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Two View Geometry

e Cameras P and P’ such that

x — PX x' = P'X

e Baseline between the cameras is non-zero.

Given an image point in the first view, where is the corresponding
point in the second view?

What is the relative position of the cameras?

What is the 3D geometry of the scene?



Correspondence Geometry

Given the image of a point in one view, what can we say about its
position in another?

¢ epipolar line
forx

e A point in one image “generates” a line in the other image.

e This line is known as an epipolar line, and the geometry which
gives rise to it is known as epipolar geometry.



Epipolar line

Epipolar constraint

* Reduces correspondence problem to 1D search along an
epipolar line



Epipolar pencil

\ baseline / /

As the position of the 3D point X varies, the epipolar planes “rotate”
about the baseline. This family of planes is known as an epipolar
pencil. All epipolar lines intersect at the epipole.



Epipolar Geometry

Epipolar Plane T1

'C/

= Right epipolar line

e [he epipolar line I’ is the image of the ray through x.

e The epipole €' is the point of intersection of the line joining the
camera centres—the baseline—with the image plane.

e The epipole is also the image in one camera of the centre of the
other camera.

e All epipolar lines intersect in the epipole.



Example: converging cameras




Example: motion parallel to image plane
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Fundamental Matrix

/
®X<—>X

o X'l (x) =0

o I'(x)=Fx
® X''"Fx =0 c \
® F 1s 3X3 matrix of rank 2

@ det(F )=0




Properties of F

e Fis arank 2 homogeneous maitrix with 7 degrees of freedom.

e Point correspondence: If x and x’ are corresponding image points,
then x''Fx = 0.

e Epipolar lines:
o 1" = Fx is the epipolar line corresponding to x.
o 1=F'x"is the epipolar line corresponding to x’.
e Epipoles:
o Fe=0 Fle' =0



Fundamental Matrix in terms of camera
matrices

C \

® ['is projection of ray cx 1n camera C’
® |'— (PPC) x (PPPTx) PPt =1

ol —Fx F=[],PPT ¢€=PC



Matrix notation for vector product

The vector product v xx can be represented as a matrix multiplication

V X X = [V],X
where

(_] - 1]_. b ¥ ?_.-1 ;u




Projective Reconstruction from 2 views



Given

Corresponding points x; < x_ in two images.
Find
Cameras P and P’ and 3D points X, such that

x; =PX; : X;: = PIX?;



Reconstruction Ambiguity

Given: image point correspondences x; < X,
compute a reconstruction:

{P’1 P’, Xz} with x; = PX Xg = P’XZ-
Ambiguity

x; =PX; =P H(H)_l X; = 155{3

{P, P, X} is an equivalent Projective Reconstruction.



Reconstruction takes place in following steps

e Compute fundamental matrix F from point correspondences
® Decompose F to get camera projection matrices

e (Compute points in 3D by triangulation



Camera projection matrix from F

P and P’can be obtained upto projective transformation due
to projective ambiguity

F = [e].P'PT
Canonical pair of cameras P =[I | o] and P’ = M| t]

Factor the fundamental matrix Fas F = [t], M t=¢€

Get € from svd(F)

FT e; =0 e/ eigenvector with minimum eigen value



Reconstructing the points in 3D

e Back project rays and compute intersection
e Rays do not intersect in presence of noise

e Estimate X by minimizing projection error

14
’
v,
g

min
X

C(x,x') = d(x,x)* + d(x’, x")*

where d(*, %) is the Euclidean distance between the points.



Computation of the Fundamental Matrix



Basic equations

Given a correspondence
The basic incidence relation is
X "Fx =0

May be written

vrfi+ 2 yfio+ ' fizstyefo +yyfo+yfatafatyufat+ fz=0.



Single point equation - Fundamental matrix

Gives an equation :

[ fir)
Ji2
f13
fo1
(2'z. 2"y, 2" e vy, ey, 1) | fe | =0
o3
f31
I32
ey

where
t = {fnﬁ flih f13, fm, fzzﬁ fz:aﬁ f:ah f.aza f:a:z)T

holds the entries of the Fundamental matrix



Total set of equations

Af
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e [ has 9 entries but defined upto scale
® Singularity constraint det(F)=0
e [ has 7 degrees of freedom

® 7 point algorithm - nonlinear equations Sarple size
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® 8 point algorithm -linear solution

- constraint enforcement
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® In presence of noise 7 point algorithm could be more
efficient



Computing F from 7 points

e F has only 7 degrees of freedom.
e |t is possible to solve for F from just 7 point correspondences.



7-point algorithm

Computation of F from 7 point correspondences

() Form the 7 x 9 set of equations Af = 0.
(i) System has a 2-dimensional solution set.
(i) General solution (use SVD) has form

f = )\f{] + ,uf1

(iv) In matrix terms

F = AFo + uF,
(v) Condition det F = 0 gives cubic equation in A and .
(vi) Either one or three real solutions for ratio A : .



Complete 8-point algorithm

8 point algorithm has two steps :

(i) Linear solution. Solve Af = 0 to find F.
(ii) Constraint enforcement. Replace F by F'.



8 Point Algorithm

e 8 points = unigue solution
e > 8 points = least-squares solution.

Least-squares solution

1) Form equations Af = 0.

i) Take SVD : A =UDV'.

i) Solution is last column of V (corresp : smallest singular value)
Iv) Minimizes ||Af|| subject to ||f|| = 1.
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The singularity constraint

Fundamental mtrix' has rank 2 : det(F) = 0.
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Left : Uncorrected F — epipolar lines are not coincident.

Right: Epipolar lines from corrected F.



Correcting F using the Singular Value Decomposition

If F is computed linearly from 8 or more correspondences, singularity
condition does not hold.

SVD Method

(i) SVD:F =UDV'

(i) Uand Vv are orthogonal, D = diag(r, s, t).
(iii)y r > s > t.

(iv) Set F' =Udiag(r,s,0)V'.

(V) Resulting F’ is singular.

(vi) Minimizes the Frobenius norm of F — F’
(vii) F’is the "closest” singular matrix to F.



The normalized 8-point algorithm

Raw 8-point algorithm performs badly in presence of noise.

Normalization of data

e 8-point algorithm is sensitive to origin of coordinates and scale.

e Data must be translated and scaled to “canonical’ coordinate
frame.

e Normalizing transformation is applied to both images.
e [ranslate so centroid is at origin

e Scale so that RMS distance of points from origin is /2.
e “Average point”is (1,1,1)".



Normalized 8-point algorithm

(i) Normalization: Transform the image coordinates :

}T{g:TX«g
!l
X, = TX,

(i) Solution: Compute F from the matches x; « x;
X/ TFx; = 0
(iii) Singularity constraint: Find closest singular F toF.

(iv) Denormalization: F = T’ TET,



