3. SITE 443, SHIKOKU BASIN, DEEP SEA DRILLING PROJECT LEG 58

Shipboard Scientific Party1

HOLE 443

Date occupied: December 28, 1977 Date departed: January 4, 1978 Time on hole: 6 days

Position (latitude; longitude): 29° 19.65' N; 137° 26.43' E

Water depth (sea level; corrected m, echo-sounding): 4372.0

Water depth (rig floor; corrected m, echo-sounding): 4386.0

Bottom felt (m, drill pipe): 4386.0

Penetration (m): 581.5

Number of cores: 64

Total length of cored section (m): 581.5

Total core recovered (m): 304.5

Core recovery (%): 52

Oldest sediment cored: Depth sub-bottom (m): 475.0 Nature: mudstone Age: early middle Miocene (15 m.y.) Measured velocity (km/s): 1.56

Basement:

Depth sub-bottom (m): 581.5 Nature: basalt Velocity range (km/s): 3.82–5.82

Principal Results: Site 443 is in the east-central part of the Shikoku Basin. The stratigraphic section consists of 44 meters

of Pleistocene mud; 77 meters of Pleistocene nannofossil clay, clayey nannofossil ooze, and ash; 57 meters of Pliocene ash and clay; 24 meters of Pliocene mud; 57 meters of Miocene mud and nanno ooze; 31 meters of Miocene mudstone; 45 meters of Miocene nannofossil chalk and mudstone: 98 meters of Miocene claystone, mudstone, ash and chalk; 35 meters of phyric-olivine-basalt flow, with hydrothermal veins; 34 meters of pillow-lava flows; and 47 meters of interbedded phyric-basalt flows and pillow-lava flows. Continuous sedimentation started with middle Miocene resedimentation of volcaniclastic, hemipelagic, and pelagic sediments and was then dominated by post-middle-Miocene hemipelagic sedimentation slightly above the CCD. The age of the oldest sediment is 15 m.y., providing a basement age at variance with the magnetic-anomaly age. Magnetic inclination of basalts shows a combination of reversed polarity and normal polarity, with both high and low inclinations.

BACKGROUND AND OBJECTIVES

Background

The background and objectives for Site 443 are directly related to and coordinated with the background and objectives reviewed for Site 442.

Site 443 is in the Shikoku Basin, which provides a unique testing ground for the rifting model of the origin of marginal basins. The marine geology of the Shikoku Basin was summarized by Karig, Ingle, et al. (1975); Tomoda et al. (1975); Kobayashi and Isezaki (1976); and Watts and Weissel (1975). The magnetic-anomaly pattern of the Shikoku Basin is linear (Tomoda et al., 1975), and age determinations of these patterns by Kobayashi and Isezaki (1976), Watts and Weissel (1975), and Kobayashi and Nakata (1977) suggested a symmetrical-spreading history for the Shikoku Basin. Spreading originated from a now-extinct spreading center about 28 Ma and ceased at about 18 Ma.

Basement age determination was attempted (Karig, Ingle, et al., 1975) during Leg 31 of the Deep Sea Drilling Project when Site 297 was drilled; however, drilling there failed to reach basement. Drilling at Site 442 permitted determination of basement age, (18-21 m.y.), which is in agreement with location of that site on magnetic anomaly 6 (see Site 442 report, this volume). Drilling results at Site 442 demonstrated that during the earlier history of rifting pelagic carbonates and zeolitic clays were deposited, but later and also during the period following spreading deposition of hemipelagic clay was dominant. These hemipelagic clays were part of the distal zone of a large clastic wedge which thickens westward towards the Kyushu-Palau Ridge. The dom-

¹ George deVries Klein (Co-Chief Scientist), Department of Geology, University of Illinois, Urbana, Illinois; Kazuo Kobayshi (Co-Chief Scientist) Ocean Research Institute, University of Tokyo; Stan M. White, Deep Sea Drilling Project, Scripps Institution of Oceanography, La Jolla, California; Hervé Chamley, Laboratoire de Géologie Marine, Centre d'Océanographie, Centre Universitaire de Luminy, Marseille, France (now at Université de Lille I, Villaneuve d'Ascq, France); Doris Curtis, Bellaire Research Center, Shell Development Company, Houston, Texas; Atsuyuki Mizuno, Geological Survey of Japan, Kawasaki, Japan; Henry Dick, Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts; Gennady V. Nisterenko, Vernadasky Institute of Geochemistry and Analytical Chemistry, USSR Academy of Sciences, Moscow, USSR; Nicholas G. Marsh, Department of Geological Sciences, University of Birmingham, Birmingham, England; Douglas Waples, Chemistry and Geochemistry Department, Colorado School of Mines, Golden, Colorado; Dorothy Jung Echols, Department of Earth and Planetary Sciences, Washington University, St. Louis, Missouri; Hisatake Okada, Department of Geology, Faculty of Science, Yamagata University, Yamagata, Japan; Jon R. Sloan, Department of Geology, University of California, Davis, California; David M. Fountain, Department of Geology, University of Montana, Missoula, Montana; and Hajimu Kinoshita, Department of Earth Sciences, Faculty of Science, Chiba University, Tokyo, Japan.

inance of hemipelagic sediments at Site 442 is at variance with the occurrence of turbidites, thick ashes, and clayey nannofossil oozes at Site 297.

The nature of the crust underlying marginal basins has been of interest. Several investigators demonstrated that marginal basins are underlain by oceanic crust (Fischer, Heezen, et al., 1971; Andrews, Packham, et al., 1975; Ridley et al., 1974). Drilling at Site 442 demonstrated that the Shikoku Basin is underlain also by oceanic basalts, but these basalts are characterized by a higher-than-normal vesicularity, and they lack olivine.

Site 443 was positioned on a moderate positive magnetic anomaly, identified as anomaly 6A, on the eastern side of a hypothetical extinct spreading center in the Shikoku Basin. This site was located along a seismicreflection profile surveyed by the R/S *Kaiyo-Maru* (IPOD, Japan, 1977), shown in Figure 1. The seismic survey line obtained by the D/V *Glomar Challenger* is shown in Figure 2. The survey track is shown in Figure 3.

Objectives

The primary drilling objectives at Site 443 were threefold. Of prime importance was the determination, from paleontological study, of the age of the basaltic basement, so as to calibrate the magnetic-anomaly age determination of previous studies and thus test the proposed symmetrical-spreading origin of the Shikoku Basin.

A second objective was the determination of the mineralogy, petrology, and chemical composition of the basaltic floor of the Shikoku back-arc basin and comparison of these findings with new findings at Site 442 concerning composition, vesicularity, and olivine content. These data are also to be compared to oceaniccrust data from other settings. In addition, the paleomagnetic ages of the basaltic columnar section were to be determined to understand the crustal evolution of this and other back-arc basins.

A third objective deals with the nature of sediment dispersal into the Shikoku Basin. Prior drilling at Sites 297 and 442 indicated derivation of sediment from Shikoku Island and the Kyushu-Palau Ridge. Do the sediments at Site 443 represent supply from a third source or from one or both of the sources known to date? Finally, because Site 443 is near a southerly meandering portion of the Kuroshio Current, is there evidence of higher biogenic productivity at this site, as suggested, for instance, at Site 297 by Karig, Ingle, et al. (1975)?

OPERATIONS

The *Glomar Challenger* departed Site 442 for Site 443 at 2242 hours, 27 December 1977. Upon departure, a sonobuoy was run; then a course of 072° was followed to the Site 443 area, approximately 72 nautical miles to the northeast (Figure 3).

At 1000 hours, 28 December, a 13.5-kHz beacon was dropped. Following a Williamson turn, the ship returned to the site of the beacon drop and began positioning procedures. PDR water depth to drill floor was calculated as 4382 meters. At 1241 hours, positioning over the beacon was achieved, and at 1300 hours the bottom-hole assembly was made up and running in hole began.

Probing for bottom began at 2130 hours, spudding and run-in to take first core occurring at 2200 hours. The first core, recovering 6.86 meters of sediment, was on deck at 2258 hours (Table 1).

Basalt was first recovered in Core 49 at approximately 460 meters sub-bottom depth (Table 1). Coring continued through Core 63, uneventful except for a 1-hour wait on weather following retrieval of Core 55. High winds at this time caused a 200-foot excursion of the ship from the beacon.

Following retrieval of Core 63, high winds (gusts to 40 mph), along with sea conditions causing pitches up to 7°, forced termination of drilling at Site 443 at 0715 hours, 3 January 1978. Accordingly, operations to pull out of the hole began. The bit reached the mudline at 0900 hours, and at that time Core 64, the last core taken before termination, was retrieved. It was cored from

Figure 1. Seismic-survey line through Shikoku Basin by R/V Kaiyo Maru.

Figure 2. Glomar Challenger seismic-reflection profile approaching Site 443. See Figure 3 for location.

Figure 3. Site location map.

577.0-581.5 meters sub-bottom depth. Bit life at this site was 50.2 hours, 45.5 hours in basalt.

At 0018 hours, 4 January 1978, the bit was on the drill floor, and at 0042 hours preparations were made to head for Site 444.

SEDIMENT LITHOLOGY

A single-bit hole was drilled at Site 443. The drill string penetrated 581.5 meters, of which 457 meters were sediment. Forty-nine sediment cores were recovered, ranging in age from early middle Miocene (about 15 m.y.) to late Quaternary.

Five lithologic units were recognized, according to color of the fresh sediment, the nature of the dominant paleontological and mineralogical components, and sedimentary structures. Table 2 and Figure 4 summarize the stratigraphy for Site 443; Table 3 summarizes the color and main smear-slide data.

Unit I

Unit I is present in Cores 433-I through 443-13. It is 121 meters thick and consists of dominantly darkgreenish-gray (5GY4/1), soft to firm mud, without noticeable sedimentary structure. The nature of the main sedimentary components allows further subdivision into two sub-units. Sub-unit Ia (Cores 1 to 5-CC, 0 to 44.8 m) is a mud with ash interbeds or streaks. The silt-sized fraction constitutes about 20 per cent of the

TABLE 1 Site 443 Coring Summary

	Date (Dec., 1977		Depth From Drill Floor	Depth Below Sea Floor	Length	Pacovaru	Pacovary
Cores	Jan., 1978)	Time	Top Bottom	Top Bottom	(m)	(m)	(%)
443-1	28	2258	4386.0-4393.0	0.0- 7.0	7.0	6.86	98
2	29	0016	4393.0-4402.5	7.0- 16.5	9.5	5.99	63
3	29	0132	4402.5-4412.0	16.5- 26.0	9.5	9.27	98
4	29	0247	4412.0-4421.5	26.0- 35.5	9.5	4.88	51
5	29	0358	4421.5-4431.0	35.5- 45.0	9.5	5.28	56
6	29	0559	4431.0-4440.5	45.0- 54.5	9.5	7.79	82
7	29	0717	4440.5-4450.0	54.5- 64.0	9.5	9.20	97
.8	29	0835	4450.0-4459.5	64.0- 73.5	9.5	6.18	65
9	29	0948	4459.5-4469.0	73.5- 83.0	9.5	8.72	92
10	29	1112	4469.0-4478.5	83.0- 92.5	9.5	9.34	98
11	29	1230	4478.5-4488.0	92.5-102.0	9.5	8.43	89
12	29	1351	4488.0-4497.5	102.0-111.5	9.5	2.34	25
13	29	1517	4497.5-4507.0	111.5-121.0	9.5	0.55	6
14	29	1637	4507.0-4516.5	121.0-130.5	9.5	8.72	92
15	29	1745	4516.5-4526.0	130.5-140.0	9.5	9.48	99+
16	29	1908	4526.0-4535.5	140.0-149.5	9.5	2.60	27
17	29	2031	4535.5-4545.0	149.5-159.0	9.5	5.48	58
18	29	2148	4545.0-4554.5	159.0-168.5	9.5	4.43	47
19	29	2311	4554.5-4564.0	168.5-178.0	9.5	3.10	33
20	30	0045	4564.0-4573.5	178.0-187.5	9.5	2.77	29
21	30	0157	4573.5-4583.0	187.5-197.0	9.5	2.33	25
22	30	0322	4583.0-4592.5	197.0-206.5	9.5	3.06	32
23	30	0443	4592.5-4602.0	206.5-216.0	9.5	6.31	66
24	30	0602	4602.0-4611.5	216.0-225.5	9.5	3 93	41
20	30	0025	4011.5-4020.0	225.5-255.0	0.0	3.33	
26	30	0835	4620.0-4629.5	235.0-244.5	9.5	3.22	34
21	30	0952	4629.5-4639.0	224.5-254.0	9.5	5.43	57
20	30	1112	4639.0-4648.5	254.0-203.5	9.5	6.75	24
30	30	1347	4658.0-4667.5	273.0-282.5	9.5	3.00	32
31	30	1515	4667 5-4677 0	282 5-292 0	9.5	6.91	73
32	30	1634	4677.0-4686.5	292.0-301.5	9.5	1.66	17
33	30	1757	4686.5-4696.0	301.5-311.0	9.5	3.64	38
34	30	1907	4696.0-4705.5	311.0-320.5	9.5	6.77	71
35	30	2026	4705.5-4716.0	320.5-330.0	9.5	3.38	36
36	30	2145	4716.0-4725.5	330.0-339.5	9.5	7.10	75
37	30	2302	4725.5-4735.0	339.5-349.0	9.5	1.60	17
38	31	0030	4735.0-4744.5	349.0-358.5	9.5	1.75	18
39	31	0155	4744.5-4754.0	358.5-368.0	9.5	2.52	27
40	31	0320	4754.0-4763.5	368.0-377.5	9.5	3.15	33
41	31	0437	4763.5-4773.0	377.5-387.0	9.5	0.99	10
42	31	0548	4773.0-4782.5	387.0-396.5	9.5	2.05	22
43	31	0/15	4782.5-4792.0	396.5-406.0	9.5	3.38	30
44	31	1001	4792.0-4801.5	406.0-415.5	9.5	2.87	30
16	21	1124	4811 0 4820 5	425 0 424 5	0.5	3.65	28
40	31	124	4870 5-4830 0	423.0-434.3	9.5	0.91	10
48	31	1410	4830 0-4839 5	444 0-453 5	9.5	1.65	17
49	31	1653	4839 5-4849.0	453.5-463.0	9.5	5.30	56
50	31	2042	4849.0-4858.5	463.0-472.5	9.5	4.92	52
51	31	2212	4858.5-4863.5	472.5-477.5	5.0	0.17	3
52	1	0218	4863.5-4868.0	477.5-482.0	4.5	4.52	100
53	ĩ	0810	4868.0-4877.5	482.0-491.5	9.5	4.19	44
54	1	1427	4877.5-4887.0	491.5-501.0	9.5	10.28	108
55	1	1653	4887.0-4890.5	501.0-504.5	3.5	2.82	81
56	1	1935	4890.5-4896.5	504.5-510.5	6.0	4.49	75
57	1	2230	4896.5-4906.0	510.5-520.0	9.5	2.60	27
58	2	0436	4906.0-4915.5	520.0-529.5	9.5	5.77	61
59	2	0857	4915.5-4925.0	529.5-539.0	9.5	6.56	69
60	2	1317	4925.0-4934.5	539.0-548.5	9.5	8.61	91
61	2	1912	4934.5-4944.0	548.5-558.0	9.5	5.28	56
62	3	0016	4944.0-4953.5	558.0-567.5	9.5	4.60	48
63	3	0449	4953.5-4963.0	567.5-577.5	9.5	10.30	108
64	3	1010	4963.0-4967.5	577.5-581.5	4.5	4.38	97

sediment; clay minerals form the main component (more than 70%), followed by siliceous fossils (radiolarians 4%, diatoms 2%, sponge spicules 1%), quartz and feldspars (4%), and transparent volcanic glass (3%). In the ash layers, the amount of volcanic glass is as much as 75% per cent. Calcareous tests, few in the upper cores, increase slightly downward. Siliceous fossils a rather abundant, but gradually decrease downward. Sub-unit Ib (Cores 6 to 13, 44.8 to 121 m) is marked by relatively large amounts of silt (20–40%), calcareous materials, and scarceness of ash layers. The sediment is a nannofossil mud, a calcareous mud, or a clayey nannofossil ooze, in which carbonates form up to 55 per cent. Nannofossils generally constitute the most abundant calcareous tests; foraminifers average up to 5 per

Unit II

Unit II represents a thickness of about 85 meters, from Cores 14 to 22. It is distinguished from unit I by the gray (5Y5/1) to greenish gray (5GY5/1) color, the relatively low silt content (10–20%), the very high abundance of clay minerals (more than 80%), and the absence or scarceness of calcareous and siliceous fossils. Sedimentary structures are not apparent, as in unit I. Two sub-units are distinguished, based on their content of volcanic material. Sub-unit IIa (Cores 14 to 19, 121 to 178 m) is an ashy clay to ashy mud containing about 10 per cent volcanic glass, with rare ash layers. Sub-unit IIb (Cores 20 to 22, 178 to 206.5 m) is clay to mud, characterized by very large amounts of terrigenous materials: clays (up to 96%), quartz and feldspars (3–15%), common heavy minerals, and sporadic micas.

Unit III

Unit III is 57 meters thick and extends from Cores 23 to 28 (206.5 to 263.5 m). It is distinguished from unit II by a dark-grayish-brown (2.5Y4/2) to grayish-brown (2.5Y5/2) color and by the presence of calcareous nannofossils and associated carbonates in variable amounts. Nannofossils, increasing downward from Core 22, are very abundant in the upper part of unit III (40 to 80% in some levels of Cores 24 and 25), then decrease. Siliceous fossils (mainly radiolarians) average 3 per cent, but locally reach 14 per cent. Ash layers are absent, and volcanic glass is rare (generally traces to 3%). Zeolites occur in trace amounts in almost every core. There are no visible sedimentary structures, as in the overlying units.

Unit IV

Unit IV extends from Cores 29 to 38 (263.5 to 358.5 m). It consists chiefly of olive-gray (5Y5/2 to 5Y4/2), stiff to hard mudstone, with evidence of bioturbation. The silt content generally ranges from 10 to 20 per cent, except in Cores 33 to 35, in which it reaches 40 per cent. Volcanic particles are rare (traces to 3%). Two sub-units are distinguished, based chiefly upon the content of calcareous nannofossils and ash layers. Sub-unit IVa includes Cores 29 to 34-2 (thickness 50.5 m). It is typical inorganic mudstone (clay minerals 60 to 80%; quartz and feldspars average 5%, locally 15-20%; micas common; heavy minerals occasional), interbedded with ash layers (glass content sometimes up to 75% in Cores 32 and 33). Siliceous remains generally form 5 per cent of the sediment, but increase in Core 31 (19% at 31-1, 110 cm; 13% at 31-2, 75 cm). Bioturbation is of minor to moderate importance, burrows being filled either by volcanic material or by common mud. Typical Zoophycos and chondrites traces can be identified. Sub-unit IVb extending from Cores 34-3 to 38 (thickness 44.5 m) comprises mudstone and nannofossil chalk, the latter being represented mostly in Cores 35 and 36 (40-90%)

TABLE 2 Lithologic Units at Site 443

Interval	Unit Designation	Depth and Thickness (m)	Main Color	Main Lithology	Main Components	Structure	Age
443-1-1 to 5.CC	Ia	0.0-44.8 (44.8)		Mud	Clay minerals	Homogeneous; ash layers	Pleistocene
6 to 13	Ib	44.8-121 (76.2)	Dark greenish gray (5GY4/1)	Nannofossil (cal- careous mud) to clayey nanno- fossil ooze	Clay minerals and calcareous nanno- fossils or unspeci- fied carbonates	Homogeneous	Pleistocene
14 to	IIa	121-178 (57.0)		Ashy clay, mud	Clay minerals and volcanic glass	Homogeneous; rare ash layers	Pliocene
20 to 22	Пр	178-206.5 (28.5)	Gray (5Y5/1) to greenish gray (5GY5/1)	Clay, mud	Clay minerals (nannofossils in- creasing in Core 22)	Homogeneous	Pliocene to Miocene
23 to 28	III	206.5–263.5 (57.0)	Dark grayish brown (2.5Y4/2) to grayish brown (2.5Y5/2)	Clayey nannofos- sil ooze to mud	Clay minerals and calcareous nannofossils	Homogeneous	Late Miocene
29 to 34-2	IVa	263.5-314.0 (50.5)	Olive grav	Mudstone	Clay minerals	Slight to moderate bioturbation; ash layers	Late to middle Miocene
34-3 to 38	IVb	314.0-358.5 (44.5)	(5Y5/2-5Y4/2)	Nannofossil chalk to mudstone	Calcareous nanno- fossils, clay minerals	Moderate to strong bioturbation	Middle Miocene
39 to 49-3	V	358.5-457.0 (98.5)	Dark greenish (5GY4/1, 5GY5/1) with numerous changes	Claystone, mud- stone, nannofos- sil chalk, ash (mixed or changing)	Variable: clay minerals, calcare- ous nannofossils, unspecified car- bonates, volcanic glass	Slight to strong bioturbation, laminae, graded- beds; ash layers increasing south- ward; numerous variations	Middle to early Miocene

calcareous nannofossils). Ash layers are absent. Bioturbation is moderate to strong, showing a large diversity of burrow structures.

Unit V

Unit V overlies the basaltic basement, whose uppermost flows are 457.05 meters below the sea floor. Unit V (Cores 39 to 49-3, 55 cm; thickness 98.55 m) is characterized by a highly variable lithology. The main color is dark greenish gray (5GY4/1, 5GY5/1), but numerous changes occur, often at a frequency of about 10 cm along the cores (i.e., dark grayish brown 10YR3/2, black 5Y2/1, olive gray 5Y4/2, gray 5Y6/1, greenish gray 5GY6/1, grayish green 5G5/2). Sediments show an irregular alternation of claystone, mudstone, nannofossil chalk, calcareous chalk, and pyroclastics. The abundance of major sedimentary components changes strongly, as does the texture (i.e., sand content in ash layers 0-90%, silt 3-93%, clay 5-95%). Changes are either sharp or progressive, and some parallel laminae and normal graded bedding are evident (e.g., 49-1, 76 cm). Bioturbation is extensive all along the cores, but shows high variability.

ORGANIC GEOCHEMISTRY

Organic-carbon and nitrogen contents were measured for 33 sediment samples. Results and discussion are included elsewhere in this volume (Waples and Sloan). The values and trends are very similar to those reported for other Leg 58 sediments. Organic-carbon and nitrogen contents are highest (0.4 and 0.04%, respectively) near the sediment water interface and decrease with increasing depth of burial. Atomic C/N ratios are approximately 10 in the uppermost sediments, and decrease to values of 4 to 6 in the deeper part of the sequence.

INORGANIC GEOCHEMISTRY

Eleven interstitial-water samples were taken from the sediment section cored at Hole 443. The data are summarized in Table 4 and presented on Figure 5. The measurements included pH, salinity, chlorinity, alkalinity, and Ca⁺⁺ and Mg⁺⁺.

pH

pH averages 7.78, lower than the pH of 7.92 and 8.27 reported for the IAPSO and surface-sea-water standards, respectively. There are four trends of pH within the section: values decrease with depth from 11.5 to 128.5 and 200.05 to 369.5 meters; values increase with depth from 128.5 to 200.05 and 369.5 to 456.7 meters. These trends overlap the defined sediment units. However, the data trend from 11.5 to 200.5 is a mirror image of the trend from 248.9 to 456.7, the mirror plane existing at approximately the unit II-unit III boundary,

Figure 4. Lithology, magnetics, and sonic velocity of sediments, Hole 443.

which marks a boundary between upper ashy clay and mud and clay and mud, and lower mostly calcareous sediments.

Salinity and Chlorinity

Salinity averages 35%, chlorinity 19.27%. Salinity generally decreases with increasing depth; increases were noted from 200.05 to 268 meters and 312.5 to 369.5 meters.

Chlorinity, with exceptions, is fairly constant with increasing depth, with small points of relative increase or decrease.

The expected trend of increasing chlorinity with increasing salinity is poorly represented in these samples.

Alkalinity

Alkalinity averages 4.67 meq/kg, considerably higher than the values of 2.59 and 2.52 meq/kg for the IAPSO and surface-sea-water standards. The general trend, with exceptions, is a decrease in alkalinity with increasing depth.

Ca++ and Mg++

 Ca^{++} averages 14.7 mmol/l, higher than the standard values. Mg^{++} averages 44.12 mmol/l, lower than the standard values. Ca^{++} generally increases with increasing depth, reflecting the calcareous content within the sediment section. Low values or decreases are noted in sediment units where the carbonate content decreases or is absent. Mg^{++} trends oppose those of Ca^{++} , with a general decrease in values with increasing depth.

BIOSTRATIGRAPHY

Site 433 was a single-bit hole drilled in the Shikoku Basin in 4372 meters of water. It is on magnetic anomaly 6A, which is thought to be about 21 to 22 m.y. old. The site objectives which utilized Paleontologic information were threefold. The age of the basement was sought to provide information on the tectonics of the basin. Second, the depositional history of the sediments within the basin was needed to identify the source and nature of hemipelagic sediments. Last, data were needed to interpret the ecological history of the basin waters. Hole 443 penetrated 457 meters of sediment before basaltic basement was encountered. Calcareous nannofossils, foraminifers and radiolarians were studied (Table 5).

Calcareous nannofossils, the best-preserved microfossils at Site 443, give the most reliable biostratigraphic information (Table 5). All three fossil groups are well represented in the Pleistocene and Holocene cores. The base of the Pleistocene is in Core 13, using nannofossils, and in Core 12 using foraminifers. Radiolarians are not found between Cores 4 and 22 and cannot be used for dating the Pliocene/Pleistocene or Miocene/Pliocene boundaries. The Pliocene is represented by a very sparse fauna in all groups of microfossils. Pliocene nannofossils are found in Cores 17 and 18.

The base of the Pliocene is placed with Core 22, in the nannofossil *Amaurolithus tricorniculatus* Zone.

Cores 23 to 49 are Miocene. Preservation is poor in all fossil groups, but sporadic occurrences of moderately well preserved nannofossils and radiolarians give the

TABLE 3 Color and Smear-Slide Summary, Hole 443

Core No.	Olive Gray Dark Green-Gray Gray Greenesh Gray Grayish Brown	Silt	Clay 100 0 100	Calcareous Fossils < 10 30-60 10-30 > 60	Siliceous Fossils < 5 > 10 5-10	Volcanic Glass < 10 10-30 > 60	Ash layers	Slight Moderate Strong	Lith U	ologic
443 1 2 3 4 5	I	ł	Ę	E Z	>	>		•		la
6 7 8 9 10 11 12 13	* * * *						•		1	lb
14 15 16 17 18 19		ł	}				‡	•	Ш	lla
20 21 22	ŧ	<	\rightarrow	L.	Ę.	\langle				IIb
23 24 25 26 27 28				5	>			•	1	11
29 30 31 32 33 34		ł	5	$\left\{ \right\}$			+	I I	IV	IVa
35 36 37 38		5	5	7	2	ł		Ì		IVb
39 40 41 42 43 44 45 46 47 48 49							*	まれた	,	/

115

TABLE 4 Summary of Shipboard Geochemical Data for Hole 443

Sample (interval in cm)	Sample Number	Sub-Bottom Depth (m)	pН	Alkalinity (meq/kg)	Salinity (%)	Ca ⁺⁺ (mmol/l)	Mg ⁺⁺ (mmol/l)	CI ⁻ (º/oo)
-	IAPSOa		7.92	2.59	35.2	10.55	53.99	19.375
	SSWb	-	8.27	2.52	34.9	10.42	53.77	19.341
443-2-4, 0-6	8	11.50-11.56	7.84	9.08	35.5	10.04	50.19	19.307
6-2, 150-170	9	48.00-48.20	7.85	9.08	35.5	9.99	48.88	19.477
14-5, 140-150	10	128.40-128.50	8.38	7.07	35.2	13.45	44.12	19.443
18-2, 144-150	11	161.94-162.00	8.21	3.49	34.9	13.24	42.91	19.104
22-3, 0-5	12	200.00-200.05	6.78	1.74	34.6	14.86	42.48	19.511
27-3, 140-150	13	248.90-249.00	6.88	3.47	34.9	16.40	43.59	19.477
29-3, 140-150	14	267.90-268.00	7.56	4.13	35.2	16.57	43.30	19.409
34-1, 140-150	15	312.40-312.50	7.89	1.64	34.9	15.40	43.00	19.172
40-1, 140-150	16	369.40-369.50	8.30	3.96	35.5	17.26	41.85	_c
45-1, 140-150	17	416.90-417.00	8.12	4.08	35.5	17.77	42.81	19.579
49-3, 14-18	18	456.64-456.68	7.80	3.61	33.3	16.74	42.19	18.255

^aStandard sea water.

^bSurface sea water.

^cNot enough water for chlorinity.

	Section	Sub-bottom Depth Interval (m)	рH	Salinity (⁰ /oo)	CI - (º/oo)	Alkalinity (meq/kg)	Ca++ (mmol/l)	Mg++ (mmol/l)
			7 8	34 36	18 20	0 10	10 15 20 25	35 40 45 50 55
	Standard Surface	d Sea Water Sea Water	۰.	:	:	:	:	
۲	443-2-4	11.50-11.56	Ŷ	Q	Q	Q	Q	Q
ŀ	443-6-2	48.00-48.20 -	ę	¢	þ	¢	4	þ
_ 100	-		\setminus				\backslash	
<u>3</u>	443-14-51	128.40-128.50 -	ò	þ	¢	þ	δ	6
Depth	443-18-2	161.94-162.00 -	م	þ	ģ	ø	Ą	¢
g 200	- 443-22-3	200.00-200.05 -	9	ę	မြ	¢	γ	¢
-bott	443-27-3	248.90-249.00 -	a	6	6	6	þ	6
Sub	443-29-3	267.90-268.00	9	9	9	9	9	9
300	443-34-1	312.40-312.50 -	γ	\$	þ	q	ģ	þ
	443-40-1	369.40-369.50	ò	þ		þ	þ	ę
400-	443-45-1	416.90-417.00	þ	۵	لم	\$	þ	þ
	443-49-3	456.64-456.68	6	5	6	6	6	6

Figure 5. Interstitial-water geochemistry, Hole 443.

following ages: Cores 23 to 26 late Miocene; Cores 30 to 37 middle Miocene; Cores 39 to 49 early Miocene/middle Miocene boundary.

Preservation is poor in all fossil groups, but the preservation is better than that found at Site 442. Cores 13 to 17 contain only a few foraminifers, and radiolarians occur only sporadically throughout the sediments. Nannofossils, although locally abundant, and rarely absent completely, show the same pattern. All fossils show some signs of mechanical breakage in the lower cores (39–49). This might be attributed to reworking, which is recorded, or to bioturbation. The paleoecology of Site 443 suggests a Pleistocene influence of the Kuroshio Current. Tropical species are dominant, although foraminifers suggest a more-temperate fauna. This Pleistocene fauna appears moretropical than that seen at Site 442, but a high-latitude influence is still strong. Because of the poor preservation in all groups, Miocene paleoecological interpretations are difficult, but the Miocene fauna appears to be as temperate or more temperate than the Pleistocene or Holocene faunas. It is not known whether the tropical belt was narrower at this longitude in the Miocene than it is today, or if there was some other regional effect.

TABLE 5 Biostratigraphic Zones, Site 443

Age		Depth and co No.	(m) pre	Nannofossil Zones and Subzones	Foraminifer Zones	Radiotarian Zones
			1	F. huxlevi	N.23	
			2	a numer	sil Foraminiter Zones N.23 N.22 Aes N.21	K. haysi
Miccene Pliceene Pliceene Pliceene - Iate Pleistocene - Iate		3	C. cristatus			
		4		and an		
			5			
9	Age Depth (m) and core No.	P. lacunosa				
stocer			7		N.22	
Plei			8			
			9			
			10			
			11	C. doronicoides		
		-100	12			
			12		N.21	
	T-		13			
			14			
Milocene Pilocene Pilocene Pilocene Pietocene Pietocene Pietocene	e		15	2		
	ia.	-150	16			
			17-	D. tamalis		
			18	D. asymmetricus		
	>		19	21		
	earl		20	2		
			21			
	+-	-200	22	A. tricorniculatus		S. peregrina
			23	2		
			24	A. primus		
			25			
	late		26	D. berggrenn		
		-250	27			S. peregrina
			28	7		
			29			
			30			
			31			D. alata
Miccene 	- 200	32	D. neohamatus			
		-300	33		Subzones N.23 uxleyi ristatus ecunosa noronicoides N.21 amalis symmetricus ? ricorniculatus rimus ecohamatus amatus oatilus ugleri tiopelagicus ? noronicphus noronicphus N.21	
			34			
ene			2 E. huxleyi N.23 3 C. cristatus 1 5 6 P. lacunosa N.22 8 9 10 11 C. dorunicgides 10 C. dorunicgides N.21 13 14 15 ? 16 15 ? 16	D. alata		
Mioc			36	C. coalitus		
	alle		37	C microlonicut		
	mido	-350	38	G, moperayn, Us		
			20	?	_	
			39			
			40	S. heteromorphus		
			41			
		100	42			
		400	43	7		
			44	S. heteromorphus		
			45	or		
	-		46			
			47	H. ampliaperta		
	early	-450	48		N.11 (?)	
			49			
			50			

Because of the evidence of dissolution in calcareous fossils, the CCD is thought to have been close to the sea floor during the Pleistocene.

Foraminifers

Sediments recovered from Hole 443 spanned Pleistocene through middle or early Miocene (Table 5). Foraminifers occur sporadically throughout this section and show poor to moderate preservation.

Because of poor recovery of foraminifers, several section samples were processed in addition to the corecatcher material.

As in Holes 442, 442A, and 442B, sparsity and fragmentation of the foraminifers can be attributed to the depth of the CCD at time of disposition.

Cores 1 through 11 are Pleistocene. The recovered assemblages are sporadic, and preservation ranges from very poor to moderately good. The planktonic assemblages are dominated by *Globorotalia inflata*, a species characteristic of temperate waters. The *in situ* benthic assemblages are characterized by the deep-water genera *Uvigerina*, *Pyrgo*, and *Melonis*.

Core 12 is close to the Pleistocene/Pliocene boundary. Although the fauna is sparse, the planktonic association indicates a lower N.22/upper N.21 foraminifer zone, approximately 1.6 m.y.

Cores 14 through 47 are essentially barren. However, scattered cores from 18 through 41 do contain fragments of benthic foraminifers.

In all the samples examined, fragmentation and dissolution were obvious. This leads to the assumption that deposition took place close to the CCD during Pleistocene time.

Nannofossils

Nannofossils of the late Pleistocene to the early Miocene were observed at this site. Nannofossils are abundant in most cores recovered, except in the Pliocene sequences, where barren intervals prevail. With a few exceptions, preservation of nannofossils is poor to moderately good, because of dissolution. The age assignment of cores is shown in Table 5.

Pleistocene

The top 13 cores contain Pleistocene nannofossils. In many of these cores, reworked Pliocene forms occur commonly. A subtropical assemblage of the *Emiliania huxleyi* Zone occurs in Cores 1 and 2. Cores 3-3 to 8-4 represent the *Gephyrocapsa oceanica* Zone. The boundary of two subzones is recognized in between Samples 4-3, 65 cm and 4,CC. An early-Pleistocene assemblage of the *Crenalithus doronicoides* Zone occurs in Cores 9 to 13. Although sporadic, the occurrence of ceratoliths indicates an influence of the Kuroshio Current during the early and late Pleistocene at this site.

Pliocene

Cores 14-1 to 17-1 are barren of nannofossils, and the Pliocene/Pleistocene boundary could not be identified precisely. Samples 17-4, 20 cm and 17, CC contain poorly preserved nannofossils of the *Discoaster tamalis* Subzone. Poorly preserved nannofossils also occur in Sample 18-3, 66 cm, and the assemblage indicates the late early Pliocene (*Discoaster asymmetricus* Subzone). Although Cores 19 and 20 yield rare to few nannofossils, further examination proved them to be contaminated by drilling. Samples 22-2, 120 cm and 22, CC contain abundant nannofossils of the *Amaurolithus tricorniculatus* Zone. Rare and sporadic ceratoliths prevent assignment to subzone. The Miocene/Pliocene boundary, therefore, could not be pinpointed, but it should be within or slightly above Core 22.

Miocene

Cores 23 through 49 contain Miocene assemblages of nannofossils. Nannofossils occur sporadically through the sequence and are especially scarce in the middle sections. Because of excessive dissolution and non-occurrence of many key species, age identification was difficult, and subzones often were not recognized. The preservation of nannofossils is generally poor in the upper half, and considerably better in the lower half of the sequence. Sections 23-3 to 26,CC represent Discoaster quinqueramus Zone (late late Miocene), and Sample 24,CC marks the base of the Amaurolithus primus Subzone. Cores 27 to 29 are barren of nannofossils, except Sample 28-1, 73 cm, where a few placolith species with no age significance are observed. Sections 30-2 to 35,CC contain nannofossils of the late middle to middle late Miocene, but the absence of Discoaster hamatus makes detailed age identification difficult. Catinaster coalitus and Discoaster kugleri also do not occur at this site. A sharp decrease of Cyclicargolithus floridanus above Section 36-5 is considered to indicate the Catinaster coalitus Zone or Discoaster kugleri Subzone for Core 36. The common C. floridanus in Cores 33 to 36 is interpreted to be reworked. Core 37 is assignable to the Coccolithus miopelagicus Subzone.

The Sphenolithus heteromorphus Zone is identified in Sections 39-2 to 43-2. In Cores 46 to 49, poorly to moderately well-preserved, abundant nannofossils occur. The assemblage is dominated by *C. floridanus* and *Discoaster deflandrei*, with rare to few *S. heteromorphus* and *Discosater exillis*. These cores clearly belong either to the *Helicosphaera ampliaperata* Zone (15-17 m.y.) or to the *S. heteromorphus* Zone (14-17 m.y.). The common reworking observed in the upper sequences, and the absence of helicoliths, prevent identification of the age of the oldest sediment recovered at this site.

Nannofossils have suffered moderate to severe dissolution throughout the early- and middle-Miocene sequences. The degree of dissolution, however, is less, and there is slight overgrowth, within the sediment of Core 49, which directly overlies basalt. The muddy water contained in the core barrel of Core 50 yielded abundant *D. deflandrei* with heavy overgrowth. This suggests the existence of still older sediment at this hole which was not recovered. At Site 444, the next site, a sudden increase of overgrowth was observed within the last several meters of sediment above basalt. Therefore, the time represented by the suspected missing sediment seems to be very short.

Radiolarians

Radiolarians at Site 443 show preservation and abundance patterns similar to those at Site 442. Preservation varies from good in Pleistocene and Holocene cores to moderate to poor in the rest of the cores. Biostratigraphic indicators are abundant for the Pleistocene and Holocene, but are much rarer in older sediments, making confidence in ages earlier than Pleistocene of varying certainty (Table 5). The waters in this part of the Shikoku Basin during the time the sediment of Hole 443 was being laid down were mainly tropical, but like those of Site 442, show a strong high-latitude influence.

Preservation

The pattern of preservation in Hole 443 is similar to that at Site 442, with a few important variations. The first two preservation zones that were seen at Site 442 are also seen at this site. From Core 1 through Core 3, radiolarians are abundant and in a good state of preservation, as was seen in preservation zone 1 of Site 442. Also, as at Site 442, the following several cores are barren of radiolarians. In Hole 443, Cores 4 through 23 have no preserved radiolarians. The end of this preservation zone coincides with the end of lithologic unit IIb. Radiolarians are sporadic through the remainder of Hole 443.

Biostratigraphy

At Site 443, radiolarians are not of great importance in determining the age of the sediments, although there are a few sections where they support the biostratigraphy of the calcareous nannofossils. Cores 1, 2, and 3 are Pleistocene to Holocene, as seen by many forms which are still extant in today's seas (Ommatartus tetrathalamus, Cornutella profunda, Spongaster tetras, Centrobotris thermophila, and Spongocore puella). Due to the poor preservation and lack of index species, confidence in pre-Quaternary zonal assignments is low. Stichocorys peregrina, Cannartus laticonus, and a form intermediate between C. laticonus and Ommatartus antepenultimus are found in Core 27; for this reason, it is thought to be upper Miocene, Stichocorys peregrina Zone. Core 29 contains C. laticonus and C. petterssoni, so it is tentatively assigned to the early late Miocene (O. antepenultimus Zone) or the late middle Miocene (C. petterssoni Zone). Cores 31, 34, and 35 have a latemiddle-Miocene assemblage of Stichocorys delmontensis, Cannartus laticonus, Crytocapsella japonica, and Crytocapsella tetrapora. Because of this assemblage, these cores are assigned to the Dorcadospyris alata Zone. The final cores of Site 442 cannot be dated using radiolarians, but Core 48 contains Eucyrtidium vatuoense, which was found in the late Oligocene through early middle Miocene at Site 296 (Ling, 1975).

SEDIMENTATION RATE

An age-depth plot is shown in Figure 6. The ages of the sediment were obtained using the time scales of

Figure 6. Sediment accumulation rate for Site 443, based on biostratigraphic age-depth determination.

Berggren (1972), Berggren and Van Couvering (1974), and Bukry (1975), and the modified Miocene scale of Saito (1977). Table 6 shows sediment accumulation rates calculated for each stratigraphic unit.

The sediment accumulation curve shows high rates of accumulation during the early middle Miocene; intermediate rates for the late middle Miocene, late Miocene, and Pliocene; and high and intermediate rates for the Pleistocene. The early-middle-Miocene sediments are hemipelagic and contain an increasing number of ash beds down-hole. These hemipelagic units also show graded bedding. Both the graded beds and the reworked nannoplankton fauna indicate resedimentation of these hemipelagic sediments from other marine areas.

TABLE 6	
Sediment Accumulation Rates, Site 443	

Lithologic Unit	Sub-Bottom Depth (m)	Interval Thickness (m)	Sediment Accumulation Rate (m/m.y.)
Ia	0.0- 44.8	44.8	74.7
Ib	44.8-121.0	76.2	76.2
IIa	121.0-178.0	57.0	21.9
IIb	178.0-206.5	28.5	19.0
III	206.5-263.5	57.0	17.3
IVa	263.5-314.0	50.5	20.2
IVb	314.0-358.0	44.0	16.9
v	358.0-457.0	99.0	66.0

Therefore, the higher rate of sediment accumulation during the early middle Miocene owes its origin to a combination of increased regional volcanism and redeposition. The increased volume of volcanic ash observed in the sediment is consistent with a known increase in explosive volcanism in the circum-Pacific and the Philippine Sea during Miocene time (Donnelly, 1975; Kennett et al., 1977).

The high rate of sediment accumulation at Site 443 during the Pleistocene is consistent with nearly identical rates during the Pleistocene at Site 442 (see Site 442 report), the Site 443 rates being somewhat lesser. The Pleistocene sediments at Site 443 contain a higher proportion of recognizable volcanic-ash layers, which indicate that increased volcanism, common to many parts of the Pacific (Kennett et al., 1977), was a cause for the increased rate of sediment accumulation. However, the large proportion of terrigenous components in the interbedded and dominant hemipelagic clays indicates that, just as at Site 442, fluctuations in sea level during the Pleistocene also influenced the sediment accumulation rate. Such fluctuations would increase stream gradients from land source areas, increase the volume of sediment supplied to the Shikoku Basin, and reduce the distance of sediment transport.

IGNEOUS PETROLOGY

Five units were identified in the basalt sequence in Hole 443. The stratigraphic column in Figure 7 shows these units and their lithology:

Unit 1	(457.0-457.1 m sub-bottom)
Unit 2	(457.1-500.2 m sub-bottom)
	plagioclase-olivine phyric basalt
Unit 3	(500.2-538.5 m sub-bottom)
	aphyric basalt (pillow lavas)
Unit 4	(538.5-552.8 m sub-bottom)
	plagioclase-olivine phyric basalt
Unit 5	(552.8-576.5 m sub-bottom)
	plagioclase (sparsely) phyric basal
Unit 6	(576.5-581.5 m sub-bottom)
	olivine-plagioclase phyric basalt

Unit 1

Approximately 0.1 meters of microphenocryst-bearing, clinopyroxene-plagioclase glassy basalt.

Unit 2

These basalts are represented by eight massive units ranging in thickness from 0.4 meters (Core 51, Section 1, and Core 52, Section 1) to 6.5 meters (Core 54, Section 1–5).

The massive units consist of fine-grained phyric basalts with variable contents of glomerophenocrysts of plagioclase (1-10%), 2 to 5 mm in diameter. Medium-grained basalts are observed only in the thickest unit (Core 54, Sections 1-5), in which the content of plagioclase glomerophenocrysts reaches 20 per cent.

The vesicularity of the basalts ranges from 0 to 5 per cent. Vesicle diameters are as much as 2 mm; vesicles are filled completely with calcite and smectite.

The basalts are lightly to moderately altered. The most intensively oxidized (moderately altered) rocks occur in the top and bottom of the unit. Alteration is light or absent in the central portions of the individual cooling units (Cores 49 and 50). Hydrothermal alteration of the basalts is insignificant; it is noted only within 1 or 2 mm of the calcite veins.

Under the microscope, the basalts from all the individual cooling units are characterized by similar textures and mineral compositions. The contact zones at the tops and bottoms of the individual units have cryptocrystalline textures which, at increasing distance from the contact, grade into intersertal, intergranular, and finally into subophitic textures in the central zones of the thickest units.

The basalt in the contact zones with cryptocrystalline (to intersertal) texture contains 1 to 10 per cent euhedral plagioclase phenocrysts (An₆₅ or more), 1 to 5 mm in diameter and 1 to 2 per cent olivine (0.5-3.0 mm). Nine-ty per cent of these rocks have devitrified glass with plagioclase needles up to 0.8 mm. Occasional concentrations of plagioclase cause local variolitic textures in the rocks.

Intersertal and intergranular textures are typical in the basalts of unit 2. The basalts with intersertal texture have phenocrysts of plagioclase (An_{65-90}) , 1 to 4 mm in diameter; these make up 1 to 10 per cent of the rock. Olivine phenocrysts represent 2 per cent of the rock; they are partially or completely replaced by a combination of serpentine and talc.

The groundmass contains thin plagioclase laths (40-45%; 0.1-1.0 mm) and some interstitial glass (large-ly devitrified) in the pyroxene and plagioclase aggregate. Opaque minerals represent 1 to 2 per cent of the rock.

The basalts with intergranular texture are characterized by a finely crystalline groundmass of pyroxene and plagioclase (0.1–1.0 mm). Olivine (1-2%), with a maximum diameter of 0.5 mm, is largely replaced by serpentine and talc; these minerals now represent 3 to 4 per cent of the rock.

A subophitic texture is characteristic of the middle and lower portions of the thickest sub-unit in unit 2 (Core 54, Sections 3 and 4); it is medium-grained to coarse-grained. Euhedral plagioclase phenocrysts are in the 0.5 to 2.0 mm range, although larger ones are seen in hand specimens. Composition of the plagioclase is An_{60} or more. Individual phenocrysts of olivine with dimensions up to 3.5 mm are also found.

The groundmass minerals are plagioclase (40-50%, 0.1-1.0 mm), clinopyroxene (30-40%, 0.05-1.0 mm), and opaque minerals (2%). Olivine, together with associated secondary minerals, represents 5 to 15 per cent.

Thus, the basalts of unit 2 show (1) uniform composition and sequential change in texture in the process of crystallization; (2) olivine in virtually all cooling units; (3) gravitational differentiation in the thickest cooling unit of Unit 2, as indicated by the increased content of olivine in the middle and lower parts.

Unit 3

Unit 3 consists of intercalated aphyric pillow basalts and massive-basalt cooling units with nannofossil chalk

Recovery	Core	Lithology	Sub-bottom Depth (m)	Alteration	Sub-basement Stratigraphy AFD Magnetic In	nclination
			450-		90* 0*	
	49				PYROXENE MICROPHYRIC BASALT: 1-2 % pyroxene microphenocrysts in glassy margin of pillow fragment.	+90
		00000	460 -		2A PLAGIOCLASE-OLIVINE BASALT: 10-15% plagioclase phenocrysts, 2-7 mm; 1-2% euhedral olivine phenocrysts, 1-4 mm; fine are included to unscience unscience and the provided of	
	50		470-		olivine phenocrysts may be slightly more abundant at base of section.	
٦	51				B PLAGIOCLASE–OLIVINE BASALT: 5–8% plagioclase phenocrysts, 2–6 mm; 3–7% olivine phenocrysts, 1–4 mm; 2–10% round, 1.0–1.5 mm	•
	52		480-	A	vesicles; grades from fine-grained intersertal basalt near base; olivine and pseudomorphically replaced by calcite and clays in moderately altered upper portion; groundmass olivine present	:
	53	C = 0 10			C PLAGIOCLASE BASALT: 3–6% plagioclase phenocrysts, 1–4 mm; 7–10% groundmass olivine, < 1.0 mm; < 1% vesicles; grades from fine-grained intercental to medium-grained intercental targets base.	•
-	\geq	So of a fo	490-		D PLAGIOCLASE BASALT: 3–6% plagioclase phenocrysts; no vesicles; similar to over- lying basalt.	:
	54	0×0/0	500	7	E PLAGIOCLASE-OLIVINE BASAL1: 3–5% plagioclase phenocrysts; 0–4% olivine phenocrysts; 4–12% groundmass olivine; no vesicles; grades from inter- sertal to intergranullar, vugs locally present. F PLAGIOCLASE BASALT: Similar to above.	
	55		500-		3A APHYRIC PILLOW BASALT: 2–3% olivine microphenocrysts, 0.2–1.0 mm; 1–2% plagicase microphenocrysts; 12–30% vesicles: 0.1–	:
	56	4. h. (510		4.0 mm: limestone fragments. B APHYRIC BASALT: 3–5% oliving microphenocrysts: 15–30% vesicles:	÷
	57		510-		grades from variolitic into plagioclase sphenulites to intersertal basalt from top to middle; most of olivine pseudomorphically replaced. C APHYRIC PILLOW BASALT: ~5% olivine microphenocrysts pseudomorphically replaced by cacicite, clays, and other alteration products;	
	58	0	520-		5-15% vesicles; fine-grained, intersertal texture. D APHYRIC BASALT AND DIABASE: ~5% olivine microphenocrysts replaced by alteration products at top of section; possibly 25% olivine, largely replaced by alteration products in medium-	
		CRICC ICA	530-	1	F APHYRIC BASALT: Plagioclase phenocrysts < 1%; 15% vesicles	•
	59				and amygdules; fine grained. G and H APHYRIC BASALT: Similar to above.	
	~	20. 4. 0%		4	(vesicles occur where basalt is weathered).	
	60	0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	540-		4A PLAGIOCLASE–OLIVINE BASALT AND DIABASE: 2–5% plagioclase phenocrysts; 2–5% olivine phenocrysts; fine-grained intersertal texture at base and top, diabasic in middle; 15–30% relief olivine in groundmass.	
	61	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	550-	2	 5A APHYRIC BASALT: No vesicles; fine grained; < 1% plagioclase phenocrysts. B APHYRIC BASALT: < 1% plagioclase phenocrysts; D=2% vesicles; fine grained 	:
	\geq	0.00			C PLAGIOCLASE SPARSELY PHYRIC BASALT: 0–5% plagioclase phenocrysts; 0–5% vesicles; fine- grained intersertal texture common; amygdaloidal,	
	62		560-		olivine reported. D APHYRIC PILLOW BASALT: Up to 2% plagioclase phenocrysts locally; <1%	:
		5080			calcrite- and smectrite-rilled amygdulles; possible talc, serpentine, and iddingsite pseudomorphs after olivine in groundmass. E APHYRIC BASALT:	·
•	63	240	570-		< 1% plagloclase phenocrysts; < 1–7% calcite- and smectite-filled amygdules; vesicles empty near heavily weathered areas and carbonate- filled veins; fine to medium grained.	
	64	п с с с с	580-		DA ULIVINE-PLAGIOCLASE BASALT: 5–10% olivine phenocrysts largely replaced by talc, serpentine, and iddingsite; ~2% plagioclase phenocrysts, intersertal texture.	:

about 12 cm nannofossil chalk and limestone recovered.

Figure 7. Sub-basement stratigraphy and magnetic inclination, Hole 443.

and limestone locally present in small quantities. Judging from the penetration records and recoveries, unit 2 is approximately 37.8 meters thick, of which 22.2 meters (59%) was recovered. Based on lithologic characteristics and the location of chill zones, we have divided unit 2 into nine sub-units. The upper six sub-units (29 meters) consist of three pillow-basalt sub-units, each with an underlying massive basalt sub-unit of similar lithology. It is assumed that each of the massive basalts represents part of the same flow as the overlyng pillow basalt, which flowed out under a carapace of rafted pillows as the flow advanced. The lower 9 meters of Unit 3 are separated from the pillow-basalt flows by 11 cm (actual recovery) of nannofossil chalk and limestone; this sequence consists of three massive aphyric-basalt cooling units. A K-Ar age determination on the uppermost pillow basalt gives an age of 17.2 ± 3.1 m.y. (E.H. McKee, pers. comm.; see Klein and Kobayashi, this volume).

Identification of the pillow basalts is based on the frequent recovery of randomly oriented pillow rinds in a given core. In the 4.5 meters of maximum penetration in sub-unit 3A for example, 19 rinds were identified. This vields an average thickness between chill zones of 0.5 meters, typical for individual basalt pillows. The thickness of the pillow rinds and their morphology varies. This is probably because of random variations in the time the pillow cooled directly in sea water, prior to burial by a newly formed pillow. The thickest recovered glass zone was 5 cm thick; it graded from glass to variolitic basalt and then to intersertal basalt in the pillow interior (Figure 8). Intercalated with the individual pillows were a few fragments of nannofossil limestone, possibly representing sedimentation after pillow formation, or the upsweeping of bottom sediment during formation of the pillows as the basalt flowed over the sea bottom.

The pillow basalts all have similar texture and mineralogy. They are highly vesicular (15 to 30%) and range from intersertal to intergranular, depending on the degree of crystallization. The groundmass generally consists of quench pyroxene and plagioclase, with a feathery texture, and small acicular laths of feldspar ($\sim An_{65}$) and granules of pyroxene in the more-crystalline basalts. Titanomagnetite also occurs in the groundmass, in amounts varyng from 1 to 4% per cent; it may be granular or skeletal. Euhedral olivine microphenocrysts $(0.5-1.0 \text{ mm}; \sim \text{Fo}_{86-90})$ were present in nearly all the pillow basalts, in amounts from 1 to 5 per cent. Plagioclase microphenocrysts (0.5-1.0 mm) are also present in many of the basalts, but are always subordinate to olivine. Chromian spinel is a common accessory phase in the least-altered pillow basalts, generally enclosed in olivine or plagioclase microphenocrysts, but it is absent elsewhere. Alteration of the pillow basalt is variable. Olivine is completely replaced pseudomorphically by calcite in most thin sections; smectite, calcite, and possibly zeolites locally line or fill vesicles and replace the groundmass.

Although the massive basalts underlying the pillow sequences differ somewhat in mineralogy and texture, each is similar to the overlying pillow basalt. The texture

Figure 8. Glass zone showing gradation from glass to intersertal basalt.

of the massive basalt varies from intersertal at the top (similar to that of the overlying pillows), to intergranular, and finally to diabasic in the interior of the unit. One of the flows (3B) has an interesting textural variation, from variolitic near the top, to a zone of plagioclase spherulites (figure 9) in the upper middle part, and

Figure 9. Textural variation from variolitic near the top, to a zone of plagioclase spherulites, into intersertal and intergranular basalt.

finally into intersertal and intergranular deep in the flow. Olivine exceeds plagioclase microphenocrysts near the top of the flow ($\sim 3-4\%$), but remains nearly constant in size and abundance throughout, while plagioclase and pyroxene increase in size and abundance, greatly exceeding olivine near the base of the flow. Although it is almost completely replaced, olivine appears to have occurred in the largest quantities (up to 30%) in the center of sub-unit 3D, which is an olivine diabase. In general, the massive basalts are highly vesicular (10–15%) throughout unit 3, although somewhat less so than the pillow basalts. In some units, the amount of vesicles appears to increase upwards.

Because of a lack of thin sections, the lower 9 meters of unit 3 was not studied in as great detail as was the upper portion. Plagioclase phenocrysts, largely from handspecimen descriptions, appear to be slightly more abundant, but still amount to less than 1 per cent in most of these basalts. The basalts are similar in appearance and texture to the massive aphyric basalts in the upper part of unit 3, containing numerous vesicles (~10-15%) and ranging from fine-grained intersertal basalts to fine- to medium-grained intergranular basalts. One thin section examined from sub-unit 3I contained 2 to 3 per cent stubby, spongy, resorbed plagioclase grains, which clearly are the remains of a larger population of phenocrysts. These grains are strongly zoned, with calcic cores and oscillatory zoning in some grains. The groundmass plagioclase ($\sim An_{71}$) is of similar size, but consists of laths, rather than stubby, corroded crystals. Olivine may have been present, but if so it is now completely replaced. The groundmass consists of pyroxene, plagioclase, titanomagnetite, and alteration products. The lack of overlying pillow basalts suggests that these basalts may be shallow intrusives, although in view of similar basalts higher in the section, this remains an enigma.

There appears to be an abrupt increase in the infilling of vesicles in the lower half of unit 3. The lowermost basalts contain abundant amygdules filled with carbonate, clays, and some pyrite. Empty vesicles in the lower half of unit 3 occur chiefly in the most-alteredappearing basalt and are locally abundant adjacent to the numerous carbonate-filled veins which crisscross the entire unit.

Unit 4

Unit 4 consists of a single unit of gray, aphyric, fineto medium-grained plagioclase-olivine basalt, extending from 538.5 to 552.8 meters sub-bottom depth; 11.6 meters were recovered. The unit starts with an upper glassy margin and fine-grained, lightly altered chill zone with approximately 2 per cent vesicles (Core 59, Section 5, 110–150 cm). The unit terminates below with another lightly altered chill zone and glassy margin (Core 61, Section 2, 135–140 cm).

Pyroxene (0.5–1.0 mm) and plagioclase (0.5–2.0 mm) phenocrysts were observed in hand specimen. The first 2 meters of the unit contain 15 to 20 per cent amygdules (1 –10 mm) containing talc and (or) smectite, often with grains of pyrite and white octahedra or cylindrical, hair-like crystals (probably zeolites).

Limited thin-section studies show that texture grades from fine-grained intersertal at the top and base to diabasic in the center.

The major constituents are plagioclase, ranging from 30 per cent near the center of the unit to 45 per cent near the top, and pyroxene, ranging from 20 to 30 per cent. Plagioclase is present as phenocrysts and microphenocrysts from 0.05 to 2.0 mm long and 0.02 to 0.5 mm wide (composition An₆₄; Michel-Levy method). Pyroxene (augite composition) is present as acicular crystals in the quenched groundmass of the upper and lower parts of the unit and also subophitically enclosing plagioclase in the center. Some local alignment of groundmass acicular pyroxene and plagioclase laths was observed (443-60-1, 111-113 cm, piece 4; and 443-60-2, 110-112 cm, piece 1j).

Subhedral, occasionally embayed olivine phenocrysts and relict grains (0.02–0.4 mm across) constitute 10 to 20 per cent of the rock and are often partially or totally replaced by serpentine, talc, and iddingsite. Cross-cutting veins lined by talc and pyrite are also common. Magnetite constitutes approximately 5 per cent, usually as finely disseminated grains (0.01–0.02 mm across), but larger skeletal and subhedral grains (up to 0.8 mm across) occur in the center of the unit. Occasional inclusions of spinel (dark red brown, <0.02 mm across, square-sectioned) were observed in olivine.

Vesicles were only observed in the uppermost section (443-60-1, 111-113 cm, piece 4e), where they constitute approximately 2 per cent, ranging from 0.2 to 2.0 mm across. The smaller vesicles are angular to subangular; the larger vesicles are rounded.

Unit 5

Unit 5 extends from 552.8 to 576.5 meters (8.5 m recovered) and is subdivided into five sub-units.

Sub-unit 5A is an aphanitic lightly to moderately altered basalt with scattered plagioclase phenocrysts (<1%; 1-2 mm long) lying between glassy rinds of unit 4 and sub-unit 5B (Core 61, Section 2, 140 cm, and Core 61, Section 3, 0 cm, respectively); 10 cm of material was recovered.

Sub-unit 5B is an aphyric, aphanitic to fine-grained, moderately weathered basalt, with scattered (<1%) plagioclase phenocrysts ($1 \times 3 \text{ mm to } 2 \times 4 \text{ mm}$) and 0 to 2 per cent vesicles. The sub-unit starts with a chilled margin and glassy rind; 70 cm was recovered.

Sub-unit 5C is a series of aphyric to sparsely phyric (approximately 1% plagioclase phenocrysts; 1×2 mm to 2×4 mm) flows, with one internal chill zone with a glassy margin (Core 61, Section 3, 185 cm) and one chill zone without a glassy margin (Core 62, Section 2, 50 cm).

The sub-unit starts with a glassy margin and chill zone (Core 61, Section 3, 70 cm) and terminates with a chill zone and glassy rind (Core 62, Section 2, 140 cm); 5.1 meters was recovered.

Initially, the flows are amygdaloidal, including approximately 5 per cent vesicles (0.5-2.0 mm) infilled by calcite and smectite; vesicles decrease 0 to 1 per cent or less after the first 0.5 meters.

Thin sections show fine-grained quench textures (elongate and skeletal plagioclase laths with feathery aggregates of acicular pyroxene).

Plagioclase laths constitute 30 to 50 per cent of the rock, ranging from 0.05 to 0.8 mm in length and 0.01 to 0.2 mm in width (composition An_{65} ; Michel-Levy method). Plagioclase phenocrysts occur in aggregates 1 to 2 mm across.

Pyroxene constitutes 20 to 45 per cent of the rock and is mainly acicular (0.02–0.4 mm long), although some large phenocrysts (up to 1 mm \times 3 mm) subophitically surround plagioclase laths. Small magnetite grains (~0.01 mm across) constitute 2 to 7.5 per cent of the rock.

Sub-unit 5D is an aphyric, aphanitic to fine-grained basalt with scattered (<1%) plagioclase phenocrysts. The sub-unit contains seven glassy rinds and accompanying chill zones, but variolitic zones under the glass margins are absent. Palagonite and carbonate breccia accompany the glassy margins in Core 62, Section 3, at 132 and 138 cm.

Scattered (<1%) carbonate- and smectite-filled amygdules (0.5–2.0 mm across) are present, and the sequence is frequently cut by carbonate veins. Spinel was observed as inclusions in plagioclase phenocrysts.

In thin section, these basalts are texturally similar, although finer-grained than the sub-unit 5C basalts. They contain around 2 per cent plagioclase phenocrysts in a groundmass of approximately 30 per cent plagioclase ($\sim An_{67}$), 5 per cent magnetite, and 63 per cent pyroxene. Unlike sub-unit 5C, talc, serpentine, and iddingsite are present, probably pseudomorphically replacing olivine. Sub-unit 5E is a massive, aphyric, fine- to mediumgrained, gray basalt with occasional ($\ll 1\%$) plagioclase phenocrysts (2 mm × 1 mm to 3 mm × 2 mm); 11.15 meters was recovered. The sub-unit starts with a glassy rind and chilled margin (Core 63, Section 1, 0 cm). The first 2.5 meters contain 3 to 7 per cent calcite- and smectite-filled amygdules (0.1–0.8 mm across); these are empty in the more heavily weathered areas around crosscutting calcite veins. After the first 2.5 meters, the content of amygdules decreases to 1 per cent or less.

As seen in thin sections, plagioclase (An₆₇) decreases with depth in the sub-unit from 45 per ent (63-2, 59–61 cm, piece 4b) to 30 per cent (63-8, 84–86 cm, piece 2b). The laths range from 0.2 to 1.5 mm in length. Pyroxene (augite) content appears to increase slightly with depth from 25 to 30 per cent. Pyroxene crystals increase in size down the sub-unit, from 0.05 to 0.4 mm (63-2, 59–61 cm, piece 4b) to 0.2 to 1.2 mm (63-8, 84–86 cm, piece 2b). The large pyroxene grains subophitically enclose plagioclase. All sections have a fine-grained groundmass, which is brownish green because of alteration: the alteration appears to increase down the sub-unit from 25 per cent (63-2, 59–61 cm, piece 4b) to 35 per cent (63-8, 84–86 cm, piece 2b).

Magnetite ranges from 2 to 5 per cent of the rock, occurring as disseminated grains in the groundmass which increase in size down the sub-unit from 0.01 to 0.1 mm (63-2, 59-61 cm, piece 4b) to 0.02 to 0.7 mm (63-8, 84-86 cm, piece 2b).

Alteration varies from very light to moderate around calcite veins and at the base of the unit.

Unit 6

Unit 6 consists of two sub-units. Subunit 6A starts and finishes with a chill zone and glassy margin approximately 5 cm thick (Core 64, Section 1, 0 cm; and Core 64, Section 3, 150 cm, respectively). The sub-unit grades from aphanitic at top and bottom to medium-grained in the center. The basalt contains approximately 2 per cent plagioclase phenocrysts (up to 5 mm in length) and an occasional olivine phenocryst (1–2 mm).

In thin section, the basalts have an intersertal texture. They contain approximately 30 to 40 per cent plagioclase phenocrysts and microphenocrysts 0.1 to 1.0 mm long and 0.05 to 0.3 mm wide (An₆₅₋₉₀). Pyroxene (25%) occurs as anhedral grains 0.1 to 1.0 mm across; some larger grains (up to 2 mm across) subophitically enclose plagioclase laths. Around 5 to 10 per cent olivine phenocrysts (0.1–0.5 mm across) were present but are now pseudomorphically replaced by serpentine, talc, and iddingsite. Magnetite makes up 2 to 3 per cent, as 402 to 0.2 mm across, with odd larger grains (up to 0.6 mm) with hexagonal cross-section and hollow centers. Twenty-five to 30 per cent of the rock is cryptocrystalline material, including alteration products in olivine pseudomorphs.

Cross-cutting veins lined by calcite, with accompanying oxidized alteration zones, are common.

Sub-unit 6B was cored only in the top few centimeters. The sub-unit starts with a glassy margin and chill zone (Core 64, Section 4, 0-5 cm).

Alteration

Alteration of basalts at Site 443 is typical of that for oceanic basalt flows. It is observed, without exception, along all calcite veins cutting the rocks. The zone of alteration may occur within the first few millimeters or up to 1 to 2 cm from the edge of the vein. This type of low-temperature alteration is observed in unit 1; it generally is characterized by replacement of primary groundmass by calcite, smectite, and zeolites.

Higher alteration temperatures appear to characterize units 3 to 6. Here chlorite is formed in place of calcite, smectite, and zeolites. Serpentine and talc replace olivine in all units. In Core 60, Section 1, the vesicles are filled with calcite, smectite (?), and well-formed pyrite octahedra. In the upper horizons of unit 3, an occurrence of native copper was seen in a calcite vein 2 to 3 mm thick.

Thus, although the alteration in units 3 to 6 appears to have occurred at higher temperatures than in unit 2, the association of secondary and ore minerals shows that in general it was still a relatively low-temperature process, having occurred in the vicinity of 200 °C or lower.

Oxidative alteration of the rocks of the top and bottom of the lava flows and along calcite veins is characteristic of the basalts in all units. This alteration yields a yellowish-gray or brownish-gray color (correspnding to light and moderate alteration, respectively). The most intensively oxidized pillow lavas of unit 2 show numerous calcite veins 1 to 3 mm thick.

Time and Duration of the Volcanic Process

Paleontological data for Sites 442 and 443 indicate a middle-Miocene age for the sediments immediately overlying the basalts. Thus, the miminum age for the basalt sequences of the two regions is 14 to 15 m.y. Magnetic-polarity-reversal data for the two sites (Site 442 and 443 reports) indicate that the lava flows immediately underlying the unbroken sedimentary sequences at the two sites are of opposite polarity. At Site 442, the uppermost lava flow is of normal polarity; at Site 443 it is reversed. These data conclusively show that the final volcanic events at Sits 442 and 443 were not contemporaneous, in spite of the similar ages assigned from paleontological data.

Furthermore, the paleomagnetism data for Site 443 suggest at least one and possibly two zones of magneticpolarity reversal (Cores 49 and 50; Cores 58-5 and 59-1, 2, 3). The average time between successive reversals in the Miocene is known to be about 200,000 years (Cox, 1973). The length of time required to form the 125 meters of lava flows penetrated at Site 443 was therefore probably on the order of 200,000 years.

Geochemistry

The geochemistry of these basalts is discussed in detail elsewhere in this volume. Major- and trace-element analyses from the shipboard XRF sampling program indicate that these basalts are tholeiites, lying generally within the compositional limits of abyssal tholeiites from both mid-ocean ridges and marginal basins.

The geochemistry and paleomagnetism evidence follow the unit lithologies closely, except for unit 2, where there appears to be a major discontinuity which had no lithologic expression.

Conclusions

1. The basalts of Site 443 are mostly olivine-bearing. Olivine-free basalts are present, but are of minor importance. The olivine basalts are analogous to oceanic basalts in composition, structure, and vesicularity (0-5%), rarely 15%; only unit 3 reaches 30%).

2. Proceeding from the top toward the middle and lower parts of the relatively thick flows, there are changes not only in the structure and texture of the rocks (from fine grained and cryptocrystalline to medium or coarse grained and aphyric), but also in the contents of olivine and opaque minerals, which increase. These changes indicate a longer time of crystallization for the thicker flows and gravitational sorting of minerals within them.

3. Alteration of the rocks increases with depth (units 3-6), but remains low-temperature. Based on the associations of secondary and ore minerals—zeolites, smectite, calcite, chlorite, pyrite, native copper—the temperatures of the hydrothermal solutions are estimated to have been 200°C or less.

4. The greatest degree of (oxidation) alteration is observed in the pillow lavas (unit 3) and at the tops and bottoms of flows. Within the flows, alteration has occurred along the margins of the numerous calcite veins.

5. On the basis of paleontological studies carried out during Leg 58, the age of the last eruptions of basalt around Sites 442 and 443 is 14 to 15 m.y. The opposite magnetic polarities of the uppermost lava flows at these two sites indicate that these flows were not contemporaneous.

6. The presence in the basalts of Site 443 of as many as two zones of magnetic-polarity reversal suggests a period on the order of 200,000 years for the formation of these lava flows, based upon the average frequency of magnetic reversals during the Miocene.

PALEOMAGNETISM

Sedimentary Layers

A total of 113 cylindrical core samples were taken for paleomagnetism measurements from a 457-meter-thick sedimentary sequence at Site 443. The sampling techniques and the measurement method for sedimenatry samples are described in the paleomagnetism section of the Site 442 report. There is, however, a slight change in the AF-demagnetization procedure. For the present series of measurements, maximum peak AF was fixed at 150 oe, and its decay rate was 10 milligauss/cycle. These values were obtained empirically and therefore do not have any theoretical significance. Sampling positions and results of measurements for natural remanent magnetization (NRM) and AF-demagnetized remanent magnetization (AFD) are listed in Table 7. The results are also shown diagrammatically in Figure 10, where

 TABLE 7

 Paleomagnetism Measurements of Sedimentary Cores from Site 443^a

	Sub		Succentia			
Sample	bottom Depth	J _{NRM} (10-5	bility (10-5	Inclin NRM	ation AFD	Polar-
443.1.1 125-127	1.25	1 41	0.53	17.6	15.8	+
1-4, 108-110	5.59	1.60	0.66	-13.1	-14.1	_
2-1, 71-73	7.71	71.60	0.93	-15.6	-11.1	-
3-1, 16-18	16.67	1.89	0.03	47.4	58.7	+
3-2, 77-79	18.78	5.24	0.73	17.6	15.3	+
3-5, 84-86	23.35	1.70	0.55	-37.8	-35.5	-
4-1, 111-113	27.12	0.43	0.73	-47.2	-74.3	_
4-3, 39-41	29.40	1.28	0.72	77.5	78.3	+
4-3, 45-47	29.46	2.13	0.96	82.9	84.4.	+
5-1, 61-63	36.12	1.84 0.014b	0.74	11.8	16.8	++
5-3, 99-101	39.50	0.054b	0.61	-60.6	-72.4	_
5-4, 31-33	40.32	0.26b	0.86	4.0	6.8	+
6-2, 44-46	47.95	0.195	0.80	-10.0	-19.4	-
6-4, 44-46	49.95	3.46	0.86	4.0	4.3	+
6-5, 44-46	51.45	1.29	0.67	-31.2	-31.9	
8-4, 106-108	69.57	0.040	0.75	-30.0	-38.8	-
9-5, 26-28	70.59	0.0005t	0.53	-58.5	-51.8	-
10-1, 69-71°	83.70	1.24	0.81	30.1	11.5	+
10-1, 138-140 ^c	84.39 84.90	0.91	0.74	-10.3	-16.0	+
10-2. 138-140¢	85.89	1.04	0.30	-77.5	-74.8	1010
10-3, 43-45°	86.44	0.68	0.13	12.4	17.3	+
10-4, 51-53°	88.02 88.86	0.58	0.19	-72.8	-55.3	_
10-5, 48-50°	89.49	0.57	0.19	-41.7	-36.8	
10-5, 132-135c	90.33	1.73	0.25	14.7	5.8	+
10-6, 108-110	91.59	1.47	0.19	8.5	13.9	+
11-3, 108-110	96.59	1.01	0.29	-23.2	-23.2	-
11-4, 108-110	98.09	1.35	0.21	15.2	10.4	+
11-5, 108-110	99.59	2.39	0.21	48.7	46.5	+
14-4, 120-122	126.70	0.08b	0.26	7.6	24.4	+
14-5, 120-122	128.21	3.87	0.36	32.5	31.9	+
14-6, 106-108	129.57	3.81	0.46	0.4	2.9	+/-
15-4, 48-50	135.49	0.560 0.71b	0.24	35.0	35.4	+
15-6, 63-65	138.64	2.35	0.27	61.8	60.3	+
15-7, 28-30	139.79	2.23	0.30	32.1	30.1	+
18-1 98-100	159.99	2 32	0.24	-60.6	-63.9	-
18-2, 98-100	161.49	1.78	0.39	-54.9	-59.1	-
18-3, 98-100	162.99	0.54	0.57	-31.4	-29.4	-
23-1, 110-112	207.61	1.31	0.39	54.3	50.7	+
23-2, 95-97	208.96	0.73	0.48	8.9	-4.1	+/-
23-3, 40-42	209.91	0.55	0.40	58.0	57.2	+
23-4, 50-52 24-1, 70-72	211.51 216.71	2.09	0.39	-43.2	-44.4	-
24-3, 90-92	219.91	2.24	0.37	-70.2	-65.0	-
24-4, 95-97	221.46	1.55	0.38	68.7	70.8	+
24-6, 74-76	224.25	1.78	0.41	48.7	40.0	+
25-2, 72-74	227.73	15.09	2.40	-56.9	-53.4	-
25-2, 125-125	228.24	2.10	1.19	13.4	35 7	+
26-1, 82-84	235.83	3.20	0.48	-36.0	-37.1	-
26-2, 142-144	237.92	1.56	0.74	41.7	40.7	+
27-1, 80-82 27-2, 22-24	245.31 246.21	0.59	0.35	-33.3	-17.1	-/+
27-3, 11-13	247.62	1.50	0.46	55.6	65.8	+
27-4, 55-57	249.56	1.21	0.38	-33.7	-14.5	-
28-1, 108-110 28-2, 16-18	255.67	4.49	0.40	-41.6	-28.3	
29-1, 87-89	264.38	3.72	0.24	-39.0	-33.7	-
29-2, 61-63	265.62	1.42	0.24	-5.8	1.2	-/+
29-3, 85-87	267.36	2.95	0.22	-35.2	-39.8	-
29-5, 46-48	269.97	3.89	0.39	-42.4	-38.0	-
20.2 132-134	275 83	249	0.30	-54.0	-58.2	-

 TABLE 7 – Continued

Sample	Sub- bottom Depth	J _{NRM} (10-5	Suscepti- M bility 5 (10-5 Inclinat		ation	Polar
(interval in cm)	(m)	gauss)	gauss/oe)	NRM	AFD	ity
31-1, 119-121	283.70	1.61	0.39	14.8	30.3	+
31-2, 62-64	284.63	7.03	0.89	20.6	26.1	+
31-3, 44-46	285.95	4.30	0 56	44.7	43.9	+
31-4, 44-46	287.45	3.00	0.68	58.6	69.6	+
31-5, 30-32	288.81	1.11	0.54	11.4	29.0	+
32-1, 129-131	293.30	4.93	1.14	23.5	29.0	+
33-1, 38-40	301.89	9.62	1.25	38.1	42.8	+
33-2, 38-40	303.39	3.67	0.42	40.6	42.0	+
33-3, 38-40	304.89	6.33	0.85	-41.3	-37.6	-
34-2, 11-13	312.62	3.00	0.53	40.7	41.0	+
34-3, 11-13	314.12	1.60	0.75	-56.5	-28.6	-
34-4, 11-13	315.62	2.67	0.56	7.3	8.3	+
34-5, 11-13	317.12	5.37	0.94	52.2	49.1	+
35-1, 56-58	321.07	2.90	0.71	-37.8	-42.7	-
35-3, 07-09	323.59	1.74	0.63	49.7	51.7	+
36-1, 36-38	330.37	3.19	0.59	4.1	8.0	+
36-2, 103-105	332.54	3.59	0.79	-51.3	-54.0	-
36-3, 89-91	333.90	5.26	0.65	-37.3	-34.6	
36-4, 114-116	335.65	3.92	0.68	-36.5	-33.5	-
36-5, 87-89	336.88	0.44	0.51	-15.6	32.4	-/+
39-1, 76-78	359.27	1.48	0.77	-58.8	-66.0	
39-1, 129-131	359.80	3.84	0.52	-48.6	-50.9	-
39-2, 50-52	360.49	4.97	0.54	-43.3	-42.2	
40-1, 56-58	368.57	4.07	0.84	46.1	51.2	+
40-2, 10-12	369.61	3.28	0.68	21.2	24.6	+
42-1,66-68	387.67	5.34	0.35	-33.1	-32.9	-
42-2, 13-15	388.64	5.20	0.36	23.3	21.2	+
43-1, 38-40	396.89	4.01	0.38	26.5	27.5	+
43-2, 78-80	398.79	6.62	0.67	34.4	37.5	+
45-1, 79-81	416.30	5.25	0.60	-32.2	-34.4	-
45-2, 67-69	417.68	8.19	0.75	-34.7	-36.3	-
46-1, 44-46	425.45	2.58	0.66	12.2	21.2	+
46-2, 44-46	426.95	4.83	0.77	12.3	17.0	+
47-1, 36-38	434.87	2.80	0.57	63.4	60.6	+
48-1, 129-131	445.30	3.09	0.43	47.1	47.1	+
49-2, 25-27	455.25	1.86	0.46	-56.1	-62.9	-
49-2, 114-116	456.15	1.01	0.46	-8.1	20.5	-/+

^aAFD is obtained by peak alternating demagnetizing field of 150 oe, decreasing to zero at a constant rate of 20 milligauss/cycle; polarity shows whether the inclination of NRM is positive (+) or negative (-). Weak.

^cSoupy.

"normal" and "reversed" denote that the inclination of both of the NRM and AFD is positive (down-dipping) or negative (up-dipping), respectively. Absolute values of NRM inclination for all the samples are plotted in Figure 11. Sedimentary layers are arbitrarily divided into 100-meter intervals of sub-bottom depth, and a statistical treatment was applied to absolute values of inclination for each group. The results of calculation are tabulated in Figure 11.

Basalt Layers

A total of 63 basalt samples were taken from a 115.5-meter-thick basalt sequence. Fifty-eight of them were AF demagnetized in a stepwise manner. AF demagnetization was applied until the remanent magnetization decreases below half of its initial value. Inclination of the AF-demagnetized remanent magnetization (AFD) is given for the field next higher than the MDF (median destructive field). The data for sampling and magnetism measurements are listed in Table 8. Stability of remanent magnetization against AF is different from sample to sample, as shown in Figure 12. MDF of some samples was found to be lower than 50 oe at the peak

AF. NRM of samples with low MDF is unstable and changes direction by more than 5 degrees through AF demagnetization up to MDF. Distortion of the original NRM seems to have occurred by remagnetization during drilling procedures.

However, it is surprising to find that the original remanent magnetization seems to be well preserved within basalts deep under the ocean floor. This is clearly shown in Figure 13, where the inclination of stable remanent magnetization of basalt samples is plotted with respect to core and section. It is shown that there are four groups of inclination values, with sharp discontinuities at depths around Core 51, the top of Core 55, and the middle of Core 58. Statistics in Table 9 confirm that the four populations of inclination values are completely independent of each other.

Summary and Discussion

The results of paleomagnetism measurements are summarized as follows:

1. Stability of NRM of paleomagnetism samples from the drilled cores is sufficiently high to provide data about the paleomagnetic-field direction. Koenigsberger ratios range from 5 to 20 for most of the sediment samples and from 20 to 2000 for the basalt samples.

2. Intensity of NRM of basalt samples ranges from 2 to 10×10^{-3} gauss/cm³.

3. The lowermost sedimentary layers carry reversed remanent magnetization, which continues to the top of the basalt layers. Their average NRM inclinations are similar: -33 degrees for sediments and -31 degrees for basalts.

4. Statistical means of absolute values of NRM inclination are slightly lower than the inclination of the recent geomagnetic dipole field at Site 443 (estimated 47.9°). Mean values for every 100 meters of sub-bottom depth range from 33 to 39 degrees, the standard deviation ranging from 15 to 26 degrees.

5. There are four statistically different populations with respect to NRM inclination values (strictly, absolute values of NRM inclination) within basalt layers.

6. Through the entire basalt sequence, two normal and two reversed NRM zones were identified.

Taking into account these results, we conclude:

1. NRM inclinations of the lower part of the sediments and the top of basalts at Sites 442 and 443 are dispersed between 30 and 37 degrees, implying that the paleolatitude of this area during the early middle Miocene was a little lower than at present.

2. Basalts at Site 443 are similar to typical oceanic basalts with respect to their NRM intensity and Koenigs-berger ratio.

3. The top of the basalt and the lowermost layer of the sediments are probably of the same geologic age in terms of geomagnetic polarity change.

4. Basaltic layers of Site 443 were probably formed through four episodes of volcanic activity, interrupted for longer than 1000 years each time.

5. Assuming that the average period of a single geomagnetic-polarity event in the early middle Miocene was about 0.2 m.y., 100 meters of the top layer of basalts at

SITE 443

Figure 10. Results listed in Table 7, illustrated in descending order of cores and section. Polarity diagrams of some basaltic cores next to the bottom layer of sediments are also shown.

Figure 11. Absolute values of inclination of NRM versus sub-bottom depth of sedimentary layers. Open circles are mean values of inclination taken every 100 meters. Vertical bars represent standard deviations.

Site 443 were probably formed during a time not shorter than 0.2 m.y.

PHYSICAL PROPERTIES

Sediments and basalts recovered from Site 443 provided samples useful for continued study of relationships noted in the Site 442 report. Sonic velocity, thermal conductivity, density, and porosity were determined for basalts and sediments (Tables 10 and 11). Water content was measured for sediments (Table 10), and special 2-minute GRAPE counts were run on basalts to provide estimates of porosity and density (Table 12). Grain densities assumed in calculations of GRAPE densities and porosities were 3.031 g/cm³ for samples taken above Core 55, 2.988 g/cm³ for Cores 55 through 58, and 2.960 g/cm³ for samples taken below Core 58.

Sonic velocities in sediments show little variation with depth (Figure 14). The average velocity is 1.57 km/s, with a range of 1.50 to 1.76 km/s. The only significant variation in velocity occurred within unit V, where sonic velocities reach a maximum, reflecting the lithologic variability of this unit (see lithology section). Densities for the sediments also show little variation with depth (Figure 14), ranging from 1.38 to 1.59 g/cm³ and averaging 1.49 g/cm³. The density of the claystone in Core 49, Section 2, is 1.75 g/cm³, much higher than that of the other recovered sediments.

Thermal conductivity for Hole 443 sediments also shows little variation with depth (Figure 14), with the exception of unit III, which varies from clayey nannofossil ooze to mud (see lithology section). No consistent relationship between thermal conductivity and water content (Table 10) was observed. Shear strength of the sediments increases with depth in the upper 165 meters of the site (Figure 15). The correlation coefficient of the fit is poor. A better fit may be obtained by using two different linear fits. Shear strength increases most dramatically in the lower part of unit IIa. Drilling breccias were recovered in the lowermost part of unit IIa and in unit IIb. There are no shearstrength data for this unit, because of the disruption of the sediment. The recovery of drilling breccia below 165 meters is consistent with the findings from earlier experiments discussed in the physical-properties section of the Site 442 report.

The excellent recovery of basalts from Hole 443 provided an opportunity to study the variation of physical properties with depth in a series of different units. Sonic velocities for basalts at atmospheric pressure average 5.32 km/s and range from 3.82 to 5.91 km/s. Wet-bulk densities of Hole 443 basalts average 2.81 g/cm³ and range from 2.46 to 3.10 g/cm³.

In general, the average sonic velocities and densities for Hole 443 basalts are higher than those for Site 442. The range of values is also larger. Velocities and densities for basalts from Cores 55 through 58, however, are approximtely equal to those of Site 442 basalts. Figure 16 shows the variation of sonic velocities with depth. The lower sonic velocities for Cores 55 through 58 form a distinctive cluster between 502 and 525 meters. Similar relationships are evident for basalt wetbulk densities (Figure 16) and thermal conductivity (Figure 17). The average velocities, wet-bulk densities, grain densities, thermal conductivities, and porosities for each depth group are presented in Table 13. The boundaries at 501.78 and 525 meters correspond to

Sample (interval in cm)	Sub- bottom Depth (m)	Flow Unit	J _{NRM} (10 ⁻⁵ gauss)	Inclina- tion NRM	Inclina- tion AFD	MDF (oe)	Xin (10 ⁻⁵ gauss/oe)	Q'_n	Remarks
443-49-3, 101-103 49-3, 137-139 49-4, 40-42 49-4, 102-104 50-1, 85-87	457.52 457.88 458.41 459.03 463.86	A A A A	674.7 1034.6 704.2 476.7 528.5	-29.1 -29.6 -31.8 -25.8 -28.7	-28.2 -32.5 -31.7 -29.6	110 110 80 70	11.00 7.61 8.60 8.96 6.56	141.6 313.8 189.0 122.8 185.9	150 oe 150 oe 100 oe 100 oe
50-2, 30-32 50-4, 02-04 51-1, 09-11 52-1, 33-35 52-2, 120-122	464.81 467.53 472.60 482.34 484.71	A B B B	585.8 555.8 256.3 182.3 449.2	-31.3 -32.7 42.2 40.5 31.6	-29.9 -33.6 	75 75 390 85	6.34 7.91 0.70 0.85 7.89	213.2 162.2 845.0 495.0 131.4	100 oe 100 oe 400 oe 100 oe
52-4, 21-23 53-1, 07-09 53-2, 12-14 53-3, 86-88 54-1, 54-56	486.72 491.58 493.13 495.37 501.55	B B B B	557.7 603.7 342.4 584.1 411.9	32.8 31.6 42.8 39.0 41.8	39.5 39.6 42.5 40.5 39.3	105 80 190 100 490	3.95 5.74 1.10 3.51 0.57	325.8 242.7 718.4 384.0 1667.7	150 oe 100 oe 200 oe 150 oe 500 oe
54-2, 54-56 54-2, 138-140 54-3, 125-127 54-4, 146-148 54-5, 146-148	503.05 503.89 505.26 506.95 508.47	B B B B	733.4 398.1 179.7 316.6 273.8	38.9 26.2 38.5 45.7 43.5	41.8 42.3 43.5 40.3	90 75 100 400	6.52 8.96 1.07 8.68 0.88	259.6 102.5 386.9 84.2 718.0	100 oe 100 oe 150 oe 450 oe
54-6, 14-16 54-7, 76-78 54-7, 138-140 55-1, 99-101 55-2, 60-62	508.65 510.77 511.39 511.50 512.61	B C C C	1328.3 611.7 731.7 208.2 174.9	41.9 37.4 63.5 71.5 72.7	46.1 41.5 62.8 72.4 74.5	80 80 470 300 310	4.21 6.64 1.20 2.31 1.21	728.1 212.6 1407.2 208.0 333.6	100 oe 100 oe 500 oe 350 oe 350 oe
56-1, 117-119 56-2, 100-102 56-3, 120-122 57-1, 06-08 57-1, 134-136	521.16 522.51 524.21 529.57 530.85	C C C C C	709.6 110.1 53.3 16.5 65.8	60.0 60.2 58.1 51.8 65.9	59.9 58.2 63.9 53.2	210 310 420 280	1.61 1.29 1.17 1.20 0.94	1017.2 197.0 105.1 31.7 161.5	250 oe 350 oe 450 oe 300 oe
57-2, 125-127 58-1, 61-63 58-2, 67-69 58-3, 34-36 58-3, 121-123	532.26 539.62 541.19 542.35 543.22	C C C C C C	209.2 306.2 254.4 232.7 440.4	53.1 65.5 72.2 77.2 69.6	54.0 64.6 72.8 76.1 73.6	180 120 140 95 80	1.15 3.86 5.54 5.10 9.47	419.9 183.1 106.0 105.3 107.3	200 oe 150 oe 150 oe 100 oe 100 oe
58-4, 06-08 58-4, 34-36 58-5, 69-71 59-1, 12-14 59-2, 15-17	543.57 543.85 544.20 548.63 550.16	C C D D	282.6 273.0 41.2 72.0 75.2	69.4 71.0 -51.9 53.8 35.4	71.9 -50.2 46.1 52.9	$500 \\ 500 \\ 140 \\ 60 \\ 60 \\ 50 \\ 60 \\ 50 \\ 60 \\ 50 \\ 60 \\ 50 \\ 60 \\ 6$	6.75 9.16 0.42 1.52 2.83	96.6 68.8 226.4 109.3 61.3	200 oe 500 oe 150 oe 100 oe
59-2, 106-108 59-3, 12-14 59-4, 142-144 60-1, 15-17 60-1, 111-113	551.07 551.63 554.43 558.16 559.12	D D D D D	80.2 44.2 37.9 75.1 95.6	-47.0 -6.5 38.7 62.0 43.9	-51.1 -53.6 52.5 49.5 51.0	190 120 110 110 100	3.18 3.75 2.86 7.54 7.35	58.2 27.2 30.6 23.0 30.0	200 oe 150 oe 150 oe 150 oe 150 oe
60-2, 110-112 60-3, 74-76 60-4, 04-06 60-4, 125-127 61-1, 89-91	560.61 561.75 562.55 563.76 568.40	D D D D	97.8 82.5 72.2 31.9 78.8	36.7 50.7 31.4 68.3 49.5	47.3 51.5 45.9 58.7 54.2	70 40 60 90 60	7.66 7.15 8.28 8.65 6.50	29.5 26.6 20.1 8.51 30.0	100 oe 50 oe 100 oe 100 oe 100 oe
61-2, 103-105 61-4, 106-108 62-1, 90-92 62-2, 29-31 62-4, 62-64	570.04 573.07 577.91 578.80 582.13	D D D D	113.9 136.3 82.8 35.6 50.2	57.2 48.6 50.9 43.9 46.2	56.4 49.8 50.7 50.5 42.3	115 180 195 170 320	1.79 1.62 2.61 1.47 0.66	146.8 194.2 88.5 55.9 175.6	150 oe 200 oe 200 oe 200 oe 350 oe
63-1, 10-12 63-2, 71-73 63-4, 99-101 63-5, 128-130 63-5, 137-139	586.61 588.72 592.00 593.79 593.89	D D D D	27.5 50.8 127.4 27.6 78.5	43.5 47.6 68.2 40.0 43.7	36.4 47.1 54.7 47.4 52.3	240 390 105 310 170	1.06 1.70 5.71 0.93 7.59	58.9 69.0 56.9 68.5 23.9	250 oe 400 oe 150 oe 350 oe 200 oe
63-8, 84-86 64-2, 16-18 64-3, 20-22	596.85 597.67 599.21	D D D	79.1 74.0 79.1	24.0 7.9 27.2	53.9 49.3 50.8	50 	8.97 6.66 7.76	20.4 25.6 23.5	100 oe 100 oe 100 oe

TABLE 8 Paleomagnetism of Basalts, Hole 443

^aMDF is the median destructive field (of AF demagnetization) at which the remanent magnetism of a specimen decreases to 50% of its initial value; X_{in} is the initial susceptibility of a specimen; Q'_n is the Koenigsberger ratio of NRM; peak field strength listed in remarks column is that at which inclination of AFD remanent magnetization was taken; for other notations refer to Table 7.

Figure 12. Stability of NRM with respect to AF demagnetization. The horizontal axis represents peak alternating magnetic field decreasing to zero at a constant rate. J_{NRM} and J_{AFD} are intensities of NRM and AF-demagnetized remanent magnetization of a specimen. All samples are normally magnetized.

boundaries established from shipboard paleomagnetism studies (see paleomagnetism section). The magneticpolarity reversal between Cores 50 and 51 may also correlate with a change in the physical properties (Figure 16). Physical-property boundaries also correlate with major lithologic boundaries (see igneous-petrology section and Figure 16).

Physical properties of basalts from Site 443 exhibit the same dependence on porosity as did basalts from Site 442 (see physical-properties section, Site 442 report). Figure 18 shows the relationship between wetbulk density and porosity for these basalts, with the theoretical relation between wet-bulk density and porosity superimposed. The close agreement between the shipboard data and the theoretical lines indicates that porosity, not mineral alteration, controls the measured values of wet-bulk density. This is corroborated by the high average grain density (2.997 g/cm³) of the Site 442 basalts. Sonic velocity is linearly related to wet-bulk density (Figure 19), with a correlation coefficient of 0.91, a slope of 3.62, and an intercept of -5.04. The velocity-density relationship, however, is simply the manifestation of the dependence of velocity on porosity, as illustrated in Figure 20. The correlation coefficient for this inverse relationship is -0.90. Thermal conductivity of basalts, as expected, also exhibits an inverse relationship with porosity (Figure 21), with a correlation coefficient of -0.90.

The variation of sonic velocity, wet-bulk density, and thermal conductivity with depth observed for Site 443 basalts can be understood best as a variation of porosity with depth. Porosity, in this case, can be correlated

Figure 13. Inclination of stable remanent magnetization and median destructive field (MDF) of basalts, plotted against position in cores.

TABLE 9 Statistics of Paleomagnetism Results for Basalt Samples of Site 443

Population	А	В	С	D
Cores	49-50	51-54	55-58	59-63
Number of Samples ^a	7(1)	15(2)	15(2)	26
Mean	30.6	41.7	66.2	50.2
Standard Deviation	2.0	2.3	7.5	4.5
Dispersion	3.5	5.1	52.5	19.6

^aNumber of NRM data in parentheses; one of the samples of population D probably was taken from a pillow basalt rolled after cooling and fixing the NRM.

directly with the wide range of vesicularity of Site 443 basalts (see igneous-petrology section). An implication of Figure 16 is that the cooling units of Site 443 exhibit significant differences in vesicularity, unit 2 being the most vesicular unit, unit 1 the least, and units 3, 4, and 5 being of intermediate vesicularity. The differences in vesicularity, reflected in the physical properties, must be related to basalt petrogenesis, and may be related to the volatile content of the original magmas.

The seismic structure (Figure 16) of the basement of Site 443 is different from that proposed for the top of layer 2A by other workers and may be characteristic of this portion of the Shikoku Basin. Velocities of the basalts are high, with the exception of the zone of high vesicularity. Recovery of basalts from this hole was very good, greater than 70 per cent, and only a small amount of sedimentary rock was recovered. This suggests that sedimentary interbeds are uncommon and probably of insufficient volume to lower the average sonic velocity of layer 2A at this site. The variable vesicularity in the basalts from Hole 443 produces high-velocity layers with thin low-velocity layers between them. If this stratigraphic relationship continues with depth, and if the seismic waves "sensed" the porosity, a complex acoustic stratigraphy would be produced. The presence of thin low-velocity layers could cause errors in velocity and depth calculations from seismic-refraction profiles. The low velocity for layer 2A at this site may be caused by the combined effect of thin low-velocity layers, extensively fractured basalts (see igneous-petrology section), and intervals of glassy pillow rinds. Furthermore, if large-scale formation porosity is responsible for the low velocity, the formation porosity must exceed 30 per cent (Figure 20).

CORRELATION OF GEOPHYSICAL DATA WITH DRILLING RESULTS

Introduction

Site 443 is about 2 nautical miles southeast of shot point 950, line 2-1 of the S/S *Kaiyo-Maru* seismicreflection profiles (Figure 1). The site is on the western shoulder of a positive magnetic anomaly with moderate amplitude (170 gammas peak to trough) which has been tentatively identified as anomaly 6A (20 to 21 m.y.), assuming symmetrical spreading of the basin from an axis (magnetic anomaly 5) at the geographical center of the basin.

An earlier sonobuoy measurement made along a NNW-SSE line nearly on the present site (Murauchi and Asanuma, pers. comm.) has slightly less quality than that done by the *Challenger* at Site 442, because of rough seas during the site survey. A sonobuoy survey was not made when the *Challenger* left Site 443 because of bad weather. In spite of these difficulties, seismic data can be correlated rather well with drilling results.

Sonic Velocity and Sub-Bottom Depth

Reflection profiles taken underway when approaching and leaving the site show a layering of semitransparent sediment with two-way normal time of about 0.58 seconds overlying the acoustic basement. Shipboard measurement of sonic velocity indicated that $V_{\rm P}$ of sediment recovered is about 1.55 km/s on the average, throughout the cores from this site. Thickness of sediment thus estimated is 450 meters, which is in agreement with the depth of the first recovery of basalt, 457 meters.

A previous sonobuoy survey indicated that sediment is underlain by layer 2A basalt, with a thickness of 540 meters and V_P of 3.2 km/s, overlying layer 2B with thickness of 600 meters and VP of 4.56 km/s. VP of basalts recovered at this site ranges from 3.8 to 5.9 km/s (about 5.2 km/s on the average), appreciably larger than $V_{\rm P}$ of basalts taken at Site 442 (4.6 km/s). This difference in the measured sonic velocity at two sites seems to be sufficiently large to explain the difference in $V_{\rm p}$ of layer 2A obtained by sonobuoy. However, a much higher percentage of recovery of basalts at this site (67%) compared to that at Site 442 (24%) indicates that interlayering of sediments is substantially less in the uppermost 116 meters of basalt penetrated at this site than at Site 442. It seems therefore likely that local faulting or fractures which are undetectable by vertical drilling reduce the bulk seismic velocity observed by sonobuoy survey.

Magnetic Anomaly, Paleomagnetism, and Paleontological Age

The vertical alteration of normal and reversed polarities of natural remanent magnetization in rocks recovered at this site indicates that the superficial layer alone is not primarily the source of the magnetic anomaly observed above the sea floor. The relatively small amplitude of the anomaly around this site implies that the original magnetic basement, supposedly formed by a sea-floor-spreading mechanism, is thinner than that at Site 442, although it still is not known which layer is responsible for the observed anomalies.

The paleontological age of sediment overlying the uppermost massive basalt unit is 14 to 15 m.y., which is appreciably less than the oldest sediment age of Site 442 (18 to 21 m.y.). It is even less than the age of sediment imediately above the massive basalt flow first recovered at Site 442 (15–17 m.y.). This tempts us to reconsider the plausibility of the single-limb spreading model postulated by Watts and Weissel (1975) and disregarded afterward. Coincidence of their magnetism ages with the present paleontological age is good, as seen in Figure 22.

However, off-ridge volcanism occurring a few million years after the formation of the primary crust of this site also could account for the age discrepancy, if off-ridge volcanism occurred between 18 and 21 and 14 and 15 m.y. at Site 443, after which sedimentation dominated. We already have evidence of a hiatus in lavaflow accumulation at Site 442, which suggests the possibility of frequent off-ridge volcanism in the Shikoku Basin. A similar hiatus was found in the Reykjanes Ridge at DSDP Site 407 (Luyendyk, Cann, et al., 1979). It must be noted that the postulated rate of spreading of the Shikoku Basin (2-4 cm/yr) is very similar to that for the Reykjanes Ridge.

TABLE 10 Summary of Physical Properties of Sediments, Hole 443

Sample (interval in cm)	Lithology	Sonic Velocity (km/s)	Thermal Conductivity (mcal/cm-s-°C)	Shear Strength (× 10 ⁻⁵ dynes/cm ²)	Wet-Bulk Density (g/cm ³)	Porosity (%)	Water Content (%)
443-1-4, 76-80	mud	-	-	0.29	1.42	76.54	55.12
2-1, 80-83	**	1.934	200	0.67	1.38	80.50	59.59
2-3, 50-53	**	_	1997 - 19	0.38	1.46	72.25	50.66
3-1, 20-23	55	-		0.29			
3-2, 20-23	57		22 <u></u>	0.48	1.53	73.06	48.86
3-3, 103-106	**	_	-	0.29	-	-	-
3-4, 131-134	**			0.29	-		
3-5, 40-54	33	1.518	2.494	0.29	-	-	<u></u>
4-1, 81-83	**		12	0.29		14	-
4-2, 100-110	**	1.505	2.425	0.86	1.45	72.72	51.52
5-1 22-32	"	1 506	2 608	0.29	_	-	-
5-2, 13-16	**	-	-	0.29		-	
5-3, 110-113	nannofossil mud	-	-	0.20	1.46	77.21	54.32
6-2, 75-78	nannofossil mud	-	-	1.05		-	
6-2,150-170	**	-	-		1.42	75.93	54.87
6-3, 75-78 6-4, 75-85	"	1 539	2 036	0.50	1.49	69.87	47.89
6-5,75-78	**	-	_	1.24		-	-
7-7, 3-7		-	-	0.50	1.49	69.29	47.67
8-4, 57-67 9-4, 40-50	33	1.509	2.564 2.514	0.57	1.52	74.54	50.23
9-5, 18-28	**	1.585	2.578	0.19	1.47	76.09	53.12
10-4, 35-38	**	1.507	2.583	0.77	1.52	72.56	49.02
11-4, 93-96	**	-		1.72	-		-
11-6, 50-60	** •	1.515	2.433	1.34	1.48	71.84	49.61
14-4, 90-93	muu "	1.522	2.061	2.20	1.44	69.11	49.09
14-5, 140-141	**	-			1.49	73.78	50.81
15-6, 63-73	"	1.520	2.306	2.11	1.44	73.08	52.04 50.81
18-2, 74-88	**	1.546	2.250	4.60	1.52	69.91	47.03
18-2, 144-145	**	_	—	1.22	1.53	71.39	47.78
22-3 0-1	,,			1.55	1 47	73.96	51.62
23-2, 60-70	clayey nannofossil qoze	1.522	2.761	2.30	1.59	71.47	46.18
23-3, 60-63	"	1 563	2 081	2.30	1 59	70.02	45.12
23-5, 11-14	"	-	-	6.89	-	-	-
24-1, 127-130	55	-		0.86	-	-	-
24-3, 127-130		1.525	2 342	0.96	1.46	68.88	48.29
24-5, 79-82	**	-		2.30	-	-	-
24-6, 130-133	,,	<u> </u>		3.26	-	-	-
25-2, 60-71 25-3, 60-63	33	1.512	1.414	4.02	1.51	72.93	49.55
26-1, 105-108		_	12	3.26	_	_	-
26-2, 124-135 27-1, 35-38	"	1.589	1.600	0.86	1.58	/1.06	46.08
27-2, 44-47	,,	_	2	6.13		-	_
27-3, 78-91	**	1.520	2.514	2.49	1.45	67.16	47.46
28-2, 42-52	**	1.551	2.250	3.64	1.58	70.98	46.36
29-3, 140-150	"	1000-00-00-00-00-00-00-00-00-00-00-00-00	1.77		1.52	76.25	51.45

Sample (interval in cm)	Lithology	Sonic Velocity (km/s)	Thermal Conductivity (mcal/cm-s-°C)	Shear Strength (× 10 ⁻⁵ dynes/cm ²)	Wet-Bulk Density (g/cm ³)	Porosity (%)	Water Content (%)
443-29-5, 38-53	clavev nannofossil ooze	1.540	2,428	2.97	1.51	74.72	50.77
30-2, 109-123	mudstone	1.565	2.378	6.03	1.53	68.65	46.00
31-4, 89-103	**	1.536	2.281	3.16	1.52	72.11	48.75
32-1, 138-148		1.544	2.114	2.68	1.45	71.45	50.51
33-1, 75-78	**	-	-	9.38	-	-	-
443-33-2, 76-86	**	1.581	2,392	-	1.37	63.20	47.30
33-3, 19-22	23		-	3.45			_
33-3, 26-33	**	-		9.38	1.55	66.10	43.71
34-4, 74-77	23	-	-		1.54	74.38	49.44
34-4, 134-144	55	1.569	2.400	-	1.51	75.51	51.29
35-2, 64-74	33	1.585	2.267	-	1.46	74.53	50.93
35-3, 16-19	claystone	_		2.87	_	-	—
36-5, 51-61	mudstone	1.564	2.386	s - 6	1.51	75.45	51.18
39-1, 90-100	claystone	1.605	2.250	2.20	1.43	77.29	55.41
40-1, 140-150	"	-	-	1000	1.52	79.41	53.46
40-2, 100-113	,,	1.642	2.281	-	1.48	74.02	51.16
42-1, 48-51	**	1.623	-				
42-1, 99-102	**	-	-	4.40	$\sim - 1$	-	
42-1, 100-101	**			-	1.43	75.51	53.93
43-2, 48-58	**	1.593	2.358	223	1.51	65.47	44.30
45-1, 140-150	>>	-	-	-	1.56	78.91	50.50
45-2, 73-80	**	1.757		-	1.47	73.53	50.00
46-2, 38-51		1.667	2.494	—	1.46	73.40	50.44
47-2, 10-20	**	1.599	2.233		2 C		-
48-1, 114-117	"	1.565		-		-	—
49-2, 68-69	>>			-	1.75	65.19	37.17
49-3, 14-16	53	-			1.74	73.53	42.37

TABLE 10 – Continued

SUMMARY AND CONCLUSIONS

Summary

The stratigraphic succession at Site 443 consists of 10 lithologic units, five of which are sedimentary and range in age from Miocene to Quaternary, and five of which are basalt.

The total penetration at Site 443 was 581.5 meters, and both a sedimentary section and the top of an igneous section were recovered. Depth of penetration into basalt was 124 meters.

An interpretation of the relative depth of deposition of the sedimentary units at Site 443 is shown in Figure 23. Calcareous organisms suggest that the depositional surface was above the CCD, and probably below the lysocline.

The sediment accumulation rate fluctuated and was high during the early middle Miocene and during the Pleistocene. During the late middle Miocene, late Miocene, and Pliocene, sediment accumulation rates were intermediate. Deposition of sediment appears to have been continuous since the early middle Miocene. High sediment accumulation rates at Site 443 during the early middle Miocene owe their origin to resedimentation of ash and pelagic calcareous material by turbidity currents and to regional volcanism, whereas the high Pleistocene rates of accumulation owe their origin to increased regional volcanism and increased sediment erosion and supply during periods of lower sea level.

Most of the clays at this site are hemipelagic, authigenic components composing less than 5% of the total sediment.

Organic-carbon and nitrogen contents of the sediments show a steady decrease with depth. The C/N ratio shows a similar trend, with slightly anomalous increases at depth of 200 to 250 meters and 300 to 400 meters.

The pH of the sediment averages 7.71, alkalinity averages 4.70 meq/kg, salinity averages 35.3 per mill and chlorinity averages 19.29 per mill.

Physical properties show a variety of major changes. The sonic velocity of the sediments averages 1.57 km/s, whereas for the basalts it averages 5.32 km/s. Average density for the sediments is 1.49 g/cm³, and for the basalts, 2.81 g/cm³. Porosity averages 70 per cent for the sediments (range 65–80%), and for the basalts ranges from 0.7 to 27.0 per cent. The average shear strength of the sediments is 0.19 to 7.47×10^{-5} dynes/cm². At Site 443, a crude correlation of shear strength and depth can be extrapolated from 0 to 185 meters only; the data are too variable below that depth to define any meaningful trends.

The basalts are mostly olivine tholeiites analogous to oceanic basalts in composition, structure, and vesicularity. Hydrothermal alteration of basalt appears to in-

 TABLE 11

 Summary of Physical Properties of Igneous Rocks, Hole 443

TABLE 12	
vet-Bulk Density and Porosity from	2-Minute GRAPE
Counts for Igneous Rocks.	Hole 443

Sample (interval in cm)	Sonic ample Piece Velocity (rval in cm) No. (km/s) (t		Thermal Conductivity (mcal/cm-s-°C)	Wet-Bulk Density (g/cm ³)	Grain Density (g/cm ³)	Porosity (%)
443-49-3, 121-131	8a	-	4.175	-		
49-3, 137-143	8b	5,800	-	3.10	3.11	0.31
49-4, 79-89	7	-	4.458	_	-	_
50-1, 117-122	11a	5.906	_	2.95	2.97	0.74
50-2, 0-10	1a	-	4.350	-		-
50-4 127-137	6		4 353	122	1022	20
52-1 66-76	5		4.333	-	-	
52-1, 85-87	6f	5.065		2.95	3.02	3.72
52-2, 119-129	4h	-	4.419	-	-	-
52-3, 85-87	6a	-	-	2.84	2.96	5.81
52.3 107-110	61	5 264		23.000	202257	1000
53-1 115-125	Ob	5.304	4 100	2.05	3.01	2.07
53-2 48-58	1.d	5.500	4.164	2.95	3.01	5.07
53-3, 83-93	50		4 100			_
54-1, 90-92	6a	5.868		2.88	3.00	6.05
54.1.120.120	-		4.130		0100	0100
54-1, 120-130	1	-	4.139	-	-	-
54-2, 152-142	19	5 976	4.522	2.02	2.05	6 77
54-3, 0-13	La	3.620	4.272	2.95	3.05	5.12
54-4 15-25	19	-	4.175	-		
01 1, 10 20	14		4.1.1.5			
54-4, 70-80	1d	-	3.556	-		
54-4, 140-150	1g	-	4.556	-	-	
54-5, 2-12	1a	17	4.611		1.1	
54-5, 45-55	10	-	4.547			
54-5, 145-155	10	-	4.092	-	-	-
54-6, 28-38	1b	100	4.139	-	-	-
54-7, 60-70	1d	5.913	4.533	2.97	3,14	7.98
54-7,67-69	Id	-	-	2.93	3.00	3.53
55-1, 77-80	90	4.002	-	2.51	2.95	22.63
56-1, 61-/1	8a	-	3.256	-	-	-
56-1, 105-115	8f	-	3.333	-	-	100
56-2, 49-59	5a	3.941	3.347	2.46	3.00	27.07
56-2, 94-104	8	-	3.269	-		-
56-3, 97-107	11b	1	3.514	-	12	-
56-3, 115-125	126	-	3.644			-
56-4, 0-10	1		3.484	-	-	-
57-1, 0-10	la	100	3.628		1.00	
57-1, 70-72	5	4.450		2.59	3.01	20.61
57-1, 125-135	9d	-	3.583	-		-
58-1, 82-92	7e	-	3.573	-		1
58-3, 120-130	4a	-	3.625	—	—	\rightarrow
58-3, 137-143	4b	3.816	-	2.60	2.99	19.59
58-3, 114-124	4c	-	3.772	-		
59-2, 14-24	1b	-	4.303	-	100	-
59-3, 98-100	8a	5.222	-	2.84	3.00	8.24
59-3, 136-146	8c		4.078	-		-
59-4, 138-148	6b	<u>1</u>	4.130	-	<u>2</u>	125
60-1, 0-10	la	-	4.458			\rightarrow
60-2, 8-18	8-18 1a 4.823 4.372 2.75		2.98	11.22		
60-2, 134-144	1j	12	4.267			-
60-3, 99-109	1d		4.386	-		-
60-5, 113-118	- 18	5.636		2.89	2.94	2.37
61-2, 0-10	1a	a - 4.342 -		-		
61-4, 77-81	1d	5.749		- 2.90		3.78
62-1, 15-25	1b		3.792	92 -		-
62.2 43-49	20	4 872		2.69	2.95	1310
63-3 103-105	50	5.029	-	2.09	2.75	13.19
63-3, 105-115	Sb	-	3,964	2.75	2.85	5.41
64-1, 24-29	2b	5.185	-	2.83	3.03	9.82
64-2, 130-140	3b		4.078		0000	

crease with depth, and the association of zeolites, smectite, calcite, chlorite, pyrite, and native copper indicates an alteration temperature of $200 \,^{\circ}$ C or less. The pillow basalts show a high degree of oxidation. Alteration of the Site 443 basalts is greater than that at Site 442. Chemical composition of glasses in these basalts is nearly identical to that of glass from mid-ocean ridges (Dick et al., this volume).

Paleomagnetism measurements show that Site 443 has been approximately at or slightly south of the present latitude since the early Miocene. The average intensity of natural remanent magnetization for the basalts is 2 to 10×10^{-3} gauss/cm³. The basal sediment and top of the basalt represent the same period of magnetic-polarity reversal and are therefore of very similar age.

Sample (interval in cm)	Piece No.	Wet-Bulk Density (g/cm ³)	Porosity (%)
443-49-3, 101-103 ^a	4c	2.82	10.58
49-3, 134-136	8b	2.82	10.72
49-3, 145-147	9	2.79	12.05
49-4, 40-42 ^a	5a	2.91	6.02
49-4, 74-76	6	2.81	11.29
49-4, 102-104 ^a	8	2.84	9.69
50-1, 85-87 ^a	9	2.86	8.53
50-1, 118-120	11a	2.80	11.32
50-2, 30-32 ^a	1b	2.88	7.65
50-2, 127-129	6	2.82	10.66
50-4, 2-4 ^a	1a	2.89	6.91
50-4, 66-68	5	2.82	10.77
51-1, 9-11 ^a	2	2.87	8.27
52-1, 33-35 ^a	5b	2.82	10.44
52-1, 125-127	61	2.71	16.06
52-2, 119-121 52-2, 120-122 ^a 52-4, 21-23 ^a 53-1, 7-9 ^a 53-1, 115-117	4h 4h 1 9b	2.76 2.89 2.87 2.91 2.74	13.36 6.91 7.85 6.02 14.76
53-2, 12-14 ^a	1b	2.87	8.25
53-2, 48-50	1d	2.81	10.88
53-3, 83-85	5c	2.81	10.94
54-1, 54-56 ^a	4b	2.95	2.05
54-1, 119-121	7	2.82	10.39
54-2, 54-56 ^a	1b	2.91	6.02
54-2, 132-134	1g	2.84	9.55
54-2, 138-140 ^a	1g	2.91	6.41
54-3, 0-2	1a	2.90	6.59
54-3, 124-126	1g	2.80	11.56
54-3, 125-127 ^a	1g	2.93	4.84
54-4, 15-17	1g	2.81	10.86
54-4, 70-72	1d	2.83	9.96
54-4, 140-142	1g	2.92	5.54
54-4, 146-148 ^a	1g	2.87	7.89
54-5, 8-10	1a	2.86	8.63
54-5, 45-47	1c	2.80	11.11
54-5, 145-147	10	2.77	13.41
54-5, 146-148 ^a	10	2.81	11.21
54-6, 14-16 ^a	1a	2.87	8.14
54-6, 28-30	1b	2.86	8.31
54-7, 19-21	1a	2.83	10.09
54-7, 60-62	1d	2.87	7.94
54-7, 76-78 ^a	1e	2.94	4.53
54-7, 137-139	6	2.47	27.77
54-7, 138–140 ^a	6	2.41	31.11
55-1, 78–80	9c	2.45	27.54
55-1, 99–101 ^a	10a	2.59	20.27
55-1, 145–147	14	2.48	26.09
55-2, 60–62 ^a	5	2.61	19.10
56-1, 71-73 56-1, 71-73 56-1, 117-119 ^a 56-2, 49-51 56-2, 94-96	7b 8 5a 8	2.47 2.48 2.53 2.43 2.47	26.09 25.95 23.58 28.56 26.45
56-2, 100-102 ^a	8	2.32	34.19
56-3, 97-99	11b	2.48	25.81
56-3, 115-117	12b	2.51	24.41
56-3, 120-122 ^a	12b	2.58	21.04
56-4, 0-2	1	2.54	23.00
56-4, 17-19	2	2.44	27.83
57-1, 134-136	9d	2.61	19.13

TABLE 12 – Continued

Sample (interval in cm)	Piece No.	Wet-Bulk Density (g/cm ³)	Porosity (%)
443-57-2, 125-127	14	2.59	20.13
58-1, 61-63a	7c	2.55	22.52
58-1, 82-84	7e	2.51	24.58
58-2, 67-69 ^a	6	2.46	26.88
58-3, 120-122	4a	2.47	26.34
58-3, 121-123a	4a	2.57	21.25
58-4, 69-71a	6	2.89	5.27
58-4, 114-116	4c	2.55	22.37
59-1, 12-14a	2	2.79	8.26
59-1, 71-73	11c	2.76	10.27
59-2, 14-16	1a	2.78	9.29
59-2, 106-108a	8g	2.89	3.80
59-2, 116-118	9	2.78	9.55
59-3, 12-14	1b	2.82	7.43
59-3, 136-138	8c	2.66	15.55
59-4, 5-7	1a	2.58	19.43
59-4, 138-140	6b	2.57	20.01
59-4, 142-144a	6b	2.67	15.08
60-1, 16-18a	1a	2.59	19.18
60-1, 111-113a	4e	2.79	9.07
60-1, 111-113	4e	2.66	15.56
60-2, 8-10	1a	2.59	19.35
60-2, 110-112a	1j	2.86	5.22
60-2, 134-136	Ii	2.60	18.54
60-3, 74-76	1c	2.87	4.50
60-3, 99-101	1d	2.65	15.89
60-4, 125-127a	3h	2.86	5.04
60-4, 125-127	3h	2.71	13.14
61-1, 89-91 ^a	1b	2.86	5.07
61-1, 103-105a	2b	2.87	4.73
61-4, 106-108a	1d	2.79	8.56
62-1, 90-92a	3c	2.74	11.33
62-2, 29-31a	1b	2.80	8.50
62-4, 62-64a	3c	2.77	9.65

^acounts through basalt minicores

Two normal- and two reversed-polarity zones were identified in the basalt succession.

Conclusions

Our data from Site 443 permit the following conclusions:

1. The age of the sediment immediately above the basalt basement, dated from fossils in the sediment recovered from Sample 443-49-3, 55 cm, is early middle Miocene (14-15 m.y.; Sphenolithus heteromorphus Zone of nannofossils). However, a water sample recovered during retrieval of basalt in Core 50 contained sediment and some nannofossils older than 15 m.y. This implies that the oldest sediment at the sediment/basalt contact was not recovered. The 15-m.y. biostratigraphic age is at variance with the age of magnetic anomaly 6A (23 m.y.) postulated by Kobayashi and Nakata (1977). A K-Ar age determination on the youngest pillow basalt gives an age of 17.2 ± 3.1 m.y. (E.H. McKee, pers. comm.; see Klein and Kobayashi, this volume).

2. The depositional surface at Site 443 was always slightly above or well above the CCD, but below the ly-

Figure 14. Sonic velocity, wet-bulk density, and thermal conductivity versus depth for Site 443 sediments.

socline. Poor preservation of foraminifers throughout the column indicates deposition below the lysocline, although beds of nannofossil ooze and chalk suggest deposition well above the CCD. The exact depth of deposition cannot be determined exactly, because no data are availale concerning present or past elevations of the CCD and lysocline in the Shikoku Basin. However, assuming the general Pacific Ocean CCD curve of Van Andel et al. (1975) the depositional surface at Site 443 was no less than 3800 meters (Figure 23).

3. All the interbedded ash and carbonate beds of unit V were deposited by resedimentation by turbidity currents. Evidence of resedimentation includes graded beds and mixing and reworking of the nannofossil and foraminifer faunas. Also, hemipelagic clays are interbedded with pelagic chalk in this interval. The reworked sediments were derived from a local source such as the slopes of a seamount. The remaining clays are hemipelagic and were deposited in a distal or basinal facies; in this way they are analogous to those at Site 442. The Site 443 hemipelagic clays were deposited on the western edge of an eastward-thickening clastic wedge recognized from seismic surveys by Marauchi and Asanuma (1974, 1977) and by preliminary contouring of sediment thicknesses from seismic records by Karig (1975, p. 962, Fig. 3). This clastic wedge thickens

Figure 15. Shear strength versus depth for Site 443 sediments.

toward the Iwo Jima Ridge. We assume that the Iwo Jima Ridge is the most likely source for these sediments.

4. The olivine basalts at Site 443 are characterized by two types of alteration: hydrothermal and oxidative. Hydrothermal alteration is associated with calcite veins, and the alteration zones are enriched in calcite, smectite, and zeolites. These hydrothermal veins contain native copper and owe their origin to low-temperature processes at 200°C or less. Zones of higher-temperature alteration were observed in the upper basalt units, where chlorite, serpentine, and talc occur in veins and as replacements of olivine. Vesicles filled with calcite and pyrite also indicate a higher temperature of alteration.

All the basalts show evidence of oxidation at the top and base of each flow unit and along calcite veins. The Site 443 basalts are more oxidized than those at Site 442.

Paleomagnetic-reversal data indicate that the upper 125 meters of basalt at Site 443 most probably were ex-

Figure 16. Sonic velocity and wet-bulk density versus depth for Site 443 basalts. Crosses on wet-bulk density graph correspond to values determined from 2-minute GRAPE counts; dots correspond to values determined through laboratory measurements.

truded over a period of at least 200,000 years, whereas the basalts at Site 442 appear to have been extruded over a much shorter time. This duration of extrusion suggests that at Site 443 volcanism was more episodic, thus permitting the weathering of basalt.

REFERENCES

- Andrews, J. E., Packham, G. H., et al., 1975. Init. Repts. DSDP, 30: Washington (U. S. Govt. Printing Office).
- Berggren, W. A., 1972. A Cenozoic time-scale—some implications for regional geology and paleogeography. *Lethaia*, 5, 195-215.
- Berggren, W. A., and Van Couvering, J. A., 1974. The late Neogene biostratigraphy, geochronology and paleoclimatology of the last 15 million years in marine and continental sequences. *Palaeogeography Palaeoclimatology Palaeo*ecology, 16, 1–216.
- Bukry, D., 1975. Coccolith and silicoflagellate stratigraphy, northwestern Pacific Ocean, Deep Sea Drilling Project Leg 32. In Larson, R. A., Moberly, R. M., Jr., et al., Init. Repts. DSDP, 32: Washington (U. S. Govt. Printing Office), pp. 677-718.
- Donnelly, T. W., 1975. Neogene explosive volcanic activity of the western Pacific: Sites 292 and 296. *In* Karig, D. E., Ingle, J. C., Jr., et al., *Init. Repts. DSDP*, 31: Washington (U. S. Govt. Printing Office), pp. 577-597.
- Fischer, A. G., Heezen, B. C., et al., 1971. *Init. Repts. DSDP*,6: Washington (U. S. Govt. Printing Office).
- IPOD-Japan, 1977. Multi-channel seismic reflection data across the Shikoku Basin and the Daito Ridges, 1976. IPOD-Japan Basic Data Ser. No. 1.

137

Figure 17. Thermal conductivity versus depth for Site 443 basalts. Data correspond to laboratorydetermined values.

TABLE 13	
Averages of Physical Properties of Site 443	Basalts
Within Various Depth Intervals	

	Sub-Bottom Depth (m)							
Physical Property	457.00-501.78	501.78-525.00	>525					
Wet-Bulk Density (g/cm ³)	2.95	2.54	2.81					
Sonic Velocity (km/s)	5.60	4.05	5.22					
Grain Density (g/cm ³)	3.031	2.988	2.960					
Thermal Conductivity (mcal/cm-°C-s)	4.28	3.47	4.16					
Porosity (%)	4.18	22.48	7.72					

Figure 18. Wet-bulk density plotted as a function of porosity. Lines correspond to predicted wet-bulk density for basalts of varying porosity with given grain densities (ϱ_g) .

Figure 19. Sonic velocity plotted as a function of wetbulk density for Site 443 basalts.

- Karig, D. E., 1975. Basin genesis in the Philippine Sea. In Karig, D. E., Ingle, J. C., Jr., et al., Init. Repts. DSDP, 31: Washington (U. S. Govt. Printing Office), pp. 857-880.
- Karig, D. E., Ingle, J. C., Jr., et al., 1975. *Init. Repts. DSDP*, 31: Washington (U. S. Govt. Printing Office).
- Kennett, J. P., McBirney, A. R., and Thunnell, R. C., 1977. Episodes of Cenozoic volcanism in the Circum-Pacific Region. J. Volcanol. and Geochem. Res., 2, 145-163.
- Kobayashi, K., and Isezaki, N., 1976. Magnetic anomalies in the Sea of Japan and the Shikoku Basin: possible tectonic

Figure 20. Sonic velocity plotted as a function of porosity for Site 443 basalts.

implications. In The Geophysics of the Pacific Ocean Basin and its Margin: Am. Geophys. Union Monogr. 19, 235-251.

- Kobayashi, K., and Nakata, M., 1977. Local magnetic anomaly profiles, Shikoku Basin, northwestern Pacific Ocean (Map): Contrib. Geodynamics Project Japan, 77-2.
- Ling, Hsin Yi, 1975. Radiolaria: Leg 31 of the Deep Sea Drilling Project. In Karig, D. E., Ingle, J. C., et al., Init. Repts. DSDP, 31: Washington (U. S. Govt. Printing Office), pp. 703-762.
- Luyendyk, B., Cann, J., et al., 1979. Init. Repts. DSDP, 49: Washington (U. S. Govt. Printing Office).
- Murauchi, S., and Asanuma, T., 1974. Seismic reflection profiles and sonobuoy refraction measurements during GDP-6 to -8 voyages. *Mar. Sci.*, 6, 23-27. [in Japanese with English abstract]
- _____, 1977. Seismic Reflection Profiles in the Western Pacific, 1965-1974: Tokyo (University of Tokyo Press).

- Figure 21. Thermal conductivity plotted as a function of porosity for Site 443 basalts. Dots correspond to values of porosity determined in the laboratory; crosses correspond to porosity values calculated from 2-minute GRAPE counts.
- Ridley, W. I., Rhodes, J. M., Reid, A. M., Jakes, P., Shih, C., and Bass, M. N., 1974. Basalts from Leg 6 of the Deep-Sea Drilling Project. J. Petrol., 15, 140-159.
- Saito, T., 1977. Late Cenozoic planktonic foraminifera datum levels: the present state of knowledge towards accomplishing Pan-Pacific stratigraphic correlation. Proc. First Internat. Cong. Pacific Neogene Stratigraphy, 61-80.
- Tomoda, Y., Kobayashi, K., Segawa, J., Nomora, M., Kimura, K., and Saki, T., 1975. Linear magnetic anomalies in the Shikoku Basin, northeastern Philippine Sea. J. Geomagnet. and Geoelec., 28, 47-56.
- van Andel, Tj. H., and Heath, G. R., and Moore, T. C., Jr., 1975. Cenozoic history and paleoceanography of the Central Equatorial Pacific Ocean. *Geol. Soc. Mem.*, 143.
- Watts, A. N., and Weissel, J. K., 1975. Tectonic history of the Shikoku marginal basin. *Earth Planet. Sci. Lett.*, 25, 239–250.

Figure 22. Magnetic ages of two sites according to a single-limb-spreading model (Watts and Weissel, 1975).

Figure 23. A. General curve showing estimated water depth of CCD in Pacific Ocean (after van Andel et al., 1975, p. 47, fig. 29). B. Relative depth of deposition at Site 443 compared to CCD curve for Pacific Ocean.

SITE 443 HOLE	CORE	1	CORED INTERVAL:	0.0-7.0 m	SITE	443	HO	LE	C	ORE	2 CORED I	NTERVAL:	7.0-16.5 m
TIME-ROCK UNIT BIOSTRAT ZONE FORAMS NANNOS RADS	IL CTER NOILDES	merens	GRAPHIC OCIC	LITHOLOGIC DESCRIPTION	TIME-ROCK UNIT	BIOSTRAT	FORAMS C	SOLUTION SOLUTION	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DRILLING SEDIMENTARY STRUCTURES STRUCTURES SAMPLE	LITHOLOGIC DESCRIPTION
Lipper Pleistocene or Holocene Emiliania huxkeyi Zone (N) Foram Zone N.23 Bu W W W Bu W W Bu W W C W W W C W W W W	2 2 3 4 5 CC			Mad Dark greenish gray (5GY 4/1) mud with patches of dark gray (N4 to N7, 5Y 4/1) mud. No sedimentary structures. Ash layers at 1.63. Ash layers at 1.63. Ash layers at 1.63. Up to 4 cm) in the lower part of the core, Section 5 and CC. Ciew Mineralogy (5) 1.17: chlorite 10, illite 30, mixed layers 5, vermiculite 5, and feldspar T8. Smear: Dominant Libelogy (Average) Sard < 1%	Upper Pleistocene or Molocene	Emiliaria huxleyi Zone (N)	B FM AI	M AG	2 2 3 3 4 CC	0.5		0	Mud Dark greenish gray (5GY 4/1) soupy to firm, without sedimentary structures. Load presence of:

SITE 443

	ITE 443 HOLE	CORE 3 CORED INTERVAL:	16.5-26.0 m	SITE 443 HOLE CORE 4 CORED INTERVAL: 26.0-35.5 m	
P 0 <th>FORAMS FORAMS FORAMS FORAMS RADS</th> <th>RECTION BILLING COLON BILLING COLON BILLING COLON BILLING STRUCT</th> <th></th> <th>TIME - ROCK POSTR AT BIOLIT CHARACTER RADIS RA</th> <th>LITHOLOGIC DESCRIPTION</th>	FORAMS FORAMS FORAMS FORAMS RADS	RECTION BILLING COLON BILLING COLON BILLING COLON BILLING STRUCT		TIME - ROCK POSTR AT BIOLIT CHARACTER RADIS RA	LITHOLOGIC DESCRIPTION
	IN PP B AM		Nud Dark green is grav (SGY 4/1) to dark grav (SY 4/1, N4) modules" (1-80, 4-30-70) and an batches (1-60). Presence of either carbonates, siliceous insisto ar an in the lift fraction. Cay Mineralogy (S) 7.2, 4-92: chlorite 15-20, lifte 30-45, mixed layers fraction. Dark green is lift fraction. 2.92, 4-92: chlorite 15-20, lifte 30-45, mixed layers fraction. Darant Libology (Average) Sand 2-15, Outprice fraction. Sand 2-15, Outprice fraction. 0.97, 60, 00, 00, 00, 00, 00, 00, 00, 00, 00	PP CP FP CP	Mad to Ashy Mud Mainly dark gravith green (SGY 4/1) with minor color change (SGA 4/1, NS). Mud to ashy mud, intensely deformed with firmer "crumbly" streaks and numerous citay "noduler". Local presence of carbonate mud. Clay Minaralogy (K) 2-100: chickine 15, little 30, mixed layers 5, werniculta TA, smeatite 45, kaolinite 5, traces of quartz and feldopar. Smear: Deminant Lithology 2-5 Sand < 15 Clay -2605. Clay minerals TR Clay -2505. Clay minerals TR Clay -2505. Clay minerals TO Clay 705. Clay minerals TO Siliceous fossile TO Sond 505. Clay minerals TO Clay 705. Clay minerals TO Clay 705. Clay minerals TO Siliceous fossile TO Siliceous fossile TO Siliceous fossile TO Sond 505. Clay minerals TO Clay 705. Clay minerals TO Clay 705. Clay minerals TO Siliceous fossile TO Siliceous fossile TO Siliceous fossile TO Siliceous fossile TO Sonone spicules TO Clay 405. Clay minerals TO Clay 405. Clay minerals TO Clay 405. Clay minerals TO Sonone spicules TO Sonone spicules TO Sonone spicules TO CARBONACARBONATE: 2-12 (12, 03, 8) 4-8 (0.8, 0.4, 3) CARBONATE EDMB: 2-15 (7)

142

SITE	443	HOI	E	C	ORE	5 CORED	INTERVAL	35.5-45.0 m	SITE	443	H	OLE		COR	E (CORE	D INT	ERVAL:	45.0-54.5 m
TIME-ROCK UNIT	BIOSTRAT	FORAMS NANNOS	SOLA	SECTION	METERS	GRAPHIC LITHOLOG	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	LITHOLOGIC DESCRIPTION	TIME-ROCK UNIT	BIOSTRAT	FORAMS	FOSSI HARAC SONNAN	TER	SECTION	METERS	GRAPHI	C G C C C C C C C C C C C C C C C C C C	SEDIMENTARY STRUCFURES LITHOLOGIC SAMPLE	LITHOLOGIC DESCRIPTION
Upper Pleistocene	Pseudoemiliania lacunosa Subzone (N)	FP RP	FP	1 2 3 4 CO	0.5			Mud Dark greenish gray (5GY 4/1, locally 5G 4/1, N4); with numerous citar 'Inodules'', intense mud. Local occurrence of cathonate mud or Clay Mineralogy (%) 2-57, 4-12: chlorite 10, illite 30-45, mixed 1 vermiculite TR-10, smectrize 20-45, kaolinite of quarts and teldspar. Smears: Dominant Lithology 2-85 Sand < 1%	1,566 4/1, ely deformed r volcanic ath. layers 10, e 5, presence 2% 89% 1% 1% 2% 3% 5% 1% 2% 30% 1% 2% 30% 6% 6% 30% 67% 1%	Foram Zone (N.22) Pseudoemiliaria lacunosa Subzone (N)	FP	FP AP B		2 3 4		VOID		•	Mud and Namo Mud Dark greenish gray (SGV 4/1) intensely deformed, soft to firm mud with namofossils and unspecified arbonants, with required tay "nodular" (SBC 4/1 to SB 4/1). No sedimentary structures. Or y Mineralogy (S) Soft choire its [S] mixed layers 15, smecrite 35, kaolinite TR, quartz very rare. Smerr: 275 Sift >455 Mica 1% Clay >555 Mica 1% Clay >555 Mica 1% Clay >556 Mica 1% Clay >556 Mica 1% Clay >557 Mica 1% Clay initerals 3% Optiques 1% Volcanic glass 1% Zarbonate unspecified 7% Namofossils 20% Siticeous fossils 1% CARDONCARBONATE: 243 (1.1, 0.2, 7) 436 (0.3, 0.2, 1)

CC

143

SITE 443	HOLE	CORE	E 7 CORED INTERVAL	54.5-64.0 m	SITE	143	HOLE	co	RE	8 CORED INTERV	AL: 64.0-73.5 m
TIME-ROCK UNIT BIOSTRAT ZONE	FOSSIL CHARACTER SONNAN SONNAN SOA SOA SOA SOA SOA SOA SOA SOA SOA SOA	SECTION	DIOGICAL CONTRACTOR	LITHOLOGIC DESCRIPTION	TIME-ROCK UNIT	BIOSTRAT ZONE FORAME	FOSSIL CHARACT SOUNAN SOUNAN	SECTION	METERS	GRAPHIC	
Upper Pleistocene Pseudeentitiania lacunoes Subzone (N)		2 3 4	VOID VOID VOID VOID	Namoo Mad Dark greenish grav (SGY 4/1), locally dark grav (SY 4/1) or greenish grav (SGY 5/1) mud rich in nanorfossia, without sedimentary structures. Locally clayery namo ocar or mud. Section 1 to 5 show very high disturbances. Section 6 is a little better preserved. Clay Mineralogy (%) -0:120: chlorite 10, little 40, mixed layers TR, smectite 45, kaolinite 5, very rare quartz. Sint 45, Kaolinite 5, very rare quartz. Sond 1% Ouartz, Fieldsaar 375 Olay minerale 475 Clay 164 Clay 184 Onaurus fieldsaar 375 Oray of 150 Clay 194 Minor Lidhology (Mud Oct Sand 7% Oray of 157 Carbonate unspecified 7% Foraminifers 155 Site 23% Minor Lidhology (Mud Oct Sand 7% Dantzr, Fieldspar 5% Siteous fossils 176 Clay minerais 155 Siteous fossils 176 Clay carbonate unspecified 5% Siteous fossils 176 GRAIN SIZE: 6-98 (11, 1, 45.1, 53.8) CARBON CARBONATE: 6-82 (1.9, 0.2, 15)	Upper Pleistocene	eudoemiliania lacunosa Subzone (N) 20	⁸ CM	2	0.5	VOID VOID VOID VOID VOID	 Carbonase Mudi Dark greening gray (SGY 4/1) to tiark gray (N4) chilling breecis or soury mud, except in Sections 4 and 5 (soft to tim mud. As addimentary structures. Thin ash tayers or iteraks (i.e. 4-135, 5-30). Clay Mineralogy (%) 4-120: choirer 15, little 40, mixed layers TR, smectite 45, kaolinite TR. Smear: Dominant Lithology 4-75 Sand 1% Quartz, Feldspar 3% Siti 39% Heavy minorals TR Clay 60% Clay minerals 71% Oraques 3% Volcanic glass TR Carbonate suspecting 10% Foraminifers 2% Numericalis 10% Submit 20% Alary Sandry Mud) 6-30 Sand 40% Quartz, Feldspar 2% Numericalis 1% Minor Lithology (Ashy Sandry Mud) 6-30 Sand 40% Quartz, Feldspar 2% Numericalis 1% GRAIM SIZE: 4-66 (0.1, 39.3, 6.6) CARBON-CARBONATE: 4-70 (0.6, 0.4, 2)
N22		5				ď		5		Void Void	
	FM AP	6					PCM B	6		VOID VOID	

SITE 443
SITE 44	3 1	HOLE	C	ORE	1	CORED	INTERVAL	73.5-83.0 m	SITE	443	HO	DLE	C	ORE	10 CORED IN	TERVAL:	83.0-92.5 m
TIME-ROCK UNIT BIDSTRAT	ZONE	FOSSIL CHARACTER SONNER SONNER SONNER	CELTION		METEKS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	LITHOLOGIC DESCRIPTION	TIME-ROCK UNIT	BIOSTRAT	FORAMS	FOSSIL ARACTER SOUNA	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES LITHOLOGIC SAMPLE	LITHOLOGIC DESCRIPTION
Lower Plaintoune	RP FF Cubricities Councellates Cone (N)	- CM		0.0.1 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		VOID	000000	Carbonste Mud Dark greening runder stelly distanded with greening gree (SCV 671) scattered durind day chunks, insteads of voloaine mud at 4-20, and greening data stella	Lower Pleistocene	Censitituus doronicoldes Zone (N)	B B RP F	м м	2 2 3 3 3 4 4 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.5	■ 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Carbonate to Namofosail Mud Dark greenish yay (5GY 4/1) introns to kightig deformed, without sedimentary structures. Scattered with numerous greenish gay (3GY 6/1) firm to hard day "nodules" and local volcanic glass (1.e. 2-98). Orgy Mineralogy (S) 2-135, 4-60: chorite 20, alite 55, mixed layers 10, and 10
	R	PCM B	C	c	-	P	8				FPC	MB	C	0			

SITE 44	13	HOLE		co	RE	11 CORED INTER	VAL	92,5-102.0 m	SITE	443	н	OLE		co	RE	12	CORED	INTER	VAL	102.0-111.5 m		
TIME-ROCK UNIT BIOSTRAT	ZONE	CHARA SONNAN RADS	CTER	SECTION	METERS	GRAPHIC ORAPHIC LITHOLOGY	STRUCTURES LITHOLOGIC SAMPLE	LITHOLOGIC DESCRIPTION	TIME-ROCK UNIT	BIOSTRAT	FORAMS	RADS RADS	ACTE	SECTION	METERS	G LIT	RAPHIC HOLOG	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES LITHOLOGIC SAMPLE		LITHOLOGIC DESCR	IPTION
				1	1.0	04024024000000000000000000000000000000		Carbonate Muri to Ashy Muri Dark greenish gray (5GY 4/11 silty clay, with carbonate. Hard clay chunks (5GY 6/11 throughout the core. Common ash layers and parches (i.e. 2-65-21; 3-130-150, 5-65-105). Clay Mineralogy (%) 4-126: chlorite 20, ilitie 50, mixed layers 15, smootite 15, kaolinite TR, very rare quarts and feldspar. Smears: Dominant Lithology 3-40 Sand TR Quartz, Feldspar 2% Silt 40% Clay minerals 74% Clay 60% Volcanic glass 5% Opaques TR	Lower Pleistocene	N21(7) Graphyrocapta caribbeanica Subcone (N)		FM B		1 2 CC	0.5						Must with carbonate or Dark gray to greenish gr breceise. Smears: Average Quartz, Feldagae Heavy minerals Qiey minerals Qiey minerals Qiey minerals Qioques Zeolitins Carbonate unspecified Namerofossils Sponge spicules	oh. av (5Y 4/1-5GY 4/1). Drilling TR 68:00% 2:10% 0:1% 5:10% 0:1% TR-2%
					111 111			Nannofosils 14% Minor Lithology (Ashy Mud) 2-78 Sand 20% Quartz, Feldspar 1% Silt 16% Mica TR Claw 55% Crawnianale 44%	SITE	443	н	OLE FOS	SIL	co	RE	13	CORED			111.5-121.0 m		
	ne (N)	PAM		3	the free for			City ON Control of Society of Carlo glass 30% Opaques 30% Carbonate unspecified 5% Nanofossils TR Sponge spicules TR	TIME-ROCK UNIT	BIOSTRAT	FORAMS	RADS RADS	ACTER	SECTION	METERS	G	RAPHIC	DRILLING	STRUCTURES LITHOLOGIC SAMPLE		LITHOLOGIC DESCR	IPTION
Lover Pleistooene	Crenalithus doronicoides Zou	8 8		4	in the second		16°	GRAM SIZE: 2-118 (0.5, 4-1.0, 58.4) 4-118 (0.5, 50.3, 49.2) 6-60 (0.1, 44.2, 55.7) CARBON-CARBONATE: 2-122 (1.1, 0.3, 7) 4-122 (0.5, 0.3, 2) 6-64 (0.4, 0.3, 1)	Lower Pleistocene	Crenalithus doronicoldes Zone (N)	RP F	FM B						8			Mud Dark greenish gray (15G - breecias in a soupy matr Average Quartz, Feldqpar Quartz, Feldqpar Quartz, Feldqpar Quartz, Feldqpar Quay minerals Volcanic glass Zeolins Zeolins Zeolins Sponge spicules	2/13 firm mud, as drilling ix. TR B1-01% 2-3% 0-5% 0-7% 4-5% 1-3% 0-TR
		8 R 8		6																		

SITE 44	13	HOLE		co	RE	14 CORED INTERVA	L: 121.0-130.5 m	SITE	443	B H	OLE	COP	RE	15 CORED I	NTERVAL:	130.5-140.0 m
TIME-ROCK UNIT BIOSTRAT	ZONE	RADS P 4	ACTER	SECTION	METERS	GRAPHIC ON THE STATE		TIME-ROCK	BIOSTRAT	FORAMS 0	FOSSIL HARACTER SOUNT	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES ITHOLOGIC SAMPLE	LITHOLOGIC DESCRIPTION
Upper Pliocene or Lower Pleistocene		в В В В		1 2 3 4 5 6	0.5		Med with Volcanic Glass and or Carbonate Gray (57 97)) with sports of dark gray (2.57 973) Introducted of the formed mud containing an glass and locally ordinate amounts of unipedified carbonates (3-15). Wei: Bottom of Section 0 (39-102) gravith grave (50-42) to reddish (108-37); thin lamination:	Upper Pilocene or Lower Pleidtocene		в	B B B B	1 2 3 4 5 6 7 CC	0.5			Any Mad Gray (SY 5/1) to greenish gray (SGY 5/1) breccitatil to moderativ deformed firm advy mod. Frequent dives spots in the lower part of the core (san patchen). Jene Stativ deformed firm advy mod. Frequent divers 15, smeetin 35, solative 50, sever prev quart and feldapar. Statistic deformed firm advy mod. Frequent divers 15, smeetin 35, solative 50, solative 10, ultite 35, mixed layers 15, smeetin 46, solative 50, solative 10, solative 1

SITE 4	43	HO	LE	co	DRE	16 CORED	INTERVAL:	140.0-149.5 m		SITE	443	н	OLE		CO	RE	18 CORED INTERVAL:	159.0-168.5 m	
TIME-ROCK UNIT	ZONE	FORAMS A	SOSSIL ARACTER	SECTION	METERS	GRAPHIC LITHOLOG	A DISTURBANCE DISTURBANCE SEDIMENTARY STRUCTURES LITHOLOGIC SAMPLE		LITHOLOGIC DESCRIPTION	TIME-ROCK UNIT	BIOSTRAT	FORAMS	FOSS HARA SONNAN	IL CTER	SECTION	METERS	GRAPHIC CUSOLOGIC		LITHOLOGIC DESCRIPTION
Upper Pliocene or Lower Pleistocene		BRM	в	1 2 CC	0.5-				Adity Mud Greenish gray (SGY 5/1) to gray (SY 5/1) frim threadiated mud. Internise deformation. No sedi- mentary structures. Note: Core Garcher 30 x 0.5 on pyritic tube filled with ray. Smeare: 1-104 Quartz, Feldspar 3% Heavy minerais TR Colonic glass 10% Volcanic glass 10% Opaques TR Grabonate unspecified 3% Sponge spicules 2%	Lower Pilocene	paster asymmetrical Subzone (N)	RP	RP		2	1.0			Ashy Mud Dhiefty greenish gray (SGY 5/1), locally gray (SGY 5/2, SY 5/1), moderately ashy mud with thin ashy mud with thin layer of clay or clayery volcanic sand. Clay Mineralogy (%) 2-70: chlorite 5, lifte 40, mixed layers 20, wermiculite 10, snectite 20, kaolinite 5, very rare feldspar. Smears: 1-75 Sand < 1%
CITE 4	43	401	E	60	DE	17 CORED	INTERVAL	149.5-159.0 m			Disc				H	-			Minor Lithology (Clay) 1-92 Sand 1% Clay minerals 91%
TIME-ROCK UNIT	ZONE	FORAMS NANNOS H		SECTION	METERS	GRAPHIC	DISTURBANCE DISTURBANCE SEDIMENTARY STRUCTURES SAMPLE SAMPLE	149.0-139.0 11	LITHOLOGIC DESCRIPTION			в	AP B B		3	dentranter			Silt 8% Volcanic glass 9% Clary 93% Carbonate unspecified 2% Ouarz, Feldspar 2% Minor Lithology (Clayey Volcanic Sand) 1-105 Sand 50% Clay minerals 30% Silt 25% Volcanic glass 68% Clay 25% Feldspar, Heavy minerals 2%
		в		1	0.5		0 0 0 0		Ashy Mud Greenish gray (5GY 5/1) to gray (5Y 5/1) firm sithy mud, with dark gray patches in Section 4 (19-25 cm, 34-35 cm). Local occurrence of ashy calcereous mud. Clay Mineradopy (%).		443					DE		168 5-178 0 m	CARBON-CARBONATE: 2-51 (0.3, 0.2, 0)
pe	one (N)			2			0		S, uncette 25, kaolinite 5, vyr rae quantz and feldspar. Smean: Dominant Lithology 3-142 Sand < 1% Quartz, Feldspar 2% Sit >45% Heavy minerals TR City >50% Clay minerals 75% Volcanic glass 10% Volcanic glass 10%	TIME-ROCK	BIOSTRAT	FORAMS	FOSS HARA SONNEN	IL	SECTION	METERS	GRAPHIC UNIT COMPARENCE GRAPHIC LITHOLOGY UNIT COMPARENCE UNIT COMPARENCE COMPARENCE UNIT COMPARENCE COMPARENC		LITHOLOGIC DESCRIPTION
Upper Pliocer	Discoaster tamalis Subzo	RIM RIP CP 8 FP	t B	3		Void	0 0 0 0		Polagonite TR Opsques 1% Carbonate unspecified 5% Nannofossils 7% Sand 5% Volcanic glass 10% Sit 35% Carbonate unspecified 10% Clay 60% Nannofossils 20% Clay minerals 56% Quartz, Feldspar 2% GRAIN SIZE: 4-33 (0.7, 45.6, 53.7) CARBON-CARBONATE: 4-38 (0.5, 0.2, 3)		Age assignment by nannofossil is impossible due to base contamination		RM		1	0.5			Ashy Mud Drilling brecciss of dark greenish gray (5GY 4/1) ashy mud. Smears: Average Cuartz, Feldspar 2-15% Heavy minorals TR 1% Clay minorals 7-82% Opsques 1-3% Volcani glas 7-15% Stilceous fossils TR

TTE 443	6	F	E OSSIL RACTER		RE	20 CORED		178.0-187.5 m
BIOSTRA	FORAMS	NANNOS	RADS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBAN DISTURBAN SEDIMENT STRUCTUR LITHOLOGI SAMPLE	LITHOLOGIC DESCRIPTION
Age determination by narrofossil is impossible due to heavy contamination.	8 8 8	FM FM R	В	1 2 3 CC	0.5		000000000000000000000000000000000000000	Mud Gray (SY 5/1) to dark greenish gray (SGY 4/1) brecclated or strongly deformed mud. Firm in a soupy matrix. Local clay occurrence in Core Catcher. Dominant Lithology CC Quartz, Feldspar 10% Heavy minerals 1% Clay minerals 28% Oppages 1% Voleanic glass 5% Zeolitis TR Carbonate unspecified TR Minor Lithology CC Quartz, Feldspar 3% Clay minerals 83% Oppages 2% Voleanic glass 2% Voleanic glass 2% Voleanic glass 2% Carbonate unspecified TR Namofossils TR

ž	-		F	RA	IL CTER				CE	ARY		
UNIT	BIOSTRA	FORAMS	NANNOS	RADS		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENT	LITHOLOGI	LITHOLOGIC DESCRIPTION
Upper Miocene(?)		B	B B	В		1 2 CC	0.5		000000000000		•	Mud Gray (5Y 5/1), hard stiff, preceisted mud. No sedimentary structures, Clay Mineralogy (K) 1-31: chlorite 5, ilite 20, mixed layers 20, vermiculite 5, sneetite 35, kaolinite 5, very rare quartz and feldspar. Smear: 1-80 Sand < 1% Quartz, Feldspar 6%, Site >25% Clay minerals 22%, Clay <76% Volcanic glass 1%, Zeolite, Carbonate unspecified, Sponge spicules 1%,
												GRAIN SIZE: 1-31 (0.2, 264, 73.5) CARBON-CARBONATE: 1-22 (0.2, 0.2, 1)

TE 443	T	F CH	OS	SIL	60	RE	22 CORED	-	AN AN		197.0-206.5 m
BIOSTRA	SUNC	NANNOS	RADS		SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBAN	SEDIMENTA	SAMPLE	LITHOLOGIC DESCRIPTION
(N	E	FM			1	0.5		0 0 0 0			Nanno Mud Dark greenish gray (SGY 4/1) brecciated mud, rich in nannofossils, Locally (2:120-150 approxi- mately), gray (SY 5/1) arby nannofossil mud to volcanic sand.
cene (1					Dominant Lithology 2-101 Sand < 5% Quartz, Feidspar 1%
ne or Lower Plio icerniculatus Z					2	111111		0 0 0			Silt >30% Cray minerals 79% Cray >40% Opaquet 2% Volcanic glass 5% Carbonase unspecified 3% Nanofosils 10%
Mioce Nus tr	1				Ĩ	1.1		0			Dominant Lithology (Nannofossil Mud) 2-145
Upper Amauroliti	R	P CP	FP		cc	1.1.1.1		1		:	Silt >50% Guara, robum 2.9 Clay >40% Volcanic glass, Opaques 2% Carbonate unspecified 5% Namofossils 38%
					Γ						Minor Lithology (Volcanic Sand) 2-140
											Sand 60% Quartz, Feldspar 5%
	1										Clay 10% Volcanic glass 85%
											GRAIN SIZE: 2-125 (3.2, 52.0, 44.8)
											CARBON-CARBONATE:
											2-132 (0.8, 0.1, 6)

LOSS CHART BIOSTRAT BIOSTRAT CHARA FORAMS FORAMS RADS	IL CTER NO U J STATUS STA	LITHOLOGIC DESCRIPTION	TIME-ROCK UNIT BIOSTRAT	FORAMS 7		METERS	GRAPHIC UITHOLOGY	LITHOL	OGIC D	ESCRIPTION	
8 ^{CP}		Mud with Ash Yellowidh brown (10YR 5/4) soft to stiff, slightly deformed, homogeneous sifty clay (mud). Minor Lithologies consist of con- ah beds = Section 3-78-85, 3-96; Section 4-40 and below and Section 5-18. ranno clay Section 1. Clay Mineralogy (%) 1-62: chlorite 10, illite 40, mixed layers 15, werniculte 5, smectite 25, kaolinite 5, very rare teldspar.		B FI	2	0.5		Clay to Various mainly c 2.5Y 5/7 Presence Black poc and Sect Clay Mis 4-134: c smectite	Clayey Na lithologies fark gravis 2). Mud or of pumic wdery str tion 6-25-1 heralogy (1 hlorite 5, 4, kaolini	nnofossil Ooze, Mud accompanied by changin I brown to gravish brown clay with more or less ma lapilli in Section 1-110-1 eeks of Mn in Section 4, S 10. § § Mitte 35, mixed layers 10, te 5, very rare quart2 and	ng color n (2.5Y innofos 150 cm Section vermic feidapa
r Mioone rimus Subzone (N) ad d		Dominant Libbology 1:140 Sand 10% Ousatrz 5% Silt 40% Opsques 2% Clay 40% Volcanic glass 10% Zeolitis TR Gerbonate unspecified 2% Sponge spicules 2% Clay minerals 79%					VOID	Smears: 1-25 (Na Sand < Silt Clay >	innofossil 2% 30% -60%	Mud) Quartz, Feldspar Clay minerals Opaques Volcanic glass Carbonate unspecified Namotossits Siliceous fossits	50
Uppe Ameurolithus p	3 0.G. SAMPLE	Minor Lithology (Namo Clay) 1-80 Sand 2% Quartz 1% Sitt 5% Clay mineralt 4,3% Clay 93% Volcanic glass 5% Namofossils 50% Carbonate unspecified 1%	ocene Subzone (N)	BC	P	3		1-75 (Me Sand < Silt Clay >	ad) 2% 30% -60%	Quartz, Feldspar Clay minerals Opaques Volcanic glass Carobnate unspecified Silicanous fossils	e
	4	Minor Lithology (Volcanic Sand) 3-80 Sind 60% Duart, Foldoar 5% Siti 10% Clay minerals 24% Clay 30% Opaquues 1% Volcanic glass 70% GRAIN SIZE 22% (0.7.32.4 #5.0)	Upper Mic			4		2-15 (Cli Sand Silt Clay	ay) 0% 10% 90%	Quartz, Feldspar Clay minerals Opaques Volcanic glass Carbonate unspecified Siliceous fossils	9 T T
B B B FP	5 CC	432 (0.1, 432, 1, 47.8) CARBON-CARBONATE: 2-15 (0.2, 0.1, 1) 4-15 (0.2, 0.1, 1)	An					5-85 (Na Sand Silt Clay	0% 0% 10% 90%	Ouartz, Feldspar Mica Clay minerals Opaques Volcanic glass Nannofossils Diatoms	

1% 15% TR TR 84%

6-20 (Clayey Nann Sand 0% Silt 5% Clay 95%

GRAIN SIZE: 3-36 (2.0, 40.6, 57.4) 4-127 (0.5, 29.9, 69.6) 6-83 (0.5, 32.7, 66.8)

CARBON-CARBONATE: 3-22 (0.7, 0.1, 5) 4-110 (0.2, 0.1, 1) 6-109 (2.0, 0.1, 15)

ofossil Ooze) Ouartz, Feldspar

Clay minerals Opaques Volcanic glass Nannofossils

4

1

1

7

cc

BB

RPCP

SITE 443 H	OLE	CORE	25 CORED	INTERVAL:	225.5-235.0 m	SITE 4	43	HOL	E		CORE	26 CORED	INTERVAL:	: 235.0-244.5 m
TIME-ROCK UNIT BIOSTRAT ZONE FORAMS	FOSSIL HARACTER SOUNARY	SECTION METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIM BUTARY STRUCTURES LITHOLOGIC SAMPLE	LITHOLOGIC DESCRIPTION	TIME-ROCK UNIT	BIOSTRAT ZONE	FORAMS C	SOF	ER	SECTION	GRAPHIC LITHOLOGY	DISTURBANCE DISTURBANCE SEDIMENTARY STRUCTURES LITHOLOGIC SAMPLE	
Upper Miocene Discoster berggrenii Subsone (N) 30 30 30	AM	2			Clayey Nannofosii Ooze to Mud Dark grayish brown (2.5Y 4/2) to grayish brown (2.5Y 5/2) stiff to firm, often motted mud or clayey nannofosii dose. Presence of Marich streaks in Section 3-75 and Section 3-40. Clay minaraday 2-49: chlorite 10, illite 40, mixed layers 15, vernicul 5, smectite 25, kaolinite 5, vary rare quartz and feld Smears: 1-15 (Mud) Sand < 1% Quartz, Feldspar 3% Sit >35% Heavy minarals TR Clay >60% Clay minarals 10% Siliceous forsils 17R Volcanic glass 1% Carborute unspecified 3% Nannoforsils 10% Sili >25% Heavy minarals TR Clay >60% Quartz, Feldspar 1% Sili >25% Heavy minarals 17R Clay >60% Quartz, Feldspar 1% Datoms 15% Quarbonize unspecified 1% Foraminifers 17R Rafolariani 1% Spong spicules 17R Qatolariani 1% Spong spicules 17R	aks iculite eldspar. 3% 2% 3% 2% 1% 3% 0% 8 1% 1% 1% 1% 1% 1% 1% 8	D. berggrenii Subzone (N)	B B	FP	 <u></u>	0.5- 1 1.0- 2 2		· · · · · · · · · · · · · · · · · · ·	Mad (Sitry Ciay) with Rediolarians Firm to hard dark gravish brown (2.5Y 4/2, nometimes 2.5Y 3/2) homogeneous sitry citry to claystone with noticeable amounts of radiolarians. Scattered dark parches of Mm throughout: Clay Mineralogy (%) 2-105: chlorite 5, illite 30, mixed layers 10, vermiculite TR, meetice 45, kaolinite 10 Sinters: 1-25 Sit > 30% Clay intersite 45, kaolinite 10 Sinters: 1-25 Sit > 30% Clay intersite 45, kaolinite 10 Sinters: 1-26 Clay 30% Clay intersite 45, kaolinite 10 Sinters: 1-26 Clay 30% Clay intersite 45, kaolinite 10 Sinters: 1-26 Clay intersite 45, kaolinite 10 Sinters: 1-26 Clay intersite 45, kaolinite 10 Sinters: 1-26 Clay intersite 45, kaolinite 10 Sinters: 1-26 Clay intersite 45, kaolinite 10 Sintersite 24, kaolinite 10 Sintersite 10, solitors 17, kaolorians 18, Sintersite 40, clay minerals 148 Clay intersite 24, solitors 15, Sand 15, Songe spicules 15, Sand 15, San

SITE 443	в н	OLE			cor	8 E	27	co	RED	INTE	RVAL	L:	244.5-254.0 m	_	-		_		_			2	SITE	443	н	OLE			COR	E 2	9	CORED	INT	RVAL	Li 3	263.5-273.0 m				_			_	
TIME-ROCK UNIT BIOSTRAT	FORAMS	FO HAT SONNAN	SSIL	ER	SECTION	METERS	GI	RAP	HIC OGY	DRILLING	SEDIMENTARY STRUCTURES LITHOLOGIC	SAMPLE		u	ITHOL	DGIC D	DESCRI	PTION					TIME-ROCK UNIT	BIOSTRAT	FORAMS	FO R SONNAN	SSIL	ER	SECTION	METERS	G R /	APHIC OLO G	DRILLING	SEDIMENTARY STRUCTURES LITHOLOGIC	SAMPLE		(3	LITHOLOG	GIC D	ESCRI	PTION			
Upper Miocene	B	B			1	0.5		V010.							Mud (so or vitric Firm, ho Section Clay Min 2-38: ch wrmicul arare, felc Smears: 1-75 Sand < Silt > Clay > 2-75 Sand < 4-75 Sand < 4-75 Clay > Clay > Clay > Clay > Clay > Clay >	metimes glass), 67 - 0-32 cm metalogy / 10-32 cm metalogy / 1% 30% 65% 1% 30% 65% 1% 30% 65%	with rad rayish by us mud t (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	iolarians, own (2.5) ill contam tra, mixed la contam tra, kaolinita tra, Feldsp minerals anic glass onate una colarians age spicule tra, Feldsp minerals anic glass onate una colarians onate una colarians anic glass onate una colarians anic glass onate una colarians anic glass	nannof Y 5/2), , nne, iniation. ayers 15 e 5, quaa sar pecified pecified ps ps field ps	lossils very ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	第月线路路路 医角线游荡镜 医肠镜镜医静脉		Upper Miocene		в	B			1 1 2 3						•			Mudatone Olive gray (slightly buck by blackish contaminat 2:112: chlo 30, kaolini Sand < 1 1:75 (Muda Sand < 1 1:75 (Muda Sand < 1 2:85 (Sand Clay > 86 Olive > 86 O	(5Y 5/2 rowed) Mn pai ion. Lo alogy (7 rrite 10, te 5, ver stone) % 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2	2) hard, mudstor bcally – %) 1, fille 3 Clay Vole Clay Vole Clay Vole Clay Vole Clay Vole Clay Vole Clay Vole Clay Vole Clay Vole Clay Vole Clay Vole Clay Vole N Diate Spon Clay Vole N Diate Spon N Later Spon Clay Vole N Diate Spon N Later Spon N Later Spon N Later Spon N Later Spon N Later Spon N Later Spon N Later Spon N Later Spon N Later Spon N Later Spon N Later Spon N Later Spon N Later Spon N Later Spon N Later Spon N Later Spon N Later Clay Vole Clay Vole Clay Vole Clay N Later Spon Clay N Later Clay N Later Spon Clay N Later Spon Clay N Later Clay N Later Spon Clay N Later Clay N Later Clay N Later Clay N Later Clay N Later Clay N Later Clay N Later Clay N Later Clay N Later Clay N Later Clay N Later Clay N Later Spon N Later Spon N Later Spon N Later Spon N Later Spon N Later Spon N Later Spon N Later Spon N Later Spon N Later Spon Later Spon Later Spon Later Spon Clay N Later Spon Con Later Spon Later Spon Later Spon Later Spon Later Spon Later Spon Later Spon Later Spon Later Spon Later Spon Later Spon Later Spon Con Later Con Later Spon Later Late	slightly defon e, finely scate ection 11-30 siliceous foss of mixed laye partz. tz, Feldspar minerals anic glass prate unspeci annofossils ens onate unspeci sonate unspeci estimates particules e spicules e spicules ens, Radiolar	ned, hot bered this is bearin is 25, sm ied, -20	mogene roughou 9 muds nectite 2% 7% 2% 9% 1% 2% 9% 1% 3% 2% 3% 2% 3% 2%	bus, it tone.
	в	вс			CC.		1			11					CARBO 2-66 (0.3 4-39 (0.3	N-CARBO 1, 0.1, 1) 2, 0.1, 1)	ONATE													THIN T								CARBONA 2-55 (2.5)	TE BO	MB:				
SITE 443	н	OLE	i		col	E	28	co	RED	INTE	RVA	ы.	254.0-263.5 m												Ы				5	Ξ				11	•									
TIME-ROCK UNIT BIOSTRAT	FORAMS	FO SONNAN	SOSSIL	ER	SECTION	METERS	G LIT	RAP HOL	HIC OGY	DISTURBANCE	SEDIMENTARY STRUCTURES LITHOLOGIC	SAMPLE		L	ITHOL		DESCRI	PTION							B	B B F	FP		cc	1111			Ĭ I											
Upper Micoane	B	RP B	FP		1 2 <u>cc</u>	0.5-				00					Mud Gravish slightly o (Mn). Se Clay Mir 2-38: ch vermicul quartz a Smears: 1-75 Sand < Silt > Clay > GRAIN (1-120 (0	brown (1 deformed ction 1-0 eralogy (lorite 5, and deldspi : 1% 30% 65% SIZE: 2, 33.1,	1.5Y 5/2 1 mud, D 1-40 cm: (%) iillite 30, ectite 40 iar. Quar Mica Clay Voic Carb N Radi Spor 66.7)	l very firm ark powd hole fill o mixed lay , kaolinite tz, Feldsp minerals anic glass onates um annofossil olarians ge spicule	n, homo lery spoton vortamir vers 10, e 10, ver specifie is is	ageneous ts throug nation. ty rare 41 TR 800 50 50 51 11 11 TR	nt, Jighout 1% R 1% 5% 1% R																							
						_		_			_				1-124 (0	1, 0.1, 0	ONATE:	e. 																										

SITE 443

.

STTE 443 HOLE CORE 32 CORED INTERVAL: 292.03 FOSSIL U LITHOLOGY U L	LITHOLOGIC DESCRIPTION	SITE 443 HOLE CORE 33 CORED INTERVAL: 301.63	LITHOLOGIC DESCRIPTION
Middle or Upper Microsoft De Abrasita Zone or Discostra De Abrasita De A	Muditione with Nannofostils Olive gray (SY 4/2) hard moderately burrowed silly claystone or muditione. Presence of black (SY 2/1) volcantly pumileous sill in Section 1-70-73 on and Section 1-101-108 cm, the latter showing a graded bedding. Claysy nanofostil locatin in the Core Cather, Section 1-0-24 cm: hole fill contamination. Clay Mineralogy (S) 1-00: chorits 6, lillit 20, mixed layers 20, smears: Domiant Lithology 1-140 Sand < 1% Duartz, Feldiopar 2% Silt > 35% Olay minerals 1% Sponge spicules TR Minor Lithology (Anhy Silt) 1-105 Sard 5% Duartz, Feldiopar 1% Silt 95% Mica 4% Clay → 5% Duartz, Feldiopar 1% Silt 95% Mica 4% Clay → 5% Duartz, Feldiopar 1% Voltaming lass 7% Voltaming lass 7% Voltaming lass 7% Voltaming lass 7% Voltaming 1% Nanofossils 10% Radiolarians TR Minor Lithology (Clayvy Nanofossil Occe) CC Send 3% Quartz, Feldiopar 2% Silt 7% Quartz, Feldiopar 7% Voltaming lass 7% Clay 90% Opagues TR Minor Lithology (Clayvy Nanofossil 40% Radiolarians TR	autority and the matrix and the matr	Mudstone Olive gray (BY 5/2) hard, undistorbed, slightly to strongly burrowed, throughout. Scattered with blackinp operatory slit. Volcanic larger, mainly in Section 1-102-112 cm, Section 2-24-28 cm and Section 2-95-104 cm, Section 1-0-15 cm: hole fill contamination. Cay Mineratogy (%) 2-86: chlorite RT, illite 15, mixed layers 25, smectite 55, kaolinite 5. Smare: 2-76 Sand < 4%
	Datoms IN Sponge spicules 1% GRAIN SIZE: 1-51 (2.3, 48.8, 49.1) CARBON-CARBONATE: 1-56 (0.3, 0.1, 2) CARBONATE BOMB: 1-66 (2)		

SITE	443	н	OL	E		co	RE	3	4 CORED	IN	TER	VA	41:	311.0-320.5 m											SIT	E	443	H	IOL	E		co	DRE	3	5 CORED	INT	ERV	AL:	320.5-330.0 m
CK	AT	4	FO	RAC	TER	z					ABY	ES													ck		1	6	F H A	OSS	IL						ARY		
TIME-RO UNIT	BIOSTR	FORAMS	NANNOS	RADS		SECTIO	METERS		GRAPHIC	DRILLING	CEDIMENT	STRUCTUR	SAMPLE		L	ITHO	0100	GIC	DES	CRIPT	ION				TIME-RO	LINN	BIOSTR/	FORAMS	NANNOS	RADS		SECTION	METEDO		GRAPHIC LITHOLOG	DRITTING	SEDIMENT	SAMPLE	
Middle or Upper Miocene	Discoaster hamatus Zone (N) or D. neohamatus Zone (N)	B	AP	AM		3	0.5						•			Mudat Olive (undisti Sectio coah) variabl Sectio coah) variabl Sectio coah) variabl Sectio coah) variabl Sectio coah) variabl Sectio coah) variabl Sectio coah) variabl Sectio coah) variabl Sectio coah) variabl Sectio variable variabl	tone, gray (turbed blackin an 1-0 trremi ser 1-0 t	Ashy- (5Y 4, d, sigili ish volo ounts >18: t is volo section 2. Section 2. Section 2. Section 2. Maximuds Section 2. Section 2. Sect	 to N 'to N 'to N 'to N in 1 in 4 in 5 in 5	lannofc ard, sli to stron yeard, sli to stron yeard and to strong and the strong the strong the strong the strong the strong the strong the strong the strong the str	esil-Mu ghthy di gly bur variabil variabil variabil variabil variabil variabil variabil veds exit variabil veds exit veds ex	distone isturbe rrowed e (chor r nanno ion, B. e (chor s (i.e., i micro numero numero numero numero numero s (da ers 35 , smect ar	d or , with Jofossiis. Section fault tous mine ck gray (types Section fault 13 7 7 4 13 7 7 2 TF 5 5 5 5 5 5 5	57 16 16 16 16 16 16 16 16 16 16 16 16 16	Michella as I lances Microsova	middle of opper middle	Disconster humatus or D. neohamatus Zone (N)	B	AP	СР		1 2 3 CC	0.5						

GRAPHIC ON THE STREET LITHOLOGIC DESCRIPTION Nanno Chalk 1 1 1 Namo chain Olive gray (5Y 4/2) with black zones (5Y 2/1), moderately histurbated massive, hard. Section 1-0-20 cm: hole fill contamination. Clay Mineraology (%) 2-85: chlorite 5, illite 15, mixed layers 30, smectite 50, kaolinite TB, very rare quartz and feldspar. 1 17 Smears: 1-80 Sand < 1% Silt >40% Clay >55% Quartz, Feldspar Clay minerals Nannofossils Radiolarians 2% 5% 90% 3% TR Sponge spicules GRAIN SIZE: 2-35 (0.9, 40.7, 58.4)

CARBON-CARBONATE: 2-40 (3.3, 0.2, 26)

SITE 443 HOLE CORE 36 CORED INTERVAL	330.0-339.5 m	SITE 443 HOLE CORE 37 CORED INTERVAL: 339,5-349.	0 m
TIME-ROCK TUNIT TUNIT TUNIT TOSTRAT CHARACLER ANNOS CHARACLER RADS RADS RADS RADS RADS RADS RADS RAD	LITHOLOGIC DESCRIPTION	FOSSIL CHARACTER UNUL UNUL UNUL UNUL UNUL UNUL UNUL UNU	LITHOLOGIC DESCRIPTION
Middle Miccone Middle Miccone B AW 3 4 4 4 4 4 4 4 4 4 4 4 4 4	Calcareous Namofossil Chalk, Mudstone, Claystone Olive gray (57 4/2) frequently motified of black (57 2/1), undisturbed, brecclared, slightly to strongly bioturbated clayey nanofossil chalk, mudstone, claystone. Clay Mineralogy (%) 243: chorite 5, litte 10, mixed layers 10, smeetite 75, kaolinite TH. Smears: 1-135 (Clayey Nanofossil Ooze) Clay minerals 10%, Volcanic glass 3%, Carbornate unspecified 10%, Nanofossils 70%, Diatoms 2%, Radiolarians 2%, Sponge spoulets 1% 4-100 (Mudstone) Sand < 1% Clay >55% Clay		Claystone, Nannofossil-Claystone Clive gray (SY 4/2) hard, masive, bioturbated claystone, nannofossil-claystone, locally ashy claystone. Sand 1% Ouartz, Feldspar 2% Sitt 9% Clay minerals B1% Clay 00% Operators TR Volcanic glass 8% Zeolites TR Carbonate unspecified 5% Diatoms 1% Radiolarians 2% Sponge spicules 1% Clay 00% Ouartz, Feldspar 1% Sitt 10% Clay minerals 81% Clay 00% Ouartz, Feldspar 1% Sitt 10% Clay minerals 1% Sitt 10% Clay minerals 1% Songe spicules 1% Radiolarians 3% Sponge spicules 2% 1-135 (Nannofossil Claystone) Sand 0% Ouartz, Feldspar 2% Sitt 10% Clay minerals 50% Clay 0% Ouartz, Feldspar 2% Sitt 10% Clay minerals 50% Clay 0% Ouartz, Feldspar 2% Sitt 10% Clay minerals 50% Clay 0% Operators 2% Volcanic glass 5% Songe spicules 2% Volcanic glass 5% Sponge spicules 5% Sitt 10% Clay minerals 50% Clay 00% Operators 2% Volcanic glass 6% Zeolites 2% Nannofossil Claystone)
A A A A A A A A A A A A A A A A A A A	Clay 90% Cay minerals 83% Volcanic glass 3% Carbonate unspecified 2% Namofosala 5% Silecous fosalu 5% CARBON CARBONATE: 2/24 (10, 64/2, 55.3) CARBON CARBONATE: 2/18 (23, 0.1, 18) 4/27 (0.9, 0.1, 7) CARBONATE BOMB: 1.77 (16) 3.77 (3) 5-77 (3.5)	SITE 443 HOLE CORE 38 CORED INTERVAL: 349.0-368. FOSSIL V CHARACTER N CLUB SON W V N V V V V V V V V V V V V V V V V V	5 m LITHOLOGIC DESCRIPTION Muditone Complete drilling breccia with hole contamination. Mainly olive gray (5Y 4/2) as in Core 37.
		B RM RP CC CC	

President.

		F	OSSIL					
BIOSTRAT	ARACTER SCORE SCOR	LITHOLOGIC DESCRIPTION						
		AP		1	0.5		X :	Muddy Nannofossil Chalk, Claystone, Ash Highly variable color, texture, structure, below the upper 64 cm, Section 1 (drilling contamination). Basically very hard, arg. (5Y G/1) to generih gray (GY 6/1), large pieces of broken muddy nannofossil chalk to claystone, with mumerous thin ash layers. Sight to strong bioturbation, with filling or interbeds of dark grayish brown (10YR 3/2) to light gray (5Y 6/1) volcanic material.
phus Zone (N)				2			1 • 1 1 1	The contact with the underlying basalt does not seem normal: mixture of hard volcanic troken blackish (5Y 2/1) rock and graying oreen to greenish gray (5G 5/2-5GY 5/1) hard claystone/mudstone/chalk. Clay Mineralogy (%) Average of 5 samples: chlorite TR, lilite 5, irregular mixed layers (lilite semective) TR, smectire 95, kaolinite TR, rare to very rare feldspar.
henolithus heteromor	в	CP		3	di matana		1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	Smears: 1-76 (Ash) Sand 90% Quartz, Feldspar 1% Silt 10% Volcanic glass 88% Clay 0% Mica 1% Carbonate unspecified 2% Nannofossila 8%
Helicosphiaera ampliaparta Zone or Sp				4				147 (Muddy Namofossil Chalk) Sand O'K Clay minerals 30%. Sit 70% Namofossils 70%. Clay 30% 244 (Claystone) Sand 0% Clay minerals 92%. Sit 3% Carbonate ungoeffield 5%. Clay 97% Namofossilt 2%. Ountz, Feldipar 1% GRAIN SIZE: 245 (0.2, 36.9, 60.9) CARBON-CARBONATE: 249 (1.5, 0.0, 12) CARBON-ACE BOMB: 147 (21.5) 249 (4.5) 334 (3) Core Catcher: Basalt
				7				

LI	EG		SIT	ΓE	HOLE	C	OF	E	SE	CT.
5	8	4	4	3	П		4	9		3

Depth: 456.5 to 458.0 m

57-62 cm: small piece with glassy margin and chill zone with 3% vesicles (generally <1 mm). 62-70 cm: fine-grained, gray, sparsely plagioclase phyric, vesicular basalt; 7.5% plagioclase phenocrysts and 7.5% vesicles (generally <1 mm).

70-150 cm: gray, sparsely plagioclase phyric basalt (coarse, micro-diabasic texture); 7.5% plagioclase phenocrysts, occasional clay-lined vesicles.

On external drill cut faces some larger vesicles (up to 5 mm across) are infilled by white or

81-88 cm (4A and 4B): vein of calcite and brown material. No alteration visible in bordering

Magnetic Data:	101 cm	137 cm
Intensity (emu/cc)	674.7	1034.6
Inclination before		
demag.	-29.1	-29.6
Stable Inclination	-28.2	-32.5
Physical Properties:	137 cm	
Vp (km/s)	5.80	
Porosity (%)	0.31	
Wet Bulk Density	3.10	
Grain Density	3.11	
Other Data:	121 cm	
Thermal cond.		
(mcal/cm-s-°C)	4.18	

ial St Graphic Represen Piece Alter ŏ 5 0 (\$ 0 60 0 0 0 B b 0 0 n 0 . 0 0

cm

0

50-

100-

150

0 0 d

0

00

0 0 T,M

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

LE	EG	- 3	SIT	E	HOLE	0	OF	RE	SE	ст.
5	8	4	4	3			4	9		4

Depth 458.0 to 459.2 m

Visual Description

Gray, plagioclase phyric basalt (coarse-grained almost microdiabasic texture), odd -

pyroxene phenocryst, odd - clay infilled vesicles, and 15-20% plagioclase phenocrysts.

Shipboard Data

Magnetic Data:	40 cm	102 cm
Intensity (emu/cc)	704.2	476.7
Inclination before		
demag.	-31.8	-25.8
Stable Inclination	-31.7	-29.6
Other Data:	79 cm	
Therm. cond.		
(mcal/cm-s-°C)	4.46	

VISUAL FOR

IGNEOUS ROCKS	LE	EG		SI
	5	8	4	4

Depth: 463.0 to 464.3 m

3

SITE

CORE SECT.

1

5 0

Visual Description

- 0-5 cm: sediment, uphole contamination.
- 5-134 cm; medium gray basalt. Fine-grained with 10 to 20% euhedral plagioclase from 2 to 7 mm. Pyroxene phenocrysts 2 to 4 mm (<1%). Amygdules filled with white zeolites(?) and calcite <1%. Veins filled with calcite (100-115 cm, 2 mm thick) and pyrites and possibly pyrhatite or chalcopyrite on joint surfaces. Fresh, little evidence of weathering. May be chlorite on vein surfaces. Plagioclase-pyroxene phyric basalt. No visible vesicles.

Shipboard Data

Magnetic Data:	85 cm
Intensity (emu/cc)	528.5
Inclination before	
demag.	-28.7
Physical Properties:	117 cm
Vp (km/s)	5.10
Porosity (%)	0.74
Wet Bulk Density	2.95
Grain Density	2.97

Grap

0

0

0

0

0

0

0

0

bal

T,M

10 0

50-

100-

150 -

10

0

D

1 4

cm

0

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

Depth: 464.3 to 465.8 m

Visual Description

0-150 cm: medium gray plagioclase-pyroxene phyric basalt, plagioclase phenocrysts 10-20%, 20-70 mm, euhedral pyroxene phenocrysts < 1%, 2-4 mm. Fine-grained, fresh, no visible vesicles. Carbonate vein fillings abundant, free growing aragonite and pyrite (marcasite?) and green clayey mineral (glauconite?).

Shipboard Data Bulk Analysis:

SiO2

Al₂O₃ Fe₂O₃ FeO

MgO

CaO

Na20 K20 TiO2

P205 Mn0

LOI H₂0⁺ H₂0⁺ CO₂

Cr

Nī

Sr

Zr

14 cm 49.71 16.33 1.29 8,50 7.38 11.63 3.09 0.21 1.51 0.17 0.18 -------198.00 50.00 151.00

121.00

Magnetic Data:	30 cm	
Intensity (emu/cc)	585.8	
Inclination before		
demag.	-31.3	
Stable Inclination	-29.9	
Other Data:	0 cm	127 cm
Therm, cond,		
(mcal/cm-s-°C)	4,35	4.35

VISUAL CORE DESCRIPTION	- 1
FOR IGNEOUS ROCKS	-1

Ļ	EG		SITE			CORE			SECT.	
5	8	4	4	3	H		5	0		3

Depth: 465.8 to 467.3 m

Visual Description

Plagioclase basalt. Fine-grained, no vesicles, fresh, medium gray colored. Plagioclase phenocrysts 10-20%, 2-7 mm, euhedral. Pyroxene phenocrysts < 1%, 2-3 mm. Vein fillings - carbonate, some sulphide (pyrite?) and green clay minerals.

Shipboard Data	
Bulk Analysis:	80 cm
SiO2	50.35
Al203	15.84
Fe2O3	1.22
FeO	8.08
MgO	6.21
CaO	12.84
Na ₂ O	3.19
K20	0.19
TiO2	1.55
P205	0.17
MnO	0.25
LOI	
H20+	
H20-	
CÕ2	
Cr	224.00
Ni	54.00
Sr	161.00

120.00

Zr

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

74 cm

50.18

15.80

1.32

8.73

7.01

11.65

3.21

0.24

1.51

0.16 0.17

231.00

56.00

152.00

115.00

Depth: 467.3 to 468.8 m

Visual Description

Plagioclase-pyroxene phyric basalt. Fine-grained, medium gray color, fresh. Plagioclase phenocrysts 10-20%, 2-7 mm; pyroxene phenocrysts < 1% ~ 2 mm. Vein fillings - carbonate (0-25 cm) with clay minerals. 102-137 cm: plagioclase phenocrysts, sausseritized.

Shipboard Data

Bulk Analysis: SiO Al 2^O3 Fe₂O₃ FeO MgO CaO Na20 K20 TiO2 P2O5 MnO LOI H₂0⁺ H₂0⁺ CO₂ Cr Ni Sr Zr

Magnetic Data: 2 cm Intensity (emu/cc) 55.8 Inclination before demag. -32.7 -33.6 Stable Inclination Other Data: 127 cm Therm. cond. (mcal/cm-s-°C) 4,35

L	EG		SIT	ΓE	HOLE	c	OR	E	SE	ст.
5	8	4	4	3			5	1		1

Depth: 472.5 m

Visual Description

- 0-5 cm: fine-grained to aphanitic. Brown basalt possibly slump from above with the approximate 1 meter of talus and slurry that came down the hole with this recovery. Basalt may be olivine bearing $\sim\!4\%, \sim\!1$ mm, plagioclase phenocrysts in 2 bands 1 cm wide across rock ~1 mm, ~8%.
- 17-20 cm: plagioclase phyric basalt similar to that in Core 50. Plagioclase phenocrysts 2-5 mm, euhedral, fine- to medium-grained. Carbonate vein, and amygdule fillings. Stained amygdules look like olivine.

Magnetic Data:	9 cm
Intensity (emu/cc)	256.3
Inclination before	
demag.	42.2

150

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

Depth: 477.5 to 479.0 m

Visual Description

Zr

Plagioclase phyric basalt. Medium- to fine-grained basalt similar to that in Cores 49-51, except for the presence of ubiquitous carbonate-filled amygdules ~3% and vesicles ~3-5%. Carbonate vein fillings abundant. Lightly weathered. Many amygdules filled with clay. No chill zones. Plagioclase phenocrysts ~ 10%, 2-4 mm.

Shipboard Data				
Bulk Analysis:	2 cm	90 cm	Magnetic Data:	33 cm
SiO2	50.44	49.52	Intensity (emu/cc)	182.3
AloÔa	15.99	15.00	Inclination before	
Fe ₂ O ₃	1.18	1.22	demag.	40.5
FeO	7.80	8.03	Stable Inclination	41.2
MgO	6.23	8.19		
CaO	12.89	12.52	Physical Properties:	85 cm
Na ₂ O	3.30	3.17	Vp (km/s)	5.07
K20	0.20	0.32	Porosity (%)	3.72
TiO ₂	1.53	1.35	Wet Bulk Density	2.95
P205	0.16	0.12	Grain Density	3.02
MnO	0.35	0.14		
LOI			Other Data:	66 cm
H20 ⁺			Therm. cond.	
H_0-			(mcal/cm-s-°C)	4.42
cô,				
Cr	244.00	249.00		
Ni	60.00	99.00		
Sr	165.00	168.00		

92.00

114.00

Ļ	EG		SIT	re	HOLE	CORE		SE	SECT.		
5	8	4	4	3	П		5	2		2	

Depth: 479.0 to 480.5 m

Visual Description

Zr

Plagioclase phyric basalt. Amygdaloidal 3-5%, 0.5-2.0 mm, smectite or calcite filled vesicles, often composite. Vesicular 0-2%, many half-filled with alteration products. Plagioclase phenocrysts 10%, 2-80 mm. Carbonate veins abundant. Similar to basalt in Cores 49, 50, 51 and Section 1 of Core 52. No chill zones.

Shipboard Data			
Bulk Analysis:	120 cm		
SiO ₂	50.09		
Al202	15.72		
FegO3	1.27		
FeO	8.36		
MgO	8.23		
CaO	12.20		
Na ₂ O	3.04	1.	
K20	0.10		
TiO2	1.38		
P205	0.12		
MnO	0.16		
LOI			
H20+			
H20-			
cô2			
Cr	263.00		
Ni	94.00		
Sr	164.00		

98.00

Magnetic Data:	120 cm
Intensity (emu/cc)	449.2
Inclination before	
demag.	31.6
Stable Inclination	46.6
Other Data:	119 cm
Therm. cond.	
(mcal/cm-s-°C)	4,42

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

Depth: 480.5 to 481.8 m

Visual Description

Plagioclase phyric basalt. Amygdaloidal, 2-4% amygdules with calcite and smectite fillings. Vesicular 0-5%: where core is weathered, many of the vesicules lack fillings or are partially filled with calcite. Carbonate veins up to 3 mm similar to veins filled with blaxial carbonate in Core 50. Plagioclase phenocrysts 5-10%, ~2-3 mm. Medium-grained diabase.

Note: 85-135 cm is 1/2 of a single continuous piece too large for the end of the core section; remainder in Section 4.

Shipboard Data

Magnetic Data:	85 cm	107 cm
Vp (km/s)		5.36
Porosity (%)	5.81	
Wet Bulk Density	2.84	
Grain Density	2.96	

165

SECT.

4

cm

50

100

0

_		_	_				-			
5	8	4	4	3			5	3		
	_									

SITE E

CORE SECT.

1

Depth: 482.0 to 483.5 m

0-150 cm: phyric, medium-grained basalt, dark gray. Plagioclase phenocrysts up to 10-15%,

25-150 cm: lightly altered, with alteration close to calcite vein. Oxidation to iron-oxides. 0-14 cm: basalt identical to that described for Core 52, Sections 3 and 4.

/ cm
603.7
31.6
39.6
115 cm
5.30
3.07
2.95
3.01
115 cm
4.10

Lŧ	EG	0.076	SIT	ΓE	HOLE	CORE		E	SECT.		
5	8	4	4	3			5	3		2	

12 cm

Depth: 483.5 to 485.0 m

Visual Description

0-150 cm: basalt, phyric, medium-grained, dark gray (brownish). All intervals (show) light alteration. A calcite vein, which has thickness 3-5 mm occurs in Pieces 1F and 1H. Alteration consists of an oxidation of zone close calcite veins. 50-150 cm: oxidation is moderate. Plagioclase phenocrysts up to 10%. Basalt identical to that described for Core 53 Section 1, 14-150 cm.

Shipboard Data Bulk Analysis: SiO₂ Al₂O₃ Fe₂O₃ FeO MgO CaO

Na20 K20 TiO2 P205 Mn0

LOI

H₂O⁺ H₂O⁺ CO₂ Cr Ni

Sr

Zr

117 cm

50.82

15.96

1.21

7.96

7.02 12.32

3.34

0.25

1.42

0.13 0.14

-----____

263.00

107.00

171.00

107.00

Intensity (emu/cc	342.4
Inclination before	
demag.	42.8
Stable Inclination	42.5
Other Data:	48 cm
Therm. cond.	
(mcal/cm-s-°C)	4.16

Magnetic Data:

150 -

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

0.12

0,14

_

263.00

102.00

165.00

101.00

Depth: 485.0 to 486.4 m

Visual Description

ric, medium-grain on 2, but with mo one of next lava fl	ned, dark brownish-gray, identic ore oxides. Represents base of la ow.	al to that described ava flow.
ohyric, medium-gi	rained, identical to basalt describ	bed for Core 53
noderate oxides (litered (dark gray	dark brownish-gray).), plagioclase phenocrysts about	10%.
64 cm	Magnetic Data:	86 cm
50.09	Intensity (emu/cc)	584.1
15.47	Inclination before	
1.25	demag.	39.0
8.24	Stable Inclination	40.5
7.97		
12.09	Other Data:	83 cm
3.22	Therm, cond,	
0.17	(mcal/cm-s-* C)	4.10
1.43		

54 cm

411.9

41.8

39.3

90 cm

5.87

6.05

2.88

3.00

120 cm

4,14

Magnetic Data:

demag.

Vp (km/s)

Porosity (%)

Grain Density

Other Data:

Therm. cond.

(mcal/cm-s-°C)

Intensity (emu/cc)

Inclination before

Stable Inclination

Physical Properties:

Wet Bulk Density

150

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

Depth: 492.8 to 494.3 m

Visual Description

0-60 cm: upper 60 cm appears identical to that described at the base of Section 1. 60-143 cm: basalt, same as before, but medium-grained. Basalt phyric (glomerophyric), dark gray, slightly altered (oxidized) close to calcite veins (1-2 cm). Phenocrysts and glomerophenocrysts of plagioclase (20%, 3 mm).

Therm, cond,

(mcal/cm-s-°C)

Shipboard Data

Bulk Analaysis: SiO2 Al₂O₃ Fe₂O₃ FeO MgO CaO Na20 K20 TiO2 P205 Mn0 LOI H₂O⁺ H₂O CO₂ Cr

Sr

Zr

49.61 15.72 1.26 8.32 8.80 11.94 3.02 0.11 1.54 0.12 0.16 ____ -----254.00 112.00 161.00

95.00

44 cm

Magnetic Data: 54 cm 138 cm Intensity (emu/cc) 733.4 398.1 Inclination before 26.2 demag. 38.9 Stable Inclination 41.8 42.3 Other Data: 132 cm

4.52

L	EG		SIT	E	HOLL	0	OR	E	SE	CT.
5	8	4	4	3			5	4		3

Depth: 494.3 to 495.7 m

Visual Description

Dark gray plagioclase-pyroxene phyric basalt (medium grained). Plagioclase phenocrysts 2 to 5 mm across, approximately 10%; pyroxene phenocrysts 1 to 2 mm across, 5-10%. Thin white carbonate filled veins are common (0.5 mm across) with brown zone of

alteration (greenish tinge) 1.0 to 1.5 cm across.

Odd amygdule filled by light olive green clays.

25-56 cm: veins infilled by brown iron-oxides and some carbonate. Some sausseritized(?) plagioclase phenocrysts similar to previous section.

109 cm: small piece of native copper in carbonate vein (1 mm across).

SiO2

MgO

CaO

Cr

Ni

Sr

Zr

94.00

Magnetic Data:	125 cm	
Intensity (emu/cc)	179.7	
Inclination before		
demag.	38.5	
Physical Properties:	0 cm	
Vp (km/s)	5.83	
Porosity (%)	5.72	
Wet Bulk Density	2.93	
Grain Density	3.05	
Other Data:	0 cm	124 cm
Therm. cond.		
(mcal/cm-s-°C)	4.27	4.19

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

106 cm

49.70

15.64

1.27

8.36

8.98

11.84

3.10

0.14

1.33

0.11

0.16

-

275.00

110,00

158.00

95.00

Depth: 495.7 to 497.1 m

Visual Description

Graph

7

A

T,S

a

п

D

Ø

>

D

×

۵

T,S,P,M

110 D

cm

0

50-

100-

150

Dark gray plagioclase-pyroxene phyric basalt (medium grained). Plagioclase phenocrysts (10%) 2-5 mm across, pyroxene phenocrysts (10%) 1-2 mm across.

Carbonate veins 0.5-1 mm wide with alteration cones (brown coloration) 1-2 cm wide. Odd amygdule filled by light olive green clays.

Similar to previous section.

Shipboard Data **Bulk Analysis:** SiO Al2⁰3 Fe₂0₃ FeO MgO CaO Na20 K20 TiO2 P205 Mn0 LOI H₂0⁺ H₂0⁻ CO₂ Cr Ni

Sr

Zr

Magnetic Data: 146 cm Intensity (emu/cc) 316.6 Inclination before demag. 45.7 43.5 Stable Inclination Other Data: 15 cm 70 cm 140 cm Therm. cond. (mcal/em-s-°C) 4.18 3.56 4.56

- Depth: 497.1 to 498.6 m
- 0-90 cm: dark gray plagioclase-pyroxene phyric, medium-grained basalt similar to previous section. Approximately 10% plagioclase phenocrysts (2-5 mm across) and 5-10% pyroxene
- Carbonate vein with alteration zone (vein 2 mm wide, alteration zone 2 cm wide) similar to

92-150 cm: dark gray sparsely plagioclase phyric basalt (between 93 and 96 cm, Piece 5, a few vesicles and fine grain groundmass with few phenocrysts - possibly chilled margin). Approximately 5-10% plagioclase phenocrysts (some as glomerocrysts) 2-5 mm across. Grains of brown alteration material (iron-oxides?) (0.5 to 1 mm across) particularly near carbonate veins and fractures (constitute approximately 5%).

Magnetic Data:	146 cm	
Intensity (emu/cc)	273.8	
Inclination before		
demag.	43.5	
Stable Inclination	40.3	
Other Data:	2 cm 45 cm	145 cm
Therm. cond.		

(mcal/cm-s-°C) 4.61 4.54 4.09

150

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

Depth: 498.6 to 500.0 m

Visual Description

Dark gray, sparsely plagioclase phyric basalt. Approximately 5-10% phenocrysts (some as glomerocrysts) 2-5 mm across.

Odd grains of brown alteration material (iron-oxides?) <1 mm across and odd vesicle lined with similar material. Also occasional round vesicle infilled by a dark gray material (clay?).

White carbonate lined veins and fractures with weathered surfaces common.

Shipboard Data **Bulk Analysis** 36 cm 49.84 SiO Al2^O3 Fe2^O3 FeO 15.73 1.24 8.21 MgO 8.26 CaO 12.16 Na20 K20 TiO2 P205 Mn0 3.06 0.12 1.34 0.11 0.16 LOI -H₂0⁺ H₂0⁻ CO₂ Cr ----------_ 267.00

103.00

165.00

95.00

Ni

Zr

Magnetic Data:	14 cm
Intensity (emu/cc)	1328.3
Inclination before	
demag.	41.9
Stable Inclination	46.1
Other Data:	28 cm
Therm, cond.	
(mcal/cm-s-"C)	4.14

L	EG		SIT	Ē	HOLL	c	OF	RE	SE	ст.
5	8	4	4	3			5	4		7

Depth: 500.0 to 501.5 m

Visual Description

- 0-110 cm: dark gray sparsely plagioclase phyric basalt. Approximately 5-10% phenocrysts (2-5 mm across). Fresh except for light to moderately weatehred zones surrounding veins and fractures. Odd pyroxene phenocrysts, similar to previous section.
- 110-150 cm: vesicular, gray basalt, aphyric 5-20% vesicles, many from 0.5-2 mm across and some large composite ones. Weathering in zones around vesicles particularly in Piece 6 (133-141 cm) with a pipe zone of vesicles,
- Piece 5 (125-131 cm): includes weathered contact zones (chill margins?) above and below carbonate band (lithified sediment?). Lithified carbonate material also on Piece 7 (143-150 cm).

Above Piece 5 (125 cm): vesicles lined by dark material and clear well formed crystals (zeolite?).

Below Piece 5 (131 cm): vesicles filled or lined by light brownish gray clay(?).

Shipboard Data

71 cm

49.90

15.73 1.26 8.28

8.42 12.25

3,10

0.09 1.35

0.11 0.15 ----

_ 273.00

99.00

97.00

161.00

Magnetic Data:	76 cm	138 cm
Intensity (emu/cc)	611 7	731 7
Inclination before	011.7	20117
demag.	37.4	63.5
Stable Inclination	41.5	62.8
Physical Properties:	60 cm	67 cm
Vp (km/s)	5,91	
Porosity (%)	7.98	3.53
Wet Bulk Density	2.97	2.93
Grain Density	3.14	3.00
Other Data:	60 cm	
Therm, cond.		
(mcal/cm-s-°C)	4.53	

cm

0

50-

100-

150 -

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

Depth: 501.5 to 502.0 m

Visual Description

Slightly vesicular, gray, aphyric fine-grained basalts. Glassy rinds (and chill margins) on Pieces: 5, 25-31 cm; 6, 32-36 cm; and 8, 43-46 cm.

Besicles approximately 10%, 4-8% < 1 mm.

Carbonate lined and weathered fracture surfaces on Pieces 4 (18-24 cm) and 5 (25-31 cm). Weathering gives greenish tinge to clay and carbonate lining and infilling of some vesicles. Some alteration of glassy rinds to palagonite.

SITE

443

ON	L	LEG		SITE		HOLE	CORE		SECT.	
	5	8	4	4	3		5	5		1
	De	pth	: 50	1.0	to	502.	5 m			

1

Visual Description

Aphyric pillow basalt. Microphenocrysts (incipient groundmass crystallization of feldspar in aphanitic groundmass near pillow rinds. Fine-grained microphyric basalt in pillow Interiors 25% plagloclase microphenocrysts. Vesicular 1-5% , calcite veins common, carbonate infillings of vesicles ~ 1%. Piece 4 carbonate cemented intraformational limestone, palagonite fragments and chert?

Thin Section Description - 99 cm

Phenocrysts: olivine 1%, ~.5 mm, idioblastic, replaced 100% by calcite.

Groundmass: plagioclase 40%, .5-1.0 mm, > An_{65}^{*} , lathes, "albitetroin; clinopyroxene 25%, 0.1-1.0 mm, quench feathers and granules; magnetite 3%, .01-.1 mm euhedra and

Vesicles: 10%, .1-1.0, 20% calcite filling.

Texture: intersertal.

8

100

244.00 252.00 241.00

80.00 111.00 98.00

178.00 170.00 168.00

118.00 117.00 120.00

Alteration: 5% carbonate in groundmass, replacing groundmass and olivine microphenocrysts; 20% clays intergranular, replacing groundmass.

81 cm	104 cm	145 cm	Magnetic Data:	99 cm
49.95	49.26	49.51	Intensity (emu/cc)	208.2
13.19	13.15	13.20	Inclination before	
1.35	1.31	1.33	demag.	71.5
8.97	8.66	8.80	Stable Inclination	72.4
8.28	8.83	2.61		
11.44	11.95	11.56	Physical Properties:	77 cm
3.02	2.84	2.95	Vp (km/s)	4.00
0.45	0.42	0.40	Porosity (%)	22.63
1.57	1.51	1.60	Wet Bulk Density	2.51
0.16	0.16	0.15	Grain Density	2.95
0.13	0.14	0.14		
	-			

100

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

Depth: 502.5 to 504.0 m

Visual Description

Vesicular aphyric pillow basalt. Vesicles 3-15%, mostly fine, some coarse vugs up to 7 mm. Pipe vesicles at 115-124 cm. Fragment No. 1 most vesicular piece.

Carbonate veins up to 3 mm thick and quite common.

76-82 cm: carbonate cemented intraformational breccia with bits of palagonite and possibly chert? and pieces of limestone.

Pillow rinds common. Basalt generally aphyric but some is glomeroporphyritic with small (2 mm - 1 mm) glomerocrysts of plagioclase lathes in an aphanitic groundmass (Pieces

4, 6, 7, and 12). 28 cm piece has strings of feldspar laths.

Thin Section Description - 0 cm

laths, "albite; clinopyroxene 25%; magnetite 2%, .01-.1 mm, euhedra and anhedra.

Vesicles: 20%, .1-.5 mm, clays and calcite filling.

115 cm

49,47

12.93

1.31

8.62

9.24

11.67

2.91

0.37

1.55

0.15

0.13

-

_

234.00

124.00 167,00

116.00

Alteration: 15% clays in groundmass and vesicles replacing groundmass; carbonate in vesicles

Bulk Analysis:

Magnetic Data:	60 cm
Intensity (emu/cc)	174.9
Inclination before	
demag.	72.7
Stable Inclination	74.5

0 SITE LEG F CORE SECT 58 4 4 3 5 6 1

60.0

59.9

3.26

105 cm

3.33

Depth: 504.5 to 506.0 m

Visual Description

0-126 cm: spherulitic basalt, variolitic, 3-5% vesicular and vugs, partially filled by calcite, Brown stained zones for 1 cm around calcite veins (Piece 5B and 8B).

Piece 8 grades from variolitic basalt into aphanitic basalt filled with acicular needles of plagioclase up to 2 mm long in an aphanitic groundmass .

* = glomerocryst made up of fine plagioclase needles (spherulites).

126-150 cm: glomerophenocrystal basalt. Glomerocrysts of acicular plagioclase needles

~2 mm across, 5% vesicular.

Thin Section Description - 117 cm

278.00

156.00

162.00

109.00

Cr

Ni

Sr

Zr

Groundmass: plagioclase 30%, .01-1.0 mm; clinopyroxene 25%, .01-1.5 mm, granules and quench; magnetite 3%, .01-.1; other 30% grundge. Vesicles: 7%, .1-1.5 mm, calcite or larger. Texture: intersertal.

Alteration: 4% carbonate mostly vesicles, some groundmass.

Shibpoard Data Bulk Analysis: 112 cm Magnetic Data: 117 cm SiO 49.79 Intensity (emu/cc) 709.6 Al₂O₃ Fe₂O₃ FeO 12.10 Inclination before 1.29 demag. Stable Inclination 8.55 MgO 10.21 CaO 11.28 Other Data: 61 cm Na2O K2O TiO2 P2O5 MnO LOI 2.90 Therm. cond. 0.46 (mcal/cm-s-°C) 1.43 0.15 0.13 -----H₂0⁺ H₂0⁻ CO₂ -

cm 0 50-100-M.T *

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

L	EG		SIT	Ē	HOLE	c	OR	E	SE	ст.
5	8	4	4	3			5	6		2

Depth: 506.0 to 507.5 m

Visual Description Breaks in section (not chill zones) at 23 and 77 cm. Fine-grained sphenulitic basalt; radiating acicular plagioclase needles in 2 mm clusters give rock a spotted appearance, groundmass aphanitic 2-10% vesicules, a few vugs. Calcite present only in small amounts as vesicle filling in top 1/3 of core. 77-150 cm: rock grades from a few spherulites ~5% to ~30% spherulites at base. Thin Section Description - 60 cm

Phenocrysts: olivine 4%, 0.1-0.5 mm, euhedral, replaced 100% by calcite. Groundmass: plagioclase 55%, groundmass microlites; other grundge remainder, Vesicles: 25%, .05-1.0 mm. Texture: intersertal. Alteration: 4% carbonate replacing olivine microphenos.

Thin Section Description - 68 cm

SiO2 Al2⁰3 Fe2⁰3 Fe0

MgO

CaO

Na₂O

K20 TiO2 P205 Mn0 L01

H₂O⁺ H₂O⁺ CO₂

Cr Ni

Sr

Zr

Groundmass: plagioclase 40%, .1-5.0 mm, >An73*, acicular needles and laths, *albite hour glass zoning; clinopyroxene 30%, .01-.5 mm, granules and microlites; magnetite 2-3%. Vesicles: 25%, .2-2.0 mm, irregular to round. Texture: intersertal. Alteration: 3% carbonate, some vugs and some groundmass.

Shipboard Data 103 cm Bulk Analysis: 48.89 13.75 1.21 7.98 7.54 14.02 2.92 0.28 1.56 0,16 0,13 ---------219.00 -86.00

176.00

122.00

100 cm	
110.1	
60.2	
58.2	
49 cm	
3.94	
27.07	
2.46	
3.00	
49 cm	94 cr
3.35	3.27
	100 cm 110.1 60.2 58.2 49 cm 3.94 27.07 2.46 3.00 49 cm 3.35

150

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

LI	EG		SIT	ΓE	HOLE	0	COR	E	SE	ст.
5	8	4	4	3			5	6		3

Depth: 507.5 to 508.9 m

Visual Description

Plagioclase spherulitic basalt grading into plagioclase microphyric basalt in a single unit which started in the preceding section (Section 2, 77 cm). Acicular plagioclase spherulites at top grading downward into randomly oriented acicular plagioclase lathes in an aphanitic groundmass.

Calcite veins have iron-oxide stain for a 1 to 1 1/2 cm zone around them. Calcite amygdules common from 125-142 cm.

113 cm	
50.18	
13.89	
1.29	
8.52	
7.47	
11.48	
3.29	
0.54	
1.97	
0.18	
0.14	
	113 cm 50.18 13.89 1.29 8.52 7.47 11.48 3.29 0.54 1.97 0.18 0.14

213.00

54.00

167.00

131.00

Magnetic Data: 120 cm Intensity (emu/cc) 53.3 Inclination before 58.1 demag. Stable Inclination 63.9 Other Data: 97 cm 115 cm Therm. cond. (mcal/cm-s-°C) 3.51 3.64

150

L	EG		SIT	E	HOLE	c	OR	E	SE	ст.
5	8	4	4	3	Π		5	6		4

Depth: 508.9 to 509.7 m

Visual Description

Aphyric vesicular basalt - contamination of unit in previous section. Vesicules range from 2-7% depending on degree of weathering and extent of infilling to form amygdules. Piece 2 contains a 3-4 mm wide calcite vein with open space at its center with free growing crystalline calcite. Both veins in Pieces 2 and 5 have 1 cm oxidized zone at periphering of calcite in the basalt.

Shipboard Data

150

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

Depth: 510.5 to 511.9 m

Visual Description

- 0-52 cm: aphyric massive basalt end of massive basalt unit found in Core 56. 0-10% vesicles depending on amount.
- 54-60 cm: limestone and chalk (lithified nannofossil ooze), 1 fragment chalk, 1 fragment of lithographic limestone. Mn dendrites in largest chunk,
- 61-142 cm: aphyric pillow basalt, grades from massive glass zones up to 4 cm thick into variolitic basalt and then into aphyric pillow basalts filled with plagioclase spherulites and random microphenocrysts. Similar (except for massive
- glass zones to basalt in Cores 55 and 56. Vesicularity ~1-2%. 0-52 cm: moderate weathering.
- 61-142 cm: light to moderate weathering and alteration (two are hard to separate). Oxidized zones around veins.

Shipboard Data

Bulk Analysis: SiO2 Al₂O₃ Fe₂O₃ FeO MgO $\begin{array}{c} \text{CaO} \\ \text{Na}_2\text{O} \\ \text{K}_2\text{O} \\ \text{TiO}_2 \\ \text{P}_2\text{O}_5 \\ \text{MnO} \\ \text{LO1} \\ \text{H}_2\text{O}^+ \\ \text{H}_2\text{O}^- \\ \text{CO}_2 \\ \text{Cr} \\ \text{Ni} \end{array}$

Sr

Zr

171.00

122.00

129 cm	Magnetic Data:	6 cm	134 cm
49.61	Intensity (emu/cc)	16.5	65.8
13.21	Inclination before		
1.30	demag.	51.8	65.9
8.60	Stable Inclination	53.2	
8.48			
11.75	Physical Properties:	70 cm	
3.12	Vp (km/s)	4.45	
0.39	Porosity (%)	20.61	
1.64	Wet Bulk Density	2,59	
0.17	Grain Density	3.01	
0.14			
	Other Data:	0 cm	125 cm
	Therm, cond,		
	(mcal/cm-s-°C)	3.63	3.58
228.00			
103.00			

CORE SECT.

3 5 7

SITE F

Depth: 520.0 to 521.5 m

Visual Description

0-24 cm: pillow lava, aphyric, yellow gray, altered. Vesicles 1-2%, <1 mm, but some up to 3 mm.

24-150 cm: interior part the same flow.

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

24-80 cm: basalt aphyric, dense, yellow gray, vesicles <5 mm, 1-2%.

80-150 cm: basalt, aphyric, fine-grained dark gray. Vesicles < 1%, but 3 mm and less.

Entire section has calcite veins with hydrooxide of iron.

70-120 cm: rare spherulites of plagioclase, 1-2%, up to 5-7 mm.

Shipboard Data				
Bulk Analysis:	58 cm	94 cm	Magnetic Data:	61 cm
SiO'2	49.95	50.31	Intensity (emu/cc)	306.2
AlaDa	13.96	14.26	Inclination before	
Fe2O3	1.28	1.24	demag.	65.5
FeO	8.43	8.18	Stable Inclination	64.6
MgO	7.93	7.91		
CaO	11.13	11.09	Other Data:	82 cm
Na ₂ O	3.29	3.42	Therm. cond.	
K20	0.48	0.56	(mcal/cm-s-°C)	3.5
TiO2	1.82	1.84		
P2OF	0.16	0.18		
MnO	0.14	0.14		
LOI				
H20+		1201		
H20-	ter ter			
CÔ2				
Cr	233.00	227.00		
Ni	79.00	62.00		
Sr	168.00	175.00		
Zr	124.00	138.00		

150 -

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

Depth: 521.5 to 522.9 m

Visual Description

0-55 cm: basalt identical to that described at the base of Core 58, Section 1. Vesicles 10-15%, <1 mm.

55-70 cm: chill zone of next lava flow (rim glass is absent). Basalt aphyric, dense, yellow gray. Vesicles 2-3%, 1-2 mm.

70-140 cm: basalt aphyric fine-grained dark gray, slightly altered. Vesicles 10-15%, <1 mm partly filled with calcite and clay.

10.74

3.57 0.26

1.76

0.10

225.00

178.00

126.00

73.00

50-120 cm: spherulites of plagioclase 1-2%, up to 5 mm. Vein with calcite and chlorite(7).

Shipboard Data

 $\begin{array}{l} \text{Sinfboard Data Bulk Analysis:} \\ \text{SiO}_2 \\ \text{Al}_2\text{O}_3 \\ \text{Fe}_2\text{O}_3 \\ \text{Fe}O \\ \text{MgO} \\ \text{CaO} \\ \text{Na}_2\text{O} \\ \text{K}_2\text{O} \\ \text{TiO}_2 \\ \text{P}_2\text{O}_5 \\ \text{MnO} \\ \text{LOI} \\ \text{H}_2\text{O}^+ \\ \text{H}_2\text{O}^- \\ \text{CO}_2 \\ \text{Cr} \end{array}$

Nī

Sr

Zr

 99 cm
 Magnetic Data:
 67 cm

 50.69
 Intensity (emu/cc)
 254.4

 14.38
 Inclination before

 1.20
 demag.
 72.2

 7.95
 Stable Inclination
 72.8

 8.84

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

29 cm

96.00

Lf	G		SIT	ΓE	HOLE	0	OR	E	SE	ст.
5	8	4	4	3.			5	8		3

Depth: 522.9 to 524.3 m

Visual Description

0-143 cm: basalt identical to that at the base of Section 2 (Core 58).

0-12 cm and 105-143 cm: basalt aphyric fine-grained, dark gray. Vesicles about 10%, <1 mm, filled with calcite and clay.

12:105 cm: basalt, aphyric, medium- to coarse-grained (plagioclase up to 4 mm), dark gray, dense. Alteration occurs close to calcite vein (70-90 cm).

Shipboard Data Bulk Analysis: SiO2

MgO

CaO

Na₂O

K20 TiO2 P205 MnO

LOI

Cr

Ni

Sr

Zr

47.07 Al₂O₃ Fe₂O₃ FeO 9,64 1.57 10.36 18.53 7.44 1.94 0.23 1,39 0.13 0.17 -----H₂0⁺ H₂0⁻ CO₂ --------428.00 405.00 97.00

Magnetic Data:	34 cm	121 cm
Intensity (emu/cc)	232.7	440.4
Inclination before		
demag.	77.2	69.6
Stable Inclination	76.1	73.6
Physical Properties:	137 cm	
Vp (km/s)	3.82	
Porosity (%)	19.59	
Wet Bulk Density	2.60	
Grain Density	2.99	
Other Data:	120 cm	114 cm
Therm, cond.		
(mcal/cm-s-°C)	3.63	3.77

150

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

Depth: 524.3 to 525.9 m

Visual Description

0-125 cm: basalt identical to that at the base of Section 3 (Core 58). Basalt aphyric, fine-grained. Vesicles about 10%. Mn sample Piece 1C: a pipe vesicle occurs (only one) 2 x 20 mm.

0-45 cm: fresh basalt, dark gray.

51.03

13.33

1.23

8.12

11.55

9.27

3.28

0.30

1.86

0.19

0.10

_

246.00

115.00

154.00

138.00

45-125 cm: basalt is altered, greenish gray. Vesicles partly are filled with clay (25-125 cm). 125-150 cm: pillow lava with glass rim. Basalt dense. Close to rim color is greenish-gray,

3 cm in from rim color is gray. Very rare phenocryst of plagioclase (1 mm).

Shipboard Data

Bulk Analysis: 30 cm SiO2 Al₂O₃ Fe₂O₃ FeO MgO CaO Na20 K20 TiO2 P205 Mn0 LOI H₂0⁺ H₂0⁻ C0₂

Cr

Ni

Sr

Zr

Magnetic Data: 6 cm 34 cm Intensity (emu/cc) 282.6 273.0 Inclination before demag. 69.4 71.0 Stable Inclination 71.9 ____

LEG		SITE			HOLE	CORE			SE	SECT.	
5	8	4	4	3			5	8		5	

Depth: 525.8 to 526.8 m

Visual Description

0-10 cm: the same pillow lava as at the base of Section 4 (Core 58) . It is the upper part of the flow.

10-95 cm: bottom part the same lava flow. Basalt, dense (10-45) and fine-grained (45-95 cm), dark gray, aphyric. Alteration close to calcite. Vein is very slight.

1

Shipboard Data

Magnetic Data:	69 cm
ntensity (emu/cc)	41.2
nclination before	
demag.	-51.9
Stable Inclination	-50.2

150

Depth: 529,5 to 530.9 m

Magnetic Data: 12 cm Intensity (emu/cc) 72.0 Inclination before 53.8 demag. Stable Inclination 46.1

S
-
-
π
4
3

LEG		1	SITE			CORE			SECT.	
5	8	4	4	3			5	9		2

Depth: 530.9 to 532.4 m

Visual Description

0-22 cm: basalt similar to that at the bottom of Section 1 (Core 59), but more fresh. 22-55 cm: chill zone of the same basalt flow. Basalt dense, aphyric, greenish-gray,

vesicles 1-2%, <1 mm, filled with calcite. In the bottom of flow glass occurs (Piece 3B). 55-150 cm: next lava flow.

55-67 cm: pillow lava zone.

67-150 cm: basalt flow, dark gray, aphyric, very fine-grained.

49.68

15.19

1.25

8.24

6.69

13.05

3.11

0.34

1.30

0.11

0.18

-

291.00

104.00

149.00

91.00

0.17

-

294.00

108.00

156.00

84.00

Shipboard Data Bulk Analysis: 15 cm

SiO2

Al₂O₃ Fe₂O₃ FeO

MgO

CaO

Na20 K20 TiO2

P205 Mn0

LOI

H₂0 H₂0 CO₂

Cr

Ni

Sr

Zr

91 cm	Magnetic Data:	15 cm
49.86	Intensity (emu/cc)	75.2
15.71	Inclination before	
1.22	demag.	35.4
8.03	Stable Inclination	52.9
7.82		
12.18	Other Data:	14 cm
3.17	Therm, cond,	
0.37	(mcal/cm-s-°C)	4.30
1.22		
0.11		

150

106 cm

80.2

-47.0

-51.1

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

Depth: 532.4 to 533.9 m

Visual Description

0-20 cm: basalt similar to that at the bottom (base) of Section 2 (Core 59). 20-76 cm: the same lava flow but basalt is dense, phyric, yellow gray, alteration close calcite vein is low.

76-150 cm: next lava flow.

76-90 cm: chill margin (top) of lava flow with rims of glass. 90-150 cm: basalt, fine-grained, aphyric, greenish-gray, vesicular. Vesicles 10-15%,

<2 mm, filled with calcite. Alteration moderate.

1.18

7.79

9.48

3.11

0.13

1.25

0.09

0.13

145.00

150.00

91.00

_

154.00

87.00

Shipboard Data

Bulk Analysis: 4 cm SiOa 49.90 Al₂O₃ Fe₂O₃ FeO 15.71 MgO CaO 11.69 Na₂O K20 TiO2 P205 MnO LOI H₂O⁺ H₂O⁻ CO₂ --297.00 113.00

Cr Ni

Sr

Zr

101 cm	Magnetic Data:	12 cm
49.85	Intensity (emu/cc)	44.2
15.18	Inclination before	
1.19	demag.	-6.5
7.88	Stable Inclination	-53.6
9.05		
11.78	Physical Properties:	98 cm
3.18	Vp (km/s)	5.22
0.27	Porosity (%)	8.24
1.29	Wet Bulk Density	2.84
0.09	Grain Density	3.00
0.13		
	Other Data:	136 cm
<u> </u>	Therm. cond.	
	(mcal/cm-s-°C)	4.08
301.00		

L	EG		SIT	ΓE	HOLE	c	CORE		SE	ст.
5	8	4	4	3	Π		5	9		4

Depth: 533.9 to 534.4 m

Visual Description

0-150 cm: basalt identical to that at the base of Section 3 (Core 59). Basalt, aphyric, finegrained, vesicular. Vesicles 10-15%, <3 mm filled calcite and clay. 0-123 cm: basalt is weathered.

Shipboard Data	
Bulk Analysis:	138 cm
SiO2	49.22
Al ₂ Õ ₂	14.96
Fe2O3	1.14
FeÖ	7.50
MgO	10.62
CaO	11.87
Na ₂ O	3.07
K20	0.10
TiO2	1.28
P205	0.09
MnO	0.12
LOI	
H20 ⁺	
H_0-	
cō ₂	
Cr	291.00
Ni	124.00
Sr	200.00
Zr	90.00

Magnetic Data:	142 cm
Intensity (emu/cc)	37.9
Inclination before	
demag.	38.7
Stable Inclination	52.5
Other Data:	138 cm
Therm. cond.	
(mcal/cm-s-°C)	4.13

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

Depth: 534.4 to 535.9 m

Visual Description

0-150 cm: basalt identical to that at the base of Section 4 (Core 59). Basalt, aphyric, fine-grained, vesicular. Vesicles 15%, <2 mm filled with clay minerals. 108-150 cm: chill zone of this flow. Basalt dense, vesicularity is less (about 2%).

Basalt is weathered.

Shipboard Data Bulk Analysis:

SiO2

Al₂O₃ Fe₂O₃ FeO MgD CaO

 $\begin{array}{c} Na_{2}O \\ K_{2}O \\ TiO_{2} \\ P_{2}O_{5} \\ MnO \\ LOI \\ H_{2}O^{+} \\ H_{2}O \\ CO_{2} \end{array}$

Cr Ni

Sr

Zr

65 cm 49.79 15.72

87.00

SITE 443

L	EG		SIT	ſE	HOLL	c	OR	E	SE	ст.
5	8	4	4	3	П		6	0		1

111 cm

95.6

Depth: 539.0 to 540.5 m

Visual Description

- Gray, aphyric, medium-grained (approximately 0.5 mm to 1 mm) basalt, containing pyroxene and plagioclase.
- Amygdules filled by talc/chlorite/smectite type mineral and pyrite grains. Talc/smectite material and pyrite grains also line fractures at 26 cm (between Piece 1A and 1B) and at
- 110 cm (between Piece 1D and 1E).
- Amygdules approximately 15-30% (1 mm 10 mm across).

Very different from previous core.

Also white crystalline octahedral shaped mineral and white cylindrical (wire-like) mineral in some amygdules (zeolites?).

Thin Section Description - 112 cm

Phenocrysts: Spinel, 0.02 mm, light spinel square grain, 1 grain seen in olivine. Groundmass: olivine 15%, 0.02-0.4 mm, anhedral; plagioclase 33%, 0.05-2.0 mm, laths, larger laths zoned; clinopyroxene: 20%, 0.02-0.8 mm, augite, anhedral; magnetite 5%, 0.01-0.2 mm, granular; other 25% cryptocrystalline matrix. Vesicles: 2%, 0.02-0.1 and 0.7-2.0 mm

Texture: intersertal.

0.09

0.16

_

-

-

293.00

122.00

142.00

.85.00

0.09

0.16

303.00

124.00

144.00

91.00

Shipboard Data Bulk Analysis:

SiO2

Al₂O₃ Fe₂O₃ FeO

MgO

CaO

Na₂O

K20 Ti02

P205 Mn0

LOI

H₂0⁺ H₂0⁻ CO₂

Cr

Ni

Sr

Zr

21 cm	80 cm	Magnetic Data:	15 cm	111 0
48.99	49.41	Intensity (emu/cc)	75.1	95.6
14.89	14.87	Inclination before		
1.18	1.20	demag.	62.0	43.9
7.79	7.94	Stable Inclination	49.5	51.0
11.29	11.21			
10.96	10.72	Other Data:	0 cm	
3.00	3.10	Therm. cond,		
0.09	0.11	(mcal/cm-s-°C)	4.46	
1.21	1.25			

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

F LEG SITE CORE SECT 5 8 4 4 3 6 0 2

110 cm

97.8

36.7

47.3

8 cm

4.82

11.22

2.75

2.98

8 cm

4.37 4.27

134 cm

Depth: 540.5 to 541.9 m

Visual Description

- Gray, aphyric, medium-grained (approximately 0.5 mm 1 mm) basalt containing pyroxene and plagioclase.
- 0-42 cm: 25% amydules filled by green gray or white talc/chlorite/smectite material. Similar material lines vein between 33 and 53 cm. Plus some fine pyrite above section similar to previous core except no pyrite seen in amygdules.
- 42-150 cm: gray, aphyric, medium-grained basalt as above but virtually no amygdules except around vein at 46 cm.

Thin Section Description - 111 cm

Groundmass: olivine 20%, 0.2-0.6 mm, anhedral; plagioclase 45%, 0.1-2.0 mm, laths; magnetite 5%, 0.02-0.1 mm, granular; other 30% cryptocrystalline matrix including acicular pyroxene.

Texture: intersertal.

Alteration: other in groundmass replacing olivine?, talc, ?fibrous.

103.00

137.00

92.00

Shipboard Data Bulk Anal SiO2

Al₂O₃ Fe₂O₃ FeO

MgO

CaO

Na₂O

K20 TiO2 P205 MnO LOI H20 CO2

Cr

Ni

Sr

Zr

t t	100	Manager Dates
iysis:	106 cm	Magnetic Data:
	49.28	Intensity (emu/cc)
	14.94	Inclination before
	1.22	demag.
	8.08	Stable Inclination
	10.41	
	11.13	Physical Properties:
	2.89	Vp (km/s)
	0.11	Porosity (%)
	1.26	Wet Bulk Density
	0.10	Grain Density
	0.16	
		Other Data:
		Therm, cond.
		(mcal/cm-s-°C)
	200.00	

L	EG	2	SIT	E	HOLE	0	OR	E	SE	ст.
5	8	4	4	3			6	0		3

Depth: 541.9 to 543.1 m

Visual Description

Gray, medium-grained, aphyric basalt containing plagioclase and pyroxene vein between Piece 1B and 1C (66-70 cm), lined by smectite/talc/chlorite material. Below this line a small number of amygdules lined by white or greenish white material occur (approximately 1%, <2 mm across). Upper part (0-70 cm) similar to lower part of previous section. A few odd grains (very fine) of pyrite seen in some amygdules.

Shipboard Data

Magnetic Data:	74 cm
Intensity (emu/cc)	82.5
Inclination before	
demag.	50.7
Stable Inclination	51.5
Other Data:	99 cm
Therm. cond.	
(mcal/cm-s-"C)	4.39

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

Depth: 543.1 to 544.4 m

Visual Description

Gray, medium-grained (0.5 to 2 mm) aphyric basalt containing plagioclase and pyroxene (diabasic texture).

Odd amygdules filled by white or greenish white material (approximately 1%, 0.05 to 2 mm across).

Similar to previous core.

Fracture at 57-61 cm lined by greenish-white smectite/talc/chloritic material.

Fracture at 103-113 cm is lined by a similar material discolored by other alteration products.

Thin Section Description - 126 cm

Groundmass: olivine 15%, 0.01-0.9 mm, anhedral, intergrown with plagioclase; plagioclase 35%, 0.1-2.0 mm, laths, some alignment; clinopyroxene 30%, 0.1-1.0 mm, augite, anhedral; magnetite 5%, 0.01-0.8 mm, granular; other 15%, cryptocrystalline matrix. Texture: intersertal – intergranular.

90.00

Zr

LI	EG		SIT	ΓE	HOLE	c	OR	E	SE	CT.
5	8	4	4	3	Π	1	6	0		5

Depth: 544.4 to 545.9 m

Visual Description

Gray, aphyric, medium-grained (0.5-2 mm) basalt (diabasic texture). Scattered amygdules filled by white material (generally <1 mm across, 1-3%), similar to previous section. Vein along which rock fractured at 88 cm lined by white platey mineral and honey brown acicular crystals (rare).

Shipboard Data

Physical Properties:	113 cm
Vp (km/s)	5.64
Porosity	2.37
Wet Bulk Density	2.89
Grain Density	2.94

150 -

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

L	EG		SIT	E	HOLE	c	OF	E	SE	ст.
5	8	4	4	3		Ĵ	6	0		6

Depth: 545.9 to 547.4 m

Visual Description

Gray, aphyric, medium-grained basalt (0.5-2 mm) containing plagioclase and pyroxene. Only occasional small amygdules filled by white material (<1 mm across). Similar to previous section.

Shipboard Data Bulk Analysis: SiO₂ AI₂O₃ Fe₂O₃ FeO $\begin{array}{c} MgO\\ CaO\\ Na_2O\\ K_2O\\ TiO_2\\ P_2O_5\\ MnO\\ LOI\\ H_2O^+\\ H_2O^-\\ CO_2\\ Gr\\ Ni\\ Sr\\ \end{array}$ Zr

104 cm 48.77 15.08 1.18 7.81 11.10 11.23 2.95 0.21 1.16 0.03 0.16 -------------299.00 147.00

172.00

82.00

SITE 443

SITE 443

Chill

zone

150

Depth: 549.6 to 551.1 m

SITE

CORE SECT.

6 1 2

Visual Description

Fine-grained plagioclase phyric basalt continuous with last section to 140 cm. Plagioclase phenocrysts 2 x 1 1/2 to 3 x 5 mm. Slight lateration of plagioclase. Carbonate veins have some iron staining in the basalt near them. Chill zone at 138 cm.

135-150 cm: aphanitic basalt very sparsely phyric to aphyric with a few scattered plagioclase phenocrysts.

Thin Section Description - 104 cm

Groundmass: olivine 10%, 0.05-0.4 mm, anhedral; plagioclase 35%, 0.1-1.5 mm, laths, some laths fractured; clinopyroxene 30%, 0.02-0.8 mm, augite, anhedral; magnetite 5%, 0.02-0.2 mm, granular; other 20% groundmass. Texture: intersertal.

Alteration:carbonate, vein filling, calcite; clays, vein filling, serpentine, chlorite; other, groundmass, replacing olivine, chlorite, iddingsite, serpentine.

0.09

0.15

299.00 127.00

199.00

83.00

Shipboard Data

107 cm	Magnetic Data:	103 cm
49.03	Intensity (emu/cc)	113.9
15.14	Inclination before	
1.21	demag.	57.2
8.00	Stable Inclination	56.4
9.92		
11.95	Other Data:	0 cm
2.90	Therm. cond.	
0.13	(mcal/cm-s-°C)	4.34
1.22		

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

Depth: 551.1 to 552.6 m

Visual Description

Aphyric basalt. Fine-grained to aphanitic < 1% plagioclase phenocrysts, 1 x 3 to 2 x 4 mm, 0-2% vesicles. Amygdaloidal 80-120 cm with carbonate and smectite fillings moderate to light weathering. Carbonate veins have Fe-oxide staining in basalt at periphery. It is not clear as to whether these are thin flows or pillows.

Shipboard Data Bulk Analysis:

SiO-

Al₂O₃ Fe₂O₃ FeO MgO

CaO

Na20 K20 TiO2 P205 Mn0 LO1

H20⁺ H20⁺ C02

Cr

Ni

Sr

13 cm	29 cm	101 cm
49.54	49.92	49.56
15.35	15.39	15.27
1.20	1.20	1.20
7.94	7.92	7.93
8,17	8.32	9.72
13.18	12.43	11.96
2.97	2.99	2.89
0.25	0.25	0.08
1.24	1.26	1.25
0.09	0.09	0.09
0.15	0.13	0.13
	-	
1000	1.000	
302.00	304.00	308.00
108.00	117.00	105.00
167.00	167.00	151.00
90.00	00 00	00 00

LI	EG		SIT	re	HOLL	c	OR	E	SE	CT.
5	8	4	4	3			6	1		4

Depth: 552.6 to 554.1 m

Visual Description

Plagioclase phyric basalt – continuation of unit from previous section ~1% plagioclase phenocrysts 1 x 2 to 2 x 4 mm. Fine-grained lightly weathered, <1% vesicles, <1% amygdules.

139-150 cm: amygdaloidal basalt ~5% amygdules lightly weathered, some Fe-oxidation in basalt near carbonate veins.

Thin Section Description - 107 cm

Phenocrysts: plagioclase 5%, 0.8-3 mm, lath-like or acicular.

315.00

117.00

152.00

85.00

Groundmass: plagioclase 45%, 0.25-0.6 mm, acicular; clinopyroxene 45%, augite, acicular, feathery quench growths common; magnetite 7.5%, <0.01 mm, granular. Vesicles: 2.5%, calcite filling, usually empty. Texture: intersertal (quenched).

Shipboard Data Bulk Analysis:

SiO2

Al₂O₃ Fe₂O₃ FeO MgO

 $\begin{array}{c} {\rm CaO} \\ {\rm Na_2O} \\ {\rm K_2O} \\ {\rm TiO_2} \\ {\rm P_2O_5} \\ {\rm MnO} \\ {\rm LOI} \\ {\rm H_2O^+} \\ {\rm H_2O^-} \\ {\rm CO_2} \\ {\rm Cr} \end{array}$

Ni

Sr

Zr

sis:	69 cm	Magnetic Data	106 cm
	49.86	Intensity (emu/cc)	136.3
	15.60	Inclination before	
	1.21	demag.	48.6
	7.99	Stable Inclination	49.8
	9.23		
	12.16	Physical Properties:	77 cm
	3.00	Vp (km/s)	5.75
	0.07	Porosity (%)	3.78
	1.25	Wet Bulk Density	2.90
	0.09	Grain Density	2.97
	0.14		

Cr

Ni

Sr

Zr

cm

0

50

100

150

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

Depth: 558.0 to 559.4 m

Visual Description

Aphyric basalt – ranges from brown where moderately weathered to medium gray where fresh. Fine- to medium-grained, there may be considerable chlorite in groundmass? Vesicularity < 1%. Plagicolase phenocrysts scarce < 1%, ~2.3 mm long, 1.2 mm wide. Oxidized zone around carbonate veins. Rare calcite anygdules present.

Thin Section Description - 91 cm

Phenocrysts: plagioclase 1%, 0.5-0.7 mm, laths, often clusters; clinopyroxene 0.1 x 0.4 mm, augite, 1 subophitic grain.

Groundmass: plagioclase 49%, 0.05-0.3 mm, laths; clinopyroxene 20%, 0.05-0.4 mm, augite, anhedral; magnetite 2.5%, 0.01-0.1 mm, granular, sometimes skeletal; other 27.5% crypto-crystalline matrix.

Texture: intergranular - intersertal.

Shipboard Data 94 cm Bulk Analysis: SiO2 50.22 Al203 15.07 Fe₂O₃ FeO 1.14 7.55 MgO 9.59 CaO 12.03 Na₂O 2.93 K20 TiO2 P205 Mn0 0.10 1.32 0.10 0.12 LOI H₂O⁴ H₂O ----____ -----

290.00

94.00

158.00

91.00

Magnetic Data:	90 cm
Intensity (emu/cc)	82.8
Inclination before	
demag.	50.9
Stable Inclination	50.7
Other Data:	15 cm
Therm. cond.	
(mcal/cm-s-°C)	3.79

L	EG		SIT	E	HOLE	c	OF	E	SE	ст.
5	8	4	4	3			6	2		2

Depth: 559.4 to 560.9 m

V isual Description

Aphyric basalt — moderate to lightly to moderately weathered carbonate veins. Rare plagioclase phenocrysts ~2.3 mm long, 1.2 mm wide. Two narrow glass chill zones at end of section grading into aphanitic basalt into fine-grained basalt without a variolitic zone. One fine-grained chill zone with no glass at 51 cm.

Thin Section Description - 30 cm

Phenocrysts: plagioclase 10%, 0.4-0.8 mm, broad laths. Groundmass: plagioclase 20%, 0.05-0.7 mm, acicular; clinopyroxene 25%, 0.05-0.5 mm, augite, anhedral, some subophitic texture; magnetite 3%, 0.01-0.2 mm, granular; other 40% cryptocrystalline matrix. Vesicles: 2%, finely crystalline clay, subrounded.

Texture: intersertal - intergranular.

293.00

97.00 161.00

98.00

Shipboard Data Bulk Analysis:

SiO₂ AI₂O₃ Fe₂O₃ FeO

MgO

CaO

Na20 K20 TiO2 P205 Mn0 LO1

H₂0⁺ H₂0⁻ CO₂

Cr

Ni

Sr

Zr

Fine to

aphanitic chill zone

Inclusion

CC vein on surface

Glass

27 cm	Magnetic Data:	29 cm
50.15	Intensity (emu/cc)	35.6
15.06	Inclination before	
1.14	demag.	43.9
7.52	Stable Inclination	50.5
8.92		
11.77	Physical Properties:	43 cm
3.26	Vp (km/s)	4.87
0.39	Porosity (%)	13.19
1.34	Wet Bulk Density	2.69
0.11	Grain Density	2.95
0.12	-	

150

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

Depth: 560.9 to 562.4 m

Visual Description

Aphyric basalt – 5 glass chill zones up to 8.0 mm thick <1% plagioclase phenocrysts 1-3 mm, fine-grained. Palagonite and calcite breccia at top of chill margins on Pieces 11 and 12. Carbonate veins in most samples. Variolitic zone under chilled margins absent <1% carbonate filled amygdules.

Zr

56 cm 50.15 15.07 1.13 7,48 9.05 12.42 2.94 0.29 1.28 0.09 0.15 ---------____ 321.00 127.00

163.00

90.00

SITE 443

LE	EG		SIT	E	HOLL	c	OR	E	SE	ст.
5	8	4	4	3	П	ł	6	2		4

Depth: 562.4 to 563.4 m

Visual Description

Aphyric basalt and plagioclase phyric basalt. Two chill zones, one with glass <1-1% plagioclase phenocrysts 2-3 mm, moderate to light-moderate weathering. Fine-grained to aphanitic and glassy texture. Some carbonate veins have an oxidized zone.

Scattered calcite filled amygdules.

Spinel present as inclusions in plagioclase phenocrysts.

12.72

3.00

0.29 1.32

0.09

0.13

-

--------1

310.00

120.00

165.00

94.00

Thin Section Description - 63 cm

Phenocrysts: plagioclase 1%, 1 x 0.5 mm, An₆₇, laths. Groundmass: plagioclase 30%, 0.01-0.4 mm, laths, microlites; magnetite 4\$, <0.05 mm, granular; other 65% cryptocrystalline matrix and quenched, acicular pyroxene(?). Texture: intersertal.

Alteration: other, iddingsite(?), chlorite.

Shipboard Data

18 cm	Magnetic Data:	62 cm
50,46	Intensity (emu/cc)	50.2
15.14	Inclination before	
1.17	demag.	46.2
7.72	Stable Inclination	42.3
7.79		

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

10 cm

27.5

43.5

36.4

Depth: 567.5 to 569.0 m

Visual Description

Zr

Aphyric amygdaloidal basalt - massive, 3-5% amygdules filled with smectites and calcite and 0.5% vesicules in more weathered portions where vesicules are absent. Occasional plagioclase phenocrysts < 1%, 1-3 mm.

Numerous calcite veins with oxidation zones in basalt adjoining veins. Moderate-light weathering,

Shipboard Data		
Bulk Analysis:	140 cm	Magnetic Data:
SiO ₂	50.24	Intensity (emu/cc)
Al203	15.01	Inclination before
Fe ₂ O ₃	1.19	demag.
FeO	7.86	Stable Inclination
MgO	8.21	
CaO	12.36	
Na ₂ O	3.14	
K20	0.30	
TiO	1.30	
P2OF	0.10	
MnO	0.13	
LOI	2011 (Carriero)	
H20 ⁺		
H_0-		
cô,		
Cr	306.00	
Ni	116.00	
Sr	165.00	

93.00

LI	EG		SIT	ΓE	HOLE	c	OR	E	SE	ст.
5	8	4	4	3			6	3		2

Depth: 569.0 to 570.4 m

Visual Description

Aphyric amygdaloidal massive basalt. No chill zones. Rare plagioclase phenocrysts < 1% ~2 x 1 to 3 x 2 mm fine-grained. 3-7% amygdules filled with calcite and smectites. Numerous calcite veins, oxidized zones in adjacent basalt. Moderately weathered.

In oxidized zones next to carbonate veins most vesicules are empty - so vesicularity may be as much as 7% medium vesicles (1-3 mm).

Thin Section Description - 60 cm

Groundmass: plagioclase 45%, An₆₂₂, laths, often as microlites; clinopyroxene 25%, acicular, poorly crystallized; magnetite 5%, 0.01-0.1 mm, granular; other glassy, cryptocrystalline matrix. Vesicles: 5%, 0.1-0.8 mm calcite, subrounded.

Texture: intersertal.

Alteration: clays in groundmass replacing glassy material, yellow, palagonite(?).

Shipboard Data

Magnetic Data:	71 cm
Intensity (emu/cc)	50.8
Inclination before	
demag.	47.6
Stable Inclination	47.1

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

105 cm

3.96

5.03

_ ----

103 cm 105 cm

5.41

2.75 2.85

Depth: 570.4 to 571.9 m

Visual Description

 $\begin{array}{c} Na_{2}O \\ K_{2}O \\ TiO_{2} \\ P_{2}O_{5} \\ MnO \\ LOI \\ H_{2}O^{+} \\ H_{2}O \\ CO_{2} \end{array}$

Cr Ni

Sr

Zr

Section is identical to that in Section 2 (Core 63).

1.1.1.1

307.00 180.00

166.00

91.00

0-150 cm: basalt, aphyric, fine-grained yellow gray, vesicular. Vesicles 5-10%, 0.5-2.0 mm, filled with calcite. Yellowish color associated with oxidation.

Thin Section Description - 59 cm

Groundmass: plagioclase 38%, laths; clinopyroxene 30%, 0.1-0.8 mm, anhedral; magnetite 2%; 0.01-0.2 mm, granular. Vesicles: 5%, 0.1-1.5 mm, calcite, subrounded. Texture: intersertal - intergranular.

Alteration: clays in groundmass, yellow; other iddingsite(?).

Shipboard Data		
Bulk Analysis:	116 cm	
SiO2	49.97	
Al203	15.04	
Fe2O3	1.14	Other Data:
FeÔ	7.52	Therm, cond,
MgO	8.74	(mcal/cm-s-°C)
CaO	12.70	
Na ₂ O	3.08	Physical Properties:
K20	0.28	∇p (km/s)
TiO2	1.27	Porosity (%)
P2OF	0.10	Wet Bulk Density
MnO	0.12	Grain Density
LOI		
H-0+		

Depth: 571.9 to 573.2 m

Basalt identical to that of Section 3 (Core 63).

0-134 cm: basalt aphyric, fine-grained, vesicular in the upper part (7%, <1 mm) and nonvesicular at the base of section.

0-108 cm: oxidation of basalt, yellowish-gray.

108-134 cm: fresh basalt, dark gray, no vesicles.

Magnetic Data:	99 cm
Intensity (emu/cc)	127.4
Inclination before	
demag.	68.2
Stable Inclination	54.7

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

8 cm

49.89

15.03

1.21

7.98

10.14

11.39

3.07 0.13

1.30

0.10

0.15 ----_ -----308.00 94.00 146.00

89.00

Depth: 573.2 to 574.7 m

Visual Description

0-150 cm: basalt identical to that at the base of Section 4, Core 63. Aphyric, fine-grained, dark gray. Alteration in one place, close to calcite vein (Piece 1E). Few vesicles.

Shipboard Data

Bulk Analysis: SiO2 Al₂O₃ Fe₂O₃ FeO MgO CaO $\begin{array}{c} {}^{Na}2^{O}\\ {}^{K}2^{O}\\ {}^{TiO}2\\ {}^{P}2^{O}5\\ {}^{MnO}\\ {}^{LOI}\\ {}^{H}2^{O^{+}}\\ {}^{H}2^{O^{-}}\\ {}^{CO}2\\ {}^{Cr}\\ {}^{Ni}\\ {}^{Sr}\end{array}$

Zr

Magnetic Data:	128 cm	137 c
Intensity (emu/cc)	27.6	78.5
Inclination before		
demag.	40.0	43.7
Stable Inclination	47.4	52.3

LEG		SITE			HOLE	CORE		SECT.		
5	8	4	4	3			6	3		6

Depth: 574.7 to 576.0 m

Visual Description

0-107 cm: basalt identical to that at Section 5 (Core 63). Basalt aphyric, fine-grained, gray dark, vesicularity low. Alteration close to calcite plus chlorite and serpentine(?) (greenish alteration). 107-132 cm: the same type of basalt, but it becomes oxidized.

pboard Data	
k Analysis:	12 cm
),	49.69
,Ô,	14.92
03	1.21
5	7.99
0	10.33
O	11.43
20	3.04
ō	0.12
2	1.32
05	0.11
õ	0.16
1	
0+	
0-	
2	
	300.00
	96.00
	148.00
	90.00

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

Depth: 576.0 to 577.5 m

Visual Description

0-75 cm: basalt identical to that of Section 6 (Core 63).

Basalt aphyric, fine-grained, dark gray, partly vesicular (0-25 cm, 3%, <1 mm). Vesicles filled with calcite.

75-150 cm: similar basalt, but fresh medium-grained, aphyric, dark gray. Plagioclase lath, up to 2 mm.

Alteration close to calcite-zeolite veins. In the same parts oxidation (weathering) occurs.

SITE 443

Depth: 578.3 to 579.9 m

Visual Description

0-130 cm: basalt identical to that described for Section 1, Core 64. Basalt very fresh, dense, fine-grained, phyric, dark gray. Plagioclase laths up to 5 mm.

Thin Section Description - 13 cm

Groundmass: olivine 3%, anhedral, relict grains in groundmass alteration; plagioclase 40%, laths; clinopyroxene 25%, anhedral, some subophitic; magnetite 2%, granular; other 25%, cryptocrystalline material.

Texture: intersertal - intergranular.

Alteration: clays in groundmass replacing olivine, chlorite; other in groundmass replacing olivine, serpentine.

Shipboard Data

Zr

78.00

Magnetic Data:	16 cm
Intensity (emu/cc)	74.0
Inclination before	
demag.	7.9
Stable Inclination	49.3
Other Data:	130 cm
Therm. cond.	
mcal/cm-s-°C)	4.08

VISUAL CORE DESCRIPTION FOR IGNEOUS ROCKS

Visual Description

0-130 cm: basalt identical to that described for Section 2, Core 64. Basalt fresh, phyric, dense, fine-grained, dark gray. Plagioclase, up to 5 mm. Alteration in two places. 46-50 cm: close to calcite vein.

125-150 cm: weathering.

130-150 cm: top of next lava flow. Basalt aphyric, fine-grained (dense), yellow gray. Top is very close to the glassy margin (possible pillow lava).

Thin Section Description - 39 cm

Groundmass: olivine 10%, anhedral, relict grains, fibrous pseudomorphs; plagioclase 30%, 0.1-1 mm, laths; clinopyroxene 25%, 0.1-1 mm, augite, anhedral; magnetite 5%, 0.02-0.2, granular; other 30%, cryptocrystalline material. Texture: intersertal - intergranular.

Alteration: other in groundmass replacing olivine, talc(?) iddingsite.

311.00

144.00

136.00

84.00

Cr

Ni

Sr

Zr

Shipboard Data			
Bulk Analysis:	0 cm	Magnetic Data:	20 cm
SiO2	48.90	Intensity (emu/cc)	79.1
Al ₂ Ô ₃	14.61	Inclination before	
Fe2O3	1.21	demag.	27.2
FeO	7.98	Stable Inclination	50.8
MgO	12.26		
CaO	10.76		
Na ₂ O	2.63		
KO	0.16		
TiO	1.16		
P2OF	0.09		
MnO	0.15		
LOI			
H-0+			
H_0-			
cô,			
6			

HO

CORE SECT.

6 4

4

Site 443

