2023 Vol. 66, No. 3
Article Contents

ZHAO Lei, XU WenBin, FANG Nan, LIU JiHong, FENG GuangCai. 2023. Coseismic and early postseismic fault slip model and the seismogenic fault friction properties of the 2021 Qinghai Madoi MW7.3 earthquake. Chinese Journal of Geophysics (in Chinese), 66(3): 1086-1097, doi: 10.6038/cjg2022Q0189
Citation: ZHAO Lei, XU WenBin, FANG Nan, LIU JiHong, FENG GuangCai. 2023. Coseismic and early postseismic fault slip model and the seismogenic fault friction properties of the 2021 Qinghai Madoi MW7.3 earthquake. Chinese Journal of Geophysics (in Chinese), 66(3): 1086-1097, doi: 10.6038/cjg2022Q0189

Coseismic and early postseismic fault slip model and the seismogenic fault friction properties of the 2021 Qinghai Madoi MW7.3 earthquake

  • Fund Project:

    国家重点研发项目(2019YFC1509205),国家自然科学基金项目(42174023)共同资助

More Information
  • Coseismic slip and early post-earthquake afterslip are important ways to observe seismogenic morphology and friction properties of seismogenic faults. We use InSAR data to obtain the coseismic and early postseismic deformation and estimate the fault slip distribution model. The coseismic slip is mainly distributed in the shallow upper crust and shows several shallow slip deficits. The dip in the eastern branches fault is opposite to the western and main segment. We process 4.5 months postseismic deformation based on the N-SBAS method, which accumulates~5 cm displacement in near-field and ~2 cm in far-field. The afterslip distributed in both updip and downdip areas and laterally extended alongside western and eastern ends. The shallow upper crust afterslip fills the shallow slip deficit, and several areas overlap the coseismic slip. The maximum afterslip is ~20 cm in the updip region. The temporal-spatial moment shows rapid afterslip in the shallow upper crust and stable afterslip in the downdip area, which indicates the complex friction properties of the seismogenic fault.

  • 加载中
  •  

    Ariyoshi K, Matsuzawa T, Hasegawa A. 2007. The key frictional parameters controlling spatial variations in the speed of postseismic-slip propagation on a subduction plate boundary. Earth and Planetary Science Letters, 256(1-2): 136-146. doi: 10.1016/j.epsl.2007.01.019

     

    Barbot S, Fialko Y, Bock Y. 2009. Postseismic deformation due to the MW6.0 2004 Parkfield earthquake: Stress-driven creep on a fault with spatially variable rate-and-state friction parameters. Journal of Geophysical Research, 114(B7), B07405, doi: 10.1029/2008jb005748.

     

    Ceylan S, Ni J, Chen J Y, et al. 2012. Fragmented Indian plate and vertically coherent deformation beneath eastern Tibet. Journal of Geophysical Research, 117(B11): B11303, doi: 10.1029/2012JB009210.

     

    Diao F Q, Xiong X, Wang R J, et al. 2014. Overlapping post-seismic deformation processes: Afterslip and viscoelastic relaxation following the 2011 MW9.0 Tohoku (Japan) earthquake. Geophysical Journal International, 196(1): 218-229. doi: 10.1093/gji/ggt376

     

    Dogan U, Demir D Ö, Çakir Z, et al. 2014. Postseismic deformation following the MW7.2, 23 October 2011 Van earthquake (Turkey): Evidence for aseismic fault reactivation. Geophysical Research Letters, 41(7): 2334-2341. doi: 10.1002/2014GL059291

     

    Goldstein R M, Werner C L. 1998. Radar interferogram filtering for geophysical applications. Geophysical Research Letters, 25: 4035-4038. doi: 10.1029/1998GL900033

     

    Gualandi A, Serpelloni E, Belardinelli M E. 2014. Space-time evolution of crustal deformation related to the MW6.3, 2009 L′Aquila earthquake (central Italy) from principal component analysis inversion of GPS position time-series. Geophysical Journal International, 197(1): 174-191. doi: 10.1093/gji/ggt522

     

    He K F, Wen Y M, Xu C J, et al. 2022. Fault geometry and slip distribution of the 2021 MW7.4 Maduo, China, Earthquake inferred from InSAR measurements and relocated aftershocks. Seismological Research Letters, 93(1): 8-20. doi: 10.1785/0220210204

     

    He L J, Feng G C, Wu X X, et al. 2021. Coseismic and early postseismic slip models of the 2021 MW7.4 Maduo earthquake (western China) estimated by space based geodetic data. Geophysical Research Letters, 48(24): e2021GL095860.

     

    He P C, Wang M, Wang Q, et al. 2018. Rheological structure of lithosphere in northern Tibet inferred from postseismic deformation modeling of the 2001 MW7.8 Kokoxili earthquake. Chinese Journal of Geophysics (in Chinese), 61(2): 531-544, doi: 10.6038/cjg2018L0189.

     

    Heki K, Tamura Y. 1997. Short term afterslip in the 1994 Sanriku- Haruka-Oki earthquake. Geophysical Research Letters, 24(24): 3285-3288. doi: 10.1029/97GL03316

     

    Huang Y, Yang S M, Zhao B, et al. 2013. The coseismic displacements of the 2013 Lushan MW6.6 earthquake determined using continuous global positioning system measurements. Geodesy and Geodynamics, 4(2): 6-10. doi: 10.3724/SP.J.1246.2013.02006

     

    Iinuma T, Hino R, Uchida N, et al. 2016. Seafloor observations indicate spatial separation of coseismic and postseismic slips in the 2011 Tohoku earthquake. Nature Communications, 7(1): 13506, doi: 10.1038/ncomms13506.

     

    Ji L Y, Liu C J, Xu J, et al. 2017. InSAR observation and inversion of the seismogenic fault for the 2017 Jiuzhaigou MS7.0 earthquake in China. Chinese Journal of Geophysics (in Chinese), 60(10): 4069-4082, doi: 10.6038/cjg20171032.

     

    Jiang W P, Xu C J, Li Z W, et al. 2022. Using space observation techniques to study temporal and spatial characteristics of seismogenic process, occurrence and deformation of the Qinghai MadoiMW7.4 earthquake. Chinese Journal of Geophysics (in Chinese), 65(2): 495-508, doi: 10.6038/cjg2022P0732.

     

    Jin Z, Fialko Y. 2021. Coseismic and early postseismic deformation due to the 2021 M7.4 Maduo (China) earthquake. Geophysical Research Letters, 48(21): e2021GL095213, doi: 10.1029/2021GL095213.

     

    Kim A, Dreger D S. 2008. Rupture process of the 2004 Parkfield earthquake from near-fault seismic waveform and geodetic records. Journal of Geophysical Research: Solid Earth, 113(B7): B07308, doi: 10.1029/2007JB005115.

     

    Klinger Y, Xu X W, Tapponnier P, et al. 2005. High-resolution satellite imagery mapping of the surface rupture and slip distribution of the MW7.8, 14 November 2001 Kokoxili earthquake, Kunlun fault, northern Tibet, China. Bulletin of the Seismological Society of America, 95(5): 1970-1987. doi: 10.1785/0120040233

     

    Li C X, Xu X W, Wen X Z, et al. 2011. Rupture segmentation and slip partitioning of the mid-eastern part of the Kunlun Fault, north Tibetan Plateau. Science China Earth Sciences, 54(11): 1730-1745. doi: 10.1007/s11430-011-4239-5

     

    Li S W, Xu W B, Li Z W. 2022. Review of the SBAS InSAR time-series algorithms, applications, and challenges. Geodesy and Geodynamics, 13(2): 114-126. doi: 10.1016/j.geog.2021.09.007

     

    Liu J H, Hu J, Li Z W, et al. 2022. Complete three-dimensional coseismic displacements due to the 2021 Maduo earthquake in Qinghai Province, China from Sentinel-1 and ALOS-2 SAR images. Science China Earth Sciences, 65(4): 687-697, doi: 10.1007/s11430-021-9868-9.

     

    Liu X G, Xu W B. 2019. Logarithmic model joint inversion method for coseismic and postseismic slip: Application to the 2017 MW7.3 Sarpol Zahāb earthquake, Iran. Journal of Geophysical Research: Solid Earth, 124(11): 12034-12052. doi: 10.1029/2019JB017953

     

    Liu Y H, Wang C S, Shan X J, et al. 2014. Result of SAR differential interferometry for the co-seismic deformation and source parameter of the MS7.0 Lushan Earthquake. Chinese Journal of Geophysics (in Chinese), 57(8): 2495-2506, doi: 10.6038/cjg20140811.

     

    Melgar D, Geng J H, Crowell B W, et al. 2015. Seismogeodesy of the 2014 MW6.1 Napa earthquake, California: Rapid response and modeling of fast rupture on a dipping strike-slip fault. Journal of Geophysical Research: Solid Earth. 120(7): 5013-5033. doi: 10.1002/2015JB011921

     

    Miyazaki S, Segall P, Fukuda J, et al. 2004. Space time distribution of afterslip following the 2003 Tokachioki earthquake: Implications for variations in fault zone frictional properties. Geophysical Research Letters, 31(6): L06623, doi: 10.1029/2003GL019410.

     

    Morishita Y. 2021. Nationwide urban ground deformation monitoring in Japan using Sentinel-1 LiCSAR products and LiCSBAS. Progress in Earth and Planetary Science, 8(1): 1-23. doi: 10.1186/s40645-020-00388-2

     

    Pan J W, Bai M K, Li C, et al. 2021. Coseismic surface rupture and seismogenic structure of the 2021-05-22 Maduo (Qinghai) MS7.4 earthquake. Acta Geologica Sinica (in Chinese), 95(6): 1655-1670. doi: 10.3969/j.issn.0001-5717.2021.06.001

     

    Ragon T, Sladen A, Bletery Q, et al. 2019. Joint inversion of coseismic and early postseismic slip to optimize the information content in geodetic data: Application to the 2009 MW6.3 L′Aquila earthquake, Central Italy. Journal of Geophysical Research: Solid Earth, 124(10): 10522-10543. doi: 10.1029/2018JB017053

     

    Sun Q, Pei S P, Guo Z, et al. 2022. Structure-controlled asperity on the generation of large earthquakes. Reviews of Geophysics and Planetary Physics (in Chinese), 53(2): 138-147. doi: 10.19975/j.dqyxx.2021-051.

     

    Vasyura-Bathke H, Dettmer J, Steinberg A, et al. 2020. The Bayesian earthquake analysis tool. Seismological Research Letters, 91(2A): 1003-1018. doi: 10.1785/0220190075

     

    Wallace L M, Hreinsdóttir S, Ellis S, et al. 2018. Triggered slow slip and afterslip on the southern Hikurangi subduction zone following the Kaikōura earthquake. Geophysical Research Letters, 45(10): 4710-4718. doi: 10.1002/2018GL077385

     

    Wang D J, Wang D Z, Zhao B, et al. 2022. 2021 Qinghai MadoiMW7.4 earthquake coseismic deformation field and fault-slip distribution using GNSS observations. Chinese Journal of Geophysics (in Chinese), 65(2): 537-551, doi: 10.6038/cjg2022P0568.

     

    Wang M, Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774, doi: 10.1029/2019JB018774.

     

    Wang R J, Parolai S, Ge M R, et al. 2013. The 2011 MW9.0 Tohoku earthquake: Comparison of GPS and strong-motion data. Bulletin of the Seismological Society of America, 103(2B): 1336-1347. doi: 10.1785/0120110264

     

    Wang W L, Fang L H, Wu J P, et al. 2021. Aftershock sequence relocation of the 2021 MS7.4 Maduo earthquake, Qinghai, China. Science China Earth Sciences, 64(8): 1371-1380, doi: 10.1007/s11430-021-9803-3.

     

    Wang W M, Zhao L F, Li J, et al. 2008. Rupture process of the MS8.0 Wenchuan earthquake of Sichuan, China. Chinese Journal of Geophysics (in Chinese), 51(5): 1403-1410. doi: 10.3321/j.issn:0001-5733.2008.05.013

     

    Wang Y B, Li Y, Cai Y, et al. 2022. Coseismic displacement and slip distribution of the 2021 May 22, MS7.4 Madoiearthquake derived from GNSS observations. Chinese Journal of Geophysics (in Chinese), 65(2): 523-536, doi: 10.6038/cjg2022P0436.

     

    Xu C J, Liu Y, Wen Y M, et al. 2010. Coseismic slip distribution of the 2008 MW7.9 Wenchuan earthquake from joint inversion of GPS and InSAR data. Bulletin of the Seismological Society of America, 100(5B): 2736-2749. doi: 10.1785/0120090253

     

    Yabe S, Ide S. 2018. Why do aftershocks occur within the rupture area of a large earthquake?. Geophysical Research Letters, 45(10): 4780-4787. doi: 10.1029/2018GL077843

     

    Yamanaka Y, Kikuchi M. 2004. Asperity map along thesubduction zone in northeastern Japan inferred from regional seismic data. Journal of Geophysical Research: Solid Earth, 109(B7): B07307, doi: 10.1029/2003JB002683.

     

    Yano T E, Shao G F, Liu Q M, et al. 2014. Coseismic and potential early afterslip distribution of the 2009 MW6.3 L′Aquila, Italy earthquake. Geophysical Journal International, 199(1): 23-40. doi: 10.1093/gji/ggu241

     

    Yu P F, Xiong W, Chen W, et al. 2022. Slip model of the 2021 MS7.4 Madoiearthquake constrained by GNSS and InSAR coseismic deformation. Chinese Journal of Geophysics (in Chinese), 65(2): 509-522, doi: 10.6038/cjg2022P0540.

     

    Zhao D Z, Qu C Y, Shan X J, et al. 2018. InSAR and GPS derived coseismic deformation and fault model of the 2017 MS7.0 Jiuzhaigou earthquake in the Northeast Bayanhar block. Tectonophysics, 726: 86-99. doi: 10.1016/j.tecto.2018.01.026

     

    Zhao D Z, Qu C Y, Chen H, et al. 2021. Tectonic and geometric control on fault kinematics of the 2021 MW7.3 Maduo (China) earthquake inferred from interseismic, coseismic, and postseismic InSAR observations. Geophysical Research Letters, 48(18): e2021GL095417, doi: 10.1029/2021GL095417.

     

    ZhuA Y, Wang Y Z, Li Y H, et al. 2021. Numerical simulation on the mechanism of the Madoi, Qinghai MS7.4 earthquake constrained by InSAR deformation. Chinese Journal of Geophysics (in Chinese), 64(12): 4548-4561, doi: 10.6038/cjg2021P0452.

     

    贺鹏超, 王敏, 王琪等. 2018. 基于2001年MW7.8可可西里地震震后形变模拟研究藏北地区岩石圈流变学结构. 地球物理学报, 61(2): 531-544, doi: 10.6038/cjg2018L0189.

     

    季灵运, 刘传金, 徐晶等. 2017. 九寨沟MS7.0地震的InSAR观测及发震构造分析. 地球物理学报, 60(10): 4069-4082, doi: 10.6038/cjg20171032.

     

    姜卫平, 许才军, 李志伟等. 2022. 利用空间观测技术研究青海玛多7.4级地震孕育发生变形时空特征. 地球物理学报, 65(2): 495-508, doi: 10.6038/cjg2022P0732.

     

    刘云华, 汪驰升, 单新建等. 2014. 芦山MS7.0级地震InSAR形变观测及震源参数反演. 地球物理学报, 57(8): 2495-2506, doi: 10.6038/cjg20140811.

     

    潘家伟, 白明坤, 李超等. 2021. 2021年5月22日青海玛多MS7.4地震地表破裂带及发震构造. 地质学报, 95(6): 1655-1670. doi: 10.3969/j.issn.0001-5717.2021.06.001

     

    孙权, 裴顺平, 郭震等. 2022. 结构控制的凹凸体对大地震孕育的重要作用. 地球与行星物理论评, 53(2): 138-147. doi: 10.19975/j.dqyxx.2021-051.

     

    王迪晋, 王东振, 赵斌等. 2022. 2021年青海玛多MW7.4地震GNSS同震形变场及其断层滑动分布. 地球物理学报, 65(2): 537-551, doi: 10.6038/cjg2022P0568.

     

    王未来, 房立华, 吴建平等. 2021. 2021年青海玛多MS7.4地震序列精定位研究. 中国科学: 地球科学, 51(7): 1193-1202, doi: 10.1360/SSTe-2021-0149.

     

    王卫民, 赵连锋, 李娟等. 2008. 四川汶川8.0级地震震源过程. 地球物理学报, 51(5): 1403-1410. doi: 10.3321/j.issn:0001-5733.2008.05.013

     

    王阅兵, 李瑜, 蔡毅等. 2022. GNSS观测的2021年5月22日玛多MS7.4地震同震位移及其约束反演的滑动破裂分布. 地球物理学报, 65(2): 523-536, doi: 10.6038/cjg2022P0436.

     

    余鹏飞, 熊维, 陈威等. 2022. 基于GNSS和InSAR约束的2021年玛多MS7.4地震同震滑动分布及应用. 地球物理学报, 65(2): 509-522, doi: 10.6038/cjg2022P0540.

     

    祝爱玉, 王永哲, 李永华等. 2021. 基于InSAR地表形变约束的玛多MS7.4地震孕育发生机理数值模拟研究. 地球物理学报, 64(12): 4548-4561, doi: 10.6038/cjg2021P0452.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(2450) PDF downloads(227) Cited by(0)

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint