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Growth of individual organisms within a population is generally characterized by an expression which is
representative of individual growth of an “average” animal in the population. Individual growth is treated
as an increase in either length or weight with increasing age. Several functions or models have been used to
model the mean length or weight of fishes. One model, the von Bertalanffy growth model (VBGM), is the
most popular and is the focus of this vignette.

The functions required to perform growth analyses in R are contained in the FSA and FSAdata packages
created by the author and the nlstools package. These packages are loaded into R with

> library(FSA)

> library(FSAdata)

> library(nlstools)

All analyses in this document use the lengths and ages of Atlantic Croaker (Micropogonias undulatus; Fig-
ure 1) as determined by researchers at Old Dominion University in conjunction with the Virginia Marine
Resources Commission (VMRC). The data are stored in the Croaker2 data frame found in the FSAdata

package which is loaded along with FSA. The first part of this vignette will focus only on the male Atlantic
Croaker data as isolated and stored in crm with

> data(Croaker2)

> crm <- Subset(Croaker2,sex=="M")

Figure 1. Atlantic croaker drawing (from Maryland DNR website).

This vignette begins with a brief introduction to the type of data that can be used for modeling growth
with the VBGM (Section 1). The general concept of fitting non-linear models is described in Appendix A
with these methods first being extended and then applied to the typical VBGM in Section 2. Alternative
parameterizations of the VBGM are described, with an example fitting, in Section 3. Methods for comparing
VBGM fits between groups are described in Section 5. Finally, Appendix B gives derivations for the different
parameterizations of the VBGMs.

1 Size-at-Age Data

The raw data for size-at-age modeling consists of the measurement of size, either length or weight, and
the assignment of age to individual fish at the time the fish was captured. This is called length-at-capture,
weight-at-capture, and age-at-capture data. An example1 of this type of data for length and age is shown in
Table 1-left and in Figure 2.1The remainder of this vignette will focus on length data only
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Table 1. Length-at-age for a portion of a sample of male Atlantic Croakers (left) and average length-at-age
(right) for all male Atlantic Croakers in 1999.

Indiv Age Length AvgAge AvgLength

1 1 248 1 248.0
2 2 210 2 248.4
3 2 225 3 281.8
4 2 236 4 298.3
5 2 240 5 328.2
6 2 245 6 345.9
7 2 255 7 332.5
8 2 258 8 344.3
9 2 263 9 370.8

10 2 270 10 327.0
11 2 292

...
...
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Figure 2. Length-at-age of male Atlantic Croaker. Red lines are the average length-at-age.
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Historical methods for estimating the parameters of growth models used the average length or weight at each
observed age for the sample (Table 1-right) rather than the original data recorded for each individual. The
historical methods should no longer be used because high-speed computers can easily perform the calculations
or iterations necessary for fitting the growth models to individual at-capture data. In addition, the historical
methods lost important information about individual variability. The historical method is carefully discussed
in Ricker (1975) and a brief example for fitting the VBGM to the mean data is given in Section 4.2.

It is also common to use “back-calculation” techniques to reconstruct data for growth analyses. This type
of data is called retrospective size-at-age data (Jones 2000). Growth data generated in this way is generally
inappropriate for the simple modeling techniques developed in this vignette because the back-calculated
measurements are serially correlated (i.e., the techniques described here require independent observations).
The problems created by serially-correlated data and techniques for handling serially-correlated data are
described in Jones (2000).

2 “Typical” von Bertalanffy Growth Model

2.1 The Model and Parameters

There are many versions or parameterizations of the VBGM (see Section 3). The most common version is
due to Beverton (1954) and Beverton and Holt (1957), who modified the original version introduced by von
Bertalanffy (Cailliet et al. 2006). This model will be termed the “typical” version of the VBGM throughout
this vignetted. The typical VBGM is represented by2

E[L|t] = L∞

(
1− e−K(t−t0)

)
(1)

where

� E[L|t] is the expected or average length at time (or age) t,

� L∞ is the asymptotic average length,

� K is the so-called Brody growth rate coefficient (units are yr−1), and

� t0 is a modeling artificat that is said to represent the time or age when the average length was zero.

The parameters of (1) have strict meanings that have been misunderstood in past work. The following items
address some of these misunderstandings.

� L∞ is not the maximum length of the animal. Rather L∞ is the asymptote for the model of average
length-at-age (Francis 1988). As with any average, some individuals will be larger than average; thus,
some animals will be larger than L∞. This is illustrated in Figure 3.

� Furthermore, Francis (1988) argues that L∞ only has meaning in fish populations where “mortality is
low enough to allow fish to reach an age at which the mean length (virtually) ceases to increase.”

� K is not a growth rate (Ricker 1975, p. 221). The units of K can be seen by algebraically solving (1)
for K,

1− E[L|t]
L∞

= −e−K(t−to)

log(
1− E[L|t]

L∞
) = −K(t− to)

K =
log(L∞−E[L|t]

L∞
)

t− to

(2)

2A weight specific version essentially raises the length-specific version to the power of b, the allometric relation term from

the regression of weight on length (i.e., W = aLB) – i.e., E[W |t] =
(
W∞

(
1− e−K(t−t0)

))b
.
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to notice that the units in the numerator disappear. Thus, the units of K are in time−1 rather than a
change in length for a unit time as required by a growth rate.

� Schnute and Fournier (1980) offer two related interpretations of the meaning of K. First, K “measures
the exponential rate of approach to the asymptotic size.” Second, the value e−K is “the fixed fraction
by which the annual growth increment is multiplied each year.” This last definition is seen by the
relation

E[L|t = i+ 2]− E[L|t = i+ 1] = e−K(E[L|t = i+ 1]− E[L|t = i]) (3)

where, because K > 0, the quantity e−K is a decimal. Thus, each succeeding growth increment is a
constant fraction of the current growth increment indicating that growth slows as the fish gets older.

� t0, despite its definition above, is a modeling artifact and not a biological parameter (Schnute and
Fournier 1980). The t0 parameter is included in (1) to adjust or “correct” the model for the initial size
of the animal as most of the models do not pass through the origin. This is illustrated in Figure 3.
Beverton (1954)[p. 43] said “It must be remembered that the constant t0 is largely artificial, insofar
as it defines the age at which the organism would be of zero length if it grew throughout life with
the same pattern of growth as in the post-larval stage.” In addition, Beverton and Holt (1957)[p. 34]
stated that “in practice, the constant t0 must be regarded as quite artificial.”

� The estimation and interpretation of t0 is further complicated by the fact that the value of t0 is generally
an extrapolation (Francis 1988) – e.g., Figure 3.

� L∞, K, and t0 are highly related (or correlated). This can be seen in the solution for K above
where K depends on the values of L∞ and t0. For example, with all else held constant, K will be
larger for smaller values of L∞. This dependency among parameters causes problems in model fitting
and interpretation (Ratkowsky 1986). Some of the other VBGM parameterizations (Section 3) have
parameters that are much less correlated.
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Figure 3. Example of the typical parameterization of the VBGM fit to size-at-age Atlantic Croaker data.
The plot on the left is the fitted model expressed over the observed ages and lengths of the data. The plot
on the right is the same fitted model but expressed over a range of ages and lengths that allow illustrating
the meaning of L∞ and t0.
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2.2 Fitting von Bertalanffy Models in R

2.2.1 Starting Values

The VBGM, as well as most other growth models, is a non-linear model that requires non-linear statistical
methods to estimate parameter values. Fitting non-linear models3 is a two-step process of first finding
starting values for the model parameters and, second, calling nls() with the non-linear model and these
starting values. Two general methods for finding starting values for the typical VBGM are described below.

Ford (1933) and Walford (1946) introduced the Ford-Walford plot method for estimating L∞ and K from
mean length-at-age data. They showed that a plot of Lt+1 versus Lt for length data that follows a typical
VBGM is linear with a slope equal to e−K . In addition, the point where the linear relationship between
Lt+1 and Lt intercepts the 1:1 line (45o) is an estimate of L∞ (Figure 4).
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slope = 0.703
intercept = 101.0

Linf = 340.5
K = 0.352

Figure 4. Example of a Ford-Walford plot for the male Atlantic Croaker data. The dashed red line is the 1:1
relationship and the solid blue line is the regression line fit to the observed data. The intersection of these
two lines is marked and represents and estimate of L∞.

Algebraically manipulating the two observations about the Ford-Walford plot shows that the following equa-
tions provide reasonable starting values for L∞ and K (the “tilde” above each parameter will be used to
identify these results as starting values for the non-linear regression),

K̃ = −log(slope)

L̃∞ =
intercept

1− slope

where intercept and slope are obtained from fitting the linear regression of Lt+1 on Lt as in the Ford-Walford
plot.

With a starting value for L∞ and observed values for one age and mean length pair (i.e., (ṫ, L̄ṫ)), the typical
VBGM (i.e., (1)) can be re-arranged to solve for t0 as follows,

t̃0 = ṫ ∗ log

(
L̃∞ − L̄ṫ
L̃∞

)

An alternative method for obtaining t̃0 is to fit a second-degree polynomial to the mean length-at-age data,

3Fitting non-linear models is discussed in detail in Appendix A.
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find the roots for this polynomial (i.e., where the polynomial function crosses the x- or age axis), and choose
the root that is closet to zero4.

The methods described above for generating reasonable starting values are implemented in vbStarts(). The
first argument to vbStarts() is a formula of the form len~age where len and age generically represent the
variables containing the lengths and ages for individual fish. The data= argument must also be set to data
frame where the ages and lengths are found. The vbStarts() function defaults to using the polynomial
regression method to produce a starting value for t0. Starting values for t0 based on the re-arrangement of
the typical VBGM can be obtained by using the meth0="yngAge" argument. Finally, as an option, a graphic
of the VBGM using the default starting values superimposed on the observed data can be constructed by
including plot=TRUE. The results of vbStarts() must be saved to an object for use in subsequent calls to
nls(). For example, the starting values for the typical VBGM applied to the male Atlantic Croaker data
are obtained with

> svTypical <- vbStarts(tl~age,data=crm)

> unlist(svTypical) # unlist used only to save space when viewing the results

Linf K t0

340.5069 0.3517 -1.6732

The selection of starting values for the VBGM can also be obtained with growthModelSim() from the
FSATeach package5. This function produces a plot of length-at-age with the VBGM superimposed. The
superimposed VBGM can be controlled with slider bars tied to the parameters of the VBGM. Thus, the
slider bars can be adjusted until a VBGM is produced that “roughly” fits the observed lengths-at-age. The
parameters of the VBGM when this rough fit is found are then used as the starting values for the non-linear
methods. For this purpose, growthModelSsim() has three arguments very similar, but in a different order,
to what was described for vbStart(). The first argument is a string indicating the VBGM to use, the second
argument is the model formula, and the third, or data=, argument is the data frame in which the observed
ages and lengths can be found. The typical VBGM is used with a first argument of "vbTypical". As an
example, the starting values for the typical parameterization of the VBGM to be fit to the male Atlantic
Croaker length data can be obtained by manipulating the slider bars on the graphic (Figure 5) produced
with

> growthModelSim("vbTypical",tl~age,data=crm)

Following the identification of an approximate fit to the length-at-age data, an object must be created that
contains a list of the identified starting values. The starting values are entered into a list, for example, with

> svTypical <- list(Linf=376,K=0.3,t0=-1.8)

2.2.2 General Fitting of the Models with nls()

Parameters for the non-linear VBGM can be estimated with nls(). The nls() function requires the growth
model expression as the first argument, with the appropriate variable names substituted for the generic
length and age variables, the data frame from which to draw the varabiles in the data= argument, and
the list containing starting parameter values in the start= argument. As always, the model fit should be
assigned to an object for further analysis. Generally, it is somewhat easier to enter the model function and
starting values into objects prior to the nls() call. For example, the typical VBGM model is fit to the male
Atlantic Croaker data with6

4This process will be discussed in more detail in Section 3.3.
5Note that the FSATeach package must be installed as described here and the loaded with library(FSATeach).
6Note that it is good practice to be able to enter the models directly into R. However, vbFuns() is a convenience function

that can be used to easily create the right-hand-side of VBGM parameterizations used in this vignette. For example, the same
typical model could be fit with fitTypical <- nls(tl ~vbFuns("typical"),data=crm,start=svTypical).

6
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> # note that svTypical was created in the previous section

> vbTypical <- tl~Linf*(1-exp(-K*(age-t0)))

> fitTypical <- nls(vbTypical,data=crm,start=svTypical)

A quick visual (Figure 6) of the fitted model is constructed with7

> fitPlot(fitTypical,xlab="Age",ylab="Total Length (mm)",main="")

Summary results of the model fit (e.g., coefficient values, measures of variability, parameter correlations) can
be obtained with overview() from the nlstools package as follows,

> overview(fitTypical)

------

Formula: tl ~ Linf * (1 - exp(-K * (age - t0)))

Parameters:

Estimate Std. Error t value Pr(>|t|)

Linf 366.414 16.754 21.87 <2e-16

K 0.315 0.108 2.92 0.0042

t0 -1.714 1.049 -1.63 0.1049

Residual standard error: 33.4 on 111 degrees of freedom

Number of iterations to convergence: 3

Achieved convergence tolerance: 2.07e-06

------

Residual sum of squares: 124000

------

Asymptotic confidence interval:

2.5% 97.5%

Linf 333.2146 399.6141

K 0.1015 0.5281

t0 -3.7921 0.3637

------

Correlation matrix:

Linf K t0

Linf 1.0000 -0.9506 -0.8706

K -0.9506 1.0000 0.9718

t0 -0.8706 0.9718 1.0000

These results show that point estimates of the parameters are: L̂∞ =366.4, K̂ =0.31, and t̂0 =-1.71. In
addition, as expected, the parameter estimates are very highly correlated.

The results from overview() show confidence intervals for the model parameters based on normal distribu-
tion theory; however, as discussed in Appendix A, confidence intervals for parameters in non-linear models
are best constructed through bootstrap methods. The bootstrap samples are taken by sending the saved
nls() object to nlsBoot() with the niter= argument controlling the number of bootstrap samples to take.
Confidence intervals, with associated plots of the distribution of parameter estimates from the bootstrap

7Note that examples later in this vignette will use curve() rather than fitPlot() to obtain a visual of the model fit. The
curve() method is more general and will allow the building of comparative graphs, whereas fitPlot() is a specific function
and is, thus, limited in what it can display.
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Figure 5. Example of using growthModelSim() to find an approximate fit of the typical VBGM parameter-
ization to the male Atlantic Croaker data.
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Figure 6. Fitted typical VBGM for the male Atlantic Croaker data.
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samples, are constructed by sending the object saved from nlsBoot() to confint() with the plot=TRUE ar-
gument. Thus, confidence intervals for the parameters in the typical VBGM fit to the male Atlantic Croaker
data are obtained with8

> bootTypical <- nlsBoot(fitTypical,niter=200) # niter should be nearer 1000

Warning: The fit did not converge 1 times during bootstrapping

> confint(bootTypical,plot=TRUE)

95% LCI 95% UCI

Linf 344.7057 429.6830

K 0.1346 0.5585

t0 -4.7347 -0.2869
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Figure 7. Histogram of the bootstrap results for the typical VBGM for the male Atlantic Croaker data. The
red horizontal lines represent the 95% bootstrap confidence intervals.

Thus, for example, one is 95% confident that the Brody growth coefficient (K) is between 0.13 and 0.56.
Histograms of the bootstrapped results shows that the distribution of K is approximately normally dis-
tributed whereas the distributions of L∞ and t0 are very much not normally distributed (Figure 7). Thus,
the difference between the asymptotic and bootstrapped confidence intervals are much greater for L∞ and
t0 than for K.

8Bootstrap methods require patience as the algorithm continuously resamples the original data. Furthermore, the bootstrap
methods rely on randomization; thus, the results shown below would likely be different upon a different “run” of the functions.
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The p-value for testing the hypothesis that H0 : K = 0.5 versus HA : K < 0.5 is obtained with

> htest(bootTypical,"K",0.5,"less")

Ho Value p value

0.5 0.07538

Thus, with a p-value (p = 0.0754) slightly larger than a typical α of 0.05, there is not enough evidence to
conclude that K is less than 0.5.

Predicted lengths at a given age are obtained with the predict() function. However, as discussed in
Appendix A, corresponding confidence intervals must be constructed from the bootstrapped results. As an
example, the predicted mean length and corresponding confidence interval for the mean length at age-8 can
be constructed with

> new <- data.frame(age=8)

> predict(fitTypical, new)

[1] 349.2

> ests <- bootTypical$coefboot

> pv <- ests[,"Linf"]*(1-exp(-ests[,"K"]*(8-ests[,"t0"])))

> quantile(pv,c(0.025,0.975))

2.5% 97.5%

340.6 358.2

Thus, the mean length of all age-8 male Atlantic Croakers is between 341 and 358 mm.

One may be interested in creating a fitted line plot with confidence bounds for the mean length-at-age from
the VBGM. One way to create this plot is to first predict the length-at-age for each age in a range of ages
using the parameters from each of the bootstrap samples. One can then plot the 2.5% and 97.5% quantile
length-at-age for each age. This process is illustrated with the following code which resulted in Figure ??.

> ages2plot <- 0:15

> fitPlot(fitTypical,xlab="Age",ylab="Total Length (mm)",xlim=range(ages2plot),main="")

> LCI <- UCI <- numeric(length(ages2plot))

> for (i in 1:length(ages2plot)) {
pv <- ests[,"Linf"]*(1-exp(-ests[,"K"]*(ages2plot[i]-ests[,"t0"])))

LCI[i] <- quantile(pv,0.025)

UCI[i] <- quantile(pv,0.975)

}
> lines(UCI~ages2plot,type="l",col="blue",lwd=2,lty=2)

> lines(LCI~ages2plot,type="l",col="blue",lwd=2,lty=2)

One may also want to add approximate prediction bounds to the fitted line plot. One way to do this is to
add and substract the residual standard error from each bootstrap model (these values are found in the rse

portion of the results saved from the bootstrap sampling – i.e., bootTypical$rse in this example.) to the
predictions constructed from each model as described for the confidence bounds above9. The 2.5% quantile
for when the residual standard error was subtracted is an approximate 95% lower prediction bound and the
97.5% quantile for when the residual standard error was added is an approximately 95% upper prediction
bound. The code for a plot with both the confidence and prediction bounds is constructed with the code
below and is shown in Figure ??.

> ages2plot <- 0:15

> fitPlot(fitTypical,xlab="Age",ylab="Total Length (mm)",xlim=range(ages2plot),main="")

9This assumes that the residuals are homoscedastic or additive. See Section 4.1.
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Figure 8. Fitted line plot for the fit of the typical VBGM with approximate 95% bootstrap confidence
bounds shown as blue dashed lines.

> LCI <- UCI <- LPI <- UPI <- numeric(length(ages2plot))

> for (i in 1:length(ages2plot)) {
pv <- ests[,"Linf"]*(1-exp(-ests[,"K"]*(ages2plot[i]-ests[,"t0"])))

LCI[i] <- quantile(pv,0.025)

UCI[i] <- quantile(pv,0.975)

LPI[i] <- quantile(pv-bootTypical$rse,0.025)

UPI[i] <- quantile(pv+bootTypical$rse,0.975)

}
> lines(UCI~ages2plot,type="l",col="blue",lwd=2,lty=2)

> lines(LCI~ages2plot,type="l",col="blue",lwd=2,lty=2)

> lines(UPI~ages2plot,type="l",col="red",lwd=2,lty=2)

> lines(LPI~ages2plot,type="l",col="red",lwd=2,lty=2)
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Figure 9. Fitted line plot for the fit of the typical VBGM with approximate 95% bootstrap confidence
bounds shown as blue dashed lines and 95% bootstrap prediction bounds shown as red dashed lines.

Finally, submitting the nlsBoot() object to plot() will produce scatterplots for the bootstrapped values
for each pair of parameters (Figure 10). For example,
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> plot(bootTypical)
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Figure 10. Paired scatterplots for the parameters of the bootstrap results for the typical VBGM for the male
Atlantic Croaker data.

These results further illustrate the strong correlation between pairs of the parameters.
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2.2.3 Assumption Checking

A non-linear regression, as it has been described here, requires that the variability about the model is
constant (i.e., homoscedasticity), the errors are normally distributed, the model adequately fits the data,
and there are no influential or outlying points. There are tests to determine if these assumptions have been
violated but these tests can be hyper-sensitive (i.e., tend to identify assumption violations) especially with
large sample sizes. Thus, the adequacy of meeting these assumptions can be better determined by objectively
analyzing two important graphics. The first graphic is a residual plot which plots the model residuals versus
the fitted values (Figure 11-Left). In general, the assumptions of the model are fit if NO pattern is observed
in the residual plot. Curvature in this plot would suggest that the model does not represent the data very
well and a “funneling” from left-to-right would suggest that the variability around the model is not constant
(i.e., heteroscedasticity). The second graphic is a histogram of the residuals (Figure 11-Right). In general,
the assumption of normality is adequately met if this histogram is symmetric without overly long “tails.”

The residual plot is constructed by submitting the saved nls() object to residPlot(). The histogram
is constructed by submitting the saved nls() object to residuals() and then submitting this result to
hist(). These plots for the male Atlantic Crocker data (Figure 11) are constructed with

> residPlot(fitTypical)

> hist(residuals(fitTypical),main="")

250 300 350

−
50

0
50

10
0

Fitted Values

R
es

id
ua

ls

residuals(fitTypical)

F
re

qu
en

cy

−50 0 50 100

0
5

10
15

20
25

30
35

Figure 11. Residual plot (left) and residual histogram (right) from fitting the typical VBGM to the male
Atlantic Croaker data.

The residual plot suggests a slight increase in variability with increasing fitted values. The histogram suggests
a slight right-skewed distribution of residuals. One method for dealing with a non-constant variance is shown
in Section 4.1.

3 Other Parameterizations of the VBGM

3.1 The Models and Their Parameters

A model can often be cast into a different parameterization where the model is functionally the same – i.e.,
predictions are exactly the same – but it has different parameters. Different parameterizations of models
are created for a variety of reasons but two important reasons are that the re-parameterized model (i) has
parameters for which the interpretation meets some need and (ii) has parameters that are less correlated.
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Each parameterization can ultimately be shown to be equivalent via albegra. The VBGM has been cast in
at least five different parameterizations, each of which is discussed in this section.

3.1.1 Original Model Parameterization

The VBGM first proposed by von Bertalanffy (Cailliet et al. 2006) is

E[L|t] = L∞ − (L∞ − L0) e−Kt (4)

where most items are defined as for (1) and L0 is the mean length at time zero (i.e., birth)10. Visualizations
for the parameters are shown in Figure 12. This parameterization of the VBGM, despite being the model
proposed by von Bertalanffy, has been relatively (as compared to the typical VBGM) rarely used in the
literature. However, Cailliet et al. (2006) recommended its use with chondrychthians.
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Figure 12. Example of the “original” parameterization of the VBGM fit to size-at-age Atlantic Croaker data.
The plot on the left is the fitted model expressed over the observed ages and lengths of the data. The plot on
the right is the same fitted model but expressed over a range of ages and lengths that allows for illustrating
the meaning of L∞ and L0.

3.1.2 Galucci and Quinn (1979) Parameterization

Galucci and Quinn II (1979) noted that comparisons of “growth” between two groups should involve both
K and L∞. However, because of the generally high correlation between these two parameters, simultaneous
hypothesis tests of these two parameters are compromised and difficult to interpret. To aid comparison
between two groups, Galucci and Quinn II (1979) introduced a new parameter, ω = KL∞ which, by solving
this quantity for L∞ and substituting into (1), yields yet another reparameterization of the VBGM,

E[L|t] =
ω

K

(
1− e−K(t−t0)

)
(5)

Galucci and Quinn II (1979) state that ω can be thought of as a growth rate because the units are in length-
per-time and, in fact, it is representative of the growth rate near to. Furthermore, they claim that ω is the
appropriate parameter to use when comparing populations because of its statistical robustness.

10Cailliet et al. (2006) notes that L0=L∞(1− ekt0 )
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3.1.3 Mooij et al. (1999) Parameterization

Mooij et al. (1999) applied the same concept as Galucci and Quinn II (1979) to (4) rather than (1) to yield
the following parameterization,

E[L|t] = L∞ − (L∞ − L0)e−
ω

L∞ t (6)

The parameters of this model are interpreted as before with the exception that ω is representative of the
growth rate near L0.

3.1.4 Schnute Parameterization

All previous parameterizations have two major difficulties – (1) highly correlated parameters and (2) some
parameters that are largely extrapolations (the “positions” of L∞, L0, and t0 are rarely represented in the
data). The VBGM parameterizations shown in this, and the next, section are largely based on “expected val-
ues” at known ages and, thus, largely alleviate these difficulties (Ratkowsky 1986). The so-called “Schnute”
parameterization (from Quinn II and Deriso (1999)) of the VBGM is,

E[L|t] = L1 + (L2 − L1)
1− e−K(t−t1)

1− e−K(t2−t1)
(7)

where L1 is the average length at the youngest age, t1, and L2 is the average length at the oldest age, t2, in
the sample.

It is important to note that this parameterization is not more or less parsimonious then any of the previous
parameterizations as it still has three parameters – L1, L2, and K (note that t1 and t2 are constants).
However, it does have two major advantages over the previous parameterizations. First, the parameters in
this parameterization are less correlated than the parameters in other parameterizations (Galucci and Quinn
II (1979) and see Section 3.2) and, thus, more stable. Second, this parameterization is directly comparable to
the general growth model developed by Schnute (1981). The major drawback of this parameterization is that
comparison to results in the literature or from previous studies is difficult, as the typical parameterization
is far more prevalent. Schnute and Fournier (1980) did show, however, that the point estimate of L∞ and
t0 can be obtained from the parameters in the Schnute parameterization as follows,

L∞ =
L2 − L1e

−K(t2−t1)

1− e−K(t2−t1)

t0 = t1 +
1

K
ln

(
L2 − L1

L2 − L1e−K(t2−t1)

) (8)

A common mistake in the interpretation of the Schnute parameterization is to equate L2 and L∞. However,
L2 6= L∞ as L∞ is the average size at the theoretical maximum age and L2 is the average size at the
maximum age in the sample. Thus, L2 ≤ L∞ because the maximum age in the sample is either less than or
equal to the theoretical maximum age (Figure 13).

3.1.5 Francis (1988) Parameterization

Francis (1988) provided yet another parameterization of the VBGM in his paper comparing the fit of VBGMs
to length-at-age data and to tag-recapture data. His basic argument was that the meanings of L∞ and K
depend on which type of data (and corresponding model) is being fit and that this is an undesirable property.
He proposed the following parameterization as a correction to this problem,
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Figure 13. Example of the Schnute parameterization of the VBGM fit to size-at-age Atlantic Croaker data
expressed over a range of ages and lengths that allow illustrating the meaning of L1 and L2. In addition,
the blue lines correspond to L∞ from Figure 3 and L0 from Figure 12 for comparative purposes.

E[L|t] = L1 + (L3 − L1)
1− r2

t−t1
t3−t1

1− r2
(9)

where

r =
L3 − L2

L2 − L1

where L1, L2, and L3 are the mean lengths at ages t1, t2,and t3, respectivly. The t1 and t3 are arbitrary
reference ages (and t2 is half-way between each) but are generally a relatively young (i.e., t1) and old (i.e., t3)
age. Note that r is used to simplify the presentation and is not a new parameter. The resultant parameters
from this model are effectively the predicted mean lengths-at-age for the three chosen ages (Figure 14).
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Figure 14. Example of the Francis parameterization of the VBGM fit to size-at-age Atlantic Croaker data
expressed over a range of ages and lengths that allow illustrating the meaning of L1, L2, and L3. Note that
the arbitrary ages chosen were t1=2 and t3=9.
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Francis (1988) showed that point estimates of the typical parameters could be derived from these modified
parameters as follows,

L∞ = L1 +
L3 − L1

1− r2

K =
−2log(r)

t3 − t1

t0 = t1 +
1

K
log

(
L∞ − L1

L∞

) (10)

3.2 Parameterization Comparisons

As noted previously, the different parameterizations of the VBGM are the same model with different pa-
rameters (Figure 15). Estimates of parameters that appear in more than one of the parameterizations will
be the same among the parameterizations (Table 2). The parameterizations based on expected values (i.e.,
Schnute and Francis) will generally require fewer iterations to converge when fitting and will result in lower
correlations among parameter estimates (Table 2).

Table 2. Parameter estimates and model results from fitting different parameterizations of the VBGM to
the male Atlantic Croaker data. Note that L1, L2, and L3 are not comparable between parmaterizations;
L1, L2, and L3 correspond to ages 2, 5.5, and 9 in the Francis parameterization; “iters” is the number of
iterations to convergence; and rmax and rmean are the maximum and average absolute value of correlation
coefficients among the three parameters.

Models L0 L∞ K t0 ω L1 L2 L3 SE iters rmax rmean
Typical - 366 0.31 -1.71 - - - - 33 4 0.97 0.93
Original 153 366 0.31 - - - - - 33 4 0.95 0.89
Galucci Quinn - - 0.31 -1.71 115.3 - - - 33 4 1.00 0.98
Mooij 153 366 - - 115.3 - - - 33 4 0.93 0.89
Schnute - - 0.31 - - 210 357 - 33 4 0.83 0.71
Francis - - - - - 253 329 354 33 4 0.08 0.05
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Figure 15. Fits of the typical (blue), Schnute (red), and Francis (green) parameterizations of the VBGM to
size-at-age Atlantic Croaker data (auto-generated starting values were used for all parameterizations). Note
that the results of all fits are identical and, thus, the fitted lines are directly on top of each other. Different
colors and different line widths were used to illustrate this point but may not be readily apparent on the
screen or printed page.
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3.3 Fitting Alternative VBGMs in R

Methods for finding starting values for L∞, K, and t0 were discussed in Section 2.2.1. Those methods still
work for other VBGM parameterizations using these parameters. A starting value for the ω parameter is
simply the product of L̃∞ and K̃. A starting value for L0 can be obtained by algebraically solving (4) for
L0, i.e.,

L̃0 = L̃∞ +
L̄ṫ − L̃∞
eK̃ṫ

or finding the y-intercept of the second-degree polynomial fit to the mean length-at-age data (Figure 16).
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Figure 16. Illustrations for use of the polynomial (solid red) and the linear interpolation (solid blue) functions
to estimate starting values. The vertical line in the left plot shows how L0 is estimated and the horizontal line
shows how t0 is estimated with the polynomial function. The red vertical line in the right plot shows how the
starting value for L2 at t2=5.5 in the Francis parameterization is estimated using the polynomial function and
the blue segment shows the difference in estimating L2 between the polynomial and the interpolating function
(i.e., the vertical red plus the vertical blue line illustrate the estimate using the interpolating function).

Starting values for the L1, L2, and L3 parameters of the Schnute and Francis models can be obtained with
the means lengths at the t1, t2, and t3 ages. However, especially in the Schnute method where t1 and t2 are
the mean lengths at the minimum and maximum ages, respectively, these values may be problematic due
to low sample sizes. An alternative to using the sample means is to predict mean lengths from the fits of
a second-degree-polynomial to the mean length-at-age data (Figure 16). The polynomial function is useful
in that it “averages” across all ages regardless of sample size. The negative side of the polynomial function
is that its shape may be erratic at the ends – i.e., near the minimum and maximum age. Another problem
occurs in the Francis method if the “middle age” (i.e., t2) is a fractional age and not specifically represented
in the data. This problem can be alleviated by linearly interpolating the mean length at the fractional age
from the mean lengths at the two closest ages or by predicting the mean length at the fractional age from
the polynomial regression (Figure 16).

The methods described above for generating reasonable starting values are also implemented in vbStarts().
The first and second arguments to this function are exactly as described in Section 2.2.1. However, a third, or
type=, argument is required and is a string indicating which paramterization to use – choices are "original",
"typical" (the default), "GalucciQuinn", "Mooij", "Schnute", and "Francis". If the Francis method is
used then a numeric vector of the three ages corresponding to the three parameters must be entered into the
tFrancis= argument. The default settings are to use the polynomial regression method to produce starting
values for L0. Starting values for L0 based on the re-arrangement of the original parameterization can be
obtained by using the meth0="yngAge" argument. The means method is the default method for producing
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starting values for L1, L2, and L3. The polynomial function can be used to estimate these parameters by
using the methEV="poly" argument. For example, the starting values for the original, Galucci and Quinn,
and Francis parameterizations of the VBGM for the male Atlantic Croaker data are obtained with

> svOriginal <- vbStarts(tl~age,data=crm,type="original")

> unlist(svOriginal) # unlist used only to save space when viewing the results

Linf L0 K

340.5069 201.9713 0.3517

> svGQ <- vbStarts(tl~age,data=crm,type="GalucciQuinn")

> unlist(svGQ)

omega K t0

119.7647 0.3517 -1.6732

> svFrancis <- vbStarts(tl~age,data=crm,type="Francis",tFrancis=c(2,9))

> unlist(svFrancis)

L1 L2 L3

262.1 329.0 347.0

Starting values for these parameterizations can also be obtained with growthModelSim() as described in
Section 2.2.1, with the exception that the first argument must be one of "vbOriginal", "vbGalucciQuinn",
"vbMooij", and "vbSchnute"11.

3.3.1 Example Fitting with Francis Parameterization

The fitting of the Francis (1988) VBGM is similar to the fitting of the typical VBGM but has a different
“feel.” First, one should determine the ages present for all fish in the sample and use this to determine the
ages to use for t1 and t3 in (9). A table of age frequencies is obtained with

> table(crm$age)

1 2 3 4 5 6 7 8 9 10

1 17 9 3 20 14 26 14 9 1

From this, one can see that ages range between 1 and 10 and reasonable choices may be t1=2 and t3=912

such that t2= 2+9
2 =5.5. It is easiest to enter the two endpoint values into a vector with

> ages <- c(2,9)

Reasonable starting values are then obtained as shown previously and stored in svFrancis.

This parameterization of the model is a bit cumbersome to write so it is easier to use the vbFuns() conve-
nience function. If you did enter the model directly into R it would look like this

> vbFrancis <- tl~L1 + (L3-L1)*(1-((L3-L2)/(L2-L1))^

(2*(age-ts[1])/(ts[3]-ts[1])))/(1-((L3-L2)/(L2-L1))^2)

However, when using vbFuns(), the Francis model is declared with

> vbFrancis <- vbFuns("Francis")

11There is not a method for the Francis (1988) parameterization in growthModelSim().
12I chose not to use the youngest and oldest ages because of the very small sample sizes at these ages.
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This model is then fit to the male Atlantic Croaker data, and the results are seen, with

> fitFrancis <- nls(tl~vbFrancis(age,L1,L2,L3,t1=ages[1],t3=ages[2]),

data=crm,start=svFrancis)

> overview(fitFrancis)

------

Formula: tl ~ vbFrancis(age, L1, L2, L3, t1 = ages[1], t3 = ages[2])

Parameters:

Estimate Std. Error t value Pr(>|t|)

L1 252.60 7.01 36.1 <2e-16

L2 328.60 4.38 75.1 <2e-16

L3 353.85 6.57 53.8 <2e-16

Residual standard error: 33.4 on 111 degrees of freedom

Number of iterations to convergence: 4

Achieved convergence tolerance: 1.35e-06

------

Residual sum of squares: 124000

------

Asymptotic confidence interval:

2.5% 97.5%

L1 238.7 266.5

L2 319.9 337.3

L3 340.8 366.9

------

Correlation matrix:

L1 L2 L3

L1 1.00000 -0.02607 0.03304

L2 -0.02607 1.00000 -0.08039

L3 0.03304 -0.08039 1.00000

Note the lower correlations among parameters in this parameterization of the model.

The bootstrapped results, obtained with the code below, show fairly symmetric distributions for each param-
eter (Figure 17) and very weak correlations among each pair of parameters (Figure 18). The fairly symmetric
distributions lead to very similar asymptotic and bootstrap confidence intervals.

> bootFrancis <- nlsBoot(fitFrancis,niter=200) # B=200 is too low, use approx B=1000

> confint(bootFrancis,plot=TRUE)

95% LCI 95% UCI

L1 238.4 263.3

L2 320.4 337.5

L3 344.6 367.6

> plot(bootFrancis)

The predicted values with bootstrapped confidence intervals are constructed exactly as shown with the
typical VBGM except that it is easier to construct the predictions for each bootstrap sample in parts due
to the more complicated coding required to implement the Francis parameterization. The predicted length,
with associated bootstrapped confidence interval, for a fish of age-8 is constructed with
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Figure 17. Histogram of the bootstrap results for the Francis VBGM for the male Atlantic Croaker data.
Red horizontal lines represent the 95% bootstrap confidence intervals.
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Figure 18. Paired scatterplots for the parameters of the bootstrap results for the Francis VBGM for the
male Atlantic Croaker data.

22



> new <- data.frame(age=8)

> predict(fitFrancis, new)

[1] 349.2

> ests <- bootFrancis$coefboot

> L1 <- ests[,"L1"]

> L2 <- ests[,"L2"]

> L3 <- ests[,"L3"]

> r <- (L3-L2)/(L2-L1)

> pv <- L1 + (L3-L1)*(1-r^(2*(8-ages[1])/(ages[2]-ages[1])))/(1-r^2)

> quantile(pv,c(0.025,0.975))

2.5% 97.5%

342.0 358.3

Thus, the mean length of all age-8 male Atlantic Croakers is between 342 and 358 mm, which is very similar
to what was observed when the typical VBGM was used.

4 Other Considerations When Fitting VBGMs

4.1 Multiplicative or Lognormal Error Structures

The model fitting discussed in the previous sections implicitly assumes that the errors around the VBGM
are normally distributed and additive. If the errors are denoted by ε then, for example, the typical parame-
terization of the VBGM (i.e., (1)) would be modified to,

Li = L∞

(
1− e−K(ti−t0)

)
+ εi (11)

where i is a subscript index for individual fish and ε~N(0, σ). This model tacitly assumes that the variability
in length is constant at all ages. In other words, for instance, the variability in the length of age-1 fish is
the same as the variability in the length of age-10 fish. In many instances this assumption will not be true
as variability in length tends to increase with increasing length and, thus, age. Smaller fish tend to be more
alike then larger fish.

A multiplicative error structure essentially assumes that variability changes, usually increases, in proportion
to the expected value of the response variable. Under the assumption of multiplicative errors, the typical
parameterization of the VBGM is modified to,

Li = L∞

(
1− e−K(ti−t0)

)
eεi (12)

Taking logarithms of (12) results in

log(Li) = log
(
L∞

(
1− e−K(ti−t0)

))
+ εi (13)

which shows that the error structure is additive on the log scale. Thus, typical non-linear estimation tech-
niques can be used with the data on the log scale to estimate the model parameters.

A comparison of means and standard deviations of length-at-age often suggests whether the variability
increases with increasing length or not. A simple way to construct these summaries is to use Summarize()

from the FSA package as follows,
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> Summarize(tl~age,data=crm,numdigs=1)

Warning: To continue, variable(s) on RHS of formula were converted to a factor.

age n mean sd min Q1 median Q3 max percZero

1 1 1 248.0 NA 248 248 248 248 248 0

2 2 17 248.4 18.47 210 240 245 258 292 0

3 3 9 281.8 36.02 252 255 258 313 346 0

4 4 3 298.3 30.14 270 282 295 312 330 0

5 5 20 328.2 21.89 279 317 328 340 364 0

6 6 14 345.9 41.44 301 325 334 344 435 0

7 7 26 332.5 23.53 270 319 334 344 381 0

8 8 14 344.3 40.76 290 314 336 366 430 0

9 9 9 370.8 59.47 302 325 363 427 462 0

10 10 1 327.0 NA 327 327 327 327 327 0

While a strong trend between the standard deviations and the means is not evident, there is some suggestion
for an increasing standard deviation with an increasing mean length. This was also evident in the residual
plots shown in the previous sections.

The typical parameterization of the VBGM with a multiplicative error structure is fit with,

> crm$logTL <- log(crm$tl) # add log TL variable to crm

> svTypicalM <- vbStarts(tl~age,data=crm,type="typical") # get starting values as usual

> vbTypical <- vbFuns(type="typical") # get RHS of typical function

> fitTypicalM <- nls(logTL~log(vbTypical(age,Linf,K,t0)),data=crm,start=svTypicalM)

> overview(fitTypicalM)

------

Formula: logTL ~ log(vbTypical(age, Linf, K, t0))

Parameters:

Estimate Std. Error t value Pr(>|t|)

Linf 368.0112 17.9308 20.52 <2e-16

K 0.2904 0.0943 3.08 0.0026

t0 -1.9902 0.9958 -2.00 0.0481

Residual standard error: 0.099 on 111 degrees of freedom

Number of iterations to convergence: 6

Achieved convergence tolerance: 8.91e-06

------

Residual sum of squares: 1.09

------

Asymptotic confidence interval:

2.5% 97.5%

Linf 332.4801 403.54235

K 0.1035 0.47718

t0 -3.9633 -0.01702

------

Correlation matrix:

Linf K t0

Linf 1.0000 -0.9561 -0.8851

K -0.9561 1.0000 0.9762

24



t0 -0.8851 0.9762 1.0000

The residual plots, constructed with the code below, suggest that the results are slightly less heteroscedastic
and slightly less skewed with the multiplicative rather than additive error structure (Figure 19).

> residPlot(fitTypicalM)

> hist(residuals(fitTypicalM),main="")
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Figure 19. Residual plot (left) and residual histogram (right) from fitting the typical VBGM with multi-
plicative errors to the male Atlantic Croaker data.

A plot comparing the model fit with additive and multiplicative error structures (constructed with the code
below) shows that the different error structures did not result in a major difference in this case. This is likely
due to the fact that the residual error was not highly heteroscedastic.

> plot(tl~age,data=crm,pch=19)

> curve(vbTypical(x,Linf=coef(fitTypical)),from=1,to=10,col="red",lwd=2,add=TRUE)

> curve(vbTypical(x,Linf=coef(fitTypicalM)),from=1,to=10,col="blue",lwd=2,add=TRUE)

> legend("topleft",legend=c("Additive","Multiplicative"),col=c("red","blue"),lwd=2,

lty=1,cex=0.75)

4.2 Fitting Mean Length-At-Age Data

As mentioned in Section 1, historical methods for fitting the VBGM used mean length-at-age data. In this
section, weighted non-linear methods will be used to show how the point estimates, but not the variance
estimates, of the parameters can be found from the mean length-at-age data.

Mean length-at-age data can be constructed for the male Atlantic Croaker data with

> crm1 <- Summarize(tl~age,data=crm)

Warning: To continue, variable(s) on RHS of formula were converted to a factor.

> str(crm1)

'data.frame': 10 obs. of 10 variables:

$ age : Factor w/ 10 levels "1","10","2","3",..: 1 3 4 5 6 7 8 9 10 2
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Figure 20. Fitted line plot for the typical VBGM comparing the fits with additive and multiplicative errors
to the male Atlantic Croaker data.

$ n : num 1 17 9 3 20 14 26 14 9 1

$ mean : num 248 248 282 298 328 ...

$ sd : num NA 18.5 36 30.1 21.9 ...

$ min : num 248 210 252 270 279 301 270 290 302 327

$ Q1 : num 248 240 255 282 317 325 319 314 325 327

$ median : num 248 245 258 295 328 334 334 336 363 327

$ Q3 : num 248 258 313 312 340 344 344 366 427 327

$ max : num 248 292 346 330 364 435 381 430 462 327

$ percZero: num 0 0 0 0 0 0 0 0 0 0

However, note that age is a factor variable. The age factor variable can be converted to a numeric variable
with fact2num() as follows

> crm1$age <- fact2num(crm1$age)

> str(crm1)

'data.frame': 10 obs. of 10 variables:

$ age : num 1 2 3 4 5 6 7 8 9 10

$ n : num 1 17 9 3 20 14 26 14 9 1

$ mean : num 248 248 282 298 328 ...

$ sd : num NA 18.5 36 30.1 21.9 ...

$ min : num 248 210 252 270 279 301 270 290 302 327

$ Q1 : num 248 240 255 282 317 325 319 314 325 327

$ median : num 248 245 258 295 328 334 334 336 363 327

$ Q3 : num 248 258 313 312 340 344 344 366 427 327

$ max : num 248 292 346 330 364 435 381 430 462 327

$ percZero: num 0 0 0 0 0 0 0 0 0 0

> crm1

age n mean sd min Q1 median Q3 max percZero

1 1 1 248.0 NA 248 248 248 248 248 0

2 2 17 248.4 18.47 210 240 245 258 292 0

3 3 9 281.8 36.02 252 255 258 313 346 0

4 4 3 298.3 30.14 270 282 295 312 330 0

5 5 20 328.2 21.89 279 317 328 340 364 0

6 6 14 345.9 41.44 301 325 334 344 435 0
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7 7 26 332.5 23.53 270 319 334 344 381 0

8 8 14 344.3 40.76 290 314 336 366 430 0

9 9 9 370.8 59.47 302 325 363 427 462 0

10 10 1 327.0 NA 327 327 327 327 327 0

A function that performs the “weighting” must then be declared. This function uses a fish’s age and the
VBGM to predict a mean length, computes the difference between the observed mean length and this
prediction, and multiplies this difference by the square root of the number of fish at that age. The square
root of the number of fish at each age is the “weight” that effectively expands the single mean to represent
the number of fish that went into the calculation of that mean. This weighting function is declared with

> wTypical <- function(meanlen,age,n,Linf,K,t0) {
pred <- Linf*(1-exp(-K*(age-t0)))

(meanlen-pred)*sqrt(n)

}

The weighted non-linear model is then fit by first finding starting values and then calling nls() with a formula
that has no left-hand-side and the weighting function as the right-hand-side. This fitting is completed with

> svTypicalM <- vbStarts(mean~age,data=crm1)

> wFitTypical <- nls(~wTypical(mean,age,n,Linf,K,t0),data=crm1,start=svTypicalM)

The summary of the fit is obtained as usual with

> overview(wFitTypical)

------

Formula: 0 ~ wTypical(mean, age, n, Linf, K, t0)

Parameters:

Estimate Std. Error t value Pr(>|t|)

Linf 366.415 20.022 18.30 3.6e-07

K 0.315 0.129 2.45 0.044

t0 -1.714 1.253 -1.37 0.214

Residual standard error: 39.9 on 7 degrees of freedom

Number of iterations to convergence: 5

Achieved convergence tolerance: 9.1e-07

------

Residual sum of squares: 11200

------

Asymptotic confidence interval:

2.5% 97.5%

Linf 319.06915 413.760

K 0.01061 0.619

t0 -4.67746 1.249

------

Correlation matrix:

Linf K t0
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Linf 1.0000 -0.9506 -0.8706

K -0.9506 1.0000 0.9718

t0 -0.8706 0.9718 1.0000

From this it is seen that the point estimates of the parameters are the same as when the model was fit to
the individual fish length-at-age data (see output from overview(fitTypical) previously). However, the
standard errors, residual variance, and confidence intervals are all different. Thus, it is probably prudent to
focus only on the parameter estimates with this method, extracted solely with

> coef(wFitTypical)

Linf K t0

366.4147 0.3148 -1.7142

4.3 Common Model Fitting Problems

The primary problem when fitting a VBGM using nls() is the dreaded “failed to converge” message.
Sometimes the message can be forced to go away, at the expense of increased computing time, by increasing
the maximum number of iterations that nls() will use before it quits13. However, the problem more often
rests with difficulties in the model or difficulties with the data.

Some of the difficulties with the model have been discussed previously. The primary difficulty is that most
of the VBGM parameterizations have parameters that are very highly correlated. Parameters that are very
highly correlated suggest that there is very little practical difference, in terms of minimizing an error sum-of-
squares, between many different combinations of the three parameters. One can think of highly correlated
parameters that result in similar error sum-of-squares as a hyper-plane (i.e., think of a “bowl”; see Figure
26) that is very “flat” near the global minimum. The gradient to the global minimum is very shallow and
the algorithms move either very slowly or erratically towards that global minimum. The global minimum is,
thus, very difficult to find. If appropriate to one’s needs, the user should use the VBGM parameterization
that has the least correlated parameters (i.e., the Francis parameterization).

Model convergence can also be aided by simplifying the parameter space over which the error sum-of-squares
is being minimized. In other words, there is generally a higher likelihood of convergence if the model has
fewer parameters. All parameterizations of the VBGM consist of three parameters, so choice of model does
not directly help in this regard. However, the L0 parameter in the original VBGM parameterization has a
very precise biological interpretation – i.e., the average length at age-0 – and has, in some instances (Cailliet
et al. (2006) provides a list of recent authors from the chondrychthian literature), been set equal to the
mean length at hatching determined from other means. The general commands for fitting such a model to
estimate the remaining two parameters would be something like

> vbOriginal0 <- vbFuns("Original")

> # note no starting value for L0

> svOriginal0 <- list(Linf=300,K=0.3)

> # note constant value (e.g., 5) in L0 position of vb function

> fitOriginal0 <- nls(tl~vbOriginal0(age,Linf,5,K),start=svOriginal0)

Cailliet et al. (2006) does note that fixing the L0 value to a constant can greatly impact the VBGM parameter
estimates and suggests that if L0 is fixed that care should be taken to produce the best estimate of L0 as
possible.

A common data difficulty is the lack of age-length data from relatively young fish. Without young fish in the
sample, the length-at-age plot may be primarily linear which makes it very difficult to accurately represent
the curvature in the “early” part of the VBGM. This problem is illustrated in Figure 21. The model did
converge in this example but the much “flatter” VBGM resulted in a dramatically different estimate of K.

13The maximum number of iterations can be increased by using nls.control(maxiter=10000) before the nls() call
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Data from younger fish is the primary solution to this problem, though fixing the L0 value at a constant as
described above has also been used to “anchor” the left-side of the VBGM.
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Figure 21. Hypothetical length-at-age data with the fits of the typical VBGM to
fish of all ages and only those fish age-6 and older. Data was simulated using
vbGenData(100,300,0.3,-1,minAge=1,maxAge=20,dataType="atCapture").

The other data problem occurs at the other end of the distribution – not enough old fish to accurately
characterize the asymptote. This problem can be a result of sampling a population where the mortality rate
is high enough that fish do not live long enough to approach the asymptote (Francis 1988), from difficulties
capturing large old fish (i.e., a size-selective gear is used), or from under-aging older fish (i.e., the larger, older
fish would appear younger). In the example in Figure 22, a hypothetical sample of slow-growing long-lived
(to age-40) fish was created and it was then assumed that only fish age-15 and younger or fish age-20 and
younger were actually sampled. When only age-15 and younger fish were sampled, the length-at-age data
looked approximately linear resulting in a very large estimate of L∞ and, because of the strong correlation
with L∞, a very low estimate of K. However, when fish age-20 and younger were used, the length-at-age
data contained enough of the “curve” in the VBGM to provide parameter estimates similar to when all
known fish were used.
The discussion of this section assumes that the VBGM was the proper model to represent fish growth. Other
models of fish growth (e.g., Logistic, Gompertz, Richards, Schnute) offer different growth trajectories (e.g.,
sigmoidal) or more flexibility in identifying a growth trajectory. While the VBGM may be the most prevalent
growth model in the literature (Haddon 2001) it is not always the “best” model and some have even argued
that it is an innappropriate model (Knight 1968; Roff 1980). For example, Knight (1968) showed that the
model fit to data from a left- and right-truncated age structure produced incredibly unrealistic parameter
estimates. As another example, Katsanevakis and Maravelias (2008) found that the VBGM, when compared
to three other possible models, was the “best” model in only about one-third of the 133 data sets examined.
In addition, the Gompertz model is widely used in place of the VBGM when modeling growth during larval
or early life stages (Ricker 1979).
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vbGenData(200,300,0.12,-1,minAge=1,maxAge=40,dataType="atCapture").

30



5 VBGM Comparison Between Groups

A fairly common analysis in fisheries research is to compare parameters from a growth model between two
groups or populations. The statistical methods for making these comparisons requires the use of indicator
variables. In this section, the methods for comparing parameters among two groups will be illustrated with
the typical VBGM for fish length. This illustration will focus on the comparison of male and female Atlantic
Croakers and will, thus, retrun to the full data set in Croaker2. A re-examination of the structure of the
Croaker2 data frame shows that tl is the “length”, age is the “age”, and sex is the “group” factor variable.

> str(Croaker2)

'data.frame': 318 obs. of 3 variables:

$ age: int 1 1 1 2 2 2 2 2 2 2 ...

$ tl : int 243 247 248 330 320 285 280 265 260 248 ...

$ sex: Factor w/ 2 levels "F","M": 1 1 2 1 1 1 1 1 1 1 ...

5.1 Models to be Considered

In order to consider different groups, parameters specific to one of the groups must be defined by adding
a subscript or, as we will do here, a number in brackets for the group to the parameter. For example,
L∞[1] is the asymptotic mean length for individuals in group 1 and K[2] is the Brody growth coefficient for
individuals in group 2. In some models below, parameters without the bracketed number are the same or
are common to both groups. For example, L∞ is the asymptotic mean length for all individuals, regardless
of group.

The situation where each parameter differs between the two groups is written as follows (following the
notation used by Ritz and Streibig (2008)),

L(t) =

{
L∞[1]

(
1− e−K[1](t−t0[1])

)
if in “group 1”

L∞[2]
(
1− e−K[2](t−t0[2])

)
if in “group 2”

(14)

However, (14) can be written more succinctly as follows,

L(t) = L∞[group]
(

1− e−K[group](t−t0[group])
)

(15)

where group is 1 if in “group 1” and 2 if in “group 2.”

With the definitions above, several models can be considered that will ultimately help determine which
parameters are different among groups. These models are defined as follows,

� General Model: Separate parameter estimates for individuals in each group.

L(t) = L∞[group]
(

1− e−K[group](t−t0[group])
)

� One parameter in common between groups.

– Common L∞ Model.

L(t) = L∞

(
1− e−K[group](t−t0[group])

)
– Common K model.

L(t) = L∞[group]
(

1− e−K(t−t0[group])
)

31



– Common t0 Model.

L(t) = L∞[group]
(

1− e−K[group](t−t0)
)

� Two parameters in common between groups.

– Common L∞ and K Model.

L(t) = L∞

(
1− e−K(t−t0[group])

)
– Common L∞ and t0 Model.

L(t) = L∞

(
1− e−K[group](t−t0)

)
– Common K and t0 Model.

L(t) = L∞[group]
(

1− e−K(t−t0)
)

� Common Model: Same parameter estimates for both groups. This is the typical parameterization of
the VBGM.

L(t) = L∞

(
1− e−K(t−t0)

)
Each “one parameter in common” model is a subset of the General Model, each “two parameters in
common” model is a subset of two of the “one parameter in common” models, and the Common Model is
a subset of each “two parameters in common” model. Thus, determining which is the best model is a matter
of fitting each model and interpreting several anova() results or one AIC() result.

5.2 Fitting The Models

5.2.1 Fitting the General Model

The analysis of the multiple non-linear models begins by fitting and checking the assumptions for the Gen-
eral Model. If the assumptions are met with this model, then they should be met for all other subset
models. Thus, assumption checking only needs to take place on this most complex General Model.

The General Model requires starting values for six parameters. However, the starting values for the
common parameters in the Common Model can generally be used for both groups in the General Model.
Starting values for the Common Model are found with

> ( svCom <- vbStarts(tl~age,data=Croaker2) )

$Linf

[1] 434.7

$K

[1] 0.1837

$t0

[1] -1.635

and replicated to serve are starting values for the General Model with

> ( svGen <- lapply(svCom,rep,2) )
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$Linf

[1] 434.7 434.7

$K

[1] 0.1837 0.1837

$t0

[1] -1.635 -1.635

The general model is then declared and fit with

> vbGen <- tl~Linf[sex]*(1-exp(-K[sex]*(age-t0[sex])))

> fitGen <- nls(vbGen,data=Croaker2,start=svGen)

Assumption diagnostics are computed with

> residPlot(fitGen)

> hist(residuals(fitGen),main="")

250 300 350 400

−
10

0
−

50
0

50
10

0

Fitted Values

R
es

id
ua

ls

residuals(fitGen)

F
re

qu
en

cy

−100 −50 0 50 100

0
10

20
30

40
50

60

Figure 23. Residual plot (left) and residual histogram (right) from fitting the most general VBGM to the
combined male and female Atlantic Croaker data.

The model appears to fit the data appropriately, with slight heteroscedasticity, but approximately normal
residuals (Figure 23). Overall, the assumptions are adequately met with this model.

5.2.2 Finding the Best Subset Model

If the assumptions are met for the General Model then each subset model can be fit to the data with
the results from each model saved in an appropriately named object. The subset models with corresponding
starting values are declared with14

14Make sure to note which parameters are separate and which are common between groups and how those appear in the
model and starting values list.
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> vb1KT <- tl~Linf*(1-exp(-K[sex]*(age-t0[sex])))

> sv1KT <- mapply(rep,svCom,c(1,2,2))

> vb1LT <- tl~Linf[sex]*(1-exp(-K*(age-t0[sex])))

> sv1LT <- mapply(rep,svCom,c(2,1,2))

> vb1LK <- tl~Linf[sex]*(1-exp(-K[sex]*(age-t0)))

> sv1LK <- mapply(rep,svCom,c(2,2,1))

> vb2T <- tl~Linf*(1-exp(-K*(age-t0[sex])))

> sv2T <- mapply(rep,svCom,c(1,1,2))

> vb2K <- tl~Linf*(1-exp(-K[sex]*(age-t0)))

> sv2K <- mapply(rep,svCom,c(1,2,1))

> vb2L <- tl~Linf[sex]*(1-exp(-K*(age-t0)))

> sv2L <- mapply(rep,svCom,c(2,1,1))

> vbCom <- tl~Linf*(1-exp(-K*(age-t0)))

The starting values for the Common K and Common K and t0 models are shown below to illustrate the
above declarations15,

> unlist(sv1LT)

Linf1 Linf2 K t01 t02

434.6970 434.6970 0.1837 -1.6351 -1.6351

> unlist(sv2L)

Linf1 Linf2 K t0

434.6970 434.6970 0.1837 -1.6351

All subset models are then fit to the Atlantic Croaker data with

> fit1KT <- nls(vb1KT,data=Croaker2,start=sv1KT)

> fit1LT <- nls(vb1LT,data=Croaker2,start=sv1LT)

> fit1LK <- nls(vb1LK,data=Croaker2,start=sv1LK)

> fit2T <- nls(vb2T,data=Croaker2,start=sv2T)

> fit2K <- nls(vb2K,data=Croaker2,start=sv2K)

> fit2L <- nls(vb2L,data=Croaker2,start=sv2L)

> fitCom <- nls(vbCom,data=Croaker2,start=svCom)

The model fits are then compared in a hierarchical manner. In other words, each “one parameter in common”
model is compared to the General Model. Any “one parameter in common” model that is not statistically
different from the General Model is considered “better” then the General Model because it is more
parsimonious. If two “one parameter in common” models are better than the General Model, then the
one with the smallest RSS is chosen as the “best” “one parameter in common” model. Then, each “two
parameters in common” model is compared to the “best” “one parameter in common” model with the same
rationale. Finally, if needed, the “best” “two parameters in common” model is compared to the Common
Model. This process stops when a more complex model is significantly different then every simpler subset
model. Alternatively, the model with the lowest AIC is the “best” model. These methods are illustrated
below.

Each of the “one parameter in common” models is compared to the General Model with

> anova(fit1KT,fitGen)

Analysis of Variance Table

Model 1: tl ~ Linf * (1 - exp(-K[sex] * (age - t0[sex])))

Model 2: tl ~ Linf[sex] * (1 - exp(-K[sex] * (age - t0[sex])))

15Note that unlist() is used here simply to save space.
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Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 313 546067

2 312 541854 1 4213 2.43 0.12

> anova(fit1LT,fitGen)

Analysis of Variance Table

Model 1: tl ~ Linf[sex] * (1 - exp(-K * (age - t0[sex])))

Model 2: tl ~ Linf[sex] * (1 - exp(-K[sex] * (age - t0[sex])))

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 313 542566

2 312 541854 1 712 0.41 0.52

> anova(fit1LK,fitGen)

Analysis of Variance Table

Model 1: tl ~ Linf[sex] * (1 - exp(-K[sex] * (age - t0)))

Model 2: tl ~ Linf[sex] * (1 - exp(-K[sex] * (age - t0[sex])))

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 313 542055

2 312 541854 1 200 0.12 0.73

These results indicate that each “one parameter in common” models fits the data as well as the more complex
General Model. Thus, because each “one parameter in common” model is simpler then the General
Model, the General Model will be removed from consideration as the “best model.” Thus, at this point,
it is known that separate values for all three parameters are not needed for the two groups.

Of the “one parameter in common” models, the model with t0 in common is the “best” model because it
has the lowest RSS (=542055). Thus, the two “two parameters in common” models that have t0 in common
will be compared to this model with

> anova(fit2L,fit1LK)

Analysis of Variance Table

Model 1: tl ~ Linf[sex] * (1 - exp(-K * (age - t0)))

Model 2: tl ~ Linf[sex] * (1 - exp(-K[sex] * (age - t0)))

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 314 545239

2 313 542055 1 3184 1.84 0.18

> anova(fit2K,fit1LK)

Analysis of Variance Table

Model 1: tl ~ Linf * (1 - exp(-K[sex] * (age - t0)))

Model 2: tl ~ Linf[sex] * (1 - exp(-K[sex] * (age - t0)))

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 314 557513

2 313 542055 1 15458 8.93 0.003

The first result suggests that the model with K in common fits the data as well as the model without K in
common. The second result indicates that the model withOUT L∞ in common fits better than the model
with L∞ in common. Thus, the separate L∞ parameters should “stay” in the model at this point, but a
common K parameter can be used.

Finally, the model with K and t0 in common should be compared to the common model to clarify that
L∞ differs between the groups. This comparison is done with
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> anova(fitCom,fit2L)

Analysis of Variance Table

Model 1: tl ~ Linf * (1 - exp(-K * (age - t0)))

Model 2: tl ~ Linf[sex] * (1 - exp(-K * (age - t0)))

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 315 647329

2 314 545239 1 102090 58.8 2.2e-13

This result shows very strong evidence that the Common Model does NOT fit the data better then the
model with separate L∞ values. Thus, the model with common K and t0 parameters, but separate L∞
parameters, is the model that best fits the data. We conclude that L∞, but not K or t0, differs between
male and female Atlantic Croakers.

Similar results are obtained by computing the AIC for each model with

> AIC(fitGen,fit1KT,fit1LT,fit1LK,fit2T,fit2K,fit2L,fitCom)

df AIC

fitGen 7 3283

fit1KT 6 3283

fit1LT 6 3281

fit1LK 6 3281

fit2T 5 3295

fit2K 5 3288

fit2L 5 3281

fitCom 4 3333

Summary results of the model fit (e.g., coefficient values, measures of variability, parameter correlations) are
obtained with

> overview(fit2L)

------

Formula: tl ~ Linf[sex] * (1 - exp(-K * (age - t0)))

Parameters:

Estimate Std. Error t value Pr(>|t|)

Linf1 433.1325 19.0672 22.72 < 2e-16

Linf2 388.1380 17.4493 22.24 < 2e-16

K 0.2372 0.0573 4.14 4.5e-05

t0 -2.2583 0.8168 -2.76 0.006

Residual standard error: 41.7 on 314 degrees of freedom

Number of iterations to convergence: 6

Achieved convergence tolerance: 3.55e-06

------

Residual sum of squares: 545000

------

Asymptotic confidence interval:

2.5% 97.5%

Linf1 395.6169 470.6480
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Linf2 353.8056 422.4703

K 0.1244 0.3500

t0 -3.8654 -0.6512

------

Correlation matrix:

Linf1 Linf2 K t0

Linf1 1.0000 0.9465 -0.9602 -0.8767

Linf2 0.9465 1.0000 -0.9387 -0.8550

K -0.9602 -0.9387 1.0000 0.9680

t0 -0.8767 -0.8550 0.9680 1.0000

From this it is conclude that the females (i.e., “group 1”) has a larger asymptotic mean length then the
males.

A fitted line plot can be constructed by first using plot() and points() to plot different colored points for
the female and male fish. A function is then created for the “no difference” common model of the typical
VBGM using vbFuns(). This function is used within curve() to add the fitted lines for both groups, being
careful that only the parameters for a particular group are used when adding that group’s fitted line to the
plot. For example, the parameter estimates for just the first group are obtained by excluding the parameters
for the second group (which consists of only Linf2 in the second position of the coefficients vector) with

> coef(fit2L)[-2]

Linf1 K t0

433.1325 0.2372 -2.2583

The fitted line plot for the model with only different L∞ parameters (Figure 24) is constructed with

> plot(tl~jitter(age,0.3),data=Croaker2,subset=sex=="F",pch=19,xlab="Age (yrs)",

ylab="Total Length (mm)")

> points(tl~jitter(age,0.3),data=Croaker2,subset=sex=="M",pch=19,col="gray")

> vbTypical <- vbFuns("typical")

> curve(vbTypical(x,Linf=coef(fit2L)[-2]),from=1,to=10,lwd=2,add=TRUE)

> curve(vbTypical(x,Linf=coef(fit2L)[-1]),from=1,to=10,col="gray",lwd=2,add=TRUE)

> legend("topleft",legend=c("Female","Male"),col=c("black","gray"),lwd=2,lty=1,cex=0.75)

As another example, the fitted line plot assuming that the model with different L∞ parameters and K
parameters was chosen (Figure 25) is constructed with

> plot(tl~jitter(age,0.3),data=Croaker2,subset=sex=="F",pch=19,xlab="Age (yrs)",

ylab="Total Length (mm)")

> points(tl~jitter(age,0.3),data=Croaker2,subset=sex=="M",pch=19,col="gray")

> vbTypical <- vbFuns("typical")

> curve(vbTypical(x,Linf=coef(fit1LK)[-c(2,4)]),from=1,to=10,lwd=2,add=TRUE)

> curve(vbTypical(x,Linf=coef(fit1LK)[-c(1,3)]),from=1,to=10,col="gray",lwd=2,add=TRUE)

> legend("topleft",legend=c("Female","Male"),col=c("black","gray"),lwd=2,lty=1,cex=0.75)
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Figure 24. Fitted line plot from fitting the VBGM with separate L∞ parameters to male and female Atlantic
Croakers.
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Figure 25. Example of a fitted line plot from fitting the VBGM with separate L∞ and K parameters to
male and female Atlantic Croakers.
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Appendices

A Fitting Non-Linear Models

Many models in fisheries and ecological research are non-linear. Some of these models can be transformed
to a linear scale where traditional linear regression methods can be used. However, some models cannot
be “linearized” and linearization may be troublesome with other models. Thus, many types of data are
best analyzed by fitting a curve using non-linear regression techniques (Motulsky and Ransnas 1987). The
VBGMs are non-linear and cannot be linearized.

A.1 Parameter Estimation

The usual non-linear regression model for individuals is expressed as

yi = f(~β,X) + εi (16)

where f(•) is a non-linear function that relates the response variable to an explanatory variable (X), ~β is
a vector of parameters, and εi~N(0, σY |X) (Fox 2002). The RSS and likelihood functions for these models
can be developed in a manner similar to that for linear regression models. However, because the RSS and
likelihood functions for non-linear models are non-linear they often require iterative numerical approximation
solutions to find the parameter estimates that minimize the RSS or maximize the likelihood function. In
other words, calculus cannot be used to solve for parameter estimates as was done with the linear regression
models. Instead computers must be used to implement optimization algorithms to estimate the parameters.

Motulsky and Ransnas (1987) provide a nice description of the concept of fitting non-linear models to data.
Their description relies on visualizing the RSS surface in a simple example that has two parameters, A and
B (Figure 26). In general, the algorithm begins with the user (i.e., you!) supplying a set of starting values
for the model parameters. Selection of these starting values is discussed in the next section. The algorithm
then finds another set of parameter values that are generally “downhill” from the starting values (a process
that involves using the second derivatives of the RSS function). This process is continued such that with
each iteration the set of parameter values gets closer and closer to the set of parameter values that are at
the minimum RSS value. The algorithm usually continues until the improvement in minimizing RSS from
one iteration to the next is considered negligible. The algorithm would proceed similarly if there were more
parameters in the model; however, the surface would be more than three-dimensional and, thus, not able to
be visualized.

A.2 Choosing Starting Values

The choice of starting values is important to the non-linear regression parameter estimation algorithms.
Improper choice of starting values can cause the numerical algorithm to not converge to a minimum RSS
value, to behave erratically or not at all (because of problems associated with the second derivatives of the
RSS function at the starting values), or to find a local minimum value of RSS rather than the global best-fit
minimum (Figure 27).

The process of selecting starting parameter values begins with a thorough understanding of the meaning and
impact of each parameter in the non-linear model. Once the parameters are understood, starting values can
be obtained in at least three ways:

1. Some parameters can be visually estimated. For example, a parameter that is known to represent the
horizontal asymptote of the model can be visually estimated by plotting the data and observing the
value of the apparent asymptote.
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Figure 26. A schematic representation of the RSS as a function of the parameters A and B. Non-linear
regression begins at user-defined starting values and iteratively “moves downhill” to find the choices of A
and B that minimize the RSS. Graphic was modified from Motulsky and Ransnas (1987).

Figure 27. With inappropriate starting values, non-linear regression algorithms might find a local minimum
rather than the global best-fit minimum (modified from Motulsky and Ransnas (1987)).
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2. Some parameters can be estimated by fixing other parameters or variables at reasonable values (usually
from using the previous method) and solving for the parameter.

3. Some parameters can be estimated by superimposing the model on the data and interactively altering
the parameters until the model appears to visually fit the data.

The non-linear models used in this vignette will generally (with one exception) use the last strategy. Special
purpose functions will be used to visually derive these starting values.

A.3 Non-Linear Models in R & Interpretations

Non-linear models are fit in R with the nls() function. The nls() function is similar to the lm() function
in R, but differs in two important ways (Weisberg 2005). First, the user must define both the variables and
the parameters of the model (in contrast to the lm() function where only the variables need to be defined).
Second, starting values for the parameters must be specified.

The nls() function requires three arguments. The first argument is a formula that defines the non-linear
model. The formula will typically have the response variable on the right-hand side separated from an
algebraic expression of the left-hand side of the model by a ~. The second argument, named start=, is a list
of starting values for the parameters of the model. This list also serves to tell R which items in the models
are parameters, with the remaining items in the model assumed to be variables. The third argument, named
data=, is the data frame from which the variables in the model will be drawn. As with the lm() function
the results from the nls() function should be saved to an object.

As an example, consider the logistic growth equation,

yi =
β1

1 + eβ2+β3xi
+ εi (17)

where β1 is the horizontal asymptote representing the maximum mean of the response variable, β2 reflects
the mean value of the response variable, relative to the asymptote, when the explantory variable is zero,
and β3 controls the rate of increase or decrease. The fitting of (17) will be illustrated with the number of
Escherchia coli cells over time from the classic experiment by McKendrick and Pai (1911). The data are
read into R and examined as follows,

> data(Ecoli)

> str(Ecoli)

'data.frame': 8 obs. of 2 variables:

$ days : int 1 2 3 4 5 6 7 8

$ cells: num 0.1 0.2 1.2 3.1 5.1 6 5.9 6

> view(Ecoli)

days cells

3 3 1.2

4 4 3.1

5 5 5.1

6 6 6.0

7 7 5.9

8 8 6.0

The first step in fitting the logistic growth model to these data was to use trial-and-error16 to identify starting
values for the three parameters. The three starting values used in this case were entered into a list object
for simplicity,

16Trial-and-error is not an efficient method to identify starting values. More efficient methods will be described with specific
fisheries models. In addition, the starting values for this model could be found by estimating β1 with the horizontal asymptote
in Figure 28 (i.e, β1 ≈ 6) and then selecting two points from the steepest portion of the curve (i.e., (3,1.2) and (4,3.1)), plugging
these into (17) and solving for β2 and β3.
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> lr.sv <- list(B1=6,B2=7.2,B3=-1.5)

The non-linear model in (17) is then fit with nls() and the parameter estimates obtained with summary()

or, as I prefer, overview() from the nlstools package, as follows,

> nl1 <- nls(cells~B1/(1+exp(B2+B3*days)),data=Ecoli,start=lr.sv)

> # summary(nl1) # did not show because redundant with overview()

> overview(nl1)

------

Formula: cells ~ B1/(1 + exp(B2 + B3 * days))

Parameters:

Estimate Std. Error t value Pr(>|t|)

B1 6.0508 0.0731 82.7 4.9e-09

B2 6.2569 0.3464 18.1 9.6e-06

B3 -1.5875 0.0908 -17.5 1.1e-05

Residual standard error: 0.11 on 5 degrees of freedom

Number of iterations to convergence: 6

Achieved convergence tolerance: 6.62e-06

------

Residual sum of squares: 0.0607

------

Asymptotic confidence interval:

2.5% 97.5%

B1 5.863 6.239

B2 5.366 7.147

B3 -1.821 -1.354

------

Correlation matrix:

B1 B2 B3

B1 1.0000 -0.4033 0.4909

B2 -0.4033 1.0000 -0.9826

B3 0.4909 -0.9826 1.0000

The fit of the non-linear regression model can be constructed with fitPlot() using the saved nls() object
as the first argument. The fitted regression model shown in Figure 28 was constructed with,

> fitPlot(nl1,Ecoli,xlab="Day",ylab="Cellsx10^6/ml",cex.main=0.8)

A.4 Making Inferences about Model Parameters

Confidence intervals and hypothesis tests can be constructed for the parameters in the non-linear model as
they were for the linear model – i.e., using confint(). For instance, approximate 95% confidence intervals
for the parameters in (17) can be obtained with

> confint(nl1)
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Figure 28. Plot of the number of Escherchia coli cells over time with the superimposed fit of the logistic
growth equation.

Waiting for profiling to be done...

2.5% 97.5%

B1 5.869 6.240

B2 5.471 7.225

B3 -1.838 -1.382

In addition, the t-test and p-value for testing H0 : β1 = 0 versus HA : β1 6= 0 is shown in the results from
summary().

The confidence intervals and hypothesis tests just described, however, may be incorrect in certain situations
because the standard errors in non-linear regressions are often poorly estimated. Thus, it is often more
appropriate to approximate the confidence interval with a bootstrapping routine. Fortunately, nlsBoot will
quickly perform the bootstrap method with the results from a non-linear model. The nlsBoot function
estimates model parameters from a series of niter resampled data sets. An approximate 95% CI for a
variable can then computed by finding the values of the bootstrapped parameter estimates with 2.5% of the
values smaller and 2.5% of the values greater. This is most easily accomplished by saving the nlsBoot()

result to an object and submitting that object to confint(). For example, a bootstrapped 95% confidence
interval for the parameters in the logistic growth model are found with17,

> nl1.b <- nlsBoot(nl1,niter=200)

> confint(nl1.b)

95% LCI 95% UCI

B1 5.947 6.181

B2 5.825 6.790

B3 -1.733 -1.470

In this case, the bootstrapped confidence intervals are substantially different than the confidence intervals
based on normal theory. The bootstrapped confidence intervals are likely more appropriate in this case.

17Note that B controls the number of bootstrap samples. The value of niter= should be much larger than the 200 shown
in this example – e.g., 500 to 5000. A smaller number was used here simply to conserve computing time while producing this
document.
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A.5 Making Predictions

Predictions of the mean value of the response variable and the response variable for an individual can again
be made with predict(). The arguments to this function are exactly the same as described for the lm()

objects – i.e., the first argument is the saved nls() object and the second argument is a data frame containing
values of the explanatory for which to make predictions. Unfortunately, predict() for an nls object does
not support prediction or confidence intervals as of R version 2.9.1. In other words, predict() will only
predict the mean value of the response variable at the given value of the explanatory variable. For example,
the mean number of E. coli cells on day 3 is predicted to be,

> predict(nl1,data.frame(days=3))

[1] 1.109

A prediction interval can be estimated by using the parameter estimates for each bootstrap sample saved
in the nlsBoot() object. To make this interval the column corresponding to each parameter must be
substituted into the right-hand-side of the non-linear regression model. In addition, the particular value
for the explanatory variable must be substituted into the right-hand-side. For example, the 95% prediction
interval for the number of cells on day 3 is found with,

> pred.day <- 3

> ests <- nl1.b$coefboot

> nl1.bp3 <- ests[,"B1"]/(1+exp(ests[,"B2"]+ests[,"B3"]*pred.day))

> coli.ci <- quantile(nl1.bp3,c(0.025,0.975))

> coli.ci

2.5% 97.5%

0.9878 1.2276

Thus, one is 95% confident that the number of cells on any day 3 will be between 0.99 and 1.23.
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B Model Derivations

B.1 The von Bertalanffy Model for Length I

One method of deriving the typical VBGM (1) begins by assuming that the rate of growth of an organism
declines linearly as the length of the organism increases,

dL(t)

dt
= K(L∞ − L(t)) (18)

Integration of (18) leads to the intermediate function,

dL(t)

dt
= K(L∞ − L(t))

dL(t)

L∞ − L(t)
= Kdt

−log(L∞ − L(t)) = kt+ c

log(L∞ − L(t)) = −kt+ c

L∞ − L(t) = ece−kt

L∞ − L(t) = de−kt

L(t) = L∞ − de−kt

(19)

Note that c and d were both constants of integration in the work above. Now to specifically identify d in
(19) consider the hypothetical time or age when the average length of the fish is zero, t0. More specifically
this defines L(t0) = 0 which, when substituted into (19), leads to,

0 = L∞ − de−kt0

de−kt0 = L∞

d =
L∞
e−kt0

d = L∞e
kt0

(20)

Now substituting (20) into (19) leads to,

L(t) = L∞ − L∞ekt0e−kt

L(t) = L∞(1− ekt0−kt)
L(t) = L∞(1− e−k(t−t0))

which is (1).

B.2 The von Bertalanffy Model for Length II

A second method for deriving the VBGM is to follow the logic Ludwig von Bertalanffy (1938) who derived the
common VBGM (1) from a physiological argument. The weight of an organism at any moment depends upon
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the result of two opposing forces: anabolism, i.e., the synthesis of tissue, and catabolism, i.e., the breakdown
of tissue. The rate of anabolism is supposedly proportional to the magnitude of the “resorbing surfaces”
of the animal while the rate of catabolism is proportional to the body weight. The size of the “resorbing
surfaces” (S) is not directly measurable but it is hypothesized that it is proportional to the square of some
linear dimension, say length (L), i.e.,

S = pL2 (21)

where p is a proportionality constant. Weight (W) too is taken to be proportional to the cube of some linear
dimension, i.e.,

W = qL3 (22)

where q is a proportionality constant.

Anabolism and catabolism proceed simultaneously throughout the life of an animal. Thus, the difference
between these two forces at any instant defines the rate at which the weight of the animal is changing at
that moment. Rates are defined as derivatives, so the instantaneous change in weight over a given time is
given by the differential equation

dW (t)

dt
= aS(t)− cW (t) (23)

where a is the coefficient of anabolism and c is the coefficient of catabolism. By substitution of (21) and
(22) into (23) we begin von Bertalanffy’s historical development of the model,

d[qL(t)3]

dt
= a[pL(t)2]− c[qL(t)3]

qd[L(t)3]

dt
= apL(t)2 − cqL(t)3

3qL(t)2
d[L(t)]

dt
= apL(t)2 − cqL(t)3

3q
d[L(t)]

dt
= ap− cqL(t)

d[L(t)]

dt
=
ap

3q
− cq

3q
L(t)

(24)

The combination of the constants, a, p, and q in the final row of (24) can be replaced with constants,
specifically K = c

3 and M = ap
cq (Note, thus, that MK = ap

3q ). Thus, (24) becomes

d[L(t)]

dt
= MK −KL(t) (25)

which is a linear differential equation that we can write in “standard form” as

d[L(t)]

dt
+KL(t) = MK (26)

We can now use the method for solving a linear differential equation (appendix XXX) on (26). In this

case, P ′(x) = d[L(t)]
dt , f(x) = K, P (x) = L(t), and g(x) = MK. With these definitions F (x) = kt and the

integrating factor is eKt. Therefore, (26) can be rewritten as
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eKt
d[L(t)]

dt
+KeKtL(t) = MKeKt

d[eKtL(t)]

dt
= MKeKt

(27)

Following the method for solving linear differential equations we want to integrate both sides of (27) with
respect to t evaluated from z0 (which will correspond to the time when the average length was zero) to some
arbitrary z,

z∫
z0

d[eKtL(t)]

dt
dt =

z∫
z0

MKeKtdt

z∫
z0

d[eKtL(t)]

dt
dt = M

z∫
z0

KeKtdt

eKtL(t)
∣∣z
z0

= MeKt
∣∣z
z0

eKzL(z)− eKz0L(z0) = MeKz −MeKz0

eKzL(z) = MeKz −MeKz0

L(z) = M −MeKz0e−Kz

L(z) = M −Me−K(z−z0)

L(z) = M(1− e−K(z−z0))

(28)

Replacing z with t in (28) and letting t→∞ to see that M = L∞ (as we did in the first model development)
it is seen that (28) is indeed equivalent to (1).

B.3 The von Bertalanffy Model for Weight

The development of the VBGM for weight is very simply a substituting of the VBGM for length (1) into the
allometric length-weight relationship model,

W (t) = aL(t)b

W (t) = a
[
L∞

(
1− e−K(t−t0)

)]b
W (t) = aLb∞

(
1− e−K(t−t0)

)b
W (t) = W∞

(
1− e−K(t−t0)

)b
(29)

B.4 Relationship Between K and Growth Increments in the VBGM

From (1), define the expected length for three successive but generic ages,

E[L|t = i] = L∞

(
1− e−K(i−t0)

)
E[L|t = i+ 1] = L∞

(
1− e−K(i+1−t0)

)
E[L|t = i+ 2] = L∞

(
1− e−K(i+2−t0)

) (30)
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Further define the two annular growth increments between these three successive ages,

E[L|t = i+ 2]− E[L|t = i+ 1] = L∞

(
1− e−K(i+2−t0)

)
− L∞

(
1− e−K(i+1−t0)

)
= L∞

[
e−K(i+1−t0) − e−K(i+2−t0)

]
= L∞e

−K(i+1−t0)
[
1− e−K

]
= e−KL∞e

−K(i−t0)
[
1− e−K

]
(31)

and, with similar algebra,

E[L|t = i+ 1]− E[L|t = i] = L∞

(
1− e−K(i+1−t0)

)
− L∞

(
1− e−K(i−t0)

)
= L∞e

−K(i−t0)
[
1− e−K

] (32)

Now the right-hand-size of (32) can be substituted into the right-hand-side of (31),

E[L|t = i+ 2]− E[L|t = i+ 1] = e−K (E[L|t = i+ 1]− E[L|t = i]) (33)

This proves the relation shown in (3).

B.5 Schnute Parameterization of the von Bertalanffy Model

The derivation follows that shown by Schnute and Fournier (1980). From (1), define the expected length at
the youngest, t1, and oldest, t2, age in the data as

L1 = E[L|t = t1] = L∞

(
1− e−K(t1−t0)

)
L2 = E[L|t = t2] = L∞

(
1− e−K(t2−t0)

) (34)

Also recall from Appendix B.4 that,

E[L|t = i+ 2]− E[L|t = i+ 1] = e−K (E[L|t = i+ 1]− E[L|t = i]) (35)

The (35) is a second order difference equation that is linear with constant coefficients and boundary conditions
defined by (34). Two possible solutions to (35) are,

E[L|t] = α

E[L|t] = βe−Kt
(36)

A theory of difference equations states that the solution to (35) must be a combination of these two solutions,

E[L|t] = α+ βe−Kt (37)

Substituting (37) into the two boundary conditions of (34) gives,
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L1 = α+ βe−Kt1

L2 = α+ βe−Kt2
(38)

which can be solved for α and β,

α = L1 − βe−Kt1

β =
L2 − L1

e−Kt2 − e−Kt1
(39)

Finally, these values are substituted into (37) and simplified,

E[L|t] = α+ βe−Kt

= L1 − βe−Kt1 + βe−Kt

= L1 + β
(
e−Kt − e−Kt1

)
= L1 + (L2 − L1)

e−Kt − e−Kt1
e−Kt2 − e−Kt1

= L1 + (L2 − L1)
e−Kt − e−Kt1
e−Kt2 − e−Kt1

−e−Kt1
−e−Kt1

= L1 + (L2 − L1)
1− e−K(t−t1)

1− e−K(t2−t1)

(40)

which is the Schnute parameterization of the VBGM, (7).
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