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Abstract

The a contrario approach is a statistical, hypothesis testing based approach to detect
geometric meaningful events in images. The general methodology consists in computing the
probability of an observed geometric event under a noise model (null hypothesis) H0 and then
declare the event meaningful when this probability is small enough. Generally, the noise model
is taken to be the independent uniform distribution on the considered elements. Our aim in
this paper will be to question the choice of the noise model: What happens if we “enrich”
the noise model? How to characterize the noise models such that there are no meaningful
event against them? Among them, what is the one that has maximal entropy? What does
a sample of it look like? How is this noise model related to probability distributions on the
elements that would produce, with high probability, the same detections? All these questions
will be formalized and answered in two different frameworks: the detection of clusters in a
set of points and the detection of line segments in an image. The general idea is to capture
the perceptual information contained in an image, and then generate new images having the
same visual content. We believe that such a generative approach can have applications for
instance in image compression or for clutter removal.

Keywords: detection theory, non-accidentalness principle, maximum entropy distributions,
clusters of points, line segments detection, image reconstruction, visual information theory.

1 Introduction

The a contrario approach is a statistical approach for detecting geometric events in an image
that is inspired by the visual perception principle of non-accidentalness. This principle of non-
accidentalness is also sometimes called Helmholtz principle and it is one of the fundamental ideas
of visual recognition as developped for instance by D. Lowe in [21] and [22]. It is well summarized
by S. C. Zhu in [35]: “Besides Gestalt psychology, there are two other theories for perceptual
organization. One is the likelihood principle [30] which assigns a high probability for grouping
two elements such as line segments, if the placement of these two elements as a low probability
of resulting from accidental arrangement ([21] , [22]).” The non-accidentalness principle is also
stated by Witkin and Tenenbaum in [32], where they explain that “Because regular structural
relationships are extremely unlikely to arise by the chance configuration of independent elements,
such structure, when observed, almost certainly denotes some underlying unified cause or process.”
In [14], we have explained, developped and applied the a contrario approach in many different
situations. It is a formalization of the non-accidentalness principle and it leads to a general
methodology that can be summarized as follows:

1. Define a null-hypothesis H0 that is a probability distribution on elements, and take a small
number ε.

2. Observe a geometric event (that is a configuration of elements) in an image, and denote it
by E.
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3. Compute the probability of E under H0.

4. If this probability is smaller than a threshold computed to ensure that on the average there
are less than ε detections in an image where the elements would be distributed according to
H0, then declare E as ε-meaningful.

Under that form, the a contrario methodology has been applied to many detection problems,
for instance: in [9], [13] and [15] for the detection of alignments in images; in [10] and [1] for the
problem of edge detection in an image; in [12] and [8] for the problem of histogram segmentation
(and the application to automatic color palette determination [7]); in [4] for the detection of good
continuations and corners in images; in [5] for the detection of clusters of points; in [29] for motion
detection; in [25] for shape recognition; in [23] for the detection of rigid point matches between
two images; etc.

In most of these applications of the a contrario methodology the null-hypothesis H0 (also
sometimes called, in some papers, the a contrario noise model, the background model or the naive
model) is taken as the independent uniform distribution on the elements. There are however
noticeable exceptions to this choice of H0. In particular, in [17], B. Grosjean and L. Moisan
compute the detectability of spots in textured backgrounds and their null-hypothesis is a power-
law Gaussian texture. They are able to obtain a formula that relates the detectability of a spot
to its size, its contrast and the power exponent of the texture, and that matches the human
visual perception. Another noticeable exception is [26] where A. Myaskouvskey, Y. Gousseau and
M. Lindenbaum introduce in H0 some correlation between the elements. The authors show in
particular that such a noise model is more adapted to part-based object detection, and that it
“enables reasonably accurate prediction of the false detection rate with no need for training data”.

Our main goal in this paper will be to discuss the choice of the null hypothesis H0. If the
a contrario background noise model contains too many structures, i.e. if it is too rich, then the
configurations are not unlikely anymore and therefore they are not meaningful against this rich
background noise model. The extreme case is when the noise model is not random anymore but
taken as being the image itself. In that case all geometric events have probability 1! Therefore, a
natural question is: starting from the i.i.d. uniform noise model, then how far can we go in the
“enrichment” still having some detections ? And what is the “first” distribution that does not
lead to any detection ? Then, we can take a sample from this distribution and look what is like.
It will of course contain, in some sense, the configurations of the original image. One can also
ask what is the relationship between this distribution and the distributions on the elements that
give, with high probability, the same detections as the original image. Such distributions are often
looked for in texture synthesis problems. Indeed, the problem of texture synthesis is to be able to
capture the “features” of a given original texture image in order to synthesize new sampled texture
images that have the same “look and feel” as the original texture image. This question has been
in particular formalized by Zhu, Wu and Mumford in [33] and [34], where they use exponential
models, as these are the distributions that have at the same time the same histogram of filter
responses as the original texture image and maximal entropy.
We will here also use the maximal entropy principle because we will look for background noise
models that satisfy some constraints (such as : no meaningful configurations, or same detections
as in an original given image) and are at the same time “as random as possible” (in the sense that
they have maximal entropy). We will develop more precisely these questions in two different a
contrario detection frameworks: the detection of clusters of points and the line segment detection
problem in an image. In these two cases we will define distributions on elements (i.e. on points
in the first case and on orientation fields in the second case) that generate new images having the
same perceptual content (for the considered perception task, i.e. clusters of points in the first case
and line segments in the second case) as the original given image. In that sense, the a contrario
detection approach will become generative and will meet again visual perception modeling. We
believe such an approach can have applications for image compression since we will capture and
reproduce the meaningful configurations of an image while taking the rest “as random as possible”.

From the point of view of information theory, we will have here to anwer questions of what
could be called visual information theory, meaning that we will be interested in the amount of
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information contained in an image under visual perception constraints.

The paper is organized as follows: in Section 2 we will be interested in the detection of clusters
of points in a planar domain. The clusters are defined as regions of the domain that contain
“a lot of” points and they correspond to the Gestalt grouping law of vicinity. We will first, in
Section 2.1, recall the a contrario framework in that case. Then, in Section 2.2, we will precisely
describe the background noise distributions such that no regions are meaningful against them and
will characterize the ones that have maximal entropy. In Section 2.3, we will be interested in
distributions that have, most of the time, the same detections as the original set of points. Here
again we will characterize the ones that have maximal entropy, and we will explore the link with
the distributions of Section 2.2. In the second part of the paper (Section 3), we will consider a
second a contrario detection framework, namely the one of the Line Segment Detector (LSD) of
Grompone et al. [15]. We will recall precisely its framework in Section 3.1. Then in Section 3.2, we
will be interested in distributions on orientation fields such that: else no rectangles are meaningful
against them as a background noise model or they lead, most of the time, to the same detections
as the original orientation field. We will answer simultaneously these two questions since here,
unlike the case of clusters of points in Section 2, they are very closely related. In Section 3.3, we
then address the question of the reconstruction of an image from an orientation field. Finally, we
end the paper with Section 4 that contains a conclusion, a discussion and some views on future
work.

2 Clusters of points: the vicinity grouping law

Assume we observe an original set of n points denoted by s0 = {x0
1, . . . , x

0
n} in the domain

D = [0, 1]2, the unit square of the plane. See Figure 1 for an example. Looking at these points,
we are interested in the perception of the Gestalt grouping law of vicinity. According to the a
contrario framework developed in [14], we detect meaningful groups of points for vicinity using the
following methodology: start we a set of regions in D, then for each region, compute the number
of points it contains, and if this number is significantly large (compared to what a noise model
would give), then the region is said meaningful. We describe in the next subsection the whole
method in more details, with precise definitions and properties.

2.1 A contrario framework and notations

Let s0 = {x0
1, . . . , x

0
n} be a set of n points in the domain D = [0, 1]2. Let R = {Ri}1≤i≤Nr

be a
set of regions that cover D. It is not necessarily a partition of D (i.e. we may have Ri∩Rj 6= ∅ for
some i 6= j), but it can be. For a region R ∈ R, we will denote by k(R; s0) the number of points,
among x0

1, . . . , x
0
n, it contains, that is:

k(R; s0) = k(R; {x0
j}1≤j≤n) =

n∑
j=1

1x0
j∈R,

where 1E denotes the indicator function of an event E.

Definition 1 (Number of False Alarms). Let P be a probability distribution on the sets S of n
points S = {X1, . . . , Xn} in D. For a region R ∈ R, we define its Number of False Alarms under
the law P by

NFAP (R; s0) = Nr × PP [k(R;S) ≥ k(R; s0)], (1)

where k(R;S) is the random variable that counts the number of points of S = {X1, . . . , Xn} falling
in the region R:

k(R;S) = k(R; {Xj}1≤j≤n) =

n∑
j=1

1Xj∈R.

Let ε ∈ (0, 1] be a small number. When NFAP (R; s0) < ε, then we say that the region R is
(ε, P )-meaningful for the set s0.
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Figure 1: Example of points and regions. Here we have a set s0 of n = 100 points in the domain
D = [0, 1]2, and the tested regions are small squares of side length 0.1 and delimited by the dashed
lines. On this image, one can clearly perceive that two regions are not like the others, in the sense
that they contain an “unexpectedly high” number of points. On the right, we have delimited
these two (ε, U)-meaningful regions (with here ε = 1) in red, with a line width proportional to
− log10(NFAU (R; s0)). The most meaningful region is the bottom right one.

The above defined Number of False Alarms measures how likely an observed event is. It is
used as a measure of meaningfulness: the smaller the NFA is, the more meaningful the event is,
in the sense that is has a low probability of having occurred just by chance.

The definition of the NFA and of ε-meaningful events is made in such a way that we have the
following proposition ensuring that we control the number of “errors”.

Proposition 1. If a set S0 of n points is randomly sampled from the probability distribution P ,
then the numbers of false alarms NFAP (Ri;S

0), 1 ≤ i ≤ Nr, become random variables and we
have the fundamental property that

EP

(
Nr∑
i=1

1NFAP (Ri;S0)<ε

)
< ε.

In other words, it means that the expected number (under the law P ) of (ε, P )-meaningful regions
is less than ε.

Proof. Let R ∈ R be a region and let us denote by F the tail distribution of the random variable
k(R;S) when S follows the probability distribution P , that is F (k) = PP [k(R;S) ≥ k] for all
k ∈ N. When the set S0 of n points is randomly sampled from the probability distribution P ,
then k(R;S0) is a random variable and we have

PP [NFAP (R;S0) < ε] = PP [F (k(R;S0)) < ε/Nr] = PP [k(R;S0) ≥ F−1(
ε

Nr
)] = F (F−1(

ε

Nr
)) <

ε

Nr
,

where the inverse F−1 is defined by F−1(α) = min{k ∈ N ; F (k) < α} for all α ∈ [0, 1]. Now, to
end the proof of the proposition we notice that, by linearity of the expectation,

EP

(
Nr∑
i=1

1NFAP (Ri;S0)<ε

)
=

Nr∑
i=1

PP [NFAP (Ri;S
0) < ε] <

Nr∑
i=1

ε

Nr
= ε.
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Generally in the use of the a contrario methodology [14], the noise distribution P (also some-
times called the background noise model or the naive model) is taken as U , the uniform distribution,
making then the random variables X1, . . . , Xn independent and uniformly distributed on the do-
main D. The above proposition ensures that if the n points are sampled independently from the
uniform distribution on D, then, on the average, the number of (ε, U)-meaningful regions will be
less than ε. Notice that when P = U is the uniform distribution, then the random variable k(R;S)
follows a binomial distribution and therefore the number of false alarms NFAU (R; s0) in Equation
(1) is given by

NFAU (R; s0) = Nr ×B(n, k(R; s0), |R|),
where |R| is the Lebesgue measure (i.e. the area) of the region R (we recall that D = [0, 1]2 and
therefore |D| = 1) and where B(n, k, p) denotes the tail of the binomial distribution defined by

∀p ∈ [0, 1], ∀0 ≤ k ≤ n integers, B(n, k, p) :=

n∑
j=k

(
n

j

)
pj(1− p)n−j . (2)

A convenient way to make computations with the binomial tail is to rewrite it with the incomplete
beta function defined by

∀p ∈ [0, 1], Bn,k(p) =

∫ p
0
tk−1(1− t)n−k dt∫ 1

0
tk−1(1− t)n−k dt

. (3)

The incomplete beta function is defined when n and k are real numbers, and it fits the binomial
tail when n and k are integers, that is

B(n, k, p) = Bn,k(p) when 0 ≤ k ≤ n are integers.

This is why we use almost the same notation to denote them. Notice also that the function
p 7→ Bn,k(p) defines, when k > 0, a continuous, strictly increasing mapping from [0, 1] to itself.

An example of the (ε, U)-meaningful regions is given on Figure 1, with here ε = 1. These
meaningful regions seem to correspond to the ones that we visually perceive as significant. Our
aim here is not to discuss the pyschophysiological validity of the a contrario approach and the
link between human visual perception thresholds and values of NFAU . Some precise studies about
these questions can be found in [3] and in [20]. What we want to discuss here, from a statistical
point of view, is the choice of U as a background noise model. It is in some sense the only “natural”
background choice since the i.i.d. uniform distribution U is the only stationary distribution with
independent points, but in the hypothesis testing framework, it is worth questioning this specific
choice. In particular, we can ask the following questions about the whole a contrario methodology:

• Question 1: What are the probability distributions P such that no regions are (ε, P )-
meaningful for a given set of points s0? What does a set of n points sampled from P
look like?

• Question 2: Among all probability distributions P such that no regions are (ε, P )-meaningful,
what is the one that has the maximal entropy?

• Question 3: What are the probability distributions Q such that if S = {X1, . . . , Xn} is a
set of n points sampled from Q, then with high probability we have the same meaningful
regions for S as for s0?

• Question 4: Again: what is the probabilty distribution Q of the previous question that has
the maximal entropy?

• Question 5: What is the link between the probability distributions of Questions 1 and 3?

These are very generic questions that can be addressed in any of the a contrario detection
applications. We will here address them in the framework of clusters of points, starting with the
first two questions.
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2.2 Enrichment of the noise model

In all the following, the set of points s0 = {x0
1, . . . , x

0
n} is fixed. Let P denote the set of probability

distributions P on S = {X1, . . . , Xn} such that no regions are (ε, P )-meaningful for s0. In fact
this set P depends on both: the set of points s0 = {x0

1, . . . , x
0
n} and the set R of test regions. It

is characterized by

P ∈ P ⇐⇒ ∀i = 1, . . . , Nr, NFAP (Ri; s
0) ≥ ε

⇐⇒ ∀i = 1, . . . , Nr, PP [k(Ri;S) ≥ k(Ri; s
0)] ≥ ε/Nr

Notice that the set P is non-empty since it contains at least the Dirac distribution at s0 =
{x0

1, . . . , x
0
n}. Indeed, in that case we have PP [k(Ri;S) ≥ k(Ri; s

0)] = 1 for all regions Ri. More
generally P contains any distribution P that satisfies k(Ri;S) = k0(Ri; s

0) for all Ri.
Let R ∈ R be a region. We are first interested in probability distributions on Ω = Dn such

that the region R is not (ε, P )-meaningful. We will then, in a second step, consider the case of
all regions. Now, among the probability distributions P such that the region R is not (ε, P )-
meaningful, we will be interested in the ones that are at the same time “as random as possible”.
A natural way to measure this is to use the entropy of the distribution. Therefore, we will consider
only distributions P that admit a probability density denoted by fP and we recall then that their
differential (or continuous) entropy is defined by

H(P ) = −
∫

Ω

fP (x1, . . . , xn) log fP (x1, . . . , xn)dx1 . . . dxn,

with the usual convention that 0 log 0 = 0. Notice that by Jensen inequality, and the concavity of
the log, we have

H(P ) ≤ H(U) = log(|Ω|) = 0,

because we recall that here Ω = Dn with D = [0, 1]2.
We will also be interested in the set denoted I of probability distributions that make the points

X1, . . . , Xn independent, which is equivalent to say that P ∈ I if and only if the density fP of P
is of the form fP (x1, . . . , xn) = f̃P (x1)f̃P (x2) . . . f̃P (xn). Notice that the uniform distribution U
belongs to I.

We now characterize the distributions P that make a region R not (ε, P )-meaningful and that
have maximal entropy.

Proposition 2. Let R ∈ R be a region. Let PR denote the set of probability distributions P on
Ω such that the region R is not (ε, P )-meaningful. We then have two cases:

1. If the region R is not (ε, U)-meaningful, that is if NFAU (R) ≥ ε, then U ∈ PR ∩I, and it is
the maximal entropy distribution in PR.

2. If, on the contrary, the region R is (ε, U)-meaningful, that is if NFAU (R) < ε, then U /∈ PR
and

(a) The distribution P ∈ PR that has H(P ) maximal is given by

fP (x1, . . . , xn) =

{
ε

Nr|Ω0| if (x1, . . . , xn) ∈ Ω0
Nr−ε

Nr|Ω\Ω0| if (x1, . . . , xn) /∈ Ω0,

where Ω0 := {(x1, . . . , xn) ∈ Ω;
∑n
j=1 1xj∈R ≥ k(R; s0)} is the set of configurations of

n points such that at least k(R; s0) of them are in R. Notice that

|Ω0| = B(n, k(R; s0), |R|).
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(b) The set PR ∩ I is non-empty, and the probability distributions it contains are charac-
terized by

pP (R) := PP [X1 ∈ R] ≥ B−1
n,k(R;s0)(ε/Nr),

where α 7→ B−1
n,k(α) is the inverse of the incomplete beta function defined by (3). And

the distribution P ∈ PR ∩ I that has maximal entropy is given by

f̃P (x) =

{
1
|R|B

−1
n,k(R;s0)(ε/Nr) if x ∈ R

1
1−|R| (1−B−1

n,k(R;s0)(ε/Nr)) if x /∈ R,

Proof. Let us start with the first point of the proposition: when the region R is not (ε, U)-
meaningful, then by definition U ∈ PR. And the statement follows from the fact that U also
belongs to I, and that U is the maximal entropy distribution among all probability distributions
on Ω.

In the second case, we now assume that the region R is (ε, U)-meaningful for s0. This implies
that B(n, k(R; s0), |R|) < ε/Nr. Then, we first notice that

P ∈ PR ⇐⇒ PP (k(R;S) ≥ k(R; s0)) ≥ ε

Nr
⇐⇒ P (Ω0) ≥ ε

Nr
,

where Ω0 = {(x1, . . . , xn) ∈ Ω;
∑n
j=1 1xj∈R ≥ k(R; s0)}. Now, let Pa, a ∈ (0, 1), be the famility

of probability distributions on Ω defined by fPa
(x1, . . . , xn) = a/|Ω0| if (x1, . . . , xn) ∈ Ω0 and

fPa
(x1, . . . , xn) = (1 − a)/(1 − |Ω0|) if (x1, . . . , xn) /∈ Ω0. Notice that Pa(Ω0) = a and therefore

Pa ∈ PR if and only if a ≥ ε/Nr.
For any P ∈ PR, we have that the Kullback-Leibler divergence of PaP from P , where aP = P (Ω0)
is always positive. And this divergence is also, by definition, equal to

D(P ||PaP ) =

∫
Ω

fP (y1, . . . , yn) log
fP (y1, . . . , yn)

fPaP
(y1, . . . , yn)

dy1 . . . dyn

= −H(P )− P (Ω0) log
aP
|Ω0|

− (1− P (Ω0)) log
1− aP
1− |Ω0|

= −H(P ) +H(PaP ).

This shows that H(P ) ≤ H(PaP ). Moreover a simple study of the function

a 7→ H(Pa) = −a log
a

|Ω0|
− (1− a) log

1− a
1− |Ω0|

shows that it is increasing on [0, |Ω0|] and decreasing on [|Ω0|, 1]. Therefore, under the constraint
a ≥ ε

Nr
> |Ω0| = B(n, k(R; s0), |R|), it is maximal for a = ε

Nr
, and this achieves the proof of 2.(a).

For the second point, if the probability distribution P makes the points X1, . . . , Xn independent
then k(R;S) follows a binomial distribution and more precisely we have

PP (k(R;S) ≥ k(R; s0)) = B(n, k(R; s0), pP (R)) = Bn,k(R;s0)(pP (R)),

where pP (R) := PP [X1 ∈ R]. Then, since p 7→ Bn,k(R;s0)(p) is a continuous and strictly increasing

function, we conclude that P ∈ PR if and only if pP (R) ≥ B−1
n,k(R;s0)(ε/Nr).

In the case of a probability distribution P making the points X1, . . . , Xn independent, its
entropy can be easily computed since we have

H(P ) = H(fP ) = nH(f̃P ).

Then by a computation analogous to the one with Pa above, we find that the distribution that has
maximal entropy among all distributions in PR ∩ I has a probability density f̃P that is constant
on R, and on D \R and such that

∫
R
f̃P (x) dx = B−1

n,k(R;s0)(ε/Nr).
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Figure 2: On the left, graphs of k 7→ log10 PP (k(R;S) ≥ k) for P being respectively the uniform
distribution U (blue curve), the distribution in PR that has maximal entropy (red curve) and
the distribution in PR ∩ I that has maximal entropy (green curve). On the right, image of the
log(NFAP (Ri)) for all regions Ri when P is the distribution in PR ∩I with maximal entropy. See
the text for more details.

On Figure 2, we illustrate Proposition 2. The region R is here the most meaningful region
of the points shown on Figure 1 (it is delimited by the bottom right red square). It contains
k(R; s0) = 12 points among a total of n = 100 points. We have here |R| = 10−2, with Nr = 100
test regions, and therefore we compute log10 NFAU (R) = log10(100 × B(100, 12, 0.01)) ' −7.3.
This region is obviously (ε, U)-meaningful (with ε = 1 in the following). On the left of Figure
2, we compare the graphs of k 7→ log10 PP (k(R;S) ≥ k) for P being respectively the uniform
distribution U (blue curve), the distribution in PR that has maximal entropy (red curve) and the
distribution in PR ∩ I that has maximal entropy (green curve). The value ε/Nr is here 0.01, and
we see on the figure how the red and blue curves fit the value −2 = log10(ε/Nr) at k = 12. On the
right, we show the image of the log(NFAP (Ri; s

0)) for all regions Ri when P is the distribution in
PR ∩ I with maximal entropy. Notice that the green value is 0, which means that the considered
region R satisfies here NFAP (R; s0) = ε = 1, all other regions are not (ε, P )-meaningful except
the region in blue (denoted R2), that was the other (ε, U)-meaningful region of Figure 1. It
is even “more meaningful” here since we had log(NFAU (R2; s0)) = −4.9 whereas we have now
log(NFAP (R2; s0)) = −5.2.

The distributions in PR are able to “explain” or “erase” the region R, in the sense that the
observed number of points in the region R is not a meaningful deviation of these distributions.
We are now interested in distributions that can “explain” or “erase” all regions Ri ∈ R.

Theorem 1. Let R = {Ri}1≤i≤Nr
be a set of regions that cover the domain D. And let P denote

the set of probability distributions on (X1, . . . , Xn) such that no regions are (ε, P )-meaningful. We
then have the two following properties:

1. The distribution in P that has maximal entropy is of the form

fP (x1, . . . , xn) =
1

Zλ
exp

(
Nr∑
i=1

λi1k(Ri;{x1,...,xn})≥k(Ri;s0)

)
,

where the λi are real numbers and Zλ is the normalizing constant that ensures
∫

Ω
fP = 1.

If U ∈ P, then U is the maximal entropy distribution, and it corresponds to λi = 0 for all i.

2. We assume here that the regions make a partition of D. If ε/Nr ≤ 1/2, then P ∩ I 6= ∅ and
in that case, if there is moreover at least one (ε, U)-meaningful region, then the maximum
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entropy distribution in P ∩ I, denoted P0, is given by

f̃P0(x) =

{ αi

|Ri| if x ∈ Ri with 1 ≤ i ≤ mr

β otherwise ,
(4)

where αi := B−1
n,k(Ri;s0)(ε/Nr), the regions are numbered in such a way that αi/|Ri| is de-

creasing, i.e.
α1

|R1|
≥ α2

|R2|
≥ . . . αNr

|RNr
| .

And mr is defined by

mr := min{1 ≤ j ≤ Nr − 1 such that
1−∑j

i=1 αi

1−∑j
i=1 |Ri|

≥ αj+1

|Rj+1|
} (5)

Finally, β is the constant such that
∫
D
f̃P0(x) dx = 1.

And when there are no (ε, U)-meaningful region, then P0 = U is the maximal entropy dis-
tribution in P ∩ I.

Proof. We have the following characterization of P: by definition, P ∈ P if and only if for all
Ri ∈ R, PP [k(Ri;S) ≥ k(Ri; s

0)] ≥ ε/Nr. The first point of the theorem is a consequence of a
classical result on exponential distributions that we recall here (a proof can be found in [24] p. 221
or in [6] p. 410): If we look for a distribution f that has maximal entropy under the constraints∫
ci(x)f(x)dx = ai (that is Ef (ci(X)) = ai) then f is of the form f(x) = 1

Z exp(
∑
i λici(x)), where

the constants Z and λi have to be determined so that the integral of f is 1 and the constraints on
ci are satisfied.
In our case, the constraints are PP [k(Ri;S) ≥ k(Ri; s

0)] ≥ ε/Nr. We then simply notice that
PP [k(Ri;S) ≥ k(Ri; s

0)] = EP (1k(Ri;S)≥k(Ri;s0)), and this gives the result. Now the main difficulty
is that there is no closed formula to determine the λi. This has to be done numerically as it is
done for instance by Zhu, Wu and Mumford in [34] in the framework of texture synthesis.

For the second point of the theorem, we fist notice that a distribution P in P∩I is characterized
by

∀Ri ∈ R, pP (Ri) := PP [X1 ∈ Ri] ≥ B−1
n,k(Ri;s0)(

ε

Nr
). (6)

Therefore, since the regions {Ri}1≤i≤Nr are a partition of the domain D, the set P ∩ I is non-

empty if and only if
∑Nr

i=1B
−1
n,k(Ri;s0)(

ε
Nr

) ≤ 1. Indeed otherwise if
∑Nr

i=1B
−1
n,k(Ri;s0)(

ε
Nr

) > 1, then

by (6), we would have
∑Nr

i=1 pP (Ri) > 1 which is impossible when the {Ri}1≤i≤Nr
are a partition

of the domain D.
Now, we use the following lemma.

Lemma 1. Let 0 ≤ k ≤ n be integers, then

Bn,k

(
k

n

)
= B(n, k,

k

n
) ≥ 1

2
.

Proof. The proof of this lemma can be found in [19], where the authors study the location of the
median value of binomial distributions. It can also be found in [27] where the authors study the
relative location of the median, the mean and the mode of a beta distribution. In particular they
show (using our notations) that

min

(
k − 1

n− 1
,

k

n+ 1

)
≤ B−1

n,k

(
1

2

)
≤ max

(
k − 1

n− 1
,

k

n+ 1

)
. (7)

And this implies Lemma 1 since max
(
k−1
n−1 ,

k
n+1

)
≤ k

n .
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Assume that ε/Nr ≤ 1/2, then according to Lemma 1, we haveB−1
n,k(Ri;s0)(

ε
Nr

) ≤ B−1
n,k(Ri;s0)(

1
2 ) ≤

k(Ri;s
0)

n for allRi. Then, since the regions {Ri}1≤i≤Nr are a partition ofD, we have
∑Nr

i=1 k(Ri; s
0) =

n. Therefore
∑Nr

i=1B
−1
n,k(Ri;s0)(

ε
Nr

) ≤ 1 and consequently P ∩ I 6= ∅.
Let us now prove that the distribution P0 defined by (4) is indeed the maximum entropy

distribution of P ∩ I. We first notice that, thanks to the concavity of the log function and using
the fact that {Ri}1≤i≤Nr

is a partition of D,

H(P ) = nH(f̃P ) = −n
Nr∑
i=1

∫
Ri

f̃P (x) log f̃P (x) dx ≤ −n
Nr∑
i=1

pP (Ri) log
pP (Ri)

|Ri|
,

where pP (Ri) :=
∫
Ri
f̃P (x) dx, and where equality holds when f̃P is constant on each Ri. There-

fore, to achieve maximum entropy, the density f̃P has to be constant on each region Ri. Using the
notation αi := B−1

n,k(Ri;s0)(
ε
Nr

), the constraint of belonging to P ∩I is equivalent to the constraint

pP (Ri) ≥ αi for all 1 ≤ i ≤ Nr. The proof of the optimality of the distribution P0 of (4) then
follows from the following lemma.

Lemma 2. Let p1, . . . , pN be a probability distribution on {1, 2, . . . , N}. Let r1, . . . , rN be another
probability distribution on {1, 2, . . . , N}, and let α1, . . . , αN be positive real numbers such that∑N
i=1 αi ≤ 1. Assume moreover that the indices are ordered in such a way that

α1

r1
≥ α2

r2
≥ . . . ≥ αN

rN
.

Then, under the constraints pi ≥ αi, for all 1 ≤ i ≤ N , the Kullback-Leibler distance

p = (p1, . . . , pN ) 7→ D(p||r) =

N∑
i=1

pi log
pi
ri

is minimal for p = p∗ given by

p∗i = αi for 1 ≤ i ≤ m and p∗i =
1−∑m

j=1 αj

1−∑m
j=1 rj

ri for i > m (8)

where m := min{0 ≤ j ≤ N − 1 such that
1−

∑j
i=1 αi

1−
∑j

i=1 ri
≥ αj+1

rj+1
}.

Proof. We first notice that the set Dα of discrete probability distributions p = (p1, . . . , pN ) on
{1, 2, . . . , N} that satisfy the constraint pi ≥ αi for all 1 ≤ i ≤ N , is a closed and convex subset
of the set D of distributions on {1, 2, . . . , N}. Then, thanks to the strict convexity of the function
p 7→ D(p||r) (see [6] for instance), we have the existence and the unicity of p∗ in Dα that achieves
the minimum of D(p||r), p ∈ Dα. Let us now prove that p∗ given by (8) is indeed the point
achieving the minimum. In order to do this, we prove that any other q ∈ Dα, q 6= p∗ can not be
a point of minimum. If q ∈ Dα, q 6= p∗, then there exist two indices i0 and j0 such that qi0 > p∗i0
and qj0 < p∗j0 . Since p∗i = αi for 1 ≤ i ≤ m, we necessarily have j0 > m (otherwise q is not in

Dα). Now, we also have that
qj0
rj0

<
qi0
ri0

. Indeed, let us denote β =
1−

∑m
j=1 αj

1−
∑m

j=1 rj
. Then we have two

cases: i0 > m and i0 ≤ m. In the first case, when i0 > m, then qi0 > p∗i0 = βri0 . Since we have

qj0 < p∗j0 = βrj0 , this implies that
qj0
rj0

<
qi0
ri0

. In the second case, when i0 ≤ m, then using the fact

that
∑N
i=1 αi ≤ 1 and that the ratios αi/ri are decreasing, we have β ≤

∑
j>m αj∑
j>m rj

≤ αi0/ri0 . And

consequently: qi0/ri0 > p∗i0/ri0 = αi0/ri0 ≥ β = qj0/rj0 . Therefore we also have
qj0
rj0

<
qi0
ri0

.

Finally, considering the function t 7→ f(t) = (qj0 + t) log
qj0+t

rj0
+ (qi0 − t) log

qi0+t

ri0
defined for t ≥ 0

and small, we compute f ′(0) = log
qj0
rj0
− log

qi0
ri0

< 0 and that shows that q can not be a point of

minimum of D(·||r) in Dα.
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Notice that the result stated in Lemma 2 is very similar to the computations in [2] where
the maximum likelihood discrete decreasing distribution is estimated from observed samples and
yields to the so-called Grenander estimator.
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Figure 3: Top left: the initial set of points s0 = {x0
j}1≤j≤n and the regions Ri (delimited by the

dashed squares). Top right: value of pP0
(Ri) for each region Ri where P0 is the maximal entropy

distribution such that the points are independent and such that no regions are (ε, P0)-meaningful
for s0, it is defined by (4). Bottom: two samples of n = 100 points with the law P0. These samples
look a bit more “structured” than uniform samples but they don’t have the same “look and feel”
as the initial set of points s0 = {x0

j}1≤j≤n. See the text for more detailed comments.

Let us also notice that the hypothesis ε/Nr in Theorem 1 is not a strong hypothesis since it
is satisfied as soon as ε ≤ 1 and there are at least two regions. In practice we are always in that
case.

On Figure 3 we illustrate Theorem 1. On the top left of the figure, we first show again the
initial set of points s0 = {x0

j}1≤j≤n and the regions {Ri}1≤i≤Nr (delimited by the dashed squares).
On the top right, we show for each region the value of pP0(Ri), where P0 is the distribution defined
in (4). Notice that under the uniform distribution U , all regions have a probability equal to 0.01.
Now, we have here that under P0, the most (ε, U)-meaningful region R1 (i.e. the one with NFAU

minimal) has a probability 5 times larger, and the second region R2 has a probability 2.5 larger.
This implies that if we sample n = 100 points with the law P0, the expectation of the number
of points in R1 is approximately 5 (whereas we have k0(R1; s0) = 12) and the expectation of the
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number of points in R2 is approximately 2.5 (whereas we have k0(R2; s0) = 7). On the bottom
of the figure we show two sets of n = 100 points sampled from P0. These samples may look a
bit more “structured” than uniform samples but they don’t have the same “look and feel” as the
initial set of points s0 = {x0

j}1≤j≤n. Yet, by definition, no regions are (ε, P0)-meaningful, which

means that there is no rejection of P0 with the set s0. This is in fact a kind of paradox of goodness
of fit tests: it is not because you don’t reject a distribution that this distribution fits your data.

In conclusion of this part, as it is illustrated by Figure 3, the samples from P0 are more
“structured” than uniform samples, but we don’t perceive in them the same perceptual groups as
in the original set of points. Therefore, we can ask: what distribution of points would produce,
“most of the time”, the same perception as {x0

j}1≤j≤n? This is the aim of the next section.

2.3 Distributions generating the same perceptual groups

We want to formalize here in this section the notion of “samples, that would, most of the time,
show the same perceptual groups as the initial set of points s0 = {x0

j}1≤j≤n”. In order to do
this, we first need to define more precisely what “perceptual groups” are. According to several
psychophysiological experiments ([11], [3] and [20]), it seems that there is a strong link between
the general a contrario approach using a uniform i.i.d. background noise model and human visual
perception. Therefore, in the following we define the perceptual groups of points in an original
set of points s0 = {x0

j}1≤j≤n as being the (ε, U)-meaningful regions for s0. We recall that the

U -meaningfulness of a region R for a set s0 = {x0
j}1≤j≤n of points in D = [0, 1]2 is measured by

the Number of False Alarms given by

NFAU (R; s0) := Nr ×B(n, k(R; s0), |R|), where k(R; s0) =

n∑
j=1

1x0
j∈R.

When NFAU (R; s0) < ε, the region R is (ε, U)-meaningful and it is a perceptual group for s0. The
smaller the value of NFAU (R; s0) is, the more meaningful and the more perceptually significant
the region is.
We can now mathematically define the set of distributions on points that generate, most of the
time, the same perceptual groups as the initial set of points s0 = {x0

j}1≤j≤n
Definition 2. Let s0 = {x0

j}1≤j≤n be a set of n points in the domain D = [0, 1]2. Let R =
{Ri}1≤i≤Nr be a set of test regions. We then denote by Q the set of probability distributions Q on
sets S = {X1, . . . , Xn} of n points in D such that for any region Ri, 1 ≤ i ≤ Nr,
• If NFAU (Ri; s

0) < ε (i.e. if the region is (ε, U)-meaningful for the initial set s0), then

MedQ(NFAU (Ri;S)) ≤ NFAU (Ri; s
0),

where MedQ denotes the median value under the distribution Q on the random variable S.

• Otherwise, if NFAU (Ri; s
0) ≥ ε (i.e. if the region is not (ε, U)-meaningful for the initial set

s0), then
MedQ(NFAU (Ri;S)) ≥ ε.

This means that when the points {X1, . . . , Xn} are sampled from a distribution in Q, then in
the majority of cases, the (ε, U)-meaningful regions Ri for s0 are at least as meaningful, whereas
non-meaningful regions remain non-meaningful.

Let us comment on the fact that in the above definition we use the median value instead of
the expectation. The reason for this is that if Y is a real valued random variable and if f is
any increasing function then we have Med(f(Y )) = f(Med(Y )), whereas this is not true for the
expectation. This implies in particular that, in our case, the above definition of Q is invariant
to the fact that the meaningfulness is measured by NFAU , or log(NFAU ), or any other increasing
function of NFAU .

We now characterize the maximum entropy distribution in Q∩I, in a way similar to what we
did in the previous section with P ∩ I.
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Theorem 2. Assume that ε/Nr ≤ 1/2 and that the regions {Ri}1≤i≤Nr are a partition of the
domain D. Let R1, . . . Rd denote the (ε, U)-meaningful regions for s0. Then, we have that Q∩I 6= ∅
and the maximum entropy distribution in Q∩I, denoted by Q0, is given by: its probability density
f̃Q0

is constant on each Ri, and

pQ0
(Ri) :=

∫
Ri

f̃Q0
(x) dx =


B−1
n,k(Ri;s0)(

1
2 ) if 1 ≤ i ≤ d

1−
∑d

j=1 B
−1

n,k(Rj ;s
0)

( 1
2 )

1−
∑d

j=1 |Rj |
· |Ri| if i > d.

(9)

In particular when d = 0, i.e. when there are no (ε, U)-meaningful regions for s0, then the
maximum entropy distribution in Q is the uniform distribution U .

Proof. By definition of Q ∈ Q and of the median value, we have that, for 1 ≤ i ≤ d,

Q ∈ Q ⇐⇒
{

PQ[NFAU (Ri;S) ≤ NFAU (Ri; s
0)] ≥ 1

2 for 1 ≤ i ≤ d
PQ[NFAU (Ri;S) ≤ ε] ≤ 1

2 for i > d

⇐⇒
{

PQ[k(Ri;S) ≥ k(Ri; s
0)] ≥ 1

2 for 1 ≤ i ≤ d
PQ[k(Ri;S) ≥ kmin(Ri)] ≤ 1

2 for i > d

where kmin(Ri) := min{0 ≤ k ≤ n;B(n, k, |Ri|) ≤ ε/Nr} is the minimal number of points that
have to be in Ri in order to make it (ε, U)-meaningful.
Now, when Q also belongs to I, the points are independent identically distributed and therefore
k(Ri;S) follows a binomial distribution of parameters n and pQ(Ri). This implies that for any k
integer, PQ[k(Ri;S) ≥ k] = B(n, k, pQ(Ri)). Using the fact that p 7→ B(n, k, p) is an increasing
function, we have

Q ∈ Q ∩ I ⇐⇒
{

pQ(Ri) ≥ B−1
n,k(Ri;s0)(

1
2 ) for 1 ≤ i ≤ d

pQ(Ri) ≤ B−1
n,kmin(Ri)

( 1
2 ) for i > d.

Finally, thanks to Lemma 2 applied with the constraints αi = B−1
n,k(Ri;s0)(

1
2 ) for 1 ≤ i ≤ d and

αi = 0 for i > d, we have the announced formula for the maximum entropy distribution Q0 in
Q∩ I satisfying the first set of constraints (the ones on meaningful regions).

Now, notice that since for 1 ≤ i ≤ d, we have B(n, k(Ri; s
0), |Ri|) ≤ ε

Nr
≤ 1

2 , this implies

B−1
n,k(Rj ;s0)(

1
2 ) ≥ |Ri| for 1 ≤ i ≤ d, and therefore γ :=

1−
∑d

j=1 B
−1

n,k(Rj ;s
0)

( 1
2 )

1−
∑d

j=1 |Rj |
≤ 1. Consequently,

for i > d, we have γ|Ri| ≤ |Ri| ≤ B−1
n,kmin(Ri)

( 1
2 ) (because by definition B(n, kmin(Ri), |Ri|) ≤

ε/Nr ≤ 1
2 ), which means that the second set of constraints (on non-meaningful regions) is au-

tomatically satisfied. Therefore the probability distribution Q0 defined by (9) is the maximum
entropy distribution in Q∩ I.

On Figure 4, we illustrate Theorem 2. On the top left, we show again the original set of points
s0 together with the test regions {Ri}1≤i≤Nr

, and on the top right we show the image of the values
of pQ0(Ri). In particular we have pQ0(R1) = B−1

100,12( 1
2 ) ' 0.116, pQ0

(R2) = B−1
100,7( 1

2 ) ' 0.066

and pQ0
(Ri) = 0.01× (1− B−1

100,12( 1
2 )− B−1

100,7( 1
2 ))/(1− 0.02) ' 0.0083 for i > 2 (all these values

have to be compared to the value 0.01 = |Ri| = pU (Ri)). Then on the bottom we show two
samples from Q0. These two samples of n = 100 points are respectively denoted by s1 and
s2. In the left sample, we have two (ε, U)-meaningful regions: the region R1 with 11 points has
log10(NFAU (R1, s

1) ' −6.2 (we had log10(NFAU (R1, s
0)) ' −7.3 in the original set of points s0)

and the second region R2 with 7 points has log10(NFAU (R2, s
1) ' −2.1 (we had also exactly the

same value log10(NFAU (R2, s
0)) in the original set of points s0). For the right sample, we also have

two (ε, U)-meaningful regions: the region R1 with 19 points has now log10(NFAU (R1, s
2) ' −16.2

and the second region R2 with 8 points has here log10(NFAU (R2, s
2) ' −3.1.
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Figure 4: Top left: the original set of points s0 with the regions Ri as squares delimited by the
dashed lines. Top right: values of pQ0(Ri) where Q0 is the maximum entropy distribution in Q∩I
given by Equation (9). Bottom : two samples of n = 100 points from the probability distribution
Q0. These two samples have the same (ε, U)-meaningful regions as the original set of points S0.
See the text for more details about the NFAU exact values for these regions. One can clearly
perceive in the two bottom figures perceptual groups that are similar to the ones of the original
set of points.
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Now, a natural question is: what is the link between the sets P and Q ? When ε/Nr ≤ 1/2,
we have that if P ∈ Q, then for a (ε, U)-meaningul region Ri of S0, 1 ≤ i ≤ d,

PP [k(Ri;S) ≥ k(Ri; s
0)] ≥ 1

2
≥ ε

Nr
,

and therefore P ∈ PRi
. This is quite logical: if a distribution P is such that, in the majority of

cases, samples from it have the same meaningful regions as the original set of points s0, then these
regions are not P -meaningful (they are not rare events under the law P ).
Now, for regions Ri, i > d, that are not (ε, U)-meaningful for s0, the situation is quite different.
Indeed it may happen that P ∈ Q and at the same time NFAP (Ri; s

0) < ε. It is for instance the
case when P makes the points independent and such that pP (Ri) is very small (i.e. smaller than
B−1
n,kmin(Ri)

(1/2) and than B−1
n,k(Ri;s0)(ε/Nr)).

The conclusion of this section is that we have been able to turn the a contrario detection
approach (that is originally a hypothesis testing method with multiple tests) into a generative
approach. To do this, we have defined a “canonical” way to associate to any set of points s0 =
{x0

j}1≤j≤n a probability distribution Q0 on sets of n points that

• makes the points independent;

• belongs to Q (i.e. points sampled from Q0 have, most of the time, the same perceptual
groups as the initial set s0);

• and is at the same time as “random” as possible, in the sense that it has maximum entropy.

The approach developed in this section is quite general and can be applied to other detection
problems that are formalized in terms of grouping laws. We will in particular, in the next section,
see how to extend it to the framework of line segments detection in an image.

3 Line segments in an image

In this second part of the paper, we will be interested in another application of the a contrario
approach, that is line segment detection in an image, as performed by the LSD algorithm of
Grompone, Jakubowicz, Morel and Randall in [15] and [16]. This algorithm is a great general-
ization of the alignment detection method of [9]. It can be easily tested on any image thanks to
the online demo on the Image Processing Online Journal (IPOL) at http://demo.ipol.im/demo/
gjmr_line_segment_detector/.

We first recall the general framework of the LSD algorithm (with slight modifications and
simplifications) and we introduce some notations.

3.1 Framework and notations

Given a grey level image I0 defined on a discrete domain Ω = {1, . . . ,M}×{1, . . . , N}, we compute
its orientation field θ0 : Ω → S1 = [0, 2π) as the orientation field of the level lines of I0, or, that
is equivalent, by

∀x ∈ Ω, θ0(x) =
π

2
+ Arg

∇I0(x)

‖∇I0(x)‖ ,

where ∇I0 is the gtradient of I0.
For a rectangle r in Ω (that is a set of pixels in Ω that belong to an underlying “true” rectangle

in the continuous domain, see Figure 5 for an illustration), we define its orientation ϕ(r) as the
orientation of one of its axis. The number of aligned points in θ0 it contains, according to a given
precision p, is defined by

k(r; θ0) :=
∑
x∈r

1|θ0(x)−ϕ(r)|≤pπ.
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We will also denote by Np = #Ω = M ·N the total number of pixels in Ω and by n(r) = #r the
number of pixels in a rectangle r. For an orientation field θ : Ω→ S1, we will denote its value at
a pixel x by θ(x) or by θx.

LSD: a Line Segment Detector

Figure 3: Rectangle approximation of line support region.
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Figure 4: Aligned points.

to define a noise or a contrario model H0 where the desired structure is not present. Then, an event
is validated if the expected number of events as good as the observed one is small on the a contrario
model. In other words, structured events are defined as being rare in the a contrario model.

In the case of line segments, we are interested in the number of aligned points. We consider the
event that a line segment in the a contrario model has as many or more aligned points, as in the
observed line segment. Given an image i and a rectangle r, we will note k(r, i) the number of aligned
points and n(r) the total number of pixels in r. Then, the expected number of events which are as
good as the observed one is

Ntest · PH0 [k(r, I) ≥ k(r, i)] (1)

where the number of tests Ntest is the total number of possible rectangles being considered, PH0 is the
probability on the a contrario model H0 (that is defined below), and I is a random image following
H0. The H0 stochastic model fixes the distribution of the number of aligned points k(r, I), which
only depends on the distribution of the level-line field associated with I. Thus H0 is a noise model
for the image gradient orientation rather than a noise model for the image.

Note that k(r, I) is an abuse of notation as I does not corresponds to an image but to a level-line
field following H0. Nevertheless, there is no contradiction as k(r, I) only depends on the gradient
orientations.

The a contrario model H0 used for line segment detection is therefore defined as a stochastic
model of the level-line field satisfying the following properties:

• {LLA(j)}j∈Pixels is composed of independent random variables

• LLA(j) is uniformly distributed over [0, 2π]

37

Figure 5: Example of an orientation field (elementary small segments), a rectangle r (delimited in
red), and its aligned points (for a precision p, hence here on the figure τ = pπ). Figure courtesy
of R. Grompone von Gioi.

Given a probability distribution P on a random orientation field Θ : Ω → S1, the Number of
False Alarms of r in θ0 under the noise model P is defined by

NFAP (r; θ0) = Ntests · PP [k(r; Θ) ≥ k(r; θ0)], (10)

where Ntests is the number of tests, that is the number of rectangles in an image of size M ×N .
It is of the order of (MN)5/2 (see [16]). In the definition (10), Θ is a random orientation field that
follows the distribution P and k(r; Θ) is therefore a random variable defined by

k(r; Θ) :=
∑
x∈r

1|Θ(x)−ϕ(r)|≤pπ.

In the LSD algorithm, the Number of False Alarms is computed with the uniform independent
distribution as a noise model (i.e. assuming the Θ(x) are independent and uniformly distributed
on S1). The LSD algorithm performs a region growing process, with a validation step, resulting in
a list of U -meaningful rectangles r1, . . . , rm. This is a short and incomplete description of the full
algorithm (there is in particular a scaling step that helps to cope with aliasing and quantization
artifacts), but we don’t need here to include all the improvement steps of the full algorithm.

Let us notice that in the original LSD algorithm, the precision p of the alignments is not fixed,
several precisions are tested. However since we have observed in experiments on several images
that most of the rectangles (about 95% of them) are obtained for the precision value p = 1/8,
and in order to make the ideas and computations clearer and simpler, we will in all the following
assume that there is only one tested precision p that is fixed to p = 1/8.
Let us also emphasize that the resulting meaningful rectangles of the LSD algorithm are “almost”
disjoint. Indeed, we have noticed on several experiments that the percentage of pixels that belong
to two meaningful rectangles at the same time is less than 1%. This is a very nice feature of
the LSD algorithm: because it works like a growing process, it does not need a “maximality” or
“optimality” step as it is the case of many a contrario detection methods (the original meaningful
alignments of [9], or the meaningful boundaries [10], etc.). In all the following we will assume
that the resulting rectangles of the LSD are disjoint. This assumption will help to simplify the
mathematical results, while not affecting the practical results.

3.2 Enriching the a contrario noise model

In a way similar to what we did for clusters of points in the first part of the paper, we here again
question the choice of the noise model P on the orientation field Θ. And in particular we introduce
the following sets of probability distributions.
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Definition 3. Let θ0 : Ω → S1 be an orientation field. Let r1, . . . , rm be the resulting disjoint
U -meaningful rectangles of the LSD algorithm on θ0. We then define the three following sets of
distributions:

• Let P denote the set of probability distributions P on Θ such that none of the rectangles
r1, . . . , rm are (ε, P )-meaningful in θ0, i.e.

P ∈ P ⇐⇒ ∀1 ≤ j ≤ m, NFAP (rj ; θ
0) ≥ ε.

• Let Q denote the set of probability distributions P on Θ such that if the orientation field is
sampled from P then, in most cases, the meaningul rectangles will be at least as meaningful
as in θ0.

Q ∈ Q ⇐⇒ ∀1 ≤ j ≤ m, MedQ(NFAU (rj ; Θ)) ≤ NFAU (rj ; θ
0).

• Finally, let I denote the set of probability distributions on Θ such that the Θ(x) are inde-
pendent (but not necessarily identically distributed).

We will also here again be interested in distributions in P (or Q) that have maximal entropy.
Notice however that we are not exactly in the same framework as in the case of clusters of points.
To see this, let us look at the formula of NFAU (r; θ0). When the orientations are independent
and uniformly distributed on the circle S1, the law of k(r; Θ) is the binomial distribution of
parameters n(r) and p. And this is a very different situation from the clusters of points where
the binomial distribution involved under the uniform independent noise model was of parameters
n (total number of points, fixed) and |R| (size of the region R). Therefore we can not directly
apply the propositions and theorems of the first part of the paper. Now, even if the situations are
different, we have “analogous” results.

Proposition 3. 1. The distribution P in P that has maximal entropy admits a probability
density fP given by

fP (θ) =
1

(2π)Np

m∏
j=1

a
hj(θ)
j ã

1−hj(θ)
j , (11)

where hj is the function defined by hj(θ) = 1 if k(rj ; θ) ≥ k(rj ; θ
0) and 0 otherwise (notice

that in fact hj is only a function of θ(x), x ∈ rj) and where

aj =
ε

Ntests ·B(n(rj), k(rj ; θ0), p)
and ãj =

1− ε/Ntests
1−B(n(rj), k(rj ; θ0), p)

.

2. The distribution P0 in P ∩ I defined by fP0
(θ) =

∏Np

x=1 f
(x)
P0

(θx) with

f
(x)
P0

(θx) =


1

2π if x /∈ ∪mj=1rj
1

2pπB
−1
n(rj),k(rj ;θ0)(

ε
Ntests

) if x ∈ rj and |θx − ϕ(rj)| ≤ pπ
1

2(1−p)π (1−B−1
n(rj),k(rj ;θ0)(

ε
Ntests

)) if x ∈ rj and |θx − ϕ(rj)| > pπ

is a local maximum of the entropy in P ∩ I.

Proof. A probability distribution P on Θ belongs to P if, by definition, for all regions rj , 1 ≤ j ≤
m, we have PP [k(rj ; Θ) ≥ k(rj ; θ

0)] ≥ ε
Ntests

. To such a probability distribution P we associate
the probability distribution Pa defined by

fPa
(θ) =

1

(2π)Np

m∏
j=1

a
hj(θ)
j ã

1−hj(θ)
j ,

where hj is the function defined by hj(θ) = 1 if k(rj ; θ) ≥ k(rj ; θ
0) and 0 otherwise; and with

aj and ãj respectively given by ajB(n(rj), k(rj ; θ
0), p) = PP [k(rj ; Θ) ≥ k(rj ; θ

0)] and ãj(1 −
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B(n(rj), k(rj ; θ
0), p)) = 1 − ajB(n(rj), k(rj ; θ

0), p). The condition P ∈ P then simply becomes
ajB(n(rj), k(rj ; θ

0), p) ≥ ε/Ntests. In a way similar to the proof of Proposition 2, we first prove
that H(Pa) ≥ H(P ). To see this we compute the Kullback-Leibler divergence D(P ||Pa):

D(P ||Pa) =

∫
[0,2π)Np

fP (θ) log
fP (θ)

fPa
(θ)

dθ1 . . . dθNp = −H(P )−
∫

[0,2π)Np

fP (θ) log fPa(θ)dθ1 . . . dθNp

= −H(P ) +Np log(2π)−
m∑
j=1

PP [k(rj ; Θ) ≥ k(rj ; θ
0)] log aj + (1− PP [k(rj ; Θ) ≥ k(rj ; θ

0)]) log ãj

= −H(P ) +Np log(2π)−
m∑
j=1

ajB(n(rj), k(rj ; θ
0), p) log aj + ãj(1−B(n(rj), k(rj ; θ

0), p)) log ãj

= −H(P ) +H(Pa),

because we have that∫
[0,2π)Np

1hj(θ)=1 dθ1 . . . dθNp
= (2π)NpB(n(rj), k(rj ; θ

0), p).

Then, since D(P ||Pa) ≥ 0, this proves that H(Pa) ≥ H(P ). Finally, a simple study of the
function t 7→ −t log t

B − (1− t) log 1−t
1−B shows that it is decreasing when t ≥ ε/Ntests, where here

B := B(n(rj), k(rj ; θ
0), p) is such that B < ε/Ntests (because the rectangle rj is (ε, U)-meaningful

in θ0). Therefore, the maximum entropy is achieved for Pa when ajB(n(rj), k(rj ; θ
0), p) = ε/Ntests

for all 1 ≤ j ≤ m.
For the second part of the proposition, let us look for the probability distribution P0 ∈ P ∩ I

that has maximal entropy. Since P0 ∈ I, its probability density fP0
is a product and therefore

H(P0) = −
Np∑
x=1

∫ 2π

0

f
(x)
P0

(θx) log f
(x)
P0

(θx) dθx.

When x /∈ ∪mj=1rj , there is no constraint on f
(x)
P0

and therefore the entropy of f
(x)
P0

is maximal
when it is the uniform distribution on [0, 2π).
Now, let rj be a rectangle and consider all x ∈ rj . Then since P0 ∈ P, we have the constraint

PP0
[k(rj ; Θ) ≥ k(rj ; θ

0)] ≥ ε

Ntests
, where k(rj ; Θ) =

∑
x∈rj

1|Θx−ϕ(rj)|≤pπ.

Under the law P0, since the Θx are independent (but nor necessarily identically distributed), the
random variable k(rj ; Θ) follows a so-called Poisson binomial distribution of parameters {qx}x∈rj
where

qx := PP0 [|Θx − ϕ(rj)| ≤ pπ] =

∫ ϕ(rj)+pπ

ϕ(rj)−pπ
f

(x)
P0

(θx) dθx.

Then by considering the Kullack-Leibler divergence between f
(x)
P0

and the distribution on θx that
is constant equal to qx/2pπ on [ϕ(rj) − pπ, ϕ(rj) + pπ] and equal to (1 − qx)/2(1 − p)π on the
remainder part of [0, 2π), we have that

H(f
(x)
P0

) ≤ log(2π)− qx log
qx
p
− (1− qx) log

1− qx
1− p ,

with equality when the two distributions are equal. Then the statement of the second part of the
proposition follows from the following lemma.

Lemma 3. Let n ≥ 1 be an integer, let p ∈ (0, 1) and let Hp be the function defined on [0, 1]n by
Hp(q1, . . . , qn) = −∑n

i=1 qi log qi
p + (1 − qi) log 1−qi

1−p . Let 1 < k0 ≤ n be an integer, and let C be

the function defined on [0, 1]n by C(q1, . . . , qn) = P[K ≥ k0], where K follows a Poisson binomial
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distribution of parameters q1, . . . , qn. We also make the assumption that n is large enough, and
p not too small, in such a way that 1 + 1

n+1 log p
1−p > 0. Finally let η ∈ (0, 1/2] be such that

B(n, k0, p) < η. Then, under the constraint C(q1, . . . , qn) ≥ η, a local maximum of Hp is achieved
when all the qi are equal to q := B−1

n,k0
(η).

Let us first comment on the assumption that 1+ 1
n+1 log p

1−p > 0. This assumption is equivalent

to p > 1/(1 + en+1). It will be always satisfied in our case since we take in practice p = 1/8 and
n is always larger than 1, having thus 1 + en+1 ≥ 1 + e2 ' 8.4.

The proof of the lemma is postponed to the Appendix. It is based on the computations of
the gradient and the Hessian of a symmetric function (symmetric means here invariant under any
permutation of the variables) under a symmetric constraint. Actually, we conjecture that the point
(q, . . . , q) is in fact the point of global maximum of Hp under the constraint C ≥ η. Now, this is
not obvious since symmetric functions under symmetric constraint do not necessarily have a global
maximum at a symmetric point. This is for instance discussed in the paper of Waterhouse [31]
where he shows that symmetric points are local extrema but where he also gives examples where
the global maximum of a symmetric function is not a symmetric point. However, we believe that
here in our case the point (q, . . . , q) is indeed a global maximum. We have in particular checked
this when n = 2. We also think that it is related to the result of Harremoës in [18] where he proves
that the binomial distribution is the maximum entropy distribution on suitably defined sets.

We show examples of samples from P0 on Figures 6, 7 and 8. As in the case of clusters, it
seems that these samples are not visually very “close” to θ0 in terms of line segment detection.
And this is again explained by the same phenomenon: in hypothesis testing, it is not because you
don’t reject a distribution that this distribution fits your data.

Now, for the set Q, the situation will be different since this set of probability distributions is
build on purpose to contain, in most cases, the same meaningful line segments (rectangles) as in
the original orientation field. We first state the proposition.

Proposition 4. 1. The distribution Q in Q that has maximal entropy admits a probability
density fQ given by

fQ(θ) =
1

(2π)Np

m∏
j=1

b
hj(θ)
j b̃

1−hj(θ)
j , (12)

where hj is the function defined by hj(θ) = 1 if k(rj ; θ) ≥ k(rj ; θ
0) and 0 otherwise (notice

that in fact hj is only a function of θx, x ∈ rj) and where

bj =
1

2B(n(rj), k(rj ; θ0), p)
and b̃j =

1

2(1−B(n(rj), k(rj ; θ0), p))
.

2. The probability distribution Q0 in Q∩ I given by fQ0
(θ) =

∏Np

x=1 f
(x)
Q0

(θx) with

f
(x)
Q0

(θx) =


1

2π if x /∈ ∪mj=1rj
1

2pπB
−1
n(rj),k(rj ;θ0)(

1
2 ) if x ∈ rj and |θx − ϕ(rj)| ≤ pπ

1
2(1−p)π (1−B−1

n(rj),k(rj ;θ0)(
1
2 )) if x ∈ rj and |θx − ϕ(rj)| > pπ

is a local maximum of the entropy in Q∩ I.

Proof. The proof of the proposition is analogous to the proof of the previous one. Indeed, we
notice that, starting from the definition of Q and of the median, we get

Q ∈ Q ⇐⇒ ∀1 ≤ j ≤ m, MedQ(NFAU (rj ; Θ)) ≤ NFAU (rj ; θ
0)

⇐⇒ ∀1 ≤ j ≤ m, PQ[NFAU (rj ; Θ) ≤ NFAU (rj ; θ
0)] ≥ 1

2

⇐⇒ ∀1 ≤ j ≤ m, PQ[k(rj ; Θ) ≥ k(rj ; θ
0)] ≥ 1

2
.
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This last equivalence has to be compared with the definition of P, where we had: P ∈ P if
and only if PP [k(rj ; Θ) ≥ k(rj ; θ

0)] ≥ ε
Ntests

. Thanks to this remark, it shows that the proof of
the proposition is exactly the same as in the case of P, except that we simply need to replace
B−1
n(rj),k(rj ;θ0)(

ε
Ntests

) by B−1
n(rj),k(rj ;θ0)(

1
2 ). Notice that this remark also implies that

Q ⊂ P.

On Figures 6, 7 and 8, we show for each image Pirée, Chairs and Valbonne: the original image
I0, the orientation field θ0, the rectangles output of the LSD algorithm, a sample from P0 and
a sample from Q0. Notice on these figures that, as expected, the samples from Q0 are more
structured than the one of P0, and resemble the original orientation field θ0 in terms of straight
structures perception.

3.3 Image reconstruction from an orientation field

Now that we have samples of orientation fields, the next natural question is : how can we recon-
struct an image from an orientation field? We first notice that not all orientation fields are the
orientation field of an image. Indeed, only the ones that satisfy a kind of null circulation condition
will correspond to conservative fields (and therefore to an image gradient). Notice also that even
in the case of an orientation field that comes from an image, there is no unicity since any change
of contrast on the image does not modify its orientation field.

We will solve here the question of reconstructing an image from a given orientation field θ by
looking for an image that has a gradient orientation field as close as possible to θ − π

2 in a sense
that we will define. This problem is highly related to the Poisson image editing algorithm of Pérez
et al. [28], where they copy the gradients of an image inside a domain in another image and then
recover an image without color or boundary artefacts.

Consider an orientation field θ defined on a discrete domain Ω of size M × N pixels. We
then choose an arbitrary amplitude function R : Ω → R+ (the choice of this amplitude function
will be discussed later at the end of the section). We define the vector field V on Ω by V (x) =
(v1(x), v2(x)) = (R(x) sin θ(x),−R(x) cos θ(x)). And we look for an image u : Ω→ R such that

∑
x∈Ω

‖∇u(x)− V (x)‖22 =
∑
x∈Ω

(
∂u

∂x1
(x)− v1(x)

)2

+

(
∂u

∂x2
(x)− v2(x)

)2

is minimal.

Thanks to Parseval’s theorem and to the property that the discrete Fourier transform (DFT) of
the partial derivatives of u are related to the DFT of u by

∀ξ = (ξ1, ξ2) ∈ Ω,
∂̂u

∂x1
(ξ) =

2iπξ1
M

û(ξ) and
∂̂u

∂x1
(ξ) =

2iπξ2
N

û(ξ),

the above minimization problem is equivalent to find û such that

∑
ξ∈Ω

∣∣∣∣2iπξ1M
û(ξ)− v̂1(ξ)

∣∣∣∣2 +

∣∣∣∣2iπξ2N
û(ξ)− v̂2(ξ)

∣∣∣∣2 is minimal.

This is a very simple quadratic minimization problem, and it is solved by taking

∀ξ ∈ Ω \ {0}, û(ξ) =
2iπξ1
M v̂1(ξ) + 2iπξ2

N v̂2(ξ)(
2iπξ1
M

)2

+
(

2iπξ2
N

)2

and û(0) equal to any arbitrary constant (this is the mean value of the reconstructed image u).
Samples of P0 or Q0 provide an orientation field θ, and then we have to choose an amplitude

field R. We have investigated three possible choices:

20



Figure 6: From left to right, top to bottom: the original Pirée image I0 of size 600× 600 pixels,
the output of the LSD, the whole output rectangles of the LSD, the orientation field θ0, a sample
from P0 and a sample from Q0.
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Figure 7: From left to right, top to bottom: the original Chairs image I0 of size 512× 512 pixels,
the output of the LSD, the whole output rectangles of the LSD, the orientation field θ0, a sample
from P0 and a sample from Q0.
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Figure 8: From left to right, top to bottom: the original Valbonne image I0 of size 539 × 648
pixels, the output of the LSD, the whole output rectangles of the LSD, the orientation field θ0, a
sample from P0 and a sample from Q0.

23



1. Rrand that is obtained by taking the R(x), x ∈ Ω, independent identically distributed uni-
formly on [0, 1].

2. Rcst that is simply constant, i.e. R(x) = 1 for all x ∈ Ω.

3. R100 that is defined by R(x) = 100 for x ∈ ∪mj=1rj (where the rj , 1 ≤ j ≤ m, are the output
rectangles of the LSD) and R(x) = 1 otherwise.

The idea underlying the third choice R100 is that the output rectangles of the LSD are generally
also edges in the image and the contrast (gradient amplitude) on these rectangles is large. However,
we believe that the choice of R is an important question that is beyond the scope of the present
paper and that should be studied in some future works.

Examples of images u reconstructed from a sample of P0 or Q0 with the three different choices
for R are shown on Figures 9, 10 and 11. Notice how these reconstructed images are “close” to
the original ones in the sense that they contain the same perceptual straight structures. Notice
also how the tree in the Valbonne image disappears in the reconstructed images. This is easily
explained by the fact that the tree was not detected by the LSD algorithm. This also shows that
the proposed reconstruction method could be used for clutter removal.

Now, for any reconstructed image we can apply the LSD algorithm on it and look at what
the ouput is. This is illustrated on Figure 12 where the LSD is applied respectively to the image
reconstructed from the sample of P0 and R100, to the image reconstructed from the sample of
Q0 and R100 (these two images are the ones of the last row of Figure 9, and we denote them
respectively uP0

and uQ0
) and to the original image I0. As expected, the LSD on uP0

does not
produce many segments whereas the ouput segments on uQ0 are almost identical to the ones of
the original image I0. This is a sanity check for the proposed method since the distribution Q0 is
build on purpose to ensure that, in most cases, the LSD output will be the same as in the original
image.

4 Discussion, conclusion and future work

In this paper, we have shown how the a contrario detection approach can be changed into a
generative approach enabling the generation of new images that have the same perceptual content
as an original given image. We have extensively used the maximum entropy principle as a way
to get probability distributions that satisfy some visual detection constraints while being at the
same time as random as possible. In that sense this paper belongs to the field of what could be
called visual information theory.

This paper answered some questions but it raises also many ones in different directions:

• It raises theoretical question: for instance in the first part, some results were stated making
the assumption that the regions are disjoint, but what happens if they are not disjoint? Is
is still possible to have explicit formulas for P0 and Q0? In the second part, we also have
open theoretical questions mainly about P0 and Q0 as global maximum entropy distributions
(and not only local ones), and also about the image reconstruction process (like for instance:
what is the “best” choice for the amplitude R?)

• It will lead to extensions: we have shown how to get generative models from clusters of points
and from line segment detection in an image. But we believe other a contrario detection
frameworks could be explored, for instance edge detection or histogram modes. Then we will
have to face the problem of combining several detectors in an common generative model.

• It can have applications: as illustrated by Figure 11, the proposed generative model leads to
a clutter removal method. More generally, the generative model is able to capture the per-
ceptual structures (line segments for instance) while making the rest of the image “random”.
This could lead to applications in image compression.
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Figure 9: The original image I0 was here the Pirée image of Figure 6. On the left column, we show
the images reconstructed from a sample of P0 (the one shown on Figure 6) and with respectively
from top to bottom Rrand, Rcst and R100. On the right column, same experiment but with the
sample from Q0.
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Figure 10: The original image I0 was here the Chairs image of Figure 7. On the left column,
we show the images reconstructed from a sample of P0 (the one shown on Figure 7) and with
respectively from top to bottom Rrand, Rcst and R100. On the right column, same experiment
but with the sample from Q0.

26



Figure 11: The original image I0 was here the Valbonne image of Figure 8. On the left column,
we show the images reconstructed from a sample of P0 (the one shown on Figure 8) and with
respectively from top to bottom Rrand, Rcst and R100. On the right column, same experiment
but with the sample from Q0. Notice how the tree, present in the top right corner of the original
image I0, has here disappeared in the reconstructed images.

27



Figure 12: Output of the LSD algorithm on respectively, from left to right : the image recon-
structed from the sample of P0 and R100, the image reconstructed from the sample of Q0 and
R100 (these two images are the ones of the last row of Figure 9), and the original Pirée image I0.
Notice haw the last two images are very similar.

Appendix A

Proof of Lemma 3

Proof. It is based on the fact that we consider here a symmetric function Hp (i.e. symmetric in
the sense that it is invariant under any permutation of q1, . . . , qn) under a constraint that is also
symmetric. We first notice that a point of local maximum of Hp(q1, . . . , qn) = −∑n

i=1 qi log qi
p +

(1 − qi) log 1−qi
1−p under the constraint C(q1, . . . , qn) ≥ η (where η ∈ (0, 1/2] and C(q1, . . . , qn) =

P[K ≥ k0], with K following a Poisson binomial distribution of parameters q1, . . . , qn) is necessarily
achieved when C(q1, . . . , qn) = η. Indeed if it is not the case then we will have a point (q1, . . . , qn)
of local maximum of Hp with C(q1, . . . , qn) > η. Now, at least one the qi is not equal to p (because
B(n, k0, p) < η by hypothesis) and therefore we can slightly modify it, still satisfying the constraint
C(q1, . . . , qn) ≥ η and increasing Hp.

Let us now prove that (q, . . . , q) with q := B−1
n,k0

(η) is a point of local maximum of Hp under the

constraint C(q1, . . . , qn) = η. We consider smooth (at least C2) curves t 7→ qi(t) defined for t real in
a neighbourhood I of 0, and such that ∀t ∈ I, C(q1(t), . . . , qn(t)) = η and q1(0) = . . . = qn(0) = q.
Then we define for all t ∈ I, h(t) = Hp(q1(t), . . . , qn(t)) and we will compute h′(0) and h′′(0). A
simple computation leads to

h′(0) = −
(

log
q

1− q − log
p

1− p

) n∑
i=1

q′i(0) (13)

and h′′(0) = −
(

log
q

1− q − log
p

1− p

) n∑
i=1

q′′i (0)− 1

q(1− q)
n∑
i=1

q′i(0)2. (14)

Now, since C(q1(t), . . . , qn(t)) = η for all t, and since C is symmetric, we get

∂C

∂q1
(q, . . . , q)

n∑
i=1

q′i(0) = 0 and (15)

∂C

∂q1
(q, . . . , q)

n∑
i=1

q′′i (0) +
∂2C

∂q1∂q2
(q, . . . , q)

n∑
i,j=1,i6=j

q′i(0)q′j(0) +
∂2C

∂q2
1

(q, . . . , q)

n∑
i=1

q′i(0)2 = 0. (16)
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To compute the partial derivatives of C, we go back to its definition. Indeed C is defined by:
C(q1, . . . , q2) = P[Y1 + . . . + Yn ≥ k0] where the Yi are independent Bernoulli random variables
with respective parameter qi. We can then develop the probability term and rewrite C as

C(q1, . . . , q2) = q1(P[Y2 + . . .+ Yn ≥ k0 − 1]− P[Y2 + . . .+ Yn ≥ k0]) + P[Y2 + . . .+ Yn ≥ k0]

and also C(q1, . . . , q2) = q1q2(P2 − 2P1 + P0) + (q1 + q2)(P1 − P0) + P0,

where P2 := P[Y3+. . .+Yn ≥ k0−2] ; P1 := P[Y3+. . .+Yn ≥ k0−1] and P0 := P[Y3+. . .+Yn ≥ k0].
These functions depend only on q3, . . . , qn. This allows us to easily compute the partial derivatives
of C at the point (q, . . . , q) and get

∂C

∂q1
(q, . . . , q) =

(n− 1)!

(k0 − 1)!(n− k0)!
qk0−1(1− q)n−k0 , ∂2C

∂q2
1

= 0

and
∂2C

∂q1∂q2
=

(n− 2)!

(k0 − 1)!(n− k0)!
qk0−2(1− q)n−k0−1(k0 − 1− (n− 1)q).

Then from (15), we deduce that
n∑
i=1

q′i(0) = 0,

and as a first consequence we thus have, from (13), that h′(0) = 0. Then using (16), the values of
the partial derivatives of C and the fact that

∑
j 6=i q

′
j(0) = −q′i(0), we get that (14) gives:

h′′(0) = − q

1− q

(
1 + (

k0 − 1

n− 1
− q)(log

q

1− q − log
p

1− p )

) n∑
i=1

q′i(0)2.

By definition of q, we have B(n, k0, q) = η ≤ 1
2 (by hypothesis). Then by Lemma 1, and more

precisely by Equation (7) in its proof, we get

1 + (
k0 − 1

n− 1
− q)(log

q

1− q − log
p

1− p ) ≥ 1 +
1

n+ 1
log

p

1− p > 0

by hypothesis. Finally, we have obtained that

h′(0) = 0 and h′′(0) < 0,

showing that the point (q, . . . , q) is a local maximum of Hp under the constraint C ≥ η.
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