
HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 1 (4/12/10)

Limitations of FSMs (A Practical Introduction to HW/SW Codesign, P. Schaumont)

The Finite State Machine controller in an FSMD is non-programmable

 A microprogrammed architecture is obtained by substituting the FSM for a pro-

grammable controller

The advantage of a programmable architecture is flexibility to implement multi-

ple functionalities

Here we cover the design of micro-programmed controllers and datapaths, including

advantages/disadvantages

FSMs are a convenient way of capturing control and decision making

FSM graphs, in fact, resemble Control Dependence Graphs

Yet FSMs are not a universal solution for control, and they suffer from several mod-

eling weaknesses, particularly when dealing with complex control requirements

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 2 (4/12/10)

Limitations of FSMs

FSM graphs are a flat model (no hierarchy)

They are like a C program written completely in a single function

Realistic systems do not use flat control, they need a control hierarchy

There have been proposals for hierarchical modeling mechanisms for FSM, e.g.,

Statecharts, but they have not found widespread use

The most obvious problem of a flat FSM model is state explosion, which occurs

when multiple independent activities interfere in a single model

Assume that a single finite state machine has to model 2 different activities each of

which can be in one of three states

The resulting FSM, called a product state-machine, needs 9 states to represent the

overall model

Due to conditional state transitions, one state machine can remain in a single

state while the other state machine proceeds to the next state

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 3 (4/12/10)

Limitations of FSMs

As shown below, A1, A2 and A3 become intermediate states

The resulting number of state transitions is even higher, i.e., for n independent state

transition in each state machine, we can have upto 2n state transition conditions

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 4 (4/12/10)

Limitations of FSMs

FSM graphs have trouble expressing exceptions and global conditions

An exception can be defined as a global condition that will override all other condi-

tions, and that brings the FSM into an ’exception state’

The purpose of an exception is to abort the regular flow of control and to transfer

control to a dedicated exception-handler

An exception may have internal causes, such as an overflow condition in a data-

path, or external causes, such as an interrupt

To model this, we need to introduce state transitions out of all states, and re-work all

state transition conditions to reflect the proper priority

The effect of these modifications on the graph is a drastic increase in complexity, with

a spaghetti-like result

Consider adding an exception input called exc to the above FSM

Requires an immediate transition to state A1

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 5 (4/12/10)

Limitations of FSMs

Perhaps the biggest issue from the viewpoint of hardware-software codesign, a FSM

is a non-flexible model

Once the states and state transitions are defined, the control flow of the FSM is

fixed and hardwired

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 6 (4/12/10)

Limitations of FSMs

To deal with flexibility, exceptions, and hierarchical modeling, designers use other

techniques, e.g., Microprogramming, for specifying and implementing control

Microprogramming was orginally introduced in the 1950’s by Maurice Wilkes

Objective was to create a programmable instruction-set for mainframes

Became very popular in the 1970’s and throughout the 1980’s as a means to

develop complex microprocessors

Currently (2008), microprogramming is less popular and flexibility is almost always

implemented on microprocessors, in software

However, newer architectures, such as FPGAs and ASIPs, suggest that flexibility is

not the exclusive domain of software

We investigate microprogramming because it illustrates how hardware circuit design

can incorporate flexibility and full customizability

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 7 (4/12/10)

Microprogrammed Control

A micro-programmed machine next to an FSMD

The fundamental idea of microprogramming is to replace the next-state logic of a

FSM with a programmable memory, called the control store

The control store holds micro-instructions, and is addressed using a register called

CSAR (Control Store Address Register)

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 8 (4/12/10)

Microprogrammed Control

This register is the equivalent of a program counter in a microprocessor

The next-value of CSAR is determined by the next-address logic, using

• The current value of CSAR

• The current micro-instruction

• The value of status flags evaluated by the datapath

The default next-state value is (CSAR + 1)

In addition, the next-address-logic also implements conditional and absolute

jumps

The next-address logic, the CSAR, and the control store implement the equivalent of

an instruction-fetch cycle in a microprocessor

From the figure, each micro-instruction takes a single clock cycle to execute

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 9 (4/12/10)

Microprogrammed Control

Within a single clock cycle, the following activities occur:

• The CSAR provides an address to the control store which retrieves a micro-instruc-

tion

The micro-instruction is split in two parts: a command-field and a jump-field

The command-field serves as a command for the datapath

The jump-field ’points’ to the next-address logic

• The datapath executes the command encoded in the micro-instruction, and returns

status information to the next-address logic

• The next-address logic combines datapath states, micro-instruction jump-field and

status returned from the datapath

The next-address logic will eventually update the CSAR

The critical path of the micro-programmed machine is determined by the delay

through the control store, the next-address logic, and the datapath

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 10 (4/12/10)

Principles of Microprogramming

While the micro-programmed controller is more complicated than the FSM, it also

addresses the problems of FSMs very effectively

• The micro-programmed controller scales well with complexity

For example, a 12-bit CSAR will allow a control store with up the 4096 loca-

tions, and therefore a micro-program with 4096 steps

An equivalent FSM diagram with 4096 states, on the other hand, would be horri-

ble to draw!

• A micro-programmed machine deals very well with control hierarchies

Small modifications to the microprogrammed machine show above allow push-

ing and popping of the CSAR for sub-routine calls

• A micro-programmed machine can deal efficiently with exception handling, since

global exceptions are managed directly by the next-address logic

For example, the presence of a global exception can feed a hard-coded value

into the CSAR, immediately transferring control to an exception-handler

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 11 (4/12/10)

Principles of Microprogramming

Therefore, exception handling does not affect every instruction of a micro-

program in the same way as it affects every state of a FSM

• Micro-programs are flexible and very easy to change after the micro-programmed

machine is designed

Simply changing the contents of the control store is sufficient to change the pro-

gram of the machine

Here, there is a clear distinction between the architecture of the machine and the

functionality implemented using that architecture

Micro-Instruction Encoding

An interesting design problem is deciding on the format of micro-instructions in the

control store

A sample format for a 32-bit micro-instruction word is shown below

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 12 (4/12/10)

Micro-Instruction Encoding

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 13 (4/12/10)

Micro-Instruction Encoding (Jump Field)

Of the 32-bit micro-instruction word, 16 bits are reserved for the datapath and 16 bits

are reserved for the next-address logic

The next-address field holds an absolute target address, pointing to a location in the

control store

The address is 12 bit, which allows a control store as large as 4096 locations

The next field encodes the operation that will lead to the next value of CSAR

As mentioned, the default operation is to increment CSAR

For such instructions, the address field remains unused

The next field allows various jump instructions can be encoded

An absolute jump transfers the value of the address field into CSAR

A conditional jump will use the value of a flag to conditionally update the

CSAR (or just increment it)

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 14 (4/12/10)

Micro-Instruction Encoding (Command Field)

As indicated above, allocating 12 bits for the address field is wasteful

Only about 1 in every 5 instructions is a jump

There are ways to optimize this so that the address field bits are used for another pur-

pose when the micro-instructions is not a jump instruction

Command Field

There are two approaches at micro-instruction encoding

• Horizontal microcode, where no encoding is done (or just a minimal amount)

• Vertical microcode, where the maximal amount of instruction encoding is done

A wide (horizontal) micro-instruction word allows each control bit of the data path to

be stored separately

A narrow micro-instruction word, on the other hand, will require the creation of

symbolic instructions, which are encoded groups of control-bits for the datapath

Therefore, a few bits of the micro-instruction define the value of many control

bits in the data-path

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 15 (4/12/10)

Micro-Instruction Encoding (Command Field)

 Here, we create a micro-programmed machine with three instructions on reg a

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 16 (4/12/10)

Micro-Instruction Encoding (Command Field)

The three instructions do one of the following

• Double the value in a,

• Decrement the value in a, or

• Initialize the value in a

The datapath shown along the bottom of the figure contains two multiplexers and a

programmable adder/subtractor

The controller on top shows two possible encodings for the three instructions: a hori-

zontal encoding, and a vertical encoding

• For horizontal, the control store includes each of the control bits in the datapath

directly (3 bits)

• For vertical, the micro-instructions are encoded with a two-bit micro-instruction

word, and a decoder is used

So what is the design trade-off between horizontal and vertical microprograms?

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 17 (4/12/10)

Micro-Instruction Encoding (Command Field)

Vertical micro-programs have a better code density, which is beneficial for the size

of the control store.

From the figure, the vertically-encoded version of the microprogram will be

only 2/3rds of the size of the horizontally-encoded version

On the other hand, vertical micro-programs use an additional level of encoding, and

need decoding before it can drive the control bits of the datapath

Thus, the machine with the vertically encoded micro-program may have a

longer critical path

In practice, designers use a combination of vertical and horizontal encoding con-

cepts, so that the resulting digital structure is compact yet efficient

Consider for example the value of the next field of the micro-instruction word

There are six different types of jump instructions, which would imply that a vertical

micro-instruction needs no more then three bits to encode these six jumps

HW/SW Codesign w/ FPGAs Microprogramming ECE 495/595

ECE UNM 18 (4/12/10)

Micro-Instruction Encoding (Command Field)

Yet, four bits have been used, indicating that there is some redundancy

The encoding was chosen to simplify the design of the next-address logic

Another reason to leave ’room’ in the encoding is to allow future upgrades

For example, it is quite easy to add an additional conditional jump that uses an arbi-

trary combination of cf and zf

