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Corticotroph tumors (CTs) are pituitary neoplasms arising from the Tpit lineage, which may
or not express adrenocorticotrophic hormone (ACTH). Functioning CTs cause Cushing’s
disease (CD), which has high morbidity and mortality due to hypercortisolemia. “Non-
functioning” or silent CTs (SCT) and the Crooke’s cell subtypes do not cause CD and may
be asymptomatic until manifested by compressive symptoms and are more frequently
found as macroadenoma. Both tend toward more aggressive behavior, recurrence, and a
higher rate of malignant transformation to pituitary carcinoma. Tumorigenesis involves
genetic, epigenetic, and post-transcriptional disruption of cell-cycle regulators, which
increase cell proliferation, POMC overexpression, ACTH transcription, and/or
hypersecretion. Furthermore, functioning CTs develop resistance to glucocorticoid-
mediated negative feedback on ACTH secretion, through increased expression of
testicular orphan nuclear receptor 4 (TR4), heat-shock protein 90 (HSP90), and loss-of-
function mutation of CDK5 and ABL enzyme substrate 1 (CABLES1) gene. Overt
autonomous hypercortisolemia is difficult to control, and multiple diagnostic studies and
therapeutic modalities are commonly required. Cell-cycle regulation depends mainly on
p27, cyclin E, cyclin-dependent kinases (CDKs), and the retinoblastoma protein (Rb)/E2F1
transcription factor complex. Gain-of-function mutations of ubiquitin-specific protease
(USP) 8, USP48, and BRAF genes may subsequently cause overexpression of epithelial
growth factor receptor (EGFR), and enhance POMC transcription, cell proliferation, and
tumor growth. Epigenetic changes through micro RNAs and decreased DNA
deacetylation by histone deacetylase type 2 (HDAC2), may also affect tumor growth. All
the former mechanisms may become interesting therapeutic targets for CTs, aside from
temozolomide, currently used for aggressive tumors. Potential therapeutic agents are
EGFR inhibitors such as gefitinib and lapatinib, the purine analog R-roscovitine by
dissociation of CDK2/Cyclin E complex, the HSP90 inhibitor silibinin (novobiocin), to
reduce resistance to glucocorticoid-mediated negative feedback, and BRAF inhibitors
vemurafenib and dabrafenib in BRAF V600E positive tumors. This review summarizes the
molecular mechanisms related to CTs tumorigenesis, their diagnostic approach, and
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provides an update of the potential novel therapies, from the lab bench to the
clinical translation.
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INTRODUCTION

Cushing’s disease (CD) is caused by oversecretion of adrenocorticotropic
hormone (ACTH) by a pituitary corticotroph adenoma and is the
most frequent cause of endogenous Cushing’s syndrome (CS) (1).
This rare disease is usually diagnosed between the fourth and fifth
decade of life, is more frequent in women, and accounts for 4 to
8% of all pituitary tumors (2). Most corticotroph tumors are
sporadic and less than 5% of these have been related to familial
diseases (3). Endocrine hereditary syndromes with CD include
multiple endocrine neoplasia (MEN) type 1 (4), familial isolated
pituitary adenomas (FIPAs) (5), Carney complex (6), and DICER1
syndrome (3, 4). A gain-of-function mutation in the ubiquitin-
specific protease 8 (USP8) gene has been associated with sporadic
CTs in about 20 to 60% of patients (7–10).

On the other hand, silent corticotroph adenomas (SCTs) do
not cause hypercortisolism or CS but their recurrence rate
reaches 36%, and up to 18% will recur multiple times, being
this subtype more aggressive than other pituitary tumors (11).
Moreover, pituitary carcinomas frequently arise from the
corticotroph lineage (12).

CTs emerge from complex mechanisms that involve cell-cycle
dysregulation, genomic abnormalities, and others that currently
are not completely understood. There is also controversy on the
definitions of remission and recurrence, especially in SCTs.

This manuscript summarizes the pathological mechanisms
related to corticotroph tumorigenesis which are implicated in
ACTH secretion or clinical silence, recurrence, and aggressive
behavior, and provides a review on the potential novel therapies
which may target both silent and functioning CTs.
2017 WHO CLASSIFICATION FOR
PITUITARY TUMORS

A corticotroph tumor is currently defined as a Tpit-positive
neoplasm either if ACTH-positive or not. Most corticotroph
tumors have ACTH immunoreactivity and cause ACTH-
dependent CS if functioning, known as Cushing’s disease (CD),
or to be clinically non-functioning (silent) corticotroph tumor
(SCT) (11, 13).

SCTs were defined in 1970 as ACTH-positive staining
pituitary tumors which do not cause evident hypercortisolism
or CD (14). The expected prevalence is 4.8 to 6.8% among adult
non-functioning pituitary adenomas (11) and has been reported
only once in the pediatric population (15). Diagnosis is made in a
retrospective fashion with histopathological staining since
clinical factors and presurgical laboratory tests cannot discern
them from other silent adenomas (16). One retrospective study
n.org 2
suggested female sex, cavernous sinus invasion, intra-tumoral
hemorrhage on MRI, and decreased ACTH response to
hypoglycemia, may be associated with SCTs (17). Silent and
functioning corticotroph tumors can be further divided into
sparsely granulated, densely granulated, and Crooke cell
adenomas (13, 18). The current classification recommends
against the term “atypical adenoma” and instead proposes
routine use of tumor proliferation markers, clinical parameters
such as tumor invasion, and evaluation of tumor types that may
be more clinically aggressive. Interestingly, two adenoma
subtypes which commonly show aggressive behavior fall into
the corticotroph lineage: the SCTs and the Crooke’s cell
adenomas (19, 20).

A clinicopathological classification have been proposed to
predict disease-free and recurrence/progression-free status of
pituitary tumors in order to guide clinicians to choose the best
therapy (21).
TUMORIGENESIS ON FUNCTIONING
CORTICOTROPH TUMORS

Cell Cycle Division
Progression of the cell cycle division in pituitary cells is regulated
by the pituitary tumor-transforming gene (PTTG) which
encodes a securin protein, which in turn regulates activity in
the G1/S phase, influences chromosomal stability, and
tumorigenic activity (Figure 1) (22, 23). Such tumorigenic
activity is downregulated by proteins of the INK4 (p16, p15,
p18, p19) and Cip/Kip (p21, p27, and p57) families (24, 25) to
control cyclins’ and cyclin-dependent kinases’ (CDKs) activity
(26). CDK4 and CDK6 are active during the G1 (gap 1) phase
after association with cyclins D1, D2, and D3. Progression to S
(synthesis) phase occurs after cyclin E1 and E2 activation. At this
point, downregulation is driven by the INK4 family proteins.
Then proteins from the Cip/Kip family, particularly p27, induce
cyclin A1 and A2 on CDK1 and CDK2 activity to regulate the
end of S phase and move through G2, and then induce CDK1/
cyclin B1 and B2 to progress into the M (mitosis) phase
(Figure 1).

Experimental treatment with the CDKs (1, 2, 4, 6, and 7)
inhibitor flavopiridol in a double CDK4/p27 knockout mouse,
resulted in tumor shrinkage by cell-cycle arrest at G1 and G2
phases, confirming the importance of CDKs on pituitary tumor
growth (27). Consistent with these findings, the second-
generation CDK1 and CDK2 inhibitor R-roscovitine
(seliciclib), inhibiting the association of CDK2/cyclin E
complexes (28), caused a reduction of POMC promoter
expression in ~40% in a double transgenic POMC : PTTG
zebrafish model, and in murine AtT20 corticotroph adenoma
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FIGURE 1 | Abdnomal regulation of cell cycle division, ACTH synthesis, and potential therapeutic approach (highlighted in red) in silent vs. clinically active
corticotroph tumors (see text for details).
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models (29–31) Other studies also found murine p27 knock-out
was associated with enlarging corticotroph tumors within 12
months (32–34), and molecular research of recurrent human
corticotroph adenomas or carcinomas showed lower or absent
p27 staining (35). Therefore, CDKs, cyclin E, and p27 are key
molecules that modify CTs’ behavior. Also, increased expression
of cyclin E downregulates the tumor suppressor Brahma-related
gen 1 (Brg1), which has synergic action with glucocorticoid
receptor (GR), orphan nuclear receptor growth factor 1B, and
histone deacetylase 1 (HDAC1) to decrease the POMC promoter
expression. Disruption of this complex by cyclin E may increase
POMC and ACTH synthesis and, as consequence, CD (36).
Rb Protein
Dysfunction of the Rb protein, a tumor suppressor regulator, was
first described in retinoblastoma tumor cells and then, in
heterozygous or homozygous Rb knockout mouse models were
identified the higher risk of pituitary tumors development
(37–39). Rb protein is involved in cell-cycle regulation of many
tumors, including those of the pituitary (22, 23, 37, 38, 40, 41).
However, the role of Rb protein in human CTs seems to be
different than in mice models because patients with familial
retinoblastoma do not always harbor pituitary tumors, and CTs
have been rarely reported (39, 42). Human Rb dysfunction is
more commonly associated with aggressive macroadenomas or
corticotroph carcinomas (43, 44). It is also a negative cell-cycle
regulator that controls G1/S progression by inhibition of the
Frontiers in Endocrinology | www.frontiersin.org 3
corticotroph-specific E2F1 transcription factor (Figure 1)
(45–47).

E2F Family Proteins
The proteins of the E2F family (E2F1 to E2F8) are associated
with tumorigenesis of multiple cell lines. Regarding CS, the Rb/
E2F1 complex formation has been described both in pituitary
corticotroph tumors (CD) (48), and ectopic ACTH-secreting
carcinomas (29). Araki and colleagues also reported E2F1
binding directly to POMC promoter, increasing its transcription
and ACTH synthesis (29, 49). An E2F inhibitor (HLM006474)
showed dose-dependent suppression over POMC mRNA
expression on CT (45). Therefore, the Rb/E2F1 complex regulates
the progression from G1 to S phase of the cell cycle, and free E2F1
acts directly over the POMC promoter (Figure 1) (29, 45). Further
research is needed to define whether E2F1 per se has a relationship
with corticotroph tumor behavior.

Tpit
Tpit (formerly known as TBX19) together with Pitx1 interacts on
their specific response element sequences at the POMC promoter
increasing expression and synthesis of POMC which, after post-
transcriptional processing and multiple sites of enzyme sliding, is
converted into six main proteins including ACTH (50). When
Tpit is expressed in normal corticotroph cells, cyclin E is no longer
detected (24). Murine and zebrafish corticotroph tumor models
found an abnormal cyclin E upregulation within the neoplastic
tissue, causing abnormal reentry to cell-cycle division and
April 2021 | Volume 12 | Article 657382
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centrosome instability, promoting tumorigenesis (30, 36, 51).
Interestingly, R-roscovitine, which also targets the Tpit binding
region (TCACACC) of the POMC promoter, interferes with cyclin
E and E2F1 and causes suppression of ACTH synthesis and
secretion in a dose-dependent manner (31). This suppression of
the POMC promoter and ACTH release by R-roscovitine was also
confirmed in ectopic ACTH-secreting tumors (29, 52). A phase II
clinical trial to evaluate R-roscovitine in patients with confirmed
recurrent CD is currently closed with pending results
(ClinicalTrials.gov NCT02160730).
GENETIC MUTATIONS AND RELATED
MECHANISMS FOR CTS TUMORIGENESIS

Epidermal Growth Factor Receptor
Epidermal growth factor receptor (EGFR) is a tyrosine kinase
receptor that is commonly expressed in normal corticotroph cells.
EGFR is one of the most important inductors of POMC
transcription, and ACTH synthesis (53), and EGFR overexpression
was found in CT of transgenic murine models, causing CD (45).
EGFRsignalizesbyphosphorylating the extracellular response kinase
1/2 (pErk1/2) and this pathway induces POMC transcription
through a higher expression of free E2F1. The mechanisms by
which POMC transcription is induced by EGFR are not completely
understood (8, 9).

USP8
USP8 is an enzyme that mediates the deubiquitination of
intracellular vesicles of normal corticotroph cells and therefore
avoids lysosomal degradation. Gain-of-function mutations in the
USP8 gene lead to an impaired association with 14-3-3 protein,
resulting in increased deubiquitination of endocytosed vesicles,
including EGFR (8, 54, 55). Such deubiquitination causes EGFR
recycling and overexpression. The action of both EGF and
transforming growth factor-alpha (TGF-alfa) on more abundant
EGFR results in higher POMC expression and ACTH synthesis
(Figure 1) (8, 9). Interestingly, such USP8 mutation is specific in
CTs and it was not identified in other types of pituitary tumors (10),
was reported more frequently in women (8, 9, 56), and was
identified in patients with higher cortisol levels and more
aggressive CTs (57). In contrast, a smaller sample (n=13) of
silent, less aggressive, CTs showed no USP8 mutations (56).

USP8 mutations in tumors causing CD have a prevalence of 30
to 50%. Nevertheless, CD USP8-mutated tumors did not show a
higher rate of tumor aggressive behavior, suggesting that
complementary mechanisms need to be elucidated (8, 58, 59). (8, 9).

USP48 and BRAF
Chen et al. reported recurrent mutations in the USP48, which
predominantly encodes p.M4151 or p.M415V in 23% (21/91),
and BRAF, encoding p.V600E, in 16% (15/91) patients with CD
(60). USP48 and BRAF mutants enhance POMC transcription,
suggesting an additional mechanism for ACTH excess (60). Such
results may also have therapeutic implications in the future, since
BRAF inhibitors vemurafenib and dabrafenib are currently FDA
Frontiers in Endocrinology | www.frontiersin.org 4
approved for the treatment of late-stage melanoma (see below),
and might be tested in patients with corticotroph cells harboring
BRAF V600E in recurrent CD (60).
EPIGENETIC CHANGES IN
CTS TUMORIGENESIS

Somatic mutations are present in a small proportion of patients
with CD; therefore, epigenetic changes have been considered as a
potential mechanism of tumorigenesis (61).

Histone Deacetylase Type 2
Histone deacetylase type 2 (HDAC2) regulates gene expression by
removing acetyl groups from lysine residues located at the N-
terminal region of core histones. Inhibition of HDAC2 reduces the
survival of normal corticotroph cells and may impair ACTH
secretion (62). A lower expression of this enzyme has also been
associated with the development of glucocorticoid resistance (36).

DNA acetylation and methylation are directly related to
changes in p53 and Rb protein expression, which have an
important role in tumor development and progression (61).

Micro RNA (miRs)
The miRs are small and non-coding RNAs that play an important
role in a variety of cellular processes, including cell development,
differentiation, and apoptosis. BindingmiRs to specific messenger-
RNAs (mRNA)may block their translation to proteins. SomemiRs
have been described in pituitary tumorigenesis (63–65) including
CTs (66–68). More aggressive behavior of CTs is associated with
overexpression of miR-25, miR-93, and miR106b (miR-106b~25
cluster) (67). A higher expression of the miR-106b~25 cluster has
also been described in aggressive Crooke cell adenomas (67).
Crooke cell adenomas are characterized by cytoplasmic hyaline
inclusions instead of normal densely or sparsely granulation (20,
69). The triggering mechanisms causing the Crooke hyaline
changes are currently unknown. Galectin 3 (LGALS3), which is
regulatedbymiR-493, is also overexpressed inCTs andcorrelates to
increased tumor aggressiveness (70). In contrast, a decreased
expression of miR-141 has been found to predict a higher
probability of CD remission (66). Unfortunately, the pathological
expression of miRs in CTs has been reported in a small number of
patients and further research is needed.
TUMORIGENESIS OF SCT

Compared to ACTH-secreting CTs, SCT may have a different
embryologic origin arising from POMC-expressing cells in the
pars intermedia of the pituitary gland (71). Lack of ACTH
oversecretion from SCT has been related to two mechanism: The
presence of a higher amount of lysosomes in the tumor’s cytoplasm,
which causes premature destruction of ACTH before release (72);
and disruption of POMC-product processing due to dysfunction or
reduced expression of prohormone convertase 1/3 (PC1/3)
resulting in an inability to synthesize mature ACTH molecules
April 2021 | Volume 12 | Article 657382
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(Figure1) (72, 73).PC1/3cleavesPOMCindibasic sites comprising
lysine (K) and arginine (R) resulting in pro-adrenocorticotropin
(pro-ACTH) and then to ACTH (50). Interestingly, SCTs
transforming to functional ACTH-secreting CTs show a higher
PC1/3expression (73). IncreasedprevalenceofUSP8mutationshas
not been reported in SCT, suggesting different genetic or epigenetic
backgrounds (56). However, some similarities in related etiological
pathways may be found soon since SCTs have been reported to
become functioning CTs and vice versa (73).
DISRUPTION OF NEGATIVE FEEDBACK
BY GLUCOCORTICOIDS

Corticotroph glucocorticoid resistance and negative feedback
disruption are common features of CD. Possible mechanisms have
been related toUSP8mutations, testicular orphan nuclear receptor 4
(TR4), and heat shock protein 90 (HSP90) (Figure 2). TR4
overexpression is highly prevalent in CTs. This receptor increases
POMC transcription, ACTH secretion, and tumor cell growth
through the mitogen-activated protein kinase/extracellular signal-
regulated kinase (MAPK/ERK) pathway (74, 75). TR4 directly
inhibits GR’s interaction with the POMC promoter region and
FIGURE 2 | Suggested mechanisms for disruption of negative feedback in corticotro
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causes resistance to negative feedback in CD (Figure 2) (74, 75).
Therapy targeting TR4 in CD may be evaluated in the future.

HSP90 is a chaperone protein that induces conformational
changes of different proteins, including the GR. HSP90
overexpression causes an increased binding to the GRs preventing
dissociation from the chaperone system and their translocation to
the nucleus, which otherwise suppresses POMC transcription, and
disrupts glucocorticoid-mediated negative feedback (76).

Glucocorticoid resistance also has been found in four CDK5
and ABL enzyme substrate 1 (CABLES1) gene germline missense
variants in 4 female patients, and a loss-of-function mutation in
146 pediatric and 35 adult patients. All cases showed aggressive
tumor behavior (5, 77).
FROM THE LAB BENCH TO THE
PATIENT WITH RECURRENT
CORTICOTROPH TUMORS

Implications for Future Treatments
USP8 and EGFR Pathway
A USP8 inhibitor (9-ethyloxyimino-9H-ideno[1,2-b] pyrazine-
2,3dicarbonile) has been used for in vitro studies and animal
ph tumors (see text for details).
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models but has not been studied for therapeutical purposes. InAtT20
cells, USP8 inhibition with this molecule downregulated EGFR
expression, decreased POMC transcription and ACTH synthesis
and secretion, and induced cell apoptosis (8, 54, 55, 59, 78). Future
research may explore USPs as potential target molecules for the
treatment of both silent and secreting corticotroph adenomas.

One phase II open-label clinical trial in patients with USP8-
mutated corticotroph tumors and CD was registered in 2015 but
data on results has not been updated ever since (https://
clinicaltrials.gov/ct2/show/NCT02484755: Targeted Therapy
With Gefitinib in Patients With USP8-mutated Cushing’s
Disease) (54, 79, 80). Lapatinib is another tyrosine kinase
inhibitor acting over the EGFR and HER2 receptors, which has
been tested in vitro to decrease POMC mRNA and ACTH levels
in murine AtT-20 corticotroph cells. It also decreased PTTG
gene expression, cell proliferation, and induced apoptosis
(Figure 2). Results were replicated in vivo, tested in murine
animal models (54, 81) but not in humans.

USP48 and BRAF Inhibition
In the presence of a wild USP8 phenotype, whole-exome
sequencing has discovered mutation on both USP48, which
causes ACTH mRNA overexpression, and BRAF genes, which in
turn upregulates Erk1/2 phosphorylation with subsequent Nurr77,
c-jun, andc-fos activation leading to increasedPOMCtranscription
(60). BRAF inhibitors such as vemurafenib and dabrafenib have
been used to treat BRAFV600mutation-positive malignancies and
have become a potential option to treat BRAF V600-mutated CD
(Figure 1). One in vitro study using vemurafenib in BRAF V600-
mutated corticotroph cells showed a reduction in ACTH secretion
after 1-day incubation (82, 83).

Corticotroph HSP90 Inhibition
Silibinin is a HSP90 C-terminal inhibitor found in the milk
thistle (Silybum marianum) previously used to treat amatoxin
poisoning and studied as a potential treatment of many
malignancies (prostate, breast, hepatic cell, lymphoblastic
leukemia), showing an acceptable safety profile (84, 85). This
compound releases GRs from HSP90, therefore reestablishing
glucocorticoid-mediated negative feedback on ACTH secretion
(Figure 2) (80). There are no ongoing clinical trials for the
evaluation of silibinin for CD.
Frontiers in Endocrinology | www.frontiersin.org 6
Cyclin-Dependent Kinases and Cyclin E/E2F1
Pathway Inhibition
Cyclin-dependent kinases (CDKs) are essential regulatory
proteins of the cell cycle progression (86). Pituitary cyclin
E/E2F1 is a potential molecular target of pituitary ACTH-
dependent hypercortisolism. In corticotroph tumor AtT20 cells
murine models, R-roscovitine down-regulates cyclin E/E2F1
resulting in suppressed POMC expression (30). Also, in human
pituitary corticotroph tumors treated with R-roscovitine,
resulted in inhibition of the kinase activity (31).
CONCLUSIONS

Mechanisms of CTs tumorigenesis have identified hundreds of
potential genes, miRs, proteins, and peptides which are up or
downregulated in comparison to the normal anterior pituitary.
These changes may represent potential targets for pharmacological
treatment or have an impact on the prediction of CD and SCTs
recurrence. Further research is needed to better understand CT
origin and pathophysiology. This may also lead to the identification
of novel markers of disease severity or progression, and diagnostic
tests with higher performance to predict recurrent CD or SCT.
Although novel molecular markers are still not clinically validated
as predictors of recurrence in CT, some of them are currently
targeted for research as potential novel therapies.
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