A New Approach to Jacobsthal Quaternions

Fügen Torunbalcı Aydın ${ }^{\text {a }}$, Salim Yüce ${ }^{\text {b }}$
${ }^{a}$ Yildiz Technical University
Faculty of Chemical and Metallurgical Engineering, Department of Mathematical Engineering
Davutpasa Campus, 34220, Esenler, Istanbul, TURKEY
${ }^{b}$ Yildiz Technical University
Faculty of Arts and Sciences, Department of Mathematics
Davutpasa Campus, 34220, Esenler, Istanbul, TURKEY

Abstract

The Jacobsthal quaternions defined by Szynal-Liana and Wloch [35]. In this paper, we defined some properties of Jacobsthal quaternions. Also, we investigated the relations between the Jacobsthal quaternions which connected with Jacobsthal and Jacobsthal-Lucas numbers. Furthermore, we gave the Binet formulas and Cassini identities for these quaternions.

1. Introduction

In 1973, the first use of this numbers appears "A Handbook of Integer Sequences" in a paper by Sloane by the title applications of Jacobsthal sequences to curves [1].
Furter, in 1988, Horadam [3] introduced the Jacobsthal and Jacobsthal-Lucas sequences recurrence relation $\left\{J_{n}\right\}$ and $\left\{j_{n}\right\}$ are defined by the recurrence relations

$$
\begin{align*}
& J_{0}=0, \quad J_{1}=1, \quad J_{n}=J_{n-1}+2 J_{n-2}, \quad \text { for } n \geq 2 \tag{1}\\
& j_{0}=2, \quad j_{1}=1, \quad j_{n}=j_{n-1}+2 j_{n-2}, \quad \text { for } n \geq 2 \tag{2}
\end{align*}
$$

respectively.
In 1996, Horadam studied on the Jacobsthal and Jacobsthal-Lucas sequences and he gave Cassini-like formulas as follows ([3],[4])

$$
\begin{align*}
& J_{n+1} J_{n-1}-J_{n}^{2}=(-1)^{n} \cdot 2^{n-1} \tag{3}\\
& j_{n+1} j_{n-1}-j_{n}^{2}=3^{2} \cdot(-1)^{n+1} \cdot 2^{n-1} \tag{4}
\end{align*}
$$

[^0]The first eleven terms of Jacobsthal sequence $\left\{J_{n}\right\}$ are $0,1,1,3,5,11,21,43,85,171$ and 341 .
This sequence is given by the formula

$$
\begin{equation*}
J_{n}=\frac{2^{n}-(-1)^{n}}{3} \tag{5}
\end{equation*}
$$

The first eleven terms of Jacobsthal-Lucas sequence $\left\{j_{n}\right\}$ are $2,1,5,7,17,31,65,127,257,511$ and 1025 . This sequence is given by the formula

$$
\begin{equation*}
j_{n}=2^{n}+(-1)^{n} . \tag{6}
\end{equation*}
$$

Also, for Jacobsthal and Jacobsthal-Lucas numbers the following properties hold [3]:

$$
\begin{align*}
& J_{n}+j_{n}=2 J_{n+1}, \tag{7}\\
& j_{n}=J_{n+1}+2 J_{n-1}, \tag{8}\\
& 3 J_{n}+j_{n}=2^{n+1}, \tag{9}\\
& j_{n} J_{n}=J_{2 n}, \tag{10}\\
& J_{m} j_{n}+J_{n} j_{m}=2 J_{m+n}, \tag{11}\\
& J_{m} j_{n}-J_{n} j_{m}=(-1)^{n} 2^{n+1} J_{m-n}, \tag{12}\\
& j_{n+1}+j_{n}=3\left(J_{n+1}+J_{n}\right)=3.2^{n}, \tag{13}\\
& j_{n} J_{m+1}+2 j_{n-1} J_{m}=j_{m+n}, \tag{14}\\
& j_{n+1}-j_{n}=3\left(J_{n+1}-J_{n}\right)+4(-1)^{n+1}=2^{n}+2(-1)^{n+1}, \tag{15}\\
& j_{n+r}-j_{n-r}=3\left(J_{n+r}-J_{n-r}\right)=2^{n-r}\left(2^{2 r}-1\right), \tag{16}\\
& j_{n+r}+j_{n-r}=3\left(J_{n+r}+J_{n-r}\right)+4(-1)^{n-r}=2^{n-r}\left(2^{2 r}+1\right)+2(-1)^{n-r}, \tag{17}
\end{align*}
$$

and summation formulas

$$
\begin{align*}
& \sum_{i=2}^{n} J_{i}=\frac{J_{n+2}-3}{2} \tag{18}\\
& \sum_{i=1}^{n} j_{i}=\frac{j_{n+2}-5}{2} \tag{19}
\end{align*}
$$

Several authors worked on Jacobsthal numbers and polynomials in [5]-[13].
Sum formulas for odd and even Jacobsthal and Jacobsthal-Lucas numbers were given in [8] respectively as follows,

$$
\begin{align*}
& \sum_{i=0}^{n} J_{2 i+1}=\frac{2 J_{2 n+2}+n+1}{3} \tag{20}\\
& \sum_{i=0}^{n} J_{2 i}=\frac{2 J_{2 n+1}-n-2}{3} \tag{21}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{i=0}^{n} j_{2 i+1}=2 J_{2 n+2}-n-1 \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=0}^{n} j_{2 i}=J_{2 n+2}+n+1 \tag{23}
\end{equation*}
$$

Identities for Jacobsthal numbers were given in [5] as follows,

$$
\left\{\begin{array}{l}
J_{n} J_{n+1}+2 J_{n-1} J_{n}=J_{2 n}=J_{n} j_{n}, \tag{24}\\
J_{n} J_{m+1}+2 J_{n-1} J_{m}=J_{n+m} \\
J_{2 n+1}=J_{n+1}^{2}+2 J_{n}^{2} \prime \\
J_{m} J_{n-1}-J_{m-1} J_{n}=(-1)^{n} \cdot 2^{n-1} J_{m-n} .
\end{array}\right.
$$

Now, we be talked about the history of the quaternions:
The quaternions were first described by Irish mathematician Sir William Rowan Hamilton in 1843, [14]. The description is a kind of extension of complex numbers to higher spatial dimensions. The set of real quaternions, denoted by H, is defined by

$$
\begin{equation*}
H=\left\{q=q_{0}+i q_{1}+j q_{2}+k q_{3} \mid q_{0}, q_{1}, q_{2}, q_{3} \in \mathbb{R}\right\} \tag{25}
\end{equation*}
$$

where

$$
i^{2}=j^{2}=k^{2}=-1, \quad i j=-j i=k, \quad j k=-k j=i, \quad k i=-i k=j
$$

After the work of Hamilton, in 1849, Cockle introduced the set of split quaternions [15] which can be represented as

$$
\begin{equation*}
H_{S}=\left\{q=q_{0}+i q_{1}+j q_{2}+k q_{3} \mid q_{0}, q_{1}, q_{2}, q_{3} \in \mathbb{R}\right\} \tag{26}
\end{equation*}
$$

where

$$
i^{2}=-1, \quad j^{2}=k^{2}=1, \quad i j k=1
$$

Several authors worked on different quaternions and their generalizations. ([16]-[20],[27]-[31]). In 2013, Akyiğit and et al. [17] defined split Fibonacci quaternions and split Lucas quaternions and obtained some identities for them. Complex split quaternions defined by Kula and Yaylı in 2007, [28]. In 1963, Horadam [21] firstly introduced the n-th Fibonacci quaternion and generalized Fibonacci quaternions, which can be represented as

$$
\begin{equation*}
H_{F}=\left\{Q_{n}=F_{n}+i F_{n+1}+j F_{n+2}+k F_{n+3} \mid F_{n}, n-t h \text { Fibonacci number }\right\} \tag{27}
\end{equation*}
$$

where

$$
i^{2}=j^{2}=k^{2}=i j k=-1, \quad i j=-j i=k, \quad j k=-k j=i, \quad k i=-i k=j
$$

and $n \geq 1$.
In 1969, Iyer ([26],[27]) derived many relations for the Fibonacci quaternions. Also, in 1973, Swamy [30] considered generalized Fibonacci quaternions as a new quaternion as follows:

$$
\begin{equation*}
P_{n}=H_{n}+i H_{n+1}+j H_{n+2}+k H_{n+3} \tag{28}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
H_{n}=H_{n-1}+H_{n-2} \\
H_{1}=p \\
H_{2}=p+q, \\
H_{n}=(p-q) F_{n}+q F_{n+1}, n \geq 1
\end{array}\right.
$$

(See [30] for generalized Fibonacci quaternions). In 1977, Iakin ([24],[25]) introduced higher order quaternions and gave some identities for these quaternions. In 1993, Horadam ([22],[23]) extended into quaternions to the complex Fibonacci numbers defined by Harman [20]. In 2012, Halıcı [18] gave generating functions and Binet's formulas for Fibonacci and Lucas quaternions. In 2013, Halıcı [19] defined complex Fibonacci quaternions as follows

$$
\begin{equation*}
H_{F C}=\left\{R_{n}=C_{n}+e_{1} C_{n+1}+e_{2} C_{n+2}+e_{3} C_{n+3} \mid C_{n}=F_{n}+i F_{n+1}, i^{2}=-1\right\} \tag{29}
\end{equation*}
$$

where

$$
e_{1}^{2}=e_{2}^{2}=e_{3}^{2}=e_{1} e_{2} e_{3}=-1
$$

$$
e_{1} e_{2}=-e_{2} e_{1}=e_{3}, e_{2} e_{3}=-e_{3} e_{2}=e_{1}, e_{3} e_{1}=-e_{1} e_{3}=e_{2}, n \geq 1
$$

In 2009, Ata and Yaylı [16] defined dual quaternions with dual numbers ${ }^{1)}$ coefficient as follows:

$$
\begin{equation*}
H(\mathbb{D})=\left\{Q=A+B i+C j+D k \mid A, B, C, D \in \mathbb{D}, i^{2}=j^{2}=k^{2}=-1=i j k\right\} \tag{30}
\end{equation*}
$$

In 2014, Nurkan and Güven [29] defined dual Fibonacci quaternions as follows:

$$
\begin{equation*}
H(\mathbb{D})=\left\{\tilde{Q}_{n}=\tilde{F}_{n}+i \tilde{F}_{n+1}+j \tilde{F}_{n+2}+k \tilde{F}_{n+3} \mid \tilde{F}_{n}=F_{n}+\epsilon F_{n+1}, \epsilon^{2}=0, \epsilon \neq 0\right\} \tag{31}
\end{equation*}
$$

where

$$
i^{2}=j^{2}=k^{2}=i j k=-1, \quad i j=-j i=k, \quad j k=-k j=i, \quad k i=-i k=j
$$

$n \geq 1$ and $\tilde{Q}_{n}=Q_{n}+\varepsilon Q_{n+1}$. Essentially, these quaternions in equations (26) and (27) must be called dual coefficient quaternion and dual coefficient Fibonacci quaternions, respectively. Majernik [32] defined dual quaternions as follows:

$$
H_{\mathbb{D}}=\left\{\begin{array}{c}
Q=a+b i+c j+d k \mid a, b, c, d \in \mathbb{R}, i^{2}=j^{2}=k^{2}=i j k=0, \tag{32}\\
i j=-j i=j k=-k j=k i=-i k=0
\end{array}\right\} .
$$

For more details on dual quaternions, see [33]. It is clear that $H(\mathbb{D})$ and $H_{\mathbb{D}}$ are different sets. In 2015, Yüce and Torunbalcı Aydın [34] defined dual Fibonacci quaternions as follows:

$$
\begin{equation*}
H_{\mathbb{D}}=\left\{Q_{n}=F_{n}+i F_{n+1}+j F_{n+2}+k F_{n+3} \mid F_{n}, n-t h \text { Fibonacci number }\right\}, \tag{33}
\end{equation*}
$$

where

$$
i^{2}=j^{2}=k^{2}=i j k=0, \quad i j=-j i=j k=-k j=k i=-i k=0 .
$$

The Lucas sequence $\left(L_{n}\right)$ and D_{n}^{L} which is the $n-t h$ term of the dual Lucas quaternion sequence $\left(D_{n}^{L}\right)$ are defined by the following recurrence relations:

$$
\left\{\begin{array}{l}
L_{n+2}=L_{n+1}+L_{n}, \forall n \geq 0 \tag{34}\\
L_{0}=2, L_{1}=1
\end{array}\right.
$$

and

$$
\begin{equation*}
D_{n}^{L}=L_{n}+i L_{n+1}+j L_{n+2}+k L_{n+3} \tag{35}
\end{equation*}
$$

[^1]where
$$
i^{2}=j^{2}=k^{2}=i j k=0 .
$$

In 2015, Szynal-Liana and Wloch defined the Jacobsthal quaternions and the Jacobsthal- Lucas quaternions respectively as follows [35]

$$
\begin{align*}
& J Q_{n}=J_{n}+i J_{n+1}+j J_{n+2}+k J_{n+3}, \tag{36}\\
& J L Q_{n}=j_{n}+i j_{n+1}+j j_{n+2}+k j_{n+3} . \tag{37}
\end{align*}
$$

In [35], using (7)-(17) relations between Jacobsthal and Jacobsthal-Lucas numbers are given as follows

$$
\begin{align*}
& J Q_{n+1}+J Q_{n}=2^{n}(1+2 i+4 j+8 k), \tag{38}\\
& J Q_{n+1}-J Q_{n}=\frac{1}{3}\left[2^{n}(1+2 i+4 j+8 k)+2(-1)^{n}(1-i+j-k)\right], \tag{39}\\
& J Q_{n+r}+J Q_{n-r}=\frac{1}{3}\left[2^{n-r}\left(2^{2 r}+1\right)(1+2 i+4 j+8 k)-2(-1)^{n-r}(1-i+j-k)\right], \tag{40}\\
& J Q_{n+r}-J Q_{n-r}=\frac{1}{3}\left[2^{n-r}\left(2^{2 r}-1\right)(1+2 i+4 j+8 k)\right], \tag{41}\\
& N\left(J Q_{n}\right)=J Q_{n} \cdot \overline{J Q_{n}}=\frac{1}{9}\left[85.2^{2 n}+10.2^{n}(-1)^{n}+4\right], \tag{42}\\
& J L Q_{n+1}+J L Q_{n}=3.2^{n}(1+2 i+4 j+8 k), \tag{43}\\
& J L Q_{n+1}-J L Q_{n}=2^{n}(1+2 i+4 j+8 k)-2(-1)^{n}(1-i+j-k), \tag{44}\\
& J L Q_{n+r}+J L Q_{n-r}=2^{n-r}\left(2^{2 r}+1\right)(1+2 i+4 j+8 k)+2(-1)^{n-r}(1-i+j-k), \tag{45}\\
& J L Q_{n+r}-J L Q_{n-r}=\left[2^{n-r}\left(2^{2 r}-1\right)(1+2 i+4 j+8 k)\right], \tag{46}\\
& N\left(J L Q_{n}\right)=85.2^{2 n}+10.2^{n}(-1)^{n}+4, \tag{47}\\
& J Q_{n}+J L Q_{n}=2 . J Q_{n+1}, \tag{48}
\end{align*}
$$

In this paper, we will give the Jacobsthal quaternions as follows

$$
\begin{align*}
& Q_{J}=\left\{J Q_{n}=J_{n}+i J_{n+1}+j J_{n+2}+k J_{n+3} \mid J_{n}, n t h \text { Jacobsthal number }\right\} \tag{49}\\
& i^{2}=j^{2}=k^{2}=i j k=-1, \quad i j=-j i=k, \quad j k=-k j=i, \quad k i=-i k=j \tag{50}
\end{align*}
$$

and $n \geq 1$. The scaler and the vector part of the Jacobsthal quaternion $J Q_{n}$ are denoted by

$$
\begin{equation*}
S_{Q_{n}}=J_{n} \text { and } V_{Q_{n}}=i J_{n+1}+j J_{n+2}+k J_{n+3} \tag{51}
\end{equation*}
$$

Let $J Q_{n}$ and $J R_{n}$ be two Jacobsthal quaternions such that

$$
\begin{equation*}
J Q_{n}=J_{n}+i J_{n+1}+j J_{n+2}+k J_{n+3} \tag{52}
\end{equation*}
$$

and

$$
\begin{equation*}
J R_{n}=K_{n}+i K_{n+1}+j K_{n+2}+k K_{n+3} \tag{53}
\end{equation*}
$$

where K_{n} is $n-t h$ Jacobsthal number.
Then, the addition, subtraction and multiplication of the Jacobsthal quaternions are the same as for real quaternions.

The conjugate of the Jacobsthal quaternion $J Q_{n}$ is denoted by $\overline{J Q}_{n}$ and it is

$$
\begin{equation*}
\overline{J Q}_{n}=J_{n}-i J_{n+1}-j J_{n+2}-k J_{n+3} . \tag{54}
\end{equation*}
$$

The norm of $J Q_{n}$ is defined as

$$
\begin{equation*}
N_{I Q_{n}}=\left\|J Q_{n}\right\|=J Q_{n} \overline{J Q}_{n}=J_{n}^{2}+J_{n+1}^{2}+J_{n+2}^{2}+J_{n+3}^{2} . \tag{55}
\end{equation*}
$$

2. The Properties of the Jacobsthal Quaternions

Theorem 2.1. Let J_{n} and $J Q_{n}$ be the n - th terms of the Jacobsthal sequence $\left(J_{n}\right)$ and the Jacobsthal quaternion sequence ($J Q_{n}$), respectively. In this case, for $n \geq 1$ we can give the following relations:

$$
\begin{align*}
& J Q_{n}+\overline{J Q}_{n}=2 J_{n} \tag{56}\\
& J Q_{n}^{2}=2 J_{n} \cdot J Q_{n}-J Q_{n} \cdot \overline{J Q}_{n} \tag{57}\\
& J Q_{n+1}+2 J Q_{n}=J Q_{n+2} \tag{58}\\
& J Q_{n}-i J Q_{n+1}-j J Q_{n+2}-k J Q_{n+3}=J_{n}+J_{n+2}+J_{n+4}+J_{n+6} \tag{59}\\
& J Q_{n} J Q_{m}+2 J Q_{n-1} J Q_{m-1}=2 J Q_{n+m-1}-J_{n+m-1}-J_{n+m+1}-J_{n+m+3}-J_{n+m+5} . \tag{60}
\end{align*}
$$

Proof. (56): From (1.52) and (1.54) proof can easily be done.
(57): By (1.52) and (1.55)

$$
\begin{aligned}
J Q_{n}^{2} & =J_{n}^{2}-J_{n+1}^{2}-J_{n+2}^{2}-J_{n+3}^{2}+2 J_{n}\left(i J_{n+1}+j J_{n+2}+k J_{n+3}\right) \\
& =2 J_{n}\left(J_{n}+i J_{n+1}+j J_{n+2}+k J_{n+3}\right)-\left(J_{n}^{2}+J_{n+1}^{2}+J_{n+2}^{2}+J_{n+3}^{2}\right) \\
& =2 J_{n} \cdot J Q_{n}-J Q_{n} \cdot \overline{J Q_{n}}
\end{aligned}
$$

(58): By the equations (1.52) and

$$
\begin{equation*}
J Q_{n+1}=J_{n+1}+i J_{n+2}+j J_{n+3}+k J_{n+4} \tag{61}
\end{equation*}
$$

we get,

$$
\begin{aligned}
J Q_{n+1}+2 J Q_{n} & =\left(J_{n+1}+i J_{n+2}+j J_{n+3}+k J_{n+4}\right)+2\left(J_{n}+i J_{n+1}+j J_{n+2}+k J_{n+3}\right) \\
& =\left(J_{n+1}+2 J_{n}\right)+i\left(J_{n+2}+2 J_{n+1}\right)+j\left(J_{n+3}+2 J_{n+2}\right)+k\left(J_{n+4}+2 J_{n+3}\right) \\
& =J_{n+2}+i J_{n+3}+j J_{n+4}+k J_{n+5} \\
& =J Q_{n+2} .
\end{aligned}
$$

(59): By using (1.52) and conditions (1.50) we get

$$
\begin{aligned}
J Q_{n}-i J Q_{n+1}-j J Q_{n+2}-k J Q_{n+3}= & \left(J_{n}+i J_{n+1}+j J_{n+2}+k J_{n+3}\right) \\
& -i\left(J_{n+1}+i J_{n+2}+j J_{n+3}+k J_{n+4}\right) \\
& -j\left(J_{n+2}+i J_{n+3}+j J_{n+4}+k J_{n+5}\right) \\
& -k\left(J_{n+3}+i J_{n+4}+j J_{n+5}+k J_{n+6}\right) \\
= & J_{n}+J_{n+2}+J_{n+4}+J_{n+6} .
\end{aligned}
$$

(60): By using (1.52), we get

$$
\begin{align*}
J Q_{n} J Q_{m}= & J_{n} J_{m}-J_{n+1} J_{m+1}-J_{n+2} J_{m+2}-J_{n+3} J_{m+3} \\
& +i\left(J_{n} J_{m+1}+J_{n+1} J_{m}+J_{n+2} J_{m+3}-J_{n+3} J_{m+2}\right) \tag{62}\\
& +j\left(J_{n} J_{m+2}-J_{n+1} J_{m+3}+J_{n+2} J_{m}+J_{n+3} J_{m+1}\right) \\
& +k\left(J_{n} J_{m+3}+J_{n+1} J_{m+2}-J_{n+2} J_{m+1}+J_{n+3} J_{m}\right) \\
2 J Q_{n-1} J Q_{m-1} & =2\left(J_{n-1} J_{m-1}-J_{n} J_{m}-J_{n+1} J_{m+1}-J_{n+2} J_{m+2}\right) \\
& +2 i\left(J_{n-1} J_{m}+J_{n} J_{m-1}+J_{n+1} J_{m+2}-J_{n+2} J_{m+1}\right) \tag{63}\\
& +2 j\left(J_{n-1} J_{m+1}-J_{n} J_{m+2}+J_{n+1} J_{m-1}+J_{n+2} J_{m}\right) \\
& +2 k\left(J_{n-1} J_{m+2}+J_{n} J_{m+1}-J_{n+1} J_{m}+J_{n+2} J_{m-1}\right)
\end{align*}
$$

Finally, adding equations (62) and (63) side by side and using (24), we obtain

$$
\begin{aligned}
J Q_{n} J Q_{m}+2 J Q_{n-1} J Q_{m-1}= & \left(J_{n+m-1}-J_{n+m+1}-J_{n+m+3}-J_{n+m+5}\right) \\
& +i\left(2 J_{n+m}\right)+j\left(2 J_{n+m+1}\right)+k\left(J_{n+m+2}\right) \\
= & 2\left(J_{n+m-1}+i J_{n+m}+j J_{n+m+1}+k J_{n+m+2}\right) \\
& -\left(J_{n+m-1}+J_{n+m+1}+J_{n+m+3}+J_{n+m+5}\right. \\
= & 2 J Q_{n+m-1}-J_{n+m-1}-J_{n+m+1}-J_{n+m+3}-J_{n+m+5} .
\end{aligned}
$$

Theorem 2.2. Let $J Q_{n}$ be the Jacobsthal quaternion and $J L Q_{n}$ be Jacobsthal-Lucas quaternion. The following relations are satisfied

$$
\begin{align*}
& J Q_{n+1}+2 J Q_{n-1}=J L Q_{n} \tag{64}\\
& 2 J Q_{n+1}-J Q_{n}=J L Q_{n}
\end{align*}
$$

Proof. From equations (52) and (8), it follows that

$$
\begin{aligned}
J Q_{n+1}+2 J Q_{n-1} & =\left(J_{n+1}+i J_{n+2}+j J_{n+3}+k J_{n+4}\right)+2\left(J_{n-1}+i J_{n}+j J_{n+1}+k J_{n+2}\right) \\
& =\left(J_{n+1}+2 J_{n-1}\right)+i\left(J_{n+2}+2 J_{n}\right)+j\left(J_{n+3}+2 J_{n+1}\right)+k\left(J_{n+4}+2 J_{n+2}\right) \\
& =j_{n}+i j_{n+1}+j j_{n+2}+k j_{n+3} \\
& =J L Q_{n} .
\end{aligned}
$$

and

$$
\begin{aligned}
2 J Q_{n+1}-J Q_{n} & =2\left(J_{n+1}+i J_{n+2}+j J_{n+3}+k J_{n+4}\right)-\left(J_{n}+i J_{n+1}+j J_{n+2}+k J_{n+3}\right) \\
& =\left(2 J_{n+1}-J_{n}\right)+i\left(J_{n+2}-J_{n+1}\right)+j\left(2 J_{n+3}-J_{n+2}\right)+k\left(2 J_{n+4}-J_{n+3}\right) \\
& =j_{n}+i j_{n+1}+j j_{n+2}+k j_{n+3} \\
& =J L Q_{n} .
\end{aligned}
$$

where we used (8) and $2 J_{n+1}-J_{n}=j_{n}$ [3].
Theorem 2.3. Let $J Q_{n}$ be the Jacobsthal quaternion and $\overline{J Q}_{n}$ be conjugate of $J Q_{n}$. Then, we can give the following relations between these quaternions:

$$
\begin{align*}
& J Q_{n}^{2}=J Q_{n}\left(2 J_{n}-\overline{J Q}_{n}\right), \tag{65}\\
& J Q_{n} \overline{Q_{n}}+2 J Q_{n-1} \overline{J Q}_{n-1}=J_{2 n-1}+J_{2 n+1}+J_{2 n+3}+J_{2 n+5 \prime}, \tag{66}\\
& J Q_{n}^{2}+2 J Q_{n-1}^{2}=2 J Q_{2 n-1}-\left(J_{2 n-1}+J_{2 n+1}+J_{2 n+3}+J_{2 n+5}\right)=2 J Q_{2 n-1}-J Q_{n} \cdot \overline{J Q}_{n}-2 J Q_{n-1} \cdot \overline{J Q}_{n-1} . \tag{67}
\end{align*}
$$

Proof. (65): By using (52) and (55) we get

$$
\begin{aligned}
J Q_{n}^{2} & =\left(J_{n}^{2}-J_{n+1}^{2}-J_{n+2}^{2}-J_{n+3}^{2}\right)+2 i\left(J_{n} J_{n+1}\right)+2 j\left(J_{n} J_{n+2}\right)+2 k\left(J_{n} J_{n+3}\right) \\
& =2 J_{n}\left(J_{n}+i J_{n+1}+j J_{n+2}+k J_{n+3}\right)-\left(J_{n}^{2}+J_{n+1}^{2}+J_{n+2}^{2}+J_{n+3}^{2}\right) \\
& =2 J_{n} \cdot J Q_{n}-J Q_{n} \cdot J Q_{n}=J Q_{n} \cdot\left(2 J_{n}-\overline{J Q}_{n}\right) .
\end{aligned}
$$

(66): By using (55) we get

$$
\begin{align*}
J Q_{n} \cdot \overline{J Q}_{n}+2 J Q_{n-1} \cdot \overline{J Q}_{n-1} & =\left(J_{n}^{2}+2 J_{n-1}^{2}\right)+\left(J_{n+1}^{2}+2 J_{n}^{2}\right)+\left(J_{n+2}^{2}+2 J_{n+1}^{2}\right)+\left(J_{n+3}^{2}+2 J_{n+2}^{2}\right) \tag{68}\\
& =J_{2 n-1}+J_{2 n+1}+J_{2 n+3}+J_{2 n+5}
\end{align*}
$$

(67): By using (55) and (68) we get

$$
\begin{aligned}
J Q_{n}^{2}+2 J Q_{n-1}^{2}= & \left(J_{n}^{2}+2 J_{n-1}^{2}\right)-\left(J_{n+1}^{2}+2 J_{n}^{2}\right)-\left(J_{n+2}^{2}+2 J_{n+1}^{2}\right)-\left(J_{n+3}^{2}+2 J_{n+2}^{2}\right) \\
& +2\left[i\left(J_{n} J_{n+1}+2 J_{n-1} J_{n}\right)+j\left(J_{n} J_{n+2}+2 J_{n-1} J_{n+1}\right)+k\left(J_{n} J_{n+3}+2 J_{n-1} J_{n+2}\right)\right] \\
= & {\left[J_{2 n-1}-J_{2 n+1}-J_{2 n+3}-J_{2 n+5}\right]+2\left[i J_{2 n}+j J_{2 n+1}+k J_{2 n+2}\right] } \\
= & 2\left[J_{2 n-1}+i J_{2 n}+j J_{2 n+1}+k J_{2 n+2}\right]-\left[J_{2 n-1}+J_{2 n+1}+J_{2 n+3}+J_{2 n+5}\right] \\
= & 2 J Q_{2 n-1}-\left(J_{2 n-1}+J_{2 n+1}+J_{2 n+3}+J_{2 n+5}\right) \\
= & 2 J Q_{2 n-1}-J Q_{n} \cdot \overline{J Q}_{n}-2 J Q_{n-1} \cdot \overline{J Q}_{n-1}
\end{aligned}
$$

where we used relations (24).
Theorem 2.4. Let $J Q_{n}$ be the $n-t h$ term of the Jacobsthal quaternion sequence. Then, we have the following identities

$$
\begin{align*}
& \sum_{s=1}^{n} J Q_{s}=\frac{1}{2}\left[J Q_{n+2}-J Q_{2}\right] \tag{69}\\
& \sum_{s=0}^{p} J Q_{n+s}=\frac{1}{2}\left[J Q_{n+p+2}-J Q_{n+1}\right] \tag{70}\\
& \sum_{s=1}^{n} J Q_{2 s-1}=\frac{2 J Q_{2 n}}{3}+\frac{1}{3}\left[n\left(2 J Q_{2}-J Q_{3}\right)-2 J Q_{0}\right] \tag{71}\\
& \sum_{s=1}^{n} J Q_{2 s}=\frac{2 J Q_{2 n+1}}{3}-\frac{1}{3}\left[n\left(2 J Q_{2}-J Q_{3}\right)-2 J Q_{1}\right] \tag{72}
\end{align*}
$$

Proof. (69): we get

$$
\begin{aligned}
\sum_{s=1}^{n} J Q_{s} & =\sum_{s=1}^{n} J_{s}+i \sum_{s=1}^{n} J_{s+1}+j \sum_{s=1}^{n} J_{s+2}+k \sum_{s=1}^{n} J_{s+3} \\
& =\frac{1}{2}\left[\left(J_{n+2}-1\right)+i\left(J_{n+3}-3\right)+j\left(J_{n+4}-5\right)+k\left(J_{n+5}-11\right)\right] \\
& =\frac{1}{2}\left[\left(J_{n+2}-J_{2}\right)+i\left(J_{n+3}-J_{3}\right)+j\left(J_{n+4}-J_{4}\right)+k\left(J_{n+5}-J_{5}\right)\right] \\
& =\frac{1}{2}\left[J_{n+2}+i J_{n+3}+j J_{n+4}+k J_{n+5}-\left(J_{2}+i J_{3}+j J_{4}+k J_{5}\right)\right] \\
& =\frac{1}{2}\left[J Q_{n+2}-J Q_{2}\right] .
\end{aligned}
$$

(70): Hence, we can write

$$
\begin{aligned}
\sum_{s=0}^{p} J Q_{n+s} & =\left(J_{n}+\ldots+J_{n+p}\right)+i\left(J_{n+1}+\ldots+J_{n+p+1}\right)+j\left(J_{n+2}+\ldots+J_{n+p+2}\right)+k\left(J_{n+3}+\ldots+J_{n+p+3}\right) \\
& =\frac{1}{2}\left[\left(J_{n+p+2}-J_{n+1}\right)+i\left(J_{n+p+3}-J_{n+2}\right)+j\left(J_{n+p+4}-J_{n+3}\right)+k\left(J_{n+p+5}-J_{n+4}\right)\right] \\
& =\frac{1}{2}\left[J_{n+p+2}+i J_{n+p+3}+j J_{n+p+4}+k J_{n+p+5}-\left(J_{n+1}+i J_{n+2}+j J_{n+3}+k J_{n+4}\right)\right] \\
& =\frac{1}{2}\left[J Q_{n+p+2}-J Q_{n+1}\right] .
\end{aligned}
$$

(71): Using (20) and (21), we get

$$
\begin{aligned}
\sum_{s=1}^{n} J Q_{2 s-1} & =\left(J_{1}+J_{3}+\ldots+J_{2 n-1}\right)+i\left(J_{2}+J_{4}+\ldots+J_{2 n}\right)+j\left(J_{3}+J_{5}+\ldots+J_{2 n+1}\right)+k\left(J_{4}+J_{6}+\ldots+J_{2 n+2}\right) \\
& =\left[\frac{\left(2 J_{2 n}+n\right)}{3}+i \frac{\left(2 J_{2 n+1}-n-2\right)}{3}+j \frac{\left(2 J_{2 n+2}+n-2\right)}{3}+k \frac{\left(2 J_{2 n+3}-n-6\right)}{3}\right] \\
& =\frac{2}{3}\left[J_{2 n}+i J_{2 n+1}+j J_{2 n+2}+k J_{2 n+3}\right]+\frac{1}{3}[n(1-i+j-k)-2(i+j+3 k)] \\
& \left.=\frac{2 J Q_{2 n}}{3}+\frac{1}{3}\left[n\left(2 J Q_{2}-J Q_{3}\right)-2 J Q_{0}\right)\right] .
\end{aligned}
$$

(72): Using (20) and (21), we obtain

$$
\begin{aligned}
\sum_{s=1}^{n} J Q_{2 s} & =\left(J_{2}+J_{4}+\ldots+J_{2 n}\right)+i\left(J_{3}+J_{5}+\ldots+J_{2 n+1}\right)+j\left(J_{4}+J_{6}+\ldots+J_{2 n+2}\right)+k\left(J_{5}+J_{7}+\ldots+J_{2 n+3}\right) \\
& =\left[\frac{\left(2 J_{2 n+1}-n-2\right.}{3}+i \frac{\left(2 J_{2 n+2}+n-2\right)}{3}+j \frac{\left(2 J_{2 n+3}-n-6\right)}{3}+k \frac{\left(2 J_{2 n+4}+n-10\right)}{3}\right] \\
& =\frac{2}{3}\left[J_{2 n+1}+i J_{2 n+2}+j J_{2 n+3}+k J_{2 n+4}\right]+\frac{1}{3}[-n(1-i+j-k)-2(1+i+3 j+5 k)] \\
& \left.=\frac{2 J Q_{2 n+1}}{3}-\frac{1}{3}\left[-n\left(2 J Q_{2}-J Q_{3}\right)-2 J Q_{1}\right)\right] .
\end{aligned}
$$

Theorem 2.5. Let $\overline{J Q}_{n}$ be the conjugate of the Jacobsthal quaternions $J Q_{n}=J_{n}+i J_{n+1}+j J_{n+2}+k J_{n+3}$ and $\overline{J L Q_{n}}$ be the conjugate of the Jacobsthal-Lucas quaternions $J L Q_{n}=j_{n}+i j_{n+1}+j j_{n+2}+k j_{n+3}$. Then

$$
\begin{align*}
& J L Q_{n} \overline{J Q}_{n}-\overline{J L Q}_{n} J Q_{n}=(-1)^{n-1} \cdot 2^{n}(4 i+4 j+12 k) \tag{73}\\
& J L Q_{n} \overline{J Q}_{n}+\overline{J L Q}_{n} J Q_{n}=2\left[\left(J_{2 n}+J_{2 n+2}+J_{2 n+4}+J_{2 n+6}\right)+(-1)^{n} \cdot 2^{n}(-8 i-4 j+4 k)\right] \tag{74}\\
& J L Q_{n} J Q_{n}-\overline{J L Q}_{n} \overline{J Q}_{n}=2\left[\left(J_{2 n}-J_{2 n+2}-J_{2 n+4}-J_{2 n+6}\right)+(-1)^{n} \cdot 2^{n}(8 i-4 j-4 k)\right] \tag{75}
\end{align*}
$$

Proof.
(73): Using the relations (12), (36) and (37), we get

$$
\begin{aligned}
J L Q_{n} \overline{J Q}_{n}-\overline{J L Q}_{n} J Q_{n}= & \left(j_{n}+i j_{n+1}+j j_{n+2}+k j_{n+3}\right)\left(J_{n}-i j_{n+1}-j J_{n+2}-k J_{n+3}\right) \\
& -\left(j_{n}-i j_{n+1}-j j_{n+2}-k j_{n+3}\right)\left(J_{n}+i j_{n+1}+j J_{n+2}+k J_{n+3}\right) \\
= & 2 i\left[-\left(j_{n} J_{n+1}-J_{n} j_{n+1}\right)\right]+2 j\left[-\left(j_{n} J_{n+2}-J_{n} j_{n+2}\right)\right]+2 k\left[-\left(j_{n} J_{n+3}-J_{n} j_{n+3}\right)\right] \\
= & (-1)^{n-1} \cdot 2^{n+2}\left(i J_{1}+j J_{2}+k J_{3}\right) \\
= & (-1)^{n-1} \cdot 2^{n}(4 i+4 j+12 k) .
\end{aligned}
$$

(74): Using the relations (12), (36) and (37), follows

$$
\begin{aligned}
J L Q_{n} \overline{J Q}_{n}+\overline{J L Q}_{n} J Q_{n}= & \left(j_{n}+i j_{n+1}+j j_{n+2}+k j_{n+3}\right)\left(J_{n}-i J_{n+1}-j J_{n+2}-k J_{n+3}\right) \\
& +\left(j_{n}-i j_{n+1}-j j_{n+2}-k j_{n+3}\right)\left(J_{n}+i J_{n+1}+j J_{n+2}+k J_{n+3}\right) \\
= & 2\left[j_{n} J_{n}+j_{n+1} J_{n+1}+j_{n+2} J_{n+2}+j_{n+3} J_{n+3}\right]+2 i\left[-\left(j_{n+2} J_{n+3}-J_{n+2} j_{n+3}\right)\right] \\
& +2 j\left[j_{n+1} J_{n+3}-J_{n+1} j_{n+3}\right]+2 k\left[-\left(j_{n+1} J_{n+2}-J_{n+1} j_{n+2}\right)\right] \\
= & 2\left[\left(J_{2 n}+J_{2 n+2}+J_{2 n+4}+J_{2 n+6}\right)+(-1)^{n} \cdot 2^{n}(-8 i+4 j+4 k)\right] .
\end{aligned}
$$

(75): Using the relations (12), (36) and (37), we find

$$
\begin{aligned}
J L Q_{n} J Q_{n}+\overline{J L Q}_{n} \overline{J Q}_{n}= & \left(j_{n}+i j_{n+1}+j j_{n+2}+k j_{n+3}\right)\left(J_{n}+i J_{n+1}+j J_{n+2}+k J_{n+3}\right) \\
& +\left(j_{n}-i j_{n+1}-j j_{n+2}-k j_{n+3}\right)\left(J_{n}-i J_{n+1}-j J_{n+2}-k J_{n+3}\right) \\
= & 2\left[j_{n} J_{n}-j_{n+1} J_{n+1}-j_{n+2} J_{n+2}-j_{n+3} J_{n+3}\right]+2 i\left[\left(j_{n+2} J_{n+3}-J_{n+2} j_{n+3}\right)\right] \\
& +2 j\left[-j_{n+1} J_{n+3}+J_{n+1} j_{n+3}\right]+2 k\left[\left(j_{n+1} J_{n+2}-J_{n+1} j_{n+2}\right)\right] \\
= & 2\left[\left(J_{2 n}-J_{2 n+2}-J_{2 n+4}-J_{2 n+6}\right)+(-1)^{n} \cdot 2^{n}(8 i-4 j-4 k)\right] .
\end{aligned}
$$

Theorem 2.6. (Binet's Formulas). Let $J Q_{n}$ and $J L Q_{n}$ be $n-$ th terms of the Jacobsthal quaternion ($J Q_{n}$) and the Jacobsthal-Lucas quaternion $\left(J L Q_{n}\right)$, respectively. For $n \geq 1$, the Binet's formulas for these quaternions are as follows:

$$
\begin{equation*}
J Q_{n}=\frac{1}{\alpha-\beta}\left[\underline{\alpha} \alpha^{n}-\underline{\beta} \beta^{n}\right] \tag{76}
\end{equation*}
$$

and

$$
\begin{equation*}
J L Q_{n}=\left(\underline{\underline{\alpha}} \alpha^{n}+\underline{\underline{\beta}} \beta^{n}\right) \tag{77}
\end{equation*}
$$

respectively, where

$$
\alpha-\beta=3, \quad \underline{\alpha}=1+2 i+4 j+8 k, \quad \underline{\beta}=1-i+j-k
$$

and

$$
\underline{\underline{\alpha}}=3+6 i+12 j+24 k, \quad \underline{\underline{\beta}}=3-3 i+3 j-3 k
$$

Proof. The characteristic equation of recurrence relations
$J Q_{n+2}=J Q_{n+1}+2 J Q_{n}$ and $J L Q_{n+2}=J L Q_{n+1}+2 J L Q_{n}$ is $t^{2}-t-2=0$.
The roots of this equation are $\alpha=2$ and $\beta=-1$ where $\alpha+\beta=1, \alpha-\beta=3, \alpha \beta=-2$.

Using recurrence relation and initial values $J Q_{0}=(0,1,1,3), J Q_{1}=(1,1,3,5)$ the Binet's formula for $J Q_{n}$, we get

$$
J Q_{n}=A \alpha^{n}+B \beta^{n}=\frac{1}{3}\left[(1+2 i+4 j+8 k) 2^{n}-(1-i+j-k)(-1)^{n}\right]
$$

where $A=\frac{J Q_{1}-J Q_{0} \beta}{\alpha-\beta}, B=\frac{\alpha J Q_{0}-J Q_{1}}{\alpha-\beta}$ and $\underline{\alpha}=1+2 i+4 j+8 k, \quad \underline{\beta}=1-i+j-k$.

Similarly, the Binet's formula for $J L Q_{n}$ is obtained as follows:

$$
J L Q_{n}=\left[(3+6 i+12 j+24 k) 2^{n}+(3-3 i+3 j-3 k)(-1)^{n}\right]
$$

where

$$
\underline{\underline{\alpha}}=3+6 i+12 j+24 k, \quad \underline{\underline{\beta}}=3-3 i+3 j-3 k
$$

respectively.
Theorem 2.7. (Cassini Identity). Let $J Q_{n}$ and $J L Q_{n}$ be the $n-$ th terms of the Jacobsthal quaternion sequence $\left(J Q_{n}\right)$ and the Jacobsthal-Lucas quaternion sequence $\left(J L Q_{n}\right)$, respectively. For $n \geq 1$, the Cassini identities for $J Q_{n}$ and $J L Q_{n}$ are as follows:

$$
\begin{align*}
& J Q_{n-1} J Q_{n+1}-J Q_{n}^{2}=(-1)^{n} 2^{n-1}(7+5 i+7 j+5 k) \tag{78}\\
& J L Q_{n-1} J L Q_{n+1}-J L Q_{n}^{2}=(-2)^{n-1} 3^{2}(7+5 i+7 j+5 k) \tag{79}
\end{align*}
$$

Proof. For the proof of (78) and (79), we will use relations of Jacobsthal number and Jacobsthal-Lucas number $[5,6]$ as follows:

$$
\begin{align*}
J_{m} J_{n-1}-J_{m-1} J_{n} & =(-1)^{n} 2^{n-1} J_{m-n} \tag{80}\\
j_{m} j_{n-1}-j_{m-1} j_{n} & =(-2)^{n-1} 3^{2} j_{m-n} \tag{81}
\end{align*}
$$

(78): Using the relations (3) and (80), we get

$$
\begin{aligned}
J Q_{n-1} J Q_{n+1}-J Q_{n}^{2}= & \left(J_{n-1}+i J_{n}+j J_{n+1}+k J_{n+2}\right)\left(J_{n+1}+i J_{n+2}+j J_{n+3}+k J_{n+4}\right) \\
& -\left(J_{n}+i J_{n+1}+j J_{n+2}+k J_{n+3}\right)\left(J_{n}+i J_{n+1}+j J_{n+2}+k J_{n+3}\right) \\
= & {\left[\left(J_{n-1} J_{n+1}-J_{n}^{2}\right)-\left(J_{n} J_{n+2}-J_{n+1}^{2}\right)-\left(J_{n+1} J_{n+3}-J_{n+2}^{2}\right)-\left(J_{n+2} J_{n+4}-J_{n+3}^{2}\right)\right] } \\
& +i\left[-\left(J_{n} J_{n+1}-J_{n-1} J_{n+2}\right)-\left(J_{n+2} J_{n+3}-J_{n+1} J_{n+4}\right)\right] \\
& +j\left[-\left(J_{n} J_{n+2}-J_{n-1} J_{n+3}\right)-J_{n} J_{n+4}-\left(J_{n} J_{n+2}-J_{n+1}^{2}\right)+J_{n+2}^{2}\right] \\
& +k\left[-\left(J_{n} J_{n+3}-J_{n-1} J_{n+4}\right)-\left(J_{n+2} J_{n+1}-J_{n+1} J_{n+2}\right)\right] \\
= & (-1)^{n} 2^{n-1}(7+5 i+7 j+5 k) .
\end{aligned}
$$

(79): Using the relations (4) and (81), we obtain

$$
\begin{aligned}
J L Q_{n-1} J L Q_{n+1}-J L Q_{n}^{2}= & \left(j_{n-1}+i j_{n}+j j_{n+1}+k j_{n+2}\right)\left(j_{n+1}+i j_{n+2}+j j_{n+3}+k j_{n+4}\right) \\
& -\left(j_{n}+i j_{n+1}+j j_{n+2}+k j_{n+3}\right)\left(j_{n}+i j_{n+1}+j j_{n+2}+k j_{n+3}\right) \\
= & {\left[\left(j_{n-1} j_{n+1}-j_{n}^{2}\right)-\left(j_{n} j_{n+2}-j_{n+1}^{2}\right)-\left(j_{n+1} j_{n+3}-j_{n+2}^{2}\right)-\left(j_{n+2} j_{n+4}-j_{n+3}^{2}\right)\right] } \\
& +i\left[-\left(j_{n} j_{n+1}-j_{n-1} j_{n+2}\right)-\left(j_{n+2} j_{n+3}-j_{n+1} j_{n+4}\right)\right] \\
& +j\left[-\left(j_{n} j_{n+2}-j_{n-1} j_{n+3}\right)-j_{n} j_{n+4}-\left(j_{n} j_{n+2}-j_{n+1}^{2}\right)+j_{n+2}^{2}\right] \\
& +k\left[-\left(j_{n} j_{n+3}-j_{n-1} j_{n+4}\right)-\left(j_{n+2} j_{n+1}-j_{n+1} j_{n+2}\right)\right] \\
= & (-2)^{n-1} 3^{2}(7+5 i+7 j+5 k) .
\end{aligned}
$$

We will give an example in which we check in a particular case the Cassini identity for the Jacobsthal quaternions.

Example 1. Let $J Q_{1}, J Q_{2}, J Q_{3}$ and $J Q_{4}$ be the Jacobsthal quaternions such that

$$
\left\{\begin{array}{l}
J Q_{1}=1+i+3 j+5 k \\
J Q_{2}=1+3 i+5 j+11 k \\
J Q_{3}=3+5 i+11 j+21 k \\
J Q_{4}=5+11 i+21 j+43 k .
\end{array}\right.
$$

In this case,

$$
\begin{align*}
J Q_{1} J Q_{3}-J Q_{2}^{2} & =(1+i+3 j+5 k)(3+5 i+11 j+21 k)-(1+3 i+5 j+11 k)^{2} \\
& =(-140+16 i+24 j+32 k)-(-154+6 i+10 j+22 k) \\
& =(14+10 i+14 j+10 k) \tag{82}\\
& =(-1)^{2} 2(7+5 i+7 j+5 k)
\end{align*}
$$

and

$$
\begin{align*}
J Q_{2} J Q_{4}-J Q_{3}^{2} & =(1+3 i+5 j+11 k)(5+11 i+21 j+43 k)-(3+5 i+11 j+21 k)^{2} \\
& =(-606+10 i+38 j+106 k)-(-578+30 i+66 j+126 k) \\
& =(-28-20 i-28 j-20 k) \tag{83}\\
& =(-1)^{3} 2^{2}(7+5 i+7 j+5 k) .
\end{align*}
$$

Example 2. Let $J L Q_{1}, J L Q_{2}, J L Q_{3}$ and $J L Q_{4}$ be the Jacobsthal-Lucas quaternions such that

$$
\left\{\begin{array}{l}
J L Q_{1}=1+5 i+7 j+17 k \\
J L Q_{2}=5+7 i+17 j+31 k \\
J L Q_{3}=7+17 i+31 j+65 k \\
J L Q_{4}=17+31 i+65 j+127 k
\end{array}\right.
$$

In this case,

$$
\begin{align*}
J L Q_{1} J L Q_{3}-J L Q_{2}^{2} & =(1+5 i+7 j+17 k)(7+17 i+31 j+65 k)-(5+7 i+17 j+31 k)^{2} \\
& =(-1400-20 i+44 j+220 k)-(-1274+70 i+170 j+310 k) \\
& =(-126-90 i+126 j+90 k) \tag{84}\\
& =(-2) 3^{2}(7+5 i+7 j+5 k)
\end{align*}
$$

and

$$
\begin{align*}
J L Q_{2} J L Q_{4}-J L Q_{3}^{2} & =(5+7 i+17 j+31 k)(17+31 i+65 j+127 k)-(7+17 i+31 j+65 k)^{2} \\
& =(-5174+418 i+686 j+1090 k)-(-5426+238 i+434 j+910 k) \\
& =(252-1120 i+252 j-910 k) \tag{85}\\
& =(-2)^{2} 3^{2}(7+5 i+7 j+5 k) .
\end{align*}
$$

References

[1] N. J. A. Sloane, A Handbook of Integer Sequences, New York, Press, 1973.
[2] A. F. Horadam, Jacobsthal and Pell Curves, The Fibonacci Quarterly 26 (1988) 79-83.
[3] A. F. Horadam, Jacobsthal Representation Numbers, The Fibonacci Quarterly 34 (1996) 40-54.
[4] A. F. Horadam, Jacobsthal Representation Polynomials, The Fibonacci Quarterly 35 (1997) 137-148.
[5] F. Köken, D. Bozkurt, On the Jacobsthal Numbers by Matrix Methods, International Journal of Contemporary Mathematical Sciences 3 (13) (2008) 605-614.
[6] F. Köken, D. Bozkurt, On the Jacobsthal Lucas Numbers by Matrix Methods, International Journal of Contemporary Mathematical Sciences 3 (13) (2008) 1629-1633.
[7] Ş Uygun, The (s, t)-Jacobsthal and (s,t)-Jacobsthal-Lucas Sequences 9 (70) (2015) 3467-3476.
[8] A. Daşdemir, On the Jacobsthal Numbers by Matrix Method, SDU Journal of Science (E-Journal) 71 (2012) 69-76.
[9] G. B. Djordjević, Derivative sequences of Generalized Jacobsthal and Jacobsthal-Lucas Polynomials, The Fibonacci Quarterly 38 (2000) 334-338.
[10] G. B. Djordjević, Generalized Jacobsthal Polynomials, The Fibonacci Quarterly 38 (2009) 239-243.
[11] V. K. Gupta, K. P. Yashwant, Common Factors of Generalized Fibonacci, Jacobsthal and Jacobsthal-Lucas numbers, International Journal of applied Mathematical Research 1 (4) (2012) 377-382.
[12] Z. Cerin, Sums of Squares and Products of Jacobsthal Numbers, Journal of Integer Sequence 10 (2007) Article 07.2.5.
[13] Z. Cerin, Formulae for Sums of Jacobsthal-Lucas Numbers, International Mathematical Forum 2 (40) (2007) 1969-1984.
[14] W. R. Hamilton, Elements of Quaternions, Longmans, Green and Co., London, 1866.
[15] J. Cockle, On Systems of Algebra Involving more than one Imaginary, Philosophical Magazine (series3) 35 (1849) 434-435.
[16] E. Ata, Y. Yaylı, Dual quaternions and dual projective spaces, Chaos Solitons Fractals, 40 (3) (2009) 1255-1263.
[17] M. Akyiğit, H. H. Kösal, M. Tosun, Split Fibonacci Quaternions, Adv. Appl. Clifford Algebras 23 (3) (2013) 535-545.
[18] S. Halıcı, On Fibonacci Quaternions, Adv. Appl. Clifford Algebras, 22 (2) (2012) 321-327.
[19] S. Halıcı, On Complex Fibonacci Quaternions, Adv. Appl. Clifford Algebras, 23 (2013) 105-112.
[20] C. J. Harman, Complex Fibonacci Numbers, The Fibonacci Quarterly 19 (1) (1981) 82-86.
[21] A. F. Horadam, Complex Fibonacci Numbers and Fibonacci Quaternions, American Math. Monthly 70 (3) (1963) 289-291.
[22] A. F. Horadam, Quaternion Recurrence Relations, Ulam Quarterly 2 (2) (1993) 23-33.
[23] A. F. Horadam, A Generalized Fibonacci Sequence, The American Mathematical Monthly 68 (5) (1961) 455-459.
[24] A. L. Iakin, Generalized Quaternions of Higher Order, The Fibonacci Quarterly 15 (4) (1977) 343-346.
[25] A. L. Iakin, Generalized Quaternions with Quaternion Components, The Fibonacci Quarterly 15 (1977) 350-352.
[26] M. R. Iyer, A Note on Fibonacci Quaternions, The Fibonacci Quaterly 7 (3) (1969) 225-229.
[27] M. R. Iyer, Some Results on Fibonacci Quaternions, The Fibonacci Quaterly 7 (1969) 201-210.
[28] L. Kula, Y. Yayl1, Split Quaternions and Rotations in Semi-Euclidean Space, J. Korean Math. Soc. 44 (6) (2007) 1313-1327.
[29] K. S. Nurkan, A. İ. Güven, Dual Fibonacci Quaternions. Adv. Appl. Clifford Algebras, doi: 10.1007/s00006-014-0488-7 (2014).
[30] M. N. Swamy, On Generalized Fibonacci Quaternions, The Fibonacci Quarterly, 11 (5) (1973) 547-550.
[31] E. Verner, Jr. Hoggatt, Fibonacci and Lucas Numbers, The Fibonacci Association (1969).
[32] V. Majernik, Quaternion formulation of the Galilean space-time transformation, Acta Phy. Slovaca 56 (1) (2006) 9-14.
[33] Z. Ercan, S. Yüce, On properties of the dual quaternions, Eur. J. Pure Appl. Math. 4 (2) (2011) 142-146.
[34] S. Yüce, F. Torunbalcı Aydın, A New Aspect of Dual Fibonacci Quaternions, Advances in Applied Clifford Algebras 26 (2) (2016) 873-884.
[35] A. Szynal-Liana, I. Wloch, A Note on Jacobsthal Quaternions, Advances in Applied Clifford Algebras 26 (1) (2016) 441-447.

[^0]: 2010 Mathematics Subject Classification. Primary 11R52; Secondary 11L10, 20 G20
 Keywords. Jacobsthal number, Jacobsthal-Lucas number, Jacobsthal quaternion, Jacobsthal-Lucas quaternion.
 Received: 02 November 2016; Accepted: 07 February 2017
 Communicated by Mića Stanković
 Email addresses: faydin@yildiz.edu.tr (Fügen Torunbalcı Aydın), sayuce@yildiz.edu.tr (Salim Yüce)

[^1]: ${ }^{1)}$ Dual number: $A=a+\varepsilon b, a, b \in \mathbb{R}, \varepsilon^{2}=0, \varepsilon \neq 0$.

