Vivado Hello World Tutorial

Embedded Processor Hardware Design
September 9, 2013

VIVADO TUTORIAL | 1

Table of Contents

Lo [0 T =T 4 0 T=] 4] RN 3
Part 1: Building a Zyng-7000 Processor Hardwarecccceeeeereenereencrenerenereneeenceenseennns 3
59U oY L0 ot 1o) o S0P TP 3
Step 1: Start the Vivado IDE and Create @ PrOJECt ... sssssssssssssssssssssssssssssssssssssns 3
Step 2: Create an [P Integrator DeSIGN ... sessessss s ssssssssssas 5

CUSEOMUIZE INSEANTIALEA IP ...coooevorrevereeeerseers s ssssesissesas s sssssesssseses s s sess s sssasssssssssssssssasssansssanns 9

USE BIOCK DESIGNET ASSISEANCE cccvvvvurerereerisesraesesassesiseesissssssssessssesassssassssasssssssessssssssssssssssssssssssssassssssssssssssans 10
Step 4: Generate HDL DeSign Files ...t ssssssse e sessssssesssssssesssssssesssssssesns 14
Step 7: Implement Design and Generate BitStream.....oereeneeneeserseessesnsesssesseesssessessssssesssssssesns 15
Step 8: EXport HAardware t0 SDK ... sssases 17

EXDOIT E0 SDK ooeovereereissreseissseseisssissssssisssssssssssssassssssssssssssssssssasssssssssssssssssassssssssssssasssssasssssasssssssnssssssssassssssasssnssas 17
Part 2: Build Zynq-7000 Processor SOftWareccceeeeereenerenerenereeerenserensernseeenserensenens 18
Step 1: Start SDK and Create a Software Application......insessssssssssssennes 18
Step 2: Run the Software APPliCAtION . s sssssssssssases 21

AAA @ BEr@ARPOINE cuuvvossrersvvssirssirisssosssssesssssssssisssissssssssssssssassssssssssssssssasssnsssnsssss 26
Step 3: EXeCULiNG the SOftWATE ...ttt ss s s s s s sss e 27

2 VIVADO TUTORIAL

Requirements

The following is needed in order to follow this tutorial:
* Vivado w/ Xilinx SDK (tested, version 2013.2)
* Zedboard (tested, version D)

Part 1: Building a Zynq-7000 Processor Hardware

Introduction

In this part of the tutorial you create a Zynq-7000 processor based design and
instantiate IP in the processing logic fabric (PL) to complete your design. Then you
take the design through implementation, generate a bitstream, and export the
hardware to SDK.

If you are not familiar with the Vivado Integrated Development Environment Vivado
(IDE), see the Vivado Design Suite User Guide: Using the Vivado IDE (UG893).

Step 1: Start the Vivado IDE and Create a Project

1. Start the Vivado IDE (FIGURE 1) by clicking the Vivado desktop icon or by
typing vivado at a terminal command line.

VIVADO*™ LN

PROGRAMMABLE.

Getting Started Documentation
Create New Project = Documentation and Tutorials
New Project Wizard will guide you through the process Invaluable for first time users or to try new features.
of selecting design sources and a target device for
Y a new project. (aaa’

Open Project User Guide

”
Open one of the most recently used projects or 3 '/ More detailed info on Vivado commands, dialogs,
any previously created project. EN RV and buttons.
Open Example Project K0 Quick Take Videos
(a
AN View a series of short videos on various topics from
> i (
Open one of the tutorial projects. & design flows overview to recommended methodology.

Manage IP . Release Notes Guide

N
} Open the IP Catalog and view available IP.

Create and customize IP to be used in a new project
or open previously customized IP to make changes.

Information about installation and new IDS features
in this release.

g e

/3 Td Console

Figure 1: Getting Started Page

VIVADO TUTORIAL | 3

2. From the Getting Started page, select Create New Project. The New Project
wizard opens (FIGURE 2).
3. Click Next

-
#- New Project (3|
Create a New Vivado Project

This wizard will guide you through the creation of a new project

To create a Vivado project you will need to provide a name and a location for your project

files. Next, you will specify the type of flow you'll be working with. Finally, you will specify
your project sources and choose a default part.

To continue, click Next.

Figure 2: Create New Project Wizard

4. In the Project Name dialog box, type the project name and location. Ensure

that Create project subdirectory is checked, and then click Next.

In the Project Type dialog box, select RTL Project, then click Next.

6. Inthe Add Sources dialog box, ensure that the Target language is set to
VHDL, then click Next.

U1

7. Inthe Add Existing IP dialog box, click Next.
8. In the Add Constraints dialog box, click Next.
9. In the Default Part dialog box select Boards and choose “ZedBoard Zynq

Evaluation and Development Kit”. Make sure that you have selected the
proper Board Version to match your hardware because multiple versions of
hardware are supported in the Vivado IDE. Click Next.

10. Review the project summary in the New Project Summary dialog box before
clicking Finish to create the project.

4 VIVADO TUTORIAL

Step 2: Create an IP Integrator Design
1. Inthe Flow Navigator, select Create Block Design.

¢ zyng_tutorial - [C/temp/zynq_tutorial/zyng_tutorial xpr] - Vivado 2013.2
File Edit Flow Tools Window Layout View Help

AR BB X P DY S K| X (G |5 Defaul Layout

Flow Navigator «“ | Project Manager - zynq_tutorial
= = Sources
el =—] = rl:.
4 Project Manager | Az= wetRE

. : @0 Design Sources
& Project Settings [+ Constraints (1)
5% Add Sources

=+ Simulation Sources (1)
1F 1P catalog) sim_1

4 TP Integrator

£ Create Block Desigrt?
B# Open Block Desig
& Generate Block 0|

Create Block Design
Create and add an IP subsystem to the project.
4 Simulation | | ‘

Figure 3: Create Block Design from Flow Navigator

2. In the Create Block Design popup menu, specify a name for your IP
subsystem design.

-

¢ Create Block Design @
@ Please specify name of block design

k- -

Design name: | zyng_design_1

ok || cancel

Figure 4: Create Block Design Dialog Box

VIVADO TUTORIAL | 5

3. Right-click in the Vivado IP integrator diagram window, and select Add IP.

® Properties Ctri+E
X Delete Delete
B Cop Ctrl+C
B Paste Ctrl+V
k Select All Ctri+A
2 AddIP.. i Cirl+ |
¥ Validate Design F6
Create Hierarchy...
Create Comment
Create Port... Ctrl+K
Create Interface Port... Ctrl+L
@ Regenerate Layout
B Save as PDF File..

Figure 5: Add IP Option

4. Alternatively, you can click the Add IP link in the IP integrator diagram area.

J %= Diagram X |
}[l A, design_1 —
@: /(@ This design is empty. To get started J Add IPI from the catalog.
e

Figure 6: Add IP Link in IP Integrator Canvas

The IP Catalog opens.

5. In the search field, type zynq to find the ZYNQ7 Processing System IP, and
then press Enter on the keyboard.

Search: | ©.- zynq (2 matches)
1 ~2
Name Version AX4 Status License Vendor |
iF ZYNQ7 Processing System 5.2 AX4-Stream, AX4 Production Included Xilinx, Inc. %
iF ZYNQ7 Processing System BFM 1.0 AXH Pre-produ... Purchase Xilinx, Inc.
<| Il | » O
Select and press ENTER or drag and drop, ESC to cancel

Figure 7: The IP Integrator IP Catalog

Because you selected the ZedBoard when you created the project, the Vivado
[P integrator configures the design appropriately.

6 VIVADO TUTORIAL

6.

7.

In the Tcl Console, you see the following message:

create bd cell -type ip -vlnv
xilinx.com:ip:processing system7:5.2 processing system7 1

INFO: [PS7-6] Configuring Board Preset zed. Please wait

There is a corresponding Tcl command for all actions performed in the IP
integrator block diagram. Those commands are not shown in this document.
See the Tcl Console for information on those commands.

In the IP integrator diagram header, click Run Block Automation.

&= Diagram X | B Address Editor X

| &, zyng_design_1

O¢| (% Designer Assistance available. Run Block Automation

:: & /processing_system7_1 M

Figure 8: Run Block Automation on Zync

The Run Block Automation dialog box opens, stating that the FIXED_IO and
DDR interfaces will be created for the Zynq core.

Click OK.

-

¢#- Run Block Automation LX)

Instance: /processing_system7_1

Make Interface External: FIXED_IO, DDR

0K] [Cancel

Figure 9: Zync7 Run Block Automation Dialog Box

VIVADO TUTORIAL | 7

After running block automation on the Zynq processor, the IP integrator

diagram should look as follows:

processing_system7_1

DDR < DDR
FIXED_IO< I':BFIXED_IO
USBIND_0< |||
M_AXI_GPO<p fii
FCLK_CLKO

FCLK_RESETO_N

ZVNZW processmg System

Figure 10: Zynq Processing System after Running Block Automation

M_AXL GPO_ACLK ZYNQ?

8. Now you can add peripherals to the processing logic (PL). To do this, right-

click in the IP integrator diagram, and select Add IP.

9. In the search field, type gp1i to find the AXI GPIO IP, and then press Enter to

add the AXI GPIO IP to the design.

10. Repeat the action, typing axi bram to find and add AXI BRAM Controller,

and typing block to find and add Block Memory Generator.

The Block Design window matches FIGURE 11. The relative positions of the

[P will vary.

processing_system7_1

FIXED_10

\)
M_AXI_GPO_ACLK ZYNO‘ M_AXT GPO

FCLK_CLKD
FCLK_RESETO_N

axi_bram_ctrl 1

YNQ7 Processing System

blk_mem_gen_1
"
DDR
Block Memory Generator W B OR
i_gp

Figure 11: Block Design after Instantiating IP

8 | VIVADO TUTORIAL

Customize Instantiated IP

1. Double-click the Block Memory Generator IP, or right-click and select
Customize Block (FIGURE 12).

o

@ Block Properties...
Delete

Copy

Select All

Add IP...

X Customize B‘gck...
Orientation

Ctrl+E
Delete
Ctrl+C
Ctrl+V
Ctrl+A
Ctrl+I

Figure 12: Customize Block Option

The Re-customize IP dialog box opens. 2.

2. On the Basic tab of the dialog box, set:
* Mode to BRAM Controller
* Memory Type to True Dual Port RAM

Click OK.

LF Re-customize IP
Block Memory Generator (8.0)

[pocumentation [IP Location

1P Symbol | Power Estimation
["] show disabled ports

Component Name (zynq_design_1_blk_mem_gen_1_0

Basic Port A

tions | Other Options | Summary

Mode BRAM Controller v

Memory Wpe True Dual Port RAM ¥

ECC Options

No ECC

ECC Type

Error Injection Pins | Single Bit Error Injection

Generate address interface with 32 bits

Common Clock

Figure 13: Set Mode and Memory Type

The AXI BRAM Controller provides an AXI memory map interface to the
Block Memory Generator.

VIVADO TUTORIAL

3. Connect the Block Memory Generator to the AXI4 BRAM Controller by
clicking the connection point and dragging a line between the IP.

axi_bram_ctrl_1 ~ blk_mem._gen_ 1

BRAM_PORTA<: ||} ||| <-BRAM_PORTA

S_AXI_ACLK
BRAM_PORTB <} —" <k BRAM_PORTB

S_AXI_ARESETN

Block Memory Generator

Figure 14: Connected AXI BRAM Controller and Block Memory Generator

The AXI BRAM Controller provides an AXI memory map interface to the
Block Memory Generator.

Use Block Designer Assistance
Block Designer Assistance helps connect the AXI GPIO and AXI BRAM Controller to

the Zynqg-7000 PS.

1. Click Run Connection Automation and then select /axi_gpio_1/s_axi to
connect the BRAM controller and GPIO IP to the Zynq PS and to the external

pins on the ZedBoard (FIGURE 15).

&= Diagram X | ™ Address Editor X

;’UI 7, zynq_design_1

Q¢| (@ Designer Assistance available. Run Connection Automation

_O__ @& /axi_gpio_1/s_axi

q @ /axi_gpio_1/gpio

.B‘ @ /axi_bram_ctrl_1/S_AXI

Figure 15: Run Connection Automation

The Run Connection Automation dialog box opens and states that it will
connect the master AXI interface to a slave interface.

In this case, the master is the Zynq Processing System IP (FIGURE 16).

10 VIVADO TUTORIAL

¢~ Run Connection Automation

{0} Connect a master interface to slave interface:
=" [axi_gpio_1/s_axi

Master: /processing_system7_1/M_AXI_GP0

=

[ok

][Cancel]

Figure 16: Run Connection Automation Message

Click OK.

This action instantiates an AXI Interconnect IP as well as a Proc Sys Reset [P
and makes the interconnection between the AXI interface of the GPIO and the

Zynqg-7000 PS.

shown in FIGURE 17.

Select Run Connection Automation again, and the /axi gpio 1/gpio

Z= Diagram X | [Address Editor X

*Ui 74, zynq_design_1 »

O(

(@ Designer Assistance available. Run Connection Automation

(8
A

Y

q\\? /axi_gpio_1/gpio
@ /axi_bram_ctrl_1/S_AXI

Figure 17: axi_gpio Selection

The Run Connection Automation dialog box includes options to hook up to

the GPIO port. 4.

3. Select leds_8bits (FIGURE 18).

-
‘E‘, Run Connection Automation

Select Board Interface: leds_8bits ~

tns_Sbits

leds_8bits

sws_8bits
Custom

, Connect Board Interface to IP interface: /axi_apio_1/apio

l

OK

] [Cancel

Figure 18: Select Board Interface Options

VIVADO TUTORIAL | 11

4. Click OK. This step also configures the IP so that during netlist generation,
the IP creates the necessary Xilinx Design Constraints (XDC).

5. Click Run Connection Automation again, and select the remaining option
/axi bram ctrl 1/S AXI (FIGURE 19).

Ze Diagram X [Address Editor X
*ﬂl 74, zynq_design_1 »

Q¢| (@ Designer Assistance available. Run Connection Automation
- @ /qxi_bram_ctrl_1/S_AXI
A W

R

Figure 19: axi_bram_ctrl Selection

This completes the connection between the Zynq7 Processing System and the
AXI BRAM Controller.

The IP integrator subsystem looks like FIGURE 20. Again, the relative
positions of the IP can differ slightly.

Diagram —_oax

.’Dl # zynq_design_1 »

processing_system?_1_axi_periph

ZERR

Proc
processing_system?_1

p«{nmﬁvam ZYNO# "

< 1 LS

R/ QP | &

Figure 20: Zynq Processor System

6. Click the Address Editor tab to show the memory map of all the IP in the
design.

In this case, there are two IP: the AXI GPIO and the AXI BRAM Controller. The
[P integrator assigns the memory maps for these IP automatically. You can
change them if necessary.

12 | VIVADO TUTORIAL

7. Change the range of the AXI BRAM Controller to 64K, as shown in FIGURE 21.

&= Diagram X & Address Editor X
BN Instance Base Name Offset Address Range High Address
o [/processing_system7_1
23| =8 Data
== [axi_gpio_1 Re 0x41200000 64K 0x4120FFFF
54 - Jaxi_bram_ctrl 1 omooooooo 0x40000FFF
4K -
8K |-
16K |~
32K
128K
256K ~
512K /

Figure 21: axi_bram_ctrl to 64k Range

8. Save your design by pressing Ctrl-S, or select File > Save Block Design.

9. Click the Address Editor tab to make sure that the memory mappings for the
GPIO and BRAM controller have been auto populated.

10. From the toolbar, run Design-Rules-Check (DRC) by clicking the Validate

Design button (FIGURE 22). Alternatively, you can do the same from the
menu by:

* Selecting Tools > Validate Design from the menu.

Right-clicking in the Diagram window and selecting Validate Design.

" zyng_debug_design -

File Edit Flow Tools Window Layout View Help
22 E o R R X %333 P D XS K| XL @ [0efault Layout b & B

Flow Navigator 9 Validate Design
590 g

peg— Validate and display errors and critical warnings in this design

Figure 22: Validate Design Button

The Validate Design Successful dialog box opens (FIGURE 23).

Validate Design [

[0] Validation successful. There are no errors or critical warnings in this design.

Figure 23: Validate Design Message

11. Click OK.

VIVADO TUTORIAL | 13

Step 4: Generate HDL Design Files
You now generate the HDL files for the design.

1. Inthe Source window, right-click the top-level subsystem design and select
Generate Output Products (FIGURE 24). This generates the source files for
the IP used in the block diagram and the relevant constraints file.

| Block Design - zynq_design_1

Sources P E S |E—= Diagram X | B A

az= e 2E [can

=+ Design Sources (1) ‘ =|= Jprocessing_
=R N-yng_desian 1 (zvna desian 1.bd) (1) ca| VBB Dbty
[0 Constraints (1 (3 Source Node Properties... Ctrl+E Jaxi_gg
= Simulation S

Jaxi_bn
& QOpen File Alt+0

Create HDL Wrapper

View Instantiation Template

Generate Output Products... M
23

Reset Outnut Products.
Figure 24: Generate Output Products Option

2. The Manage Output Products dialog box opens. Click OK.

Manage Output Products =]

@ Choose an action for each target. Expand to see more information about the target. When OK
%= s pressed, all target actions will be taken.

Output Product Selection

| Implementation Current State: Qut-of-Date Action: Regenerate
23| & Simulation Current State: Out-of-Date Action: Regenerate
;| &l Synthesis Current State: Out-of-Date Action: Regenerate

Output product location: C:/temp/zyng_tutorial/zyng_tutorial.srcs/sources_1/bd/zyng_design_1| -

3. Inthe Sources window, select the top-level subsystem source, and select
Create HDL Wrapper to create an example top-level HDL file (FIGURE 25).

4. Click OK when the Create HDL Wrapper dialog box opens.

Block Design - zyng_design_1

Sources - 0w x E=Diagram x B Addre|
QT 2R

[Hs" Design Sources (1) ‘
=N 7yng_design 1 (zvna_desian 1.hd) (1)

. [zyng_de Source Node Properties... Ctrl+E fxi_gpio_1
[+ Constraints (1) xi_bram_

[+ Simulation Sou{ & Open File Alt+0

| Create HDL Wrapper {

View Instantiation Template

Cell

k&2

[=HF [processing_syste
[ZL.FA Naty

Figure 25: Create HDL Wrapper

14 VIVADO TUTORIAL

Step 7: Implement Design and Generate Bitstream

1. In Flow Navigator, click Generate Bitstream to implement the design and
generate a BIT file.

Note: If the system requests to re-synthesize the design before implementing,
click No. The previous step of saving the constraints caused the flow to mark
synthesis out-of-date. Ordinarily, you might want to re-synthesize the design

if you manually changed the constraints, but for this tutorial, it is safe to
ignore this condition (FIGURE 26).

4 Program and Debug
i i Tcl Console
\Eﬁ Bitstream Settings =
3 i connect_debug port u_ila 0/F
. iy H ! - _
Qﬂ I}\?nerate fiSan | [3ave_conatraints -force
& Generate Bitstream Creatl
cs"ié . - . c Target
L Generate a programming file after implementation.
B=T T
X < | i |

Figure 26: Generate Bitstream

You might see a dialog box stating no implementation results are available.

2. Click Yes.

-

-
No Implementation Results Available &J

\ There are no implementation results available. Okay to launch synthesis and implementation?

& 'Generate Bitstream' will automatically start when synthesis and implementation completes.

[7] Don't show this dialog again

(=)(w]

Figure 27: No Implementation Results Available Dialog Box

VIVADO TUTORIAL | 15

3. After the design implementation, click Open Implemented Design, (FIGURE
28).

Bitstream Generation Completed @

e)
'ﬁol Bitstream Generation successfully completed.
- e

MNext

(@ Open Implemented Design
(") View Reparts

-.:_' Open Hardware Session

() Launch iMPACT

["] Don't show this dialog again

[0K H Cancel]

Figure 28: Bitstream Generation Completed

4. You might get a warning that the implementation is out of date. Click Yes.

#- Implementation is Out-of-date @

L You are opening an implemented design that is now out-of-date because
= constraints were modified - more info

Would you like to go ahead and open the out-of-date design?

[Yes ” No]

Figure 29: Implementation Is Out-of-Date Dialog Box

16 VIVADO TUTORIAL

Step 8: Export Hardware to SDK

In this step, you export the hardware description to SDK. You use this in Part 2.
The IP integrator block diagram, and the Implemented design, must be open to

export the design to SDK.

IMPORTANT: For the Digilent driver to install, you must power on and connect the
board to the host PC before launching SDK.

Export to SDK

1. Inthe Flow Navigator, click Open Block to invoke the IP integrator design

(FIGURE 30).

4

IP Integrator

4% Create Block Design
™ Open Block %sign

Simulation |Open Block Designl

Figure 30: IP Integrator - Open Block Design

Now you are ready to export your design to SDK.

2. From the main Vivado File menu, select Export Hardware for SDK (FIGURE

31).
@ Add Sources... Alt+A
Open Source File... Ctrl+N
Export 4
Open Log File

Open Journal File

Type: Block Designs
Size: 55.5 KB

53
Export Hardware for SDK... %

Export Block Design...

% Export Bitstream File..

Figure 31: Export Hardware for SDK

The Export Hardware for SDK dialog box opens, ensure that Export
Hardware, Include Bitstream, and Launch SDK are checked (FIGURE 32).

#% Export Hardware for SDK

Options

Source: # zyng_design_1.bd -
Export to: | &3 <Local to Project> -

Workspace: & <Local to Project> -

Export Hardware

Include bitstream (Note: an implemented design m...

Launch SDK

|ﬁ| Export hardware platform for SDK.

(=]

Figure 32: Export Hardware for SDK

VIVADO TUTORIAL | 17

Part 2: Build Zynq-7000 Processor Software
In this portion of the tutorial you will build an embedded software project that
prints “Hello World” to the serial port.

Step 1: Start SDK and Create a Software Application
1. Ifyou are doing this lab as a continuation of Part 1 then SDK should have
launched in a separate window (if you checked the Launch SDK option while
exporting hardware). You can also start SDK from the Windows Start menu
by clicking on Start > All Programs > Xilinx Design Tools > Vivado 2013.2
> SDK > Xilinx SDK 2013.2. When starting SDK in this manner you need to
ensure that you in the correct workspace.

2. You can do that by clicking on File > Switch Workspace > Other in SDK. In
the Workspace Launcher dialog box in the Workspace field, point to the
SDK_Export folder where you had exported your hardware from lab 1.

Usually, this is located at
. .\project name\project name.sdk\SDK\SDK Export.

Now you can create a hello world application.

3. Select File > New > Application Project (FIGURE 33).

@ C/C++ - hw_platform_0/system.xml - Xilinx SDK
File| Edit Source Refactor Navigate Search Run Project Xilinx Tools Window Help

New Alt+Shift+N » | [&5] Makefile Project with Existing Code
QOpen File.. €5 C++ Project
©] CProject

Close Ctrl+W

. @ Application [yoject
Figure 33: File->New->Application Project

New Project dialog box opens

18 | VIVADO TUTORIAL

4.

In the Project Name field, type Zync_Design, and click Next (FIGURE 34).

Mew Project

Application Project

Create 2 managed make application project.

S lEl=]

s

Project name: Zyng_Design

Use default location
Location: | Chtutorials\zyng_debug_design\zyng debug design.sdk\SDK\SDK_E

Choose file systerm: |default ~

Target Hardware

Browse...

Hardware Platform [hw;alatformﬁ

Processor [ps?_co rtexad_0

Target Software

OS Platform ’sta ndalone

Language @C ©C++
Board Support Package (@) Create New Zynq_Design_bsp

Use existing

@ <Back [Nex> [Fnish]|

Cancel

Figure 34: SDK Application Project

VIVADO TUTORIAL | 19

5. From the Available Templates, select Hello World (FIGURE 34) and click
Finish.

r N
& New Project BTl

Templates

o
Create one of the available templates to generate a fully-functioning @
application project.

Available Templates:

Dhrystone
Empty Application

IwIP Echo Server
Memory Tests

Peripheral Tests
Zynq FSBL

Let's say 'Hello World' in C. -

@

Next > [Finish] [Cancel

Figure 35: SDK New Project Template

When the program finish compiling, you will see the following (FIGURE 36).

UVETVIEW | SoUrce

. Problems ¥ Taskstl Console & =] Properties| & Terminal|
ICDT Build Console [Zyng_Design]

Invoking: ARM Print Size

arm-xilinx-eabi-size Zyng_Design.elf |tee "Zyng_Design.elf.size"
text data bss dec hex filename

74740 2024 33700 110464 1af80 Zyng_Design.elf

Finished building: Zyng_Design.elf.size

16:53:10 Build Finished (took 4s.976ms)
Figure 36: SDK Message

20 VIVADO TUTORIAL

Step 2: Run the Software Application

Now, you must run the hello world application on the ZedBoard. To do so, you need
to configure the JTAG port. Make sure that your hardware is powered on and a
Digilent Cable is connected to the host PC. Also, ensure that you have a USB cable
connected to the UART port of the ZedBoard.

1. Click Xilinx Tools and select Configure JTAG Settings (FIGURE 37).

Xilinx Tools | Window Help

Generate linker script
Board Support Package Settings
Repositories

Program FPGA
Program Flash

XMD Console

Launch Shell

Configure JTAG Settings
System Generator Coﬁ%ebug Settings
Create Zynq Boot Image

Ex&dK O ©=Q

Figure 37: Configure JTAG Settings

2. In the Configure JTAG Settings dialog box, select the Type as Auto Detect,
and click OK (FIGURE 38).

@ Configure JTAG Settings &3 ‘
£

Configure JTAG Settings o \
Specify the JTAG cable to use for communication and JTAG Device Chain configuration of the target board.

These settings affect how XMD connects to the FPGA.
JTAG Cable

Type: |Auto Detect v

Hostname:
Port:
Frequency: v
Other Options:
JTAG Device Chain

(@ Automatically Discover Devices on JTAG Chain
©) Manual Configuration of JTAG Chain

FPGA? Device Name ID Code IR Length

'@ [OK] [Cancel

Figure 38: Configure JTAG Settings

VIVADO TUTORIAL | 21

3. Next, download the bitstream into the FPGA by selecting Xilinx Tools >
Program FPGA (FIGURE 39).

Xilinx Tools | Window Help

) Generate linker script

W Board Support Package Settings
@ Repositories

22 Program FPGA

A Program Flash

3 XMD Console

Launch Shell

&% Configure JTAG Settings

3t System Generator Co-Debug Settings
A Create Zynq Boot Image

Figure 39: Program FPGA

This opens the Program FPGA dialog box.

4. Ensure that the path to the bitstream that you created in Step 7 of Lab 1 is
correct and then click Program.

Note: The DONE LED on the board turns blue if the programming is
successful.

5. Select and right-click the Zynq_Design application.

6. Select Debug As and Debug Configurations (FIGURE 40).

22 VIVADO TUTORIAL

7.

C/C++ - zyng_design_bsp/system.mss - Xilinx SDK

File Edit Source Refactor

Navigate Search Run Project Xilinx Tools Window Help

S« |®VQV@ ﬁvﬁﬁv@v@v E- R VI PR W 22EO&E =
[+ Project Explorer 2 = O[5z systemaxml ﬁm system.mss 2
v~ Dot _t_a i
= =b| ps7_afi_2 generic
B w_p I;t_'fc_:rm_l) ps7_afi_3 generic
ps/_initc psi/_can_0 canps Documentation Examples
b pd
@ p MNew * heric
g
Ps Go Into neric
& P fg D ion Exampl
B s Open in New Window vcfg ocumentation Examples
- aps Documentation Examples
=@ Copy Cil+C tops D tati EX—P— pl
452 Zyng Paste Ctrl+V P Qcumenta fon amples
» 4 Bil ® Delete Delete 3CP5 Documentation Examples
v @l In Source » llops Documentation Examples
p D Move... ps Documentation Examples
= Rename.. F2 peric
El n pips D tation Ex |
ﬁ;?;y;‘ &3 Import. p_ ocumentation Examples
122 Bporte neric
b & pg neric
B "j Build Project heric
[ERT Clean Project gic Documentation Examples
&
[6M @1 Refresh Fs timer Documentation Examples
[, sy Close Project

Close Unrelated Projects

Build Configurations
Make Targets
Index

Show in Remote Systems view

Convert To...

Run As

Debug As

Profile As

Team

Compare With

Restore from Local History...
#7 Run C/C++ Code Analysis

wdt Documentation Examples
neric
neric
rtps Documentation Examples
ps Documentation Examples

pard Support Package.

%, 1 Launch on Hardware (GDB)

% 2 Launch on Hardware (System Debugger)
[3 Local C/C++ Application =
$. 4 Remote ARM Linux Application L |

Debug Configurations.. N9 H

I
}cessing command line option -hwspec C:/tut

In the Debug Configurations dialog box, right-click Xilinx C/C++ Application

Figure 40: Launch on Hardware

(GDB) and select New.

VIVADO TUTORIAL | 23

@ Debug Configurations

Create, manage, and run configurations

% % N
L3 Nle"

type filter text
[€] C/C++ Application
[E] C/C++ Attach to Application
[€] C/C++ Postmortem Debugger
[c] C/C++ Remote Application
@ Launch Group
$7 Remote ARM Linux Application

& Xilinx C/C++ application (GDR).

[Target Communication Framework

£ Xilinx C/C++ applic LI New

¥ Delete

Filter matched 9 of 9 items

Duplicate

N ger)

5
i

Configure launch settings from this dialog:

- Press the 'New' button to c..uration of the selected type.
- Press the 'Duplicate’ butto..y the selected configuration.
- Press the 'Delete’ button t...e the selected configuration.
- Press the 'Filter’ button to configure filtering options.

- Edit or view an existing configuration by selecting it.

Configure launch perspective settings from the
‘Perspectives’ preference page.

@

Debug

Close

Figure 41: Debug Configuration Dialog Box

8. In the Debug Configurations dialog box, click Debug.

@ Debug Configurations

Create, manage, and run configurations

CExe%~

type filter text
[E1 ¢/C++ Application
[E] C/C++ Attach to Application
[€] C/C++ Postmortem Debugger
[E] C/C++ Remote Application
Launch Group
$. Remote ARM Linux Application
5 Target Communication Framework
& Xilinx C/C++ application (GDB)
Zynq_Design Debug
C/C++ application (System Debugger)

Filter matched 10 of 10 items.

©)

Name: Zynq_Design Debug

51 Main [Source |% Device Initializati

| Connect to gdbserver on a different machine.

Remote GDB Server

To open a gdbserver, launch XMD on the remote machine, and connect to the processor.
XMD will then report the port at which the gdbserver is open.

IP Address: | localhost
Port: | 1234

Apply

[# STDIO Connection ([Remote Debug & Debugger Options| = Common

Revert

Figure 42: Run Debug Configurations

9. The Confirm Perspective Switch dialog box opens. Click Yes.

["] Remember my decision

@ Confirm Perspective Switch

Do you want to open this perspective now?

@ This kind of launch is associated with the Debug perspective.

This Debug perspective is designed to support application debugging. It incorporates
views for displaying the debug stack, variables and breakpoint management.

(=]

[Yes] [No

Figure 43: Confirm Perspective Switch Dialog Box

24 VIVADO TUTORIAL

10. Set the terminal by selecting the Terminal 1 tab and clicking the Settings
button (FIGURE 44).

[overviewSource |

2. Problems £ Tasks | Console [T Properties [Terminal 1 3 N EIE 6B P - W - % =0
No Connection Selected

Settings

Figure 44: Settings Button

11. Use the following settings for the ZedBoard (FIGURE 45). Click OK.

Terminal Settings @

View Settings:
View Title: Terminal 1

Encoding: IS0-8858-1

4

Connection Type:

serial 7] The Port should be the
Settings: _,—s/ port for the Cypress
Port com1 - USB-to-Serial.

Data Bits:

Stop Bits:

parity:

Flow Control: |None

Timeout (sec): 5

| OK | I Cancel

Figure 45: Terminal Settings

12. Verify the Terminal connection by checking the status at the top of the tab
(FIGURE 46).

[Problems (Z. Tasks (E Console ﬂfl Properties (@ Terminal 1 &2
Serial: (COM1, 115200, 8, 1, None, None - CONMECTED) - Encoding: (ISO-8859-1)

I

Figure 46: Terminal Connection Verification

VIVADO TUTORIAL | 25

13.In the Debug tab, expand the tree, and select the processor core on which the
program is to be run (FIGURE 47).

35 Debug &2 i» ¥ =0
= &, 7ynq_Design Debug [iinx C/C++ application (GDE)]
=] éﬁ? ¥MD Target Debug Agent (9710713 9:43 PM) (Suspended)
= Thread [1] (Suspended: Breakpoint hit.)
=
p| arm-xilinx-eabi-gdb (9/10/13 9:43 PM)
».| Z:\DropboxiSchooli2013-2014\FallECES22\HellowWorldizyng_helloworldizyng_helloworld.sdk\SDK\SDK_ExportiZyng_Design\DebugiZyna_Design.elf (9/10{13 9

|~
v

Figure 47: Processor Core to Debug

14.1If it is not already open, select . . /src/helloworld.c,line 41, and double
click that line to open the source file.

Add a Breakpoint
You add a breakpoint on line 43.

1. Select Navigate > Go To Line (FIGURE 48).

Navigate | Search Run Project Xilinx Tools Window
Go Into
Go To 4
Open Declaration F3
Open Type Hierarchy F4
Open Call Hierarchy Ctrl+Alt+H
Open Include Browser Ctri+Alt+]
Toggle Source/Header Ctrl+Tab
% Open Element... Ctrl+Shift+T
Open Type in Hierarchy... Ctrl+Shift+H
Open Element in Call Hierarchy...
Open Resource... Ctrl+Shift+R
Show In Alt+Shift+W »
Quick Outline Ctrl+O
£| Next Annotation Ctrl+.
<+| Previous Annotation Ctrl+,
Last Edit Location Ctrl+Q
Go to Lineh Ctrl+L

Figure 48: Go to Line

26 VIVADO TUTORIAL

2. Inthe Go To Line dialog box, type 43.

3. Double click on the left pane of line 43, which adds a breakpoint on that line
of source code (Figure 49).

{4 system.xml), system.mss [c] helloworld.c &3

#include <stdio.h>
#include "platform.h”

void print(char *str):

:::g;

int main()
¢
init_platform();

v

| print("Hello Worlavmir"):

s

return 0;

3
v

[

Figure 49: Add a Breakpoint

Step 3: Executing the Software
This step will take you through executing the code up to and past the break point.

1. Click the Resume button or press F8

2. Click the Step Over button or press F6

3. You should see “Hello World” in the terminal if everything worked correctly
(FIGURE 50).

El console | v Tasks | & Terminal 1 &2 [f_ Problems | €2 Executables D Memory
Serial: {(COM6, 115200, 8, 1, None, None - CONNECTED) - Encoding: {ISO-8859-1)
Hello World

Figure 50: Terminal Output

VIVADO TUTORIAL | 27

