
Fuzzy Sets and Systems 80 (1996) 377 381 

FUZZY 
sets  a n d  s y s t e m s  

On fuzzy compact-open topology 

S. Dang a, A. Behera b'* 
Department of Mathematics, Government College, Rourkela- 769 004, India 

b Department of Mathematics, Regional Engineering College, Rourkela-769 008, India 

Received October 1994 

Abstract 

The concept of fuzzy compact-open topology is introduced and some characterizations of this topology are discussed. 
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1. Introduction 2. Preliminaries 

Ever since the introduction of fuzzy set by Zadeh 
[13] and fuzzy topological space by Chang [2], 
several authors have tried successfully to generalize 
numerous pivot concepts of general topology to the 
fuzzy setting. The concept of compact-open topol- 
ogy has a vital role in defining function spaces 
in general topology. We intend to introduce the 
concept of fuzzy compact-open topology and con- 
tribute some theories and results relating to this 
concept. The concepts of fuzzy local compactness 
and fuzzy product topology play a vital role in the 
theory that we have developed in this paper. We 
have used the fuzzy locally compactness notion due 
to Wong [11], Christoph [3] and fuzzy product 
topology due to Wong [12]. 

The concepts of fuzzy topologies are standard by 
now and can be referred from [2, 8, 13]. For the 
definitions and various results of fuzzy topology, 
fuzzy continuity, fuzzy open map, fuzzy compact- 
ness we refer to [2]. For the definitions of fuzzy 
point and fuzzy neighborhood of a fuzzy point we 
refer to [8]. 

So far as the notation is concerned, we denote 
fuzzy sets by letters such as A, B, C, U, V, W, etc. I x 
denotes the set of all fuzzy sets on a nonempty set 
X. 0x and lx denote, respectively, the constant 
fuzzy sets taking the values 0 and 1 on X. A, A t, A' 
will denote the fuzzy closure, fuzzy interior and the 
fuzzy complement of A e I x, respectively. 

We need the following definitions and results for 
our subsequent use. 

* Corresponding author. 

Theorem 2.1 (Ganguly and Saha [5]). A mapping 
f : X ~ Y from ant is  X to ant is  Y is said to be fuzzy  
continuous at a fuzzy  point xt o f  X if and only if for  

0165-0114/96/$15.00 (() 1996 Elsevier Science B.V. All rights reserved 
SSDI 0165-0114(95)00138-7 

anjali
Text Box
Published in Fuzzy Sets and Systems, 1996, Vol 80, Iss 3, P 377- 381 author email abehera@nitrkl.ac.in

anjali
Text Box
Archived with Dspace@nitrhttp://dspace.nitrkl.ac.in/dspace

anjali
Text Box



378 S. Dang, A. Behera / Fuzzy Sets and Systems 80 (1996) 377 381 

every fuzzy neiohborhood V of  f(xt) ,  there exists 
a fuzzy neighborhood U of x, such tha t f (U)  <~ V. 

f is said to be fuzzy continuous on X if it is so at 
each fuzzy point of X.  

Definition 2.2. (Chang [2]). A mapping f :  X ~ Y 
is said to be a fuzzy homeomorphism iffis bijective, 
fuzzy continuous and fuzzy open. 

Definition 2.3 (Srivastava and Srivastava [10]). An 
fts (X, T) is called a fuzzy Hausdorff space or T2- 
space if for any pair of distinct fuzzy points (i.e., 
fuzzy points with distinct supports) xt and y,, there 
exist fuzzy open sets U and V such that xt ~ U, 
y ~ V a n d  U A V=Ox.  

Definition 2.4 (Wong [11]). An fts (X, T) is said to 
be fuzzy locally compact if and only if for every 
fuzzy point xt in X there exists a fuzzy open set 
U e T such that xt ~ U and U is fuzzy compact, i.e., 
each fuzzy open cover of U has a finite subcover. 

a fuzzy open set U such that xt e U and U is fuzzy 
compact. Since X is fuzzy Hausdorff, by Theorem 
4.13 of [6], U is fuzzy closed; thus U = 0. Consider 
a fuzzy point Yr ~ (Ix - U). Since X is fuzzy Haus- 
dorff, by Definition 2.3 there exist open sets C and 
D such that xt ~ C and y, ~ D and C A D = 0x. Let 
V = C  A U. Hence V~<U implies I T ~ < u = u .  
Since 17 is f-closed and U is fuzzy compact, by 
Theorem 4.2 of [6], it follows that 17 is fuzzy com- 
pact. Thus x~ e 17 ~< U and 0 is fuzzy compact. The 
converse follows from Proposition 2.6(b). [] 

Definition 2.8 (Katsara and Lin [7]). The product 
of two fuzzy sets A and B in an fts (X, T) is 
defined as (A × B)(x, y ) =  min(A(x), B(y)) for all 
(x, y) e X × Y. 

Definition 2.9 (Azad [1]). I f f / :X i  ~ Yi, i = 1,2, 
then f l  xf2:X1 × X  2 ----r Y1 × Y2 is defined by 
(fl × f2 ) (x l , x2 )= (fl(xl),f2(x2)) for each (xl,x2) 
X1 × X2. 

Note 2.5. Each fuzzy compact space is fuzzy locally 
compact. 

Proposition 2.6. In an Hausdorff fts X,  the following 
conditions are equivalent: 

(a) X is fuzzy locally compact. 
(b) For each fuzzy point xt in X ,  there exists 

a fuzzy open set U in X such that xt ~ U and 0 is 
fuzzy compact. 

Proof. (a) =*- (b): By hypothesis for each fuzzy 
point xt in X there exists a fuzzy open set U which 
is fuzzy compact. Since X is fuzzy Hausdorff (a 
fuzzy compact subspace of a fuzzy Hausdorff space 
is fuzzy closed [6]) U is fuzzy closed: thus U = 0. 
Hence xt e U and 0 is fuzzy compact. 

(b) =, (a): Obvious. [] 

Proposition 2.7. Let X be a Hausdorfffts. Then X is 
fuzzy locally compact at a fuzzy point xt in X if and 
only if for every f-open set U containing xt, there 
exists an f-open set V such that xt ~ V, 17 is fuzzy 
compact and 17 <<. U. 

Proof. First suppose that X is fuzzy locally com- 
pact at an f-point xt. By Definition 2.4 there exists 

Theorem 2.10 (Azad [1]). For any two fuzzy sets 
A and B in I x , ( A × B ) ' = ( A ' x l x )  V ( l x x B ' ) .  
Similarly, if fi : Xi  ~ Yi, i = 1, 2, then 
(fl ×f2)- l(Bx × B : ) = f ? l ( B 1 ) × f 2 1 ( B 2 )  for all 
BI × B2 c X2 x Y2. 

Definition 2.11. Let X and Y be two fts's. The 
function T : X × Y ~ Y x X defined by T (x, y) = 
(y, x) for each (x, y)~ X x Y is called a switching 
map. 

The proof of the following lemma is easy. 

Lemma 2.12. The switchino map T : X  x Y 
Y × X defined as above is fuzzy continuous. 

3. Fuzzy compact-open topology 

We now introduce the concept of fuzzy compact- 
open topology in the set of all fuzzy continuous 
functions from an fts X to an fts Y. 

Definition 3.1. Let X and Y be two fts's and let 

y x  = {f: X ~ Y I f  is fuzzy continuous}. 
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We give this class yX a topology called the fuzzy 
compact-open topology as follows: Let 

:,f = {K e IX: K is fuzzy compact in X} 

and 

~ ' =  V e l Y : V i s f u z z y o p e n i n Y } .  

For  any K ~ :U and V e ~',  let 

Nr.v = { f •  YX: f (K)  <~ V}. 

The collection {NK, v: K e ~ ,  V • U} can be used 
as a fuzzy subbase [4] to generate a fuzzy topology 
on the class yx,  called the fuzzy compact-open 
topology. The class Y x with this topology is called 
a fuzzy compact-open topological space. Unless 
otherwise stated, yX will always have the fuzzy 
compact-open topology. 

We now consider the induced map of a given 
function f :  Z x X -~ Y. 

Definition 4.3. Let X, Y, Z be fts's and 
f : Z  x X ~ Y be any function. Then the induced 
m a p f : X - *  r z  is defined by (f(xt))(zr)=f(zr,  xt) 
for f-points x~ ~ X and zr ~ Z. Conversely, given 
a function f : X - - ,  y z  a corresponding function 
f can also be defined by the same rule. 

The continuity of f can be characterized in terms 
of the continuity o f f  and vice versa. We need the 
following result for this purpose. 

Proposition 4.4. Let X and Y be two fis's with 
Y fuzzy compact. Let xt be any fuzzy point in X and 
N be a fuzzy open set in the fuzzy product space 
X x Y containing {xt} x Y. Then there exists some 
fuzzy neighborhood W of xt in X such that 
{x,} x Y ~ W x  Y <~N. 

4. Evaluation map 

We now consider the fuzzy product topological 
space y x  x X and define a fuzzy continuous map 
from y x x X into Y. 

Definition 4.1. The mapping e: y X x  X --, Y de- 
fined by e(f, xt) =f(x t )  for each f-point xt ~ X and 
f s  yX is called the fuzzy evaluation map. 

Theorem 4.2. Let X be a fuzzy locally compact 
Hausdorff space. Then the fuzzy evaluation map 
e: yX x X -~ Y is fuzzy continuous. 

Proof. Consider (f, x,) e yX x X where f •  yX and 
x t E X .  Let V be a fuzzy open set containing 
f(x~) = e(f, xt) in Y. Since X is fuzzy locally com- 
pact and f is fuzzy continuous, by Proposition 2.7, 
there exists a fuzzy open set U in X such that 
x, • U, 0 is fuzzy compact a n d f ( U )  ~ V. 

Consider the fuzzy open set Nc.v x U in yX x X. 
Clearly ( f , x , ) • N v . v  x U. Let ( g , x , ) e N c . v X  U 
be arbitrary; thus 9(t2)~< V. Since x , e  U, we 
have g(x,)e  V and hence e ( g , x , ) = g ( x , ) e V .  
Thus e (Nc . vxU)<~V,  showing e to be fuzzy 
continuous. []  

Proof. It is clear that {xt} x Y is fuzzy homeomor- 
phic [2] to Y and hence {x,} x Y is fuzzy compact 
[9]. We cover {x~} x Y by the basis elements 
{U x V} (for the fuzzy topology of X x Y) lying in 
N. Since {x,} x Y is fuzzy compact, {U x V} has 
a finite subcover, say, a finite number of basis 
elements UI x V1 . . . . .  U, x V,. Without loss of 
generality we assume that x t ~ U i  for each 
i =  1,2 . . . . .  n; since otherwise the basis elements 
would be superfluous. Let 

W = % U i .  
i = 1  

Clearly W is fuzzy open and xt e W. We show that 

W x Y ~ + (Ui x Vi). 
i=1 

Let (xr, Ys) be any fuzzy point in W x Y. We con- 
sider the fuzzy point (x,,ys). Now (xt, y~)e Ui x Vi 
for some i; thus Yse Vi. But x re  Uj for every 
j = 1, 2 . . . . .  n (because x, e W). Therefore (x ,  ys) e 
Uix Vi, as desired. But Uix Vi <~ N for all i = 1, 
2, . . . ,  n; and 

W x Y <~ + (Uix Vi). 
i = l  

Therefore W x Y ~< N. []  
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Theorem 4.5. Let Z be a fuzzy locally compact 
Hausdorff space and X, Y be arbitrary fuzzy 
topological spaces. Then a map f :  Z × X -4 Y is 
fuzzy continuous if and only if ~ X - 4  y z  is fuzzy 
continuous, where f is defined by the rule 

(f(x~))(z~) =f(z~, x,). 

Proof. Suppose that f is fuzzy continuous. Con- 
sider the functions 

Theorem 5.1 (The exponential law). Let X and 
Z be fuzzy locally compact Hausdorffspaces. Then 
for any fuzzy topological space Y, the function 

E: y z , , x  ._, ( y z ) x  

defined by E ( f )  = f (i.e., E(f)(xt)(z,,) = f(z,,, xt)= 
(f(xt))(z,,))for all f :  Z x X -4 Y is a fuzzy homeomor- 
phism. 

Z x X  .... ~ Z x  YZ ~ , y Z x Z  , y, 

where iz denotes the fuzzy identity function on Z, 
t denotes the switching map and e denotes the 
evaluation map. Since et(iz xf)(z~, x , )= et(z~,f(x,)) 
= e(f(x,),z~)---J~xt)(z~)=f(z~, xt), it follows that 

f = et(iz x f); and f being the composition of fuzzy 
continuous functions is itself fuzzy continuous. 

Conversely suppose that f is fuzzy continuous. 
Let Xk be any arbitrary fuzzy point in X. We have 
f (xk)  e y z .  Consider a subbasis element Nr, v= 
{g e yZ: o(K) <~ U, K ~ I z is fuzzy compact and 
U e I r is fuzzy open} containing f(Xk). We need to 
find a fuzzy neighborhood [8] W of Xk such that 
f ( w )  <~ NK, v; this will suffice to prove f to be 
a fuzzy continuous map. 

For any fuzzy point z, in K, we have 
(f(Xk))(Z,) =f(z, , ,  Xk) ~ U; thus f ( K  x {Xk} ) ~ U, 
i.e., K x {Xk} <~f-I(U). Sincefis fuzzy continuous, 
f - ~ ( U )  is a fuzzy open set in Z x X. Thus f -  I(U) is 
a fuzzy open set in Z x X  containing K x {Xk}. 
Hence by Proposition 4.4, there exists a fuzzy 
neighborhood W of xk in X such that K x {xk} 
~ K x W  ~ f - I ( U ) .  Therefore f ( K x W ) ~ U .  

Now for any x, e W  and z , ~ K ,  f ( z~ , x , )=  
(f(x,))(z,)e U. Therefore (f(x,))(K)<<, U for all 
x , e  W, i.e., f(x.)e NK.v for all x , e  W. Hence 
f ( w )  ~ NK, v as desired. [] 

5. Exponential map 

We define exponential law by using induced 
maps (of. Definition 4.3) and study some of its 
properties. 

Proof. (a) Clearly E is onto. 
(b) For E to be i~ective, let E ( f ) =  E(g) for 

f, g: Z × X -4 Y. Thus f = 0, where f a n d  0 are the 
induced maps o f f  and g, respectively. Now for any 
fuzzy point x, in X and any fuzzy point zu in Z, 
f(z,,, xt) = (f(xt)(z,,)) = (0(xt)(z,)) = g(z,,, xt); thus 
f = g .  

(c) For proving the fuzzy continuity of E, con- 
sider any fuzzy subbasis neighborhood V of f in 
( y z ) x  i.e., V is of the form N~:.w where K is a fuzzy 
compact subset of X and W is fuzzy open in yZ. 
Without loss of generality we may assume that 
W = NL. v where L is a fuzzy compact subset of 
Z and U E I r is fuzzy open. Thenf(K) ~< NL.V = W 
and this implies that ( f (K))(L)  <~ U. Thus for any 
fuzzy point x, in K and for all fuzzy point z, in L, we 
have (f(x,))(z,,) ~ U, i.e.,f(z,, x,) ~ O and therefore 
f ( L  × K)<~ U. Now since L is fuzzy compact in 
Z and K is fuzzy compact in X, L x K is also fuzzy 
compact in Z × X (cf. [9]) and since U is a fuzzy 
open set in Y we conclude t h a t f e  NL×K.C, ~< yz×x. 
We assert that E(NL×K.V) <~ Nr.w.  Let g ~ NL×K,u 
be arbitrary. Thus g(L × K)<~ U, i.e., g(z,,, x t )=  
(0(xt))(z,) ~ U for all fuzzy point z, e L ~< Z and for 
all fuzzy points xt ~ K <<. X. So (0(xt))(L) ~< U for 
all fuzzy points xt e K ~< X, i.e., (0(xt)) E NL, V = W 
for all fuzzy points x , ~ K  <~X, i.e., (0(x~))~ 
NL, v = W for all fuzzy points xt ~ K <~ X. Hence 
we have 0(K)~< W, i.e., 0 = E ( g ) e  Ni,:,w for any 
g e NL×r,u. Thus E(NL×K.v)<~ Nicw. This proves 
that E is fuzzy continuous. 

(d) For proving the fuzzy continuity of E-  1 we 
consider the following evaluation maps: ej :(yZ)X 
x X - - * Y  z defined by e l ( f x t ) = f ( x t )  where 

f e ( y Z ) X  and x, is any fuzzy point in X and 
e2 : yZ x Z -4 Y defined by e2(g, z,,) = g(z,) where 
g e yZ and z, is a fuzzy point in Z. Let 0 denote the 
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compos i t i on  of  the fol lowing fuzzy 
functions:  

( Z x X ) × ( y Z ) X  "r ( y Z ) X x ( Z x X )  

con t inuous  

i×, ( y z ) x  x ( X  x Z)  

( ( y Z ) X x X ) x  z c.,.z y Z x Z  ~ y ,  

where  i, iz deno te  the fuzzy ident i ty  maps  on 
(yZ)X and  Z respect ively and  T , t  denote  the 
switching maps.  Thus  O : ( Z  x X) x (yZ)X __. y ,  i.e., 
~b ~ Y Iz×x~×ly~x. W e  cons ider  the m a p  

~:  ycz×xl~Iv~l x ~ ( y z × x  ff~l " 

(as defined in the s ta tement  of the theorem,  in fact it 
is E). So 

E(qJ) ~ ( y z × x ) IY'~p, 

i.e., we have a fuzzy con t inuous  m a p  

p,(t~):(yz)x ~ yz,~x.  

N o w  for any  fuzzy po in t s  z , , e Z ,  x t e X  and  
f e  y z × x ,  it is a rou t ine  ma t t e r  to check tha t  

(E(tp)o E ) ( f ) ( z , ,  xt) = f ( z , ,  xt); hence /~(~b)oE= 
identi ty.  S imi lar ly  for any  O e ( Y Z )  x and  fuzzy 
po in ts  x, e X, z, E Z, it is a lso a rou t ine  ma t t e r  to 
check tha t  (E°F,(O))(O)(x,)(zu)= O(xt)(z,); hence 
E o/~(~) = identi ty.  This  comple tes  the p r o o f  that  
E is a fuzzy h o m e o m o r p h i s m .  [ ]  

Definition 5.2. The  m a p  E in T h e o r e m  5.1 is cal led 
the exponen t ia l  map.  

An easy consequence  of T h e o r e m  5.1 is as fol- 
lows. 

Corollary 5.3. Let  X ,  Y, Z be f u z z y  locally compact 

Hausdor f f  spaces. Then the map 

S: Y x × z r  ~ Z x 

defined by S ( f  g) = g o f  is f u z z y  continuous. 

Proof. Cons ide r  the fol lowing compos i t ions :  

X x y X  x Z r r ,×i, z r  y x  , y X x z r x x  , x x X  

:--. z r x ( y X x X )  i×"1, Z r x Y  ": , Z ,  

where T, t denote  the switching maps ,  ix and i de- 
note  the fuzzy ident i ty  funct ions on X and  Z r, 
respectively,  and  ej and  e2 denote  the eva lua t ion  
maps.  Let  q~ = e2 '~ (i x e l )  ° (t x ix)" T. By T he o re m 
5.1, we have an exponent ia l  m a p  

y X x Z  r 
E : Z X ~ × z  " __. (Z x) 

zX× ~ × z '  ( zX)r ,  ×z' Since q~ , E(q~) e ; let S = E(q~), 
i.e., S : y X x z r ~ z  x is fuzzy cont inuous .  F o r  
f 6  y X ,  g ~ Z r and  for any fuzzy po in t  xt in X, it is 

easy to see that  S ( f  g)(xt) = g ( f (x t ) ) .  [ ]  
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