On fuzzy compact-open topology

S. Dang^a, A. Behera^{b,*}

^a Department of Mathematics, Government College, Rourkela-769 004, India ^b Department of Mathematics, Regional Engineering College, Rourkela-769 008, India

Abstract

The concept of fuzzy compact-open topology is introduced and some characterizations of this topology are discussed.

Keywords: Fuzzy locally compact Hausdorff space; Fuzzy product topology; Fuzzy compact-open topology; Fuzzy homeomorphism; Evaluation map; Exponential map.

1. Introduction

Ever since the introduction of fuzzy set by Zadeh [13] and fuzzy topological space by Chang [2], several authors have tried successfully to generalize numerous pivot concepts of general topology to the fuzzy setting. The concept of compact-open topology has a vital role in defining function spaces in general topology. We intend to introduce the concept of fuzzy compact-open topology and contribute some theories and results relating to this concept. The concepts of fuzzy local compactness and fuzzy product topology play a vital role in the theory that we have developed in this paper. We have used the fuzzy locally compactness notion due to Wong [11], Christoph [3] and fuzzy product topology due to Wong [12].

2. Preliminaries

The concepts of fuzzy topologies are standard by now and can be referred from [2, 8, 13]. For the definitions and various results of fuzzy topology, fuzzy continuity, fuzzy open map, fuzzy compactness we refer to [2]. For the definitions of fuzzy point and fuzzy neighborhood of a fuzzy point we refer to [8].

So far as the notation is concerned, we denote fuzzy sets by letters such as A, B, C, U, V, W, etc. I^X denotes the set of all fuzzy sets on a nonempty set X. 0_X and 1_X denote, respectively, the constant fuzzy sets taking the values 0 and 1 on X. $\overline{A}, A^\circ, A'$ will denote the fuzzy closure, fuzzy interior and the fuzzy complement of $A \in I^X$, respectively.

We need the following definitions and results for our subsequent use.

Theorem 2.1 (Ganguly and Saha [5]). A mapping $f: X \to Y$ from an fts X to an fts Y is said to be fuzzy continuous at a fuzzy point x_t of X if and only if for

^{*} Corresponding author.

every fuzzy neighborhood V of $f(x_t)$, there exists a fuzzy neighborhood U of x_t such that $f(U) \leq V$.

f is said to be fuzzy continuous on X if it is so at each fuzzy point of X.

Definition 2.2. (Chang [2]). A mapping $f: X \to Y$ is said to be a fuzzy homeomorphism if *f* is bijective, fuzzy continuous and fuzzy open.

Definition 2.3 (Srivastava and Srivastava [10]). An fts (X, T) is called a fuzzy Hausdorff space or T_2 -space if for any pair of distinct fuzzy points (i.e., fuzzy points with distinct supports) x_t and y_r , there exist fuzzy open sets U and V such that $x_t \in U$, $y_r \in V$ and $U \land V = 0_X$.

Definition 2.4 (Wong [11]). An fts (X, T) is said to be fuzzy locally compact if and only if for every fuzzy point x_t in X there exists a fuzzy open set $U \in T$ such that $x_t \in U$ and U is fuzzy compact, i.e., each fuzzy open cover of U has a finite subcover.

Note 2.5. Each fuzzy compact space is fuzzy locally compact.

Proposition 2.6. In an Hausdorff fts X, the following conditions are equivalent:

(a) X is fuzzy locally compact.

(b) For each fuzzy point x_t in X, there exists a fuzzy open set U in X such that $x_t \in U$ and \overline{U} is fuzzy compact.

Proof. (a) \Rightarrow (b): By hypothesis for each fuzzy point x_t in X there exists a fuzzy open set U which is fuzzy compact. Since X is fuzzy Hausdorff (a fuzzy compact subspace of a fuzzy Hausdorff space is fuzzy closed [6]) U is fuzzy closed: thus $U = \overline{U}$. Hence $x_t \in U$ and \overline{U} is fuzzy compact.

(b) \Rightarrow (a): Obvious.

Proposition 2.7. Let X be a Hausdorff fts. Then X is fuzzy locally compact at a fuzzy point x_t in X if and only if for every f-open set U containing x_t , there exists an f-open set V such that $x_t \in V$, \overline{V} is fuzzy compact and $\overline{V} \leq U$.

Proof. First suppose that X is fuzzy locally compact at an *f*-point x_r . By Definition 2.4 there exists

a fuzzy open set U such that $x_t \in U$ and U is fuzzy compact. Since X is fuzzy Hausdorff, by Theorem 4.13 of [6], U is fuzzy closed; thus $U = \overline{U}$. Consider a fuzzy point $y_r \in (1_X - U)$. Since X is fuzzy Hausdorff, by Definition 2.3 there exist open sets C and D such that $x_t \in C$ and $y_r \in D$ and $C \land D = 0_X$. Let $V = C \land U$. Hence $V \leq U$ implies $\overline{V} \leq \overline{U} = U$. Since \overline{V} is f-closed and U is fuzzy compact, by Theorem 4.2 of [6], it follows that \overline{V} is fuzzy compact. Thus $x_t \in \overline{V} \leq U$ and \overline{U} is fuzzy compact. The converse follows from Proposition 2.6(b). \Box

Definition 2.8 (Katsara and Lin [7]). The product of two fuzzy sets A and B in an fts (X, T) is defined as $(A \times B)(x, y) = \min(A(x), B(y))$ for all $(x, y) \in X \times Y$.

Definition 2.9 (Azad [1]). If $f_i: X_i \to Y_i$, i = 1, 2, then $f_1 \times f_2: X_1 \times X_2 \to Y_1 \times Y_2$ is defined by $(f_1 \times f_2)(x_1, x_2) = (f_1(x_1), f_2(x_2))$ for each (x_1, x_2) $X_1 \times X_2$.

Theorem 2.10 (Azad [1]). For any two fuzzy sets A and B in I^X , $(A \times B)' = (A' \times 1_X) \vee (1_X \times B')$. Similarly, if $f_i: X_i \to Y_i$, i = 1, 2, then $(f_1 \times f_2)^{-1}(B_1 \times B_2) = f_1^{-1}(B_1) \times f_2^{-1}(B_2)$ for all $B_1 \times B_2 \subset X_2 \times Y_2$.

Definition 2.11. Let X and Y be two fts's. The function $T: X \times Y \to Y \times X$ defined by T(x, y) = (y, x) for each $(x, y) \in X \times Y$ is called a switching map.

The proof of the following lemma is easy.

Lemma 2.12. The switching map $T: X \times Y \rightarrow Y \times X$ defined as above is fuzzy continuous.

3. Fuzzy compact-open topology

We now introduce the concept of fuzzy compactopen topology in the set of all fuzzy continuous functions from an fts X to an fts Y.

Definition 3.1. Let X and Y be two fts's and let $Y^X = \{f: X \to Y | f \text{ is fuzzy continuous}\}.$

We give this class Y^{x} a topology called the fuzzy compact-open topology as follows: Let

 $\mathscr{K} = \{ K \in I^X : K \text{ is fuzzy compact in } X \}$

and

 $\mathscr{V} = \{ V \in I^Y : V \text{ is fuzzy open in } Y \}.$

For any $K \in \mathscr{K}$ and $V \in \mathscr{V}$, let

$$N_{K,V} = \{ f \in Y^X : f(K) \leq V \}.$$

The collection $\{N_{K,V}: K \in \mathcal{H}, V \in \mathcal{V}\}$ can be used as a fuzzy subbase [4] to generate a fuzzy topology on the class Y^X , called the fuzzy compact-open topology. The class Y^X with this topology is called a fuzzy compact-open topological space. Unless otherwise stated, Y^X will always have the fuzzy compact-open topology.

4. Evaluation map

We now consider the fuzzy product topological space $Y^X \times X$ and define a fuzzy continuous map from $Y^X \times X$ into Y.

Definition 4.1. The mapping $e: Y^X \times X \to Y$ defined by $e(f, x_t) = f(x_t)$ for each *f*-point $x_t \in X$ and $f \in Y^X$ is called the fuzzy evaluation map.

Theorem 4.2. Let X be a fuzzy locally compact Hausdorff space. Then the fuzzy evaluation map $e: Y^X \times X \rightarrow Y$ is fuzzy continuous.

Proof. Consider $(f, x_t) \in Y^X \times X$ where $f \in Y^X$ and $x_t \in X$. Let V be a fuzzy open set containing $f(x_t) = e(f, x_t)$ in Y. Since X is fuzzy locally compact and f is fuzzy continuous, by Proposition 2.7, there exists a fuzzy open set U in X such that $x_t \in U$, \overline{U} is fuzzy compact and $f(\overline{U}) \leq V$.

Consider the fuzzy open set $N_{\overline{U},V} \times U$ in $Y^X \times X$. Clearly $(f, x_t) \in N_{\overline{U},V} \times U$. Let $(g, x_r) \in N_{\overline{U},V} \times U$ be arbitrary; thus $g(\overline{U}) \leq V$. Since $x_r \in U$, we have $g(x_r) \in V$ and hence $e(g, x_r) = g(x_r) \in V$. Thus $e(N_{\overline{U},V} \times U) \leq V$, showing e to be fuzzy continuous. We now consider the induced map of a given function $f: Z \times X \rightarrow Y$.

Definition 4.3. Let X, Y, Z be fts's and $f: Z \times X \to Y$ be any function. Then the induced map $\hat{f}: X \to Y^Z$ is defined by $(\hat{f}(x_t))(z_r) = f(z_r, x_t)$ for f-points $x_t \in X$ and $z_r \in Z$. Conversely, given a function $\hat{f}: X \to Y^Z$, a corresponding function f can also be defined by the same rule.

The continuity of \hat{f} can be characterized in terms of the continuity of f and vice versa. We need the following result for this purpose.

Proposition 4.4. Let X and Y be two fts's with Y fuzzy compact. Let x_t be any fuzzy point in X and N be a fuzzy open set in the fuzzy product space $X \times Y$ containing $\{x_t\} \times Y$. Then there exists some fuzzy neighborhood W of x_t in X such that $\{x_t\} \times Y \le W \times Y \le N$.

Proof. It is clear that $\{x_t\} \times Y$ is fuzzy homeomorphic [2] to Y and hence $\{x_t\} \times Y$ is fuzzy compact [9]. We cover $\{x_t\} \times Y$ by the basis elements $\{U \times V\}$ (for the fuzzy topology of $X \times Y$) lying in N. Since $\{x_t\} \times Y$ is fuzzy compact, $\{U \times V\}$ has a finite subcover, say, a finite number of basis elements $U_1 \times V_1, \ldots, U_n \times V_n$. Without loss of generality we assume that $x_t \in U_i$ for each $i = 1, 2, \ldots, n$; since otherwise the basis elements would be superfluous. Let

$$W=\bigwedge_{i=1}^n U_i.$$

Clearly W is fuzzy open and $x_t \in W$. We show that

$$W \times Y \leqslant \bigvee_{i=1}^{n} (U_i \times V_i).$$

Let (x_r, y_s) be any fuzzy point in $W \times Y$. We consider the fuzzy point (x_t, y_s) . Now $(x_t, y_s) \in U_i \times V_i$ for some *i*; thus $y_s \in V_i$. But $x_r \in U_j$ for every j = 1, 2, ..., n (because $x_r \in W$). Therefore $(x_r, y_s) \in U_i \times V_i$, as desired. But $U_i \times V_i \leq N$ for all i = 1, 2, ..., n; and

$$W \times Y \leq \bigvee_{i=1}^{n} (U_i \times V_i).$$

Therefore $W \times Y \leq N$. \square

Theorem 4.5. Let Z be a fuzzy locally compact Hausdorff space and X, Y be arbitrary fuzzy topological spaces. Then a map $f: Z \times X \to Y$ is fuzzy continuous if and only if $\hat{f}: X \to Y^Z$ is fuzzy continuous, where \hat{f} is defined by the rule

$$(\widehat{f}(x_t))(z_s) = f(z_s, x_t).$$

Proof. Suppose that \hat{f} is fuzzy continuous. Consider the functions

$$Z \times X \xrightarrow{i_z \times f} Z \times Y^Z \xrightarrow{t} Y^Z \times Z \xrightarrow{e} Y,$$

where i_Z denotes the fuzzy identity function on Z, t denotes the switching map and e denotes the evaluation map. Since $et(i_Z \times \hat{f})(z_s, x_t) = et(z_s, \hat{f}(x_t))$ $= e(\hat{f}(x_t), z_s) = \hat{f}(x_t)(z_s) = f(z_s, x_t)$, it follows that $f = et(i_Z \times \hat{f})$; and f being the composition of fuzzy continuous functions is itself fuzzy continuous.

Conversely suppose that f is fuzzy continuous. Let x_k be any arbitrary fuzzy point in X. We have $\hat{f}(x_k) \in Y^Z$. Consider a subbasis element $N_{K,U} = \{g \in Y^Z: g(K) \leq U, K \in I^Z \text{ is fuzzy compact and } U \in I^Y \text{ is fuzzy open}\}$ containing $\hat{f}(x_k)$. We need to find a fuzzy neighborhood [8] W of x_k such that $\hat{f}(W) \leq N_{K,U}$; this will suffice to prove \hat{f} to be a fuzzy continuous map.

For any fuzzy point z_u in K, we have $(\hat{f}(x_k))(z_u) = f(z_u, x_k) \in U$; thus $f(K \times \{x_k\}) \leq U$, i.e., $K \times \{x_k\} \leq f^{-1}(U)$. Since f is fuzzy continuous, $f^{-1}(U)$ is a fuzzy open set in $Z \times X$. Thus $f^{-1}(U)$ is a fuzzy open set in $Z \times X$ containing $K \times \{x_k\}$. Hence by Proposition 4.4, there exists a fuzzy neighborhood W of x_k in X such that $K \times \{x_k\}$ $\leq K \times W \leq f^{-1}(U)$. Therefore $f(K \times W) \leq U$. Now for any $x_r \in W$ and $z_v \in K$, $f(z_v, x_r) =$ $(\hat{f}(x_r))(z_v) \in U$. Therefore $(\hat{f}(x_r))(K) \leq U$ for all $x_r \in W$, i.e., $\hat{f}(x_r) \in N_{K,U}$ for all $x_r \in W$. Hence $\hat{f}(W) \leq N_{K,U}$ as desired. \Box

5. Exponential map

We define exponential law by using induced maps (cf. Definition 4.3) and study some of its properties.

Theorem 5.1 (The exponential law). Let X and Z be fuzzy locally compact Hausdorff spaces. Then for any fuzzy topological space Y, the function

$$E: Y^{Z \times X} \to (Y^Z)^X$$

defined by $E(f) = \hat{f}$ (i.e., $E(f)(x_t)(z_u) = f(z_u, x_t) = (\hat{f}(x_t))(z_u)$) for all $f: Z \times X \to Y$ is a fuzzy homeomorphism.

Proof. (a) Clearly *E* is onto.

(b) For E to be injective, let E(f) = E(g) for $f, g: Z \times X \to Y$. Thus $\hat{f} = \hat{g}$, where \hat{f} and \hat{g} are the induced maps of f and g, respectively. Now for any fuzzy point x_t in X and any fuzzy point z_u in Z, $f(z_u, x_t) = (\hat{f}(x_t)(z_u)) = (\hat{g}(x_t)(z_u)) = g(z_u, x_t)$; thus f = g.

(c) For proving the fuzzy continuity of E, consider any fuzzy subbasis neighborhood V of \hat{f} in $(Y^Z)^X$, i.e., V is of the form $N_{K,W}$ where K is a fuzzy compact subset of X and W is fuzzy open in Y^{Z} . Without loss of generality we may assume that $W = N_{L,U}$ where L is a fuzzy compact subset of Z and $U \in I^Y$ is fuzzy open. Then $\hat{f}(K) \leq N_{L,U} = W$ and this implies that $(\hat{f}(K))(L) \leq U$. Thus for any fuzzy point x_t in K and for all fuzzy point z_u in L, we have $(\hat{f}(x_t))(z_u) \in U$, i.e., $f(z_u, x_t) \in U$ and therefore $f(L \times K) \leq U$. Now since L is fuzzy compact in Z and K is fuzzy compact in X, $L \times K$ is also fuzzy compact in $Z \times X$ (cf. [9]) and since U is a fuzzy open set in Y we conclude that $f \in N_{L \times K, U} \leq Y^{Z \times X}$. We assert that $E(N_{L \times K, U}) \leq N_{K, W}$. Let $g \in N_{L \times K, U}$ be arbitrary. Thus $g(L \times K) \leq U$, i.e., $g(z_u, x_t) =$ $(\hat{g}(x_t))(z_u) \in U$ for all fuzzy point $z_u \in L \leq Z$ and for all fuzzy points $x_t \in K \leq X$. So $(\hat{g}(x_t))(L) \leq U$ for all fuzzy points $x_t \in K \leq X$, i.e., $(\hat{g}(x_t)) \in N_{L,U} = W$ for all fuzzy points $x_t \in K \leq X$, i.e., $(\hat{g}(x_t)) \in$ $N_{L,U} = W$ for all fuzzy points $x_t \in K \leq X$. Hence we have $\hat{g}(K) \leq W$, i.e., $\hat{g} = E(g) \in N_{K,W}$ for any $g \in N_{L \times K, U}$. Thus $E(N_{L \times K, U}) \leq N_{K, W}$. This proves that E is fuzzy continuous.

(d) For proving the fuzzy continuity of E^{-1} we consider the following evaluation maps: $e_1:(Y^Z)^X \times X \to Y^Z$ defined by $e_1(\hat{f}, x_t) = \hat{f}(x_t)$ where $\hat{f} \in (Y^Z)^X$ and x_t is any fuzzy point in X and $e_2: Y^Z \times Z \to Y$ defined by $e_2(g, z_u) = g(z_u)$ where $g \in Y^Z$ and z_u is a fuzzy point in Z. Let ψ denote the

composition of the following fuzzy continuous functions:

$$(Z \times X) \times (Y^{Z})^{X} \xrightarrow{T} (Y^{Z})^{X} \times (Z \times X)$$
$$\xrightarrow{i \times i} (Y^{Z})^{X} \times (X \times Z)$$
$$\stackrel{\equiv}{\to} ((Y^{Z})^{X} \times X) \times Z \xrightarrow{e_{1} \times i_{2}} Y^{Z} \times Z \xrightarrow{e_{2}} Y,$$

where *i*, i_Z denote the fuzzy identity maps on $(Y^Z)^X$ and Z respectively and T, t denote the switching maps. Thus $\psi: (Z \times X) \times (Y^Z)^X \to Y$, i.e., $\psi \in Y^{(Z \times X) \times (Y^Z)^X}$. We consider the map

$$\tilde{E}: Y^{(Z \times X) \times (Y^Z)^X} \to (Y^{Z \times X})^{(Y^Z)^X}$$

(as defined in the statement of the theorem, in fact it is E). So

 $\tilde{E}(\psi) \in (Y^{Z \times X})^{(Y^Z)^X},$

i.e., we have a fuzzy continuous map

$$\tilde{E}(\psi):(Y^Z)^X \to Y^{Z\times X}.$$

Now for any fuzzy points $z_u \in Z$, $x_t \in X$ and $f \in Y^{Z \times X}$, it is a routine matter to check that $(\tilde{E}(\psi) \circ E)(f)(z_u, x_t) = f(z_u, x_t)$; hence $\tilde{E}(\psi) \circ E =$ identity. Similarly for any $\hat{g} \in (Y^Z)^X$ and fuzzy points $x_t \in X$, $z_u \in Z$, it is also a routine matter to check that $(E \circ \tilde{E}(\psi))(\hat{g})(x_t)(z_u) = \hat{g}(x_t)(z_u)$; hence $E \circ \tilde{E}(\psi) =$ identity. This completes the proof that E is a fuzzy homeomorphism. \Box

Definition 5.2. The map E in Theorem 5.1 is called the exponential map.

An easy consequence of Theorem 5.1 is as follows.

Corollary 5.3. Let X, Y, Z be fuzzy locally compact Hausdorff spaces. Then the map

$$S: Y^X \times Z^Y \to Z^X$$

defined by $S(f, g) = g \circ f$ is fuzzy continuous.

Proof. Consider the following compositions:

$$\begin{aligned} X \times Y^X \times Z^Y &\xrightarrow{T} Y^X \times Z^Y \times X \xrightarrow{t \times i_3} Z^Y \times Y^X \times X \\ &\stackrel{=}{\to} Z^Y \times (Y^X \times X) \xrightarrow{i \times e_1} Z^Y \times Y \xrightarrow{e_2} Z, \end{aligned}$$

where T, t denote the switching maps, i_X and i denote the fuzzy identity functions on X and Z^Y , respectively, and e_1 and e_2 denote the evaluation maps. Let $\varphi = e_2 \circ (i \times e_1) \circ (t \times i_X) \circ T$. By Theorem 5.1, we have an exponential map

 $E: Z^{X \times Y^X \times Z^Y} \to (Z^X)^{Y^X \times Z^Y}.$ Since $\varphi \in Z^{X \times Y^X \times Z^Y}$, $E(\varphi) \in (Z^X)^{Y^X \times Z^Y}$; let $S = E(\varphi)$, i.e., $S: Y^X \times Z^Y \to Z^X$ is fuzzy continuous. For $f \in Y^X$, $g \in Z^Y$ and for any fuzzy point x_t in X, it is easy to see that $S(f, g)(x_t) = g(f(x_t)).$

References

- K.K. Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981) 14–32.
- [2] C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182–190.
- [3] F.T. Christoph, Quotient fuzzy topology and local compactness, J. Math. Anal. Appl. 57 (1977) 497-504.
- [4] D.H. Foster, Fuzzy topological groups, J. Math. Anal. Appl. 67 (1979) 549–564.
- [5] S. Ganguly and S. Saha, A note on δ -continuity and δ connected sets in fuzzy set theory, *Simon Stevin* **62** (1988)
 127–141.
- [6] S. Ganguly and S. Saha, A note on compactness in fuzzy setting, *Fuzzy Sets and Systems* **34** (1990) 117–124.
- [7] A.K. Katsara and D.B. Liu, Fuzzy vector spaces and fuzzy topological vector spaces, J. Math. Anal. Appl. 58 (1977) 135–146.
- [8] Pu Pao Ming and Liu Ying-Ming, Fuzzy topology I: neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980) 571–599.
- [9] Abdulla S. Bin Shahna, On fuzzy compactness and fuzzy Lindelöfness, Bull. Cal. Math. Soc. 83 (1991) 146-150.
- [10] R. Srivastava and A.K. Srivastava, On fuzzy Hausdorff concepts, *Fuzzy Sets and Systems* 17 (1985) 67–71.
- [11] C.K. Wong, Fuzzy points and local properties of fuzzy topologies, J. Math. Anal. Appl. 46 (1974) 316–328.
- [12] C.K. Wong, Fuzzy topology: product and quotient theorems, J. Math. Anal. Appl. 45 (1974) 512-521.
- [13] L.A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965) 338–353.