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Abstract  

The linear normal modes of the atmosphere fall into two categories, the low frequency Rossby waves 

and the high frequency gravity waves. The elastic pendulum is a simple mechanical system having low 

frequency and high frequency oscillations. Its motion is governed by four coupled nonlinear ordinary 

differential equations. We study the dynamics of this system, drawing analogies between its behaviour 

and that of the atmosphere. The linear normal mode structure of the system is analysed, the procedure 

of initialization is described and the existence and character of the slow manifold is discussed. 

Part I. Introduction 

The concepts of initialization, filtering and the slow manifold can be clearly illustrated 
by considering the dynamics of a simple mechanical system governed by a set of ordinary 
differential equations. The elastic pendulum depicted in Fig. 1 comprises a heavy bob 
suspended by a light elastic rod which may stretch but not bend. The bob is free to 
move in a vertical plane. The oscillations of this system are of two types, distinguished 
by their physical restoring mechanisms. For an appropriate choice of parameters, the 
elastic oscillations have much higher frequency than the rotation or libration of the bob. 
We consider the elastic oscillations to be analogues of the high frequency gravity waves 
in the atmosphere. Similarly, the low frequency rotational motions are considered to 
correspond to the rotational or Rossby-Haunvitz waves. We will refer to the elastic and 
rotational motions as "fast" and "slow" respectively. 

Fig. 1. (a) Elastic pendulum in equilibrium. Mass of bob m, stretched length t, stiffness of wire k. 
(h) Pendulum in motion, polar coordinates (r,  8). 

The linear analysis of this mechanical system is straightforward. When nonlin- 
ear effects are included there is coupling between the two types of motion, and analytical 
methods are incapable of providing the solution. To obtain insight into the character- 
istics of the motion in this case we must turn to some powerful and general results 
from dynamical systems theory. The pendulum equations contain a small parameter, 
6 ,  the ratio of the frequencies of the slow and fast oscillations. The problem may be 
formulated in terms of a perturbed Hamiltonian, the size of the perturbation depending 



on c. Then the Kolmogorov-Arnold-Moser or KAM theorem implies certain restraints 
on the nature of the solution. The validity of the conclusions drawn will be supported 
by numerical simulations. 

Lorenz (1986) constructed a highly simplified model, comprising five ordinary 
differential equations, based on a truncated spectral expansion of the shallow water 
equations. He identified the variables corresponding to the high frequency oscillations 
as representing the gravity wave activity and defined the slow manifold to be an invari- 
ant sub-manifold of the five-dimensional phase space in which high frequency oscillations 
are permanently absent. In Bokhove and Shepherd (1996: BS96) Lorenz's model is fur- 
ther reduced, to a system of four ordinary differential equations. A similar reduction is 
made by Camassa (1995). These equations are structurally similar to the equations for 
a nonlinear pendulum coupled to a linear harmonic oscillator. The system is amenable 
to the application of Hamiltonian perturbation theory. For small values of the pertur- 
bation or coupling parameter. one may identify an invariant manifold on which the high 
frequency activity is unequivocally zero. This manifold is nonlinearly stable: a small 
gravity wave disturbance about it will remain permanently bounded. However, the 
manifold is not defined continuously throughout phase space, but is fractal in structure. 
Numerical experiments in BS96 showed that, as the perturbation parameter increases, 
the extent of the manifold decreases until, ultimately, it disappears entirely. 

It turns out that the simple mechanical system considered in this report is 
governed by mathematical equations having a structure very similar to Lorenz's model. 
Both can be described in terms of a system with two modes of behaviour, a linear 
harmonic oscillator and a nonlinear pendulum. The precise details of the coupling 
between the oscillator and pendulum differ in the two cases; but the conclusions of the 
KAM theorem do not depend upon these details. Therefore, much of the discussion 
in BS96-in particular. their conclusions about the existence of a slowest invariant 
manifold-can be applied directly to the elastic pendulum considered herein. 

An outline of the contents of the report follows. In Part I1 the Hamiltonian 
equations for the elastic pendulum are set down. The linear solutons are examined 
and the procedures for linear and nonlinear initialization are discussed. The concept 
of the slow manifold is introduced and illustrated by some numerical integrations. In 
Part I11 the ideas underlying the KAM theorem are presented and its main conclusions 
are summarised. Some general consequences of the theorem-in celestial mechanics, 
particle physics and statistical mechanics-are briefly described. The application of 
KAM to the elastic pendulum occupies Part IV. The implications for the existence of 
a slow manifold for this system are discussed. We conclude that, for small values of 
the frequency ratio 6, it is possible, for almost all values of the slow variables, to define 
appropriate values of the fast variables in such a way that the solution has no high 
frequency oscillations. The exceptional cases give the slow manifold a fractal structure; 
but, for small E ,  they form a set of negligible measure. These conclusions are supported 
by numerical experiments which are described in Part V. Poincarb sections showing 
regions of regular motion and regions of chaos are plotted. For small 6 the solutions 
are predominantly regular and the core solution representing purely slow motion can be 
clearly seen. As E grows the solutions become more complex, until a stage is reached 
where the distinction between fast and slow time scales no longer makes sense. In the 
final part of the paper, Part VI, we discuss miscellaneous aspects of the problem and 
touch upon some unresolved issues. 



Part 11. The Dynamic Equations for the Elastic Pendulum 

2.1 The Hamiltonian Equations 

Let l o  be the unstretched length of the rod, k its elasticity or stiffness and m the mass of 
the bob. At equilibrium (Fig. l (a))  the elastic restoring force is balanced by the weight 

It is convenient to write the dynamic equations in Hamilton's canonical form. If the 
total energy H is expressed in terms of the coordinates q, and momenta pn: these 
eauations are 

In the present case polar coordinates q, = T and qe = 0 are used, and the radial and 
angular momenta are p, = ml: and po = mr28.  The total energy is a sum of kinetic, 
elastic potential and gravitational potential energy: 

where the arbitrary constant Ho may be chosen so that H = 0 when T = ! and 0 = 0. 
The dynamical equations ( 2 )  may now be written explicitly 

0 = p e / m r  2 

ps = -mgr  sin B 
1: = p , / m  

pr = p i / ~ ~ 3  - k ( r  - e,) + mg cos o 

These equations may also be written symbolically in vector form 

where X = (O,po ,r ,p , )T ,  L is the matrix of coefficients of the linear terms and N 
is a nonlinear vector function. The state vector X specifies a point in phase space 
(here, Cdimensional) which defines the state of the system a t  any time; the motion is 
represented by the trajectory traced out by X as it moves through phase space. 

2.2 Linear Normal Modes 

Let us now suppose that the amplitude of the motion is small, so that I T ' I  = Ir - el << ! 
and 101 << 1. The equations may be linearized and written in matrix form 



We see clearly how the matrix is block-diagonal so that the equations split into two 
subsystems. The state vector X is comprised of two sub-vectors: 

and the linear dynamics of these components evolve independently: 

We call the motion described by Y the rotational component and that described by Z 
the elastic component. The rotational equations may be combined to yield 

which is the equation for a simple (anelastic) pendulum having oscillatory solutions 
with frequency m. The remaining two equations yield 

the equations for elastic oscillations with frequency m. The solutions of (7a) and 
(7b) are called the linear normal modes. 

For a stiff pendulum (k large) the stretch at equilibrium is small so that, for 
linear motions, we can replace f? by to. We define the rotational and elastic frequencies 
hv 

and assume that the parameters are such that the former is much smaller than the 
latter: 

Thus, the linear normal modes are clearly distinct: the rotational mode has low fre- 
quency (LF) and the elastic mode has high frequency (HF) . 

2.3 Linear and Nonlinear Initialization 

For 
HF 
We 

small amplitude motions, for which the nonlinear terms are negligible, the LF and 
oscillations are completely independent of each other and evolve without interaction. 
can suppress the HF component completely by setting its initial amplitude to zero: 

Z =  (:) =, a t .  t = o  

This procedure is called linear initialization. When the amplitude is large, nonlinear 
terms are no longer negligible and the LF and HF motions interact. It is clear from the 
equations (4) that linear initialization will not ensure permanent absence of HF motions: 
the nonlinear LF terms generate radial momentum. Machenhauer (1977) proposed an 



effective means of minimizing HF oscillations in such systems: set the initial tendency 
of the HF components to zero: 

This procedure is called nonlinear initialization. For the pendulum, we can deduce 
explicit expressions for the initial conditions by using (9) in (4c) and (4d): 

Thus, given arbitrary initial conditions X = (6',ps, T , ~ , ) ~ ,  we replace Z = ( ~ ~ p , ) ~  by 
ZB = ( T ~ : o ) ~ .  The rotational component Y = (6',pe)T remains unchanged. If: for 
simplicity, we assume that the angular momentum pe vanishes a t  t = 0, the condition 
T = TB defines a curve in the (T, 8)-plane: 

This is one of the classical 'special curves', called the l ima~on of Pascal, named after 
~ t i e n n e ,  father of Blaise Pascal (Wells, 1991). A set of such curves, for a selection of 
values of 6 is shown in Fig. 2. 

Fig. 2. Lima~on curves for E E {0.1,0.4,0.7,1.0) (e = 1 gives a cardioid). Unit circle shown dashed. 

2.4 The Slow Manifold and the Slow Equations 

The linear initialization condition Z = 0 defines a two-dimensional subspace of phase- 
space, the plane surface Y through the origin given by T = p, = 0. The full space is a 
direct sum of linear slow and fast spaces, y @ 2. For purely linear motion, points in 



the subspace Y will remain in it. However, for nonlinear motion a point initially in this 
plane will not remain therein. The nonlinear initialization condition 2 = 0 defines a 
two-dimensional nonlinear subset, the surface S1 given by T = TB, p, = 0. We say that 
the fast variables are slaved to the slow ones by T = ~g(8 :pe )  and p, = 0. The surface 
Sl may be considered as a first-order approximation to the slow manzfold (Leith, 1980). 
The slow manifold, S ,  is a putative invariant sub-manifold of total phase space, of lower 
dimension than the full space, upon which solutions are constrained to evolve free from 
high-frequency oscillations. The primary goal of initialization is to find a point which is 
close to both the manifold S and to the given initial data. While a point initially on S1 
is not guaranteed to remain on it, we find that points initially close to Sl remain close 
to it for all time: S1 acts like a guiding centre for the motion. Nonlinear initialization 
ensures that the initial point is on Sl. In the case of the elastic pendulum the manifold 
Sl can be represented as a surface in three-space, since p, = 0 (see Fig. 3). The cross- 
section through the plane p~ = 0 is the limason T = l o ( l  + c2 cos 8). Limason, meaning 
snail; is a happily apposite appellation for a curve circumscribing the slow manifold. 

SMuticn sufacs O l  sow Eauations 

Fig. 3. Surface SI (E = 0.25) upon which the solutions of the slow equations (12) evolve. Note that 
p ,  = 0. 

We can impose the condition that the motion evolves on the manifold S1 by 
modifying, or filtering, the dynamical equations. We replace the prognostic equations 
for the radial motion by the diagnostic equations 2 = 0 or Z = ZB. This yields the 
slow equations (Daley, 1982; Lynch, 1989). The system becomes 

The slow equations have linear normal mode solutions corresponding to the rotational 
motions, with frequency w~ = a. There are no HF normal modes; they have 



been filtered out by the condition z = 0.  The slow equations describe dynamics on 
the manifold S1. It must be stressed that the solutions of this system are not an 
exact representation of the dynamics of the elastic pendulum, but they are a close 
approximation to the full dynamics provided E is small (so that the omitted terms are 
negligible) and the amplitude of the HF component is small (so that the trajectory 
remains close to S1). 

2.5 Numerical  Solutions 

We shall further elucidate the dynamics of the elastic pendulum by presenting results 
of numerical integrations of the governing equations (4) and of their 'slow' counterparts 
(12). The parameter values are m = 1 kg, to = 1 m, g = a2 m ~ - ~  and k = 100a2 k g ~ - ~  
so that E = 10-I and e = 101 cm. The linear rotational mode has frequency w~ = .ir 
and the frequency of the elastic mode is ten times greater. 

The system (4) is solved by the Bulirsch-Stoer method (Press, et al., 1992, sub- 
routine BSSTEP) which is a modern implementation of Richardson's deferred approach 
to the limit (Richardson and Gaunt, 1927). The slow system (12) is integrated in the 
same way but the diagnostic components must be solved a t  each step. The equation for 
p, is trivial; T is deduced by an iterative procedure originally due to Picard: 

which converges rapidly. The requirement to solve nonlinear diagnostic equations is 
characteristic of filtered systems. The numerical integration of such systems is generally 
more intricate than that of their unfiltered ancestors. 

The initial conditions are chosen to be 

These satisfy the condition of linear initialization Z = ( T ' , ~ , ) ~  = 0 a t  t = 0. Two 
integrations of (4) are performed, one from the initial conditions Xo and one after 
nonlinear initialization (10) (which yields r(0) = TB = 1.00878). They will be denoted 
respectively by LIN and NLI. They were compared to the solution of the slow system, 
denoted SLO. The results are presented in Fig. 4. The variation of 0 with time is 
shown in Fig. 4(a). The rotational frequency W R  = a corresponds to one cycle every 
two seconds; the results are plotted for this time interval. The three graphs are so 
close as to be indistinguishable on the plot. The radial amplitude i = -T' = e - T 

appears in Fig. 4(b) (i is shown rather than T' so that the graph is low when the bob 
is low). The HF component is clearly visible for the linearly initialized run; note that 
W E  = 1 0 ~  means five cycles per second. The amplitude is small-about 1.2mm-due 
to the linear initialization, but still much larger than for the other runs. The NLI and 
SLO curves have variations with period of about one second: the nonlinear centrifugal 
force stretches the pendulum when the angular momentum is large; this happens twice 
in each rotational cycle or about once per second. These two runs are largely free from 
higher frequency variations but they are not coincident. 

The energy (3) may be partitioned into rotational and elastic components 



Fig. 4. Numerical solutions. LIN: linear initialization, NLI: nonlinear initialization, SLO: slow equa- 
tions. For more details, see text. 

The elastic energy for the NLI and SLO integrations, together with the difference scaled 
by ten, is shown in Fig. 4(c). The NLI curve appears to oscillate about that of the slow 
run. This is confirmed by spectral analysis of the energy (Fig. 4(d)). Both runs have 
a major peak at one cycle per second, but the peak at five cycles per second seen for 
the NLI solution is not found for the SLO solution. The nonlinearly initialized solution 
oscillates around the manifold Sl with a frequency corresponding to that of the elastic 
waves. It must be stressed that the amplitude of these oscillations is very small- 
thanks to the initialization-but some oscillation is evident. A fundamental question 
now arises: does the complete system (4) have any solutions which are totally free from 
HF components, as the slow system (12) does? In other words, is there a slow manifold 
S for (12)? We investigate this in the following sections. 

2.6 Singular Perturbation Expansion 

The slow equations, derived above in an ad hoc manner can also be justified by means 
of more systematic scaling arguments (Lynch, 1989). We assume as above that there 
is a separation of time-scales between the rotational and elastic motions, and the ratio 
E = wR/wE is a small parameter. We first non-dimensionalize the canonical equations 
(4) by specifying mass and length scales m and to and selecting the time-scale w i l  of 



the slow rotational motion. The equations then become 

9 = p e / ~ 2  

pe = -T sin 6 
i. = p, 

where all variables are now dimensionless. We next re-scale the radial variables: 

(Georgiou and Schwartz, 1996) and the canonical equations assume the following form: 

This system is in singular perturbation form. If E vanishes, the radial equations reduce 
to algebraic relationships which determine p and p, in terms of the angular quantities 
6 and pe. If quantities of order are neglected, and the system is re-dimensionalized, 
the angular equations (the first pair) are 

9 = ps/mei = -m& sin 6 

which govern the motion of a simple pendulum. The radial equations (the second pair) 
imply that the radial momentum p, vanishes and the radius vector is given by 

This is equivalent, up to O(e2), to the equation (10) for the manifold S1. The primary 
effect of ignoring O(E) terms in the dynamical equations is the omission of the tendencies 
of the fast variables. This is precisely the approximation which we made above to derive 
the slow equations. Note that, at this order of approximation, the slow rotational motion 
is uninfluenced by the fast elastic motion. Colloquially, the slow motion generates a 
balanced fast component, but the fast motion does not impinge upon the slow evolution. 
The time-scale of variations in r is the slow time-scale. 

We remark that it is possible to define successively higher order balance rela- 
tionships by requiring higher time derivatives of the fast variables to vanish. We can 
construct a heirarchy of models, the n-th-order balanced model satisfying 

(Hinkelmann, 1969). The slow equations defined above are the first-order approxima- 
tion in this series. The diagnostic relationships become increasingly complicated for 
increasing n. 



Part 111. A n  Outline of KAM Theory  

3.1 Completely Integrable  Hamiltonian Systems 

Let us consider a conservative system with n degrees of freedom. The phase-space for 
the system is 2n-dimensional with points specified by the canonical coordinates (qi,pi). 
Once initial conditions (qi (0): pi (0)) are given, Hamilton's canonical equations 

determine the motion, which may be represented by a trajectory (qi(t),pi(t)) in phase- 
space. Since the system is conservative, the energy is a constant of the motion. The 
equation H(qi,pi) = E specifies a 2n- 1-dimensional sub-manifold E called the energy 
manifold. Thus, the available portion of phase-space is of dimension 2n - 1. For each 
additional constant of the motion which we can find, the dimensionality of the available 
region of phase-space is reduced by one. The key to integrating a Hamiltonian system 
with n degrees of freedom is to find n independent constants of motion. Suppose now 
that we have found n such constants, Ik (one of which is the energy). We define a 
canonical transformation to new coordinates, treating Ik as the new momenta, and 
denoting the new conjugate position coordinates as 4k. One way of doing this is to 
define a generating function F(qi, I,) for which the following relationships hold: 

(see, e.g., Percival and Richards, 1982). Now, since the new momentum variables Ik are 
constant, Hamilton's equations imply 

so the Hamiltonian is independent of the position coordinates &. Furthermore, we have 

. d H  - 
4 k  = - = w k  (constant), 

dIk 

so that each position cordinate 4 k  = wkt + hk evolves linearly with time. Thus, the 
canonical equations are trivial to solve in this case; the system is described as com- 
pletely integrable (we omit certain technicalities). The trajectories are confined to an 
n-dimensional manifold M of the 2n-dimensional phase space. For bounded motion the 
manifold M may be shown to have the topology of an n-torus, that is, the cartesian 
product of n circles. The initial conditions determine the torus upon which the motion 
lies. Each torus M is an invariant manifold: a trajectory which starts in M will remain 
therein forever. The totality of invariant tori is said to foliate the phase space. 

There is a particular system of coordinates, known as action-angle coordinates, 
which are especially convenient for integrable systems. I t  is possible to find n topologi- 
cally independent closed curves Ck on the torus M, none of which can be deformed into 
another or shrunk to a point. One defines the action variables by integrals around each 
of these curves: 

. . n  



From the generating function F = F(qi: Ii) of the associated canonical transformation 
one then obtains the corresponding angle variables q5k = dF/aIk.  Alternatively, they 
may be calculated directly from 

(Percival and Richards, 1982). Since the action variables are constant, they are de- 
termined by the initial conditions. They label the particular torus upon which the 
trajectory lies. The angle variables mk then give the position as a function of time. 

As a concrete example, consider the harmonic oscillator with Hamiltonian H = 
1 2  2(p /m+mw2q2). The trajectories are ellipses centred a t  the origin. The action variable 
is given by 

or I = Elw. Thus, the Hamiltonian is H = H ( I )  = wI,  a function only of the new 
momentum coordinate I .  The angle variable follows immediately, upon expressing p in 
terms of q and I: 

= sin- 

The original variables are then given in terms of the new ones by 

The explicit form of the generating function S(q, I )  is given in Percival and Richards 
(loc. cit.,  p113). The canonical equations reduce to 

dH I=-- . aH 

ad 
= 0 ,  '$== = w constant 

so that the solution is immediately obvious: the action I remains constant on the 
trajectory and the angle variable 4 increases linearly with time. 

For n = 2 the tori are embedded in the %dimensional energy manifold E given 
by H(I1,Iz) = E ,  and each torus divides it into inside and outside regions. Although 
the image is not strictly accurate, we may visualise each torus as a 2-dimensional sur- 
face in %dimensional euclidean space. We can define geographic coordinates $1 in 
the longitudinal direction and 4z in the meridional direction and take the (longest) 



equatorial circle as Cl and any meridional circle as C2. The trajectory on a partic- 
ular torus winds around the longitudinal and meridional directions with frequencies 
wl  = dH/dIl  and w2 = dH/dZ2. If the frequencies are rationally related (that is, if 
3 k, l E Z : kt  # 0: kwl +lw2 = 0) the motion returns eventually to its starting point and 
is periodic. In this situation-called the resonant case-the trajectory is a closed orbit. 
If the frequencies are not rationally related (the usual case, since the real numbers are 
non-denumerable) the motion never repeats itself but traces out a trajectory which is 
dense in M (it is ergodic: the time average over the trajectory equals the space average 
over the torus). This situation is described as quasi-periodic or conditionally periodic. 

A completely integrable system is non-degenerate if the frequencies vary from 
one torus to another, as is usual for a nonlinear system. This is guaranteed by the 
following condition: 

Then in a given energy shell some tori will have closed orbits (the resonant case of 
rationally related frequencies) whereas others will have quasi-periodic orbits which never 
close. The set of resonant tori form a set which is dense in the energy manifold E ,  but 
which is of measure zero (this follows from the countability of the rationals). 

What happens when a completely integrable system is slightly perturbed in such 
a way that integrability no longer holds? Are the toroidal structures simply disturbed 
slightly or do they disintegrate completely? This fundamental question was answered 
in the early 1960s as we shall shortly see. 

3.2 Canonical Per turba t ions  and Small  Divisors 

Although completely integrable Hamiltonians are quite exceptional, they are important 
in providing a first approximation to more general sytems. The most notable example 
is in celestial mechanics. The question of the stability of the solar system has been a 
concern of scientists since the time of Newton. To a first approximation the orbits of 
the planets are Keplerian ellipses with the Sun at a focus. These orbits are unchanging 
in time. However, the planets exert small attractions upon each other. I t  is conceivable 
that, over a long time, the effects of these secondary attractions may accumulate to 
such an extent that some of the orbits become greatly distorted. This could result in a 
planetary collision or in a planet crashing into the Sun or being ejected from the solar 
system. The Hamiltonian for the solar system may be written formally as 

where Ho represents the uncoupled motions of the planets governed only by the Sun, 
which is assumed to be stationary, and €HI accounts for all the interactions between 
the planets. The system is integrable for e = 0; the solution is completely known. In 
general, the planetary interactions are very small; for example, the mean force of Jupiter 
on Venus is less than 2 x times that of the Sun. Thus, the solution of the full 
problem may be sought by means of perturbation theory. 

Let us now confine attention to systems with two degrees of freedom and assume 
that the unperturbed motion is integrable so that, with action-angle variables, the 
Hamiltonian may be written in the form 

H =  Ho(Z1,Iz) +~H1(11,12,41,42). (20) 



The basic idea of canonical perturbation theory is to find a new set of action-angle 
variables (J1,  J2;  $ 1 ;  $ 2 )  for the perturbed system such that the Hamiltonian becomes 

(Goldstein has suggested the name Kamiltonian for K!). If this can be done, the 
full system becomes completely integable. We introduce a new generating function 
S(&k: Jk) depending on the old angle and new action variables, such that 

Next S is expanded in a perturbation series 

where the leading term So = ( d l  Jl+q52 J2)  represents the identity transformation. After 
some algebraic manipulation we find that 

where Hi.[  are the expansion coefficients of the first order Hamiltonian and the w's are 
the frequencies of the unperturbed motion: wl( I l )  = aHO/aI l  and w2(11) = a H O / a I z .  
A major problem now arises: if the w's are rationally related the denominator will 
vanish for certain ( k ,  !); and even if the w's are incommensurable there are values of 
( k , e )  for which [kwl + !w2] is arbitrarily small. Thus, the perturbation series cannot 
be shown to converge. This is the notorious problem of small divisors, which hampered 
progress in celestial mechanics for so long. The greatest mathematicians were unable to 
circumvent or resolve the small divisor problem and produce convergent perturbation 
expansions. Poincark called it the fundamental problem of dynamics. The resolution 
came in the early 1960s with the demonstration of the celebrated Kolmogorov-Arnold- 
Moser or KAM theorem. 

3.3 The Kolmogorov-Arnold-Moser Theorem 

What the KAM theorem says, in plain language, is that most of the original tori persist 
in the case of small perturbations. They are topologically distorted but not destroyed. 
Thus, for most initial conditions, the trajectory remains in a manifold of dimension n and 
it is possible to define n action variables Jk which are constants of the motion. In this 
case, the motion is not qualitatively changed by a small perturbation. The exceptional 
cases comprise a set whose measure tends to  zero with the perturbation size. The proof 
of the KAM theorem is long and intricate, but the key ideas are accessible and will be 
reviewed here. 

The achievement of KAM is pivoted upon two crucial ideas. The first is to trans- 
form the perturbation series in such a way that convergence can be demonstrated under 
specific conditions. The result of this procedure is a series which is super-convergent. 
The method is to base the approximation a t  each stage on the best estimate available 



at that point, rather than on the initial series; it is closely analogous to the iterative 
Newton-Raphson root-finding technique. Instead of the standard perturbation series 

one considers a series transformed in such a way that the terms decrease quadratically: 

The convergence of this series for small E is breath-takingly rapid. The accelerated 
convergence enables circumvention of the small divisor problem in most circumstances 
and is a cornerstone in the proof of the K.4M theorem. A clear outline of the procedure 
is presented in Berry (1978) and Tabor (1989), and full details may be found in the 
original paper of Arnold (1963). 

The other central idea is that one can surround each rational point on the real 
line by a finite interval and yet leave points uncovered by the union of all the intervals. 
This result is apparently paradoxical and decidedly counter-intuitive. You might argue 
that, since the rationals are dense on the real line, the union of a set of intervals 
surrounding them must be exhaustive, ie., must cover the entire real line. But you 
would be wrong! Consider the unit interval [O, 11. Surround each rational mln by an 
interval of width K/nP. Since there are n - 1 rationals with denominator n, the total 
length L of all the intervals is bounded above: 

For p > 2 this infinite series is convergent. If its sum is up-l, the total length of all the 
intervals is less than K U ~ - ~ .  Thus, provided we choose K <  l/up-l the total length L 
is less than unity, and the intervals cannot cover [0, 11. If K is chosen very small, the 
coverage of the intervals is correspondingly meagre and the 'majority' of points are not 
included in their union. As K + 0, the measure of the union of all the intervals which 
have been removed tends to zero so the residual set tends to one of full measure. 

The KAM theorem shows that tori whose frequencies are rationally related are 
destroyed by even the smallest perturbation. Moreover, tori which are close to these 
resonant tori also disintegrate in the presence of a perturbation. However, this 'closeness' 
depends on the order of the resonance. We consider the case of two degrees of freedom 
(so that the 2d-tori are embedded in a 3d-energy manifold in 4d-phase-space). Suppose 
the frequencies are such that nwl - mw2 = 0 for some integers m and n. Then W I / W Z  

is rational so the torus will be destroyed. Furthermore, nearby tori whose frequency 
ratios are close to mln are also destroyed; but the range of values of tori which perish 
decreases sharply as the denominator n increases. KAM proved convergence of the 
accelerated perturbation series for all tori whose frequency ratio is sufficiently irrational 
for the following inequality to hold: 

Here K(E)  is not specified precisely, but it is independent of m and n and tends to zero 
with r. Thus, tori which do not survive the perturbation must satisfy 



-4s we have seen, the relative measure of the union of these intervals is K(c)ol.s. As 
e -t 0 the measure of the set of destroyed tori in any bounded interval diminishes to 
zero. For finite E the gaps resulting from low-order resonances (small n) are relatively 
wide and give rise to observable effects. The surviving tori-those not destroyed by 
the perturbation-comprise a set which becomes of full measure as the perturbation 
size vanishes. I t  is in this precise sense that the KAM theorem says that, for a small 
perturbation, most of the tori are preserved. The theorem requires E to be very small 
indeed. The initial estimate was of the order of However, numerical experiments 
indicate that the qualitative character of the motion is preserved under much larger 
perturbations than are strictly permitted by the theorem. 

The KAM theorem says nothing about the fate of the resonant tori, other than 
that their structure is annihilated by the perturbation. In fact, it is the destruction 
of these tori which is linked intimately with the genesis of chaotic behaviour. The 
pattern of behaviour near the rational tori which are destroyed by a perturbation is 
both complex and fascinating. We can describe only the essentials here; for a fuller 
discussion see, for example, Berry (1978), Jackson (1991), Ott (1993) or Tabor (1989). 
For regular motion the intersection of the torus with a plane is a closed curve. When 
the perturbation reaches such a size that this torus looses its integrity, the closed curve 
becomes a succession of alternating elliptic and hyperbolic points, the number of each 
being equal to the order of the resonance (the denominator of wl/wz in the present 
case). The trajectories near the hyperbolic points form intricate interweaving patterns 
called homoclinic and hetroclinic tangles. The elliptic points form a series of regions 
of preserved tori-island chains-representing order in the midst of chaos. Near each 
elliptic point there is a repetition of this splitting of resonant trajectories on ever smaller 
scales, the pattern repeating itself without limit. The overall structure is a tapestry of 
astonishing complexity and beauty. 

We now summarise the main results of the KAM theorem. For the Hamiltonian 

the nondegeneracy condition V 1  # 0 (which implies smoothly-varying frequencies) guar- 
antees the preservation of most invariant tori under small perturbations (e << 1). The 
condition of isoenergetic nondegeneracy 

(which implies smoothly varying frequency ratios) guarantees that the total measure 
of the destroyed tori vanishes in the limit E + 0. In an isoenergetically nondegenerate 
system the sets of resonant and nonresonant tori of the unperturbed system are both 
dense on each energy level. The former has measure approaching zero with E and the 
latter is of full measure in this limit. The union of the tori preserved under perturbation 
is called the Kolmogorov set. The measure of the complement of this set does not exceed 
a quantity of order A. The perturbed system is completely integrable on a Cantor set. 
For systems with two degrees of freedom, sharper results are available. This is because 
the tori partition the energy shell so that trajectories cannot cross them and chaotic 
orbits are sandwiched between adjacent stable tori. Subject to technical restrictions, 



both of the action variables remain within a distance of order 6 from their initial values 
and the measure of the destroyed tori is exponentially small ( ~ ( e - k l ' ) ) .  For a complete 
summary of results see Arnold et al., 1988. 

3.4 Some Consequences of t h e  KAM Theorem 

In the following sections we shall apply the KAM theory to the simple problem of the 
elastic pendulum. But its implications are vastly more profound. The initial impetus 
for the theory came from the desire to understand the stability characteristics of the 
solar system. There are many near-resonances; for example, the kequency ratio for 
Jupiter and Saturn is about 512, and this has a detectable effect on the orbit of Jupiter, 
inducing an oscillation with a period of about 900 years. While we are still far short 
of a complete answer to the stability problem! KAM has led to great insight into the 
behaviour of the planetary system. Classical perturbation theory allows us to make 
accurate predictions far in advance, for example, to predict solar eclipses for the next 
millenium. But it breaks down ultimately and tells us nothing about the stability over 
an indefinite time range. The power of the KAM theorem is that its conclusions are 
valid for all time. 

The theorem has enabled us to predict the stability of protons orbiting in a 
particle accelerator. Particles may rotate up to one trillion (10") times in the course 
of an experiment. Reguarding one orbit as a year, this is about the age of the Earth. 
Analysis by classical perturbations or by direct computation is unfeasible for such a 
problem but KAM theory permits the conclusion that the system is stable. The theory 
has also been used to explain the distribution of asteroids orbiting between Mars and 
Jupiter. There are clear gaps at distances corresponding to low-order resonances with 
Jupiter, just where one would expect the most unstable orbits. A similar analysis has 
successfully accounted for the gaps in Saturn's rings. These gaps occur a t  locations 
corresponding to strong resonances with the inner satellites of Saturn. In both these 
cases the distribution expected from theory accords well with observations. 

The KAM theorem has deep implications for statistical mechanics. Here we are 
concerned with macroscopic properties, such as temperature, and make no attempt to 
follow the details of the motion of individual components of the system. Conclusions 
frequently depend on the validity of the ergodic hypothesis: this assumes that the 
motion explores the entire region of phase space energetically available to it, ultimately 
covering it in a uniform way. Then time-averages can be replaced by averages over the 
energy level. For integrable systems only an infinitesimal portion of the energy surface 
is covered by the motion. I t  was earlier thought that the smallest perturbation of such 
systems would suffice to render them ergodic, but this is now known to be false. The 
KAM theorem implies that ergodicity does not hold in general. If time-means are to 
be estimated from spatial averages, the latter must be calculated over an appropriate 
sub-manifold of the energy shell. 



Part IV. Application of K A M  t o  the Elastic Pendulum 

4.1 Hamiltonian in  Pe r tu rba t ion  Form 

We are interested in the case where there is a separation of time-scales between the 
rotational and elastic motions; so that the terms "slow" and "fast" make sense. In this 
case the ratio E = wR/wE is a small parameter. The Hamiltonian may be expressed in 
such a form that the zeroth- and first-order problems are exactly soluble. We may then 
apply standard Hamiltonian perturbation theory to demonstrate some properties of the 
system which hold in general for small E. 

We first non-dimensionalise the canonical equations (4) by specifying mass and 
length scales m and l o  and the fast time-scale l/wE. The equations then become 

where all variables are now dimensionless. We write r = 1 + rt .  Assuming that the 
amplitude of the elastic motions is small, we introduce the scaling 

so that p = O(1) and pp = O(1). Then noting that 0 = O(1) whereas pe = O(E), since 
we have nondimensionalised with the fast time-scale, we define 0 = -9 and pe = ~p,j. 
Now the equations may be written in scaled form (with all variables O(1)): 

Using the nondimensionalisation and scaling introduced above, the nondimensional 
Hamiltonian may now be written as H = EH, where 

Collecting terms of equal power in E this becomes 

The zeroth-order Hamiltonian is degenerate: it involves only the fast variables (p,pp). 
The first-order perturbation removes this degeneracy without destroying integrability: 
the fast and slow variables are still uncoupled a t  this order. For the Hamiltonian 
H = Ho + E H ~ ,  the system is completely integrable and can be solved exactly. 



4.2 Action a n d  Angle Variables 

For bounded motion of conservative Hamiltonians the analysis is greatly facilitated 
by the introduction of action-angle variables (Lichtenberg and Lieberman, 1992). We 
introduced these variables in 53.3 and considered, as an example, the coordinate trans- 
formation for a harmonic oscillator. For a one-dimensional system we defined a canon- 
ical transformation from the original conjugate variables (p, q) to the action and angle 
variables (I, 4) by 

where the &st integration is over a complete cycle. The Hamiltonian is then independent 
of q5 and the canonical equations imply that the action I is constant (I = -8Hl8q5 = 0) 
and the angle varies linearly with time (w = 4 = i3H/dI, constant). We can now 
specify the action-angle variables for the oscillator and pendulum. For the oscillator 

1 2  H = ?(p, + P2) they are simply I, = Ho and q5, = t .  The original variables are given 
by 

p = ~ c o s q 5 , ,  p P = a s i n q 5 , ,  

and Ho(p,p,) = Ho(Z,) depend only on the action variable (these results were shown 
in 53.1). For the pendulum ( H  = ip: -cost!)) the transformation is less trivial but is a 
standard problem in dynamics. As is well known, the two-dimensional phase space for 
the pendulum is separated into two domains by the separatrix E = 1 (where E = H is 
the total energy). If E < 1, the motion is a libration, oscillating between limits -t?,,, 
and Omax where cos 1 9 , ~ ~  = -E. For E > 1, the motion is rotational with the pendulum 
revolving completely around its point of suspension. 

Fig. 5. Phase diagram for the simple pendulum. A pair of homoclinic orbits joining the unstable 
equilibrium point 0 = h r  to itself form the separatrix, dividing the phase-plane into regions 
of libration and regions of clockwise and anticlockwise rotation. 

We assume here that the motion is libratory. The period of oscillation is given by 

As 19,, 4 ~ / 2  the period tends to infinity. The action-angle variables are different for 
each regime; for libratory motion they are 
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These may be transformed into standard elliptic integrals (see Lichtenberg and Lieber- 
man, 1992 for fuller details and for the rotatory case). 

The Hamiltonian of the elastic ~endulum may now be written in terms of the 
action-angle variables: 

The first two terms describe uncoupled motion of the oscillator and pendulum. This 
system is integrable: both Ho and HI are constants, their values being determined by 
the initial conditions. The Hamiltonian 

is independent of the angle variables. The motion for given actions I, and I8 is described 
by a trajectory lying in a torus which is the product of closed curves: 

The trajectories may densely cover the torus with the angle variables running around 
the two directions of the surface (this is the typical case); or, in the exceptional case of 
commensurate frequencies (when the quotient of the frequencies is rational), they may 
form closed curves winding around each direction an integral number of times. The 
exceptional case is referred to as resonance. 

The total Hamiltonian is a perturbation of this system, and may be described 
as near-integrable. In the case of two degrees of freedom the generic character of the 
motion for such systems is well understood. The trajectory lies on a three-dimensional 
constant energy surface I embedded in the four-dimensional phase space. There are 
regions of regular motion and regions of stochasticity or chaos. The two species of 
solution are closely intermingled, with regular trajectories separating chaotic regions. 
(For more degrees of freedom the regular trajectories no longer separate the chaotic 
regions, which are connected in a single complex structure called the Arnold web). 

4.3 Implications of the KAM Theorem 

We wish to apply the results of the Kolmogorov-Arnold-Moser theorem, as presented in 
53.3 above, to the problem of the elastic pendulum. The discussion in this section owes 
much to the work of Bokhove and Shepherd, 1996 (BS96), who discussed the behaviour, 
for small values of the coupling parameter 6 ,  of the Lorenz model. The relationship 
between the Hamiltonian for the elastic pendulum and the system studied in BS96 is 
indicated by the following relationships (their notation on rhs): 

with 4€ = E and parameter values C = $ and b = 4.  Then the Hamiltonian becomes 



with Ho = +(p; +qg) and HI = ;(p: - C cos 2q1); which is identical to order 6 with (13) 
in BS96. Of course, the coupling terms, embodied in the function H2,  are not identical 
for their model and for the elastic pendulum, but the precise details of these terms do 
not affect the general character of the solutions for small E .  We therefore find that the 
conclusions of Bokhove and Shepherd are also valid in the present case. 

A condition for applicability of the KAM result is that the first-order or uncou- 
pled Hamiltonian Hun, = Ho + CHI be isoenergetically nondegenerate (Arnold, 1978). 
Recall that this requires the nonvanishing of the determinant V2. In the present case 
we obtain 

(we have written w, G WE and wg = WR for the unperturbed fast and slow frequen- 
cies, respectively). The condition requires that the frequency ratio wR/wE varies from 
torus to torus. This is so in the present case because, although WE is constant, the 
frequency of the (nonlinear) pendulum varies with the action variable, so we have 
V2 = -wz dw8/aIfl # 0. At the separatrix of the pendulum, when the period tends to 
infinity and the frequency to zero, the condition fails. 

Provided we avoid the separatrix, the conclusions of the KAM theorem (Arnold, 
et al., 1988) are applicable in the present case. For small 6 most of phase-space is filled 
by invariant tori that are smooth deformations of the invariant tori T(Ip,  Ig) of the 
uncoupled system. Most of the original tori persist for a small enough perturbation 
and the solution remains regular on these tori. They are dense in E - the measure 
of the complement of their union vanishes as 6 + 0 - and they tend smoothly to the 
unperturbed tori which foliate the corresponding level surface of E in this limit. There 
are thin regions of chaotic motion around resonant tori. However, the theory ensures 
that the measure of these regions tends to zero exponentially fast-like e-k/e-as 6 -i 0. 
The preserved two-dimensional tori partition the three-dimensional accessible portion 
of phase space and trajectories cannot cross them. Thus, chaotic orbits are tightly 
confined between adjacent regular tori. 

In terms of slow mode-fast mode interactions (analogous to Rossby wavegravity 
wave interactions in the atmosphere), this result means that if most of the energy 
is initially in the slow mode, i.e., if the starting state is initialized, only an amount 
proportional to the coupling constant 6 can be transferred to the fast oscillations. It 
would be gratifying if we could draw the following conclusion for the Rossby wave- 
gravity wave interactions in the real atmosphere: i f  most of the energy is initially in 
the Rossby waves, i.e., i f  the starting state is initialized, only an amount proportional 
to the coupling constant 6 can be transferred to the gravity waves. Unfortunately, such 
a conclusion is unjustified: it must be stressed that the above result is rigourously valid 
only for a model with two spatial dimensions. In higher dimensional phase spaces the 
tori do not isolate the surfaces of constant energy and transfer of energy between modes 
by the process of Arnold diffusion is possible. However, this process is very weak and 
occurs over a long time scale, so that, in practice, the statment italicised above may 
indeed be valid. 



Part V. Numerical Investigation of Regular  and Chaotic  Mot ions  

5.1 PoincarB Sections 

To gain further insight into the nature of the motion for small E ,  a series of numerical 
integrations of the canonical equations were performed. The results will be presented in 
this section. The trajectories are one-dimensional curves on a three-dimensional energy 
manifold in four-dimensional phase space. The best means of depicting such curves 
on paper is not immediately obvious. However, Poincare proposed a simple method 
which is particularly attractive for autonomous systems with two degrees of freedom. 
To visualise the motion, we choose a two-dimensional surface and plot the intersection 
of a trajectory each time it passes through the surface in a particular direction. The 
result is called a Poincare section. Two especially convenient choices are the 'slow' or 
( 1 9 , ~ ~ )  plane with p = O,pp > 0 and the 'fast' or (p,pp) plane with 19 = O,ps > 0. The 
distribution of points on the section can reveal whether or not the motion is integrable. 
If it is, the trajectory lies on a torus which cuts the section in a smooth curve. For non- 
integrable motion the system explores a three-dimensional region of the energy level; 
whose intersection with a plane is an area rather than a curve. Thus, for regular motion 
the set of trajectory intersections lies on a closed invariant curve, covering it densely. In 
the exceptional case of rational ratio of frequencies the section comprises a finite number 
of points. For chaotic motion the representative points fill a finite area of the section. 
We recall that strict applicability of the KAM theorem requires that the perturbation 
parameter E be extremely small (typically about 0(10-~')). This is far below the range 
of practical interest. Thus, numerical experimentation is required to investigate the 
solutions for more reasonable values of E .  Although the KAM results may not apply 
for such values, it is found that Poincare sections interpreted in the spirit of the KAM 
theorem can be very illuminating and instructive. 

5.2 Numerical  Solutions 

Numerical integrations of the canonical equations have been carried out using a modi- 
fied explicit symplectic integrator (Yoshida, 1990). It was found convenient to rescale 
the system (24) using the slow time-scale w;'. The Yoshida scheme is applicable for 
Hamiltonians of the form 

H(P, q) = T(P) + V(q) . 

As the Hamiltonian for the elastic pendulum is not of this form, a modiication of the 
scheme was required. It was possible to preserve second-order accuracy for the modified 
scheme (Onno Bokhove, personal communication). The scheme executes each forward 
time step as a canonical transformation, preserving phase space volume elements. The 
total energy is also conserved to very high accuracy: for a time step At = 0.0001, the 
energy varied by less than ten parts per million. 

The rescaled equations (24) were solved for two values of the total energy, E = 0 
and E = 1.8. For each energy, some twelve different choices of initial conditions were 
used, each choice partitioning the energy differently between rotational and elastic com- 
ponents. For each total energy, the equations were integrated for an increasing set of 
values of c, six in all: E E {0.025,0.05,0.1,0.25,0.325,0.4). For smaller perturbation 
values (c (< 1) the coupling is weak and we expect behaviour similar to that of the uncou- 
pled system. For the largest values the separation of time scales is no longer clear-cut, 



Figure 6: Poincar6 sections for twelve trajectories with total energy E = 0.0. Top 
two rows: e E {0.025,0.05,0.1) (slow plane in first row, fast plane in second). Bottom 
two rows: E E {0.25,0.325: 0.4) (slow plane in third row, fast plane in fourth) 



the coupling is strong and we must expect the interaction between the rotational and 
elastic components to be significant. 

The results for the two choices of energy are shown in Fig. 6 (E = 0) and Fig. 7 
(E = 1.8). For each set of integrations (each fixed E and E )  two sections are shown, the 
section in the slow variables ( 2 9 , ~ ~ )  above and the section in the fast variables (p,pp) 
below. Each trajectory leaves a signature in both planes. Since E is fixed, the high 
energy orbits in the slow plane must correspond to the low energy ones in the fast plane, 
and vice versa. 

We consider first the low energy case E = 0. For this value of E, the trajectories 
are within the separatrix for all partitions between rotational and elastic energy. The 
three panels in the top row of Fig. 6 show the slow-plane section for the three low values 
of E. The panels in the second row are the corresponding sections in the fast plane. The 
slow sections are similar to those of a simple pendulum in libratory motion (Fig. 5). 
The fast section curves resemble the elliptic trajectories of a harmonic oscillator. The 
central point represents a solution for which there is no high frequency activity. As 
E increases, this 'core' point moves from the origin along the positive paxis. This is 
in accordance with our discussion of nonlinear initialization, where we found that the 
solution is expected to have minimal high frequency activity when (r,p,) = (rB,O). 
Recall from (14) that T B  = !(I + O(e2)) SO that p = O(e3I2) and the core point should 
move away from the origin of the fast plane as E increases. For the core solution we see 
that p, cz 0, in agreement with 52.3. 

For the small values of E the phase portraits are very similar to those of a simple 
pendulum (panels a-c) and a harmonic oscillator (panels d-f). As E increases-panels 
g-1 of Fig. 6 are for E E {0.25,0.325,0.4}-some of the toroidal structures are seen to 
disintegrate into chaotic regions. For E = 0.25 a fourth-order resonance is clear (panel g;  
third row). For E = 0.325 (panel h) a third-order resonance is seen nearer the centre. 
When E = 0.4 the solution begins to appear chaotic, with the points appearing to fill 
an area near the centre. Complex patterns of island chains are evident in the section 
(panel i, third row). For higher rotational-and lower elastic-energy, the motion still 
appears to be regular at this perturbation level. 

When E = 1.8 and the elastic energy is small, the motion of the pendulum is 
rotatory, lying entirely outside the separatrix (see Fig. 7). If relatively more energy re- 
sides in the elastic oscillation, the pendulum motion is libratory (within the separatrix). 
For some initial conditions the solution is close to the separatrix; this is the situation 
in which we may expect chaotic behaviour to first become evident as E increases. For 
small E (first two rows, Fig. 7) the solution is again close to the uncoupled solution. By 
E = 0.25 we see the beginning of chaotic motion near the separatrix (panel g, third row) 
together with a fourth-order resonance. For larger E the dynamics are predominantly 
chaotic; the regions of regular motion are relatively small. A correspondence can be 
made between regions of regular motion in the fast and slow planes; and also between 
the chaotic regimes in the t w ~  planes. 

5.3 Existence of the Slow Manifold 

The existence of a slow manifold is intimately related to the following question: given an 
initial state (Io(O), &(O): I,(O), q5,(0)), can we modify the fast variables (1,(0), 4,(0)) 
in such a way that fast oscillations are absent from the solution for all time? In the 



Figure 7: Poincare sections for twelve trajectories with total energy E = 1.8. Top 
two rows: E E {0.025,0.05,0.1) (slow plane in first row, fast plane in second). Bottom 
two rows: E E {0.25,0.325,0.4) (slow plane in third row, fast plane in fourth) 
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uncoupled case, we eliminate all fast oscillations by setting the initial fast action Zp(0) to 
zero. This corresponds to linear initialization and ensures that the fast action remains 
zero in perpetuity. In this special case, the torus is replaced by a simple closed curve. 
We call this the core solution (following Bokhove and Shepherd, 1996). The Poincarb 
section in the fast plane then collapses to a single point at the origin. The question now 
is: for non-zero perturbation E :  can we define new action-angle variables (J,, $,) such 
that there is a core solution with J,  = O? If so, the fast variations can be eliminated. 
The KAM theorem guarantees that for most initial conditions (the exceptional cases 
being of measure zero) the toroidal topology of the uncoupled solution is preserved for 
sufficiently small perturbations. We can find toroidal sections arbitrarily close to the 
core solution (I, = 0) in the fast plane whose structure is preserved for small e. For 
non-zero E the core point is no longer a t  the origin-the fast variables are not identically 
zero-but the trajectory still reduces to  a single point in the fast plane. Thus, there is 
no high frequency variability in the solution. (Strictly, it must be confirmed that this is 
still true after transformation back to the original variables; see BS96). This situation 
corresponds to a nonlinear initialization which ensures complete absence of free high 
frequency motions for all time. Unfortunately, although the KAM theorem assures us 
of the existence of such initial values, it gives us no inkling of how to find them, and 
alternative methods must be used (see, e.g., Lorenz, 1986). Most initialization schemes 
control high frequency noise but do not remove it entirely. 

The numerical results presented above increase our confidence that a core solu- 
tion exists for small E .  Looking a t  Figs. 6-7, we can see that evidence of trajectories 
whose fingerprint in the fast plane is just a single point. As E increases it becomes more 
difficult to unequivocally identify a core solution. Thus, it seems there is a perturbation 
size beyond which it is no longer possible to define initial conditions which guarantee 
regular, slow evolution. 

In summary, for small r there is a slow manifold, a sub-manifold of phase space 
which is invariant and devoid of high frequency oscillations. It is not simply connected 
but has a complex topology, being perforated by exceptional points corresponding to 
breakup of invariant tori near resonances (BS96). However, the exceptional points 
amount to a set of measure zero. For large c the distinction between slow and fast 
motion becomes unclear, the coupling becomes strong and it is no longer possible to 
define initial conditions which guarantee absence of 'fast' variations. 



Part VI. Concluding Discussion 

6.1 Complementary Studies  

The pendulum has a hyperbolic (saddle-point) equilibrium at 6 = f ?r, connected to 
itself by a pair of homoclinic orbits which form the separatrix. The numerical results 
presented in Part V suggested an early onset of chaotic motion there: the Poincark 
sections had the appearance of irregularity near the separatrix for relatively small E 
(see, e.g., Fig. 79). The system is isoenergetically degenerate as well as degenerate and 
the KAM theorem is inapplicable on the separatrix. Alternative methods must be used 
for the theoretical study of the solution in this region. Holmes and Marsden (1982) 
investigated the dynamics of a coupled pendulum-oscillator system using the Melnikov 
function technique. They assumed a perturbation term in the Hamiltonian of the form 
H1(p,pP) = - 6 ) 2  which corresponds to linear coupling in the canonical equations: 

They showed that for initial conditions sufficiently near the separatrix this system has 
Smale horseshoes in its dynamics and consequently possesses no analytic second integral. 
The horseshoes are generated by the tangling of the stable and unstable manifolds of 
trajectories homoclinic to 6 = k?r. The existence of a horseshoe map on the energy 
surface implies sensitivity to initial conditions and the presence of chaotic dynamics. 
The same technique could be applied to the elastic pendulum (although we should not 
anticipate the outcome before the analysis is performed). 

Camassa (1995) studied the dynamics of the Lorenz (1986) system near the 
saddle-point equilibrium PH using a combination of Melnikov and singular perturbation 
methods. He showed the existence of a countable infinity of homoclinic bifurcations 
near PH and demonstrated the chaotic nature of the dynamics in the vicinity of the 
separatrix. Camassa pointed out (loc. cat., p317) that some of his analysis can be 
applied to the generic situation of a Hamiltonian with a saddle-point equilibrium. To 
the extent that this claim is valid, his conclusions for the Lorenz system could also 
be applicable to the elastic pendulum. Camassa and Tin (1996) extended this study 
to the forced and damped version of the Lorenz model. They concluded that a local 
slow manifold exists near the hyperbolic point. This conclusion also held true for the 
conservative case. But a global slow manifold, defined either as an invariant manifold 
devoid of fast oscillations for all time or as an invariant manifold for which the fast 
variables are functions of the slow ones (i.e., slaved to them), does not exist. 

6.2 Centre Manifold Theory  

The Lyapunov subcentre manifold theorem (Kelley, 1967) provides useful information 
about the character of the dynamics in the vicinity of the equilibrium points. The 
theorem applies to a system of the form 



where p and q are two scalars and r is a vector of the remaining variables. The eigen- 
value X # 0 is real and A is a constant matrix. We assume P, Q and R and their first 
derivatives vanish when (p ,  q, r )  = (0:  0: 0). Then, provided A does not have an eigen- 
value which is an integral multiple of A, there exists a unique invariant two-dimensional 
local manifold 

M = { ( p ,  q;  r )  : lpl+ 141 < 6: r = W P ,  q ) }  . 

If we consider all the pairs of variables (pk2 qk)  for which the system equations may be 
written in the above form, there is a corresponding subcentre manifold for each pair. 
The space spanned by the union of these manifolds is called the centre manifold. 

For the elastic pendulum, there are two such equilibrium points, the elliptic 
point or centre PE with (O,ps, r,p,) = (0 ;  0: (1 + e)eo,O) and the hyperbolic point or 
saddle PH where (@,ps ,  r.p,) = (T ,  0, (1 - e)&, 0 ) .  There is a technical restriction for 
application of the Lyapunov subcentre manifold theorem: the ratio of the rotational 
and elastic frequencies must not be an integer (wR/wE 9 2). Subject to this (mild) 
condition, the theorem implies that there exist two local, invariant, two-dimensional 
manifolds passing through PE. In the neighbourhood of the saddle point, there is one 
such invariant manifold. One of the local manifolds near & is obvious: 

This is the fast manifold, representing purely elastic vibrations in the vertical through 
PE. The Lyapunov result is existential; it ensures that MF exists and is unique, but it 
does not provide an explicit value for 6 ~ .  However, it is clear on physical grounds that 
this fast manifold is actually global; it passes also through the unstable equilibrium 
point pH. The other invariant manifold near PE is more interesting. The Lyapunov 
result states that it is of the form 

The subscript S is chosen more in hope than expectation: the theorem does not imply 
that this manifold is slow. Although the fast variables T and p, are slaved to @ and 
ps by the functions f and g, there is no guarantee that they do not vary on the fast 
time-scale. 

For the saddle point PH there is no invariant manifold corresponding to M s .  
Unlike M F ,  which is global (in T and p,), this manifold may be essentially local in char- 
acter (confined to a 6-neighbourhood of PE). For e = 0, there is a 2-dimensional centre 
manifold transverse to 1-dimensional stable and unstable manifolds around the saddle- 
point. The theory of normally hyperbolic manifolds (e .g . ,  Wiggins, 1994) guarantees 
that this structure persists near PH for small perturbations (note that transversality 
is preserved under diffeomorphism). The fast manifold MF which we have identified 
above is identical to the centre manifold. The dynamics near PH are challenging to 
analyse. Camassa (1996) has investigated this problem for the Lorenz system, using the 
technique of Melnikov, and has demonstrated the existence of chaos near the hyperbolic 
point. In a study of a physical system similar but not isomorphic to the elastic pendu- 
lum, Georgiou and Schwartz (1996) report the existence of a global slow manifold. We 
have'been unable to reach such a conclusion for the system under study here. Indeed, 
the numerical results presented above strongly suggest that no such global slow manifold 
exists for the elastic pendulum. 



6.3 A Final Thought 

First, consider an anelastic pendulum (so that E = 0) a t  its unstable equilibrium point 
PH (0 = T ) .  If it is disturbed by an infinitesimal impulse of energy bE, it will move 
away from equilibrium and execute a regular rotational motion of extremely long but 
constant period, spending most of the time near the top point. Since the initial energy 
is E = 1 and the impulse increases this, the pendulum always has enough energy to 
surmount the top point on each rotation. The motion is completely predictable. 

Now imagine a similar scenario for the elastic pendulum. The bob leaves PH 
with energy E = 1 + bE, as before, but now some energy is converted from rotational 
to elastic oscillations. If the elastic energy HE exceeds 6E as the bob approaches PH 
after a rotation: it will have insufficient energy to reach the top and will fall back. If: 
on the other hand. HE is less than 6E, it will surmount the peak and continue its 
rotation. But if HE z bE: the course of the pendulum will depend on the phase of 
the elastic oscillation at the critical angle 0 = T.  For small bE, this will occur long 
after the initial impulse is applied. On some occassions the bob will surmount the 
top and on others it will fall back. Although the motion is, in principle, determined 
by the initial conditions, the precise phase is practically unpredictable; its accurate 
determination would necessitate keeping track of the phase of the rapid oscillations over 
a very large number of oscillations-a practical impossibility. The motion will thus 
have the potential to exhibit high sensitivity to the initial conditions - the signature 
of chaos. 
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