, 1970a; Jousé et al., 1962; McCollum, 1972, 1973). Leg 28 of the Deep Sea Drilling Project provided a unique opportunity for the study of the diatom stratigraphy of this area of the world ocean.

Sites 264 through 269 recovered sediments of the pelagic areas of the Southern Ocean, while Sites 270 through 274 sampled the shallow Ross Sea environment. The diatom content and abundance vary with location and age and reflect differing sedimentological and environmental regimes through time. Site information is listed in Table 1.

Piston core material collected by the USNS *Eltanin* is used in conjunction with DSDP samples in order that the Quaternary/Pliocene aged material can be compared on the basis of paleomagnetic information. The combined data are used in the establishment of a high-latitude diatom stratigraphy.

METHODS AND MATERIALS

Shipboard Samples

Ten-cc samples were taken routinely from all sediments obtained by *Glomar Challenger*. Shipboard samples were treated in various ways depending on the sediment type and character as well as the abundance of diatoms.

In sediments composed primarily of calcium carbonate a portion was treated with 10% HCL and the undissolved residue centrifuged and decanted several times to concentrate the diatoms. This method was used on samples from Site 264 and the lower portions of Sites 265, 266, 267, and 268. In instances where diatoms were abundant, the sample was untreated, and a slide was made of the raw material (Sites 269, 274). In those samples in which diatom abundance was extremely low and the sediment was semilithified (270, 271, 272, 273), the sediment was treated with H_2O_2 (50%). The dissociated sediment was then separated through 25μ , 38μ , and 68μ sieves. A slide was made of each fraction, including the unsieved portion. All shipboard and shorelaboratory samples were mounted in Hyrax.

Shore-Laboratory Techniques

Approximately 1-cc of material was processed from each sample. Samples were placed in clean 200-ml beakers with 15 ml of H₂O₂ (30%), covered, and heated until the sediment dissociated and activity of the hydrogen peroxide was negligible. Fifteen ml of reagent grade HCL was added with continued heating until the activity of the acid was reduced. Treatment times for samples varied with the sediment type and degree of lithification. The samples were then diluted to 50 ml with distilled water and allowed to cool. Samples were then centrifuged at 2000 rpm for 3 min and decanted. Samples were then diluted to 50 ml with 0.5% sodium pyrophosphate and centrifuged again. This step was repeated five times. Following this, the samples were diluted to 50 ml with distilled water and centrifuged.

TABLE 1 Sequences Cored on Leg 28

Hole	Latitude	Longitude	Water Depth (m)	Penetration (m)	No. of Cores
264	34°58.13′S	112°02.68′E	2873	215.5	15
264A	34°58.13'S	112°02.68′E	2873	158.5	4
265	53°32.45′S	109° 56.74′E	3582	462.0	18
266	56° 24.13′ S	110°06.70'E	4173	384.0	24
267	59°15.74'S	104° 29.30′E	4564	219.5	7
267A	59°15.74'S	104° 29.30'E	4564	70.5	3
267B	59° 14.55'S	104°29.94′E	4539	323.0	10
268	63°56 99'S	105°09.34′E	3544	474.5	20
269	61°40.57'S	140°04.21'E	4285	397.5	11
269A	61°40.57'S	140°04.21′E	4285	958.0	13
270	77°26.48′S	178°30.19'W	634	422.5	49
271	76°43.27'S	175°02.86'W	554	265.0	24
272	77°07.62′S	176°45.61'W	629	443.0	48
273	74°32.29′S	174°37.57′E	495	76.0	9
273A	74°32.29'S	174° 37.57′E	495	346.5	29
274	68°59.81'S	173°25.64′E	3326	421.0	45

This step was repeated twice. After the last centrifugation the samples were placed in clean labeled bottles for storage.

Microscope slides were made by withdrawing a portion with a disposable pipette from the center of the bottle immediately after it had been shaken. Two drops of the suspension were placed on a 22 mm × 22 mm cover slip and dried on a slide warmer. Two drops of Hyrax were added and heated until the volatile solvent evaporated. The cover slip and slide were then placed together and positioned with a clean toothpick and allowed to cool.

The recorded abundance of individual diatoms was ascertained by noting the relative abundance of the particular species in each of 100 fields of view. An individual diatom is defined as consisting of at least one half of a frustule, except for the genus Rhizosolenia. Each slide was first scanned at 400× in order to note the general abundance and condition. Abundance estimates were made at 1000×. Those diatoms not encountered at 1000x, that were noted at 400x, are recorded as occurring in trace amounts (T). Diatoms which occur in abundances of 45% or greater are listed as (A) abundant, 25%-44% (C) common, 10%-24% (F) few, 10% or less (R) rare. In some instances the total abundance was so low that only sieve samples could be used to identify the diatoms contained. In this case all occurrences are listed as rare.

DIATOM RANGE ZONES

The following diatom zones are defined as local range zones in accordance with the Code of Stratigraphic Nomenclature (1961). The general principles given by Riedel and Sanfillippo (1970) are used for zonal designations. The zones are discussed in sequence from oldest to youngest (Figure 1).

Pyxilla prolongata Partial-Range Zone

The local range (Site 274) of *Pyxilla prolongata* defines the boundaries of this zone. This zone is not subdivided.

Other diatoms occurring within this zone: Trinarcria excavata, T. pileolus, Rhizosolenia barboi, Coscinodiscus marginatus, C. radiatus, Stephanopyxis appendiculata, S. grunowii, S. turris, Xanthiopyxis panderaformis, X. globosa, X. acrolophra, Asteromlampra vulgaris, A. affinis, Pterotheca carinifera, Pyrogodiscus sp., Pyxilla prolongata, P. reticulata, P. johnsoniana, Pseudopyxilla americana, Sticodiscus hardmanianus, Liradiscus ovalis, Triceratium inelegans? Rhizosolenia hebetata, Triceratium coscinoides, Hemiaulus polymorphus, Hemiaulus sp.

Coscinodiscus sp. Zone

This zone is undefined; it represents that portion of sediment below the *Denticula nicobarica* Zone to the Miocene/Oligocene boundary and is characterized by *Coscinodiscus* sp. l.

Other diatoms occurring within this zone: Coscinodiscus vetutissimus, C. nodulifer, C. marginatus, Trinacria excavata, Actinocycus ellipticus, Synedra jouseana, Rhizosolenia barboi, Coscinodiscus sp. 1.

Denticula nicobarica Partial-Range Zone

The base of this zone is defined by the earliest occurrence of *D. nicobarica*. The top of the zone is defined

Figure 1. Diatom zones used in this report, and range of zonal markers.

by the earliest occurrence of *Denticula antarctica* and is coincident with the base of the *D. antarctica* Zone.

Other diatoms occurring within this zone: Coscinodiscus vetutissimus, C. nodulifer, C. marginatus, Trinacria excavata, Synedra jouseana, Denticula nicobarica, Rhaponeis sp., Rhizosolenia barboi.

Paleomagnetic correlation: No information available. Correlation to other zonations: This zone correlates with the radiolarian Spongomelissa brachythorax Zone and the Eucyrtidium punctatum Zone (Chen, this volume). This zone also correlates in part with the Corbisema triacantha Zone (silicoflagellates) (Ciesielski, this volume).

Denticula antarctica Partial-Range Zone

The base of this zone is defined by the earliest occurrence of *D. antarctica*. The top of this zone is defined by the earliest occurrence of *Coscinodiscus lewisianus* and is coincident with the base of the *Denticula antarctica/Coscinodiscus lewisianus* Zone.

Other diatoms occurring within this zone: Rhaphidodiscus marylandicus, Coscinodiscus nodulifer, C. marginatus, C. apiculatus, Denticula nicorbarica, D. antarctica, Trinacria excavata, T. pileolus, Synedra jouseana, Rhizosolenia barboi, Liradiscus ovalis, L. sp., Actinopthycus undulatus.

Paleomagnetic correlation: No information available. Correlation to other zonations: This zone includes the lower portion of the Calocyclas polyporos Zone (Radiolaria) (Chen, this volume) and the Distephenas longispinus Zone (silicoflagellates) (Ciesielski, this volume). The top of this zone correlates with the top of Zone XXV Schrader (1973) on the basis of the earliest occurrence of Coscinodiscus lewisianus. Schrader does not define the base of Zone XXV. The assemblage of this zone contains some diatoms that are common to Koizumi's (1973) Denticula lanta Zone. These are Rhaphidodiscus marylandicus and Synedra jouseana.

Denticula antarctica/Coscinodiscus lewisianus Zone

The base of this zone is defined by the earliest occurrence of *C. lewisianus*. The top is defined by the earliest occurrence of *Denticula hustedtii* and is coincident with the base of the *Denticula lauta/Denticula antarctica* Zone.

Other diatoms occurring within this zone: Denticula antarctica, D. nicobarica, D. lauta, Coscinodiscus nodulifer, C. lewisianus, C. radiatus, C. endoi, C. marginatus C. apiculatus, Synedra jouseana, Trinacria excavata, T. pileolus Rhizosolenia barboi, Antinocyclus ingens.

Paleomagnetic correlation: No information available. Correlation to other zonations: This zone includes a portion of the Calocyclas polyporos Zone (Chen, this volume). It also includes the Dictyocha mutabillis Zone (Ciesielski, this volume). Coscinodiscus lewisianus is used to define the base of this zone and Schrader's (1973) Zone XXIV. The top of Zone XXIV is defined by the earliest occurrence of Coscinodiscus endoi; this diatom occurs within the D. antarctica/C. lewisianus Zone in the top of Core 14, Site 266, thereby making the interval between 14, CC to the top of Core 14 equivalent to Schrader's Zone XXIV. The top of this zone is

equivalent to the top of Koizumi's (1973) Denticula lauta Zone, which is based on the first occurrence of D. hustedtii. The base of this zone could be within Koizumi's D. lauta Zone or below, since the base was not defined.

Denticula lauta/Denticula antarctica Partial-Range Zone

The base of this zone is defined by the earliest occurrence of *Denticula hustedtii*. The top of this zone is defined by the latest occurrence of *Denticula antarctica* and is coincident with the base of the *Denticula hustedtii/Denticula lauta* Zone.

Other diatoms occurring within this zone: Actinocyclus ingens, Denticula hustedtii, D. lauta, D. antarctica, D. nicobarica, Trinacria excavata, T. pileolus, Coscinodiscus endoi, C. apiculatus, C. marginatus, Rhizosolenia barboi, Cestodiscus sp., Liradiscus sp.

Paleomagnetic correlation: No information available. Correlation to other zonations: This zone includes two radiolarian zones: Antarctissa conradae Zone and the Actinomma tanyacantha Zone (Chen, this volume). This zone also coincides with the nannofossil Discoaster hamatus Zone and Catinaster coalitus Zone (NN 8 and NN 9, respectively) (Burns, this volume). This correlation gives an approximate age for this diatom zone of 11 to 14 m.y.B.P. The base of this zone and Koizumi's (1973) D. hustedtii/D. lauta Zone is defined as the earliest occurrence of D. hustedtii.

Denticula hustedtii/Denticula lauta Partial-Range Zone

The base of this zone is defined by the latest occurrence of *Denticula antarctica*. The top of this zone is defined by the latest occurrence of *D. lauta* and is coincident with the base of the *Denticula hustedtii* Zone.

Other diatoms occurring within this zone: Denticula nicobarica, D. lauta, D. hustedtii, Coscinodiscus radiatus, C. endoi, C. marginatus, C. flexosus? Cestodicus sp., Trinacria excavata, T. pileolus, Rhizosolenia barboi, R. hebetata f. hiemalus, Actinocyclus ingens, Rouxia californica, R. peragalli, Eucampia balaustium.

Paleomagnetic correlation: No information available. Correlation to other zonations: The silicoflagellate Mesocena circulus Zone (Ciesielski, this volume) is included within this zone. The radiolarian Theocalyptra bicornis spongathorax Zone includes all of this zone (Chen, this volume). Schrader's (1973) Zone XV and this zone are defined on the basis of the last occurrence of Denticula lauta. Using his time scale, the top of this zone would be placed in the "A" event of magnetic epoch 7. The last occurrence of D. lauta is common to this zone and Koizumi's (1973) D. hustedtii/D. lauta Zone. The base of Koizumi's D. hustedtii/D. lauta Zone is similar to the base of the Denticula lauta/Denticula antarctica Zone (this paper).

Denticula hustedtii Partial-Range Zone

The base of this zone is defined by the latest occurrence of *Denticula lauta*. The top of this zone is defined by the latest occurrence of *D. hustedtii* and is coincident with the base of the *Nitzschia praeinterfrigidaria* Zone.

Other diatoms occurring within this zone: Actinocyclus ingens, Coscinodiscus marginatus, Rhizosolenia barboi, Nitzschia reinholdii, N. praeinterfrigidaria, Actinocyclus ellipticus v. javanica, Stephanogonia sp., Trinacria excavata, T. pileolus, Denticula hustedtii.

Paleomagnetic correlation: The top of this zone is approximately 4.5 m.y.B.P. There are no paleomagnetic data available for the base, but it is probably greater than 5.5 m.y.B.P. (epoch 5).

Correlation to other zonations: The top of this zone is within Schrader's (1973) Zone XI and Burckle's (1972) Thalassiosira convexa Zone. The base of this zone probably falls below Schrader's Zone XI (5.5 m.y.B.P.). Schrader's (1973) Zone XV and the base of this zone are defined on the last occurrence of Denticula lauta. By Schrader's correlation to magnetics, the base of this zone is approximately equivalent to event "A" of magnetic epoch 7 and Burckle's Thalassiosira convexa Zone. This zone includes the lower portion of the Mesocena diodon Zone (Ciesielski, this volume). This zone includes the lower portion of the radiolarian Helotholus vema Zone and the upper portion of the Theocalyptra bicornis spongothorax Zone (Chen, this volume).

Nitzschia praeinterfrigidaria Partial-Range Zone

The base of this zone is defined by the latest occurrence of *Denticula hustedtii*. The top of this zone is defined by the latest occurrence of *N. prae-interfrigidaria* and is coincident with the base of the *Nitzschia interfrigidaria* zone.

Other diatoms occurring within this zone: Nitzschia reinholdii, N. praeinterfrigidaria, N. interfrigidaria, Coscinodiscus marginatus, Rhizosolenia barboi, Rouxia diploneides.

Paleomagnetic correlation: The top of this zone is approximately 3.65 m.y.B.P. and the base is approximately 4.5 m.y.B.P. (Gilbert epoch above the "A" event to "C" event).

Correlation to other zonations: This zone corresponds to Schrader's (1973) zone X and possibly with the lower portion of Zone IX. The base of this zone extends into Schrader's (1973) Zone XI and Burckle's (1972) Thalassiosira convexa Zone.

Nitzschia interfrigidaria Partial-Range Zone

The base of this zone is defined by the latest occurrence of *N. praeinterfrigidaria*. The top of this zone is defined by the latest occurrence of *N. interfrigidaria* and is coincident with the base of the *Cosmiodiscus insignis* Zone.

Other diatoms occurring within this zone: Nitzschia angulata, N. interfrigidaria, N. reinholdii, Rouxia naviculoides, R. diploneides, Cosmiodiscus insignis, Coscinodiscus lentiginosus, C. obovatus, C. marginatus, Rhizosolenia barboi.

Paleomagnetic correlation: The top of this zone is approximately 2.85 m.y.B.P. and the base is approximately 3.65 m.y.B.P. (Kaena event in the Gauss to the upper Gilbert above the "A" event).

Correlation to other zonations: This zone occurrs within the limits of Schrader's (1973) Zones VIII, IX, X.

No closer correlation can be made because the boundaries between Schrader's VIII, IX, and X are not supplemented by paleomagnetic data. This zone spans the boundary of Burckle's (1972) Rhizosolenia praebergonii Zone and the Nitzschia jouseae Zone, and includes portions of both zones.

Cosmiodiscus insignis Partial-Range Zone

The base of this zone is defined by the latest occurrence of *N. interfrigidaria*. The top of this zone is defined by the latest occurrence of *Cosmiodiscus insignis* and is coincident with the base of the *Coscinodiscus kolbei/Rhizosolenia barboi* Zone.

Other diatoms occurring within this zone: Nitzschia kerguelenis, N. angulata, Coscinodiscus lentiginosus, C. kolbei, C. obovatus, Rhizosolenia barboi.

Paleomagnetic correlation: The top of this zone is approximately 2.5 m.y.B.P. The base of this zone is approximately 2.85 m.y.B.P. (upper Gauss to the Kaena event of the Gauss).

Correlation to other zonations: This zone is totally included within Schrader's (1973) Zone VIII and Burckle's (1972) Rhizosolenia praebergonii Zone.

Coscinodiscus kolbei/Rhizosolenia barboi Range Zone

The base of this zone is defined by the joint occurrence of R. barboi with C. kolbei immediately following the latest occurrence of Cosmiodiscus insignis. The top of this zone is defined by the latest occurrence of Coscinodiscus kolbei and is coincident with the base of the Rhizosolenia barboi/Nitzschia kerguelensis Zone.

Other diatoms occurring within this zone: Nitzschia kerguelensis, N. angulata, Coscinodiscus lentiginosus, C. kolbei, Rhizosolenia barboi.

Paleomagnetic correlation: The top of this zone is approximately 1.85 m.y. B.P., and the base is approximately 2.5 m.y. B.P. (Matuyama below the Olduvai event to the upper Gauss).

Correlation to other zonations: This zone includes Schrader's (1973) Zone V (lower portion) and all of VI and VII. This zone is totally included within Burckle's (1972) Rhizosolenia praebergonii Zone.

Rhizosolenia barboi/Nitzschia kerguelensis Partial-Range Zone

The base of this zone is defined by the joint occurrence of R. barboi and N. kerguelensis immediately following the latest occurrence of Coscinodiscus kolbei. The top of this zone is defined by the latest occurrence of R. barboi and is coincident with the base of the Coscinodiscus elliptipora/Actinocyclus ingens Zone.

Other diatoms occurring within this zone: Eucampia balaustium, Thalassionema elegans, Thalassiosira gracillis, Charcotia actinochilus, Nitzschia curta, N. kerguelensis, N. angulata, Coscinodiscus lentiginosus, C. diviscus, Rhizosolenia barboi.

Paleomagnetic correlation: The top of this zone is approximately 1.6 m.y.B.P., and the base is approximately 1.8 m.y.B.P. (upper Matuyama, below the Jaramillo event to the Olduvai event).

Correlation to other zonations: This zone includes the lower portion of Schrader's (1973) Zone IV and extends

slightly into Zone V. Most of this zone is included within Burckle's (1972) *Pseudoeunotia doliolus* Zone but extends slightly into the *Rhizosolenia praebergonii* Zone (top at approximately 1.8 m.y. B.P.).

Coscinodiscus elliptipora/Actinocyclus ingens Concurrent-Range Zone

The base of this zone is defined by the earliest occurrence of *C. elliptipora*. The top of this zone is defined by the latest occurrence of *A. ingens* and is coincident with the base of the *Coscinodiscus lentiginosus* Zone.

Other diatoms occurring within this zone: Coscinodiscus lentiginosus, C. diviscus, C. elliptipora, Nitzschia kerguelensis, N. angulata, N. curta, Eucampia balaustium, Thalassionema elegans, Thalassiosira gracilis, Charcotia actinochilus, Asteromphalus parvulus, A. hookerii, Actinocyclus ingens, Hemidiscus karstenii.

Paleomagnetic correlation: The top of this zone is approximately 0.7 m.y.B.P., and the base is approximately 1.6 m.y.B.P. (upper Matuyama, including the Jaramillo event but younger than the Olduvai event).

Correlation to other zonations: This zone includes the lower portion of Schrader's (1973) Zone II, all of Zone III, and the upper portion of Zone IV. This zone is totally included within Burckle's (1972) P. doliolus Zone.

Coscinodiscus lentiginosus Partial-Range Zone

The base of this zone is defined by the latest occurrence of *Actinocyclus ingens*. The top of this zone is defined as recent sediment being formed in the Southern Ocean containing *C. lentiginosus*. Other diatoms occurring within this zone: Nitzschia kerguelenis, N. angulata, N. curta, N. ritscherii, Coscinodiscus lentiginosus, C. elliptipora, C. diviscus, C. tabularis, C. furcatus, Charcotia actinochilus, Hemidiscus karstenii, Eucampia balaustium, Thalassionema elegans, Thalassiosira gracilis, Asteromphalus parvulus, A. hookerii.

Paleomagnetic correlation: The base of this zone approximately coincides with the base of the Bruhnes magnetic epoch (0.7 m.y.B.P.).

Correlation to other zonations: This zone includes all of Schrader's (1973) Zone I and most of Zone II. This zone is totally included within Burckle's (1972) Pseudo-eunotia doliolus Zone.

DIATOM SUMMARIES

Site 264

Core-catcher samples were investigated for this site with all but Sample 2, CC being barren. The diatoms recovered are poorly preserved and extremely low in number. The diatoms identified in 2, CC are: Melosira sulcata, Stephanopyxis turris, Triceratium partitum, Arachnoidiscus ehrenbergii, Hemiaulus polymorphus.

Site 265 (Figure 2)

Core-catcher samples from Cores 1 through 17 were examined for diatoms. Diatom preservation is fairly good in Cores 1 through 14 and poor in Cores 15 through 17.

Diatoms	Actinocyclus ingens	Asteromphalus parvulus	Coscinodiscus elliptipora	C. endoi	C. kolbei	C. lentiginosus	C. marginatus	C. tabularis	C. flexosus	C. sp. 2	Cosmiodiscus insignis	Denticula hustedtii	D. lauta	Eucampia balaustium	Hemidiscus karstenii	Nitzschia kerguelensis	N. angulata	N. reinholdii	N. interfrigidaria	Rhaphoneis sp.	Rhizosolenia barboi	R. hebetata f. hiemalis	Rouxia R. naviculoides	Synedra jouseana	Diatom Zones
1, CC						Α		F						F		A	F								
2, CC 3, CC 4, CC						A		F						F		Α	F								C. lentiginosus
3, CC						C		R								C									
4, CC	R		R			C								R		C									
5, CC	R	R				00000								R	R	C									C. elliptipora
6, CC	F	R				C								R		C									A. ingens
7, CC	C A					C										C	F								74, 11.80110
8, CC	A					C										C	F								
9, CC	A					F										F	F						-		
10, CC 11, CC	$-\frac{A}{A}$	_				F		_								R	F C						T		
12, CC	A					r						R			F		C	F			R			F	???
13, CC		_		_	F	-	_		-	C	F			R	<u>r</u>		F	Г	\overline{c}		R			F	
14, CC							F							1/	F			F	C		F			10)	N. interfrigidaria
15-1-00	С			F			F					С	С		-			-		R	_	F			
15, CC	C			C								C	C							R		C			D. hustedtii
16, CC				C F			C R		R			C F	C							R					D. lauta
17-1-00									19:50																DESCRIPTION OF THE PROPERTY OF

Figure 2. Distribution of diatoms at Site 265.

Although no zonal boundaries were detected, portions of zones were found throughout the site. A portion of the Coscinodiscus lentiginosus Zone is found in Cores 1 through 3. A portion of the Coscinodiscus elliptipora/Actinocyclus ingens Zone is found in Cores 4 through 10. Cores 11 and 12 are not zoned because of poor recovery. Cores 13 and 14 contain a portion of the Nitzschia interfrigidaria Zone. Cores 15 and 16 contain a portion of the Denticula hustedtii/Denticulaa lauta Zone.

Site 266 (Figure 3)

Diatom abundance and preservation are best in Cores 1 through 10. Below this point they worsen but are still sufficient for stratigraphic purposes.

Core 1 through Sample 2-3, 30 cm contain the Coscinodiscus lentiginosus Zone. Sample 2, CC through Core 4 contain a portion of the Coscinodiscus elliptipora/Actinocyclus ingens Zone. Cores 5 and 6 contain a portion of the Nitzschia interfrigidaria Zone. Core 7 contains a portion of the Nitzschia praeinterfrigidaria Zone. Samples 8-1, 55 cm through 10-1, 0 cm contain the Denticula hustedtii Zone. Samples 10-1, 90 cm through 12, CC contain the Denticula hustedtii/Denticula lauta Zone. Core 13 through Sample 15-3, 60 cm contain a portion of the Denticula antarctica/Coscinodiscus lewisianus Zone. Samples 16-1, 92 cm through 16, CC contain the Denticula antarctica Zone. Core 17 through Sample 18-2, 60 cm contain the Denticula nicobarica Zone. After Sample 18-3, 60 cm is the Coscinodiscus sp. Zone through to Core 24.

Holes 267 and 267A

Samples from this site contain diatoms in low abundance in a fair preservational condition. Only three cores could be zoned on the basis of diatoms. Sample 1, CC contains a portion of the *Rhizosolenia barboi/Nitzschia kerguelensis* Zone. Sample 2, CC contains a portion of the *Denticula hustedtii* Zone. The remaining cores are barren. From Hole 267A Sample 1, CC contains a portion of the *Rhizosolensis barboi/Nitzschia kerguelensis* Zone. The remaining cores are barren.

Hole 267B (Figure 4)

Diatom abundance and preservation at this site are generally poor, but portions of three diatom zones can be recognized. Core 1 cannot be assigned to a zone and can only be described as having diatoms characteristic of a Miocene age. Cores 2, 3, and 4 contain a portion of the Denticula hustedtii Zone. Core 5 contains a portion of the Denticula hustedtii/Denticula lauta Zone. Cores 6 through 8 contain a portion of the Denticula lauta/Denticula antarctica Zone. Below Core 8 the section is barren of diatoms.

Site 268

Diatoms are typically rare and poorly preserved. Very few entire frustules were found from Cores 1 through 12. Below Core 12 diatoms are absent.

Cores 1 through Sample 2, CC contain the Coscinodiscus lentiginosus Zone and a few reworked Oligocene diatoms. Only in Sample 2-1, 60 cm were there enough diatoms to give assurance to this assignment. In Cores 3 and 4 there were too few identifiable diatoms to make an assignment. Cores 5, 6, and 7 contain a portion of the *Denticula hustedtii* Zone. Cores 8 through 12 and below show such paucity of diatoms that these cores cannot be zoned.

Holes 269 and 269A (Figure 5)

Diatoms only occur in Cores 1 through 9 at Site 269. Cores 10 and 11 and all cores of Hole 269A are barren. The abundance of diatom frustules varies from common (Core 1) to poor (Cores 2-9). Preservation varies in a like manner.

Core 1 above 1-5, 130 cm contains the Coscinodiscus lentiginosus Zone. Below this point in Core 1 is a portion of the Coscinodiscus elliptipora/Actinocyclus ingens Zone. Core 2 contains a portion of the Nitzschia interfrigidaria Zone. Core 3 contains a portion of the Denticula hustedtii Zone. Cores 4, 5, and 6 through Sample 6-4, 140 cm contains a portion of the Denticula hustedtii/Denticula lauta Zone. The remainder of Core 6 and Cores 7 and 8 contain a portion of the Denticula lauta/Denticula antarctica Zone. Core 9 apparently contains a portion of the Denticula antarctica/Coscinodiscus lewisianus Zone.

Site 270

Site 270 is barren of diatom remains with the exception of Core 1. From the surface (1-1, 10 cm) through 1-2, 40 cm is an assemblage of diatoms suggestive of the Coscinodiscus lentiginosus Zone. Below this level no diatoms could be found.

Site 271

Samples from this site contain unidentifiable fragments or are barren except for the following instances. Sample 16, CC contains Cosmiodiscus intersectus, Actinocyclus ehrenbergii, and Thalassiosira gracilis, which suggest a lower Pliocene age. Sample 19, CC contains C. intersectus, A. ehrenbergii, and Stephanopyxis turris (lower Pliocene?). Sample 24, CC contains the same assemblage with rare occurrences of Actinocyclus ingens, indicating this sediment may be lower Pliocene/upper Miocene. The lower Pliocene age is more probable because of the lack of any other upper Miocene diatoms.

Site 272 (Figure 6)

Diatoms are in low abundance but are well preserved except for a barren section between Samples 1-1, 145 cm through 3, CC. Core 1 above 1-1, 130 cm contains the Coscinodiscus lentiginosus Zone. Below 1-1, 130 cm through 3, CC the sediment is essentially barren except for rare occurrences of Actinocyclus ingens in Core 3. No zonal assignment can be made on this diatom alone. Samples 4-1, 130 cm through 16-1, 113 cm contain a portion of the Denticula lauta/Denticula antarctica Zone. Below Sample 16-1, 113 cm through 17-3, a portion of the Denticula antarctica/Coscinodiscus lewisianus Zone is apparently present. The underlying interval through Core 38 is unzoned at present. The assemblage is characterized by Coscinodiscus apiculatus

and Aulacodiscus brownii which are thought to extend into the early Miocene. Diatom abundance is drastically reduced below Core 18.

Holes 273 and 273A (Figure 7)

Diatom abundance and preservation are fair to good at this site. Cores 1 through 5 contain a mixture of diatoms comprising the *Coscinodiscus lentiginosus* and *Denticula antarctica* Zones. Cores 6 through 21A-1, 145 cm contain a portion of the *Denticula antarctica* Zone. Below this point the section is unzoned but is similar to Site 272 in that *Coscinodiscus apiculatus* is present.

Site 274 (Figure 8)

Sediments from this site contain diatoms in generally good abundance, with some localized areas of paucity. The preservational state of the diatoms ranges from fair and poor (Cores 1-19) to excellent (Cores 20-34). Cores 1 through 6 contain a reworked Miocene and Oligocene flora in an inverted sequence. This reworking apparently took place during the Gilbert/Gauss paleomagnetic epochs when Miocene and Oligocene sediments were eroded from the Ross Sea. Below a chert layer in Core 35, the sediments from this site are barren of diatoms.

Cores 1 through Sample 2-5, 30 cm contain a portion of the Coscinodiscus lentiginosus Zone. Samples 2-5, 90 cm through 4, CC contain a portion of the Coscinodiscus elliptipora/Actinocyclus ingens Zone. Cores 5 through Sample 8, CC contain a portion of the Coscinodiscus kolbei/Rhizosolenia barboi Zone. Samples 9-2, 90 cm through 10-1, 90 cm contain a portion of the Nitzschia praeinterfrigidaria Zone. Samples 10-5, 90 through 10, CC contain a portion of the Denticula hustedtii Zone. Evidence for the Denticula hustedtii/Denticula lauta Zone was found from 11-1, 140 cm through 12, CC. The Denticula antarctica/Coscinodiscus lewisianus Zone cannot be separated from the Denticula antarctica Zone because Coscinodiscus lewisianus was not found at this site. These two zones occur between 13-1, 90 cm through 15, CC. The Pyxilla prolongata Zone is contained in Cores 20 through 34.

Correlation of USNS Eltanin and Glomar Challenger Cores

Several USNS *Eltanin* piston cores, which have been dated by paleomagnetic methods (Hays and Opdyke, 1967; Bandy et al., 1971; Watkins and Kennett, 1972;

Ciesielski and Weaver, 1973) and in which diatoms have been studied, have been used in conjunction with the core samples taken by *Glomar Challenger* on Leg 28 (see Table 2).

Studies using these cores have resulted in the establishment of a diatom stratigraphy for approximately the last 4.65 m.y.B.P. in the area of the Southern Ocean. The ranges shown in Figure 9 reflect the common to abundant occurrences of the species listed, thereby removing most minor range fluctuations for individual diatom species. The paleomagnetic boundaries assigned to zonal boundaries are therefore approximations. These differences are in some instances thought to represent time transgressive biofacies and the reworking of sediments. Because of this, not all species shown as occurring together will necessarily occur together for a specific period of time in a particular sample. Studies which incorporate biofacies problems are in progress but at this time are not refined sufficiently for regional conclusions.

CORRELATION OF VARIOUS AREAS OF THE PACIFIC BASED ON DIATOM STRATIGRAPHY

A preliminary effort to correlate distant areas of the Pacific Ocean is presented (Figure 12). For particular zonation correlations with respect to the present paper consult those portions of this paper.

Correlations are made using information from several sources. Correlation of this work to that of Schrader (1973) was made using the paleomagnetic data presented and diatom extinctions and first appearances where common diatoms exist. Donahue (1970b) used paleomagnetic data, and also correlated here work to that of Jousé (1962). This adaption is incorporated here. Schrader (1973) correlates his work to the foraminiferal zones of Blow (1969) as does Koizumi (1973). This combination was used to show the relative positions of some of Koizumi's zones to the others. Other zones of Koizumi (1973) are based on diatom first occurrences and extinctions. Donahue's (1970a) and Burckle's (1972) zonations are adapted from the correlation presented by Schrader (1973).

The accuracy of these correlations is, of course, questionable; as a consequence, these correlations are presented as a preliminary effort to coordinate previous work in the Pacific with that of the present study.

TABLE 2 Locations and Ages of Eltanin Cores

Core	Latitude	Longitude	Paleomagnetic Age
E 13-17	65°41.0′S	124°06.3′W	Recent-Gilbert "C"
E 14-7	58°03.1'S	160°09.0'W	Recent-Gilbert
E 14-8	59°40.0'S	160° 17.4'W	Recent-Gilbert "B"
E 34-17	60°11.7′S	144°40.0'E	Mid Matuyama-Gilbert "A"
E 34-18	60°00.0'S	134°52.2'E	Lower Gauss-Gilbert "A"
E 36-8	58°05.5'S	139°54.6'E	Lower Gauss-Upper Gilbert
E 38-7	61°49.3'S	149°53.0'E	Lower Matuyama-Lower Gauss
E 38-8	61°48.6'S	149°54.2'E	Upper Gilbert-Gilbert "A"
E 50-20	62°54.2'S	150°41.2′E	Mid Gauss-Gilbert "A"

Diatoms																						5							~		Т	
Sample	Actinocyclus ellipticus A. var. javanicus A. ingens	Asteromphalus hookerii	Charcotia actinochilus	Coscinodiscus endoi C. kolbei	C. lentiginosus C. lewisianus	marginatus	obovatus	radiatus fabularis	vetutissimus	sp. 2	sp. 3	Cosmiodiscus insignis	Denticula antarctica	D. hustedtii	D. lauta D. nicobarica	Eucampia balaustium	Hemidiscus karstenii	Liradiscus sp.	Nitzschia angulata N. interfrisidaria	N. kerguelensis	N. reinholdii	N. praeinterfrigidaria Rhaphidodiscus marvlandicus	Rhaphoneis sp.	Rhizosolenia barboi	Rouxia diploneides	R. naviculoides	R. peragalli	Stephanogonia hanzawae	Svnedra iouseana	Trinacria excavata T. pileolus		
(Interval in cm)	Actinocye A. var. jas A. ingens	Aster	Char	Coscinodi C. kolbei	C. ler C. ler	C. m	C. 0b	C. rag			C. S	Cosmio	Dent	D. hu	D. lauta D. nicoh	Euca	Нет	Liraa	NITZS N. in	N. ke	N. re	N. pr Rhap	Rhap	Rhize	Roux	R. na	R. pe	Stepl	Syne	Trina T. pil		Diatom Zones
1-1, 110-112 1-2, 80-82 1-3, 70-72 1-4, 100-102 1, CC 2-2, 120-122 2-3, 30-32		F F F F F F F F F F F F F F F F F F F	₹		C C F F F			F F F					ū			F]	F F F	A A C F F F												C. lentiginosus
2, CC 3, CC 4-2, 60-62 4-3, 100-102 4-4, 120-122 4, CC	F F	R F	t t		F F F F													1	F	F F F F							R					C. elliptipora A. ingens
5-1, 120-122 5-2, 130-132 5-3, 130-132 5-4, 130-132 5-5, 130-132 5-6, 120-122 5, CC 6-1, 120-122 6-2, 110-112 6-3, 120-122 6-4, 120-122 6-5, 110-112 6-6, 120-122 6, CC 7-1, 125-127	F			F R F	R	R R R	c c			F F	F	F C C C F				R R R F	F R		F F F F F F F F F F F F F F F F F F F		F	<u> </u>		R F	F	F F	F R		R			N. interfrigidaria
7-1, 125-127 7-2, 45-47 7-4, 120-122 7-5, 45-47 7-5, 117-119 7, CC 8-1, 55-57 8-2, 45-47 8-2, 120-122 8-3, 45-47	. 1					R R R C								R R	R				F C		R C F C R	C F F		С			R		R		A	I. praeinterfrigidaria

Figure 3. Distribution of diatoms at Site 266.

8-4, 45-47 8-5, 120-122 8-6, 50-52 8-6, 125-127	R R		R R]]	? ? R		R R ? R ? R R	R R	
8, CC 9-1, 89-91 9-2, 30-32 9-3, 30-32 9-4, 99-101	R R		F R R]	R R R	F	F R R R R R R R R R R	R R	D. hustedtii
9, CC 10-1-0			F					F R		
10-1, 90-92	C		C		1	FF		C		
10-2, 40-42	C		C		1	FF				
10-4, 40-42	C		C		(CC		C		
10-5, 30-32	C	A		R		CC		C		
10-5, 90-92	C	A		R		СС		C		
10-6, 80-82	C	A		R	ì	F A		F	R	
10, CC	R		C			R			R	
11-1, 60-62	C	C	C		ì	R F		F		
11-2, 60-62	C		F		1	R F		F		D. hustedtii
11-3, 90-92	C	F			ì	R R		F		D. lauta
11-4, 40-42	A		F			R R		F		
11-5, 30-32	C		F			FF		F		
11-6, 70-72	C	F				C F		F	R	
11, CC								F		
12-1, 30-32					1	F F				
12-2, 120-122	F		F			FF				1
12-3, 110-112	F		C		į.	2			R	
12, CC			F		1	70		F		
13-1, 60-62	F		R F		F			R	F	
13-2, 70-72	277	F	272 070		C	F		R	C	
13-3, 60-62			F		F	F			~	
13-4, 60-62	C	C	RCC		C	R				
13-5, 60-62	F		RFF		C	R		R		
13-6, 60-62	F	F	R F		F	R R		R	F	
13, CC	R		271 (27)		R	22 22		1573		D. antarctic
14-1, 80-82			CC	F	C			R	C F	C. lewisianu
14-2, 60-62		R	CC	F	C C			R	C F	2
14-3, 60-62		R	CF	F	A			**	C R	
14-4, 60-62		R	СС	C	A			R	F	
15-1, 60-62		55	FR	55	Ċ	F		C R	R	
15-2, 60-62			C		Č	-		C R	C R	
15-3, 60-62			RFC		C			C R	C R	
16-1, 92-94			FF		C	F		C	R	
16-2, 60-62			R		R	R		10.25	**	D. antarctica
16, CC			3 73 0		F	***				2. amarchica
17-1, 140-142			RR		*	R		R		
17-2, 60-62			FC	R		C		c	F	
17-3, 60-62			FR	F		F		F	•	1

Figure 3. (Continued).

Sample (Interval in cm)	Actinocyclus ellipticus A. var. javanicus A. ingens Asteromphalus hookerii A. parvulus	Charcotia actinochilus Coscinodiscus endoi C. kolbei C. lentiginosus C. lewisianus C. marginatus C. noduli fer C. obovatus C. radiatus	C. fabularis C. vetutissimus C. sp. 2 C. sp. 3 C. sp. 1 Cosmiodiscus insignis	Denticula antarctica D. hustedtii D. lauta D. nicobarica Eucampia balaustium Hemidiscus karstenii Liradiscus sp.	Nitzstria unguana N. interfrigidaria N. kerguelensis N. praeinterfrigidaria Rhaphidodiscus marylandicus Rhaphoneis sp. Rhizosolenia barboi Rouxia diploneides R. naviculoides R. peragalli	Stephanogonia nanzawae Stephanopyxis appendiculata Synedra jouseana Trinacria excavata T. pileolus	Diatom Zones
17-4, 60-62 17-5, 63-65 17, CC 18-1, 63-65		F F F R	R F	F R	F		D. nicobarica
18-2, 60-62		R R		R			
18-3, 60-62	R	R	R			RR	
18-4, 60-62	R	R				R	
18-5, 60-62	R	R	R F			R	5520-6V11115
18, CC	P	F			F		Cos. sp.
19-1, 60-62	R	R R R R	R		P	R R	
19-2, 60-62 19-3, 60-62	R	F F	F		R	R R	
19-4, 60-62	K	R R	R		R	R	
19-5, 60-62	R	F R	R		K	R	
19-6, 60-62		R	R			R	
19, CC		F					
20-1, 60-62		R R	R			R	
20, CC		R				R	
21-4, 60-62	R	A	R		R	F R	
21-5, 60-62	F	C F	R			C R R R	
21-6, 60-62	R	R	R			R R	
21, CC		F			P		
22-1, 60-62 22-2, 60-62		R R R R			R R	R	
22-2, 60-62	R	RR			K	R	
22-4, 60-62	100	R			R	K	
23-1, 33-35	x	X		x x	AX.	х	Downhole slump material

Figure 3. (Continued).

Diatoms	Actinocyclus ingens	Coscinodiscus lentiginosus	C. marginatus	C. radiatus	Cosmiodiscus insignis	Denticula antarctica	D. hustedtii	D. lauta	Nitzschia interfrigidaria	N. kerguelensis	Rhizosolenia barboi	Rouxia peragalli	Trinacria excavata	T. pileolus	Diatom Zones
1, CC	F	F			R				R	F	F				R. barboi/N. kerguelensis
2, CC	C	C	C	C			C				R		F	R	D. hustedtii
3, CC													R		
4, CC															
5, CC	-	-	-	-	-	-	-	-	-	$\overline{\gamma}_{i} = \frac{1}{2}$	-	$\overline{}$	$\frac{1}{2} \frac{1}{2} \frac{1}$	-	
6, CC	_	-		220	\simeq	-	-	-	-	-	_	_	-	-	l
1A, CC	C	F								F	R				R. barboi/N. kerguelensis
1B, CC			С		_						C	A		R	???
2B, CC							C						F	F	
3B, CC	F		F				C						R	R	D. hustedtii
4B, CC			A				A							R	
5B, CC	C		C				C	C			R		R		D. hustedtii/D. lauta
6B, CC	C		C			C	7 1.1	C	_						
7B, CC	F		F												D. lauta/D. antarctica
8B, CC	A		A		-	F	F	C			R	_			L
9B, CC	-	-	-	-	-	-	-	-	-	-	-	=	77	77	
10B, CC	1-	Ş—	-	-	-	-	-	-	-	-	-	-	_	-	

Figure 4. Distribution of diatoms at Hole 267B.

FLORAL REFERENCES

The genera and species are arranged alphabetically. Original descriptions are cited and were consulted when possible. Other citations, where good illustrations or comments can be found, are listed. In those instances where good illustrations and comments exist, the reader is referred to the same since it is felt by the writer that repetition of common data serves no useful purpose. In instances where the concept of the taxon was ambiguous or good illustrations were difficult to obtain, photographs or comments are included. Type material for new taxa is maintained by the author, and paratype material will be made available.

Actinocyclus diviscus (Grun.) Hustedt (1958) (Plate 1, Figures 1, 2)

Description: Hustedt (1958), p. 129, pl. 8, fig. 81. Koizumi (1968), p. 207, pl. 32, fig. 3.

Actinocyclus ellipticus Grunow in Van Heurck (1881)

Description: Hustedt (1930), p. 533, fig. 303.

Actinocyclus ellipticus var. javanica Rheinhold (1937)

Description: Rheinhold (1937), p. 75, pl. 1, fig. 7, 8.

Actinocyclus ingens Rattray (1890)

Description: Kanaya (1971), p. 554, several figures. Koizumi (1968), p. 207-208, pl. 32, fig. 5, 6.

As has been mentioned by Koizumi (1973, p. 831), there is wide range of size and valve morphology noted for this taxon. In this material the large, undulated forms tend to be found in Pliocene material while the smaller, flat forms are found to a greater extent in Miocene sediments.

Actinopthycus undulatus (Bail) Ralfs in Pritchard (1861) (Plate 1, Figures 3-6)

Description: Hustedt (1930), p. 475-478, fig. 264.

Specimens were noted with and without apiculi. Coarseness of the aerolation also varied.

Asterolampra affinis Greville (1862) (Plate 2, Figures 1, 2)

Description: Greville (1862), p. 45, pl. 7, fig. 7-9

Asterolampra vulgaris Greville (1862) (Plate 2, Figures 3, 4)

Description: Greville (1862), p. 47, pl. 7, 8, fig. 17-25.

Asteromphalus hookerii Ehrenberg (1854)

Description: Hustedt (1958), p. 127, pl. 8, fig. 88-90.

Asteromphalus parvulus Karsten (1905)

Description: Hustedt (1958), p. 128, pl. 8, fig. 91.

Aulacodiscus brownii Norman (?) (Plate 2, Figures 5, 6)

Description: Long, Fuge, and Smith (1964) p. 97, pl. 14, fig. 12. Schmidt (1876), pl. 36, fig. 15, 16. (1886), pl. 105, fig. 6.

This identification is based solely on the illustrations cited because no reference could be found for the original description.

Biddulphia angulata? Schmidt (1889) RPlate 3, Figures 3-5)

Description: Schmidt (1889), pl. 141, fig. 7, 8. Hanna (1932), p. 177, pl. 5, fig. 7, 8.

Charcotia actinochilus (Ehr.) Hustedt (1958)

Description: Hustedt (1958), p. 126, pl. 7, fig. 57-80.

Diatoms Sample (Interval in cm)	Actinocyclus ingens	Coscinodiscus endoi	C. kolbei	C. lentiginosus	C. marginatus	C. tabularis	Cosmiodiscus insignis	C. intersectius	Charcotia actinochlius	Denticula antarctica	D. hustedtii	D. lanta	Eucampia halaustium	Nitzschia interfrigidaria	N. kerguelenete	N. angulata	Rhizosolenia barhol	Rouxia californica	R. diploneides	R. peragalli	Trinscria excavata	T. pileolus	Hemidiscus karstenii	Diatom Zones
1-1, 90-92 1-1, 145-147 1-2, 20-22 1-2, 140-142 1-3, 30-32 1-3, 133-135 1-4, 30-32 1-4, 78-80 1-4, 130-132 1-5, 20-22 1-5, 80-82 1-5, 130-132	R		R R R	AAACCCCCCCCCA		CFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF			R R R				R R F F R F F C F		AAACCCCCCCCCA	CFFFRRRRRFFRR							R	C. lentiginosus
1-6, 20-22 1-6, 70-72 1-6, 120-122 1, CC	C C			CC		R							F	100000	A C C	RRR				?			1	C. elliptipora A. Ingens
2-1, 123-125 2-2, 30-32 2-2, 80-82 2-2, 130-132 2-3, 20-22 2-3, 67-69 2-3, 120-122 2, CC	C R R			R	R A R R	C F	R				R F	R	R F R	A C C		A C F R	RFRRR		F F R	C C R R R R	C R	R		N. interfrigidaria
3-1, 60-62 3-1, 120-122 3-2, 40-42 3-2, 90-92 3-2, 137-139 3-3, 30-32 3-3, 80-82 3-3, 130-132 3, CC					R		R	FCR FFCCP			FFRFFCACR	RRFF	R				-	R	R R R R	-	RF? FFCC	R F R		D. hustedtii
4-1, 0 4-1, 80-82 4-2, 130-132 4, CC 5-1, 131-133 5, CC 6-1, 90-92 6-1, 140-142 6-2, 140-142 6-3, 40-42 6-3, 40-42 6-4, 90-92 6-4, 140-142 6-4, 90-92 6-4, 140-142	F F R R R R R R R R R R R R R R R	??F??R????		7	C R F ? R R						RCACCAAFCCCCCCCCCF	FR CFFCCCCCCCCCF	F F R R R				R R	RRRR		R	REFFECCROCCCCCRFRC	R F F F R C R R R		D. hustediii D. lauta
6, CC 7-1, 80-82 7-1, 130-132 7-2, 30-32 7-2, 80-82 7-2, 130-132 7-3, 32-34 7-3, 80-82 7-3, 130-132 7, CC 8-1, 130-132 8, CC	RRFFFRCCCACR	?								R R R R R R F F	CRR?RTRR?ACF	CRRFR RRARF					R				FCCCFFCRCRR	R		D. lauta D. antarctica
9-1, 40-42 9-1, 90-92 9-1, 140-142 9-2, 30-32 9-2, 80-82 9-2, 125-127 9-3, 30-32 9-3, 130-132 9-4, 75-77 9-4, 130-132 9-5, 30-32 9-5, 30-32 9-7, 130-132 9-7, 130-132 9-7, 130-132 9-7, 130-132 9-7, 130-132 9-7, 130-132 9-7, 130-132 9-7, 130-132	C F R F R R C C C C R R C C									R	R	CFRIRRRRFRFRRR					R R F R R R				FRRRRR	R F R		D. antarctica C. lewisianus ?
10, CC 11, CC 1A-2, 95 2A-1, 45 12A, CC	R									R	R	R									R	R		Downhole slump

Figure 5. Distribution of diatoms at Site 269.

Coscinodiscus apiculatus Ehrenberg (1844) (Plate 4, Figures 1, 2)

Description: Hustedt (1930) p. 449-452, fig. 248. Hanna (1932) p. 178, 179, pl. 6, fig. 1.

Coscinodiscus bullatus Janisch (1891) (Plate 16, Figure 1)

Description: Hustedt (1958), p. 112, pl. 4, fig. 26-28.

iample nterval n cm)	Actinocyclus ingens	Actinocyclus ehrenbergii	Actinophycus undulatus	Asteromphalus parvulus	Autocoditent brownii	Charcotia actinochilus	Costrinodiscus apiculatus	C. leuriginotus	C 19.2	C. m. 1	Cosmiodiscus intersectus	Denicula antarctica	D. husredtii	D. Jante	Eucanpia balaustium	Liradiscur sp.	Melosive suicese	Nitzschia angulata	N. curta	N. kerguelensis	N. ritscherii	Rhizosolenia barboi	Stephanopyxit barbadensis	S. grunowii	S. turris	Trinacria excanata	T. pileolus	Diatom Zones
.0 .80 .85-87 .113 .130-132		R		R		cc		R							C F			R	ccc	R	LCC							C. lentiginosus
145 30-32 80-82 130-132 30-32 70-72 C 140-142 130-132 130-132 30-32		R							R																			,
(25µ) 3-40 3-82 7-29 5-28 3-32	R					-				-		-	-		-		-	-	-			-		-				Miocene ?
25µ) 0-132 -42	R		R		_	20.72				R	1	R	? R	? R			R	-	-	_	-		-	_		RR		
42 -125 32 82	R											RRR	- 10	RRR			R									RRR	R	
#) #) ?	RR		R				R					R	R	K		R	R					R				R		
	R						R					R	R													RRR		
	R						R					R	R	R		R										R		
25												R	R													R		
	R											R	R	R		R										R		
	R											R	R	R												R	1	
	R											R	R	R			R									R		D. lauta D. antarctica
												R	R	R		R										R		22.000000000
	R											R														R		
	R						R					ł,		R								R				R		
9												R														R		
)	R											RR	R	R												R		
	F						R					RRFRRRF	R			R	R									F		
	R											R														RRF	F	
1	R	R	R										R	R											R	R	R	
	CCR		_			_	-	_		_	_	R	A	F	_				_				_	_		F	R	
	R																									R		D. antarctica D. lewisianus
_	-	_	_		F	_	C		_	_	-	R				_	_		_			_			R	RR	_	
0	1		R		FRR		RR																			FRR	R	
0	1		- 150		R																					R	ľ	
					R		R																		R	RRR		
32					R					r												R		RRR		RRR		Early ,
46					R		R			R														R	R	R		SHOCERE
18			R		R					R												R	R	RRR	R	RRR		
)							R										R					ĸ			K			
)			R																					R	R	R		

Figure 6. Distribution of diatoms at Site 272.

Coscinodiscus elliptipora Donahue (1970) (Plate 16, Figure 10)

Description: Donahue (1970), p. 201, pl. 4, fig. e, i-m.

Sample (Interval in cm)	Actinocyclus ingens	Actinopthycus undulatus	Asteromphalus parvulus	Charcotia actinochilus	Coscinodiscus apieulatus	C. furcatus	C. lentiginosus	C. marginatus	C. stellaris v. symbolophorus	Denticula antarctica	Eucampia balaustium	Liradiscus sp.	I. oralis	Nitzschia curta	N. kerguelensis	Trinacria excavata	T. pileolus	Diatom Zones
Hole 273 1-1, 71-73 1-1, 80-82 1, CC 1-2, 10-12 1-2, 60-62 1-2, 110-112	R	R	С	С	R R	С		R		R R R	C'			С	C R	R R R	R R	
1-3, 10-12 2-1, 110-112 2-2, 15-17 2-2, 60-62 2-2, 110-112										R					R R	R R R	R	Mixture of
2-3, 10-12 2-3, 63-65 2-4, 10-12 2, CC (25µ) 3-1, 128-130	R	R		R					R	R R R R	R	R			R R	R R R	R	C. lentiginosus and D. antarctica
4-1, 105-107 4-2, 73-75 5-1, 50-52 5-1, 60-62 5-1, 72-74	R R	R R		F	R			R		R	?				R R	R R R		
5-1, 80-82 5-1, 99-101 5-1, 130-132 5, CC (25µ) 5, CC (38µ)	R	R		F R	R R R	_	200		R R	R	F	R	1000	1000		R R R	R	
6-1, 140-142 6-2, 130-132 6, CC (25 μ) 7-1, 110-112 8-4, 18-20 9-2, 127-129	R				R					R R R R		R				RRRRR	R	D. antarctica
9, CC (25µ) Hole 273A		R		-	R	-							-				R	
1-1, 58-60 3-1, 128-130 4-2, 30-32 6-1, 104-106 6-1, 120-122					R				F	R R C C		R R R	R			RRCCC	C C	
6, CC (25µ) 6, CC (38µ) 7-1, 36-38 8-2, 35-37 8-3, 117-119 9-1, 79-82		R R			R R					RRFR		R				RRFCR	R R F C	D. antarctica
10-2, 30-32 11-2, 38-40 12-1, 137-139 13-2, 140-142 14-1, 134-136					R R					R R R R		R				R R R R		
15-1, 104-106 16-2, 130-132 17-2, 30-32 18-1, 123-125 18, CC (25µ) 18, CC		R			R R					R R R R		R				R R	R R R	
21-1, 145-147 22-1, 87-89 22, CC (25µ) 22, CC 23-1, 132-134 24-1, 144-146		R R			R R					R								Early
25-1, 125-127 26-1, 109-111																R R R		Miocene ?

Figure 7. Distribution of diatoms at Site 273.

Coscinodiscus endoi Kanaya (1959) (Plate 4, Figures 5, 6)

Description: Kanaya (1959), p. 76, 77, pl. 3, fig. 8-11. Koizumi (1968), p. 211, pl. 32, fig. 21, 22.

Coscinodiscus flexosus Brun (1895) (Plate 4, Figures 3, 4)

Description: Kanaya (1959), p. 86, 87, pl. 5, fig. 6-9, (as CC. yabei) Kanaya (1971), p. 555.

Kanaya (1971) places in synonomy Coscinodiscus yabei, which is described in his 1959 work.

Coscinodiscus sp. 1 (Plate 8, Figure 3)

Coscinodiscus sp. 2 (Plate 8, Figures 1, 2)

Coscinodiscus ? sp. 3 (Plate 7, Figures 1-4)

Description: This diatom is tentatively placed within the genus Coscinodiscus. With further investigation this diatom may deserve a unique taxonomic position.

Cosmiodiscus insignis Jousé (1961) (Plate 8, Figure 5)

Description: Shesrukova-Poretskaya (1967), p. 175, pl. 25, fig. 2. Koizumi (1973), p. 832, pl. 4, fig. 7-11. Jousé (1961), p. 67, pl. 2, fig. 8. Jousé (1959), pl. 4, fig. 9.

In many instances the presence of this diatom is evidenced only by the center hyaline area, the remainder of the valve being dissolved.

Cosmiodiscus intersectus (Brun) Jousé (1961) (Plate 8, Figure 4)

Description: Sheshukova-Poretskaya (1967) p. 174, pl. 25, fig. 1. Koizumi (1973), p. 832, pl. 4, fig. 12, 13. Jousé (1961) p. 68, pl. 2, fig. 9, 10.

Denticula antarctica sp. nov. (Plate 8, Figures 6-10)

Description: Denticula antarctica sp. nov.

Valves linear-elliptical with bluntly rounded ends. Raphe marginal. Septa strongly developed with crossbars connected by suture at both ends. Valves punctate only at margin with pseudosepta represented by thickenings of the valve surface. Punctae placed between each pseudoseptum. Length $18-47\mu$, width $4-7\mu$.

Coscinodiscus furcatus Karsten (1905)

Description: Hustedt (1958), p. 113, 114, pl. 3, fig. 18, 19, pl. 5, fig. 39.

Coscinodiscus kolbei Jousé (1962) (Plate 4, Figures 7-9)

Description: Donahue (1970), p. 202, pl. 5, fig. A-C.

Coscinodiscus lentiginosus Janisch in Schmidt (1878) (Plate 5, Figure 1)

Description: Hustedt (1958), p. 116, pl. 4, fig. 22-25.

Coscinodiscus lewisianus Greville (1866) (Plate 5, Figures 2-4)

Description: Greville (1866), p. 78, pl. 8, fig. 8-10. Kanaya (1971), p. 555, pl. 40.5, fig. 4-6.

Coscinodiscus marginatus Ehrenberg (1841) [1843] (Plate 16, Figures 2, 3)

Description: Hustedt (1930), p. 416-418, fig. 223. Koizumi (1968), p. 211, pl. 33, fig. 3a-b, 4a-b.

Coscinodiscus nodulifer Schmidt (1878) (Plate 5, Figures 7, 8)

Description: Hustedt (1930), p. 426-427, fig. 229.

Diatoms				_		_																	6		-	_		_	_	_							-		
Diatonis																						Pyrogodiscus sp. Pyxilla johnsoniana v. corniculum						-											
	1																					mica						appendiculata			225							N.	
		aftus	S									371								ma		00		9	99			lica			Sticopiscus hardmanianus Thalassionema elegans		8		15	110			
	12	Actinopthycus undulatu Asteromlampra affinis	A. vulgaris Biddulphia angulata? Charcotia actinochilus Coscinodiscus apiculati					9	SILLS	20	mn m	Cestodiscus sp. Hemrialus nolymornhu					ria			Pseudopyxilla america Pterotheca carinifera		>		7	alu			eno			Sticopiscus hardmanias Thalassionema elegans	2	coscinoide		- 5	Xanthiopyxis acrolophra X. globosa	9		
	Actinocyclus ingens A. ehrenbergii	afi	ula och och					. 2 diodiscus insignis	1518	Denticula antarctica D. hustedtii	D. lauta Eucampia balaustium	0111			ata	.5	ida		d	Pseudopyxilla americ Pterotheca carinifera		ianc		Rhizosolenia barboi	ca ca			ddr			Ima	Thalassiosira gracilis	cin		210	lor:	15 p. 6		
	s in	pra	mg tim	4		3115	ins		5 5	tar	ılan	sp.			Melosira sulcata Nitzschia angulata	curta	kerguelensis	0	Odontotropis sp.	la a arin		rogodiscus sp.	2	pa	k. nebetata 1. me Rouxia antarctica		3	cis e			ard	1	SOS		Irinacria excavata T. pileolus	sac	X. panderaformis Coscinodiscus sp. (
	rinocyclus i ehrenbergii	hyd	is de la constante de la const	300		lentiginosus marginatus	praelineatu. radiatus	100	intersectus	nticula an hustedtii	2 00	Cestodiscus sp.		Liradiscus sp. L. ovalis	sule	ioi	N. kerguelensis N. praeinterfrie	reinholdii	do	xil a c		rcu:	gate	mia	ra rtan	californica	111	ephanopyxi barbadensis	m 1		us h	ira			s ex	yxi	afo		
	ent.	1dc	A. vulgaris Biddulphia Charcotia Coscinodis	C. diviscus C. elliptipos	C. endoi C. kolbei	rigi	praeline. radiatus	2	7.56	ted	ta	lisc	-	lis	ra	la	gue	N. reinholdi	00	ydc	- 2	dis fo	prolungat	ole	2 07	for a	peragalli	ou	inermes	rurris	iscu	sios	Triceratium T. inelegans	pulvina	macria e pileolus	do	der		
Sample (Interval	eh eh	tin	vul tdu aro scir	div	kolbei	len	pra	sp. 2	inte	hus	lauta	rtoc	sp. 1	ovalis	losi	N. curta	ker	ret	ont	no	sp. g	ogo	rol	202	ixi	din	Ser	pha	ner	rurris	do	las	rel	nat	nac	rthi	cin		
in cm)	4 4	45	Co Ch Big	UU	UU	30	UU		30	0 0	D.	Ces	H	7	Me	5 5	2 2	2 3	00	Pre	d. d.	2 2	P. prolungata	Rhi	ROH	R R	R.	Stephanopyxis S. barbadensis	S	5 5	Sric	77	7.	7.	7	Xanthiopy X. globosa	Cos X	Diatom Zo	onex
- Y		40	SECTION AND ADDRESS OF THE PERSON ADDR	_				_	100			_	1000		Option (Control		1000		772		-		100000	CO. 12	31.01.01	0.000				- A 18-		_	231600			20,1797	10.00		
1-2, 0 (25μ)	R	R	RR			R			R		R		R		R		R		R													R			RR		R		
1-2, 0			R								R		R		en 10		R							R											4.		1	i i	
1-2, 60-62 1-2, 95-97			R		R	D		n		RR			n:		CR	R	F	F					-		F	RR	F			R					2				
1-2, 130-132			R R			R R		R R		R R R	RF		R		C R	R	FR	F					R	R	F	RR	R			R	R	F			?				
1-3, 30-32			R			R		R		R	C		F		FR	R	FR	Ċ						K	R	KK	R			R		R			R				
1-3, 70-72			R			.55		6.7.	- 1						C	R	FR	Č							R		R			R	R				2			5	
1-3, 130-132	1			R							1000				F	R	RR	P	1							RR									2				
1-4, 30-32			R							R	F			R	FR	R	FR	F	R								R			R	R	R			?				
1-4, 80-82			R			R		R		R	F		F		FR	R	C	F						1	R		R			R	R	R							
1-4, 130-132			R			R		R		RR	RF				CR	R	C	C													R				R			C. lentigino	osus
1-5, 30-32			R					R		RR	C		F	3	F	R	C	C								R				R	R				R				
1-5, 80-82										R			12.		R		R	F							R		-					R			R				
1-5, 130-132 1-6, 30-32			R R			R				R	R		P	(R		R	R									R				100						1		
1-6, 30-32			R			K		R		R R	C				R R R		R R	F												R	R				R		- 3		
1-6, 130-132			R					R		K	R				n n		R	F																					
1, CC (25µ)			R			R		**			R																												
1, CC			R			R					R																												
2-2, 80-82								R		RR					R			R																	R				
2-2, 130-132																																							
2-3, 80-82										R	R				RR		R																						
2-3, 130-132										R			F	3	R		R													R				7	2				
2-4, 30-32																							1000									100							
2-4, 80-82																	n						R	R								R		-	2				
2-4, 135-137 2-5, 30-32	R							R		RR	R				RR		R							R						R					-				
2-5, 90-92	-R-													-	<u> </u>		R			-			_R_				-				\rightarrow				<u></u>	-			
2-5, 130-132									R	R					R			R					K									R							
2-6. 30-32									2								R	1.5						R								**		- 3	2				
2-6, 77-79	R		R	R	R												R							R								R		Į.	R				
2-6. 130-132	R		R R R			R				R	R		P		R																			- 3	R				
2, CC (25µ)			R					R	?	R	R				R		R																	- 8	?				
3-1. 40-42																																							
3-1, 90-92																																					i i	C. elliptip	
3-1. 130-132																																						A. ingen	2
3-2, 30-32				D							n						R																						
3-2, 77-79 3-2, 130-132				R							R																												
3-3, 30-32																																					11		
3-3, 85-87				R													R							R															
3-3, 130-132				R																																	- 1		
3-4, 30-32				R				R		R					R		R															R		- 3	?				
3-4. 80-82																																	25						
3-4, 130-132	1 3																							R													- 1		
3-5, 30-32																																							
3-5, 75-77																																							
3-5, 130-132	R			?		R											D							р															
3-6, 30-32 3-6, 89-91	K			6		R											R							R													1		
3-6, 130-132								R																										i	R				
3, CC (25µ)	R R	R	R					**																										3	R R R				
3 CC	1000	57																																					
4-1, 40-42				R																																			
4-1, 90-92	1																R																						
4 1 120 120	1																																				1		
4-1, 130-132	1																																				- 1		
4-1, 130-132 4-2, 30-32																																							
4-1, 40-42 4-1, 90-92 4-1, 130-132 4-2, 30-32 4-2, 70-72 4, CC																																							

Figure 8. Distribution of diatoms at Site 274.

5-1, 120-122 5-2, 90-92 5-3, 138-140 5, CC 6-1, 40-42 6-1, 90-92 6-2, 40-42			c c	R 2					R	A R C	R			
6-2, 140-142 6-3, 40-42 6-3, 90-92 6-3, 140-142 6-4, 40-42 6-4, 90-92 6-4, 140-142			R R R	*					K		R R R R			C. kolbei R. barboi
6-5, 40-42 6-5, 90-92 6-6, 40-42 6, CC (25µ) 6, CC 7-1, 40-42 8, CC			R R R R	- R R						R	R R		c	
9-2, 90-92 9-2, 140-142 9-3, 110-112 9-5, 90-92 9-6, 140-142		R		RR?	F R R R	R R R	R R R F R F F			? R	R R	R	R	N. praeinterfrigidaria
10-1, 90-92 10-2, 40-42 10-3, 40-42 10-3, 140-142 10-4, 40-42 10-5, 90-92			R	R	R				R R R	R R	F R	R F		
10-6, 40-42 10, CC (25μ) 10, CC	R		R	R R	R		?			R	R	R	R	D. hustedtii
11-1, 140-142 11-4, 140-142 11, CC (25µ) 11, CC 12-1, 92-94 12-6, 90-92 12-6, 140-142 12, CC (25µ) 12, CC	R R R	R	F F	C F R R	R R F		R R		R R	R R	R		R R R F R	D. hustedtii D. lauta
13-1, 90-92 13-6, 40-42 13, CC (25µ) 14-1, 40-42	R	<u>R</u>		- F c	?	F R							R R F F R R R	D. antarctica C. lewisianus
14-3, 140-142 14-6, 40-42 14, CC (25µ) 15-1, 90-92 15-4, 77-79	R	R		C C F F R		F F R F F							F R F F F F R	-7-7-7-7-
15-6, 75-77 15, CC (25µ) 16-1, 78-80				C ?		R R			R		R		R F R	D. antarctica
16-3, 130-132 16, CC (25µ) 17-1, 140-142 17-3, 80-82		R				R R					R R F F		R F F	Early Miocene ?
17, CC (25µ) 18-1, 143-145 18-2, 124-126 18-5, 130-132	R					F ?				R	F R		R ? R R	Early
18. CC (25µ) 19-1, 137-139 19-2, 30-32 19-3, 84-86	R					F C			т		F F R R		C C R R R	Miocene ?
19-6, 130-132 19, CC (25µ)		R				F R			T T	R			R R F F	
20-1, 30-32 20-1, 145-147 20-5, 30-32			c			F F		R R	F F R F F F		c c c		C F F	

Figure 8. (Continued).

Sample (Interval in cm)	Actinocyclus ingens A. ehrenbergii Actinopthycus undulatus	Asteromlampra affinis		Charcotia actinochilus Coscinodiscus apiculatus	C. diviscus		C. kolbei	mar	C. praelineatus		Cosmiodiscus insignis	Denticula antarctica	D. hustedtii	Eucampia balaustium	Centodiscus sp. Hemialus polymorphus	H. sp. 1	L. ovalis	Melosira sulcata Nitzschia angulata	N. curta	N. interfrigidaria N. kerguelensis	N. reinholdii N. ritrchenii	Odontotropis sp.	Pseudopyxilla americana Pserotheca carinifera	P. sp. 1	P. sp. 2 Pyrozodiscus sp.	Pyxilla johnsoniana v. Corniculum	P. prolungata P. reticulata	Rhizosolenia barboi	R. hebetata f. hiemalus Rouxia antarctica	R. californica R. dinloneides	Stephanopyxis appendiculata	S. inermes		S. turris Sticopiscus hardmanianus	Thalassionema elegans	Thalassiosira gracilis		T. pulvinar	Trinacria excavata	Xanthiopyxis acrolophra	X. globosa	X. panderaformis Coscinodiscus sp. 6	Diaton	ı Zones
20, CC (25µ)		R	С												С	C	R						R			С	С	R	_					R	9	1	R		F	7				
21-1, 30-32 21-1, 69 21-1, 132-134 21-5, 80-82															C C F C	F											C?	F	R F		F		c i	F		į	R R		F I	2				
21-6, 74-76 22-1, 60-62 22-4, 30-32 22-5, 30-32		F R	i.						С														R			CCC	C C				c	С	c				R		С				Lov Oligo	
22-5, 90-92		E						F	FF	7					C	c										C	CF		F		F	F	F	C			R		F F			- 1		
23-1, 30-32 23-6, 28-30		F				R		F	F	*					C C F	C	F									C C	CF	R	R		F C		C	F		1	FC		F	,		- 1		
24-1, 58-60	1	F						F							F											c	CF	R	F		C		C	r		- 2	FF	R	F	c		- 1		
25-1, 30-32				F				F	R						F	F											C					R	F	R			FF	-		C				
26-1, 30-32 27-1, 80-82		r.		F				F	R						F	F							R			C	C C F		R R		R	R	F	F		1	F	R	F	A R		- 1		
28-1, 30-32		F F F						F							F	C											c	R	R					R	į.	1	R F		F	C		- 1		
29-1, 90-92		F													F	F							R R			- 8	C		R		F		F						F F	C F		- 1		
30-1. 30-32															F	F								R			C				F	7	F				F		F	/				
31-1, 30-32								R							F	C									R	C	C R	R	R				F						F		-			
31, CC (25µ) 32-1, 30-32								F							c											С	C		R		F		F				R		F		C	- 1		
32-1, 30-32 32, CC (25µ)															C											-			K		r		r			,			r					
33-1, 30-32								F							F	C										C	C				F		F			1	R		F					
34-1, 30-32		R						F							F	F							R			C	C C R				F		F			1	R R		F					
34, CC (25µ)																																												
35, CC																																										- 1		
36, CC																																												
37, CC												12																_			 													

Figure 8. (Continued).

Figure 9. Common to abundant occurrences of diatom species with respect to the zonation used in the present report and paleomagnetic stratigraphy as established in piston cores from the Southern Ocean.

Figure 10. Distribution of selected species of diatoms with respect to the zones used in the present paper.

						Sites					
Zones	265	266	267, 267A	267B	268	269	270	271	272	273	274
Coscinodiscus lentiginosus	Core 1 2 3	Core 1 2-3-30	><		Core 1	Core 1 through 1-5, 130	Core 1 through 1-2, 40	><	Core 1 through 1-1, 145	Core 1 through 5, CC	Core 1 2-5, 30
Coscinodiscus elliptipora Antinocyclus ingens	Core 4 through	Core 2, CC 3 4	><			Core 1-6, 20 1, CC	><				2-5, 90 4, CC
Rhizosolenia baboi Nitzcshia kergueiensis	X		Core 1 Core 1A								\times
Coscinodisucs kolbei Rhizosolenia baboi			\times					\times			5-1, 120 8, CC
Cosmiodiscus insignis											\times
Nitzschia interfrigidaria	Core 13	Core 5				Core 2 2, CC					\times
Nitzschia pracinterfrigidaria	X	Core 7			\times						9-2, 90 9-6, 140
Denticula hustedtii		Core 8-1, 55 through 10-1, 0	Core 2	Core 2 3 4	Core 5 6 7	Core 3					10-1, 40 10, CC
Denticula hustedtii Denticula lauta	Core 15	Core 10-1, 90 through 12, CC	X	Core 5	X	Core 4 5 6-4, 140					11-1, 140 12, CC
Denticula lauta Denticula antarctica	X			Core 6 7 8		Core 6, CC 8, CC			Core 4 through 16-1, 113		\times
Denticula antarctica Coscinodiscus lewisianus	X	Core 13 14 15-3, 60		\times		Core 9			16-2, 64 17-3, 30		13-1, 90
Denticula antarctica	X	Core 16-1, 90 16, CC			X					Core 6 through 21A-1, 145	? 15, CC
Denticula Nicobarica	X	Core 17 18-2, 60									\nearrow
Coscinodiscus sp. 1	22-4, 60	Core 18-3, 60							18-1, 70 ? 38, CC	X	16-1, 78 ? 19, CC
Ryxilla prolungata	X										20-1, 30 34-1, 30

Figure 11. Distribution of diatom zones at Leg 28 drill sites.

Sou	thern Ocean			Equatorial Pacific				
This Paper	Donahue (1970 b)	Jouse (1962)	Schrader (1973)	Koizumi (1973)	Donahue (1970 a)	Burckle (1972)		
	N. kerguelensis	I	1		D. seminae			
C. lentiginosus	B. californica	II			1100			
			П		R. curviostris	Pseudoenoida		
C. elliptipora A. ingenus	A. ingens	ш	Ш			doliolus		
R. harhoi	R. barboi		IV		A. oculatus			
N. kerguelensis	[Base undefined]	IV ?	V ??????	???				
C. Kolhei			VI	D. seminae		Rhizosolenia		
R. barboi			VII	D. seminae				
C :	1		VIII	D. seminae	?	praehergonii		
C. insignis			???	D. kamtschatica				
N. interfrigidaria]		IX			???		
N. Interfrigiaaria			0.00			Nitzschia		
	1		??	D. kamtschatica		jouseana		
N. pracinterfrigidaria				D. Namischance				
			XI			Thalassiosira		
D. hustedtii			??? XII – XIV	D. hustedtii		convexa		
D. hustedtii	1		XV – XVIII					
D. lauta			XIX	D. hustedtii				
D. lauta			AIA	D. lauta				
D. antarctica			???					
D	-		xx					
D. antarctica C. lewisianus			XXI – XXIV	D. lauta				
	-							
D. antarctica			xxv	[Base undefined]	Я			
D. nicobarica	1		[Base undefined]					

Figure 12. Correlation of various areas of the Pacific based on diatom stratigraphy.

Coscinodiscus obovatus Castracane (1886) (Plate 5, Figure 6)

Description: Castracane (1886), p. 160, pl. 22, fig. 9. To this writer's knowledge this diatom has only been found in the Southern Ocean and only in Pliocene sediments.

Coscinodiscus praelineatus Jousé (1968) (Plate 5, Figure 5)

Description: Jousé (1968), p. 15, pl. 2, fig. 1.

Coscinodiscus radiatus Ehrenberg (1839)

Description: Hustedt (1930), p. 420, fig. 225.

Coscinodiscus stellaris var. symbolophorus (Grun.) Jorgensen (1905) (Plate 6, Figures 1-3)

Description: Hustedt (1930), p. 396, fig. 208.

Coscinodiscus tabularis Grunow (1884)

Description: Hustedt (1930), p. 427, fig. 230a. Hustedt (1958), p. 119, fig. 48-56.

Coscinodiscus vetutissimus Pantocsek (1903) (Plate 6, Figures 4-7)

Description: Hustedt (1930), p. 412, fig. 220.

Denticula hustedtii Simonsen and Kanaya (1961)

Description: Simonsen and Kanaya (1961), p. 501, pl. 1, fig. 19-25.

Denticula lauta Baily (1854)

Description: Simonsen and Kanaya (1961), p. 500-501, pl. 1, fig. 1-10.

Denticula nicobarica Grunow (1868)

Description: Simonsen and Kanaya (1961), p. 503, pl. 1, fig. 11-13.

Eucampia balaustium Castracane (1886) (Plate 16, Figure 8, 9)

Description: Hustedt (1958), p. 36, pl. 5, fig. 40-43.

Cestodiscus sp. Greville (1865) (Plate 3, Figures 1, 2) Hemiaulus polymorphus Grunow (1884) (Plate 9, Figure 1)

Description: Hustedt (1930), p. 880-881, fig. 525, 526.

Hemiaulus sp. 1 (Plate 9, Figure 2)

Hemidiscus karstenii Jousé (1962) (Plate 9, Figures 3, 4)

Description: Abbott (1972), p. 113-115, pl. 1, fig. D-F.

Liradiscus sp. (Plate 9, Figures 5, 6)

Liradiscus ovalis Greville (1865)

Description: Greville (1865), p. 5, pl. 1, fig. 15, 16. Hanna (1927), p. 114, pl. 19, fig. 4-6.

Nitzschia curta (Van Heurck) Hasle (1972)

Description: Hustedt (1958), p. 160-161, pl. 11, fig. 140-144, pl. 12, fig. 159.

Nitzschia interfrigidaria sp. nov. (Plate 9, Figures 7-9)

Description: Nitzschia interfrigidaria sp. nov.

Valves elliptical-linear, occasionally one side is slightly more curved than the other. Raphe marginal. Valve with large central hyaline area with scattered punctae. Valve margins strongly ribbed. Length $34-44\mu$, width $8-10\mu$.

Nitzschia kerguelensis (O'Meara) Hasle (1972)

Description: Hustedt (1958), p. 162-163, pl. 10, fig. 121-127. Hasle (1968), p. 205-208, fig. 1, 2, 7-9.

Nitzschia reinholdii Kanaya and Koizumi (1970) (Plate 16, Figures 4, 5)

Description: Kanaya and Koizumi (1970), p. 58. Schrader (1973), p. 708, pl. 4, fig. 12-16; pl. 5, fig. 1-9.

Nitzschia angulata Hasle (1972)

Description: Hustedt (1958), p. 163-164, pl. 10, fig. 113-120 (as N. rhombica).

Nitzschia ritscherii (Hustedt) Hasle (1972)

Description: Hustedt (1958), p. 164, pl. 11, fig. 133-136; pl. 12, fig. 153.

Pyxilla johnsoniana Grev. var. corniculum Brun (1893-1896) (Plate 11, Figures 1-3)

Description: Brun (1893-1896), p. 243, pl. 19, fig. 12, 13.

Pyxilla reticulata Grove and Strut (1887) (Plate 11, Figure 7)

Description: Grove and Strut (1887), p. 145, pl. 13, fig. 50. It is possible that this diatom is only a portion of *P. johnsoniana* and there should be synonomous with the same.

Pyxilla prolungata Brun (1890-1893) (Plate 11, Figures 4-6)

Description: Brun (1890-1893), p. 176, pl. 24, fig. 7.

Rhaphidodiscus marylandicus Christian (1887) (Plate 11, Figure 8)

Description: Hanna (1932), p. 208-210, pl. 14, fig. 3, 4.

Rhaphoneis sp. (Plate 11, Figures 9, 10)

Rhizosolenia barboi Brun (1894) (Plate 11, Figure 13)

Description: Donahue (1970b), p. 136, pl. 1, fig. B-C (as R. curvirostris v. inermes). Schrader (1973), p. 709, pl. 24, fig. 4-7.

Nitzschia praeinterfrigidaria sp. nov. (Plate 10, Figure 1)

Description: Nitzschia praeinterfrigidaria sp. nov.

Valves elliptical-linear with Raphe marginal. Valve surface incompletely striated by punctae, but with punctae more linearly organized than those of N. interfrigidaria. Valve margin ribbed but not as strongly as N. interfrigidaria. Length $25-40\mu$, width $7-10\mu$.

Pseudopyxilla americana (Ehr.) Forti (1909) (Plate 10, Figures 2, 3, 11)

Description: Sheshukova-Poretskaya (1967), p. 227, pl. 39, fig. 2. Schrader (1973), p. 708, pl. 10, fig. 22.

Pterotheca carinifera Grunow (1880-1881) in Van Heurck (Plate 10, Figure 4)

Description: Hanna (1927), p. 119, pl. 20, fig. 9, 10.

Pterotheca sp. 1 (Plate 10, Figures 8, 9)

Pterotheca sp. 2 (Plate 10, Figure 10)

Pyrogodiscus sp. (Plate 10, Figures 5-7)

Rhizosolenia hebeta (Bail) Gran forma hiemalis Gran (1904)

Description: Hustedt (1930), p. 590-592, fig. 337. Schrader (1973), p. 709, pl. 9, fig. 11, 13-17, 19-21, 24, 25.

Rouxia antarctica Heiden and Kolbei (1928) (Plate 12, Figure 3)

Description: Heiden and Kolbei (1928), p. 632, pl. 4, fig. 90. Hanna (1930), p. 185, pl. 14, fig. 8.

Rouxia california Peragallo in Tempere and Peragallo (1910)

Description: Hanna (1930), p. 186-188, pl. 14, fig. 6, 7. Schrader (1973), p. 710, pl. 3, fig. 18-20, 26.

Rouxia diploneides Schrader (1973) (Plate 11, Figures 11, 12)

Description: Schrader (1973), p. 710, pl. 3, fig. 24, 25.

This diatom is apprently the same as described by Schrader, with the exception that the apical ends of this diatom are not as sharp as those illustrated by Schrader (1973).

Rouxia naviculoides Schrader (1973) (Plate 11, Figures 14, 15)

Description: Schrader (1973), p. 710, pl. 3, fig. 27-32.

Rouxia peragalli Brun and Heribaud in Heribaud (1893) (Plate 12, Figures 1, 2)

Description: Hanna (1930), p. 180-184, pl. 14, fig. 1, 5.

Stephanogonia hanzawae Kanaya (1959) (Plate 12, Figure 6)

Description: Kanaya (1959), p. 118, pl. 11, fig. 3-7.

Stephanopyxis grunowii Grove and Strut in Schmidt (1888) (Plate 12, Figures 9, 10)

Description: Reinhold (1937), p. , pl. 25, fig. 12a, b. Schmidt (1888), pl. 130, fig. 1.

Stephanopyxis appendiculata Ehrenberg (1854) (Plate 12, Figure 7)

Description: Wornardt (1967), p. 17, pl. 1, fig. 12, 13.

Stephanopyxis turris (Grev. and Arn.) Ralfs in Pritchard (1861) (Plate 12, Figure 4)

Description: Hustedt (1930), p. 304-305, fig. 140.

Stephanopyxis antiqua Pantocsek (1883) (Plate 12, Figure 8)

Description: Wornardt (1967), p. 17, pl. 1, fig. 8.

Stephanopyxis barbadiensis (Greville) Grunow (1884) (Plate 12, Figures 11-14)

Description: Reinhold (1937), p. , pl. 15, fig. 14. Schmidt (1888), pl. 130, fig. 6, 7, 9, 10.

Stephanopyxis inermes Jousé (1961) (Plate 12, Figure 5)

Description: Jousé (1961), p. 60, pl. 1, fig. 2. Jousé (1959), pl. 2, fig. 13, 14.

Sticodiscus hardmanianus Greville (1865) (Plate 13, Figures 1-4)

Description: Hanna (1927), p. 121, pl. 21, fig. 1.

Synedra jouseana Scheshukova-Poretskaya (1962) (Plate 13, Figure 5)

Description: Sheshukova-Poretskaya (1970), p. 245, pl. 42, fig. 4a, b. Koizumi (1973), p. 833, pl. 6, fig. 17.

Thalassionema elegans Hustedt (1958) (Plate 13, Figure 6)

Description: Hustedt (1958), p. 140, pl. 9, fig. 93.

Thalassiosira antarctica ? Comber (?) (Plate 14, Figures 1, 2)

Description: Hustedt (1958), p. 108, pl. 3, fig. 1-3.

Thalassiosira gracilis (Karsten) Hustedt (1958) (Plate 14, Figure 3)

Description: Hustedt (1958), p. 109, pl. 3, fig. 4-7.

Triceratium sp. ? (Plate 14, Figures 4, 5)

Triceratium coscinoides Grove and Strut (1886) (Plate 14, Figures 6, 7)

Description: Grove and Strut (1886), p. 327, pl. 19, fig. 13.

Triceratium inelegans ? Greville (1866) (Plate 14, Figures 8, 9)

Description: Greville (1866), p. 8, pl. 2, fig. 21. Hanna (1932), pl. 17, fig. 1, 3. (as *T. condecorum*) Forti (1913), p. (68) 1616, pl. 9, fig. 8. (as *T. exornatum* v. typicum).

Triceratium pulvinar Schmidt (1888) (Plate 14, Figure 10)

Description: Schmidt (1888), pl. 126.

Trinacria excavata Heiberg (1863) (Plate 13, Figure 6)

Description: Hustedt (1930), p. 887, 888, fig. 532.

Trinacria pileolus (Ehr.) Grunow (1884) (Plate 15, Figure 3)

Description: Hustedt (1930), p. 885, 886. fig. 529.

Xanthiopyxis acrolophra Forti (1913) (Plate 15, Figures 4, 5)

Description: Forti (1913), p. , pl. , fig. 30. Kanaya (1959), p. 121, pl. 11, fig. 8. Hanna (1927), p. 124, pl 21, fig. 10, 11.

Xanthiopyxis globosa Ehrenberg (1844) (Plate 15, Figures 6-9)

Description: Hanna (1932), p. 224, pl. 18, fig. 3.

ACKNOWLEDGMENTS

The writer thanks the National Science Foundation (Office of Polar Programs) for providing support through the Antarctic Research Facility at the Florida State University.

The writer appreciates the opportunity to participate with the Deep Sea Drilling Project on Leg 28. Thanks are also extended to the crew, technicians, and fellow scientists aboard Glomar Challenger.

The writer is very grateful for the help of Mrs. Yang-Ja Chung, who prepared most of the samples and slides. Thanks are also due Mr. Dennis Cassidy, Mr. Larry Snee, Mr. Glenn Ray, Miss Jean Hasert, Mrs. LaVerne Lamb, and Mr. Andy Gombos for their help and advice at various times during this study. The writer thanks Dr. George DeVore for his continuing support for this area of study within the Department of Geology at Florida State University.

REFERENCES

Abbott, W.H., 1972. Vertical and lateral patterns of diatomaceous ooze found between Australia and Antarctica: Ph.D. thesis, University of South Carolina.

Bandy, O., Casey, R., and Wright, R., 1971. Late Neogene planktonic zonation, magnetic reversals, and radiometric dates, Antarctic to the tropics. *In Reid*, J.L. (Ed.), Antarctic Res. Ser. 15. Washington (Am. Geophys. Union).

Bailey, J.W., 1854. Notes on new species and localities of microscopical organisms: Smithsonian Contrib. Knowledge, 7, p. 16.

Blow, W.H., 1969. Late middle Eocene to recent planktonic foraminiferal biostratigraphy: Int. Conf. Plankt. Microfossils, 1st, Proc., Leiden, p. 1.

Brun, J., 1893-1896. Diatomee Miocenes: Le Diatomiste, v. 2, p. 229-247.

_____, 1890-1893. Notes sur quelques especes nouvelles: Le Diatomiste, v. 1, p. 173-177.

Burckle, L.H., 1972. Late Cenozoic planktonic diatom zones from the eastern equatorial Pacific: Nova Hedwigia, Beihft., v. 39, p. 217.

Castracane, D.A., 1886. The voyage of H.M.S. Challenger: Report on the Diatomacae. Botany 2. Edinburgh.

Christian, T., 1887. New diatomaceous deposits: The Microscope, v. 7, p. 65.

Ciesielski, P. and Weaver, F., 1973. Southern Ocean Pliocene paleotemperatures based on silicoflagellates from deep sea cores: Antarctic J. U.S., v. 8, p. 295.

Code of Stratigraphic Nomenclature, 1961. Am. Assoc. Petrol. Geol. Bull. 45, no. 5.

Donahue, J.G., 1970a. Diatoms as quaternary biostratigraphic and paleoclimatic indicators in high latitudes of the Pacific Ocean: Ph.D. thesis, Columbia University, New York.

North Pacific sediments: Geol. Soc. Am. Mem. No. 126, p.

Ehrenberg, C.G., 1839. Uber noch jetzt zahlreich lebende Polythalamien: Abh. Kgl. Akad. Wiss. Berlin, 81.

______, 1841 (1843). Verbreitung und Einfluss des mikroskopirchen Lebens in Sud-und Nord-Amerika: Abh. Konig. Akad. Wiss. Berlin Physik, p. 291-446.

______, 1844. Uber 2 neue Lager von Gebirgsmassen aus Infusorien als Meeres-Absatz in Nord-Amerika und eine Vergleichung derselben mit den organischen Kreide-Gebilden in Europa und Afrika: Ber. Akad. Wiss. Berlin, p. 273.

- Forti, D.A., 1909. Studi per una Monografia del genere *Pyxilla* (diatomee) e dei generi affini: Nuova Notariria, v. 20, p. 5
- Diagnoses Diatomacearum quarumdam fossilium italicarum: Atti del reale instituto Veneto di Scienze. Lettere ed Arti, Anno accademico 1912-1913. Venezia.
- Gran, H.H., 1904. Die Diatomeen der Arktischen Meere. I: Die Diatomeen des Planktons in "Fauna Arctica," auf Grund der Erg. der deutschen Expedition in das Nordliche Eismeer im Jahre 1898. v. 4, p. 511, Jena.
- Greville, R.K., 1862. On the Asterolamprae of the Barbadoes Deposit: Trans. Micro. Soc., v. 10.
- , 1865. Descriptions of new and rare diatoms Series XIV and XVI: Trans. Micro. Soc., v. 12.
- ______, 1866. Descriptions of new and rare diatoms. Series XVIII: Micro. Soc. Trans., v. 14.
- Grove, E. and Strut, G., 1886-1887. On a fossil marine diatomaceous deposit from Oamaru, Otago, New Zealand. Parts I-IV: Quekett Micro. Club J. Ser. 11, 111, 1887.
- Grunow, A., 1868. Reise Seiner Majestat Freqatte "Novara" um die Erde: Botan. Tiel., 1, Algen.
- Hanna, G.D., 1927a. The lowest known Tertiary diatoms in California: J. Paleontol., 1, No. 2, 1972.
- ______, 1927b. Cretaceous diatoms from California: Calif. Acad. Sci. Occasional Papers, v. 13.
- _____, 1930. A review of the genus Rouxia: J. Paleontol., v. 4, no. 2.
- ______, 1932. The diatoms of Sharktooth Hill, Kern County, California: Calif. Acad. Sci. Proc. XX, no. 6.
- Hasle, G.H., 1968. Observation on the marine diatom Fragilariopsis kerquelensis (O'Meara) Hust. in the scanning electron microscope: Nytt Mag. Botanikk, v. 15, p. 205-208
- , 1972. Fragilariopsis Hustedt as a section of the genus Nitzschia Hassall: Nova Hedwigia Beihefte, v. 30, p. 111-119.
- Hays, J. and Opdyke, N., 1967. Antarctic radiolaria, magnetic reversals, and climatic change: Science, v. 158, no. 3804, p. 1001-1011.
- Heiberg, P.A.C., 1863. Conspectus Criticus. Diatomacearum Danicarum. De Danske Diatomeer: Kjoenhaven (Wilhelm Priors Forlag).
- Heiden, H. and Kolbe, R.W., 1928. Die Mariners Diatomeen der deutschen sudpolar-Expedition, 1901-03. Duetsche Sudpolar-Expedition 1901-03, herausgegeben von Erich von Drygalski, Bd. 8 (Botanik), Heft 5, S. 447-715, Taf. 31-43. Berlin and Leipzig.
- Hendey, N.I., 1964. An introductory account of the smaller algae of British coastal waters. Part V, Bacillariophyceae (Diatoms): London (Fishery Investigations), ser. 4, p. 1-317.
- Heribaud, J., 1893. Les Diatomees d'auvergne.
- Hustedt, F. 1930. Die Kieselalgen Deutschland, Oesterreichs und der Schweiz mit Berucksichtigung der Uberigen Lander Europas sowie der angrenzenden Meerese-gebiete. In Dr. Rabenhorst's Kryptogamen-Flora von Deutschland, Oesterreichs und der Schweiz. Part 1.
- Hustedt, F., 1958. Diatomeen aus der Antarktis und dem Sudatlantik: Duetsche Antarktische Exped. v. 2, p. 103
- Janisch, C. 1891. Diatomeen der Gazelle-Expedition 1874-1876: Tafelerkl (von O.N. Witt).
- Jorgensen, E., 1905. The Protist plankton and the diatoms in bottom samples in Nordgaard, "Hydrographical and

- Biological investigations in Norwegian Fjords." Bergens Museum skrift: Bergen John Grieg.
- Jousé, A.P., 1959. Principal development stages of marine diatoms of the Far East in the Tertiary and Quaternary periods (in Russian): Botanical Jl., v. 44, no. 1, p. 44-55.
- the Far East (in Russian): Botanical Material, Spore-Bearing Plants, XIV.
- ______, 1968. Species novae Bacillariophytorum in sedimentis fundi oceani Pacifici et Maris Ochotensis in Ventae. Novitates Systematicae Plantarum nou vascularium: Acad. Sci. U.S.S.R., p. 12-22.
- Jousé, A.P., Koroleva, G., and G. Nagaieva, 1962. Stratigraphic and Paleographic investigations in the Indian sector of the Southern Ocean (in Russian, English summary): Trud. Inst. Okenol., v. 41, p. 19-92.
- Kanaya, R., 1959. Miocene diatom assemblages from the Onnagawa Formation and their distribution in the correlative formations in Northeast Japan: Sci. Rept. Tohoku Univ. 2nd Ser. (Geol.), v. 30, p. 1.
- Kanaya, R. and Koizumi, I., 1970. The progress in the younger Cenozoic diatom biostratigraphy in the Northern Circum-Pacific region: J. Mar. Geol. Japan., v. 6, p. 47.
- Karsten, G., 1905. Das phytoplankton des Antarktischen Meerer nach dem material der deutschen Tiefsee-Expedition, 1898-1899: Deutsche Tiefsee-Exped., v. 2, no. 2.
- Koizumi, I., 1968. Tertiary diatom flora of Oga Peninsula, Akita Prefecture, Northeast Japan: Sci. Rept. Tohoku Univ., 2nd ser., v. 40, no. 3.
- _____, 1973. The stratigraphic ranges of marine planktonic diatoms and diatom biostratigraphy in Japan: Mem. Geol. Soc. Japan, no. 8, p. 35-44.
- Long, J., Fuge, D., and Smith, J., 1946. Diatoms of the Moreno Shale: J. Paleontol., v. 20, no. 2.
- McCollum, D.W., 1972. Neogene genus *Trinacria* as a stratigraphic marker in Southern Ocean sediments: Antarctic J. U.S., v. 7, no. 5.
- McCollum, D.W., 1973. Denticula kutzing in Southern Ocean sediments: Antarctic J. U.S., v. 8, no. 5.
- Pantocsek, J., 1903. Beitrage zur Kenntnis der fossilen Bacillarien Ungarnis: Marine Bacillarien., pt. 1.
- Pritchard, A., 1861. History of infusoria, including the Desmidiaceae and Diatomaceae, British and foreign: London (Whittaker & Co.).
- Rattray, J., 1890. A revision of the genus Actinocyclus Ehr.) J. Quekett Micros. Club., ser. 2, v. 4, p. 136-212.
- Rheinhold, T., 1937. Rossil diatoms of the neogene of Java and their zonal distribution: Verh. Geol.—Mi-jn.—Genootschap., Geol., ser. 12, v. 43.
- Riedel, W. and Sanfillipo, A., 1970. Radiolaria, Leg 4, Deep Sea Drilling Project. In Bader, R.E., Gerard, R.D., et al., Initial Reports of the Deep Sea Drilling Project, Volume 4: Washington (U.S. Government Printing Office), p. 503.
- Schrader, H.J., 1973. Cenozoic diatoms from the Northeast Pacific, Leg 18. In Kulm, L.D., von Huene, R., et al. Initial Reports of the Deep Sea Drilling Project, Volume 18: Washington (U.S. Government Printing Office), p. 673.
- Sheshukova-Poretskaya, V.S., 1962. Novie i redkie Bacillariorphyta iz diatomovoi sviti Sakhalina. Uchenie Zapiski Igu, Ser. Biol. Nauk (Leningrad Univ.), v. 49. p. 203.

- _____, 1967. Neogenowye morskie diatomowye wodorosli sachalina i kamuatki. Verlag Leningrader Univ. (Leningrad), p. 5.
- Simonsen, R. and Kanaya, T., 1961. Notes on the marine species of the diatom genus *Denticula* Kutz: Int. Rev. ges. Hydrobiol., v. 46, no. 4, p. 498-513.
- Tempere, J. and Peragallo, H., 1910. Diatomees du Monde Entier: Ed. 2, 30 fasc. Arcachon, Grez-sur-Loing (S.-et-M.), pt. 1, 209.
- Van Heurck, H., 1880-1885. Synopsis des diatomees de Belgique: Anvers, p. 235.
- Watkins, N. and Kennett, J., 1972. Regional sedimentary disconformities and upper Cenozoic changes in bottom water velocities between Australia and Antarctica. *In* Hayes, D.E., (Ed.), Antarctic Oceanology II. Antarctic Res. Ser. 19: Washington (Am. Geophys. Union).
- Wornardt, W.W., 1967. Miocene and Pliocene marine diatoms from California. Occ. Papers. Calif. Acad. Sci., no. 63, p. 108

Figures 1, 2

Actinocyclus diviscus.

1. Sample 266-2-2, 120-122 cm, diameter 67μ .

2. Sample 274-1-4, 80-82 cm, diameter 48μ .

Figures 3-6

Actinopthycus undulatus 3, 4. Sample 272-38, CC, diameter 43μ . 5, 6. Sample 274-20, CC, diameter 74μ .

Figures 1, 2 Asteromlampra affinis.
 Sample 274-24-1, 58-60 cm, diameter 87μ.

 Figures 3, 4 Asteromlampra vulgaris.
 Sample 274-22-1, 60-62 cm diameter 33μ.

 Figures 5, 6 Aulacodiscus brownii.
 Sample 272-18, CC, diameter 89μ.

Figures 1, 2 Cestodiscus sp. Sample 274-6, CC, diameter 50μ .

Figures 3-5 Biddulphia angulata?. Sample 274-20, CC, diameter 65μ.

Figures 1, 2	Coscinodiscus apiculatus. Sample 274-15, CC, diameter 89µ.
Figures 3, 4	Coscinodiscus flexosus. Sample 265-16, CC, diameter 22μ.
Figures 5, 6	Coscinodiscus endoi. Sample 265-16, CC, diameter 31μ.
Figures 7-9	Coscinodiscus kolbei. Sample 274-6, CC, diameter 77µ.

Figure 1 Coscinodiscus lentiginosus.
 Sample 266-1-3, 70-72 cm, diameter 55μ.
 Figures 2-4 Coscinodiscus lewisianus.
 2, 3. Sample 266-14-2, 60-62 cm, diameter 58μ.
 4. Sample 266-14-2, 60-62 cm, diameter 41μ.
 Figure 5 Coscinodiscus praelineatus.
 Sample 274-22-1, 60-62 cm, diameter 50μ.
 Figure 6 Coscinodiscus obovatus.
 Sample 266-5-4, 130-132 cm, length 67μ, width 48μ.
 Figures 7, 8 Coscinodiscus nodulifer.
 Sample 274-23-1, 30-32 cm, diameter 37μ.

Figures 1-3 Coscinodiscus stellaris v. symbolophorus.
1. Sample 274-19, CC, diameter 82μ.
2, 3. Sample 274-6, CC, diameter 50μ.

Figures 4-7 Coscinodiscus vetutissimus. Sample 266-17-5, 63-65 cm, diameter 70μ.

Figures 1-4 Coscinodiscus sp. 3. Sample 274-6, CC, diameter 54μ .

Figures 1, 2

 Coscinodiscus sp. 2.
 Sample 274-6, CC, diameter 42μ.
 Sample 274-6, CC, diameter 48μ.

 Figure 3

 Coscinodiscus sp. 1.
 Sample 266-19, CC, diameter 29μ.

 Figure 4

 Cosmiodiscus intersectus.
 Sample 271-16, CC, diameter 48μ.

 Figure 5

 Cosmiodiscus insignis.
 Sample 266-5-2, 130-132 cm, diameter 31μ.

 Figures 6-10

 Denticula antarctica.
 Sample 274-15-1, 90-92 cm, length 45μ, width 7μ.
 Sample E 36-16, length 40μ, width 6μ.
 Sample 274-15-1, 90-92 cm, length 47μ, width 7μ.
 Sample E 36-16, length 35μ.

PLATE 8

Figure 1 Hemiaulus polymorphorus.
 Sample 274-20, CC, length 38μ, width 29μ.

 Figure 2 Hemiaulus sp.
 Sample 274-20, CC, length 53μ, width 28μ.

 Figures 3, 4 Hemidiscus karstenii.
 Sample 266-6-3, 120-122 cm, length 50μ, width

 36μ .

Figures 5, 6

Liradiscus sp.
5. Sample 274-9-3, 110-112 cm, length 19μ , width 9μ .
6. Sample 274-15-1, 90-92 cm, length 30μ , width

 12μ .

Figures 7-9 Nitzschia interfrigidaria. 7. Sample 266-6, 110-112 cm, length 34μ , width 8μ . 8. Sample 266-5, 120-122 cm, length 44μ , width 8μ . 9. Sample 266-5, 120-122 cm, length 47μ , width 7μ .

Figure 1 Nitzschia praeinterfrigidaria. Sample 274-1, 130-132 cm, length 27μ , width 7μ . Figures 2, 3, 11 Pseudopyxilla americana. 2, 3. Sample 274-20-6, 130-132 cm, length 53μ . 11. Sample 274-31, 30-32 cm, length 50μ . Figure 4 Pterotheca carinifera. Sample 274-20-1, 145-147 cm, length 77μ . Figures 5-7 Pyrogodiscus sp. Sample 274-20-1, 145-147 cm, diameter 36µ. Pterotheca sp. 1. Sample 274-30-1, 30-32 cm, length 80μ , width 11μ . Figures 8, 9 Figure 10 Pterotheca sp. 2. Sample 274-31-1, 30-32 cm, length 27μ , width 13μ .

Figures 1-3 Pyxilla johnsoniana v. corniculum. 1, 2. Sample 274-20, CC, length 79μ , width 22μ . 3. Sample 274-20-1, 145-147 cm, length 77μ , width 21μ . Figures 4-6 Pyxilla prolungata. 4, 5. Sample 274-20, CC, length 65μ. 6. Sample 274-20, CC. Figure 7 Pyxilla reticulata. Sample 274-22-1, 60-62 cm, length 16μ , width 15μ . Figure 8 Rhaphidodiscus marylandicus. Sample 266-15-2, 60-62 cm, length 52μ , width 48μ . Figures 9, 10 Rhaphoneis sp.

9. Sample 266-17-2, 60-62 cm, length 32μ .
10. Sample 266-17-2, 60-62 cm, length 28μ .

Figures 11, 12 Rouxia diploneides. Sample 274-6-2, 40-42 cm, length 67μ .

Figure 13 Rhizosolenia barboi. Sample 274-16-1, 78-80 cm, approximately 20μ.

Figures 14, 15 Rouxia naviculoides. Sample 266-6-4, 120-122 cm. 14. Length 21μ . 15. Length 20μ .

Figures 1, 2 Rouxia peragalli. Sample 274-11-1, 140-142. 1. Length 32μ . 2. Length 50μ . Figure 3 Rouxia antarctia. Sample 274-1-5, 80-82 cm, length 42μ . Figure 4 Stephanopyxis turris. Sample 274-17, CC, length 29μ . Figure 5 Stephanopyxis inermes. Sample 274-16, CC, length 38μ . Figure 6 Stephanogonia hanzawae. Sample 274-10-6, 40-42 cm, diameter 15μ . Figure 7 Stephanopyxis appendiculata. Sample 274-20, CC, diameter 48μ . Figure 8 Stephanopyxis antiqua. Sample 274-20, CC, diameter 60μ . Figures 9, 10 Stephanopyxis grunowii. Sample 274-20, CC, diameter 63μ . Stephanopyxis barbadiensis. 11, 12. Sample 274-19, CC, length 38μ . 13, 14. Sample 274-18, CC, length 31μ . Figures 11-14

Figures 1-4

Sticodiscus hardmanianus. Sample 274-26-1, 30-32 cm, diameter 55μ .

Figure 5

Synedra jouseana. Sample 266-14-2, 60-62 cm, length 77μ .

Figure 6

Thalassionema elegans. Sample 274-1-2, 95-97 cm, (broken specimen), length 63μ , width 5μ .

Figures 1, 2 Thalassiosira antarctica?. Sample 274-1-2, 130-132 cm, diameter 91µ. Figure 3 Thalassiosira gracilis. Sample 274-6, CC, diameter 53μ . Figures 4, 5 Triceratium sp. Sample 274-28-1, 30-32 cm, length of side 53μ . Figures 6, 7 Triceratium coscinoides. Sample 274-31, CC, length of side 72μ . Figures 8, 9 Triceratium inelegans?. Sample 274-21-5, 80-82 cm. 8. Length of side 29μ . 9. Length of side 34μ .

Sample 274-24-1, 58-60 cm, length of side 120μ .

Triceratium pulvinar.

Figure 10

Figures 1, 2 Trinacria excavata.

Sample 274-19, CC, length of side 72μ.
 Sample 269-7, CC, length of side 90μ

Figure 3 Trinacria pileolus. Sample 274-19, CC, length of side 48μ .

Figures 4, 5 Xanthiopyxis acrolophra. Sample 274-20-1, 145-147 cm, length 43μ , width 21μ .

Figure 6-9 Xanthiopyxis globosa. Sample 274-31, CC. 7, 8. Length 31μ . 6, 9. Length 54μ .

Figure 1 Coscinodiscus bullatus. Sample 274-6, CC, diameter 83μ . Figures 2, 3 Coscinodiscus marginatus. Sample E 13-17, 2050 cm., diameter 55μ . Figures 4, 5 Nitzschia reinholdii. 4. Sample 266-7-3, 125-127 cm, length 50μ . 5. Sample 266-7-2, 120-122 cm, length 80μ . Pterotheca carinifera. Figures 6, 7 Sample 274-20-1, 145-147 cm, length 77μ . Figure 8, 9 Eucampia balaustium. 8. Sample 274-1-4, 130-132 cm, length 43, width 9. Sample 274-1-2, 60-62 cm, length 19, width 23μ . Figure 10 Coscinodiscus elliptipora. Sample E 14-8, 540 cm, diameter 55μ .

