A REMARK ON PFAFFIAN SURFACES AND ACM BUNDLES

DANIELE FAENZI

Abstract

We prove that a general surface of degree d is the Pfaffian of a square matrix with (almost) quadratic entries if and only if $d \leq 15$.

1. Introduction

Given a sheaf \mathscr{E} on a projective variety Y polarized by $\mathscr{O}_{Y}(1)$, we consider the cohomology modules:

$$
\mathrm{H}_{*}^{p}(Y, \mathscr{E})=\bigoplus_{t \in \mathbb{Z}} \mathrm{H}^{p}\left(Y, \mathscr{E} \otimes \mathscr{O}_{Y}(t)\right)
$$

Here we will focus on those sheaves \mathscr{E} that satisfy $\mathrm{H}_{*}^{p}(Y, \mathscr{E})=0$ for all $0<$ $p<\operatorname{dim}(Y)$. These are called aCM sheaves, standing for arithmetically CohenMacaulay, indeed $\mathrm{H}_{*}^{0}(Y, \mathscr{E})$ is a Cohen-Macaulay module over the coordinate ring of Y iff \mathscr{E} is an aCM sheaf.

It is possible to classify all aCM bundles on projective spaces, (Horrocks, Hor64), quadrics (Knörrer, Knö87) and few other varieties, see BGS87 and EH88]. On the other hand, a detailed study of the families aCM bundles of low rank has been carried out in some cases, for instance some Fano threefolds (see e.g. Mad02, AC00, AF06) and Grassmannians, AG99. An even richer literature is devoted to aCM bundles of rank 2 on hypersurfaces Y_{d} of degree d in \mathbb{P}^{n}. If $n \geq 4$, and Y_{d} is general, the classification is complete, as it results from the papers [Kle78, CM00, CM04, CM05, KRR05], KRR06.

On the other hand, for $n=3$, the classification has been completed only up to $d \leq 5$, see [Fae05], CF06, while only partial results are available for higher d. One of them is due to Beauville and Schreyer (Bea00), and states that Y_{d} can be written as a linear Pfaffian if and only if Y_{d} supports a certain aCM 2-bundle \mathscr{E} with $\operatorname{det}(\mathscr{E}) \cong \mathscr{O}_{Y_{d}}(d-1)$, and this happens for general Y_{d} if and only if $d \leq 15$,

In this short note we prove that a general surface Y_{d} of degree d in \mathbb{P}^{3} supports an aCM bundle \mathscr{E} of rank 2 with $\operatorname{det}(\mathscr{E}) \cong \mathscr{O}_{Y_{d}}(d-2)$ if and only if $d \leq 15$. This amounts to writing the equation of Y_{d} as the Pfaffian of a certain skew-symmetric matrix. Part of the proof relies on a computation done with the computer algebra package Macaulay 2.

Aknowledgements. I would like to thank Luca Chiantini for several interesting discussions on these topics.

[^0]
2. Quadratic Pfaffian Surfaces

We will assume that the underlying field \mathbf{k} is algebraically closed of characteristic zero. Recall that a torsionfree sheaf \mathscr{E} on a polarized variety Y is called initialized if $\mathrm{H}^{0}(Y, \mathscr{E}) \neq 0$, and $\mathrm{H}^{0}(Y, \mathscr{E}(-1))=0$.

Let us introduce some notation. Given a projective variety $Y \subset \mathbb{P}^{n}$, polarized by $\mathscr{O}_{Y}(1)$, we write h_{Y} for the Hilbert function of Y, and $R(Y)$ for the coordinate ring of Y, so that $h_{Y}(t)=\operatorname{dim}_{\mathbf{k}}\left(R(Y)_{t}\right)$. We will write R for the coordinate ring of \mathbb{P}^{3}.

Given a smooth projective surface Y, polarized by $H_{Y}=c_{1}\left(\mathscr{O}_{Y}(1)\right)$, and given an integer r and the Chern classes $\left(c_{1}, c_{2}\right)$, we denote by $\mathrm{M}_{Y}\left(r, c_{1}, c_{2}\right)$ the moduli space of Gieseker-semistable sheaves with respect to H_{Y}, of rank r with Chern classes c_{1}, c_{2}. We will often denote the Chern classes by a pair integers: this stands for c_{1} times H_{Y} and c_{2} times the class of a point in Y.

Recall that the vanishing locus Z of a nonzero global section of a rank 2 initialized bundle \mathscr{E} on a surface Y is arithmetically Gorenstein (i.e. R_{Z} is a Gorenstein ring) if and only if \mathscr{E} is aCM. The index i_{Z} of a zero-dimensional aG subscheme Z is the largest integer c such that $h_{Z}(c)<\operatorname{len}(Z)$.

For basic material on aCM bundles and aG subschemes we refer to IK99, Die96, Kle98. In particular we recall the notation $\mathscr{G}_{h}(i, m, d)$, see CF06, Section 3]. We will make use of the computer algebra package Macaulay 2, see GS.

We will prove that a general surface Y_{d} of degree d is the Pfaffian of a skewsymmetric matrix with quadratic entries if and only if $d \leq 15$. This sentence makes sense only if d is an even number, so we will look for almost quadratic matrices. Namely, we consider a matrix of the form:

$$
\begin{equation*}
\mathscr{O}_{\mathbb{P}}(-2)^{d} \oplus \mathscr{O}_{\mathbb{P}}(-1)^{\epsilon} \rightarrow \mathscr{O}_{\mathbb{P}}^{d} \oplus \mathscr{O}_{\mathbb{P}}(-1)^{\epsilon} \tag{2.1}
\end{equation*}
$$

where ϵ is the remainder of the divison of d by 2 . A surface Y_{d} can be written as an (almost) quadratic Pfaffian if and only if there is an aCM initialized rank 2 bundle \mathscr{E} on Y_{d} with $c_{1}(\mathscr{E})=d-2$.

By [CF06, Proposition 4.1], we always have $c_{1}(\mathscr{E}) \leq d-1$. The case $c_{1}(\mathscr{E})=d-1$ corresponds to matrices of size $2 d$ whose entries are linear forms. This case was addressed by Beauville and Schreyer, who proved a general surface Y_{d} is the Pfaffian of a matrix of this form if and only if $d \leq 15$.

Recall by CF06, Proposition 4.1] that $c_{2}(\mathscr{E})=d-2$ implies $c_{2}(\mathscr{E})=$ $d(d-1)(d-2) / 3$.

Theorem 2.1. On a general surface $Y_{d} \subset \mathbb{P}=\mathbb{P}^{3}$, it is defined a rank 2 initialized aCM bundle \mathscr{E} with:

$$
c_{1}(\mathscr{E})=d-2, \quad c_{2}(\mathscr{E})=\frac{d(d-1)(d-2)}{3}
$$

if and only if $d \leq 15$.
Proof. Note that the aCM bundle \mathscr{E} is defined on a surface Y_{d} if and only if Y_{d} contains an aG subscheme Z of length $m=d(d-1)(d-2) / 3$, and index $i=2 d-6$. This means that the function h_{Z} must agree with $h_{\mathbb{P}}$ up to degree $d-3$ and symmetric around $d-2$. In particular h_{Z} is uniquely determined.

To compute the dimension of the component $\mathscr{G}_{\mathrm{h}_{Z}}(i, m, d)$ of the scheme $\mathscr{G}(i, m, d)$ we may choose a subscheme Z having a minimal graded resolution of the form:

$$
0 \rightarrow \mathscr{O}_{\mathbb{P}}(-2 d+2) \rightarrow \begin{gathered}
\mathscr{O}_{\mathbb{P}}(-d)^{d-1} \\
\oplus
\end{gathered} \rightarrow \begin{gathered}
\mathscr{O}_{\mathbb{P}}(-d+2)^{d-1} \\
\mathscr{O}_{\mathbb{P}}(-d+1)^{\epsilon}
\end{gathered} \rightarrow \begin{array}{|c}
\oplus
\end{array} \rightarrow J_{Z, \mathbb{P}} \rightarrow 0
$$

Then the dimension of this component equals $4 d^{2}-4 d-1$, see Kle98, Theorem 2.3]. Therefore, given a surface Y_{d} in the image of $p_{m, i, d}$ we have:

$$
\begin{aligned}
\operatorname{dim}\left(\operatorname{Im}\left(p_{m, i, d}\right)\right) & \leq 4 d^{2}-4 d-1-\operatorname{dim}\left(p_{m, i, d}^{-1}\left(Y_{d}\right)\right) \leq \\
& \leq 4 d^{2}-4 d-1-d+1-\operatorname{dim}\left(\mathrm{M}_{Y_{d}}(2, d-2, m)\right) \leq \\
& \leq 4 d^{2}-5 d+\frac{d^{2}-18 d+41}{6}
\end{aligned}
$$

It is easy it see that this quantity is strictly less than $\mathrm{h}^{0}\left(\mathbb{P}, \mathscr{O}_{\mathbb{P}}(d)\right)-1$ for $d \geq 16$. So the map $p_{m, i, d}$ cannot be dominant for $d \geq 16$.

To prove the converse, we use the package Macaulay 2. We distinguish two cases according to the parity of d, and we let f be a generic mapping of the form 2.1 .

In both cases, we consider the map Pf which associates to a skew-symmetric matrix the square root of its determinant. We would like to prove that Pf is dominant at the point represented by the matrix f, for each $d \leq 15$. For $d=1,2$, the assertion is trivial, while the case $d=3$ is clear by [Fae05].

For $d \geq 4$, we consider the the ideal J generated by the Pfaffians of order $d-2$ and degree $d-2$. Let \mathfrak{m} be the ideal generated by the four variables of R, and define the ideal:

$$
\mathcal{J}=\mathfrak{m}^{2} \cdot J
$$

By Adler's method (see for instance the appendix of Bea00]), our claim takes place if we show the equality:

$$
\operatorname{dim}_{\mathbf{k}}\left(R / \mathcal{J}_{d}\right)=0
$$

For each $4 \leq d \leq 15$, our claim can be checked by the Macaulay 2 script:

```
isPrime(32003)
kk = ZZ/32003
R = kk[x_0..x_3];
almostQuadratic = (e1,e2,R) -> (
    -- a random almost quadratic skew-symmetric
    -- matrix on R of order e1+e2
    e:=e1+e2;
    N1:=binomial(e1,2);
    N2:=binomial(e2,2);
    N12:=e1*e2;
    N:=binomial (e,2);
    S:=kk[t_0..t_(N-1)];
    G:=genericSkewMatrix(S,t_0,e);
    substitute(G,random(R^{0},R^{N1:0,N12:-1,N2:-2}))
    )
quadraticAdler:=(M,d)->(
    --- returns the ideal generated by Pfaffians of degree d-2
    --- and by all polynomials of degree 2
    I := pfaffians((rank (source(M))-2),M);
```

```
    minI := mingens(I);
    mi := (min(degrees source minI))_0;
    va := ideal(vars(R));
    ideal(submatrix(minI,
    (toList select(0..(rank(source(minI))-1),i->(degree (minI)_i_0)_0==mi))
    ))*(va^(2)))
isDominant = (d)->(
    M := almostQuadratic((d-2*floor(d/2)),d,R);
    PF := quadraticAdler(M,d);
    (0 == hilbertFunction(d,R/PF))
    )
for d from 4 to 15 do print (d,isDominant(d))
```

This returns the value true for each $4 \leq d \leq 15$, in the approximate time of four hours on a personal computer.

References

[AC00] Enrique Arrondo and Laura Costa, Vector bundles on Fano 3-folds without intermediate cohomology, Comm. Algebra 28 (2000), no. 8, 3899-3911. MR 2001d:14043
[AF06] Enrique Arrondo and Daniele Faenzi, Vector bundles with no intermediate cohomology on Fano threefolds of type V_{22}, Pacific J. Math. 225 (2006), no. 2, 201-220. MR MR2233732
[AG99] Enrique Arrondo and Beatriz Graña, Vector bundles on $G(1,4)$ without intermediate cohomology, J. Algebra 214 (1999), no. 1, 128-142. MR 2000e:14069
[Bea00] Arnaud Beauville, Determinantal hypersurfaces, Michigan Math. J. 48 (2000), 39-64, Dedicated to William Fulton on the occasion of his 60th birthday. MR 2002b:14060
[BGS87] Ragnar-Olaf Buchweitz, Gert-Martin Greuel, and Frank-Olaf Schreyer, Cohen-Macaulay modules on hypersurface singularities. II, Invent. Math. 88 (1987), no. 1, 165-182. MR 88d:14005
[CF06] Luca Chiantini and Daniele Faenzi, Rank 2 arithmetically cohen-macaulay bundles on a general quintic surface, Available at the authors' web page, www.math.unifi.it/faenzi/papers/, 2006.
[CM00] Luca Chiantini and Carlo Madonna, ACM bundles on a general quintic threefold, Matematiche (Catania) 55 (2000), no. 2, 239-258 (2002), Dedicated to Silvio Greco on the occasion of his 60th birthday (Catania, 2001). MR 1984199
[CM04] , A splitting criterion for rank 2 bundles on a general sextic threefold, Internat. J. Math. 15 (2004), no. 4, 341-359. MR MR2069682 (2006a:14072)
[CM05] \qquad , ACM bundles on general hypersurfaces in \mathbb{P}^{5} of low degree, Collect. Math. 56 (2005), no. 1, 85-96. MR MR2131134 (2006a:14073)
[Die96] Susan J. Diesel, Irreducibility and dimension theorems for families of height 3 Gorenstein algebras., Pac. J. Math. 172 (1996), no. 2, 365-397 (English).
[EH88] David Eisenbud and Jürgen Herzog, The classification of homogeneous CohenMacaulay rings of finite representation type, Math. Ann. 280 (1988), no. 2, 347-352. MR MR929541 (89c:13012)
[Fae05] Daniele FaEnzi, Rank 2 arithmetically cohen-macaulay bundles on a nonsingular cubic surface, Available on the arxiv server, http://arxiv.org/abs/math.ag/0504492, 2005.
[GS] Daniel R. Grayson and Michael E. Stillman, Macaulay 2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/.
[Hor64] Geoffrey Horrocks, Vector bundles on the punctured spectrum of a local ring, Proc. London Math. Soc. (3) 14 (1964), 689-713. MR $30 \# 120$
[IK99] Anthony Iarrobino and Vassil Kanev, Power sums, Gorenstein algebras, and determinantal loci, Lecture Notes in Mathematics, vol. 1721, Springer-Verlag, Berlin, 1999, Appendix C by Iarrobino and Steven L. Kleiman. MR MR1735271 (2001d:14056)
[Kle78] Hans Kleppe, Deformation of schemes defined by vanishing of Pfaffians, J. Algebra 53 (1978), no. 1, 84-92. MR MR0498556 (58 \#16657)
[Kle98] Jan O. Kleppe, The smoothness and the dimension of PGor (H) and of other strata of the punctual Hilbert scheme, J. Algebra 200 (1998), no. 2, 606-628. MR MR1610672 (99k:14007)
[Knö87] Horst Knörrer, Cohen-Macaulay modules on hypersurface singularities. I, Invent. Math. 88 (1987), no. 1, 153-164. MR 88d:14004
[KRR05] Mohan N. Kumar, Prabhakar A. Rao, and Girivau V. Ravindra, Arithmetically Cohen-Macaulay Bundles on Hypersurfaces, Available on the arxiv server, http://arxiv.org/abs/math.ag/0507161, 2005.
[KRR06] _ , Arithmetically Cohen-Macaulay Bundles on Threefold Hypersurfaces, Available on the arxiv server, http://arxiv.org/abs/math.ag/0611620, 2006.
[Mad02] Carlo Madonna, ACM vector bundles on prime Fano threefolds and complete intersection Calabi-Yau threefolds, Rev. Roumaine Math. Pures Appl. 47 (2002), no. 2, 211-222 (2003). MR 1979043
E-mail address: faenzi@math.unifi.it
Dipartimento di Matematica "U. Dini", Università di Firenze, Viale Morgagni 67/a, I-50134, Florence, Italy

URL: http://www.math.unifi.it/faenzi

[^0]: 2000 Mathematics Subject Classification Primary 14F05, 14J30, 14J45, 14J60; Secondary 14D20.

 The author was partially supported by Italian MIUR funds and the EAGER network (contract HPRN-CT-2000-00099).

