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1
Stimulated by “Noah’s Flood Hypothesis” proposed by W. Ryan and W. Pitman 
in which a catastrophic inundation of the Pontic basin was linked to the biblical 
story, leading experts in Black Sea research (including oceanography, marine 
geology, paleoclimate, paleoenvironment, archaeology, and linguistic spread) 
provide overviews of their data and interpretations obtained through empiri-
cal scientifi c approaches. Among the contributors are many East European sci-
entists whose work has rarely been published outside of Cyrillic. Each of the 
35 papers marshals its own evidence for or against the fl ood hypothesis. No 
summary or overall resolution to the fl ood question is presented, but instead 
access is provided to a broad range of interdisciplinary information that crosses 
previously impenetrable language barriers so that new work in the region can 
proceed with the benefi t of a wider frame of reference. � e three fundamental 
scenarios describing the late glacial to Holocene rise in the level of the Black 
Sea—catastrophic, gradual, and oscillating—are presented in the early pages, 
with the succeeding papers organized by geographic sector: northern (Ukra-
ine), western (Moldova, Romania, and Bulgaria), southern (Turkey), and eastern 
(Georgia and Russia), as well as three papers on the Mediterranean. � e volume 
thus brings together eastern and western scholarship to share research fi ndings 
and perspectives on a controversial subject. In addition, appendices are inclu-
ded containing some 600 radiocarbon dates from the Pontic region obtained by 
USSR and western laboratories. 
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Scientists, researchers and students in geology, climatology, archeology, oceano-
graphy, linguistics, history, geography as well as Black Sea specialists.
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CONTROVERSY OVER NOAH’S FLOOD IN THE
BLACK SEA: GEOLOGICAL AND FORAMINI–
FERAL EVIDENCE FROM THE SHELF

Valentina V. Yanko-Hombach
Avalon Institute of Applied Science, 3227 Roblin Blvd, Winnipeg, MB  R3R 0C2, Canada 

Abstract: This paper reviews the geological and foraminiferal evidence collected during
the course of extensive paleoceanographic and geological studies in the Black
Sea, conducted largely by Eastern European scientists since 1970. Though this
research has a long history, its most recent focus has been examining the
“Noah’s Flood” Hypothesis proposed by William Ryan and Walter Pitman,
which proposes an abrupt and catastrophic flooding of the Pontic basin in the
early Holocene. Specifically, the hypothesis states that the Black Sea was a
freshwater lake with a surface about 140 m below present sea level between
14.7 and 10 ky BP, while at 7.2 ky BP (initial hypothesis) or 8.4 ky BP
(modified hypothesis), the lake was rapidly inundated by Mediterranean water
flowing through the Bosphorus, which forced the dispersion of early Neolithic
people into the interior of Europe. The hypothesis further suggests that the
event formed the historical basis for the biblical legend of Noah’s Flood. This
paper considers the period between 28 and 7 ky BP, and three crucial points
are discussed: (1) the level and salinity of the Neoeuxinian lake; (2) the
re-colonization of the Black Sea by Mediterranean immigrants–and by
implication sea level and salinity changes due to connection/isolation between
adjacent basins; and (3) an alternative to the Bosphorus as an inter-basin
conduit. It will be shown that, prior to the moderately warm Würm Paudorf
(Middle Weichselian) Pleniglacial (prior to ca. 27 ky BP), a brackish
Tarkhankutian basin was connected with the Sea of Marmara. At the Last
Glacial Maximum (LGM), this connection was interrupted, and the level of
the Tarkhankutian basin dropped to about –100 m, transforming this basin into
a closed Early Neoeuxinian lake. In the warming climate of ca. 17 ky BP, a
massive water discharge originating most likely from the Caspian Sea and
arriving via the Manych Spillway increased the level of the Late Neoeuxinian
lake to about –20 m. Excess semi-fresh to brackish water must have spilled
into the Sea of Marmara and from there into the Mediterranean. During the
short climatic cooling episode of the Younger Dryas, the level of the lake
dropped from –20 to –43 m and then rose again to about –20 m. After ca. 10
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ky BP, the level of the Black Sea never again dropped below the –40 m
isobath, nor exhibited a maximum amplitude of fluctuation greater than
approximately 20 m. At ca. 9.5 ky BP, the water level reached –20 m again
and Mediterranean water with its inhabiting organisms entered the Late
Neoeuxinian lake. This re-colonization of the Black Sea occurred in an
oscillating manner. It was slow at the beginning, becoming most prominent
by 7.0 ky BP. The connection between adjacent basins was probably not
through the Bosphorus Strait but via an alternative route, e.g., that following
Izmit Bay–Sapanca Lake–Sakarya River. On average, sea level rose
gradually, but in an oscillating manner, to its present level, and perhaps
slightly higher, averaging 3 cm per 100 years but certainly not 15 cm per day
(almost 55 m per year) as postulated by the “Noah’s Flood” hypothesis. A rate
of sea-level increase of 3 cm per 100 years would not be noticed by local
inhabitants and would not have accelerated their dispersion into the interior
of Europe. This brings us to the conclusion that “Noah’s Flood” in the Black
Sea is a contemporary legend.

Key words: Black Sea, Late Pleistocene, Holocene, sea level, flood, salinity, benthic
foraminifera, re-colonization

1. INTRODUCTION

Whether it is referred to as Noah’s Flood or the Great Flood, this
disastrous event is so deeply rooted in the collective memory of humankind that
it is reported in the Epic of Gilgamesh (Keller 1981) and other similarly ancient
texts–e.g., the Epic of Atrahasis (Lambert and Millard 1969) and the Epic of
Ziusudra (Best 1999)–and it is reflected in several world religions. It comes as
no surprise that scientists have a strong interest in the historical reality, if any,
behind the story of Noah’s Flood.

Although the story likely originated in Mesopotamia, and the Epic of
Gilgamesh was recorded at the northwestern end of the Persian Gulf (King 1918;
Magnusson 1977; Keller 1981), Ryan et al. (1997) locate the Great Flood in the
region of the Black Sea, quite far from Mesopotamia, on the other side of a large
mountain chain. Based upon 350 km of high-resolution seismic profiles, a few
short sediment cores obtained at water depths of –49 to –140 m within a fairly
restricted area of the Black Sea’s northwestern shelf, and 14C dates on Dreissena
shells (all radiocarbon ages in this paper are uncorrected), they concluded that
the Black Sea was a freshwater Neoeuxinian lake with a level 140 m below
present between 14.7 and 10.0 ky BP. According to their Flood Hypothesis, in
the course of the post-glacial transgression, at 7.2 ky BP (dates based on Mytilus
galloprovincialis), saltwater broke through a barrier within the narrow Bos-
phorus Strait and funneled through this channel at a speed of 50 mph, hitting the
Black Sea at 200 times the force of Niagara Falls, thereby rapidly refilling
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the lake and increasing its salinity. A single, structureless and uniform layer of
jelly-like sapropel was formed, draping the undulating surface of the Neo-
euxinian unconformity. At a rate of 15 cm per day, the sea level rose 100 m
within two years, catastrophically submerging more than 100,000 km2 of
exposed shelf and flooding coastal farms. This catastrophe accelerated the
dispersion of early Neolithic foragers and farmers into the interior of Europe,
forming the historical basis for the biblical story of Noah’s Flood (Ryan and
Pitman 1998).

This Flood Hypothesis spurred tremendous interest by the public, the
scientific community, and the media–e.g., BBC (1996); New Scientist (Mestel
1997; Hecht 2003); New York Times (Wilford 1999, 2001); Scientific American
(Morrison and Morrison 1999); Washington Post (Gugliotta 1999, 2000); Der
Spiegel (2000); National Geographic (Ballard 2001); GSA Today (Aksu et al.
2002a); Frankfurter Allgemeine Zeitung (2003)–encouraging a new wave of
research in the Black Sea-Mediterranean Corridor.

In support of the Flood Hypothesis, Ballard et al. (2000), Lericolais
(2001, 2003, 2004), Lericolais et al. (this volume), and Algan et al. (2003, this
volume) described a submerged coastline with wave-cut terraces, coastal dunes,
and drowned beaches, enriched with Dreissena at various depths, and ranging
from –90 m at the Romanian shelf to –155 m at the Turkish shelf near Sinop.
This coastline was overlapped by a uniform drape of mud containing Mytilus
galloprovincialis. The age of the Dreissena samples ranges between 24.2 and 7.9
BP (Major 2002), in particular, 11.8–7.9 ky BP (Algan et al. this volume),
10.2–8.6 ky BP (Lericolais et al., this volume), and 15.5–7.4 ky BP (Ballard et
al. 2000). The age of M. galloprovincialis varies between 7.8 and 4.0 ky BP, in
particular, 7.8–6.6 ky BP (Lericolais et al., this volume), 7.5–4.0 ky BP (Ballard
et al. 2000), and 7.4–5.9 ky BP (Algan et al., this volume).

Görür et al. (2001) posed a contradiction to the Flood Hypothesis. After
studying the coastal plain and offshore sedimentary successions on the southern
Black Sea coast around the mouth of the Sakarya River, about 130 km east of the
Bosphorus, they suggested that the water level of the lake rose gradually from
some time prior to 8.0 ky BP to 7.2 ky BP, when it attained a surface level of –18
m, and the most recent influx of Mediterranean water began. Further evidence
for a higher level within the Black Sea in the early Holocene has been proposed
by Aksu et al. (1999, 2002a, b), who suggested that the Black Sea was higher
than the Sea of Marmara and has been flowing out into the world ocean unabated
since 10.5 ky BP. In so doing, it prevented the establishment of a two-way flow
in the Bosphorus Strait and delayed the salination of the Black Sea and the
immigration of Mediterranean organisms northward until 8.5 ky BP (the Outflow
Hypothesis of Aksu et al. 2002a, b). This interpretation is based on physical
sedimentological evidence from bedform asymmetry and, directly south of the
Bosphorus exit, a climbing mid-shelf delta in the Sea of Marmara that was
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formed by the Bosphorus outflow (Aksu et al. 1999; Aksu et al. 2002a; Hiscott
et al. 2002). Similarly, Ça—atay et al. (2000) proposed that the formation of a
sapropel layer in the deep Marmara Sea during the period 10.6–6.4 ky BP
reflects water column stratification and seafloor anoxia, which they attribute to
prolonged freshwater influx from a Black Sea whose surface at that time must
have been at or above the Bosphorus sill depth of –35 m.

To address these arguments, the Flood Hypothesis was eventually
modified. The initially formulated lowstand of –140 m at 14.7–10.0 ky BP and
the abrupt drowning of the Black Sea shelf at 7.2 ky BP were replaced by two
lowstands and two floods (Ryan et al. 2003). The first lowstand at –120 m
occurred between 13.4 and 11 ky BP and was followed by the first flooding
event, which increased the level of the Neoeuxinian lake from –120 m to –30 m
at 11.0–10.0 ky BP (i.e., the Younger Dryas), when the surface of the lake rose
well above that of the contemporaneous global ocean (Siddall et al. 2003). The
level of the Neoeuxinian lake during the Younger Dryas was explained by
decoupling the lake from the world ocean by a shallow (less than 30 m) sill in the
Bosphorus under moist climatic conditions. The second lowstand (–95 m) of the
Neoeuxinian lake occurred at 10–8.4 ky BP due to evaporation of the isolated
lake under arid conditions. At 8.4 ky BP, Mediterranean water topped the
Bosphorus sill and flooded the Neoeuxinian lake. Simultaneously with the world
sea-level rise, the second flood raised the surface level from –95 to –30 m and
replaced the relict Caspian biota with Mediterranean organisms. The mid-shelf
climbing delta at the southern Bosphorus exit was attributed to a small stream,
the Kurba—al2dere River (Ryan et al. 2004, this volume).

Hiscott et al. (this volume) criticized this modified Flood Hypothesis,
arguing that modern sediment discharge from the Kurba—al2dere River is so small
that it would take about 100,000 years to construct the delta, a time span clearly
at odds with the duration of delta progradation (about 1000 years from ca. 10–9
ky BP). They insist that the Black Sea has been at or above the Bosphorus sill
depth and flowing into the world ocean uninterrupted since 10.5 ky BP, making
flooding of the basin impossible.

As an alternative to both hypotheses, Kerey et al. (2004), and
Yanko-Hombach et al. (2004) argue that the Bosphorus Strait is too young to
have played a cataclysmic role in water exchange before ca. 5.5 ky BP, and an
alternative route between the basins must be considered.

The western scientists have based their hypotheses largely on material
obtained outside the Black Sea (e.g., Aksu et al. 2002a, b) or on limited data
from the outer shelf (e.g., Ryan et al. 1997). The abundant scientific data
recovered directly from the Black Sea by USSR and Former Eastern Bloc
scientists (among them, Andrusov 1918; Arkhangel’sky and Strakhov 1938;
Nevesskaya and Nevessky 1961; Nevesskaya 1963, 1965; Il’ina 1966; Nevessky
1967; Semenenko and Kovalyukh 1973; Tsereteli 1975; Shilik 1977; Fedorov
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1978; Shcherbakov et al. 1978; Dimitrov et al. 1979; Komarov et al. 1979;
Malovitsky et al. 1979; Kuprin et al. 1980; Balabanov et al. 1981; Shnyukov
1981, 1982; Popov 1983; Shcherbakov 1983; Shnyukov 1983, 1984a, b; Kuprin
et al. 1985; Shnyukov 1985, 1987; Gozhik et al. 1987; Yanko and Troitskaya
1987; Balabanov and Izmailov 1988; Panin 1989; Yanko 1989, 1990a; Yanko
and Gramova 1990; Khrischev and Georgiev 1991; Gorshkov et al. 1993;
Glebov et al. 1996; Mel’nik 1997; Shilik 1997; Stanko 1997; Kuprin 2002) have
unfortunately been largely ignored in the global scientific debate, apparently due
to language barriers and the lack of west-east scientific dialogue.

By 1997, a large (1:500,000 to 1:10,000) marine geological survey of the
Black Sea shelf had been nearly completed (e.g., Kuprin et al. 1980; Balabanov
et al. 1981; Panin 1983; Shnyukov 1981, 1982, 1983, 1984a, b, 1985; Esin et al.
1985; Shnyukov 1987; Dmitrienko et al. 1988; Yanko-Hombach 2003). As part
of these projects, thousands of cores and tens of thousands of kilometers of
high-resolution seismic profiles across the Black Sea shelf from the northern exit
of the Bosphorus Strait on the west to the city of Batumi on the east (Figure 1)
had been collected and studied in a multi-disciplinary effort.

A methodology for the Black Sea shelf investigation had been developed
(Shnyukov 1982), and the paleoclimatic (e.g., Komarov et al. 1979), tectonic
(e.g., Shnyukov 1985), and sedimentary (e.g., Fedorov 1978; Kuprin et al. 1980)
history of the basin had been investigated. A high-resolution Quaternary
biostratigraphy based upon molluscs (Nevesskaya 1965; Fedorov 1978) and
foraminifera (Yanko 1989, 1990; Yanko and Gramova 1990), all supported by
hundreds of radiocarbon assays (Appendices 1 and 2, this volume), had been
established, and sea-level dynamics had been reconstructed (e.g., Tsereteli 1975;
Shilik 1977; Balabanov et al. 1981; Shilik 1997; Balabanov, this volume;
Chepalyga, this volume).

This paper focuses on the reconstruction of sea level and salinity in the
Black Sea since the Last Glacial Maximum (LGM) using benthic foraminifera
as the main tool. These organisms, ubiquitous in marine environments, are well
known as reliable paleoenvironmental indicators. Their tremendous taxonomic
diversity allows for a wide range of biological reactions to varied environmental
factors, including many species-specific responses to ecological conditions
(Fursenko 1978), which adds to their potential as index species for monitoring
sea-level and salinity changes. They have very short reproductive cycles–six
months to one year (Boltovskoy 1964)–and rapid growth (Walton 1964), making
even their community structure particularly responsive to environmental change.
Their tests are readily preserved and can record evidence of environmental
variability through time, thus providing historical baseline data even in the
absence of background studies. They are small and abundant compared to other
larger, hard-shelled taxa (such as molluscs), which makes them particularly easy
to recover in statistically significant numbers (Yanko et al. 1999a).
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Figure 1. Map showing location of sample cores in the Black Sea. Key: Solid circles = gravity
cores; solid triangles = boreholes; cross within circles and hollow triangles = cores and boreholes,
respectively, dated by 14C from the literature: Core 4M and 1M (Balandin and Mel’nik 1987); Core
723 (Kvavadze and Dzeiranshvili 1989); Core 711 (Gozhik et al. 1987); Cores MAR98-04 and
MAR98-06 (Aksu et al. 2002b); 1 to 10 = limans/lagoons: 1– Dnieper-Bugsky, 2 – Berezansky,
3 – Tiligulsky, 4 – Kuyalnitsky, 5 – Khadzhibeysky, 6 – Dniestrovsky, 7 – Alibey, 8 – Sasyk, 9
– Razelm, 10 – Golovitsa, Sinoe, Nuntash.

In examining the flood hypotheses, this paper emphasizes the interval of
28–7 ky BP, and three crucial points are discussed: (1) level and salinity of the
Neoeuxinian lake; (2) re-colonization of the Black Sea by Mediterranean
immigrants, and, by implication, sea-level and salinity changes due to connec-
tion/isolation between adjacent basins; and (3) an “alternative” to the Bosphorus
connection between adjacent basins.

It will be shown that the increase in the level of the Black Sea was not
catastrophic, nor was it gradual. It occurred in an oscillating manner from its
lowest point at about –100 m during the LGM (27–18 ky BP) to –20 m at ca. 10
ky BP. After this date, it never again dropped below the –40 m isobath, nor did
it exhibit a maximum amplitude of fluctuation greater than about 20 m. During
the last 10,000 years, sea level rose in a steady, oscillating manner to its present
level, averaging only 3 cm/100 years, not enough to force human groups into the
interior of Europe between 8.4 and 7.2 ky BP. The re-colonization of the Black
Sea by Mediterranean immigrants began at 9.5 ky BP, and by 7.2 ky BP, the
shelf was completely re-colonized. This evidence contradicts the “Noah’s Flood”
Hypothesis, suggesting that it is a contemporary legend.
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2. MATERIALS AND METHODS

2.1 Data Collection

The data were collected since 1971 over the course of a large-scale
geological survey of the Black Sea shelf (e.g., Malovitsky et al. 1979; Yanko
1979; Dmitrienko et al. 1988; Yanko 1989, 1990a; Yanko and Gramova 1990).
Materials from the Eastern Mediterranean (Basso et al. 1994; Yanko et al. 1998;
Basso and Spezzaferri 2000; Koral et al. 2001), the Sea of Marmara (Yanko et
al. 1998), and the Caspian Sea (Yanko 1989, 1990a) were used as supporting
evidence for the origin of the Black Sea foraminifera.

In the Black Sea, approximately 30,000 samples from 1325 grabs, 4000
gravity/piston cores, and 56 boreholes were investigated. The cores were
obtained in limans, lagoons, river deltas, the Kerch Strait, the Sea of Azov, and
across the shelf. In the Caspian Sea, the Sea of Marmara, and the Eastern Medi-
terranean, 302, 73, and 512 sediment samples, respectively, were studied. The
location maps of studied materials are provided in Yanko (1989, 1990a), Basso
et al. (1994), and Yanko et al. (1998).

Locations of six exemplary cores discussed in this paper appear in Figure
1. They were chosen because they represent the larger population of cores
particularly well. The working half of the sediment column was examined at 2
cm intervals within the gravity cores (max. length 5 m), and in the uppermost 2
cm of each 10 cm interval within boreholes (max. length 28 m).

2.2 Grain Size Analysis 

Grain size analysis of the sediments was performed at Odessa State
University in Ukraine, Tel Aviv University in Israel, and Istanbul University in
Turkey. Sediments were divided into clay (<0.0039 mm), silt (0.0039–0.0625
mm), sand (0.0625–2.0 mm), and gravel (>2 mm) fractions, and the methods
used included wet sieving for sediments with a grain size greater than 63 :m,
and pipette analyses for clay and silt fractions as described in Folk (1974).

2.3 Radiocarbon Dating

Conventional radiocarbon dating of peat, wood, and mollusc shells was
performed at various USSR (Appendices 1 and 2, this volume) and foreign
(Appendix 2, this volume) laboratories. Throughout this text, 14C data are
expressed as uncorrected years BP in order to remain comparable with world-
wide Pleistocene/Holocene chronology and sea-level curves (e.g., Fairbanks
1989).
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2.4 Foraminifera

Live (Rose Bengal stained) and fossil foraminifera were investigated
separately as described in Yanko et al. (1998) and Yanko and Troitskaya (1987),
respectively. Samples were soaked and washed in distilled water, and passed
through 63 :m mesh sieve. Live foraminifera were counted in wet samples
equivalent to 50 g (Black Sea) and 5 g (Eastern Mediterranean) of dry sediment
mass. Fossil foraminifera were studied in samples that were dried at room
temperature to avoid destruction of agglutinated species. Dried samples were
split with a microsplitter to avoid sample bias; about 300 fossil foraminifera were
picked by hand (flotation in CCl4 was sometimes used) and counted for
population statistics. The total number of foraminifera was calculated in dry
samples of 50 g (Black Sea) and 5 g (Sea of Marmara, Eastern Mediterranean).

All species were morphologically examined, taxonomically identified,
and SEM pictures were taken. In our taxonomic work, we followed the
suprageneric classification in Osnovi Paleontologii (Rauzer-Chernousova and
Fursenko 1959), in combination with the generic classification of Loeblich and
Tappan (1987). All identified taxa were systemized as belonging to Protozoa
(Class Sarcodina, Subclass Foraminifera). Direct comparison with the original
collections of d’Orbigny, Schlumberger, and Le Calvez in the Museum of
Natural History, Paris, was used for most of the species.

The collection of Black Sea, Caspian Sea, and Sea of Azov foraminifera
(155 species) is stored in the Paleontological Museum of Odessa National
University, Ukraine. The original collection of foraminifera (~ 500 species) from
the Eastern Mediterranean and Sea of Marmara is stored at the Avalon Institute
of Applied Science. A partial (Israeli shelf) duplicate of the collection is kept at
University College London, UK, and at the Museum of Natural History, Paris.

The foraminifera were divided into dominant (<50% of a given
population) and accessory species. Species that occur at 50% of all studied
locations are considered to be widely distributed, 49–10% are considered
frequent, 9–1% rare, and <1% trace. According to their ecological preferences
(Table 1), foraminifera are divided into oligohaline (1–5‰), strictoeuryhaline
(11–26‰), polyhaline (18–26‰), euryhaline (1–26‰), shallow (0–30 m),
relatively deep (31–70 m), and deep (71–220 m) species (Yanko and Troitskaya
1987; Yanko 1989, 1990a).

2.5 Ecostratigraphic Techniques

Ecostratigraphy is the biostratigraphic application of ecological and
paleoecological principles to develop an understanding of the global external
forcing agents that drive ecological change. The ecostratigraphy of the Black
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Sea addresses biotic responses to isolation from and connection to the
neighboring Sea of Marmara and Caspian Sea, and to related sea-level changes
and salinity oscillations.

Our ecostratigraphic technique is based largely on alternation of
foraminiferal assemblages and their ecological characteristics in geological
sections, supported by 14C and palynological assays. An increase in the number
of Mediterranean immigrants, especially strictoeuryhaline and polyhaline
species, in sediment sequences indicates an increase of Mediterranean influence
and salinity, and vice versa. The complete replacement of Mediterranean immi-
grants by oligohaline Caspian species shows separation between the Black Sea
and Mediterranean, followed by desalination of the Black Sea. This conclusion
is based on a generally accepted observation, fully supported by our ecological
study (Yanko 1989, 1990a, b), that foraminifera are not well adapted to fresh-
water environments (Sen Gupta 1999). The classification of Tchepalyga [also
spelled as Chepalyga] (1984) is used to describe paleobasin salinity: fresh
<0.5‰, semi-fresh 0.5–5‰, brackish 5–12‰, semi-marine 12–30‰, and marine
30–40‰.

3. RESULTS AND INTERPRETATION: ECO-
STRATIGRAPHY AND PALEOENVIRON-
MENTAL RECONSTRUCTIONS

3.1 Live and Fossil Foraminifera 

Planktonic foraminifera
do not live in the Ponto-Caspian
basins–the Black Sea, the Sea of
Azov, and the Caspian Sea
(Yanko 1989, 1990a; Yanko and
Vorob’eva 1990, 1991)–while
they abound in the neighboring
Sea of Marmara (Alavi 1988;
Kaminski et al. 2002) and the
Mediterranean Sea (Cimerman
and Langer 1991).

Benthic foraminifera live on the shelf to a maximum depth of 220 m in
the Black Sea and 70 m in the Caspian Sea. In the Black Sea, they are
represented by 101 species: 19 Black Sea endemics, 5 Paratethys relics, 5
Caspian, and 72 Mediterranean immigrants (Figure 2). In the shallow (maximum
depth 13 m) Sea of Azov, they are represented by 24 Black Sea immigrants. In

Figure 2. Origin of the Black Sea foraminifera.
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the Caspian Sea, only 27 (mostly endemic) species were found (Yanko 1989,
1990a).

Taxonomic diversity in Black Sea benthic foraminifera is low compared
to that of the Eastern and Western Mediterranean, where 250 and 400 species
have been identified, respectively (Cimerman and Langer 1991; Sgarrella and
Moncharmont Zei 1993; AVICENNE Annual Report 1995, 1996; Basso and
Spezzaferri 2000). The Black Sea average salinity (17‰) is only half that of the
Eastern (39‰) and Western (34‰) Mediterranean, and the maximum salinity of
the Sea of Azov and Caspian Sea is almost the same, about 13‰. However, the
Caspian Sea has a continental type of salinity with a dominance of Ca2+ and SO4

2-

ions (Bruevich 1952).
In the Black Sea, the number of species and their abundance decreases

progressively with decreasing salinity (Figure 3, Table 1), and no live forami-
nifera exist in salinities below 1‰.

Figure 3. Decrease in the number of foraminiferal species with decreasing salinity in various areas
of the Black Sea (average depths of sampling areas shown in parentheses).

Black Sea foraminifera are dominated by 10 species of Ammonia (Yanko
1989, 1990a, b). The Black Sea endemic A. novoeuxinica together with Caspian
endemics Mayerella brotskajae and Elphidium caspicum caspicum inhabit river
deltas. Together with other Caspian endemics A. caspica and Porosononion
martkobi tschaudicus, they indicate a semi-fresh regime for the Black Sea. The
euryhaline Mediterranean species A. tepida lives everywhere on the shelf, while
the polyhaline A. compacta and A. ammoniformis dominate on the outer shelf
where salinity is >18‰. Together with the other Mediterranean species, A.
beccarii, A. parkinsoniana, and A. agoiensis, they indicate a semi-marine and
marine regime within the Black Sea.

There is strong variation in the taxonomy and diversity of foraminiferal
assemblages across the Black Sea shelf. The western assemblages differ from

1
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the northwestern ones in having low numbers of Haynesina anglica, miliolids,
and a total absence of E. caspicum caspicum. The eastern assemblages are
distinguished by the presence of Canalifera nigarensis. The outer shelf
assemblages differ from those of the inner shelf by having a greater number of
Mediterranean immigrants of Lagenida, Buliminida, Acervulina, Gavelinopsis,
Planorbulina, Pateoris, and Pyrgo, which are especially abundant near the
Bosphorus (Yanko and Troitskaya 1987; Yanko 1989, 1990a, b; Yanko and
Vorob’eva 1991). In general, diversity among foraminifera increases from the
northwest toward the east and west, reaching maximum values near the
Bosphorus. The main foraminiferal assemblages in the Black and Caspian Seas
are given in Tables 1 and 2, at the end of this paper.

3.3 Late Pleistocene Ecostratigraphy

3.3.1 Tarkhankutian Beds (40–27 ky BP)

In the cores, the Late Pleistocene is represented by Tarkhankutian and
Neoeuxinian beds. The Tarkhankutian beds were recovered in Core 2362 (Bed
1, dated 27,295 BP) on the Bulgarian shelf at a water depth of –103 m (28°24'2''
N by 42°/12'6'' E). They are represented by dark-grey terrigenous silt and clay
(Figure 4A) with CaCO3 at 18–32%, Corg at 0.3–0.7% (Malovitsky et al. 1979),
and a monospecific (Dreissena rostriformis distincta) mollusc assemblage.
While no Mediterranean species are found among the molluscs (Govberg et al.
1979), they are present among foraminifera, represented by 12 species and 74
specimens (Figure 4B). Mediterranean holeuryhaline A. tepida dominates (Figure
4C), while strictoeuryhaline Nonion matagordanus and Elphidium ponticum play
an accessory role (Figure 4D). At present, the closest foraminiferal assemblage,
Od-2, with elements of NW-1 inhabits Odessa Bay (Table 1), indicating that the
paleosalinity and paleodepth of the basin during the accumulation of Bed 1 was
around 11‰ and >35 m, respectively.

Nevesskaya and Nevessky (1961) first reported Tarkhankutian sedi-
ments with a mixture of Caspian and Mediterranean molluscs from Karkinitsky
Bay, on the northwestern shelf, at water depths of 30–35 m. Later, they were
discovered in many places in the Pontic region, e.g., the Colchis Plain (Georgia)
where they are overlain by subaerial peats dated ca. 31 ky BP at sampling depth
–60 m (Dzhanelidze and Mikadze 1975). Popov and Zubakov (1975) and Popov
(1983) recognized similar sediments as Surozhian. Svitoch et al. (1998) con-
sidered Tarkhankutian and Surozhian sediments as coeval, with an age of 40–25
ky BP. The Tarkhankutian transgression at 31,330±719 ky BP (Chepalyga
2002a, b) brought Mediterranean waters and organisms (Figure 4) into the Black
Sea and increased salinity to about 8–11‰ (Nevesskaya 1965; Yanko 1989,
1990a). The submerged accumulative coastal bars of synchronous age are lo-
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Figure 4. Diagrams for
Core 2362 (Bulgarian
shelf, 42°12'6'' E by
28°24'2'' N, water depth
–103 m) showing down-
core changes in lithology
and foraminifera. Dotted
lines indicate boundaries
between the stratigraphic
units. For explanations of
recent assemblages, see
Tables 1 and 2. Identifica-
tion of the phases will be
found in the caption to
Figure 8.



161

cated at water depths of –22 to –30 m on the northwestern (Chepalyga et al.
1989; Chepalyga 2002a, b) and Romanian (Caraivan et al. 1989) shelf, indicat-
ing that Tarkhankutian sea level was about –30 m compared to the present.
Temporally, the Tarkhankutian sediments correspond to Unit 3 (Ça—atay 2003)
in the Sea of Marmara. This unit contains some marine molluscs and benthic
foraminifera indicating a weak Mediterranean marine incursion during the early
part of MIS-3.

Interestingly, no similar sediments have yet been found in the
Bosphorus. Instead, they have been recovered in Izmit Bay and the Sakarya
Valley (Meriç et al. 1995; Yanko-Hombach et al. 2004).

The palynological diagrams are dominated by arboreal Pinus (subgenus
Diploxyton) but contain broad-leaved Quercus, Acer, Carpinus, and grassy
Artemisia, as well as Compositae, e.g., Bed 1, Core 2362 (Komarov et al. 1979).
In the view of this author, they are similar to the palynological diagrams of the
Schtilfrid soil in Austria (Frenzel 1964), which are typical of the moderately
warm Würm Paudorf (Middle Weichselian) Pleniglacial, dated 27,990–28,120
BP (Fink 1962). This period of increased Eastern Mediterranean pluviality
together with northwestern European permafrost degradation and climatic warm-
ing is associated with increased fluvial discharges (Huijzer and Vandenberghe
1998) and must have been accompanied by a noticeable increase in river
discharge flowing into the Black Sea (Aksu et al. 2002b). By implication, the
level of the Black Sea must have been high (Ça—atay et al. 2000), and the Black
Sea should have been connected to the Marmara via a south-flowing river (Aksu
et al. 2002a, b). The presence of Mediterranean species in the Tarkhankutian
sediments indicates northward flow from the Sea of Marmara as well.

3.3.2 Lower Neoeuxinian beds (27–17 ky BP)

In the cores recovered below isobath –100 m, the Tarkhankutian beds are
separated from the overlying Lower Neoeuxinian beds (27–17 ky BP; Figure 5D)
by an erosional unconformity (Figure 4A). According to Ross and Degens
(1974), the Black Sea was in the process of evolving from a marine basin to a
more freshwater environment by about 23 ky BP. Our data show that this process
started earlier at ca. 27 ky BP, during the accumulation of the Lower
Neoeuxinian beds. The latter are represented by alternations of grey silt and grey
striped clays enriched with hydrotriolite, sand (minor), and shells of D.
rostriformis distincta (e.g., Bed 2, Core 2362, Figure 4A; Bed 1, Core 2/86,
Figure 6; Bed 1, Core 81, Figure 7A); CaCO3 is about 50% and Corg >1%
(Malovitsky et al. 1979). The foraminiferal assemblage consists of A. caspica
and P. martkobi tschaudicus (Figure 4B, D; 6, 7D). The number of specimens is
low (12–29, Figure 4C, 7C). A similar assemblage, Dd (Table 1), inhabits

1
Highlight
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Figure 5. Scatter diagrams compiled from Appendices 1 and 2 showing uncalibrated 14C records for the time intervals (A) 0–35 ky BP, (B) 0–10 ky BP,
(C) 10–14 ky BP, and (D) 14–30 ky BP. Only age determinations obtained from mollusc shells are considered. For the time interval 35–10 ky BP, 14C
analysis was performed on Dreissena and occasionally Monodacna and Viviparus. For the time interval 10–0 ky BP, other mollusc shells, e.g., Cardium
edule, C. exiguum, Mytilus galloprovincialis, and some others (see Appendices 1 and 2) were used in addition to Dreissena. The total data set consists
of 424 radiocarbon records obtained by conventional (Russian sources) and AMS (western sources) methods.
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Figure 6. (Previous page) Diagram for Core 2/86 (Northern Bosphorus exit, 41°31'30" N by
28°59'32" E, water depth –103 m). The sediment column is subdivided into seven beds showing
downcore changes in grain size and percentage of foraminiferal species. 14C on Mytilus from cores
MAR98-04 (+) and MAR98-06 (++) (Aksu et al. 2002b). For an explanation of the recent
assemblages, see Table 1. Identification of the phases appears in the caption to Figure 8. For
further explanations, see Figure 4.

present-day river deltas, indicating a shallow, semi-fresh paleoenvironment
during the accumulation of the Lower Neoeuxinian beds. There are no Medi-
terranean species among the foraminifera, ostracoda (Yanko and Gramova 1990),
and molluscs (Nevesskaya 1965). Similarly, there are no Mediterranean species
in synchronous sediments of the Sea of Marmara (Unit 2, Ça—atay 2003),
indicating that they were deposited in a fresh/brackish environment (salinity
<6‰), corresponding to the late part of MIS-3 and MIS-2. During the deposition
of Unit 2, the water level was at –85 m, and the shelf areas were subaerially
exposed or occupied by small, isolated lakes (Ça—atay 2003). The Bosphorus was
a freshwater lake (26–5.3 ky BP) with a sandy bottom containing freshwater
molluscs of Black Sea Neoeuxinian affinity–D. rostriformis, D. polymorpha,
Monodacna pontica (Algan et al. 2001). The level of the Aegean Sea, –115 m
(Aksu et al. 1987), and the Sea of Marmara, –100 m (Smith et al. 1995) was
about the same as the level of the Black Sea, assuming a lack of connection
between the basins during early Neoeuxinian times (Svitoch et al. 1998).

The Early Neoeuxinian basin was semi-fresh, aerobic (Degens and Ross
1974), and heavily populated by benthic organisms, in particular by those with
calcareous shells (CaCO3 in sediments: $50%), e.g., molluscs, ostracoda, and on
a much smaller scale, by foraminifera.

The Early Neoeuxinian palynological diagrams are dominated by
Artemisia, Chenopodiaceae, Adonis, and Thalictrum (e.g., Bed 2, Core 2362).
They are similar to those of the dry pine forest of Romania (Komarov et al.
1979; Pop 1957), the pine/birch forest and xerophyte steppe in southern Ukraine
and Moldova (Artyushchenko et al. 1972; Kyrvel et al. 1976), and the steppe and
forest-steppe on the Balkan Peninsula (Bottema 1974), all indicating a cold and
dry climate (Nikonov and Pakhomov 1993). By implication, the river discharge
into the Early Neoeuxinian lake must have decreased, causing a dramatic
drawdown of the water level below the –100 m isobath (Kvasov 1975; Skiba et
al. 1975; Fedorov 1977, 1978; Shcherbakov et al. 1978, Abashin et al. 1982;
Shcherbakov 1983; Shnyukov et al. 1985; Fedorov 1988; Svitoch et al. 1998).
A large portion of the present shelf was exposed, eroded, downcut some 40 m
into the basement by the Pre-Danube, Pre-Dnieper and Pre-Dniester Rivers, and
covered by subaerial loams (e.g., Shcherbakov et al. 1978; Shcherbakov 1983;
Inozemtsev et al. 1984; Fedorov 1988). The river mouths were relocated 80–100
km seaward (Gozhik 1984b; Shnyukov et al. 1985), where they possessed poorly
developed deltas and opened directly into the canyons on the continental
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Figure 7. Diagrams for Core 81
(Crimean shelf, 44°24' N by
33°28'40'' E, water depth –100
m). The sediment column is
subdivided into four beds that
show the downcore changes in
lithology and number of for-
aminiferal species, specimens,
and percentage of dominant
species. Dotted lines indicate
boundaries between stratigra-
phic units. For an explanation
of the recent assemblages, see
Table 1. Identification of the
phases appears in the caption to
Figure 8. For further explana-
tions, see Figure 4.
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Black Sea
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Figure 8. Diagrams for Core 1136
(Northwestern shelf, Karkinitsky Bay,
45°35'02" N by 32°25'07" E, water
depth –31 m) showing downcore
changes in grain size and percentage of
species. 14C on Mytilus (+), Cardium
(++) and Viviparus/Dreissena (+++)
from cores 4M, 1M (Balandin and
Mel’nik 1987) and 711 (Gozhik et al.
1987) located in close vicinity to Core
1136 (for location, see Figure 1). For an
explanation of the recent assemblages,
see Table 1. For further explanations,
see Figure 4. Transgressive (T, in grey)
and regressive (R) phases: Tr =
Tarkhankutian, Ne1 = early (lower)
Neoeuxinian; Ne2 = late (upper)
Neoeuxinian, Bg = Bugazian, Kh =
Kolkhidian, Vt = Vityazevian, Pt =
Pontian, Kl = Kalamitian, Eg =
Eggrisian, Dz = Dzhemetinian, Fn =
Phanagorean, Nf = Nymphaean, Ks =
Korsunian, Rc = Recent.
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slope (Konikov, this volume: his Figure 12). The river valleys and canyons were
filled with thick (22–40 m) alluvial sediments (Kuprin and Sorokin, this volume)
of the Ant age (22,800–16,900 BP) containing 27 freshwater and 14 brackish
water shallow ostracods dominated by Cyprideis littoralis and Ilyocypris bradyi
(Gozhik 1984c).

3.4.2 Late Neoeuxinian (17–10 ky BP)

Above isobath –100 m, the Lower Neoeuxinian beds are often
overlapped by subaerial loams and further on by aquatic sediments with ostra-
coda Candona, Candoniella, and foraminifera A. novoeuxinica. This change
indicates transformation of the bottom from an erosional to a subaquatic accu-
mulative phase at the beginning of the Late Neoeuxinian transgression (Gozhik
1984b; Shnyukov 1985).

The Upper Neoeuxinian beds (e.g., Bed 3, Core 2362, Figure 4A; Bed
1, Core 1136, Figure 8A; Bed 1, Core 711, Figure 9A) cover the Black Sea floor
below isobath –20 m almost everywhere: –18 m on the Turkish shelf (Görür et
al. 2001), –30 m on the Bulgarian shelf (Filipova-Marinova, this volume), –20
m on the northwestern shelf (Gozhik et al. 1987; Konikov, this volume), –30 m
on the Crimean shelf (Shnyukov 1985), –30 m on the Caucasian shelf
(Balabanov et al. 1981; Yanko and Gramova 1990), and –11 m in the Kerch
Strait (Put’ 1981). In some places (e.g., the western part of the Golitsin Uplift
located at the mouth of Karkinitsky Bay, see Figure 1 for location), they are
exposed on the seafloor (Tkachenko et al. 1970; Ishchenko 1974;Tkachenko
1974; Yanko 1974, 1975, 1989). Their thickness varies up to 25 m (Put’ 1981).

Lithologically, the Upper Neoeuxinian beds on the shelf are rather
monotonous. They are represented by light grey sandy coquina and/or bluish-
grey stiff clays that fill pre-Neoeuxinian depressions and paleoriver valleys (e.g.,
Arkhangel’sky and Strakhov 1938; Nevesskaya 1965; Semenenko and
Kovalyukh 1973; Ostrovsky et al. 1977; Malovitsky et al. 1979; Balabanov et
al. 1981; Skryabina 1981; Yanko 1982; Gozhik 1984a, b, d; Voskoboinikov et
al. 1985; Shnyukov et al. 1985; Fedorov 1988; Gozhik et al. 1987; Yanko 1989,
1990a; Yanko and Gramova 1990; Glebov et al. 1996). The stiff clay has a
massive structure, high density (about 2.7 g/cm3), and low water content. The
interstitial water salinity is 7‰ (Konikov, this volume: his Figures 3 and 4).

Molluscs are dominated by D. polymorpha and D. rostriformis on the
inner and outer shelf, respectively. Other Caspian molluscs, such as M. caspia,
are also abundant (Figure 9F). The foraminiferal assemblage is rather uniform,
being dominated by oligohaline Caspian M. brotzkajae and E. caspicum, and
holeuryhaline Black Sea endemic A. novoeuxinica. The number of specimens
was found to be >100 (Figure 4B–D, 6, 7, 8B–D, 9B–D, 10B–D). Today, a
similar foraminiferal assemblage, Dd, with elements of the Dn-Bg assemblage,
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Figure 9. (Facing page) Diagrams showing downcore changes in lithology, number of species,
specimens, and percentage of dominant foraminiferal and molluscan species for Core 711. For an
explanation of the recent assemblages, see Table 1. Identification of phases appears in the caption
to Figure 8. For further explanations, see Figure 4.

inhabits river deltas and semi-fresh limans (Tables 1 and 2), indicating a
paleosalinity for the Late Neoeuxinian lake of about 5‰ in the shallow area; it
could have reached 7‰, which is typical of interstitial salinity (Manheim and
Chan 1974), and even 11‰ (Nevesskaya 1965) in deeper parts of the basin.
Despite a relatively high salinity, no Mediterranean species are present. Instead,
Caspian immigrants are abundant. The Late Neoeuxinian lake was aerobic and
heavily populated by organisms with carbonate shells. The Upper Neoeuxinian
sediments seem to be partially synchronous with the upper part of Unit 2
(Ça—atay 2003) of the Sea of Marmara sediment column. The level of the Late
Neoeuxinian lake was much higher (~ –20 m) than that of the Sea of Marmara
(~ –85 m), and by implication, the Late Neoeuxinian lake discharged its waters
into the Sea of Marmara. The Bosphorus continued to be a semi-fresh lake and
might have served as a channel for southward water discharge from the Neo-
euxinian lake. However, this discharge could have occurred through the Izmit
Gulf-Sakarya Valley, as indicated by the presence of fresh/brackish facies with
an age of 14.6 ky BP in borehole KS2 (Kerey et al. 2004).

Late Neoeuxinian palynological diagrams are dominated by Quercus,
Carpinus, Ulmus, Salix, and Betula, with decreased concentration of Pinus and
grass (Komarov et al. 1979; Kvavadze and Dzeiranshvili 1989). They are similar
to the late glacial diagrams of the Balkan Peninsula (Bozilova 1973, 1975) and
the Prichernomorian soil horizon (Veklich and Sirenko 1976) formed before 10.5
ky BP (Ivanova 1966). The climate warmed during Late Neoeuxinian times,
which is indicated by the replacement of pine by broad-leaved forests.

In many places, the Upper Neoeuxinian beds are overlapped by peats
(Figures 8 and 10A) of ca.10 ky BP: 10,600–9900 BP (Inozemtsev et al. 1984);
10,550 BP (Kind 1976); 10,130 BP (Balabanov et al. 1981); 9580 BP (Yanko
and Troitskaya 1987), and/or very coarse sediments (Figure 10A). The maxi-
mum sampling depth (water depth plus depth in the core) of the peats is about 50
m. They were formed at the end of the Younger Dryas (ca. 10.2 ky BP) when the
level of the lake dropped to about –50 m (Figure 5C and Balabanov, this volume:
his Figure 3).

3.4.3 Holocene (ca. 10 ky BP–present)

The Late Neoeuxinian beds, often with erosional unconformity, are
overlapped by Bugazian beds containing the first Mediterranean immigrants.
Bugazian sediments are widely distributed below the –17 m isobath. Their
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Figure 10. (Facing page) Diagrams showing downcore changes in lithology, number of species,
specimens, and percentage of dominant foraminiferal species for Core 721. * = 14C from
archaeological source; ** = 14C from Core 723 (Figure 1). For recent assemblages, see Table 1.
For phases, see caption to Figure 8. For further explanations, see Figure 4.

thickness increases from 0.03–0.2 m on the slopes of submerged river valleys to
2.5 m on their bottom. They are represented by light grey or greenish-grey fine
sand (Bed 2, Core 711, Figure 9A; Bed 2, Core 721, Figure 10A) or bluish-grey
clayey silt (Bed 2, Core 1136, Figure 8) or silty clays (Bed 2, Core 2/86, Figure
6) with CaCO3 at 31–36% and Corg at 0.5–1.1%. The sediments have rudimentary
lamination expressed as alternating light grey and dark grey microlayers of 1–2
mm thickness (Konikov, this volume: his Figure 3).

The Bugazian palynological diagrams are characterized by a sharp
decrease in grassy elements (e.g., wormwood, goosefoot) and conifers (Pinus,
Picea, Juniperus). Instead, broadleaf Quercus, Corylus, Ulmus, Betula, and even
beech become dominant, indicating moderate climate conditions typical of the
Boreal Ecozone (Komarov et al. 1979). A similar palynological diagram of the
deep sediments of the Black Sea and peats of the Ril mountain massif in Bulgaria
have 14C ages of 10,737±315 BP (Shimkus et al. 1977) and 10,035±65 BP
(Bozilova 1973), respectively, which is close to the extrapolated 14C age (10,300
BP) of Bugazian beds in Core 2362 (Figure 4A). A summary of the palyno-
logical data from lakes in a wide area west and south of the Black Sea shows that
oak-pistacio (Quercus-Pistacia) forests were present over most of the region by
10 ky BP, although local desert-steppe vegetation persisted until about 7 ky BP
in the southeast, from Lake Van (Eastern Turkey) to the Caspian Sea (Mudie et
al. 2002). These forests indicate the early establishment of mesic climatic
conditions characterized by >600 mm/year of precipitation in excess of evapo-
transpiration, as is presently found in most of central and western Europe
(Hiscott et al., this volume).

On the inner shelf, Bugazian mollusc assemblages are dominated by D.
polymorpha, but rare C. edule are present as well. The foraminiferal assemblage
includes M. brotzkajae, A. novoeuxinica, and A. tepida (up to 30 specimens per
sample in total) and resembles the recent Dn-Bg assemblage distributed at depths
>9 m and salinities of about 14.0‰. The interstitial water salinity is 15‰
(Konikov, this volume: his Figures 3 and 4). On the outer shelf, below isobath
–40 m, Bugazian mollusc assemblages are dominated by D. rostriformis distincta
(Govberg 1979), but rare C. edule are also present. The number of foraminiferal
species and specimens increases to 13 and 7000, respectively (Figure 6, Bed 2).
The euryhaline Mediterranean A. tepida dominates. The similar foraminiferal
assemblage Od-1 lives today in Odessa Bay under a salinity of 13‰, indicating
a brackish/semi-marine regime within the Black Sea during the accumulation of
the Bugazian beds.
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The Bugazian beds overlap the Upper Neoeuxinian beds with an ero-
sional unconformity (Figure 10A) corresponding to a drop in sea level from –20
to –53 m below present (Balabanov, this volume: his Figure 3). The boundary
between the two is clearly marked by the appearance of the first Mediterranean
immigrants among the foraminifera (Figure 4E), molluscs (Figure 9F) and
ostracoda (Yanko and Gramova 1990) in the Bugazian beds. This indicates the
beginning of a Mediterranean transgression that transformed the semi-fresh Late
Neoeuxinian lake into the semi-marine Black Sea. This transgression started ca.
9.8 ky BP (Grigor’ev et al. 1984) or 9.5 ky BP (Yanko and Troitskaya 1987),
when sea level and salinity were about –42 m (Balabanov, this volume: his
Figure 3) and 7‰, respectively. The increase in sea level and salinity was neither
rapid nor catastrophic. Rather, it was gradual and occurred in a fluctuating
manner (Balabanov et al. 1981; Yanko 1989, 1990a; Chepalyga 2002a, b;
Balabanov, this volume: his Figure 3). A series of low amplitude transgressive
and regressive (in bold) phases is clearly manifested on the inner shelf of the
Black Sea (Figures 8 and 10). Nevesskaya (1965), Fedorov (1978), and Tsereteli
(1978) named them Bugazian (9.4–8.1 ky BP), Kolkhidian (8.1–7.9 ky BP),
Vityazevian (7.9–7.4 ky BP), Pontian (7.3–7.0 ky BP), Kalamitian (7.0–6.4 ky
BP), Eggrisian (6.4–6.0 ky BP), Dzhemetinian (6.0–2.8 ky BP), Phanagorian
(2.8–2.4 ky BP), Nymphaean (2.4–1.6 ky BP), Korsunian (1.6–1.2 ky BP), and
Recent (1.2 ky BP–present). Due to the low amplitude of the regressive phases,
they cannot be traced in cores recovered from a depth of more than 50 m
(Figures 6 and 7), thus giving an impression of a gradual increase in sea level
and salinity.

The first wave of Mediterranean immigration was poor. It slowed and
even stopped during the Kolkhidian regression (Figures 8 and 10A, B, D). The
re-colonization became more or less prominent during Vityazevian times, reach-
ing its maximum in the course of the Kalamitian transgression (the third wave
of Mediterranean immigration). On the inner shelf, the Kalamitian beds are
represented by silt and sand with predominantly obliquely and horizontally
stratified structure and Corg <2.6% (Bed 4b, Core 1136, Figure 10A). On the
outer shelf, they form a single structureless and uniform bed of jelly-like
sapropel that drapes all of the undulations of the unconformity surface as was
correctly noted by Ryan et al. (1997). Among the molluscs, D. polymorpha
disappears and C. edule becomes rare. Instead, M. galloprovincialis takes on a
dominant role, being widely distributed across the shelf. Foraminifera, molluscs,
and ostracoda indicate an increase in salinity to approximately 19‰, in full
agreement with data on interstitial water salinity of the sediments (Konikov, this
volume: his Figures 3 and 4). The Kalamitian pollen diagrams are dominated by
mixed broadleaf trees–Quercus, Corylus, Ulmus, beech, lime, nutwood, and
alder–with a small component of coniferous and herbaceous trees, indicating a
Holocene climatic optimum corresponding to the Atlantic Climatic Ecozone of
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about 7.4 ky BP (Shimkus et al. 1977; Komarov et al. 1979).

4. DISCUSSION

4.1 Level of the Neoeuxinian Lake

During the extensive studies conducted by Soviet and Eastern Bloc
researchers, no evidence for a catastrophic flooding of the Neoeuxinian lake by
Mediterranean waters was ever discovered. This writer stated at the 2003 annual
meeting of the Geological Society of America (and cited by Ryan, this volume),
“It is next to impossible that that such an event could have been missed by
decades of Soviet research” (Yanko 2003). The “event” in question was the rapid
flooding of the Neoeuxinian lake; it was not, as presented by Ryan, the lowstand
shoreline or down-cutting of coastal river valleys that indicate a major water-
level drop in the Black Sea’s ice-age lake. These latter features were well known
to Soviet geologists since at least the time of Arkhangel’sky and Strakhov (1938)
and cannot under any circumstances be used by themselves as support for
catastrophic flooding of the Neoeuxinian lake as presented by Ryan (this
volume).  The details are as follows.

Shallow foraminiferal assemblages in sediments of 27–17 ky BP
distributed below the –100 m isobath demonstrate that the level of the Early
Neoeuxinian lake stood at approximately that elevation, –100 m (Figure 5D).
They also show that the water level reached approximately –20 m at about10 ky
BP (Figure 5B-C). If the level of the Neoeuxinian lake had been –120 m below
present between 13.4 and 11 ky BP, or –95 m between 10 and 8.4 ky BP, no
sediments with the foraminiferal and molluscan assemblages of these periods
would have been recovered above these depths. However, such sediments cover
most of the shelf up to the –20 m isobath (Figure 5B; Balabanov, this volume:
his Figure 3; Konikov, this volume: his Figure 2; Kuprin and Sorokin, this
volume: their Figure 5). These results preclude the first flooding event of the
modified Flood Hypothesis (Ryan et al. 2003) that allegedly raised the level of
the lake from –120 to –30 m during the Younger Dryas. Instead, the level of the
lake dropped from –20 to approximately –50 m (Figure 5C; Balabanov, this
volume: his Figure 3), as indicated by peats in numerous cores.

Subsequently, the lake level rose again to approximately –20 m by 9.5
ky BP owing to the warmer, post-Younger Dryas climate, coinciding with the
first wave of Mediterranean immigrants into the Black Sea (Figure 10). After
about 10 ky BP, the level of the Black Sea never again dropped below the –40
m isobath (Figure 5C; Balabanov, this volume: his Figure 3), nor exhibited a
maximum amplitude of fluctuation greater than about 20 m, leaving no room for
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the second lowstand (–95 m) and flooding event described by Ryan et al. (2003)
in the modified Flood Hypothesis.

The age of the submerged coastline at about –100 m was obtained on
shells of D. polymorpha and/or D. rostriformis (Ryan et al. 2003; Lericolais et
al., this volume; Algan et al., this volume). These species, however, are not
exclusively Neoeuxinian indicators as suggested by Ryan et al. (1997, 2003),
Major (2002), Algan et al. (2002), and Lericolais et al. (2004). In fact, their
stratigraphic distribution is much wider, as they are present in all semi-fresh to
brackish facies of the Pontic region from the Neogene (Meotis, D. polymorpha)
and Pliocene (Apsheron, D. rostriformis distincta) (Nevesskaya 1965; Il’ina et
al. 1976) to about 7 ky BP. They can also be found together with Mediterranean
species (Figure 11). The AMS radiocarbon age of Dreissena varies, e.g., between
24.2 and 7.9 ky BP (Major 2002). Thus, Dreissena is not a reliable age-marker
for the submerged coastline.

Figure 11.  Stratigraphic
distribution of key molluscs in
the Late Pleistocene - Holocene
sediments of the Black Sea
(modified after Nevesskaya
1965; Grigor’ev et al. 1984).
Key: white = semi-fresh, grey =
semi-marine, white and grey =
brackish water body. Thickness
of the black vertical lines is
proportional to abundance of the
species.

Dreissena is also not a reliable paleobathymetric indicator because the
distribution of fossil Dreissena is much wider than that of its living specimens.
The difference between the two distributions becomes wider with increasing
distance from shore, and it reaches its maximum on the continental slope due to
reworking (Arkhangel’sky and Strakhov 1938). The alternation of transgressive
and regressive phases intensifies reworking, leading to the mixing of paleon-
tological material of different ages and ecological affinities (Shnyukov et al.
1985; Yanko and Gramova 1990). For example, the gravel-pebble beach
sediments described by Ballard et al. (2000) as relics of the Neoeuxinian
paleoshoreline at a water depth of –155 m contain a mixture of Caspian
(Dreissena, Turricaspia) and Mediterranean (e.g., Modiolus phaseolinus)
molluscs (see their Table 1). M. phaseolinus immigrated into the Black Sea at
about 3 ky BP, however. Today, it lives at a water depths of 40–120 m under
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salinities #18‰ (Nevesskaya 1965). Consequently, these two molluscs do not
indicate the same environment. Either one or both of them must be reworked,
e.g., transported down to the bottom together with coarse material by underwater
currents (Kuprin and Sorokin, this volume). A similar phenomenon was observed
on the Crimean (Arkhangel’sky and Strakhov 1938) and Caucasian continental
slopes in the canyons of the Kodori and Bzyb’ Rivers (Kuprin et al. 1985;
Solov’eva and Sorokin 1993).

In defending his dating of the lowstand and its accompanying arid
landscape to the late Neoeuxinian (14–11 ky BP) based on radiocarbon dating
of associated shells, Ryan (this volume) explains that both Kuprin et al. (1974)
and Shcherbakov et al. (1978) had already drawn attention to the submerged
shoreline. Based on more than 250 sediment cores containing shallow, brackish
water foraminifera, ostracoda, and molluscs of Caspian affinity (e.g., Govberg
et al. 1979; Yanko 1990a; Yanko and Gramova 1990; Yanko-Hombach 2003,
2004) without the appearance of a single Mediterranean species, however,
Shcherbakov et al. (1978) attributed this lowstand to the LGM (20–18 ky BP).
Indeed, Russian geologists did not miss or ignore the occurrence of a major
regression within the Pontic basin. They simply assumed that it was earlier in
date and that the subsequent transgression was neither abrupt nor catastrophic.

Foraminifera serve as a more powerful tool for paleoenvironmental
reconstructions than molluscs, as demonstrated herein for the Tarkhankutian
beds. However, their use still requires caution. For example, it is methodo-
logically wrong to use Ammonia as indicating a shallow and low salinity
paleoenvironment as was done by Kaminski et al. (2002). There are at least 10
species of Ammonia in the Black Sea, each of which has its own ecological
preferences, which vary from oligohaline to polyhaline conditions (Yanko
1990b).

Following the second scenario of the Flood Hypothesis, one would
expect that the older (13.4–11 ky BP) submerged coastline lies at a water depth
of about –120 m, while the younger (10–8.4 ky BP) would be located at a water
depth of about –95 m. However, the water depth and age of the submerged
shorelines vary:

Turkish shelf (near Sinop): –155 m, 7.5–6.8 ky BP (Ballard et al. 2000);
Turkish shelf (near Sakarya Valley): –90 m, 11.8 ky BP (Algan et al., this

volume);
Romanian shelf: –95 m, 10.2–8.6 ky BP (Lericolais et al., this volume);
Romanian shelf: –100 m, Last Glacial Maximum, MIS-2 (Winguth et al. 2000);
Romanian shelf: –120 m, 13.4–11 ky BP (Ryan 2003);
Northwestern shelf (between Karkinitsky and Kalamitsky Bays: –140 m,
14.7–10.0 ky BP (Ryan et al. 1997);
Crimean shelf: –100 m, 20–18 ky BP (Shcherbakov et al. 1978);
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Bulgarian shelf: –100 m, Chaudinian* (Krystev et al. 1990; Yanko-Hombach et
al. 2004) [*age of Chaudinian beds is ca. 800 ky BP];

Caucasian, Bulgarian, and Kerch shelf: –147 to –70 (Skiba et al. 1975; Esin et
al. 1980; Goncharov and Evsyukov 1985; Glebov 1987; Glebov et al.
1996; Glebov and Shel’ting, this volume).

Abashin et al. (1982) show that the depth of the outer edge of the Early
Neoeuxinian terrace (with coastal bars constituted by shallow lacustrine facies)
changes from east to west from –110 m in the vicinity of the Kerch Strait to –90
m in the central part of the southern shelf of Crimea, and from –160 to –200 m
in the western part.

Most probably, variations in the water depths of submerged coastlines
relate to neotectonic processes that have caused differential uplift/subsidence of
different blocks of the seafloor (Tkachenko et al. 1970; Tkachenko 1974;
Abashin et al. 1982; Tkachenko, personal communication, January 5, 2005),
vertical movements similar to those that were noticed recently in Izmit Bay (Sea
of Marmara) during the 1999 earthquake (Öztürk et al. 2000). The displacement
of the shelf break and development of submerged staircase terraces and off-shore
cliffs and bars that cluster at certain bathymetric levels (Glebov and Shel’ting,
this volume) support this conclusion. Variations in age are likely related to
reworking of the mollusc shells used for radiocarbon dating.

At the beginning of the Late Neoeuxinian transgression, the level of the
lake must have risen rather rapidly from –100 m at 17 ky BP to –40 m at 12 ky
BP (12 mm per year); for comparison, the recent rate of sea-level rise is 2 mm
per year (Tushingham and Peltier 1991). Under climate warming, the melting of
the Scandinavian Ice Sheet and massive river discharge increased the level of the
Caspian Sea to +50 m. Such a large amount of water could not be retained in the
Caspian depression and was discharged into the Neoeuxinian lake through the
Manych-Kerch Outlet (Mamedov 1997; Chepalyga 2003, this volume).

Such a relatively rapid increase in the Late Neoeuxinian lake level
prevented the stabilization of the shoreline and the development of accumulative
coastal bars (Mel’nik 1997). Therefore, the coastal dunes of Ryan et al. (1997)
and Lericolais et al. (this volume) must be older than ca. 17 ky BP.

4.2 Salinity of the Neoeuxinian Lake

Foraminifera are not adapted to freshwater. As a rule, the boundary
between brackish and freshwater environments is marked by their disappearance,
with the exception of the organic-walled Allogromiida (Sen Gupta 1999). For
this reason, the presence of relatively diverse calcareous foraminifera implies
that the Neoeuxinian basin could not be fresh.

However, the advocates of the Flood Hypothesis (Ryan et al. 2003;
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Lericolais et al., this volume) insist that the Neoeuxinian lake was fresh due to
drainage from the melting of the ice cap after Melt Water Pulse 1A. This
assumption is based on the belief that D. polymorpha and D. rostriformis may
serve as freshwater indicators (Ryan et al. 1997; Ryan and Pitman 1998; Ballard
et al. 2000; Major et al. 2002; Filipova-Marinova et al. 2004; Lericolais et al.
2004, this volume; Algan et al., this volume; Ryan, this volume).

Nevesskaya (1963, 1965), Il’ina (1966), and Yanko-Hombach (2004)
argue that the Neoeuxinian basin was semi-fresh to brackish. This difference of
opinion results from an erroneous interpretation of the salinity requirements for
D. polymorpha and D. rostriformis. In the Caspian Sea today, these molluscs
tolerate salinity up to 13‰, similar to other molluscs (M. caspia), ostracoda
(Leptocythere bacuana, Loxoconcha lepida) and foraminifera (E. caspicum, M.
brotzkajae) that coexist with Dreissena species in sedimentological sequences
(Davitashvili and Merklin et al. 1966; Shornikov 1972; Yanko and Gramova
1990).

Paleontological and geochemical data are in full agreement. The
Neoeuxinian salinity of the interstitial water is 4.0‰ (Bruevich 1952; Glagol’eva
1961), about 5.0‰ (Markov 1965), 6.0‰ (Manheim and Chan 1974), 6.8‰
(Shishkina 1962), and even 10-12‰ (Konikov, this volume: his Figures 3 and
4). Whatever reasonable set of assumptions one uses, it is impossible to equate
salinity patterns in the interstitial waters with a totally fresh Neoeuxinian lake
(Manheim and Chan 1974). Thus, the Neoeuxinan lake was brackish with a
continental type of salinity where Ca2+ and SO4

2- dominate over K+ and Cl-,
respectively (Nevesskaya 1970). This is probably a consequence of the Caspian
flood described by Chepalyga (this volume).

No oxygen depletion has been found in the Neoeuxinian sediments, thus
signifying that the lake was aerobic (Arkhangel’sky and Strakhov 1938;
Nevesskaya 1965; Degens and Ross 1974; Fedorov 1978). Our data are in full
agreement with this conclusion.

4.3 Sea Level and Salinity in the Holocene

If there had not been northward inflow from the Sea of Marmara prior
to 7.2 or 8.4 ky BP (as required under the first and second flood scenarios), then
no Mediterranean immigrants would be present in the sediments of about 10 ky
BP. However, the first Holocene wave of Mediterranean immigrants appears in
the sediment sequences at about 10 ky BP (e.g., Figure 4). If re-colonization of
the Neoeuxinian lake by Mediterranean organisms had been as rapid as is
proposed by the advocates of the Flood Hypothesis (Ryan et al. 1997, 2003), we
would observe a dramatic increase of foraminiferal species and specimens in
Bugazian sediments. However, their diversity and abundance are low. Moreover,
upcore variation leads to almost complete disappearance during the Kolkhidian
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regression, which is counterindicative of the alternative gradual re-colonization
of the Black Sea by Mediterranean organisms suggested by the opponents of the
Flood Hypothesis (Kaminski et al. 2002). Indeed, there are six major waves of
re-colonization reflecting the fluctuating character of the Holocene Mediter-
ranean transgression. A strong shift of the Sr isotope signature toward marine
values at 8.4 ky BP (Major 2002) most likely indicates progressive salination of
the Black Sea by increasing Mediterranean inflow during the Vityazevian
transgression, but not at the time of the Black Sea–Sea of Marmara recon-
nection. The prominent foraminiferal re-colonization occurred at about 7.0 ky BP
and coincides with a massive immigration of M. galloprovincialis when salinity
increased to its present value. It was, however, still not high enough to support
an immigration of planktonic foraminifera.

Thus, the immigration was neither rapid nor catastrophic, and so, neither
the sea-level nor the salinity increase was catastrophic. Instead, the change oc-
curred in a fluctuating manner that can be seen only above the –50 m isobath due
to the low amplitude of the regressive phases. A high-resolution micropaleon-
tological study with detailed knowledge of the ecological preferences of each
foraminiferal species is needed to reconstruct the low amplitude fluctuations of
sea level.

4.4 Alternative to the Bosphorus Connection Between
Adjacent Basins

If the Upper Neoeuxinian sediments are found at water depths of about
–20 m prior to 10 ky BP, then one must assume that the level of the lake was
higher than the level of the world ocean at that time: –60 m (Fairbanks 1989). If
so, the Neoeuxinian lake should have discharged an excess of brackish water into
the Sea of Marmara, as was correctly pointed out by many authors (e.g., Fedorov
1978; Aksu et al. 2002a, b). If this persistent outflow occurred through the
Bosphorus Strait (Aksu et al. 2002a, b), it should have prevented migration of
Mediterranean organisms northward. Their presence in the Black Sea sediments,
however, suggests that an alternative connection between the Black Sea and Sea
of Marmara could have existed at about 9.5 ky BP (Yanko-Hombach et al.
2004).

If Mediterranean immigrants with an age of about 10 ky BP are present
in the Black Sea, one would expect to find them in the Bosphorus, however, no
Mediterranean immigrants younger than 5.3 ky BP have been found to date. The
Bosphorus was a freshwater lake between 26 and 5.3 ky BP when the first
euryhaline Mediterranean molluscs entered its sediments (Algan et al. 2001).
Deposition of coarse Mytilus-bank and Ostrea-bank units suggests that the
establishment of the present dual-flow regime in the Bosphorus occurred at 4.4
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ky BP. A clear stratification of the water in the Bosphorus is apparent from about
4 ky BP (Yanko et al. 1999b). Thus, the Bosphorus seems not to have been the
main link between adjacent basins prior 5.3 ky BP

It can be argued that the record of the Bosphorus Strait boreholes is
incomplete and/or marine sediments in the strait were eroded. However, the
paleotopographic relief in the strait, at least below the mid-Holocene uncon-
formity disclosed by geophysical profiles, contradicts this interpretation (Kerey
et al. 2004). At the same time, marine sediments with an age of about 30 ky BP
(Tarkhankutian?) and about 8 ky BP (Vityazevian?) are found in Izmit Bay and
the Sakarya Valley, suggesting an alternative route between the Black Sea and
Sea of Marmara (Meriç 1995; Kerey et al. 2004; Yanko-Hombach et al. 2004).

5. CONCLUSIONS

During the moderately warm Würm Paudorf (Middle Weichselian)
Pleniglacial (prior to ca. 27 ky BP), there was a brackish Tarkhankutian basin
connected with the Sea of Marmara. At the LGM, this connection was
interrupted, and the level of the Tarkhankutian basin dropped to about –100 m,
transforming it into the Early Neoeuxinian lake. The lake did not have a connec-
tion with the Caspian Sea.

In the warming climate of about 17 ky BP, a massive water discharge,
most likely from the Caspian Sea via the Manych Spillway, increased the level
of the Late Neoeuxinian lake to about –20 m. The latter must have overflowed,
pouring its excess semi-fresh to brackish water into the Sea of Marmara and from
there into the Mediterranean. During the short climatic cooling episode occurring
at the Younger Dryas, the level of the lake dropped from –20 to about –50 m and
then rose again to about –20 m. After ca. 10 ky BP, the level of the Black Sea
never again dropped below the –40 m isobath, nor exhibited a maximum
amplitude of fluctuation greater than 20 m.

At ca. 10 ky BP, the lake level reached –20 m again, allowing
Mediterranean water and organisms to enter the Late Neoeuxinian basin. This
re-colonization of the Black Sea occurred in an oscillating manner. It was slow
at the beginning, becoming most prominent at about 7.0 ky BP. The connection
between adjacent basins was probably not through the Bosphorus Strait, but via
an alternative route, e.g., Izmit Bay–Sapanca Lake–Sakarya River.

On average, sea level rose gradually, but in an oscillating manner, to its
present level, and perhaps slightly higher, averaging 3 cm per 100 years but
certainly not 15 cm per day (almost 55 m per year) as postulated by the Noah’s
Flood Hypothesis. An increase in sea level of 3 cm per 100 years would not be
noticed by the region’s inhabitants and would not have accelerated their
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dispersion into the interior of Europe, bringing us to conclude that “Noah’s
Flood” in the Black Sea is a contemporary legend.
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Table 1. Live foraminiferal assemblages of the Black Sea and Sea of Azov.  Locations appear in Figure 1.

Connection
with the

Black Sea

River
Discharge Area Depth,

m
Salinity,

‰
No. of

Stations
No. of

Species Dominant Species, max % Accessory Species Assemblage
Index

Pe
rm

an
en

t

St
ro

ng

Danube delta >5 1–5 
(avg 1)

28 4 A. novoeuxinica, 76
A. tepida, 16

Ma. brotzkajae, 
Ma. kolchidica

Dd

Dniestrovsky
liman

>9 0.03–9 
(avg 2)

10 6 A. novoeuxinica, 70
A. tepida, 17
H. anglica, 12

M. fusca, 
H. anglica

Dn

Dniepro-Bugsky
liman

>9 0.1–14.3 
(avg 2.5)

10 6 A. novoeuxinica, 70
A. tepida, 17
H. anglica, 12

M. fusca, 
H. anglica

Dn-Bg

W
ea

k

Golovitsa liman >9 5 20 5 A. novoeuxinica, 76
A. tepida, 19
H. anglica, 14

M. fusca, 
H. anglica

Gv

Berezansky liman >9 1–14 
(avg 5)

10 10 A. novoeuxinica, 76
A. tepida, 18
H. anglica, 4

M. fusca, 
H. anglica

Bz

Absent Sinoe liman >2 5–18
(avg 5)

13 6 A. tepida, 86
H. anglica, 10

J. polystoma dacica Si

R
es

tri
ct

ed

   
   

   
  T

em
po

ra
ry

   
  (

se
as

on
-d

ep
en

de
nt

) Tiligulsky liman >19 1–76
(avg 11)

10 11 A. tepida, 47
H. anglica, 41

A. novoeuxinica Tl

Khadhzibeysky
liman

>14 2–63.5
(avg 12)

6 11 A. tepida, 47
H. anglica, 41

A. novoeuxinica Kz

Nuntash lagoon ? 21 9? 6 A. tepida, 63
N. matagordanus, 20
P. martkobi ponticus, 16

Q. seminulum Nu

A
bs

en
t

A
bs

en
t

Alibey lagoon >2.5 1–140
(avg 27.4)

10 14 H. anglica, 50
A. tepida, 40

E. caspicum azovicum, 
A. parasovica, 
Au. perlucida

Al

Techirghiol lagoon >1 75 5 7 A. tepida, 30
T. aguajoi, 30
J. polystoma dacica, 30

M. fusca Tg
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Fr
ee

Strong 
Odessa Bay >10 3–14

(avg 12)
100 13 A. novoeuxinica, 55

H. anglica, 20
A. tepida,14

E. caspicum azovicum Od-1

Significant
Odessa Bay 11–25 11–16

(avg 15)
200 33 A. tepida, 48

H. anglica, 19
P. martkobi ponticus, 12

Au. perlucida, 
E. ponticum, 
A. parasovica

Od-2
A

bs
en

t

Karkinitsky Bay >35 18.2–19
(avg 18.6)

50 40 A. tepida, 31
A. caucasica, 10
Q. seminulum, 11

Q. laevigata, 
Q. bicornis

Kn

Kalamitsky Bay >35 18.3 20 39 A. tepida, 20
E. scabra,15
A. caucasica, 10 

M. secans, 
Ab. ponticus

Kl

O
pe

n 
sh

el
f

A
bs

en
t

NW and Crimean
(western) outer
shelf

36–70 18.3 200 38 A. compacta, 29
E. ponticum, 20
C. parkerae, 9
Cr. poeyanum, 12

N. matagordanus NW-1

NW and Crimean
(western) outer
shelf

71–150 19 160 33 A. compacta, 27
P. martkobi ponticus, 12
N. matagordanus, 9
P. dzemetinica, 6

L. vulgaris, 
Es. jatzkoi, 
E. deplanata, 
Lr. williamsoni

NW-2

Crimean (eastern)
inner shelf

>35 18 10 37 A. tepida, 43
E. scabra, 13
P. martkobi ponticus, 10

C. nigarensis Kr-1

Crimean (eastern)
outer shelf

36-70 19–20 10 40 A. compacta, 29
C. parkerae, 16
Cr. poeyanum, 13

N. matagordanus Kr-2

Crimean (eastern)
outer shelf

71–200 20–21 10 32 A. compacta, 34
N. matagordanus, 12
F. lucida, 10

L. vulgaris, 
Lr. williamsoni, 
Es. yatzkoi

Kr-3

R
es

tri
ct

ed

A
bs

en
t Kerch Strait

(central part)
>10 14–15 10 17 A. parasovica, 34

A. tepida, 22
H. anglica, 
Au. perlucida

Ke-1

Kerch Strait
(southern part)

>10 17.1–17.5 10 17 A. tepida, 30
A. parasovica, 25

H. anglica, 
P. martkobi ponticus

Ke-2

M
od

er
at

e

Sea of Azov
(southern part)

>12 12–13 20 17 A. parasovica, 40
A. tepida, 23

E. caspicum azovicum, 
H. anglica

Az-1

Sea of Azov
(central part)

>12 11–12 20 17 A. parasovica, 45
A. tepida, 16
A. novoeuxinica, 10

E. caspicum azovicum, 
H. anglica

Az-2 199
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Black Sea

River
Discharge Area Depth,

m
Salinity,

‰
No. of

Stations
No. of

Species Dominant Species, max % Accessory Species Assemblage
Index

R
es

tri
ct

ed

St
ro

ng

Taganrogsky Bay
(southern part)

>7 7–9 10 11 A. novoeuxinica, 79
A. tepida, 10

E. caspicum azovicum, 
H. anglica

Tg-1

Taganrogsky Bay
(northeastern part)

>2 4.3 10 9 A. novoeuxinica, 82
A. tepida, 9

M. brotzkajae Tg-2

O
pe

n 
sh

el
f

Minor Caucasian inner
shelf 

>35 18–19 80 42 A. compacta, 30
P. martkobi ponticus, 22

A. caucasica, 
E. scabra

Ca-1

A
bs

en
t

Caucasian outer
shelf 

36–70 19–20 65 41 A. compacta, 46
P. martkobi ponticus, 18
N. matagordanus, 12

A. ammoniformis, 
E. scabra

Ca-2

Caucasian outer
shelf

71–220 20–21 75 34 A. compacta, 57
F. solida, 13

A. ammoniformis, 
N. matagordanus, 
E. scabra

Ca-3

O
pe

n 
sh

el
f

Moderate
Bulgarian inner
shelf

8–35 17–19 14 38 A. tepida, 40
A. compacta, 14
A. ammoniformis, 13

A. caucasica, 
Cr. poeyanum, 
Au. perlucida

Bu-1

A
bs

en
t

Bulgarian outer
shelf

36–70 19–19.6 30 41 A. ammoniformis, 35
A. compacta, 21
C. parkerae, 12

A. tepida, 
P. martkobi ponticus,
Au. perlucida

Bu-2

Bulgarian outer
shelf

71–220 21–22 60 43 A. compacta, 30
A. ammoniformis, 15
Lagenida, 18

N. matagordanus, 
Pa. dzemetinica, 
F. lucida

Bu-3

Southern shelf 71–220 21–23 20 49 A. ammoniformis, 32
A. compacta, 28
Lagenida, 25

Py. elongata, 
N. matagordanus, 
Cr. poeyanum

Sh-1

Northern
Bosphorus exit 

100–120 26.2 10 79 A. ammoniformis, 32
A. compacta, 28
Lagenida, 13

Bolivina, 
Brizalina, 
Pyrgo

Bo
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Table 2. Live foraminiferal assemblages of the Caspian Sea.

Part of
Caspian

Sea

Connection
with Caspian

Sea

River
Discharge Area Depth,

m
Salinity,

‰
No. of

Stations
No. of

Species Dominant Species, max % Accessory Species Assemblage
Index

N
or

th
er

n

Fr
ee

Very strong Volga River delta >3 0.1–7.5
(avg 2.3)

10 3 A. caspica, 96 Ma. brotzkajae, 
M. fusca 

Vo

Strong Northeastern inner
shelf

>17 7–9 11 9 A. caspica, 73
Am. verae, 17

Ma. brotzkajae NC-1

Weak Northwestern inner
shelf

>22 9–12 11 9 A. caspica, 66
Am. verae, 19

E. caspicum caspicum,
M. fusca

NC-2

C
en

tra
l

Fr
ee

Strong Western inner shelf >35 11–12.5 11 11 Am. verae, 31
A. caspica, 23

C. minuscula CC-1

Weak Western outer shelf 36–70 12.4–12.9 11 3 A. caspica, 88 M. fusca, 
C. minuscula

CC-2

A
bs

en
t Eastern inner shelf >35 12.7–13 11 14 A. caspica, 50 E. caspicum caspicum CC-3

Eastern outer shelf 36–70 12.7–13 11 3 A. caspica, 89 M. fusca, 
C. minuscula

CC-4

Krasnovodsky Bay >5 14–15 11 17 Am. verae, 55 S. perexilis Kr
Restricted in

1968

A
bs

en
t

Kara-Bogaz–Gol
Bay

>2 13–14 11 13 A. caspica, 54
B. macrostoma, 28

T. aguajoi KBG-1

Absent in
1981

Kara-Bogaz–Gol
Bay

>2 60–65 11 4 T. aguajoi, 80 B. macrostoma KBG-2

Free in
1968

Kara-Bogaz–Gol
Strait

>2 12.2–13.3 11 12 A. caspica, 43 Am. verae KBG-s

So
ut

he
rn

Fr
ee

Very strong Kura delta >10 >3 6 3 A. caspica, 97 Ma. brotzkajae Kd

Absent Western inner shelf >35 12.2 11 18 E. caspicum caspicum, 20 E. shohinae SC-1
Western outer shelf 36–70 12.8 11 3 A. caspica, 91 M. fusca SC-2

Weak Turkmensky Bay >35 12.6–13.2 11 12 A. caspica, 70 E. caspicum caspicum Tu

Absent
Eastern inner shelf >35 13 11 18 A. caspica, 66

E. caspicum caspicum, 22
E. shohinae SC-3

Eastern outer shelf 36–70 13.1–13.8 11 3 A. caspica, 58 M. fusca SC-4
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Addendum: Faunal reference list of benthic foraminiferal species included in the text and Tables
1 and 2 (in alphabetical order).

Ammobaculites ponticus Mikhalevich (1968:15, pl. I, fig. 4). Yanko (1979: pl. 24A, fig. 6; 1982: pl. V, fig. 3; 1989:8–10, pl.
1, figs 7, 8). Yanko and Troitskaya (1987:14, pl. 1, fig. 1).

Ammonia ammoniformis (d’Orbigny) = Rotalia (turbinuline) ammoniformis d’Orbigny (1826:174, pl. 12, fig. 149). Yanko
and Troitskaya (1987:42, pl. X, figs 1–10). Yanko (1989:169–177, pl. XXVII, figs 1–12; pl. XXVIII, figs 1–9;
pl. XXIX, figs 1–5).

Ammonia agoiensis Yanko (1990b:24, pl. I, fig. 1; pl. II, fig. 1; 1989:167–169, pl. XXIX, fig. 6).
Ammonia caspica Shchedrina = Ammonia beccarii caspica Mayer (1968:28, fig. 48) = Ammonia neobeccarii caspica

Shchedrina (Shchedrina and Mayer 1975:255, figs 1–8). Yanko (1989:177–179, pl. XXX, figs 1–9).
Ammonia caucasica Yanko (1990b:25, pl. I, figs 2, 3; pl. II, fig. 5; 1989:179, pl. XXXI, figs 1–6; pl. XXXII, figs 1–12).
Ammonia compacta (Hofker) = Streblus compactus Hofker (1969:99, figs 242, 243) = Ammonia neobeccarii pontica Yanko

(1979:82, pl. 24#, fig. 2). Yanko and Troitskaya (1987:44, pl. XI, figs 1–10). Yanko (1989:182–185, pl. XXXIII,
figs 1–9).

Ammonia novoeuxinica Yanko (1979: pl. 24#, fig. 1; 1990b: pl. 2, fig. 7; 1989:185–187, pl. XXXIV, figs 1–11). Yanko and
Troitskaya (1987:46, pl. XII, figs 1–3).

Ammonia parasovica Shchedrina and Mayer (1975:255, pl. 2, figs 4–6). Yanko and Troitskaya (1987:47, pl. XII, figs 4–6).
Yanko (1989:187, 188, pl. XXXV, figs 1–10; pl. XXXVI, figs 1–9).

Ammonia tepida (Cushman) = Rotalia beccarii (Linnaeus) var. tepida Cushman (1928:79, pl. 1). Yanko and Troitskaya
(1987:48, pl. 12, figs 7–12). Yanko (1989:192–195, pl. XXXVIII, figs 1–9; pl. XXXIX, figs 1–9).

Ammoscalaria verae (Mayer) = Ammotium (?) verae Mayer (1968:21, fig. 40). Yanko (1989:12, 13, pl. II, fig. 3).
Aubignyna perlucida (Herron-Allen and Earland) = Rotalia perlucida Herron-Allen and Earland (1913:139, pl. 13, figs 7–9).

Yanko (1979: pl. 24#, fig. 5; 1982: pl. 4, fig. 1; 1989:226–229, pl. XLVIII, fig. 3; pl. XLIX, figs 1–4). Yanko and
Troitskaya (1987:36, pl. VII, figs 6–9; pl. VIII, fig. 1).

Birsteiniolla macrostoma Mayer (1974:25, fig. 19). Yanko (1989:17–19, pl. III, fig. 1).
Canalifera nigarensis (Cushman) = Elphidium nigarense Cushman (1939:63, pl. 17, fig. 19). Yanko and Troitskaya (1987:50,

pl. XIII, figs 1–5). Yanko (1989:197–200, pl. XL, figs 6–8; pl. XLI, figs 1–3).
Canalifera parkerae (Yanko) = Cribroelphidium parkeri Yanko (1974:24, pl. 1, fig. 1) = Nonion sp. B (Parker 1958:191, pl.

1, figs 40, 41). Yanko and Troitskaya (1987:51, pl. XIV, figs 1–6). Yanko (1989: 201–204, pl. XLII, figs 1–9; pl.
XLIII, fig. 1).

Cornuspira minuscula (Mayer) = Cyclogyra minuscula Mayer (1972:33, fig. 5). Yanko (1982: pl. 5, fig. 5; 1989:25, 26, pl.
IV, fig. 1).

Cribroelphidium poeyanum (d’Orbigny) = Polystomella poeyana d’Orbigny (1839:55, pl. 6, figs 25, 26). Yanko (1979:84,
pl. 24', fig. 2; 1982: pl. 1, fig. 4; 1989:262, pl. LXI, figs 1–6; pl. LXII, fig. 1). Yanko and Troitskaya (1987:58,
pl. XXI, figs 4–6). Yanko et al. (1998: pl. 1, fig. 15).

Eggerella scabra (Williamson), 1858 = Bulimina scabra Williamson (1858:604–605, pl. 5, figs 136, 137). Yanko
(1989:22–24, pl. III, figs 5–7).

Elphidium caspicum azovicum Yanko (Yanko 1989:243–246, pl. LIII, figs 3–7; pl. LIV, figs 1–4).
Elphidium caspicum caspicum Yanko (1989:242–243, pl. LIII, figs 1, 2) = Elphidium littorale caspicum Mayer (1968:31, fig.

50) = Elphidium caspicum (Yanko and Troitskaya 1987:55, pl. XV, fig. 4).
Elphidium ponticum (Dolgopol’skaya and Pauli) = Elphidium advenum var. pontica Dolgopol’skaya and Pauli (1931:36, pl.

III, fig. 14) = Elphidium ponticum (Mikhalevich 1968:19, pl. 6, fig. 2). Yanko (1979: pl. 24', fig. 1; 1982: pl. 1,
fig. 1; 1989:254–257, pl. LVII, figs 1–4; pl. LVIII, figs 1–4). Yanko and Troitskaya (1987:56, pl. XVI, fig. 3; pl.
XVII, fig. 1–3).

Elphidium shohinae Mayer (1968:32, fig. 51; 1974:34, fig. 26). Yanko (1989:257–258, pl. LIX, figs 4, 5).
Entolingulina deplanata Yanko (1979: pl. 24A, fig. 4; 1982:130, pl. III, fig. 5; 1989:113–114, pl. XV, figs 5–7). Yanko and

Troitskaya (1987:27, pl. IV, figs 7, 8).
Esosyrinx jatzkoi Yanko (1974:28, fig. 3; 1979: pl. 24A, fig. 7; 1989:107–108, pl. XIV, figs 4–6). Yanko and Troitskaya

(1987:26, pl. IV, figs 3, 4).
Fissurina lucida (Williamson) = Entosolenia marginata (Montagu) var. lucida Williamson (1858:17, pl. 2, fig. 17).

Voorthuysen (1973:46, pl. 5, fig. 9). Yanko and Troitskaya (1987:30, pl. V, figs 1–12). Yanko (1989: 122–125,
pl. XVI, figs 6–17).

Fissurina solida Seguenza (1862:56, pl. 1, fig. 42) = Fissurina ex gr. solida (Yanko and Troitskaya 1987:33, pl. VI, figs 6–9).
Yanko (1989:128-129, pl. XVII, figs 3–10).

Haynesina anglica (Murray) = Protelphidium anglicum Murray (1965:149, pl. 25, figs 1–5). Yanko and Troitskaya (1987:54,
pl. XX, figs 1–3). Yanko (1989:232–235, pl. L, figs 1–7; pl. LI, figs 1–6).

Jadammina polystoma dacica Tufescu (1973:28, pl. I, fig. 2a-b).
Lagena vulgaris Williamson (1858:3, pl. 1, fig. 5). Yanko (1979: pl. 24A, fig. 2; 1982: pl. 3, fig. 6; 1989:101–103, pl. XIII,

figs 12–14). Yanko and Troitskaya (1987:25, pl. III, figs 13, 14).
Laryngosigma williamsoni (Terquem) = Polymorphina lactea var. oblonga d’Orbigny (Williamson 1958:71, pl. 6, fig. 149)

= Polymorphina williamsoni Terquem (1878:37). Mikhalevich (1968:18, pl. V, fig. 3). Yanko (1982: pl. III, fig.
7; 1989:111–113, pl. XV, figs 3, 4). Yanko and Troitskaya (1987:27, pl. IV, figs 5, 6).

Massilina secans (d’Orbigny) = Quinqueloculina secans d’Orbigny (1826:303, pl. 43, fig. 96). Yanko (1982: pl. 3, fig. 2;
1989:65–68, pl. X, fig. 5). Yanko and Troitskaya (1987:22, pl. II, fig. 9).

Mayerella brotzkajae (Mayer) = Elphidiella (?) brotzkajae Mayer (1968:33, fig. 52; 1974:35, fig. 28). Yanko and Troitskaya
(1987:60, pl. XXII, figs 1–3; pl. XXIII, figs 1–4). Yanko (1989:272–274, pl. LXIV, figs 2–4; pl. LXV, figs 1–4;
pl. LXVI, fig. 2).
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Mayerella kolchidica Yanko (1989:274–275, pl. LXVI, fig. 3) = Mayerella ex gr. brotzkajae (Yanko and Troitskaya 1987:61,
pl. XXIV, fig. 2).

Miliammina fusca (Brady) = Quinqueloculina fusca Brady (1870:286, pl. XI, figs 2, 3). Mayer (1968:23, fig. 41; 1974:23,
fig. 18). Yanko (1989:15–17, pl. II, fig. 5).

Nonion matagordanus Kornfeld = Nonion depressulus (Walker and Jacob) var. matagordana Kornfeld (Cushman 1939:21,
pl. 5, figs 23–25). Yanko (1979: pl. 24#, fig. 4; 1982: pl. IV, fig. 2; 1989:154–157, pl. XXIV, figs 1–5). Yanko
and Troitskaya (1987:40, pl. 9, figs 7–9).

Parafissurina dzemetinica Yanko (1979: pl. 24A, fig. 3, 1982:130, pl. 5, fig. 7; 1989:132–134, pl. XIX, figs 6–13). Yanko
and Troitskaya (1987:34, pl. VII, figs 6–12).

Parafissurina lateralis Cushman = Parafissurina ex gr. lateralis Cushman (Yanko and Troitskaya 1987:35, pl. VI, figs
13–15). Yanko (1989:134–137, pl. XIX, figs 14–16).

Porosononion martkobi ponticus Yanko (1989:210–214, pl. XLIV, figs 1–4) = Nonion martkobi Bogdanovich (1947:30, pl.
IV, fig. 4a-c) = Nonion stelligerum Dolgopol’skaya and Pauli (1931:31, pl. 3, fig. 12a, b) = Porosononion
martkobi (Yanko and Troitskaya 1987:52, pl. 18, figs 1–4) = Protelphidium martkobi (Yanko 1979: fig.24', fig.
3; 1982: pl. 2, fig. 2) = Cribroelphidium martkobi (Mikhalevich 1968:20, pl. 7, fig. 1).

Porosononion martkobi tschaudicus Yanko (1989:215–218, pl. XLV, figs 1, 2).
Pyrgo elongata (d’Orbigny) = Biloculina elongata d’Orbigny (1826:298, fig. 4). Yanko and Troitskaya (1987:21, pl. 2, figs

5, 6). Yanko (1989:70–72, pl. XI, figs 1, 2).
Quinqueloculina bicornis (Walker and Jacob) = Serpula bicornis Walker and Jacob (1978:633, pl. 14) = Quinqueloculina

ex gr. bicornis (Yanko and Troitskaya 1987:17, pl. 1, fig. 9). Yanko (1982: pl. III, fig. 4; 1989:3–34, pl. IV, figs
5–10).

Quinqueloculina laevigata (d’Orbigny) = Triloculina laevigata d’Orbigny (1826:134, pl. IV, fig. 1) = Quinqueloculina
laevigata (Cushman 1922:65, pl. 13, fig. 2). Mikhalevich (1968:17, pl. III, fig. 2). Yanko and Troitskaya (1987:18,
pl. 1, fig. 10). Yanko (1989:42–45, pl. VI, figs 6–9; pl. VII, figs 1, 2).

Quinqueloculina seminulum (Linnaeus) = Serpula seminulum Linné (1767:1264, fig. 1) = Quinqueloculina seminulum
(Williamson 1858:86, pl. 7, figs 183–185) = Quinqueloculina pseudoseminula (Mikhalevich 1968:17, pl. 4, fig.
1). Yanko (1979: pl. 24A, fig. 1; 1982: pl. 3, fig. 1). Yanko and Troitskaya (1987:20, pl. 2, figs 3, 4). Yanko
(1989:55–57, pl. VIII, figs 5–9).

Spiroplectinata perexilis Mayer (Mayer 1968:24, fig. 44). Yanko (1989:21–22, pl. III, fig. 4).
Trichchyalus aguajoi (Bermúdez) = Discorbis aguajoi Bermúdez (1935:204, pl. 15, figs 10–14) = Discorbis instans Mayer

(1968:26, fig. 46). Tufescu (1974: pl. IV, fig. 19). Yanko (1989:163–165, pl. XXVI, figs 5, 6).
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