

FOREST ECOSYSTEM POTENTIALS IN NIGERIA: OPPOUNITIES FOR GREEN ECONOMY IN THE 21^{St Century}

EDITORS

B.O. AGBEJA, A. C. ADETOGUN, O.V. OYERINDE, J.A. OLUSOLA & O.S. OLANIRAN

Proceedings of The 3rd Commonwealth Forestry Association (CFA) Conference, Nigeria Chapter

Federal University of Technology Akure, Ondo State, Nigeria

2-3 December, 2020

Proudly Supported by the Federal University of Technology, Akure

Copyright © 2020 Forest Ecosystem Potentials in Nigeria: Opportunities for Green Economy in the 21st Century

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, magnetic tape, mechanical, photocopying, recording or otherwise without permission from the President, Commonwealth Forestry Association, Nigeria Chapter.

e-version *ISSN*:2550-7524

Production of Proceedings

Commonwealth Forestry Association, Nigeria Chapter C/o Department of Social and Environmental Forestry, Faculty of Renewable Natural Resources, University of Ibadan, Ibadan, Nigeria

Correct Citation of this Publication

Yusuff, A. Q., Adedeji, M. S., Adams, O. T., Odewale, M. O., Aderemi, F. T. and Aluko, A. K., (2020): *Gardenia jasminoides* and *Galphimia gracilis:* The Growth and the Bloom. (Eds., B. O. Agbeja, A. C. Adetogun, O. V. Oyerinde, J. A. Olusola & O. S. Olaniran) *Proceedings of the 3rd Annual Conference of the Commonwealth Forestry Association, Nigeria Chapter*, Federal university of Technology, Akure, Nigeria 2 – 3 December, 2020, Pp. 36-41.

Preface

The 3rd Commonwealth Forestry Association (CFA) Conference, 2020, Nigeria Chapter is a follow-up to the fifth CFA Workshop held in July, 2019 at Federal University of Technology Akure (FUTA), Akure, Ondo State, Nigeria. CFA, Nigeria Chapter is a non-profit association under the supervision of the CFA Headquarters, United Kingdom. Though, some Nigerians have been members since 1970s, the Nigerian Chapter of the Association was formally inaugurated on the 08 September, 2011 at the Federal University of Technology Akure, Ondo State, Nigeria. This is a research oriented conference that seeks to bring together forestry and allied natural resource scientists, graduates, development experts and policy makers from higher institutions and research institutes to proffer future solutions to the dwindling Nigerian Forest Estate. By standard, Nigeria is expected to have 25% of forest estate with gazette notice. However, Nigeria has less than 10% forest estate.

CFA CHARTER AND BYE-LAWS

The Royal charter of 1 November 1921, as amended by Supplemental Charter of 28 November, 1962, provides that the name of the Association shall be the Commonwealth Forestry Association. The Charter and Bye-Laws which follow incorporate amendments agreed at the Annual General Meeting on 5 May, 1981 and which submitted to the Privy Council for the granting of a further Supplemental Charter.

CHARTER

The objects and powers of the Association were prescribed as follows:

i. To promote for the public benefit the practice of Forestry both in the United Kingdom and throughout the world;

ii. To advance education in the value of trees and forests for the conservation of wildlife, soil and water resources, amenity and recreation;

iii. To promote research for efficient and sustained production of timber resources and into the inter-relationship between trees and site fertility both for Forestry and Agriculture, publishing the useful results of such research;

- *iv.* To encourage the establishment and management of trees and forests as part of the overall wise and sensible use of land; and
- v. To be a centre for the exchange and dissemination of information on all aspects of forestry and forest products or provide or promote or assist in the provision or promotion of other centres similarly engaged.

The theme of 3rd Commonwealth Forestry Association Conference 2020 is 'Forest Ecosystem Potentials in Nigeria: Opportunities for Green Economy in the 21st Century'.

Papers presented in the proceedings, which were peer reviewed, included lead papers and voluntary papers. They were classified under the following sub-themes:

- 1. Status and Extent of Nigeria's Forest Ecosystem in Different Ecological Zones
- 2. New Technologies and Approaches to Sustainable Forest Management in Nigeria
- 3. Forest Ecosystem and Climate Change Adaptation and Mitigation
- 4. Impact of Insurgency and Human/Wildlife Conflicts on Forest Ecosystem in Nigeria
- 5. Gender Perspectives on Forest Ecosystem in Nigeria
- 6. Forest Ecosystem Services for Mankind in Nigeria
- 7. Sustainable Development of Value-Addition of Wood Products in Nigeria
- 8. Sustainable Production, Harvest and Replenishment of NonTimber Forest Products (NTFPs) in Nigeria
- 9. Indigenous knowledge of Plants for Repertoire of Medicine
- 10. Forest Governance and Institutions in Nigeria.

The Commonwealth Forestry Association Nigeria Chapter appreciates the moral support of Professor Joseph Adeola Fuwape, the Vice-Chancellor, Federal University of Technology Akure, Nigeria for hosting the 3rd CFA Conference Nigeria Chapter. The efforts of members of Local Organizing Committee (LOC) namely: Dr. (Mrs). O. V. Oyerinde (Chairman), Dr. Johnson A. Olusola, Dr. Samuel Oluyinka Olaniran, Dr. Oluwatobi Emmanuel Olaniyi, Dr. (Mrs) Oluwayinka S. Oke, Dr. (Mrs) Olaide O. Oyeleke, Mrs. Oluwayemi Johnson, Dr. Opeyemi Boboye, Mr. O. I. Adetula, Mr. A.O. Agbo-Adediran are highly appreciated. I appreciate the immense contributions of all Executive Officers of CFA Nigeria Chapter for the success of this conference. They are Professor A. C. Adetogun (Vice-President), Dr. O.

R. Adejoba (Secretary), Mr. A. O. Agbo-Adediran (Assistant Secretary), Professor A. O. Omole (Public Relations Officer), Dr. O. V. Oyerinde (Finance Secretary), Dr. I. O. Osunsina (Social Secretary), Professor S. A. Oluwalana (Ex-offic io) and Professor S.O. Akindele (Ex-officio).

Professor B. O. Agbeja

President, Commonwealth Forestry Association Nigeria Chapter

Preface- Professor B. O. Agbeja, President, Commonwealth Forestry Association, Nigeria Chapter 3 Table of Contents 4-9 THEME: FOREST ECOSYSTEM POTENTIALS IN NIGERIA: OPPORTUNITIES FOR GREEN 10 **ECONOMY IN THE 21ST CENTURY** SPEECH BY PRESIDENT OF NIGERIA CFA CHAPTER - Prof. B. O. Agbeja 11-15 KEYNOTE ADDRESS I: Forest Ecosystem Potentials in Nigeria: Opportunities for Green Economy in 16-29 the 21st Century.....*Prof. J. A. Akande* KEYNOTE ADDRESS II: Adaptation Strategies Associated with Agriculture and Tree Productsin the 30-34 Gambia: Panacea for Green Economy..... Prof. S. Yaffa KEYNOTE ADDRESS III: The Limitless Opportunities in Nigerian Forest Ecosystem for Green 35-39 Economy in the Twenty First Century Prof. S. A. Oluwalana 40-51 *Oguntunde* SUB-THEME 1: Status and Extent of Nigeria's Forest Ecosystem in Different Ecological Zones 52 i. Gardenia jasminoides and Galphimia gracilis: The Growth And The BloomYusuff, A. Q; Adedeji, 53-58 M. S; Adams, O. T; Odewale, M. O; Aderemi, F. T. and Aluko, A. K. ii. The Potential of Agroforestry in Biodiversity Conservation in the Tropics......Agbeja, A. O; Olaitan A. 59-65 O. and Akindolu, D. R. iii. Contemporary Status of some Selected Forests in Ondo State, Nigeria.......Obadun, F. M., Adekunle V. 66-80 A. J. and Lawal, A. iv. Phytoecological Studies of a Protected Area in Lowland Humid Forest, Ondo State, Nigeria..... 81-92 Adeyekun, O. J., Akinbowale, A. S., Arinzechi, C. I. and Adekunle, V. A. J. v. The Genus Sterculia Linn. in Nigeria: Taxonomic Significance of Morphological and Foliar Epidermal 93-103 Characters......Onefeli, A. O. and Oladele-Akin, O. M. vi. Structural Diversity of tree Stems of Elephant Camp Natural Forest in Omo Forest Reserve...... Falade 104-111 O. F. and Iheke, J. U. SUB-THEME 2: New Technologies and Approaches to Sustainable Forest Management in Nigeria 112 i. Dead Organic Matter and Carbon Assessment in Okomu National Park, Edo State, Nigeria.....Oke, O. S., Akindele, S. O. and Onyekwelu, J. C. 113-121 ii. Efficacy of Three Different Species of Saw Dust as Growth Media for Cashew (Anacardium occidentale 122-126 L.).....Aruwajoye, D. A. and Olufemi, A. D. iii. Diameter Distribution for Tectona grandis Linn. F. Stands in Ado-Ekiti, Nigeria......Adesuyi, F. E., 127-134 Adebiyi, E. I., Olugbadieye, O. G and Adekunle, V. A. J. iv. Modelling the Growing Space of Parkia biglobosa Benth for Agroforestry Project......Ogana, F. N., 135-140 Wakawa, L. D., Ogana, T. E. and Japheth, H. D.

TABLE OF CONTENTS

<i>v</i> .	Agroforestry as a Land Use Option for Sustainable Forest Management in Sokoto State,	141 146
	NigeriaSamaila, U., Abdulkareem A. and Mustapha, S. W.	141-146
vi.	Effects of Rock Dusts on the Early Growth of Cocoa (Theobroma cacao) LSmart, M. O.	
	Akintola, O. O. Adesida, O. A. and Adeoye, A. S.	147-152
vii.	New Technologies and Approaches to Sustainable Forest Management in NigeriaEte, J. A,	
	George-Onaho, J. A., and Agboola I. S.	153-158
viii.	Assessment of Agroforestry Practices as Land Use System in Wukari Local Government Area, Taraba	
	State, NigeriaSobola, O. O., Maiguru, A. A., Zaku, S. S., Idiege, D. A., Akintan C. I. and	159-165
	Douglas, A.	
ix.	Organic Liquid Fertilizer: Evaluation of Effect on Growth and Yield of Abelmoschus esculentus L.	166.160
	MoenchYusuf, A. Q., Aluko, A. K., Aderemi, F. T. Adams, O. T., Adedeji, M. S. and Odewale,	166-169
	М. О.	
х.	Evaluation of Growing Media on Growth and Yield of Fluted PumpkinYusuf, A. Q., Adams, O.	170-173
	T., Adedeji, M. S. and Odewale, M. O. and Usman, S.	
xi.	Nitrogen Utilization for Improved Maize Leave Production and Cob Yield Oyebamiji, N. A.,	
	Aduradola, M. A., and Babalola, O. A.	174-180
xii.	Soil Hydrothermal Properties and Yield of Lycopersicon esculentum Mill as Influenced by Leaf litter	181-185
	Mulch of Urban Agroforestry TreesOroka, F. O., Ureigho, N. U. and Uwuigbe, E. O.	101-105
xiii.	The quantification and Drivers of Mountainscape Transformation Using Remotely Sensed Data: A Aase	
	of Ado-Awaye Mountain, Southwest NigeriaOlaniyi, O. E., Okerinu, P. and Akinsorotan, O.	186-193
	А.	
xiv.	Role of Sustainable Forest Management in Rural Livelihoods in NigeriaYekinni, T., Ishola, O.,	
	Omoniyi, L., Ogunyinka, A., and Adeeko, A.	194-197
xv.	Factors Influencing Spatio-Temporal Variation of Urban Green Space In Ado-Ekiti Metropolis	198-206
	Alegbeleye, O. M. and Alo, A. A.	198-200
xvi.	Influence of Plant and Animal Based Fertilizer on Growth and Yield of Okra Abelmoschus esculentus	
	LYusuf, A. Q., Odewale, M. O., Oni, O. A., Adesida, O. A., Adams, O.T., and Adedeji, M. S.	207-211
vii.	Assessment of Stakeholders Participation in the Management of Odoba Forest Reserve, Ogbadibo Local	
	Government Area, Benue State, Nigeria Onuche, P., Shomkegh, S. A. and Ancha, P. U.	212-219
viii.	Mapping and Assessment of Some Settlements in Oluwa Forest Reserve Using Geographical	
	Information SystemAdetula, O. I. and Adetula, A. I.	220-228
xix.	Volume Equations for Selected Privately-Grown Teak Stand in Ekiti State, NigeriaOluwafemi,	
	D. F., Akinbowale, A. S., Tolorunju, M. S. and Adekunle, V. A. J.	229-234
xx.	Evaluation of Leaf Litter Decomposition as Process of Nutrient Return in Forest Plantations	
	Aborele, G. O, Oladoye S., Aduradola, M. and Adejuyigbe, C.	235-247

	B-THEME 3: Forest Ecosystem and Climate Change Adaptation and Mitigation	248
i.	Emerging Potentials of Hydroponic Farming in Nigeria: An Alternative Farming Practice in the Face of	
	Climate Change Oloriegbe, W. A., Adeeko, A., Nwagbara, S. I., Akinleye, O. E. and	
	Kolapo, O. A.	249-254
ii.	Faidherbia albidia (Del.) A. Chev: An Ideal Agroforestry Tree Species for Small Holder Farmers in the	
	Midst of Climate Change Impacts in Nigeria	255-260
iii.	Assessing the Impact of Climate Change on Agricultural Production in Edo State, Nigeria	
	Mangodo, C., Isese, M. O. O., Oripelaye, O. S. and Osazuwa, D. K.	261-265
iv.	Application of Heat Shock Protein Genes: An Innovative Approach to Mitigating Abiotic Stresses to	
	Plant DevelopmentNwogwugwu, J. O., Batcho, A. A., Osunlaja, O. A. and Oladipo, A. D.	266-270
v.	Assessment of Awareness Level of the Effects of Climate Change on Forest Dependents in Onigambari	
	and Olokemeji Forest Reserves in Oyo State, NigeriaKolade, R. I., Adejumo, A. A.,	271-276
	Akanni, O. F., Obafunsho, O. E., Oke, D. O, and Ogunsola, A. J.	
vi.	Potentials of Species Distribution Modelling in Response to Climate Change Impacts on Biodiversity in	
	NigeriaAdaja, A. A. and Olajuyigbe, S. O.	277-282
SU	B-THEME 4: Impact of Insurgency and Human/Wildlife Conflicts on Forest Ecosystem in Nigeria	283
i.	Characterisation of Feral Helmeted Guinea fowl in Captivity by Smallholder Farmers in Precinct of	
	National Parks	
	Mukhtar, R. B.	284-289
ii.	Human - Wildlife Conflict in Communities Surrounding Falgore Game Reserve, Kano State. Nigeria.	
	Fingesi, U. I., Ibrahim, A. O. and Abubakar, S. A.	290-296
iii.	Diversity of Birds and Tree Species diversity of Osun-Osogbo Sacred Grove World Heritage site Osun	
	State South West NigeriaOkosodo, E. F. and Tinuoye, O. I.	297-310
iv.	Assessment of Indigenous knowledge in Protected Area Management: Case of Old Oyo National	
	Park Oyeleke, O. O. and Olawale, S.	311-316
v.	Comparison of Avifauna Composition of Artificial and Natural Water Bodies: A case study of Elemi	
	River and Ureje Dam, Ekiti StateOrimaye, J. O., Ogunyemi, O. O. and Onemayin, C. O.	317-326
SU	B-THENME 5: Gender Perspectives on Forest Ecosystem in Nigeria	327
i.	Role of Women in Sustainable Forest ManagementUreigho, U.N.	328-331
ii.	Socio-Economic Importance of Biodiversity to Rural Livelihoods in Odeda (LGA), Ogun State,	
	NigeriaOyewumi, O. R. and Areo, O. S.	332-339
SU	B THEME 6: Forest Ecosystem Services for Mankind In Nigeria	340
i.	Phytochemical Screening of Tetracarpidium conophorum (African Walnut) Seeds Olusola, J. A.,	
	Owokotomo, O. O. and Olusola, T. T.	341-346
ii.	Contribution of Adansonia digitata (Boabab) to the Socio-Economic Development of Community in	
	Wurno, Sokoto, Nigeria Mustapha, W. S., Abdulkarim, A. and Samaila, U.	347-353
		2.7.55

iii. Impact of Degradation of Mangrove Forest to Human Well-Being in the Ondo Coastal Zone, Nigeria	354-361
Olajide, A. and Popoola, O. O.	
iv. Urban Forests and Pollution Mitigation: An Insight into Urban Forest Ecosystem Services in Nigeria	362-367
Obia, C. I.	368-374
v. Strategies to Enhance Forest Ecosystem Services for improved Rural Livelihood in Nigeria Adedayo,	
A. G.	375-378
vi. Water Ecosystem and Food Security Around Ona River, Oyo State - A review Agbeja A. O. and	
Okewumi, M.S.	379-384
vii. Mitigating Environmental Hazards through Urban Forestry in Nigeria Kolade, R. I., Kolade, O. B.,	577-504
Adejumo, A. A., Oke, D. O. and Akanni, O. F.	385-391
viii. Phytochemical Analysis and Antioxidant Activity of Gacinia kola Seeds Oyerinde, O. V.	363-391
Ogunlade, B. T., Oyerinde, A. S. and Onishile, B. O.	202 207
ix. Influence of Forestry on Sustainable Environmental Management Olaitan, A. O., Agbeja, A. O.,	392-397
Asabia, L. O. and Olaifa, K. A.	
x Farmer's Perception and Socio-economic Importance of Adansonia digitata in Savanna Ecological	398-412
Zones of Nigeria Oyerinde, O. V. and Boboye, O. M.	
xi. Utilization Pattern and the Export Potential of Bamboo in NigeriaOsazuwa D. K, Yusuf	413-417
A. S, Adeyemi T. O. A, Shasanya, O. S, Oripelaye O. S, Akemien, N. N.,	
SUB-THEME 7: Sustainable Developme nt of Value-Addition of Wood Products in Nigeria	418
i. Fibre Characteristics of Manihot esculenta (TMS 1202 and TME 419 Varieties) and Manihot utilissima	
(T-MU Variety) for Pulp and Paper Production in Makurdi, Nigeria Tembe, E. T., Ekhuemelo, D. O.	419-427
and Akogwu, M. O.	
ii. Evaluation of Fibre Morphological of Rice (Oryza sativa) Varieties Grown in Makurdi, Benue State, for	428-436
their suitability in Pulp and Paper ProductionTembe, E. T., Ekhuemelo, D. O. and	
Joseph, E. O.	
iii. Sustainable Development of Value Addition of Wood Products in Nigeria Ete, J. A. George-	437-441
Onaho, J. A. and Agboola, I. S.	
iv. Analysis of Crude Fibre and Mineral Element Concentrations in Typha latifolia L. and Typha	
domingensis Pers. as a Measure of their Pulp and Paper Potentials Sotannde, O. A., Idoghor, S. M.	442-449
and Abare, A. Y.	
v. Lignin from Lignocellulosic Biomass: A Sustainable Source of Bio-renewable Fueland	450-456
ChemicalOlayiwola, Y. B., Oluyege, A. O. and Ajayi, B.	430-430
vi. Effects of Thermal Modification on the Physical and Mechanical Properties of Leucaena leucocephala	157 160
Wood Ogunjobi, K. M., Agboola, O. Q., Olufemi, O. O., Gakenou, O. F. and Adetogun, A. C.	457-462
vii. Effects of Weathering on Mechanical Properties of Wood Plastic Composites Aina, K. S. Oluyege,	462 471
A. O. and Fuwape, J. A.	463-471
viii. Investigation of the Anatomy and Fibre Characteristics of Selected Tropical Timber Species	470 470
	472-479

	Adu, O. M., Olaniran, O. S. and Oluyege, O. A.	
ix.	Susceptibility of wood cement composites to microbial attack Oladipo, O. E., Oladele, O. O., Edema,	
	M., Fabiyi, J. S., Oluyege, A. O. and Fuwape, J. A.	480-485
х.	Bamboo Resources: Uses and Development in Nigeria Adejoba, O. R. and Olanrewaju, C. M.	
xi.	Adhesive Penetration and Adhesive Bonding Strength in Wood Composite Application: A review	486-490
	Olayiwola, Y. B. Adeniyi I. A. and Aina, K. S.	
xii.	Layered Structure and Properties of Wood-Cement Composites Produced from Flakes and Sawdust of	491-498
	Gmelina arborea Oluyege, A. O., Fuwape J. A. and Adeduntan, S. A.	
xiii	Characterization of Lignins Isolated from Bamboo (Bambusa vulgaris) Organosolv and Kraft Black	499-509
	Liqour Sadiku, N. A. and Yusuf, A. F.	
xiv.	Comparative Analysis of the Physical Properties of Wood Plastic Composites (WPC) Produced from	510-519
	Sawdust of Ceiba pentandra and Cola gigantia Wood Akinfiresoye, W. A. Olukunle, O. J. and	
	Oluyege, A. O.	520-525
xv.	. Evaluation of Banana Stalk and Oil Palm Empty Fruit Bunch Fibers for Paper Production	
	Orimisan, G., Oyeleye I. O. and Ajayi, B.	
'n.	Volumetric Shrinkage and Moisture Content Relations of Pterocarpus santilinoides' Wood in	526-531
pa	rts of Rivers StateDavid-Sarogoro, N. and Emerhi, E. A	
•		532-537
	B-THEME 8: Sustainable Production, Harvest and Replenishment of Non-Timber Forest Products	538
	ΓFPs) in Nigeria	
i.	Emerging Potentials of Mushroom as a Non-Timber Forest Product in Nigeria - A Review Oluwole,	539-545
	O. R., Efunwoye O. O. and Adeeko, A.	
ü.	Decomposition Rate of Albizia zygia (DC.) J. F. Macbr and Albizia adanthifolia Leaves (Schum.) W.	546-551
	Wight on Soil Properties Oshakuade-Dayo, A. A. and Oke, D. O.	540-551
iii.	Households' Cooking Energy Use and Incidence of Common Ailments: Secondary Data Analysis of	552 550
	2018/19 Nigerian General Household Survey Ibrahim, F. M.	552-559
iv.	Evaluation of Honey Bee (Apis melifera) Pollen: Implications for Honey Production Sustainability	560-566
	Arowosoge O. G. E. and Adegoke, A. F.	
v.	Effects of Periods of Organo-Priming and Hydro-Priming on the Germination of Vitex doniana and	567-572
	Canarium schweinfurthii Seeds Adelani, D. O., Emeghara, U. U., Oladele N. A., and Ogunsanwo, J.	
	А.	
vi.	Early Growth Performance of <i>Pentaclethra macrophylla</i> (Benth) as influenced by Pretreatments <i>Ojo</i> ,	573-577
	M. O. and Oyedeji, O. F.	575-577
vii.	Effect of Watering Regimes on the Early Growth of Milicia excelsa (Welw. C.C. Berg) Seedlings	570 502
	Aduradola, A. M., Ojekunle, O. O. and Akinsola, B. I.	578-583
viii	Germination Studies in Seeds of Selected Semi-Arid Agroforestry Trees in Nigeria Zubairu, S. U.	584-587
ix.	Non-silk Benefits from Sericulture – A Review Ayandokun, A. E., Ete, J. A. and Agboola, I. S.	588-591

x. Seedlings Growth Performance of <i>Terminalia ivorensis</i> (A. Chev) as Influenced by Different	Organic
Fertilizers Hammed, R. A., Rafiu B. O. and Oyelowo, O. J.	598-602
xi. Sustainable Management of Non-Timber Forest Products and their Potentials on Livelihood in	390 002
Nigeria Asinwa, I. O., Kazeem, I. F., Agbeja, A. O. Fawole, A. O. and Olaifa, K.A.	
SUB-THEME 9: Indigenous knowledge of Plants for Repertoire of Medicine	603
i. Efficacy of Medicinal Plants for the Treatment of AsthmaFaleyimu, O. I. and Osalope, K.	<i>.B.</i> 604-612
ii. Indigenous Knowledge of Selected Fruit Tree Species in Oba Hill Forest Reserve, Osun State,	
NigeriaOrowale O. O. and Oyerinde, O. V.	613-621
SUB-THEME 10: Forest Governance and Institutions in Nigeria	622
i. Participation of the Local Community on Watershed Management at Wurno Local Governement	Area
Sokoto, Nigeria Abdulkarim, A., Samaila, U. and Mustapha, W. S.	623-628
ii. Forest Governance and Institutions in Nigeria Ete, J. A.	629-636

Birds and Tree Species Diversity of Osun-Osogbo Sacred Grove World Heritage Site Osun State Southwestern, Nigeria

Okosodo, E. F. and Tinuoye, O. I.

Department of Leisure and Tourism, Federal Polytechnic Ilaro, Ogun State

*Correspondence: francis.okosodo@federalpolyilaro.edu.ng

Abstract

Birds and tree species diversity was studied in Osun- Oshogbo Sacred Groove World Heritage site in South West Nigeria. A total of 20 transect lines of 500m were randomly laid out and the minimum distance between two transect lines was 200m. The number of transect lines was determined by the site size. Data were collected for six months (Dry and Wet seasons) in 20019. The ecological survey for the floristic study was conducted in March 2019. In all, a total of 125 bird species belonging to 49 families and 18 orders were recorded in the three study sites, The Order Passeriformes had the highest frequency (51 %) of the entire number of birds recorded, while the dominant families were Estrildidaeand Pycnonotidae, comprising (74 %) of the total species One endemic and one rare weaver bird species were recorded. A total of 741 individual tree species in 174 tree species and 49 families were enumerated. The highest occurring tree species are Brachystegia eurycoma and Bracchystegia nigerica with 36 and 19 tree species respectively. DBH of 466cm was recorded in Brachystegia eurycoma, followed Bracchystegia nigerica 456 cm in the study area. Also the highest mean height of 41m was recorded in Millicia excelsa and the highest occurrence of tree species was recorded in Brachystegia eurycoma 39.Shannon diversity was 4.849 in the study area.

Key words: Birds, tree species, ecological survey, habitat fragmentation, conservation

INTRODUCTION

Birds are among the best monitors of environmental changes and have been used to evaluate the environment throughout history as bio-monitors and the changes in their population, behavior patterns, and reproductive ability have most often been used to examine the long term effects of habitat fragmentation. Hence they are the good indicators of the ecological status of any given ecosystem (Castelletta et al., 2000). Forests attract much avifauna because of the habitat suitability for most of them. This especially includes the birds that are associated with the vegetation, and for most, the existence of trees is vital to their life cycle. Birds show different levels of interest to various stands depending on the age of the stands Deforestation in the tropics is one of the major threats to global biodiversity (Dobson et al., 1997). In Nigeria at present, the destruction of natural habitats continues rapidly, resulting in the depletion of the country's biodiversity). However, South Western Nigeria is the region of high population densities and intense agricultural land -use area (Agbelusi, 1994). For this reason, perhaps biodiversity depletion may be occurring at much higher rate than elsewhere in Nigeria. NEA,(2002) reported that increased export demands for primates and birds for research and trade in timber and non-timber species are indirect causes of biodiversity loss in various parts of the country. Agricultural intensification, logging, and poaching within and around most forest reserve in south west Nigeria have resulted insharp decline of bird species in recent times, avian species are becoming intolerant of pressures on their habitats (Manu, 2000). An assessment of the abundance and diversity of bird species in Oshogbo Groove therefore, serve as a good indication of the health of the environment.

MATERIALS AND METHODS

Study Area

Osun-Osogbo Sacred Grove is located along the bank of Osun River in Osogbo Local Government Area of Osun State, Southwestern Nigeria (Oseghale, *et al*, 2014)Its geographical coordinates are 7 02 and

08 E. The sacred grove is situated on the margin of the southern forests of Nigeria on a raised parcel which is about 350 meters above sea level. The grove is bounded in the North by Laro and Timehin GrammarSchools, the South by entrance of Ladoke Akintola University of Technology (LAUTECH) which runs parallel to form a western boundary. In the east, it is bounded by Osun State Agricultural Farm Settlements (NEA, 2010) Annual rainfall varies between 1600 and 2000 ml, mean annual temperature is 30 °C and the relative humidity is not below 40 % during dry season and 100 % during the wet season (Mengistu, and Salami, 2007). The study site experiences a bimodal annual rainfall pattern, between April and July and from September to October, separated by dry season (Isichei, 1995). Vegetation is predominantly rainforest, including wetlands along the rivers and Panicum maximum dominated open land. Among the common trees are *Celtis zenkerii, Triplochiton scleroxylon, Antiaris africana, Pycnanthus angolensis and Alstonia boonei* (Keay 1989)

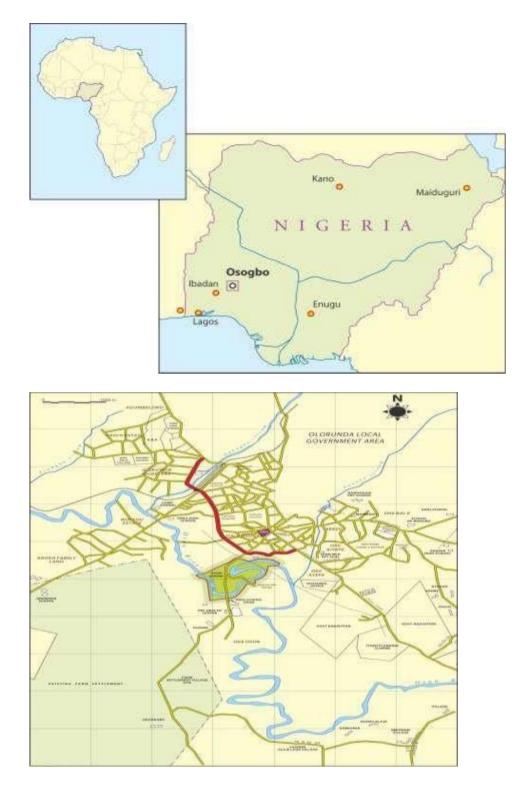


Figure 1 Map of the Study Area Source: (African World Heritage Sites)

Data Collection

Line transects method according to (Sutherland, 2009)was used to collect data on bird species diversity, and abundance in the study area. In all of 20 transect lines were randomly placed measuring 500 m each transect was divided into 200 m sections randomly placed. The programme GPS 2011 Utility (GPSU, 2012) was used to locate the starting and ending points of transects. Transect lines were walked three times a week for three months in both seasons (May, July and September for wet season and November, January, and March for dry season) of the year.Survey was conducted between 0.600 hours and 10.00 hours to 1800 hours, the survey was not conducted beyond 10.00 hours in the morning in other to reduce day light effect. Transects were walked at an average speed of 1.5 kilometer per hour, depending on the terrain and the number of bird species recorded. All birds viewed on the ground or in the vegetation, as well as birds that are flying ahead, were identified and the number in the group recorded. Birds of the same species within 10m of each other were

counted in the same group. A pair of binoculars with a magnification 7x 50 was used in the identification of bird species.

Distance estimates were obtained by using a digitalrange finder. Physicalfeatures of birds sighted but could not be identified immediately were taken and field guide book of West African birds (Burrow and Demey, 2011) was used to identify the bird species and bird calls were used to confirmed the presence of nocturnal bird species within the study sites

From the data collected, avian species diversity was calculated using;

Shannon diversity index, (Usher, 1991) which is given as:

 $H^i = -\Sigma Pi In Pi$ Where: $H^i = {}^{diversity} index$ Pi = is the proportion of the ith species in the sample InPi = is the natural logarithm of the species proportion.

Species Relative Population Density

The relative population density of bird species at various sites and seasons were determined as outlined by Bibby (*et al*, 1992) as follows:

$$\begin{split} D &= \frac{n_1 + n_2}{\pi r^2 m} Log_e [\underline{n_1 + n_2}] \\ \pi r^2 m & n_2 \end{split}$$
 where: D = density r = radius of the first zone n1 = number of birds counted within zone

n2 = number of birds counted beyond zone and m = number of replicatecount in such area.

Habitat Survey

The ecological survey for the floristic study was conducted in March 2019 (Ogunjemite, *et al* 2005). . In this study, a total of 20 study plots of about 25 m \times 25m Quadrats (500 sq m) size were established. All woody plants with stems rooted independently within a plot and with a DBH (measured at 1.3 m above ground for all lifeforms) equal to or greater than 2.5 cmwere measured, inventoried and identified to species level. Multiple stems were measured separately, but all stems rooting in the same place were counted as one individual. Specimens were collected in April and May 2019. All specimens were sorted to species level and identified by matching themwith vouchers identified by specialists or professional botanists. DBH measurement was taken with the simple tape measure while the height of trees was taken using Haga Altimetre.

Data Analysis

Species diversity, floristic composition and similarity were measured with quantitative and qualitative indices. The frequency of a species for each habitat type is defined as the number of (25x25m) plots in which it is present, and the sum of all frequencies as the total number of plots per site. Species diversity values were expressed in terms of species richness for each habitat type. To quantify and compare floristic composition between habitats, the Past Modelversion 3 was used analyzed the diversity.

RESULTS

From the result obtained from the research study it indicates that the study area supports the diversity of bird life and plant species. A total of 125 bird species belonging to 49 families and 18 orders enumerated in the study areas. The result of the family composition indicates that *Estrildidae and Pycnonotidae* had the highest number of bird species of 12 each. One endemic bird species *Malimbus ibadanesis* and one species of weaver *Ploceus tricolor* were encountered during the survey. The understory statum has the highest number of bird species in the study area, these bird species that belong to these families are *Sylvviidae*, *Cisticolidae*, *Cuculidae*, *Estriltidae*, and *Pycnonodidae*. The results of the Shannon_H diversity shown that it was highest during the dry season (4.659) than the wet season (4.297). A total of 741 individual tree species in 174 tree species and 49 families were enumerated. The highest occurring tree species are Brachystegia eurycoma and Bracchystegia nigerica with 36 and 19 tree species respectively. DBH of 466cm was recorded in Brachystegia eurycoma, followed by Bracchystegia nigerica 456 cm in the study area. Also the highest mean height of 41m was recorded in Millicia excelsa and the highest occurrence of tree species was recorded in Brachystegia eurycoma 39. Shannon_H diversity was 4.849 in the study area. The result of the family composition indicates that *Sterculiaceae* has the highest tree species 14 followed by *Euphorbaceae* 13 tree species.

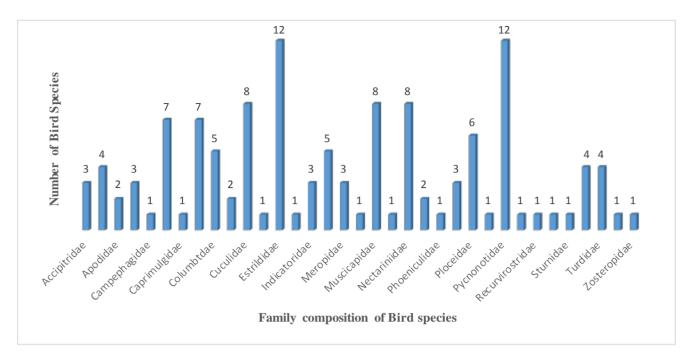


Figure 2:Bird species family composition in the study area

Dry season	Wet season
125	100
210	175
0.01229	0.02315
4.659	4.297
0.8439	0.735
23.19	19.17
0.9649	0.9331
	125 210 0.01229 4.659 0.8439 23.19

Table 1,	Bird species	diversity index in th	e study sites
----------	--------------	-----------------------	---------------

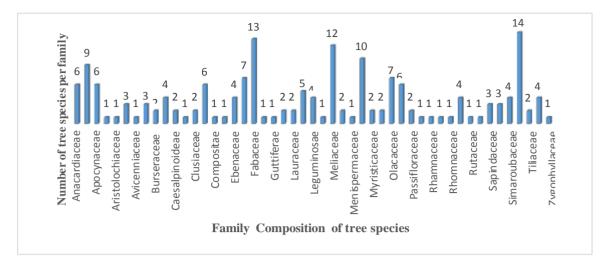


Figure 3: Tree species family composition in the study area

Habitat Type	Number of Tree Species	Number of Individual Tree Species	Highest DBH (cm)	Highest MH (m)	Highest Occurrence	Shannon-Wiener H'
Rain Forest	174	1047	466 Brachystegia nigerica	41 Milicia excelsa	39 Brachystegia nigerica	4.849

DISCUSSION

The majority of bird species encountered during this study were resident bird species and few migratory bird species. The 98% of the bird species encountered in the study area were forest species which in agreement with (Elgood et al, 1977) who carried out s bird species survey in Southwestern Nigeria. The study area is located in the low land rain forest which offered even distribution pattern of birds showed highest species richness and Shannon diversity in in both seasons of the year which comprises mixed moist deciduous canopy, that could be due to the presence of the majority of evergreen trees, which provided the sufficient food in the form of flowers and insects (Thiollay, 1998). The result showed that 125 bird species utilized the study area throughout the period of the research study. This result is consistent with the work of Matlock Jr, et al. (2003) who reported that forest patches and protected area in Sao Tome have high a retention of bird species than agriculturallandscapes. This is also supported by previous research studies that suggested multi-strata agroforestry systems are being able to accommodate high levels of species richness and abundance for several tropical groups, especially when compared with alternative land use. The comparison of species diversity between dry and the wet season, the result indicates diversity was higher in the dry season than wet season in the study area. This is consistent with MacArthur and MacArthur (2001) who reported that diversity increases with the number of layers in the vegetation. Pearson (2001) reported that tropical wet evergreen forest support more rare bird species than other habitats. Manu (2007) reported that birds select vegetation variables according to the manner by which an individual habitat affects access to food, mates or its vulnerability to predators.

This study shows that lowland forest in the study areas are best habitats for the birds as far as the numbers and diversity is concerned. This is in agreement with (Pramod *et al.*, (1997) who reported that serious loss of the biodiversity value occurs in the transformation of original landscapes to croplands due to human interference. Karr and Roth, (1971) reported that the more complexthe structure or composition of the vegetation, the more likely that habitat will contain more bird species. In this study, tree density, high DBH, presence of tall emergent tree, trees occurrence and understory density were important vegetation characteristics responsible for the high bird species richness recorded in the study area. Bird species behavioral pattern was found to play a big role in bird diversity in the conserved area, for example, (Pied Flycatcher, Black shouldered Puffback, Lagden's Bush-Shrike and Blue Shouldered Robin Chat, Ibadan malimbe, Yellow Mantled weaver Pipping hornbill and Black cuckoo were more or less resident in the study area throughout the

period of this study and forest edges despite the availability of food resources in the surrounding farmlands (Cody, 1985).

CONCLUS ION AND RECONMENDATION

The presence of some endangered and threatened bird species in the study area is a sign of hope. However, their conservation must be guaranteed and that will only be achieved by the conservation of extensive areas of natural vegetation. Houses are springing up in the buffer zone in the study area it means high population and faming intensification is ongoing in the area, the study host high population of rare bird species of ecotourism value such as Malinbus ibadanesis, Coracias cyanogaster Spizaetus africanus Ceratogymna fistulator Cuculus clamosus and Yellow Mantled Weaver. The management of these areas should design programmes to discourage bush burning, deforestation and poaching by the local people. The conservation strategy must integrate the physical, economic, social and cultural condition of the farmers and Localpeople so as to come up with innovations and technologies that conserve and sustain biodiversity.

ACKNOWLEDGEMENTS

The authors are grateful to the Staff and management of Osun-osogbo World Heritage site for their support during the period of the study.

REFERENCES

Agbelusi, E. A. (1994). Wildlife Conservation in Ondo State Nigeria. Nigeria Field, 59, 73-83.

Boo, E. (1990):Ecotourism: Potentials and pitfalls, World Wild Fund for Nature (WWF)Washington, D. C.

Borrow, Nik and Demey Ron. (20012). "A guide to the birds of western Africa". Princeto University Press

- Cody, M. L.,(1985) An introduction in habitat selection in birds. *In* Habitat selection in birds (Cody ed.) Academic Press Inc. London pp 191-248.
- Castelletta, M., N. S. Sodhi, and R. Subaraj. 2000. Heavy extinctions of forest avifauna in Singapore: lessons for biodiversity conservation in South-East Asia. *Conservation Biology* 14:1870–1880.
- Dobson, A. P. Bradshaw, A. D. and. Baker. A. J. M (1997). Hopes for the future: restoration ecology and conservation biology. *Nature* 277:515–521.
- Elgood, J. H. (1977). Forest birds of south-western Nigeria. Ibis 119 462-480 GPSU. 1998-2005. GPS Utility Version 4.20.0
- Karr J. R. and Roth R. R. (1971) Vegetation structure and avian diversity in several new world areas. *American Naturalist* **105**: 423-435.
- Ikemeh (2009) Status Survey of the Idanre Forest Reserve: A February 2009 Survey. Report to the A.G. Leventis Foundation, Liechtenstein, the Nigerian Conservation Foundation, Lagos, and the Ondo State Government, Nigeria.
- Isichei, T. M. (1995). Omo Biosphere Reserve, Current Status, Utilization of Biological Resources and Sustainable Management (Nigeria). Working Papers of the South-South Cooperation Programme on Environmentally Sound Socio-Economic Development in the Humid Tropics. UNESCO, Paris
- Keay.R.W.J., (1989), Trees of Nigeria. A review version of Nigerian trees (1960, 1964) by R. W. J Keay, C. F. AOnochie and D. P Strandfield. Claridon Press Oxford University press: Pp 476 pp.
- MacArthur, J.W. and Preer, J. (2001). On bird species diversity: II. Prediction of bird census from habitat measurements. *American Naturalist* 96, 167-174.
- Manu, S., Peach, W. & Cresswell, W. (2007). The effects of edge, fragments West Africa. Ibis 149:287-297
- Manu, S. A. (2000) Effects of habitat fragmentation on the distribution of forest birds in South western Nigeria with particular reference to the Ibadan Malimbes and other Malimbes, PhD thesis. University of Oxford.
- Matlock Jr., E. B., Rogers, D., Edwards, P. J. and Martin, S. G. (2002) Avian communities in forest fragments and reforestation areas associated with banana plantations in Costa Rica. *Agriculture, Ecosystems and Environment* 91: 199-215
- Mengistu, O. A. and Salami, J. E, (2007). Application of remote sensing and GIS inland use/land cover mapping and change detection in a part of south western Nigeria. *African Journal of Environmental Science and Technology* Vol. 1 (5), pp. 099 -109.
- National Commission for Museums and Monuments (2010): Osun Osogbo sacred grove, UNESCO world heritage site 2010-2014, conservation management plan.
- Nigerian Environmental Analysis. (2002). Biodiversity and Sustainable Forestry (BIOFOR) Indefinite Quantity Contract (IQC). (USAID BIOFOR, London and Abuja
- Sutherland, J.W. (2009) Ecological census Techniques: A handbook. 4th Edition. Cambridge University Press. U.K.1 336.
- Ogunjemite, B. G., Afolayan T. A. and Agbelusi E. A. (2005) Habitat Structure of Chimpanzee Community in Ise Forest Reserve, Ekiti State, South-western Nigeria. *African Journal of Ecology*, 43, 396-399
- Oseghale, G. E., Omisore, E.Ogbadegesin, J. Taiwo, (2014) Exploratory Survey On The Maintenance Of Osun-Osogbo Sacred Grove, Nigeria. *African Journal of Hospitality, Tourism and Leisure Vol. 3 (2)*

Pearson D. (2001) Pantropical comparison of bird community: structure of six lowland forest sites, *Condor* 79: 232-244.

Pramod, P., R.J.R. Daniels, N.V. Joshi and M. Gadgil. 1997. Evaluating bird communities of Western Ghats to plan for a biodiversity friendly development. *Current Science*, **78**:156-162.

Thiollay, J. M. (1998). Long-term dynamics of a tropical savanna bird community. *Biodiversity and Conservation* 7, 1291-1312.

Thies, C. (2005) Landscape perspectives on gricultural intensification and biodiversity ecosystem service management.

Ecology Letters 8: 857-874.

UNESCO. 2018. Operational guidelines for the implementation of the World Heritage Convention, Paris: UNESCO.

Family	Scientific Name	Common Name
Accipitridae	Spizaetus africanus	Cassin's hawk Eagle
	Kaupifalcomono grammicus	Lizard Buzzard
	Polyboroidestypus	African Harrier Hawk
Alcedinidae	Ispidinalecontei	African Dwarf Kingfisher
	Halcyon badia	Chocolate Backed Kingfisher
	Halcyon malimbica	Blue Bresated Kingfisher
	Halcyon senegalensis	Woodland Kingfishr
Apodidae	Cypsiurusparvus	African Palm Swift
	Apus affinis	Little Swift
Bucerotidae	Tockusfaciatus	African Pied Hornbill
	Tockusnasutus	African Grey Hornbill
	Ceratogymnafistulator	Pipping Hornbill
Campephagidae	Coracinaazurea	Blue Cuckoo Shrike
Capitonidae	Tricholaemahirsuta	Hairy Barbet
	Pogoniulus atroflavus	Red RumpedTinkeredbird
	Gymnobuccocalvus	Naked Faced Barbet
	Pogoniulusscolopaceus	Speckled Tinkerbird
	Pogoniuluschrysoconus	Yellow Fronted Tinkerbird
	Gymnobuccopeli	Bristled Nosed Barbet
	Pogoniulussubsulphureus	Yellow Throated Tinkerbird
Caprimulgidae	Macrodipteryxlongipennis	Standard Nightjar
	Caprimulgusnigriscapularis	Black-Shouldered Nightjar
Cisticolidae	Bathmoercuscerviniventis	Black Head Rufous Wabbler
	Cisticolaerythrops	Red Faced Cisticola
	Camaropterachloronota	Olive Green Camaroptera
	Priniabairdii	Banded Prinnia
	Camaropterabrachyura	Grey Backed Camaroptera
	Priniasubflawa	Tawny- Flanked Prinia
	Apalisjacksoni	Black Throated Apalis
Columbtdae	Treron calva	African Green Pigeon

Appendix 1: Checklist of bird species in the study area

	Turturbrehmeri	Blue Headed Wood Dove
	Streptopeliasenegalensis	Laughtng Dove
	Streptopeliasemitor quata	Red Eyed Dove
	Tuerturtympanistria	Tambourine Dove
Coraciidae	Eurystomusglaucurus	Broad Billed Roller
	Coraciascyanogaster	Blue Billed Roller
Cuculidae	Chrysococcyxcupreus	African Emerald Cuckoo
	Centropusgrillii	Black Coucal
	Cuculusclamosus	Black Cuckoo
	Chrysococcyxcaprius	Dideric Cuckoo
	Cercococcyxmechowi	Dusky Long Tailed Cuckoo
	Chrysococcyxklaas	Klaas Cuckoo
	Centropussenegalensis	Senegal Coucal
	Ceuthmocharesaereus	Yellowwbill
Dicruridae	Dicrcurusadsimillis	Fork Tailed Drongo
Estrildidae	Spermestes bicolor	Black And White Mannikin
LStinuldae	Nigrita bicolor	Chestnut Breasted Negrofinchh
	Nigritacanicapilla	Grey Headed Negrofinch
	Nigritaluteifrons	Pale Fronted Negrofinch
	Lagonostictasenegala	Red BilliedFirefinch
	Cryptospizareichenovii	Red Faced Crimsonwing
	Spermophagaruficapilla	Red Headed Bluebill
	Spermophagahaematina	Western Bluebill
	Nigritafusconota	White Breasted Negrofinch
	Parmoptilarubrifrons	Red Fronted Antpecker
	Parmoptilawoodhousei	Woodhouse's Red Headed Antpecker
	Spermestes cucullatus	Bronze Mannikin
Hirundinidae	Cecropis semirufa	Rufous Chested Swallow
Indicatoridae	Prodotiscus insignis	Cassin's Honeyguide
	Dryoscopus senegalensis	Black Shouldered Puffback
	Malaconotuslegdeni	Lagden's Bush Shrike
Malaconotidae	Dryoscopussabini	Large Billed Puffback
	Dryoscopus angolensis	Sabine's Puffback
Meropidae	Meropsgularis	Black Bee Eater
L	Meropspusillus	Little Bee Eater
	Meropsalbicollis	White Throated Bee Eater
Monarchidae	Elminianigromittrata	Chestnut -Capped Flycatcher
Muscicapidae	Fraseriaocreata	African Forest Flycatcher
	Trochocercusnitens	Blue Headed Crested Flycatcher
	TIOCHOCETCUSIIIEIIS	Blue Treaded Crested Phytateller

	Cossyphacyanocampter	Blue Shouldered Robin Chat
	Stiphrorniserythrothorax	Forest Robin
	Cercotrichasleucosticta	Forest Scrub Robin
	Sheppardiacyornithopsis	Lowland Akalat
	Ficedulahypoleuca	Pied Flycatcher
	Muscicapainfuscata	Sooty Flycatcher
Musophagidae	Tauracopersa	Green Crested Turaco
Nectariniidae	Fraseriaocreata	Green Crested Turaco
	Trochocercusnitens	Buff Throated Sunbird
	Cossyphacyanocampter	Collard Sunbird
	Stiphrorniserythrothorax	Green Sunbird
	Cercotrichasleucosticta	Reichenbach1's Sunbird
	Sheppardiacyornithopsis	Splendid Sunbird
	Ficedulahypoleuca	Supberb Sunbird
	Muscicapainfuscata	Variable Sunbird
Oriolidae	Oriolusbrachyrhynchus	Western Black Headed Oriole
	oriolushosii	Black Winged Oriole
Phoeniculidae	Phoeniculuscastaneiceps	Forest Wood Hoopoe
Platysteiridae	Platysteiracastanea	Chestnut Wattle Eye
	Megabyasflammulatus	African Shrike Flycatcher
	Platysteiracyanea	Common Wattle Eye
Ploceidae	Malimbuserythrogaster	Red Headed Malimbe
	Ploceusnigerrimus	Velliot's Weaver
	Malinbus scutatus	Red-Vented Malimbe
	Ploceus tricolor	Yellow Mantted Weaver
	Ploceus cuculators	Village Weaver
	Malimbus ibadanensis	Ibadan Malimbe
Prionopidae	Prionopscaniceps	Red Billled Helmet-Strike
Pycnonotidae	Andropadusansorgei	AnssorgesGreenbull
	Bledasyndactyla	Common Bristlebill
	Pycnonotus barbatus	Common Bulbul
	Bledaeximius	Green Tailed Bristlebill
	Baeopogon indicator	Honeyguide Greenbull
	Phyllastrephusicterinus	IcterineGreenbull
	Andropadusvirens	Little Greenbull
	Andropaduscurvirostris	Plain Greenbull
	Chlorocichla simplex	Simple Greenbull
	Chlorocichla simplex	Simple Leave Love
	Nicatorchloris	Western Nicator

Rallidae	Sarothrurapulchra	White Spotted Flutail
Recurvirostridae	Himantopushimantopus	Black Winged Stilt
Strigidae	Strixwoodfordii	African Wood Owl
Sturnidae	Poeopteralugubris	Narrow Tailed Starling
	Lamprotornispurpureiceps	Purple Headed Starling
Sylviidae	Sylviettavirens	Green Combec
	Hyliaprasina	Green Hylia
	Macrosphenusconcolor	Grey Longbill
	Eremomelabadiceps	Rufous Crowned Eremomela
Turdidae	Alethecastanea	Fire Tailed Alethe
	Zootheraprincei	Grey Ground Thrush
	Alethediademata	White Tailed Alethe
	Neocossyphuspoensis	White Tailed Ant Thrush
Viduidae	Viduamacroura	Pin Tail Whaydah
Zosteropidae	Platysteiraconcreta	Yellow White Eye

Appendix 2: Checklist of tree species in the study area

Name of Tree Species	DBH	MH	Frequency
Adenostemmaperrotteii	35	13	7
Adenia lobate	43	17	6
Adenostemmaperrotteii	40	19	2
Afzelia Africana	233	34	9
Albiza coriaria	188	31	1
Albiza gummifera	199	29	8
Albizia ferruginea	212	32	13
Albizia zygia	246	32	6
Allanblackia floribunda	178	35	4
Alstonia boonei	280	31	4
Alstonia congensis	145	30	6
Altrocarpus heterophylla	47	17	9
Amphimas pterocarpoides	190	29	2
Anarcadiumoccidentalis	57	17	6
Angylocalyx zenkeri	133	28	8
Anona muricata	34	14	6
Anonidiummanni	48	18	4
Anopyxiskli aneana	67	21	5
Anthoceleista nobilis	76	24	3
Anthonotha macrophylla	59	21	4
Antiaris africana	233	35	3

Antiaris welwitschii	222	36	2
Antrocaryon micraster	97	28	5
Aristolochina ningens	111	27	4
Artocarpus attilis	79	27	7
Aviceniagermirans	87	30	5
Azadirachtaindica	99	24	9
Balaniteswilsonana	43	13	5
Baphianitida	110	28	7
Bateria fistulosa	57	21	4
Berlinia grandiflora	77	25	8
Berlinia SPP	65	25	3
Bidenspilosa	14	8	3
Blighia sapida	122	27	2
Blighia welwithil	34	12	6
Bombax brevicuspe	133	28	6
Bosqueia angolensis	112	22	6
Brachystegia eurycoma	456	35	36
Brachystegia nigerica	466	39	19
Bridelia ferruginea	375	21	4
Bridelia micrantha	57	24	6
Bryophyllumpinnantum	89	21	9
Canariumschweinfurthii	76	21	7
Carpolobi alutea	64	23	4
Cassia alata	10	8	5
Cassia hrusta	87	24	7
Cathiumhispicum	66	21	9
Ceiba pentandra	398	35	8
Celtisaldolfi- friderici	98	23	4
Celtis mildibraedii	56	21	5
Celtis mildibraedii	87	23	6
Celtis zenkeri	111	21	5
Chrysophyllum abidun	231	31	4
Chrysophyllum delevoyi	234	30	4
Chrysopyllumafricana	67	21	5
Cissampelos mucronata		20	2
	41		
Cleistopholis patens	41 65	21	8
Cleistopholis patens Cola acuminate	65	21	8 8
Cola acuminate	65 110	21 25	8
Cola acuminate Cola ginganta	65 110 221	21 25 31	8 8
Cola acuminate Cola ginganta Cola lateritia	65 110 221 245	21 25 31 31	8 8 8
Cola acuminate Cola ginganta	65 110 221	21 25 31	8 8

Crescentia cujete	46	20	12
Cylicodiscus gabunensis	76	26	6
Cymbopogon citratus	99	27	12
Spathodeacom panulata	132	21	8
Daniella ogea	341	34	4
Deinbollia piñata	88	24	5
Desplatsia subericarpa	42	21	3
Dialium guineense	131	24	9
DIopros nigerica	121	23	6
Diospyrosalbo flavescens	67	21	7
Diospyros dendo	55	20	9
Diospyros mesipiliformis	62	25	6
Distemonanthusbenthamianus	87	26	6
Elaesis guineesis	110	27	6
Entada Africana	122	28	9
Entandrophragm aangolense	351	34	7
Entandrophragma utile	366	38	9
Erythrophleum suaveolens	174	25	6
Fagara macrophylla	95	21	4
Ficus sur	133	27	5
Ficus capensis	121	23	5
Ficus esasperata	326	34	8
Ficus glumosa	98	25	0
Ficus glumosa	57	21	0
Ficus sur	43	20	3
Ficus thoniigii	54	21	3
Funtumia Africana	136	28	17
Funtumia elastic	90	23	3
Garcinia kola	122	21	3
Gossweilorodendron balsaminiferum	34	14	1
Grewiavenusta	43	20	2

14	1	
20	2	
27	1	
23	1	
12	1	
23	1	
25	1	
11	1	
23	2	
21	2	
23	1	
28	2	
	20 27 23 12 23 25 11 23 21 23	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Irvingiagrandifolia	129	30	1	
Khayagrandifoliola	166	31	3	
Khayaivorensis	34	12	1	
Kigelia Africana	199	32	3	
Lanneawelwitschi	73	23	2	
Lonchocarpusgriffonianus	72	21	5	
Lophiraalata	155	29	1	
Lovoatrichilioides	111	21	1	
Maesobotryabateri	122	24	2	
Maesopsiseminii	26	8	7	
MagniferalIndical	67	26	1	
Memocylonblakeoides	210	34	8	
Milicia excelsa	239	39	3	
Milleticecerriceus	56	24	2	
monodoramyristica	45	21	1	
Moringalucida	56	20	5	
Musangacecropioides	131	21	1	
Myrianthusarboreus	133	23	3	
Napoleoneavogelii	98	20	2	
Naucleadiderrichii	67	22	3	
Nesogordoniapapaverifera	79	20	5	
Newbouldialaevis	73	21	5	
Ntrocaryonmicraster	84	22	1	
Okoubakaaubrevillei	54	21	1	
Olaxsubscorpioidea	59	20	1	
Oxytenantheraabyssinica	78	21	2	
Pachyelasmatessmannii	53	20	2	
Panda oleasa	45	20	2	
Pausinystaliamacroceras	87	24	2	
Pentaclethramacrophylla	99	24	2	
Pentaclethramacrophylla Pentaclethramacrophylla			-	
	87	26 27	3	
Pentaclethramacrophylla	84	27	1	
Pentadesmabutyracea	55	21	3	
Piptadeniastrumafricanum	145	29	1	
Polyalthiasuaveolens	34	8	2	
Polyceratocarpusparviflorus	122	23	1	
Psidiumguajava	13	5	1	
Pterocarpussoyauxii	28	7	3	
Pterocarpusosun	117	26	2	
Pycanthusangolensis	231	39	1	

Rauvolfiavomitoria	98	24	1
Ravolfiatraphylla	23	7	2
Ricinodendronheudelotii	32	9	3
Rothmanniahispida	67	24	1
Saacharumofficinarum	14	7	1
Scottelliacoriacea	54	20	3
Snysepalumdulcificum	13	9	1
Sopondiamombin	63	21	3
Spathodeacampanulatu	46	22	1
Staudtiastipitata	76	20	2
Sterculiaoblonga	49	21	3
Sterculiatragacantha	54	22	2
Sterculliacoriata	34	23	1
Stombosiagrandifolia	53	28	1
Strombosia postulate	63	27	3
Tabernaemontanapachysiphen	122	29	1
Terminalia ivorensis	143	29	4
Terminalia superba	167	30	2
Tetracarpidiumconophorom	112	21	1
Tetrapleuratetaptera	143	25	2
Tetrorchidiumdidymostemon	54	23	1
Theobroma cacao	13	7	1
Tramaorientalis	25	10	2
Treculia Africana	175	30	2
Trichilialanata	54	21	1
Trichiliaprieuriana	54	21	1
Triplochiton scleroxylon	257	37	4
Triumfettapentandra	38	21	2
Uvariopsisdioica	11	5	4
Xylopiaaethiopica	29	17	1